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ABSTRACT 

In this research, a linear shrinkage factor model, which is the result of spatial and statistical 

modeling, was developed for the state of North Dakota. The input variables for the developed shrinkage 

factor models were derived from spatially modeled soil data which makes the function responsive to soil 

variability across the state. The current approach for selecting the shrinkage correction factor in earthwork 

contracts across the state of North Dakota is through a trial-and-error system. This deterministic system 

employs the judgment of experienced engineers in selecting a shrinkage factor value for earthwork 

contracts. The current approach assumes shrinkage factor uniformity and does not provide a measure of 

the estimate’s reliability. Due to the heterogeneous nature of soil properties across the state, the trial-and-

error approach for selecting the shrinkage factor greatly impacts earthwork volumes, which could lead to 

contract variations and increase the cost of contract administration.  
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CHAPTER 1. INTRODUCTION 

1.1. Background 

Earthwork construction is the excavation, hauling, placing, and compaction of soil, gravel, or 

other material found on the Earth’s surface. The definition also includes the measurement of such material 

in the field, the computation in the office of the volume of such material, and the determination of the 

most economical method of performing such work (Cole and Harbin, 2006).Earthwork construction 

usually involves the excavation and piling of earth in connection with an engineering operation. 

Determining the volume of material involved in an earthwork project is performed both electronically and 

manually. Manual determination of earthwork quantities is done through the use of mass diagrams and 

grids, and the electronic approach is through the use of software packages such as GEOPAK and 

AutoCAD civil3D. With both approaches, the final volumes generated are adjusted for changes in volume 

during excavation, transportation, and placement by applying shrinkage- and load-correction factors. The 

current and general approach is to use an arbitrary value of 25-30% for the shrinkage-correction factor. 

For instance, the North Dakota Department of Transportation (NDDOT) plan sets accompanying every 

project in the state specify a percentage of additional volume in section 210 that is used to account for 

earthwork shrinkage on the project (NDDOT,2008).This approach is deterministic and invariably 

undermines the shrinkage variability of soil at different locations across the state. The engineering 

properties of soil, such as density, particle size, and structure, vary from place to place. There are inherent 

variations in individual soil constituents; for instance, soil density could change from place to place. The 

behavior of soil, therefore, depends not only on its properties, but also on its location. Vibration, for 

example, could be used to change loose soil into dense soil by altering the arrangement of soil particles. 

The deterministic and trial-and-error approaches for gauging shrinkage factors do not, therefore, account 

for the variability caused by construction process, location, and environmental factors such as moisture. 

Failure to account for these variables could result in volume loss or gains in contract quantities, which 
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affects all parties for the earthwork contract. For example, the resultant change in earthwork volume 

during construction leads to contract variations during project execution. This variation implies an 

increase in change orders, extra work for contract administration, budget overruns, disputes between 

contractors and project owners, and schedule delays. 

 

1.2. Problem statement 

All Department of Transportation (DOT) earthwork contracts have a soil shrinkage factor value 

written in them as means of capturing soil shrinkage during construction. Contractors are therefore paid 

for increased soil volume on the basis of this predetermined shrinkage factor value. The challenge is that, 

this soil shrinkage factor has to be captured in the contract document prior to construction. Evidence 

shows that, this shrinkage factor value is selected on the basis of the judgment of an experience engineer 

combined with few random pre-construction soil tests. This approach to determining soil shrinkage factor 

fails to account for variability in the composition of different soil types and the uncertainty associated 

with different soil types that exist across the state. This approach also fails to capture error associated with 

the prediction and leaves the contract open to challenge through change orders. The spatial statistic, 

however, offers the prospect of overcoming this shortfall. The purpose of this research is therefore to 

develop a model that predicts soil shrinkage factor with an expected degree of reliability by correlating 

the weights of different parameters that affect the shrinkage factor and accounts for spatial variability. 

 

1.3. Aims and objectives 

The objectives of this study are as follows: 

1. A review of the current approaches to determine earthwork quantities and how the shrinkage 

factor is used in DOT districts. 

2. Identify typical shrinkage-factor values for different soil types.  

3. Identify the factors that influence the shrinkage factor. 
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4. Identify the cause for variations of the shrinkage factor from one transportation district to another 

in North Dakota.  

5. Develop a model that helps show the relationship between the shrinkage factor and these 

variables. Use the model to predict shrinkage-factor values. 

6. Investigate how the uncertainty associated with predicting the shrinkage factor could be reduced. 

7. Develop a spatial map showing variations in the different factors across North Dakota. 

1.4. Research contribution 

This thesis is part of NDDOT-sponsored research that is looking at the various factors that must 

be considered in determining the shrinkage factor for earthwork projects in North Dakota. In the first 

phase of the research, the hypothesis postulated was that the soil shrinkage factor is a multivariate of the 

soil’s clay content, the soil’s moisture content, soil type, construction losses, the density of the soil, and a 

random error. The clay content hypothesis was tested and validated. The second phase dealt with the 

density and moisture content functions. This thesis, therefore, employed multivariate statistics and spatial 

statistics to explore this concept. Due to the variability of soil from place to place, this thesis also used a 

Geographic information system to explore and enhance the understanding about the relationships between 

these factors by examining spatial autocorrelation and spatial heterogeneity through the process of 

exploratory spatial data analysis. The results of this thesis will form the basis of a guideline to be 

developed by the North Dakota Department of Transportation (NDDOT) for contract administration in 

the area of selecting shrinkage factors for its earthwork projects in order to ensure fairness and 

consistency and to reduce variations with field conditions when using shrinkage factors. The results of 

this research will help improve shrinkage-factor calculation and use for earthwork contracts. The results 

will also help close the current knowledge gap about shrinkage-factor uncertainty. 
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1.5. Research methodology 

In response to the objectives of this research, a research methodology was developed. The 

research methodology adapted for modeling the shrinkage factor is shown in the flow chart of Figure 1.1. 

The different activities executed throughout the design and implementation of this research are shown in 

Figure 1.1. 

 
Figure 1.1. Research flowchart 

Initial Shrinkage Factor model (variables)

NRCS Soil Data set Test for other variables

Clay% Kriging Field Tests

Multivariate regression 
modeling

Variable Elimination
Change variable 
combination

Lab Tests

No

Continuous iteration to 
develop models

EF & NOF analysisUse models in Prediction

Yes

Final model 

Problem Definition

Literature Review
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CHAPTER 2. LITERATURE REVIEW 

In this chapter, the shrinkage factor and existing shrinkage-factor calculation methods are 

reviewed. The modeling concepts that were used for shrinkage-factor calculation are discussed. The test 

procedures used for measuring the soil properties relevant to the study are also reviewed. Another purpose 

of this chapter is to discuss the statistical concepts relevant to the modeling used and to review 

geostatistics. 

2.1. Shrinkage factor and geostatistics 

The shrinkage factor is one of many factors used to convert earthmoving materials between one 

of the three major states (bank, loose, or compacted) in which it may exist (Nunnally, 2011). The bank 

state represents the natural state of the material before any disturbance, and it is often referred to as “in 

place” or “in-situ.” A unit volume is identified as bank cubic yard (BCY) or bank cubic meter (BCM). A 

loose condition is the state of the material when it has been excavated or loaded. Unit volume is identified 

as loose cubic yard (LCY) or loose cubic meter (LCM). A compacted condition represents the state of the 

material after compaction. Unit volume is identified as compacted cubic yard (CCY) or compacted cubic 

meter (CCM) (Nunnally, 2011). 

Conversion between different soil states is required to ensure consistency with the unit of volume 

specified as the basis for payment in an earthmoving contract. A pay yard (or meter) is the volume unit 

specified as the basis for payment in an earthmoving contract (Nunnally, 2011).  

During the earthwork construction process, soil undergoes swell and shrinkage to exist under these three 

major states as shown in Figure 2.1. 

To convert between bank volume and compacted volume, the shrinkage factor is used. The 

shrinkage factor function is given by Equations 2.1 and 2.2 (Nunnally, 2011): 

volumeunitcompactedWeight

volumeunitbankWeight
SFfactorShrinkage

/

/
)(             (2.1) 
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Figure 2.1. Typical soil volume change during earthmoving (Nunnally, 2011) 

shrinkagefactorShrinkage 1                                                                           (2.2) 

Shrinkage in Equation 2.2 represents the condition of the soil when it is compacted and, hence, 

occupies less volume than when under the loose and bank volumes. Shrinkage is given by Equation 2.3 

(Nunnally, 2011): 

100)
/

/
1((%)

volumecompactedWeight

volumebankWeight
Shrinkage    (2.3) 

Conversion from loose volume to bank volume is performed using the load factor. The load factor 

is given by Equations 2.4 and 2.5 (Nunnally, 2011): 

volumeunitbankWeight

volumeunitlooseWeight
factorLoad

/

/
    (2.4) 

swell
factorLoad

1

1
      (2.5) 

Swell in Equation 2.5 represents the increase in the volume of the soil when it is excavated from 

its bank state. The swell is given by Equation 2.6 (Nunnally, 2011): 

100)1
/

/
((%)

volumelooseWeight

volumebankWeight
Swell    (2.6) 

Tables 2.1 and 2.2 provide some typical factors for different soil types. 
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Table 2.1. Typical soil weight and volume change characteristics (Nunnally, 2011) 

Material  Unit Weight [lb/cu yd(kg/m
3
) ] Swell Shrinkage 

Load 

Factor 

Shrinkage 

Factor   Loose Bank Compacted % % 

Clay 2310(1370) 2310(1370) 2310(1370) 30 20 0.77 0.80 

Common Earth 2310(1370) 2310(1370) 2310(1370) 25 10 0.80 0.90 

Rock (blasted) 2310(1370) 2310(1370) 2310(1370) 50 -30** 0.67 1.30** 

Sand and gravel 2310(1370) 2310(1370) 2310(1370) 12 12 0.89 0.88 

                

*Exact values vary with grain size distribution, moisture, compaction, and other factors. Tests are 

required to determine the exact values for specific soil. 

**Compacted rock is less dense than is in-place rock.     

 
Table 2.2. Material volume conversion factors (United States Army Engineer School [USAES], 2000) 

Material Type Converted From 

Converted To 

Bank(in Place) Loose Compacted 

Sand or gravel Bank(in place) - 1.11 0.95 

  Loose 0.90 - 0.86 

  Compacted 1.05 1.17 - 

Loam(Common earth) Bank(in place) - 1.25 0.90 

  Loose 0.80 - 0.72 

  Compacted 1.11 1.39 - 

Clay Bank(in place) - 1.43 0.90 

  Loose 0.70 - 0.63 

  Compacted 1.11 1.59 - 

Rock(blasted) Bank(in place) - 1.50 1.30 

  Loose 0.67 - 0.87 

  Compacted 0.77 1.15 - 

Coral(Comparable to lime 

rock) Bank(in place) - 1.50 1.30 

  Loose 0.67 - 0.87 

  Compacted 0.77 1.15 - 
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Soil properties and characteristics provide the basis for calculating shrinkage factors for 

earthwork projects. Generally, soil samples are tested, and the results are utilized with earthwork 

calculations. The accurate and reliable estimation of soil properties and characteristics is important to the 

integrity of the shrinkage factor and the economics of earthwork projects. However, soil, like other earth 

materials, is intrinsically stochastic and stationary. Hard soil data and geologic information (soft data) are 

naturally uncertain, variable, and spatially distributed (with respect to location and value). The variability 

and stationarity, if unaccounted for, affect shrinkage calculations. The spatial distribution of soil 

properties is difficult to predict deterministically. Ordinary statistics have been employed to deal with soil 

variability. Researchers (Phoon, 2006; Hammah and Curan, 2006) have expressed concern as well as 

promise/opportunity when employing geostatistical techniques in the analysis of soil data. Geostatistical 

techniques have not yet been applied to the estimation of shrinkage factors for earthwork calculations. 

Natural soils are generally heterogeneous and highly variable in their properties. Most natural soils also 

exhibit stationarity and/or spatial distribution. The predominant approach to dealing with uncertainty in 

soil data is the use of ordinary statistical techniques to analyze and interpret a small sample of soil data. 

These sample statistics are then employed to describe the statistics of the entire population without any 

considerations for scale effects. Ordinary statistical models do not take into the spatial distribution of soil 

properties into account. The geotechnical engineering profession has been searching for tools to better 

deal with the complexity, variability, and stationarity of soil properties. Geostatistical techniques will be 

of tremendous benefit to the profession if the full powers of geostatistical modeling and simulation can be 

integrated into soil data property analysis. The existing knowledge gap in the understanding the soil 

shrinkage factor could be related to epistemic uncertainty (Walker et al., 2003). Epistemic uncertainty 

refers to the situation where there is a lack of knowledge or incomplete knowledge that leads to an 

inability to predict a certain phenomenon. 
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2.1.1. Modeling soil properties 

Modeling soil properties requires tools which can deal with large uncertainties, variations, 

multiple data points, correlated collocated data, soft data, etc. One of the tools that is gaining acceptance 

is stochastic modeling via geostatistical algorithms. However, geostatistical algorithms have not been 

applied to shrinkage-factor and earthwork calculations. The lack of documented methodologies is one of 

the biggest obstacles. Uncertainty and stationarity are intrinsic to soils and other earth-science data. The 

inability to effectively deal with these characteristics can gravely affect the reliability of shrinkage-factor 

estimates. The impact of uncertainty and stationarity has long been recognized by the pioneers of the 

geotechnical profession (Casagrande, 1965). However, the industry always lacked the practical tools to 

quantify and account for uncertainty. Nearly two decades ago, Einstein and Baecher (1982) wrote, "The 

question is not whether to deal with uncertainty, but how?"  

Spatial variability of soil properties from one point to another is attributed to factors such as 

variations in mineralogical composition, conditions during deposition, stress history, and physical and 

mechanical decomposition processes. The spatial variability of soil is controlled by some form of 

correlation relating the soil property to a location in space. In statistical terms, this phenomenon is known 

as spatial structure. That correlation is expected to diminish as the distance between data points increases.  

Even though soil properties are multivariate, data analysis is univariate. The predominant 

approach to dealing with uncertainty in soil data is the use of ordinary, linear statistical-modeling 

techniques. In ordinary linear statistics, the mean is used to represent the data, even though it is not the 

best linear unbiased estimator (BLUE). The stationarity problem is not addressed with the linear statistical 

approach. This work is, therefore, aimed at employing stochastic modeling, simulation, and optimization 

techniques in the form of geostatistics and decision sciences to effectively characterize and analyze soil 

data and information in earthwork shrinkage-ratio calculations. 

Based on existing literature, this research was classified under epistemic uncertainty and aleatory 

uncertainty (Helton et al., 2004). The epistemic uncertainty concept allowed for the use of learning from 
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research to reduce the existing knowledge gap. The aleatory uncertainty concept allowed for modeling the 

shrinkage factor as a probability-distribution function.  The geostatistical tools of kriging and multivariate 

regression were explored as a means of analyzing shrinkage-factor distribution in this research. 

2.1.2. Geostatistics 

Geostatistics was invented by D. G.Krige and H. S.Sichel and formalized (theorized) by Georges 

Matheron in his theory of regionalized variables (Krige, 1951; Matheron, 1955). Geostatistics is a 

collection of mathematical techniques and algorithms employed to characterize and analyze the behavior 

of spatially correlated data. It is based on the theory of regionalized variables (Journel and Huijbregts, 

1978; Goovaerts, 1997). This property allows one to capitalize on the spatial correlation between 

neighboring observations to predict attribute values at unsampled locations.  

Geostatistics is a branch of applied statistics which is focused on the spatial relationships among 

geological/earth-science data, the geological processes underlying earth-science data, and the support 

effects and the precision of data. Several authors (Tabios and Salas, 1985; Phillips et al., 1992) have 

shown that geostatistical prediction techniques (kriging) provide better estimates of earth-science data 

than conventional methods. The difference between kriging and other linear estimation methods is that it 

is aimed at minimizing the error variance. Laslett et al. (1987) compared kriging with other techniques of 

interpolation and showed that kriging was the only methodology that performed reliably in all 

circumstances. Kriging has been successfully used for the spatial prediction of soil properties (Burgess 

and Webster, 1980), mineral resources, petroleum property evaluation, aquifer interpolation (Doctor, 

1979), soil salinity through interpolation of electrical conductivity measurements (Oliver and Webster, 

1990), meteorology, and forestry. 

The fundamental elements of the modeling process are: 

1. calculating an experimental semivariogram/variogram;  
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2. considering geological information and knowledge of the area (if available) to 

supplement calculated points;  

3. fitting a licit positive definite model to data.  

The resulting semivariogram model must capture all the major features of the soil properties. The 

various variogram models are outlined in the equations below. The nugget-effect model exhibits 

discontinuous behavior near the origin. Gaussian, spherical, and exponential models exhibit linear 

behavior near the origin. The power model becomes zero at the origin (h=0). 

Spatial characterization of a data set is contingent on fitting the right variogram to the model. The 

variogram is the simplest way to relate uncertainty to distance from an observation (Chiles and Delfiner, 

1999). To avoid having to test the permissibility of a semivariogram model “a posteriori”, a common 

practice consists of using only linear combinations of basic models that are known to be permissible 

(Christakos, 1984). Therefore, of the most frequently used basic variogram models, we used the spherical, 

exponential, and Gaussian model (Goovaerts, 1979).                                                                                                                                      

 The spherical model with range “a” 

otherwise

ahif
a

h

a

h

a

h
Sphh
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,5.05.1
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    (2.7) 

 The exponential model with practical range “a” 
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3
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a

h
h

      (2.8) 

 The Gaussian model with practical range “a” 
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exp1

      (2.9) 

 
Figure 2.2. Graphical representation of semivariogram (Goovaerts, 1979) 

For the three basic variograms, practically, a sill is reached at a distance of the range (range of 

influence). In the models utilized for this work, the sill and ranges of each fitted variogram were 

determined. The nugget of the fitted variogram from the point where the variogram cuts the vertical axis 

was obtained. A high nugget was an indication of the variogram modeling the relationship between 

known and unknown data sets with high variance. 

Besides providing a measure of prediction error (kriging variance), a major advantage of kriging over 

simpler methods is that sparsely sampled observations of the primary attribute can be complemented by 

secondary attributes that are more densely sampled (Goovaerts, 2000). The advantages of 

stochastic/geostatistical characterization (Carter and Gregorich, 2006) are as follows:  

1. Geostatistical techniques enable the construction of quantitative models for earth-science data, 

processes, and phenomena. Soft geologic, seismic, topographic, and other information and hard 

data can be combined to form a realistic, three-dimensional, stochastic representation of 

geological and other earth-science processes; 

2. Local and global uncertainty and heterogeneity can be modeled with geostatistical techniques;  
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3. Geostatistical techniques can be employed to optimize the design of sampling/survey programs 

used to collect earth-science information and data. The techniques could be used to minimize the 

risk associated with the characterization process;  

4. Geostatistics could be used to simulate the geological processes and phenomena underlying the 

quantitative geological models;  

5. Geostatistical models enable the characterization, estimation, and inference of geological 

processes based on limited conditioning data coupled with a measure of the spatial structure and 

heterogeneity; and finally, uncertainty analysis, sensitivity analysis, and decision techniques 

could be combined in geostatistical modeling to improve decision making. 

2.2. Statistical concepts 

Spatial statistics offer tools for analyzing the spatial distribution of data sets, trends, and 

processes as well as the relationship among them. This section is a general review of the statistical 

concepts associated with multivariate analysis and spatial data modeling which were used to develop the 

shrinkage-factor function that is consistent with spatial variation. 

2.2.1. Multivariate regression analysis 

Multivariate regression is a technique that estimates a single regression model with more than one 

outcome variable. Regression analyses are, therefore, a set of statistical techniques which allow us to 

assess the relationship between one dependent variable and several independent variables (Rencher, 

2002). Regression analyses only reveal relationships between variables; this does not imply that the 

relationships are causal.  

2.2.2. Linearity 

Linearity is the assumption that there is a linear model that can be well fitted between the 

dependent and independent variables (Decision 411, 2012).Linearity is essential for the calculation of 

multivariate statistics due to the basis upon the general linear model and the assumption of multivariate 
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normality which implies that there is linearity between all pairs of variables, with significance tests based 

upon that assumption. Linearity between two variables may be assessed through the observation of 

bivariate scatter plots. When both variables are normally distributed and linearly related, the scatter plot is 

oval shaped; if one of the variables is non-normal, then the scatter plot is not oval. 

2.2.3. Normality 

The underlying assumption of most multivariate analysis and statistical tests is multivariate 

normality, the assumption that all variables and all combinations of the variables are normally distributed. 

When the assumption is met, the residuals are normally distributed and independent; the differences 

between the predicted and obtained scores (the errors) are symmetrically distributed around a mean of 

zero; and there is no pattern to the errors. Screening for normality may be done in either the statistical or 

graphical method (Rencher, 2002). 

2.2.4. Residuals 

Residuals are the difference between an observed value of the response variable and the value 

predicted by the model (Moore and McCabe, 1993). 

2.2.5. Homoscedasticity 

This is one of the assumptions with multivariate regression analysis. Homoscedasticity is the 

assumption that the response variables have the same variance. Therefore, when the residuals of an 

analysis seem to increase or decrease in average magnitude with the fitted values, it is an indication that 

the variance of the residuals is not constant (Decision 411, 2012).  

2.2.6. Random variable  

A random variable is a variable where the possible values are numerical outcomes of a random 

phenomenon (Easton and McColl, 1997). Random variables are used to represent stochastic phenomenon 

mathematically. Random variables could be discrete, in which case they take the value of finite values, or 

could be continuous, in which case they take the value of an infinite number or values within a range. The 
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probability that a random variable (X) takes discrete and continuous values is given by Equations 2.10 

and 2.11: 

)()( pxixiXE       (2.10) 

dxxxfXE )()(       (2.11) 

where μ and E(X) represent the expected value of X and where p(xi) is the probability that X takes the 

value xi. 

2.2.7. Covariance 

Covariance measures the strength of the correlation between two or more sets of random 

variables. In geostatistics, the covariance is used to characterize data correlation for paired data (Griffith, 

1987).  

2.2.8. Spatial autocorrelation 

Spatial autocorrelation is the correlation among values of a single variable strictly attributable to 

their relatively close positions on a two-dimensional surface, introducing a deviation from the 

independent observation’s assumption of classical statistics (Griffith, 1987). It measures the correlation of 

a variable with itself through space. This concept seeks to test the assumption of variables’ independence 

or randomness. Some indices used to measure spatial autocorrelation are Moran’s I, Geary’s C, a 

semivariogram, and Ripley’s K. 

2.2.9. Hypothesis testing 

Hypothesis testing is a check to verify if the probability distribution of a data set is consistent 

with available sampled evidence. Hypothesis testing involves comparing the fit for the data from two 

models, one which incorporates assumptions which reflect the hypothesis and the other incorporating a 
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less-specific set of assumptions. Some hypothesis-testing tools include the Z-Test, T-Test, and Chi-square 

Test (Rencher, 2002). 

2.2.10. Exploratory spatial data analysis 

Exploratory spatial data analysis is an extension of exploratory data analysis (EDA) to detect 

spatial properties for any given data. It focuses on the distinguishing characteristics of geographic data, 

specifically on spatial autocorrelation and spatial heterogeneity (Haining ,1990;Cressie, 1993). EDA is 

done through the use of techniques such as trend identification and smoothening through the use spatial 

averaging. 

2.2.11. Principal component and factor analysis 

Principal component analysis (PCA) and factor analysis (FA) are statistical techniques applied to 

a single set of variables to discover which variables in the set form coherent subsets that are relatively 

independent of one another. Variables that are correlated with one another which are also largely 

independent of other variable subsets are combined into factors. The generated factors are thought to be 

representative of the underlying processes that have created the correlations among variables (Rencher, 

2002). 

2.3. Earthwork calculation methods 

There are different methods of determining the quantity of earthwork material for a project. The 

most commonly used method is the end-area method. The other methods are the contour line/grid method 

and electronic means. Examples of the electronic means include GEOPAK, AutoCAD 3D,IGrid, and 

Tally Systems Earthwork. The information technology industry has transformed the ways in which 

earthwork information and data are obtained and processed (Leick, 2004). Irrespective of the earthwork-

quantity calculation method, the input data are obtained either through manual surveying or through the 

use of sophisticated GPS-based instruments. Manual surveys use levels, theodolite, and total stations to 

obtain elevations and angle data. GPS-based instruments utilize signals to obtain elevation data. The data 
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sets obtained from these data-collection methods form the building blocks of the different methods for 

calculating earthwork quantities. 

2.3.1. Average end area method 

The end-area method of earthwork calculation involves determining the size of the end area on 

successive cross sections and multiplying the length between the sections by the average end area (New 

Hampshire Department of Transportation [NHDOT], 1999). This approach is typically used when dealing 

with jobs for which the lengths are longer than the width. For instance, in roadwork where lengths are 

longer than widths, the approach is widely applied. In the average end-area approach, the field is divided 

into 50-100ft stations (Hanna, 1998). The profile of the existing ground condition is developed by taking 

the elevation data along the centerline of each station. Based on the profile of the final level of ground, a 

profile is built to generate the cut and fill volume. The cut and fill volumes are obtained by multiplying 

the average area between two adjacent stations with the distance between them (NHDOT, 1999). The 

final volume is obtained by adjusting the calculated volume with shrinkage or a bulking factor based on 

the characteristics of the material involved. A sample of the detailed end-area method template is shown 

in Table 2.3. 

Table 2.3. Sample end-area method calculation sheet  

Station 

End 

area 

cut/sf 

End 

area 

fill/sf 

Volum

e of 

cut/bc

y 

Volume 

of 

ccy/ccy 

Strip 

cut/bcy 

Strip 

fill/ccy 

Total 

cut/bcy 

Adj. 

fill/bcy 
Sum/bcy 

Mass 

ordinate 

0+00 0 0 

        

1+00 0 82 

  

0 0 

    

2+00 6 57 

  

12 0 

    

3+00 120 100 

  

11 0 

    

4+00 210 0 

  

2 4 

    

5+00 215 0     5 1         
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2.3.2. Grid method 

This approach of earthwork calculation is done by using contours and grid division. The grid 

sizes are normally between 10ftx10ft and 50ftx50ft.The smaller the grid network, the more accurate the 

results are when using this approach (Hanna, 1998). The first step in this manual approach is to obtain the 

required elevation from the specification. In the next step, a grid network is created to cover the entire 

area, and the area of each grid cell is determined. The elevations at the corners of each grid are then 

determined with the accompanying contour map of the area. Cut and fill volumes are then determined by 

finding the difference between the required elevation and the average grid elevation, and multiplying it by 

the predetermined grid-cell area. Grid cells that constitute a cut are added in one group, and cells that 

constitute fill are also put in one group. Based on the network of cut and fill cells, a grading plan is 

generated (Hanna, 1998; NHDOT, 1999). A sample grid plan is shown in Figure 2.3. 

 
Figure 2.3. Sample 5’x5’ gridded site 

 

2.3.3. Electronic methods 

Currently, there are several software applications used for generating earthwork quantities. Most 

software works on the same basic principle as the manual approach to generating earthwork quantity 

(NDDOT, 2006). The software depends on a user-entered parameter, such as original ground level, 

progressive levels as the job proceeds, formation levels, and the interval between end areas. Based on 

these inputs, the software generates a 3D visual output called a digital terrain model. The other user entry 



19 

 

is the compaction factor. This factor is taken into account when calculating a schedule of quantities and 

when displaying balance levels. This factor is used to account for changes in volume when soil material is 

taken from its natural state. Figure 2.4 shows a Geopak display with some of the input parameters. 

 
Figure 2.4. GEOPAK software (http://www.ncdot.gov accessed 05/17/2012) 

2.4. Standard soil testing methods used in research 

2.4.1. Standard proctor test 

The standard proctor test is a soil-testing method used to determine the relationship between the 

moisture content and the density of soils compacted in a mold.  The test is designed to simulate field 

compaction in the laboratory. The test seeks to find the optimum moisture content at which the maximum 

dry unit weight is achieved. The American Association of State Highway and Transportation Officials 

(AASHTO) developed a standard testing procedure for the moisture density-relationship test. The 

standard is the AASHTO T 99 and AASHTO T 180.In reviewing the North Dakota Department of 

Transportation field testing manual (NDDOT, 2011),there are two different standards for moisture-

density relationships test currently in use. The standards vary mainly in the compaction energy applied to 

the soil in the mold. These standards are in line with the AASHTO T99 and AASHTO T180 standards. 

The NDDOT modified the AASHTO standard to only allow the use of methods A and D as shown in 

Table 2.3 and 2.4. According to the NDDOT testing manual, “method D shall only be used in lieu of 

method A when there is more than 5% by weight of material retained on the No. 4 sieve”. Method D shall 
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be used without correction for all soil aggregates which have all materials passing the 3/4" sieve. 

Corrections must be made according to AASHTO T 224 for all materials which have 30% or less retained 

on the 3/4" sieve. The manual also allows for using other compaction-control methods when the specified 

oversized maximum of 30% is exceeded. 

Table 2.4. NDDOT modified AASHTO T99 and T180, method A (NDDOT, 2011) 

Method A   

Feature AASHTO T 99 AASHTO T 180 
Weight of compaction rammer 5.5 lbs 10 lbs 

Distance of drop 12" 18" 

Number of soil layers 3 5 

Diameter of mold 4" 4" 

Soil passing sieve size No. 4 No. 4 

Rammer, blows/layer 25 25 

 
 
Table 2.5. NDDOT modified AASHTO T99 and T180, method D (NDDOT, 2011) 

Method D   

Feature AASHTO T 99 AASHTO T 180 
Weight of compaction rammer 5.5 lbs 10 lbs 

Distance of drop 12" 18" 

Number of soil layers 3 5 

Diameter of mold 6" 6" 

Soil passing sieve size No. 4 No. 4 

Rammer, blows/layer 56 56 

 

2.4.1.1. Test procedure 

The apparatus used for both methods A and D are balance (readable to 0.01lbs (5g)), a density 

mold, a base and a collar, a compacting rammer, an oven, No.  4 (4.75mm) sieve, 10-in long straight 

edge, a knife, moisture-sample cans with lids, and mixing tools. For method A, a representative soil 

sample of approximately 35 lbs (15.9 kg) is required for the multi-point Moisture-density relationship 
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Test, and approximately 7 lbs (3.2 kg) are required for the One-Point Moisture-Density Relationship Test. 

For method D, a representative soil sample of approximately 125 lbs (55 kg) is required for the Multi-

Point Moisture-Density Relationship Test, and approximately 25 lbs (11 kg) are required for the One-

Point Moisture-Density Relationship Test. 

2.4.1.2. One-point and multi-point moisture- density relationship: mechanical and manual test 

procedure  

1. Weigh empty mold without base plate and collar to the nearest 0.01lb (5g). 

2. Thoroughly mix the first test sample with water to dampen it approximately four percentage 

points below the optimum moisture content (soil barely forms a “cast” when squeezed together). 

Avoid moisture loss by placing the specimen in a moisture-proof container. Mix remaining 

specimens in the same manner as test sample one, increasing water content by approximately one 

or two percentage points (not exceeding 2.5%). This water content increase can be done by 

adding approximately 60 ml of water to the sample for method A and 250ml for method D. 

3. Attach the collar to the mold, and form test samples by adding sufficient material to the mold to 

produce a compacted layer of approximately 13/4" for AASHTO T 99 or 1" for AASHTO T 180. 

4. Using a manual compaction rammer or a similar device with a 2" face (50 mm), lightly tamp the 

soil until it is no longer loose or fluffy. 

5. Compact the soil with 25 evenly distributed blows (method A) or 56 blows (method D) of the 

compaction rammer. After each layer, trim any soil along the mold walls that has not been 

compacted with a knife and distribute on top of the layer. 

6. Repeat this procedure by adding more soil from the same sample each time so that, at the end of 

the last cycle, the top surface of the compacted soil is above the top rim of the mold when the 

collar is removed. 

7. Remove the collar, and trim the extruding soil level with the top of the mold. In removing the 

collar, rotate it to break the bond between it and the soil before lifting it off the mold.  
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8. After trimming the soil level with the top of the mold, clean all loose material from the outside of 

the mold. 

9. Weigh the soil and mold to the nearest 0.01lb (5 g). 

10. Determine the mass of the sample by subtracting the empty weight of the mold from the final 

weight of the mold and soil determined in step 9. 

   moldofweightemptysoilmoldofweightsoilofweightwet  (2.12) 

moldofvolume

soilofweightwet
pcfdensitywet ,     (2.13) 

11. Remove the soil from the mold, and slice through the center vertically. Obtain a representative 

sample of approximately 100g from one of the cut faces. Take the sample from the full length of 

the inside of the soil cylinder. 

12. Place the moist sample in a container, cover, and weigh to the nearest 0.1g. 

13. Dry the sample to a constant weight according to AASHTO T 265, the laboratory determination 

of the moisture content of soil. Calculate the percentage of moisture to the nearest 0.1% using the 

equation 2.14: 

100%
tareweightdry

weightdryweightwet
moisture    (2.14) 

where,  

Tare = Tare weight of container and lid 

Wet Weight = Wet weight of the sample, container, and lid 

Dry Weight = Dry weight of the sample, container, and lid 

14. Determine the dry density to the nearest 0.1 pcf using Equation 2.15: 
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moisture

densitywet
pcfdensityDry

%100

100
,      (2.15) 

After analyzing a large number of both T 99 and T 180 moisture-density curves that generally 

represent statewide soil types, it was found that the curves follow the trends shown on the graphs of 

Figures 2.5 and 2.6. The graphs with the T 99 and T 180 procedure may be used in place of performing 

the entire moisture-density relationship test. It is recommended that the multi-point moisture-density 

relationship test be used whenever possible. 
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Figure 2.5. T 99 Density curves (NDDOT, 2011) 
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Figure 2.6. T 180 Density curves (NDDOT, 2011) 
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2.4.2. Oven dry moisture test 

The soil’s moisture content was determined by using the AASHTO T255 standard. This test 

method covers the determination for the percentage of evaporable moisture in a sample of aggregate by 

drying both the surface moisture and the moisture in the pores. 

2.4.2.1. Test procedure 

The apparatus used in this test area balance, a sample container, a hot plate (stove, oven, or700-

watt microwave), and a spoon or spatula. The specimen should be obtained using AASHTO T 2. The 

sample size may be determined by using Table2.6. 

Table 2.6. Sample aggregate calculation sheet 

Sample Size for Aggregate 

Nominal Maximum Size 

of Aggregate 

Mass of Normal Weight 

Aggregate Sample 

No.4 (4.75 mm) 1 lb (0.5 kg) 

3/8" (9.5 mm) 3 lbs (1.5 kg) 

1/2" (12.5 mm) 4 lbs (2 kg) 

3/4" (19.0 mm) 7 lbs (3 kg) 

1" (25.0 mm) 9 lbs (4 kg) 

11/2" (37.5 mm) 13 lbs (6 kg) 

2" (50mm) 18 lbs (8 kg) 

21/2" (63 mm) 22 lbs (10 kg) 

3" (75mm) 29 lbs (13 kg) 

 

The recommended test procedure is as follows: 

1. Weigh sample on the balance to obtain its mass.  

2. Dry the sample by means of a selected heat source. An oven capable of maintaining a temperature 

of 230 ± 9°F (110 ± 5°C) may be used. When drying a sample on a hot plate or stovetop, great 

care must be taken to keep from burning the sample or losing material when the sample is stirred. 
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3. Dry the sample until a constant weight is achieved (when further drying will cause less than 0.1% 

additional loss in mass.). 

4. Calculate the moisture-content percentage to the nearest 0.1% by using equation 2.16: 

100%
sampledryofmass

sampledryofmasssampleoriginalofmass
moisture   (2.16) 

2.4.3. Nuclear density test 

The nuclear density test is conducted to determine the in-place density of soil, moisture content, 

and aggregates. In the state of North Dakota, the procedure is performed in line with AASHTO T 310. 

The procedure covers the determination of density; moisture content; and the relative compaction of soil, 

aggregate, and soil-aggregate mixes in accordance with AASHTO T 310. There are two methods for 

determining the in-place density of soil or soil-aggregate mixtures. They are single-direction method A 

and two-direction method B (NDDOT, 2011). 

2.4.3.1. Test procedure 

The apparatus for this test are a nuclear density gauge with the factory-matched standard 

reference block, drive pin, guide/scraper plate, and a hammer for testing in direct transmission mode; 

transport case for properly shipping and housing the gauge and tools; an instruction manual for the 

specific gauge’s make and model; sealable containers and utensils for moisture-content determinations; 

radioactive-material information; and a calibration packet containing the daily standard count log, factory 

and laboratory calibration data sheets, the leak test certificate, the shippers’ declaration for dangerous 

goods, the procedure memo for storing, transporting, and handling nuclear testing equipment, and other 

radioactive material documentation as needed by local regulatory requirements (NDDOT, 2011). 
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2.4.3.2. Steps 

1. Select (a) test location(s) randomly and in accordance with agency requirements. Test sites should 

be relatively smooth and flat, meeting the following conditions: 

a) At least 10 m (30 ft) away from other sources of radioactivity 

b) At least 3 m (10 ft) away from large objects 

c) The test site should be at least 150 mm (6 in.) away from any vertical projection, unless the 

gauge is corrected for the trench wall effect 

2. Remove all loose and disturbed material, and remove additional material as necessary to expose 

the top of the material to be tested. 

3. Prepare a flat area sufficient in size to accommodate the gauge. Plane the area to a smooth 

condition to obtain the maximum contact between the gauge and the material being tested. For 

Method B, the flat area must be sufficient to permit rotating the gauge 90 or 180 degrees about 

the source rod. 

4. Fill in surface voids beneath the gauge with native fines passing the 4.75-mm (No. 4) sieve or 

finer. Smooth the surface with the guide plate or other suitable tool. The depth of the native-fine 

filler should not exceed approximately 3 mm (1/8 in.). 

5. Make a hole perpendicular to the prepared surface using the guide plate and drive pin. The hole 

shall be at least 50 mm (2 in.) deeper than the desired probe depth and shall be aligned such that 

insertion of the probe will not cause the gauge to tilt from the plane of the prepared area. Remove 

the drive pin by pulling straight up and twisting the extraction tool. 

6. Place the gauge on the prepared surface so that the source rod can enter the hole without 

disturbing loose material. 

7. Insert the probe into the hole, and lower the source rod to the desired test depth using the handle 

and trigger mechanism. 
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8. Seat the gauge firmly by partially rotating it back and forth about the source rod. Ensure that the 

gauge is seated flush against the surface by pressing down on the gauge corners and making sure 

that the gauge does not rock. 

9. Pull gently on the gauge to bring the side of the source rod nearest to the scaler/detector firmly 

against the side of the hole. 

10. Perform one of the following methods, per agency requirements: 

a) Method A, single direction: Take a test consisting of the average of two1-minute readings, 

and record both density and moisture data. The two wet-density readings should be 

within32kg/m
3
(2.0lb/ft

3
) of each other. The average of the two wet densities and moisture 

contents is used to compute dry density. 

b) Method B, two direction: Take a one-minute reading, and record both density and moisture 

data. Rotate the gauge 90 or 180 degrees, pivoting it around the source rod. Reseat the 

gauge by pulling gently on it to bring the side of the source rod nearest to the scaler or 

detector firmly against the side of the hole, and take a one-minute reading. (In trench 

locations, rotate the gauge 180 degrees for the second test.) Some agencies require multiple 

one-minute readings in both directions. Analyze the density and moisture data. A valid test 

consists of wet-density readings in both gauge positions that are within 50kg/m
3 
(3.0lb/ft

3
). 

If the tests do not agree within this limit, move to a new location. The average of the wet-

density and moisture contents is used to compute dry density. 

11. If required by the agency, obtain a representative sample of the material, 4kg (9lb) minimum, 

from directly beneath the gauge’s full depth for the material tested. This sample is used to verify 

moisture content and or to identify the correct density standard. Immediately seal the material to 

prevent a moisture loss. The material tested by direct transmission can be approximated by a 

cylinder of soil, approximately 300 mm (12 in.) in diameter, directly beneath the centerline of the 

radioactive source and detector. The height of the cylinder is approximately the measurement 
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depth. When organic material or large aggregate is removed during this operation, disregard the 

test information, and move to a new test site. 

12. To verify the moisture content from the nuclear gauge, determine the moisture content with a 

representative portion of the material using the FOP for AASHTO T 255 and T 265, or other 

agency-approved methods. If the moisture content from the nuclear gauge is within ±1%, the 

nuclear gauge readings can be accepted. Retain the remainder of the sample at its original 

moisture content for a one-point compaction test under the FOP for AASHTO T 272, or for 

gradation, if required. 

13. Determine the dry density by one of the following methods: 

a) From nuclear gauge readings, compute by subtracting the mass (weight) of the water 

(kg/m
3
 or lb/ft

3
) from the wet density (kg/m

3
 or lb/ft

3
), or compute using the moisture 

percentage by dividing wet density from the nuclear gauge by 1 +moisture content 

expressed as a decimal. 

100
100w

w
d or

1
100

w

w
d

    (2.17)

 

where d is the dry density of soil (kg/m
3
or lb/ft

3
), w is the wet density of soil (kg/m

3
or 

lb/ft
3
), and w is the moisture content. 

b) When verification is required and the nuclear gauge readings cannot be accepted, the 

moisture content is determined by the FOP for AASHTO T 255/T 265 or other agency-

approved methods. Compute dry density by dividing wet density from the nuclear gauge by 

1 + moisture content expressed as a decimal. 
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2.4.4. Atterberg limit test 

The objective of the Atterberg limit test is to obtain soil indices such as plastic limit, liquid limit, 

and plasticity index. Atterberg limits are the limits of water content used to define soil behavior. The soil 

properties that are determined by using the Atterbergs limit test are the plastic limit, liquid limit, and the 

plasticity index. The liquid limit of a soil is the moisture content at which the soil passes from a plastic 

state to a liquid state. The plastic limit of a soil is the lowest water content at which the soil remains 

plastic. The plasticity index of a soil is the numerical difference between the liquid limit and the plastic 

limit. It is the moisture content at which the soil is in a plastic state. 

2.4.4.1. Procedure for liquid limit test 

NDDOT conducts the plastic limit test in accordance with AASHTO T89. The liquid limit is the 

water content at which it will takes 25 blows to close the groove over a distance of 13 mm. The apparatus 

used in this test are a mixing dish, spatula, manual or mechanical liquid limit device, a gauge for the 

liquid limit device, a flat or curved grooving device, moisture-proof containers with covers, balance, 

oven, and distilled water. 

2.4.4.2. Steps 

1. Take a sample of approximately 50 g from the thoroughly mixed portion of the 100g obtained in 

accordance with T 87. The portion of the material used passes the No. 40 (0.425mm) sieve. 

2. Place the sample in the mixing dish, and thoroughly mix with 8 -10mlof distilled water by 

alternately and repeatedly stirring, kneading, and chopping with a spatula.  

3. Add additional water in increments of 1-3 ml, and thoroughly mix until a stiff uniform mass of 

soil and water is achieved. 

4. Place a sufficient quantity of the mixture in the cup above the spot where the cup rests on the 

base. 
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5. Squeeze and spread the mixture level with the spatula, and at the same time, trim the material to a 

depth of 10 mm at the point of maximum thickness. 

6. Divide the soil with a firm stroke of the grooving tool (maximum of six strokes from back to 

front) along the diameter through the centerline of the cam follower so that a clean, sharp groove 

is formed. Increase the depth of the groove with each stroke, and only scrape the bottom of the 

cup with the last stroke. 

7. Lift and drop the cup containing the prepared sample by turning the crank at a rate of 

approximately 2 revolutions per second for 22-28 blows. Continue cranking until the two halves 

of the soil specimen meet each other at the bottom of the groove. The two halves must meet along 

a distance of 13mm (1/2 in.). 

8. If the two sides fail to come into contact at approximately 1/2" (13 mm) by 28 blows, return the 

soil to the mixing dish, and add additional water in increments of 1-3ml. If the sides come 

together at approximately 1/2" (13 mm) in less than 22 blows, the soil is too wet. Discard and 

start over with a new 50-g sample using less water, or knead the sample until natural evaporation 

lowers the moisture content to an acceptable range. 

9. When two groove closures have been achieved within the test requirements, obtain a moisture 

content sample by removing a slice of soil approximately as wide as the spatula extending from 

edge to edge at right angles to the groove. Include that portion of the groove where the material 

flowed together. 

10. Place in a suitable tared container and cover. Weigh and record to the nearest 0.01 g. 

11. Determine the moisture content of the sample according to T 265. 

12. Upon completion of the moisture-content calculation, apply the correction factors in Table 2.7 to 

the liquid limit at 25 blows. 
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Table 2.7. Sample compaction correction factors 

Number of Blows Factor for Liquid Limit 

N k 
22 0.985 

23 0.990 

24 0.995 

25 1.000 

26 1.005 

27 1.009 

28 1.014 

 

13. Record the liquid limit to the nearest whole number by using equation 2.18. 

Wnkblowsclosureforcorrectedlimitliquid 25@    (2.18) 

where k is the factor given in Table 5.0 and Wn is the moisture content at the number of blows. 

14. Repeat the process at varying water contents to ensure consistency with the results. 

2.4.4.3. Procedure for plastic limit test 

The plastic limit is tested by the NDDOT in accordance with AASHTO T90. The required 

apparatus are a mixing dish, spatula, ground plate or unglazed paper, balance, oven, distilled water, 

moisture-proof sample cans (3 oz. capacity), and plastic Limit Rolling device with unglazed paper 

(optional). 

2.4.4.4. Steps 

1. Take a test sample of approximately 8g from 20gof a thoroughly wet and mixed portion of the 

soil prepared according to T 87for this test. 

2. Squeeze and form the 8-g test sample into an ellipsoidal-shaped mass. Sub-sample to 1.5-2g 

portions, rolling between the palm or fingers and the ground glass plate or piece of paper with 
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sufficient pressure to roll the sample into a uniform thread about 1/8" in. diameter throughout its 

length. 

3. Roll the sample at a rate of 80-90 strokes (A stroke is a complete forward and back motion, 

returning to the starting place.) per minute. A plastic limit rolling device may also be used for this 

stage. 

4. When the diameter of the thread reaches 1/8", break the thread into six or eight pieces, and 

squeeze the pieces together between the thumbs and fingers of both hands, making a roughly 

uniform, ellipsoidal shape and re-roll. Continue this procedure until the thread crumbles under the 

pressure required for rolling and the soil can no longer be rolled into a thread. 

5. Weigh to the nearest 0.01 g and record. Determine the moisture content according to T 265. 

6. Repeat this procedure until the entire 8g specimen is completely tested.  

7. The moisture percentage is the plastic limit. 

2.4.4.5. Plasticity index 

Obtain the plasticity index of the soil sample after the plastic limit and the liquid limit have been 

computed. Equation 2.19 is used to compute the plasticity index: 

limitliquidlimitplasticindexPlasticity    (2.19) 

2.4.5. Grain size distribution test 

The distribution of different grain sizes of the soil affects the soil’s engineering properties. Grain-

size analysis provides a means of obtaining the grain-size distribution of a particular soil, and the 

distribution helps in classifying the soil. For the NDDOT, the procedure is conducted in accordance with 

AASHTO T27. AASHTO T27 is used in conjunction with AASHTO T11 if the sample has material 

smaller than 75μm (No. 200). This standard test procedure reports the percentage of material finer than 

the No. 200 sieve to the nearest 0.1%, except if the result is 10% or more which is then reported to the 

nearest whole number. 
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The apparatus for this test are a balance; sieves (8" round, 12" round, or 14" square); mechanical 

sieve shaker; an oven, bronze brush; paint brush, approximately 1" wide, sample splitters, small and large 

mortar and rubber-tipped pestle; spoons; and large pans required for drying and handling the sample. 

2.4.5.1. Steps 

1. Obtain a sample according to T 2. Thoroughly mix and reduce according to T 248. 

2. Dry the sample according to T 255 at a temperature of 230 ± 9°F (110 ± 5°C). 

3. Select sieves to furnish the information required by the specifications covering the material to be 

tested. Using additional sieves may be desirable to prevent the required sieves from becoming 

overloaded. (Overloading occurs when the quantity retained on any sieve, with openings of No. 4 

and larger, at the completion of the sieving operation exceeds 2.5 times the sieve opening time’s 

effective sieve area.) Table 2.8 shows the maximum amount of material retained on a sieve before 

the sieve is considered to be overloaded. 

Table 2.8. Maximum amount of material retained on a sieve for overload condition 

Maximum allowable quantity of material retained 

Sieve Opening Size 8" Diameter Sieve 14" Square Sieve 
2" (50 mm) 7.9 lbs (3.6 kg) 33.7 lbs (15.3 kg) 

11/2" (37.5 mm) 6.0 lbs (2.7 kg) 25.4 lbs (11.5 kg) 

1" (25.0 mm) 4.0 lbs (1.8 kg) 17.0 lbs (7.7 kg) 

3/4" (19.0 mm) 3.1 lbs (1.4 kg) 12.8 lbs (5.8 kg) 

1/2" (12.5 mm) 2.0 lbs (0.89 kg) 8.4 lbs (3.8 kg) 

3/8" (9.5 mm) 1.5 lbs (0.67 kg) 6.4 lbs (2.9 kg) 

No.4 (4.75 mm) 0.7 lbs (0.33 kg) 3.3 lbs (1.5 kg) 

 

4. Nest the sieves in order of decreased opening size from top to bottom.  

5. Place the sample on the top sieve. Agitate the sieves by hand or with a mechanical apparatus until 

meeting the criteria for adequate sieving. When using a mechanical shaker, place the sample in 

the stack of sieves, and shake until not more than 0.5%, by weight, of the total sample passes any 
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sieve during 1 minute. Approximately 10 minutes will be sufficient for most materials. Use 

manual shaking for the material on any one sieve to check on the thoroughness of sieving by any 

mechanical shaker. 

6. Remove the top sieve; brush the retained material thoroughly into a pan, weigh, and record. 

Repeat this process with each succeeding sieve, brushing the material into individual pans, and 

record the non-cumulative weights. 

2.4.5.2. Calculation 

7. Add the non-cumulative weight retained on the largest sieve to the weight retained on the next 

smallest sieve to obtain the cumulative weight. 

8. Calculate the percentage retained on each sieve with Equation 2.20: 

100
weightTotal

weightcumulative
sieveonretainedpercentage    (2.20) 

retainedpercentagegsinpas 100%   (2.21) 

9. Use Equation 2.21 to obtain the percentage passing each sieve. 

10. If an accurate determination of the amount of material passing the No. 200 was accomplished by 

performing T 11, subtract the weight after wash from the original weight and record as wash loss. 

11. Sum the cumulative weight retained on the No. 200, the weight of the Minus No. 200 material, 

and the wash loss; record that number as the weight check. 

12. Calculate the percentage of the total sample passing for the fine portion of the aggregate using 

Equation 2.22: 

100

4. sievesmallerpassingpercentNopassingpercent
sampleTotalPercent  (2.22) 
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2.5. Summary 

In this chapter, the concept behind using the shrinkage factor has been explored with the current 

shrinkage-factor equations used in the literature. The literature used as sources of shrinkage-factor values 

is clear in stating that the values are not generic and that there was a need to run field tests on samples to 

corroborate their shrinkage-factor values. A review of the NDDOT-recommended soil-testing procedures 

was also discussed. These procedures were used in the field and laboratory during the research for 

sampling, identifying, and characterizing the collected samples. The existing methods of soil-volume 

determination were also discussed in this chapter. The soil-sampling method applied in this research was 

random. This approach of selecting sample points based on probability allowed for the measured soil 

parameters to be calculated based on the chances of occurrence at the location. This method also allowed 

for a range of statistical analyses based on the estimates of variability about the mean used. The 

geostatistical concept of kriging used to model the spatial patterns for soil properties was discussed. 
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CHAPTER 3. RESEARCH METHODOLOGY 

3.1. Introduction 

The development of the multivariate shrinkage factor function was performed in 4 steps 

(Figure3.1). 

 
Figure 3.1. Shrinkage-factor function development process 

The first step in the process of developing the shrinkage-factor function is the development of an 

initial function which relates the soil’s shrinkage factor to the dry density, bulk density, moisture content, 

and clay content. 

The second step involves the extraction of identified soil data sets for North Dakota from the 

Natural Resource Conservation Service (NRCS).The clay content and bulk density one-third bar (g/cm
3
) 

of North Dakota soils were extracted and then kriged using ESRI ArcGIS 2010 to understand the 

variability of these soil properties across the state of North Dakota. Kriging was performed through an 

initial process of exploratory data analysis. In data exploration, the variability of the clay content is 

correlated with space. The results of this correlation provided further insight about the choice of 

geostatistical modeling tools to use in subsequent steps. Variograms were then fitted to the observed 

behavior of clay content over space to obtain the most optimized variogram based on sill and nugget 
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effects. The cross-validated results of the modeling were ranked to pick the best kriging model, and the 

clay content of the transported district was then inferred from the corresponding map. In the third step, a 

field study was conducted on a group of selected projects across four different transportation districts in 

North Dakota. In the field study, the bulk density of borrow materials, the dry density of borrow 

materials, the bulk density of embankment, and the dry density of embankment were obtained. The 

construction process, with regards earthwork haulage, was observed and documented. The soil-test 

processes used were consistent with the ones in the Literature Review of Chapter 2. Based on these data 

sets, the observed shrinkage factor for each location was calculated using the general shrinkage-factor 

function (Equation 2.1).   

In step 4, a multivariate linear-regression model was developed in Minitab 15 using the variables 

in Table 3.1from the results of steps 1, 2, and 3. 

Table 3.1. Independent and dependent variables used in the multivariate analysis 

Dependent variable Independent variables 

Shrinkage factor 

Average clay content, bulk density of borrow, dry density of borrow, dry 

density of embankment, bulk density of embankment 

    

 

In the multivariate linear-regression modeling, linear functions were developed between the 

shrinkage factor and the other independent variables. First, a preliminary test was conducted on the 

appropriateness of the independent variables for multivariate linear-regression modeling. In the test, the 

residuals of the independent variables’ were plotted against the dependent variable (shrinkage factor). A 

random distribution of the independent variable is a prerequisite for linear-regression modeling. A normal 

probability plot of the residuals was also performed to check if the residuals were normally distributed or 

skewed. In linear regression, parameter estimation is based on minimization of the squared error. The 

presence of a few extreme observations can exert a disproportionate influence on parameter estimates. In 

such scenarios, transformations such as log transformation, square root, and inverse transforms were 
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performed on the independent variable. The effect of transformation on normality was then evaluated on 

the correlation between the response variable and the predictors. If no transformation satisfied the 

normality rule with high correlation, the untransformed data set was used, and every correlation was 

evaluated for rule violation in the Minitab results summary.   

The correlation coefficients were then used to measure the degree of correlation between the 

shrinkage factor and the independent variables by developing a correlation matrix. In the matrix, the p-

values are used to test the null hypothesis of zero correlation. A higher p-value is, therefore, a 

confirmation of the hypothesis. During the modeling, shrinkage factor (SF) was set as the response factor 

and measured against the independent variables: percentage clay content, bulk density of borrow, dry 

density of borrow, dry density of embankment, and bulk density of embankment. 

The general function used is shown in Equation 3.1: 

1112211101 ........ qq xxxy
    (3.1)

 

where y1 is the dependent variable, x’s are the independent variables, β’s are the regression coefficients, 

andε is the modeling error. 

3.2. Step 1: Initial shrinkage factor model postulation 

In order to obtain a better understanding about using the shrinkage factor across different states, a 

survey was conducted in Manitoba, Saskatchewan, Alberta, Nebraska, Wisconsin, Minnesota, North and 

South Dakota, Montana, Wyoming, Iowa, and Indiana (Asa et al.,2010). The aim of the survey was to 

identify the earthwork calculation practices, shrinkage-ratio calculations, deviations from the shrinkage 

ratios used in contracts, and cost and frequency of earthwork litigation. For example, the responses 

obtained for the question about the equations used to calculate the swell and shrinkage factor are in Figure 

3.2. 
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Figure 3.2. Response to shrinkage factor question 

The other survey questions and responses that were taken into account when proposing the new 

multivariate shrinkage- factor equations are as follows: 

5. What soil tests are used to obtain data for calculating the shrinkage factor (Figure 3.3)? 

 
Figure 3.3. Response to methods of testing 
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7. Do the swell factors and/or the shrinkage factors used vary across the state/province (Figure 3.4)? 

 
Figure 3.4. Response to shrinkage factor variability 

8. Could you please indicate the swell and shrinkage factors used by the various DOT districts in the 

state/province? Could you also indicate the predominant soil types and their percentages in the bank 

material using Table 3.2. 
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Table 3.2. Bulkage factors used by DOT districts 

  Bulkage Factors Used by DOT Districts   

  Shrinkage 

Factor 

Swell Factor   Soil Types 

DOT District SF Remarks  SWF Remarks 1 % 2 % 3 % 

% % 

MN 100 In place 

road bed 

    Sand   CL   Silt   

  200 Top soil     Sand   CL   Silt   

      105   CL 100         

      110   Sand 100         

  120 BM-CV     Sand 100         

  130-

140 

BM-CV     Clay  50 Silt 30 Sand 20 

  100-

115 

BM-CV     Sand 60 Gravel 40     

Alberta Trans.                     

  > 20        Clay(wet)    

 
      

  20       Clay           

  16       Sand           

  9       Gravel           

      10   Soft 

Rock 

(shale) 

          

      25   Hard 

Rock 

(lime 

stone) 

          

SMHI( 

Saskatchewan 

Ministry of   

Highway & 

Infrastructure) 

Selection of design shrinkage factors are based solely on the experience of the designer 

based on past experience from similar designs. Deviations described in Q.13 are taken 

into consideration. A shrinkage factor of 20% to 25% is commonly used for many 

designs. We have experienced lower shrinkage factors in some cases and on rare 

occasions, even a SF < 1.0 (i.e swell) 

Dickinson  25-

30 

                  

Devils Lake 0-

100 

                  

Minot  30-

Oct 

The grading plans for the district in the last 

10 years have used a shrinkage factor of 

10% to 30%, 20% being the most 

commonly used shrinkage factor.  

A-1 

to  

      

A-7 

  

  

 

Predominant 

composition 



44 

 

13. What are the possible causes of the deviations in shrinkage factors (Figure 3.5)? 

Participants Causes 

SDDOT 

1. Accuracy of initial survey 

2. Accuracy of actual construction, whether or not the 

embankment is built to design template 

Indiana DOT   

MNDOT   

Saskatchewan Min. 

of Highway 

&Infrastr 

1. Soils type (clay, silt, till, granular, etc.) 

2. In-situ moisture relative to optimum moisture 

3. Depth of cuts & fills (e.g. deep borrows vs shallow ditch 

cuts) 

4. Level of compaction required during construction (e.g. 

100% proctor vs no specified density). 

5. In-situ densities 

6. Foundation conditions in fill section (e.g. muskegs) 

ALBERTA TRANS. 1. Errors in calculating/surveying 

  2. Spillage or wastage of soil during haul 

  3. Changed soil conditions, moisture conditions 

  4. Excessive compaction or conversely poor compaction 

  

5. Placing fill over soft compressible ground without 

accounting for settlement or lateral displacement of the 

foundation soil 

Devils Lake   

Minot   

Figure 3.5. Response to causes of deviation in shrinkage-factor 

Based on a thorough analysis of the output from the questionnaires and the review of shrinkage-

factor literature, an initial shrinkage-factor model was proposed as follows: 

))2(,)(,)(,)(,)(,)(( errortypesoillossessoilmoisturedensityclayfFactorShrinkage  (3.2) 

An initial Literature Review was conducted to explore the set of tools that could be used for soil property 

characterization. Through the Literature Review, it was ascertained that modeling soil properties requires 
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tools which can deal with large uncertainties, variations, multiple data points, correlated collocated data, 

and soft data. Stochastic modeling via geostatistical algorithms was identified as one of the tools that is 

gaining acceptance for modeling soil properties. There was, however, no evidence of soil shrinkage-factor 

modeling with geostatistical tools. 

The review also identified the United States Department of Agriculture (USDA) and the United 

States Geological Survey (USGS), as well as their state counterparts, as two possible sources of reliable 

soil maps for modeling. 

3.3. Step 2: NRCS soil data set, kriging, and ranking of cross-validated results 

After the variables in the multivariate shrinkage factor have been identified, the United States 

Department of Agriculture (USDA) and United States Geological Survey (USGS) were identified as 

possible sources of the georeferenced data sets required for modeling. After a thorough search of these 

two organizations’ databases, the NRCS database was able to provide georeferenced data sets that 

contained different soil types and engineering properties that were obtained by standard procedures.  The 

soil data set from NRCS (National Cooperative Soil Survey [NCSS], 2012) was obtained in the form of a 

shapefile. This data set consists of general soil association units. It was developed by the National 

Cooperative Soil Survey and supersedes the State Soil Geographic (STATSGO) data set published in 

1994 (NCSS, 2012). It consists of a broad-based inventory of soils and non soil areas that occur in a 

repeatable pattern on the landscape and that can be cartographically shown on the scale mapped. The data 

set was created by generalizing more detailed soil-survey maps. Where more detailed soil-survey maps 

were not available, data on geology, topography, vegetation, and climate were assembled, together with 

Land Remote Sensing Satellite (LANDSAT) images. Soils of similar areas were studied, and the probable 

classification and extent of the soils were determined. Map unit composition was determined by 

transecting or sampling areas on the more detailed maps and by expanding the data statistically to 

characterize the entire map unit. The soil map units were linked to attributes in the National Soil 

Information System database which gives the proportionate extent of the component soils and their 
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properties. The database provides a comprehensive soil characterization for soil map units at pedon 

scales. A pedon is defined as a unit of sampling within a soil. It is the smallest body of one kind of soil 

large enough to represent the nature and arrangement of horizons as well as the variability for other 

properties that are preserved in samples (Soil Survey Division Staff, 1993). In the NRCS program, 

laboratory pedon data combined with field data (e.g., transects and pedon descriptions) are used to define 

map-unit components, to establish ranges of component properties, to establish or modify property ranges 

for soil series, and to answer taxonomic and interpretive questions (Wilson et al.,1994).These digital soil 

maps could be described as the creation and population of spatial soil information by numerical models 

inferring the spatial and temporal variations of soil types and soil properties from soil observation and 

knowledge and from related environmental variables (Lagacherie and McBratney, 2007).  

According to NRCS (NASIS, 2012), engineering classifications of the soils were based on 

AASHTO and Unified Soil Classification System (USCS).  Under the AASHTO system, soils are 

classified as types A-l through A-7, corresponding to their relative value as subgrade material. The 

unified system assigns a two-letter symbol to identify each soil type. Soils that have less than 50%, by 

weight, passing the No. 200 sieve are further classified as coarse-grained soils, whereas soils that have 

more than 50%, by weight, passing the No. 200 sieve are fine-grained soils (Nunnally, 2011). For 

example, estimates of the liquid limit and plasticity index in the database are based on clay content and 

mineralogy relationships. Estimates are expressed in ranges that include the estimating accuracy as well 

as the range of values for the taxon. 

ESRI ArcGIS 10.0 was used in uploading and analyzing the data set. A sample of the soil 

shapefile is shown from the attribute table in Figure 3.6. 
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Figure 3.6. Sample NRCS (USDA) soil data set showing clay, silt, and sand at varying depths 

Analysis and kriging of the extracted data set were performed in line with the geostatistical 

process depicted in Figure 3.7.  

 
Figure 3.7. Geostatistical research approach (Asa et al., 2011) 
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The first step in the soil-analysis process is exploratory data analysis. The aim of this step is to 

identify soil properties for the purposes of pattern detection, hypothesis formulation, and assessing 

goodness of fit for models from the data set. Data exploration is a prerequisite for kriging. A visual 

examination of the data set was done to understand the data structure before performing any activity in 

ArcGIS. 

A preliminary statistical analysis was then performed on the percentage of clay content 

component for the data set. In the statistical analysis, the histogram plot, Q-Q plot, scatter plot, and trend 

analysis for spatial correlation and distribution were performed. For example, Figures 3.8 and 3.9 are the 

histogram and Q-Q plots of the clay-content distribution in soil from the Bismarck transportation district. 

 
Figure 3.8. Histogram plot for % of clay in soils from Bismarck transportation district 
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Figure 3.9. Normal Q-Q plot for % of clay in soils from Bismarck transportation district 

In step 2 of the analysis, a variogram is fitted to the soil data set and then subjected to kriging. 

This fitting was achieved by randomly selecting one of the variants of kriging at a time and then 

developing a variogram model that fits the data set. This step is identified as spatial analysis in Figure 3.7. 

This step involves the selection of a kriging method and combining it with a variogram at a time. The 

objective is to capture the major spatial feature in the clay content of the soil data set. Spatial 

characterization of a data set is contingent on fitting the right variogram to the data. To avoid having to 

test the permissibility of a semivariogram model “a posteriori”, a common practice consists of using only 

linear combinations of basic models that are known to be permissible (Christakos, 1984). Therefore, of 

the most frequently used basic variogram models, we used the spherical, exponential, and Gaussian model 

(Goovaerts, 1979).                                                                                                                                      

1. Spherical model with range “a”(Goovaerts, 1979) 

2.               

otherwise

ahif
a

h

a

h

a

h
Sphh

1

,5.05.1

3

     (3.3) 
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3. Exponential model with practical range “a” (Goovaerts, 1979) 

4.                              
2

3
exp1

a

h
h       (3.4) 

5. Gaussian model with practical range “a” (Goovaerts, 1979) 

                            
a

h
h

23
exp1                                                 (3.5) 

 
Figure 3.10. Graphical representation of semivariogram (Source; Goovaerts, 1979) 

For the three basic variograms (Figure 3.10), practically, a sill is reached at a distance of the 

range (range of influence). The sills and ranges of each fitted variogram were determined during the 

modeling. The nugget of the fitted variogram was obtained from the point where the variogram intersects 

the vertical axis. A high nugget was an indication of the variogram modeling the relationship between 

known and unknown data sets with high variance. For example, when the combinations of ordinary 

kriging with the spherical variogram were applied to the Bismarck soil data set to predict the clay of the 

soil at unknown locations, y, within the transportation district, from known points, y1, y2, y3, y4…..yn, in 

the neighborhood of y, a range of 0.02672887, a sill of 0.923579, and a nugget of 0.09334525were 

observed (Figure 3.11). 
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Figure 3.11. Fitted spherical variogram for Bismarck soil data set 

Ordinary kriging is given by Equation 3.6 (Goovaerts, 1979): 

yyyZyyZ
ynyn

11

1*

                         (3.6) 

The sill, range, and nugget obtained from the variogram used in combination with this estimator 

were then used to compute the kriging weight ( ) for which the sum was1. The mean was obtained by 

requiring the kriging weights to sum to 1. 

1
1

yn

y

       (3.7) 
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Based on the output in Figure 3.10, the calculated semivariogram values using the selected 

spherical model would be based on equation 3.3: 

3

02672887.0
5.0

02672887.0
5.1923579.0

hh
h for lag values <=0.02672887 and 

923579.0h  for lag values >0.02672887 

Based on these semivariogram values, a distance matrix (Table 3.3), “Y”(n x n)(covariance),was 

generated for any given distance between y1, y2, y3,….yn.  

Table 3.3. Sample distance matrix 

  y1 y2 y3 y4 yn  

y1 0  )( 1h   )( 2h   
)( 3h

  )( 4h  1 

y2  )( 1h  0  
)( 5h

  
)( 6h

  
)( 7h

 1 

y3  )( 2h   
)( 5h

 0  
)( 8h

  
)( 9h

 1 

y4  
)( 3h

  
)( 6h

  
)( 8h

 0  
)( 10h

 1 

yn  )( 4h   
)( 7h

  
)( 8h

  
)( 10h

  0 1 

 1 1 1 1  1 0 

 

In order to satisfy the requirement of ordinary kriging to ensure that the estimator was unbiased, 

the sum of kriging weights ( ) at all unknown clay content locations must equal 1(Equation 3.7).  
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To ensure unity is possible, the difference between the true value of the clay content at the 

predicted location ( yZ * ) and the estimator (

yZy
yn

1 ) must be as small as possible. The 

resultant variance minimization function is given by equation 3.8: 

g*       (3.8) 

where  is distance matrix Y and g is the vector that contains the modeled semivariogram values 

between each sampled location,y1, y2……yn, and the prediction location, y. 

We, therefore, proceed to generate the g vector (Table 3.4) for location y. 

Table 3.4. g vector for unsampled locations 

  Euclidean distance g Vector 

(y,y1) he  e  

(y,y2) hf  f  

(y,y3) hi  i  

(y,y4) hj   j  

 -  -  - 

(y,yn) hn  n  

 

We then proceeded to solve equation 3.9 by making the kriging weights the subject: 

g1

      (3.9) 
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We obtained the inverse,
1
, of the distance matrix as Y

-1
(Table 3.5). 

Y
-1

= 

Table 3.5. Inverse of distance matrix 

a   b   c   d   e   f  

 g  h   i   j   k   l  

 m   n  o   p   q   r  

 s   t   u  v   w   x  

 y   z   1a   2   3a   4a  

 5a   6a   7a   8a   9a  ac  

 

To obtain the kriging weights, , we solved equation 3.10 algebraically (Table 3.6): 

n

j

i

f

e

acaa

v

g

fba

n

j

i

f

e

.
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......

.....

...

.

65     (3.10)          
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Table 3.6. Summary parameters 

Location Sampled clay content 

Kriging 

weight 

Product 

 

y1 A1  e  eA1
 

y2 A2  f  fA2
 

y3 A3  i  iA3
 

y4 A4  j  jA4
 

yn An  n  nAn
 

      ne AnA ....1
 

 

 The sum ne AnA ....1
 is the predicted value of clay content at location y.  

In the next step of our model, we proceeded to measure the variance and uncertainty of the 

prediction. This step involved validation of the model results (kriging method and variogram). This step is 

called crossvalidation. The effectiveness of each kriging method is accessed through the process of 

crossvalidation. Crossvalidation is used to compare the effect of different models on the interpolation 

results (Davis, 1986; Journel, 1987; Isaaks and Srivastava, 1989). In statistics, this step is synonymous to 

selecting a function of an observation, a test statistic, and deriving its probability distribution under the 

assumed model. The principle of crossvalidation is to estimate Z(y) at each sample point, yα, from 

neighboring data, Z(yβ), β≠α , as if Z(yα) were unknown. At every sample point yα, a kriging estimate, 
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Z*(α), and the associated kriging variance,
2

, are estimated. With the true value Zα=Z(yα) being known, 

the kriging error is Eα= Z*(α)  - Zα, and the standardized error is 

E
e

 . If ɤ(h) is the theoretical 

variogram, Eα is a random variable with mean zero, variance 
2

 and eα a zero-mean unit variance 

random variable. With  being the number of validation points, and  
2

 the variance at the location y 

where the clay content prediction is performed. The root mean-squared prediction error and the standard 

root mean-squared prediction errors are given by Equations 3.11 and 3.12, respectively.  

                                                            
1

 RMSE

2

1

*
n

yzyz
n

             (3.11) 

                                                                
1

RMSES

2

1
2

n

i y

Mean

n
             (3.12) 

Through the process of iteration in steps 2 and 3 (Figure 3.2), a different kriging method was 

picked, and a new set of variograms was modeled to fit the data set. The corresponding cross-validated 

results were then obtained for each linear kriging method. The variogram types were varied for each 

kriging method, and for each case, the best variogram was selected as the best fit for the kriging variant of 

the soil data set. 

The last step in the geostatistical process involves ranking the cross-validated results on the basis 

that the best set for the variogram and kriging method produces the best results using the prediction errors 

as follows: (1) a mean prediction error (mean) near 0 (This preamble implies that the predictions are 

unbiased and honor the true mean; however, the mean prediction error is dependent on the scale of the 

data and should be standardized.); (2) a standardized mean prediction error (SM) near 0; (3) a small root-

mean-squared prediction error (RMSE); (4) a standardized root-mean-squared prediction error (RMSES) 
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near 1; and (5) a small average standard error (ASE);(Pardo-Igusquiza, 1998; Robinson and Metternicht, 

2006; Asa et al., 2012). 

Ranking the performance of each model with regards to the closeness of its prediction errors to 

the expected values is then performed. A rank of 1 to 3, with 1 being the best and 3 being the worst in 

comparison with the other variants, was assigned to each outcome. 

3.4. Step 3: Field study on shrinkage-factor related variables 

A field study was conducted in four transportation districts of North Dakota. Figure 3.12 shows 

the Minot, Devils Lake, Dickinson, and Valley City transportation districts with the project locations. 

 
Figure 3.12. Study sites in North Dakota 
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For each project site, the earthwork component associated with the construction process was 

observed and documented. The equipment associated with the earthwork process was also documented. A 

series of in-field density tests were conducted on both borrow and road embankments. In the borrow pit, 

where the haul material was excavated, the location was georeferenced using the global navigation 

satellite system survey instrument. The in-place density of the soil was then measured at the location 

using a nuclear gage. Samples were also collected for laboratory tests. In the laboratory, the maximum 

dry density, the particle-size distribution, the plastic limit, and the liquid limit were measured for the 

georeferenced soil. The standard and modified proctor tests (T 99 and T180) were conducted to obtain the 

densities and optimum moisture content of the soil samples. Sieve analysis was performed on the samples 

to aid in AASHTO classification. In the laboratory, the Atterberg limit test was conducted on the samples 

to determine the plastic limit, liquid limit, and plasticity index. Results from the series of tests were used 

to classify the samples. After the soil was excavated, the location where the excavated soil was dumped 

was also georeferenced. The compacted density of the placed soil was measured using the nuclear gage. 

The shrinkage factor was then calculated by using the georeferenced densities of the borrow soil 

and compacted soil. The shrinkage factor was calculated using Equation 2.1 by relating the in-place 

density of borrow soil to the compacted density of the same soil in the embankment. 

3.5. Step 4: Multivariate linear-regression modeling 

In step 4 of the research methodology, Minitab 15 was used to perform multivariate linear-

regression modeling. The linear-regression modeling was performed to relate other soil properties 

measured in addition to the density during the georeferenced borrow and embankment testing. Regression 

modeling was also used to relate the clay content of soils in the study area which was obtained from the 

NRCS database to the measured shrinkage factor. 
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3.5.1. Assumptions 

A set of assumptions were made in the multivariate linear regression modeling of the soil 

properties. The assumptions made were: 

1. E(εi)=0 for all i=1,2…..n 

The implication of this assumption is that the model is linear and that all variations in the dependent 

variable are random and unpredictable, hence the expected value of the independent variable is given by 

equation 3.13: 

iqqiiI xxxyE ........)( 22110     (3.13) 

EmbankmentofdensityBulk

EmbankmentofdensityDry

BorrowofdensityDry

BorrowofdensityBulk

clay

x

x

x

x

x

Variables

%

5

4

3

2

1

 

2. Var(εi)=σ2 for all i=1,2…..n 

The variance of each error is the same. 

3. Cov(εi,εj)=0 for all i≠j 

The error term is uncorrelated, which implies that the dependent variables are uncorrelated, 

hence cov(yi,yj)=0. 

4. The correlation coefficients only measure linear relationships. A nonlinear correlation could exist 

even if the correlation coefficient is 0. 

If any of these assumptions are compromised, the robustness of the multivariate regression model 

becomes low. The confidence interval and the resultant predictions would have high residuals (Decision 

411, 2012). 
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Using the least-square estimate, we find the coefficients, β, such that the sum of the square of 

deviation for the number of observed dependent variables (shrinkage factor) from the modeled values is 

minimized.  

The sum of squares for error (SSE) is given by 

2

22

1

110

2

1 1

2
)ˆ............ˆˆˆ(ˆˆ

iqqi

n

i

ii

n

i

n

i

iii xxxyyySSE
        (3.14)

 

and the value of ˆ =(
0

ˆ ,
1

ˆ ,……..,
q

ˆ )’ that minimizes SSE(S) is given by 

yXXX ''ˆ 1

              (3.15) 

For each modeling results in Minitab, the r-square and adjusted r-square were calculated using equations 

3.16 and 3.17 

SST

SSSE
R

)(12

              (3.16) 

Where SSE is the unexplained sum of squares error, SST is the total sum of squares error (explained and 

unexplained) 

MST

MSE
adjR

12

               (3.17) 

Where MSE is the mean square error and MST is the total mean square error of data. 

 

3.5.2. Hypothesis testing and model validation 

The appropriateness of each data set for use in linear-regression modeling is tested against the 

assumptions of linearity, normality, independence, and homoscedasticity. 

In Minitab 15, the output plot of the observed versus predicted values and the plot of residuals 

versus predicted values were used to determine linearity between the shrinkage factor and the response 

variables. For observed versus predicted values, all points should be symmetrically distributed around a 

diagonal line for linearity to be justified. For residuals versus predicted values, the point distribution is 
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about the horizontal line. The presence of a nonlinear pattern in the plot of residuals versus predicted 

values is an indication of systematic error propagation (Decision 411, 2012). 

The normal probability plot of the residuals was used in Minitab 15 to check for normality of the 

error distribution. The normal probability plot is a plot of the error-distribution fractals versus the normal-

distribution fractals having the same mean and variance (Decision 411, 2012). If the distribution is 

normal, the points on this plot fall close to the diagonal line. Invariably, a skewed distribution was an 

indication high deviation from normality. 

To check for independence, the residuals of the regression plot were stored in Minitab 15, and an 

autocorrelation plot was drawn with the residuals. The autocorrelation plot gives the correlation between 

the shrinkage factors lagged one period with itself. Autocorrelation was checked at the 95% confidence 

interval around the zero line in the autocorrelation plot. 

The final exploratory check on the data set was for homoscedasticity (constant variance of error). 

The check was performed by generating a plot of the residuals against the predicted values. A lack of a 

constant variance indicated a lack of a linear relationship between the shrinkage factor and the response 

variables.  

The robustness and appropriateness of the developed shrinkage-factor functions were determined 

by analyzing the following statistical parameters on the function: the R-squared value, the adjusted R-

squared value, the standard error, the mean of square regression, the p-values of the null hypothesis, the 

standard error of the coefficients, and the sum of squares regression. These parameters helped us make a 

decision about the elimination and inclusion of the independent variables in the general shrinkage-factor 

equation. The parameters informed us about the extent to which the shrinkage-factor variability could be 

attributed to the independent variables, and also, independent variables that were redundant could be 

eliminated. The p-values were obtained in the statistical output for each model and tested against α=0. (In 

order to avoid a type-1 error, the p-values were compared to α=0.05.) A zero p-value was an indication 
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that the null hypothesis should be rejected. That is, H0=0=β0, hence β0≠0.The p-value was calculated from 

the assumed cumulative-distribution function of the test statistic (correlation). The p-value, therefore, 

represented the probability of observing a correlation value which was more extreme than the ones 

observed from the samples. Therefore, the p-values measure the probability of the coefficient being zero. 

For each independent variable in the shrinkage-factor function, the variable coefficient, βi, is measured. If 

the coefficient is zero (which is the postulation of the null hypothesis), it implies that the independent 

variable does not have an effect on the shrinkage-factor variability. The decision-making process was, 

therefore, a combination of discriminant analysis and crossvalidation. This logic is shown in Table 3.7. In 

the logic, the p-values provided the basis to determine whether there was enough evidence from the 

samples to either accept or reject the null hypothesis, H0.  

Table 3.7. Decision table for independent variable rejection or acceptance 

Independent 

Variable 

P Null 

Hypothesis 

Decision Implication 

Constant  β0 = 0 Retain or reject 

H0 

 

1.Clay content  β0 = 0 Retain or reject 

H0 

 

2.Bulk Den Borrow  β0 = 0 Retain or reject 

H0 

 

3.Dry Den. Borrow  β0 = 0 Retain or reject 

H0 

 

4.Dry Den. Emb  β0 = 0 Retain or reject 

H0 

 

5.Bulk Den. Emb  β0 = 0 Retain or reject 

H0 

 

 
Once the best-fitting shrinkage-factor function has been determined, we use the models to predict 

the shrinkage factors in the transportation district and compare them to the theoretical shrinkage factor. 

Two methods—normalized objective function (NOF; Ibbitt and O’Donnell, 1971) and modeling 

efficiency (EF; Nash and Sutcliffe, 1970)—were used to quantify the goodness of fit between the 

modeled shrinkage factor and theoretical, observed shrinkage factor. The equations for NOF and EF, 

respectively, are given by 
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where SFobs,i is the observed theoretical shrinkage factor, SFmod,i is the shrinkage factor based on the best 

fitting model, ŚFobs,i is the mean theoretical shrinkage factor, and n is the number of observations. The 

best NOF and EF values should be close to zero (0) and one (1), respectively. 

 

3.6. Summary 

In this chapter, each step taken in the mathematical formulation of the problem was discussed. 

The process by which geostatistical kriging was applied to modeling the clay content of soil was also 

discussed. The process for using linear-regression modeling to relate the measured georeferenced 

shrinkage factor with soil clay content, water content, bulk, and dry density was discussed. In the 

discussion, the systematic and logical approaches for eliminating factors that do not correlate with the 

shrinkage factor within a 95% confidence interval were discussed. Modeling efficiency and the 

normalized objective function were discussed as the tools used to measure the robustness of the 

developed models. 
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CHAPTER 4. RESULTS AND DISCUSSIONS 

4.1. Discussion of Minot results 

In the Minot transportation district, the research was conducted on project AC-SOI-NH-4-

023(018)056. This 10.230-mile road project involves widening, construction of passing and climbing 

lanes, culvert extension, and bridge replacement on Highway 23 from ND 8 to ND 37 (Parshall)(Figure 

4.1).  

 
Figure 4.1. Minot research site with borrow pits 

In-place density tests were conducted in three of the pits being used to supply haul material to the 

project. Another set of density tests were conducted on the compacted lift at Sta. 3096+700,Sta. 

3096+750,Sta. 3097+350,Sta. 3097+700,Sta. 3099+350,Sta. 3099+450,and Sta. 3099+700. Samples were 

also taken from these locations for laboratory proctor runs, sieve analysis, and Atterberg limit tests with 
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the aim of classifying the soil and getting a better understanding of its properties as well as how it 

compares to soil from the same location that was obtained from the NRCS database. 

4.1.1. Step 2 

In step 1 of the methodology (Figure 3.1), the average clay content of the Minot project area was 

obtained by performing geostatistical kriging on the georeferenced soil data set extracted from NRCS. 

4.1.1.1. Preliminary data set analysis 

Sixty soil data points were obtained for modeling the clay content of the Minot transportation 

district. The minimum clay content was 3.4%, and the maximum was 62.8%; 25% of the data set had clay 

content higher than 29.275%, and another 25%had a clay content below 19.7%, an indication of the clay-

content spread in the soil. The mean clay content of the soils in the district was 26.004% with a standard 

deviation of 11.032%. The median was 24.571%, proof of a positively skewed data set. The skewness of 

1.32 was further confirmation for the data set’s lack of symmetry. The data set was actually not normally 

distributed. The histogram run on the data set is shown in Figure 4.2. The histogram showed that the data 

set is slightly skewed to the right. The histogram parameters are also displayed in Table 4.1. 

Table 4.1. Statistical results of Minot soil data set analysis 

HISTOGRAM STATS-Minot 

Metric Value 

Count 60 

Minimum 3.4 

Maximum 62.833 

Mean 26.004 

Std deviation 11.032 

Skewness 1.3201 

Kurtosis 5.6819 

1st quartile 19.7 

median 24.571 

3rd quartile 29.275 
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Figure 4.2. Histogram of Minot data points 

The plot of the covariance cloud showed low variability for the data sets with close proximity. 

The variability of the clay content was also evaluated using trend-analysis plots.  

On the basis of these initial observations, variogram modeling was performed on the data set. 

Spherical, exponential, and Gaussian variograms were combined with linear and nonlinear kriging to 

develop the best-fit clay surface for the Minot district. The results showed that linear kriging, simple 

kriging, universal kriging, and ordinary kriging all offered the same results based on an evaluation and 

ranking of the prediction errors in Table 4.2. 

For nonlinear kriging, indicator kriging performed best relative to probability and disjunctive 

kriging. The clay content map for Minot based on the simple kriging result is shown in Figure 4.3. The 

map shows a variation from 3.4-62% clay content across the transportation district. The variation across 

the project location was from 35-45



  

 

6
7

 

Table 4.2. Crossvalidated kriging results for Minot 

LINEAR KRIGING 

Kriging 

method 

Mean Rank RMS Rank MS Rank RMSS Rank ASE Rank Total 

Rank 

OK -0.66801 3 7.230194 2 -0.00174 1 1.059392 2 7.071563 2 10 

SK -0.26585 2 7.165854 1 0.005608 3 0.805213 1 8.107461 3 10 

UK 0.015295 1 7.617672 3 0.004679 2 1.42114 3 5.346366 1 10 

  NON LINEAR     

IK 0.004369 2 0.342351 1 0.000972 1 0.969434 1 0.361757 3 8 

PK 0.007075 3 0.350069 2 0.004505 2 0.995279 2 0.357717 2 11 

DK 0.00416 1 0.423186 3 0.089549 3 1.850877 3 0.28296 1 11 
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Figure 4.3. Kriged average clay content of soils in Minot transportation district 

4.1.2. Step 3 

4.1.2.1. Construction process and test result 

In step 3 of the methodology, the construction process for the Minot project was observed. The 

process started with the belly dump trucks driving at a borrow pit assigned with a backhoe. The trucks 

positioned themselves in line with the backhoe, and they were filled with the borrow material in a cycle of 

cut, swing bucket, dump, and return swing. Once the belly dump trucks were filled, they drove to the 

roadway where they dumped the earthwork material. The trucks then drove back to the pit where they 

joined a line to be filled by the excavator. Once the borrow material was dumped, a CAT 815F sheep foot 

compacter spread and compacted the material to the required density. The compactor was also aided by a 
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140M grader as well as spreading and leveling dumped material. The process was repeated until a 1-ft lift 

was attained, and in-place density tests were conducted by the geotechnical technician in line with the 

contract and specification. At the pit, a resource was put in place to clean the belly of the trucks after 

every 10 trips. 

At pit 1, six sets of tandem-powered scrappers were used for earthwork operation. All six 

scrappers moved at the same time to excavate and then moved from the pit at the same time to dump the 

haul material. During excavation, the scrappers work in tandem; one scrapper handed itself onto the other 

during the excavation. The scrappers spread the material at the right spot and used their gross weight for 

compaction. The tandem operation was designed to reduce load time and to ensure efficient pit operation. 

The pit work area and haul road were maintained by a CAT 14H. A water tanker was used by the 

contractor to add water to the soil by gravity using its spray bar. 

The results of the in-field and laboratory soil tests are shown in Tables 4.3 and 4.4. Table 4.3 is a 

matrix of the results for both the in-field and laboratory tests that were performed on the soil samples 

obtained from the Minot project site. Table 4.2 is the results of laboratory analysis and classification. A 

matrix of both the kriged clay content as well as the field and laboratory results was developed to 

facilitate the multivariate linear-regression modeling. The observed shrinkage factor was calculated using 

Equation 3.2. 

Table 4.3. Minot soil properties 

AASHTO Class PL LL PI Passing No. 200 Sieve  

A-6 17 34 17 58 

A-6 21 40 20 53 

A-6 16 38 22 59 

A-6 17 36 19 58 

A-6 17 38 21 59 

A-6 17 37 20 52 

A-6 18 38 21 42 
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Table 4.4. Observed field and laboratory results for the Minot project 

Calculated 

SF(%) 
Pb of Clay(%) 

Avg. Bulk 

density of 

Borrow 

Dry Density 

of Borrow 

Dry Density of 

embankment 

Avg. Bulk 

density of 

compacted 

90.8 35 126.4 104.7 115.3 129.5 

90.1 40 133.3 111.3 123.5 136 

87.1 37 125.3 105.9 121.6 121.6 

95.9 40 127.8 107.7 112.3 112.3 

81.2 45 125.4 106.7 131.4 131.4 

86.2 40 127.7 108.5 125.9 125.9 

94.2 39 129.5 105.6 112.1 132.1 

86.5 42 107 95.6 110.5 129.3 

87.6 43 106.0 97.2 110.9 128 

            

 

4.1.3. Step 4 

In the first part of step 4, the appropriateness of the Minot data set for multivariate linear-

regression modeling was assessed using Minitab 15. The evaluation was performed by plotting the 

independent variables (clay content, bulk density of borrow, dry density of borrow, dry density of 

embankment, and bulk density of embankment) against the fitted dependent variable (calculated 

shrinkage factor, Figure 4.4). 
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Figure 4.4. Multivariate regression in Minitab 15 

The residual plot of the fitted values in Figure 4.4 shows a fairly random distribution. The random 

nature of the distribution provides a justification for using a linear function to model the shrinkage factor. 

The normal probability plot in the residual plot (Figure 4.5) also shows that the residuals follow a 

normal distribution, implying that the residuals are normally distributed, a basic requirement to use the 

least-squares error method when evaluating the regression coefficients. In Figure 4.5, the plot of residuals 

versus predicted values shows a somewhat constant variation of the points about the horizontal line of 

symmetry, an indication of limited systematic errors in the regression of the data set. The plot of the 

residuals against the observation order in the standard regression output of Figure 4.5 does not show an 

increased variance for the snapshot.  
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Figure 4.5. A plot of the residuals for the independent and dependent variables for Minot. 

Given the validation of linear-regression modeling from the preliminary analysis, a correlation 

matrix was developed between the shrinkage factor and the independent variables. The correlation matrix 

is shown in Table 4.5. 

Table 4.5. Correlation matrix of Minot variables  

 SF_2 Clay content Bulk Den Borrow 

Dry Den. 

Borrow 

Dry Den. 

Emb 

Bulk 

Den. 

Emb 

Clay content -0.525     
 

p 0.147     
 

Bulk Den Borrow 0.322 -0.431    
 

p 0.398 0.246    
 

Dry Den. Borrow 0.204 -0.284 0.962   
 

p 0.599 0.459 0.000   
 

Dry Den. Emb -0.636 0.212 0.503 0.624  
 

p 0.066 0.583 0.167 0.074  
 

Bulk Den. Emb -0.356 0.166 0.005 -0.038 0.242 
 

p 0.347 0.669 0.991 0.924 0.531 
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The initial observation from the correlation matrix is that the bulk density of the borrow material 

was highly correlated with the dry density of the borrow material. The bulk density of the borrow material 

recorded a correlation coefficient of 0.962 at a p-value of 0.000. This correlation was very significant. A 

correlation of 0.636 was seen between the shrinkage factor and the dry density of the embankment. 

However, the p-value for the observed correlation was 0.066, or 93.4% lower than the set 95% confidence 

interval. The inter-correlation between variables was, therefore, a deciding factor in the inclusion of some 

variables for the initial general model. The observed correlation plot between the shrinkage factor and 

each independent variable is shown in Figures 4.6, 4.7, 4.8, 4.9, and 4.10. In Figure 4.6, the clay content 

had a -0.525 correlation with the shrinkage factor, but the p-value for the correlation is 0.147, which is 

greater than the decision parameter of α=0.05, an indication of a weak probability for this correlation. The 

adjusted R-square value for the regression of clay with the shrinkage factor was 17.2%, an indication that 

only 17.2% of the shrinkage-factor variability could be explained by the presence of clay in the soil. In 

Figure 4.7, the bulk density of the borrow material exhibited a correlation of 0.322 with the shrinkage 

factor. The bulk density of the embankment also exhibited a negative correlation of -0.356 with the 

shrinkage factor. However, the probability of occurrence for both correlations was low and, therefore, 

rejected. In Figure 4.9, the dry density of the borrow material showed a correlation of 0.204 with the 

shrinkage factor. The correlation, however, had a low probability of occurrence. The dry density of the 

embankment showed a high correlation of 0.636 with the shrinkage factor in Figure 4.10. The correlation 

was also matched with a significant probability of occurrence.   



 

74 

 

 
Figure 4.6. Correlation plot between shrinkage factor and the clay content of the borrow material 

In Figure 4.6, the R-squared value for the graph is 17.2%, implying that only 17.2% of the 

shrinkage-factor variation is explained by the clay-content data set. On the basis these results, two 

conclusions could be drawn; either the shrinkage-factor variations could be attributed to other factors in 

addition to the clay content, or the relationship between shrinkage and clay content could be nonlinear. 

When the residuals of the clay-shrinkage factor plot were analyzed, there was no significant pattern. 

Another observation that was made with the residual plot was that it was normally distributed. The lack of 

a pattern and the normal distribution observed in the residual plot were justifications for using linear 

regression to model the relationship between clay and the shrinkage factor. 
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Figure 4.7. Correlation plot between shrinkage factor and the bulk density of borrow material 

Figure 4.7 shows a positive correlation between shrinkage factor and the bulk density of the 

borrow material. The R-square value for the regression plot between the bulk density of the borrow 

material and the shrinkage factor was 0.0%. This value means that that variability in the shrinkage factor 

could not be explained by the bulk density of the borrow material. 
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Figure 4.8. Correlation plot between shrinkage factor and bulk density of the embankment material 

 
 

 
Figure 4.9. Correlation plot between the shrinkage factor and the density of borrow material 
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Figure 4.10. Correlation plot between the shrinkage factor and the dry of density of embankment material 

 

The resulting shrinkage-factor function that was obtained from the multivariate regression 

modeling was Equation 4.1. In the function, the expected value of the shrinkage factor is expressed as a 

function of a constant, the clay content of the borrow material, the bulk density of the borrow material, 

the dry density of the borrow material, the dry density of the embankment, and the bulk density of the 

embankment. The expected shrinkage factor is given by 

54321 025076.072381.067288.010301.009183.068.90)( xxxxxyE     (4.1) 

The correlation outputs of the model are; S = 0.164218   R-Sq= 99.9%   R-Sq(adj) = 99.9%. The 

corresponding coefficients obtained for each independent variable and the corresponding p-value are 

shown in Table 4.6. 
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4.2. Analysis of results 

The standard error of the estimate (square root of the mean-squared error) was 0.164218. The 

small nature of this value was an indication of a strong linear relationship among the variables. An R-

square of 99.9% is an indication that 99.9% of the shrinkage-factor variability is correlated with clay 

content, the bulk density of borrow material, the dry density of borrow material, the dry density of 

embankment, and the bulk density of embankment. The adjusted R-square was 99.9%.For the individual 

independent-variable level, Table 4.6 provides a detailed error associated with modeling each variable. 

The standard error of each coefficient (SE Coef.) is the estimated standard deviation of the coefficients at 

the 95% confidence interval. The corresponding p-values for each predictor indicate the statistical 

significance of the estimated coefficients. For example, in Table 4.6, the dry density of borrow material 

and embankment showed relatively low standard errors and a highly significant probability of occurrence. 

Bulk density for the borrow material showed a low standard error but a high p-value of 0.082 relative to 

α=0.05; this finding would warrant the bulk density of the borrow material variable to be eliminated in 

subsequent functions. In the decision column, the null hypothesis which said that the bulk density had a 

zero value was retained by this outcome for the bulk density of embankment. 

Table 4.6. Coefficients and their test values 

Predictor Coef SE Coef  T  P Decision 

Constant 90.68 2.672 33.94 0.000 Reject H0 

% clay 0.09183 0.02735 3.36 0.044 Reject H0 

Bulk Den Borrow 0.10301 0.03069 3.36 0.044 Reject H0 

Dry Den. Borrow 0.67288 0.06038 11.14 0.002 Reject H0 

Dry Den. Emb 0.72381 0.0127 -56.97 0.000 Reject H0 

Bulk Den. Emb 0.02508 0.009757 -2.57 0.082 Retain H0 

 

In Table 4.7, the sum of square regression error of 159.301 relative to the sum of square error of 

regression of 0.08179 was an indication of a good regression model. The large mean square of regression 
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of 31.86 relative to 0.026 for the error was also an indication of a good model. Table 4.8 provides 

understanding for the source of the 159.301 sum of squares error of regression. From Table 4.7, a high 

amount of the total error was associated with the clay content of the borrow material and the dry density 

of the embankment. The total regression error was 159.382. The component of the 159.382 regression 

error that was caused by modeling was 159.301. The unknown component of the regression error was 

0.081; 107.731 of the 159.301 were known to have come from modeling the dry density of the 

embankment. 

Table 4.7. Analysis of Variance for initial shrinkage factor function for Minot 

Source DF SS MS F P 

Regression 5 159.301 31.86 1181.43 0.000 

Residual Error 3 0.081 0.027   

Total 8 159.382    

 
Table 4.8. Independent variables and known sum of squares error associated with each  

Source DF Seq SS 

% clay 1 43.865 

Bulk Den Borrow 1 1.796 

Dry Den. Borrow 1 5.731 

Dry Den. Emb 1 107.731 

Bulk Den. Emb 1 0.178 

 

On the basis of a high p-value relative to 0.05, the decision was taken to eliminate the bulk 

density of the embankment from the regression function in Equation 4.1 despite the significant statistical 

outputs. The regression modeling was repeated, and the new shrinkage factor function was given by 

Equation 4.2. In the new function, the expected value of the shrinkage was a function of the clay content, 

the bulk density of borrow material, the dry density of borrow material, and the dry density of 

embankment. 
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4321 73679.074227.007097.007817.0243.86)( xxxxyE
         (4.2)             

The correlation outputs of the model are; S = 0.254480   R-Sq = 99.8%   R-Sq. (adj.) = 99.7%. 

The standard statistical outputs of the new shrinkage-factor function are shown in Tables 4.9, 4.10, and 

4.11. From the modeling results, the initial shrinkage-factor function in Equation 4.1 performed better 

than Equation 4.2. For example, the standard error in Equation 4.2 was 0.254480, which was higher than 

the 0.164218 obtained with Equation 4.1. The p-values clay and bulk density of borrow material were 

significantly higher than the set limit of 0.05. The null hypothesis was, therefore, sustained on these two 

variables.   

Table 4.9. Coefficients and their test values 

Predictor Coef SE Coef T P Decision 

Constant 86.243 3.16 27.29 0.000 Reject H0 

% clay 0.07817 0.04158 1.88 0.133 Retain H0 

Bulk Den Borrow 0.07097 0.04346 1.63 0.178 Retain H0 

Dry Den. Borrow 0.74227 0.08369 8.87 0.001 Reject H0 

Dry Den. Emb -0.73679 0.01806 -40.79 0.000 Reject H0 

 

Table 4.10. Breakdown of sum of squares error 

Source DF Seq SS 

% clay 1 43.865 

Bulk Den Borrow 1 1.796 

Dry Den. Borrow 1 5.731 

Dry Den. Emb 1 107.731 

 

Table 4.11. Variance analysis of initial shrinkage factor function for Minot 

Source DF SS MS F P 

Regression 4 159.123 39.781 614.28 0.000 

Residual Error 4 0.259 0.065   

Total 8 159.382    
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Equation 4.1 cannot be picked over Equation 4.2 because it would result in a type-2 statistical 

error. Another regression modeling was performed using the dry density of the borrow soil and the dry 

density of the embankment.  The new regression equation for Minot is expressed in Equation 4.3: 

43 73152.085367.0821.85)( xxyE
       (4.3)            

The correlation outputs of the model are; S = 0.297835   R-Sq = 99.7%   R-Sq(adj) = 99.6%. 

Statistical results for the new, expected shrinkage-factor function are displayed in Tables 4.12 and 4.13. 

The standard error of the estimate was 0.297835, and the adjusted R-square value for the model was 99.6. 

The high value of the R-square value was an indication of the equation’s robustness and the dependence 

of the expected shrinkage factor on both the dry density of the borrow soil and the dry density of the 

embankment. Further proof of this dependence was shown in the p-values related to both independent 

variables. All predictor variables recorded a 100% chance of occurrence. 

Table 4.12. Coefficients and their test values 

Predictor Coef 

SE 

Coef T P Decision 

Constant 85.821 2.177 39.42 0.000 Reject H0 

Dry Den. Borrow 0.85367 0.02617 32.62 0.000 Reject H0 

Dry Den. Emb -0.73152 0.01766 -41.42 0.000 Reject H0 

 

Table 4.13. Variance analysis of initial shrinkage-factor function for Minot 

Source DF SS MS F P 

Regression 2 158.85 79.425 895.38 0.000 

Residual Error 6 0.532 0.089   

Total 8 159.382    

 

Another significant result was the high value for the sum of square error of regression relative to 

the residual error. The sum of square error for the model was 158.85 relative to the 0.532 residual error of 
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modeling. On the basis of these outcomes, Equation 4.3 was selected to represent the expected shrinkage-

factor model for Minot.  

4.3. Discussion of Valley City results 

In the Valley City transportation district, the selected project was Job #15-Ser-2-046(041)014 

(Figure 4.11). 

 
Figure 4.11. Valley City research site with borrow pits 

The project was located in Logan County. It was on ND Highway 46 and was 4miles east of 

Gackle. The project involved realigning the roadway due to high water levels. The total length of the new 

road was 1.43miles, and it started at station 252+50 and ended at station 328+00. The in-place density of 

soil in the borrow pit was measured at different depths. A tracking system was also designed to measure 

the density of compacted of material that was excavated from the pit, placed, and compacted. The in-
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place density of the borrow pit was then correlated with the tests conducted on the compacted 

embankments in the roadway. 

4.3.1. Step 2 

Interpolation of the clay data set for the Valley City district was performed at this stage of the 

modeling. The results of a prerequisite data exploration are captured in the next section. 

4.3.1.1. Preliminary data set analysis 

Sixty-one data points were used for this analysis. From the histogram plot (Figure 4.12) of the 

NRCS data set, the maximum clay content was 39.7%, an indication of the low clay content of the 

district’s soils. The average clay content was 19.04% with a standard deviation of 10.134%. The median 

was 21.82%, giving an indication of a negatively skewed data set. The distribution was also explored with 

the Q-Q plots. The statistical outcome for the histogram plot is shown in Table 4.14. 

 
Figure 4.12. Histogram of Valley City data points 
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Table 4.14. Statistical results of Valley City soil data set analysis 

Histogram Stats.-Valley City 

Metric Value 

Count 61 

Minimum 0 

Maximum 39.7 

Mean 19.04 

Std deviation 10.134 

Skewness -0.3974 

Kurtosis 2.5328 

1st quartile 11.36 

median 21.822 

3rd quartile 24.823 

 

Data points in close proximity in Dickey, Lamoure, and Stutsman Counties seemed to exhibit 

high variability for clay content. Trend analysis of the clay content did not reveal any direct trend. The 

correlation between clay and silt, and that between clay and sand was not significant. 

From the kriging results in Table 4.15, for linear kriging, ordinary kriging performed best compared to 

simple and universal kriging when the results were ranked. For nonlinear kriging, the ranked 

crossvalidated results showed that indicator kriging performed best. 

When the data set for the clay content of the Valley City transportation district was kriged, the 

variability for clay-content variability in the soil was observed to be as low as 0% and as high as 

40%(Figure 4.13). The developed map for the project area using ordinary kriging is shown in Figure 4.13. 

In the map, the clay content the project area’s soil varied from 10-20%



 

 

8
5

 

Table 4.15. Crossvalidated kriging results for Valley City 

LINEAR KRIGING 

Kriging 

method 

Mean Rank RMS Rank MS Rank RMSS Rank ASE Rank Total 

OK -0.01079 1 5.040258 1 -0.01286 1 1.094679 1 5.788989 2 6 

SK -0.4002 3 5.900266 2 0.110028 3 2.157501 2 7.008743 3 13 

UK -0.24316 2 6.285859 3 -0.08007 2 2.352107 3 2.418805 1 11 

 NON LINEAR 

 

 

IK -0.00352 1 0.358127 1 -0.00102 1 0.939275 1 0.315305 3 7 

PK 0.012455 2 0.359 2 0.04723 2 1.309066 3 0.288068 1 10 

DK 0.027098 3 0.371543 3 0.052023 3 1.259434 2 0.302917 2 13 
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Figure 4.13. Kriged average clay content of soils in Valley City transportation district 

4.3.2. Step 3 

4.3.2.1. Construction process and test result 

During the field-data collection, the construction process on the project was observed. Given the 

short length of the road under construction and the use of high-volume common excavation, the 

contractor was careful when matching the equipment for each activity. For instance, all common 

excavation material was moved with scrappers. Backfill for culverts that were placed along the roadway 

was delivered to the site with belly dump trucks by the material’s vendor. The contractor used the high-

volume scrapers in two ways. The first one was for earthwork transportation and, second, for compaction. 

To achieve some amount of compaction, the scrappers were loaded and made to travel along the placed 

borrow material to and fro to ensure compaction. Loading time was significantly improved by using one 
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scrapper to push-load the other. The dozer was next to follow the scraper, leveling the compacted 

embankment before the grader. 

The field results for the Valley City project are shown in Tables 4.16 and 4.17. The results 

represented a matrix of both the in-field and laboratory tests that were conducted during the project. 

These results were subsequently used in the next stage of data analysis. 

Table 4.16. Observed results for the Valley City project 

Calculated 

SF(%) 
Pb of Clay(%) Avg. Bulk 

density of 

Borrow 

Dry 

Density of 

Borrow 

Dry Density of 

embankment 

Avg. Bulk 

density of 

compacted 

98.5 11 124.6 108.2 109.8 128.7 

95.0 18 123.1 103.1 108.5 125.4 

96.1 13 121.2 103.8 108 124.7 

103.4 14 131.4 111.6 107.9 123.8 

94.1 15 122.1 105.2 111.8 130.4 

99.7 18 127.2 109.3 109.6 127.5 

101.2 19 128.4 109.3 108 125.3 

101.6 15 128.9 110 108.3 127 

104.7 19 131.5 112.5 107.4 126.1 

93.5 18 121.2 104.7 112 129.7 

97.7 15 122.1 105.3 107.8 124.1 

94.8 12 126.6 106.8 112.7 129 

 
 
Table 4.17. Classification of the Valley City soil 
AASHTO Class PL LL PI Passing No 200. Sieve 

A-7-5 21 47 26 60 

A-7-5 23 54 22 60 

A-7-5 19 41 22 54 

A-7-5 21 47 26 60 
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4.3.3. Step 4 

An initial analysis was conducted on the Valley City data set to verify its appropriateness for 

linear-regression modeling. The residual plot of the independent variables against the shrinkage factor 

showed a fairly random distribution (Figure 4.14). 
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Figure 4.14. Residual plot of fitted values in Valley City 

The histogram plot of the residuals against the frequency showed a close to normal distribution. 

The plot of the residuals against the order of observation showed a random distribution over a period on 

the screenshot. The residuals plotted against the fitted values showed a constant variation of error along 

the horizontal axis. 

On the basis of a random distribution of the residuals, we investigated the correlation between the 

variables. The correlation matrix in Table 4.18 shows the correlation coefficients and the corresponding 

p-values for the null hypothesis (probability that the correlation is zero (0)) 
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Table 4.18. Correlation matrix for the Valley City variables  

Material  SF 

Clay 

content 

Bulk Den 

Borrow 

Dry Den. 

Borrow 

Dry Den. 

Emb 

Bulk Den. 

Emb 

Clay content 0.189     

 

p 0.557     

 

Bulk Den Borrow 0.912 0.190    

 

p 0.000 0.554    

 

Dry Den. Borrow 0.823 0.144 0.942   

 

p 0.001 0.655 0.000   

 

Dry Den. Emb -0.679 -0.255 -0.389 -0.364  

 

p 0.015 0.424 0.211 0.245  

 

Bulk Den. Emb -0.646 -0.135 -0.283 -0.175 0.880 

 

p 0.023 0.677 0.373 0.587 0.000 

 

 

4.4. Analysis of results 

An initial observation from the correlation matrix was the significantly high correlation between 

the shrinkage factor and all the independent variables, except clay content. In the correlation results of 

Table 4.13, the bulk density of the borrow material showed a high correlation of 0.912 with the shrinkage 

factor. This correlation was reinforced by a high probability of occurrence (100%). The p-value of the 

correlation was 0.000. The dry density of the borrow material also exhibited a high, positive correlation of 

0.823 with the shrinkage factor and a significant probability of occurrence of 99%. The dry density of the 

embankment showed a negative correlation of -0.679 with the shrinkage factor at a p-value of 0.015. The 

bulk density of the embankment also exhibited a negative correlation of -0.646 with the shrinkage factor 

at a high probability level of 97.7%. The clay content variable, however, exhibited a low correlation of 

0.189 with the shrinkage factor. 

The shrinkage factor function that was developed from the multivariate linear-regression 

modeling of the variables is shown in Equation 4.4. The expected value of the shrinkage factor is given by 
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54321 7278.0009.00345.07663.002516.0682.90)( xxxxxyE
 (4.4) 

The correlation outputs of the model are; S = 0.352578   R-Sq = 99.5%   R-Sq(adj) = 99.1%. The 

statistical outcome (Table 4.19) of the shrinkage-factor function in Equation 4.4 showed that the 

collective correlation between the independent variables and the shrinkage-factor function was 

significant. 

Table 4.19. Coefficients and their test values 

Predictor Coef SE Coef T P Decision 

Constant 90.682 9.238 9.82 0.000 Reject H0 

% clay -0.02516 0.0419 -0.6 0.570 Retain H0 

Bulk Den Borrow 0.7663 0.1006 7.62 0.000 Reject H0 

Dry Den. Borrow 0.0345 0.1279 0.27 0.797 Retain H0 

Dry Den. Emb 0.009 0.1564 0.06 0.956 Retain H0 

Bulk Den. Emb -0.7278 0.1275 -5.71 0.001 Retain H0 

 

The standard error of the model was 0.352578, and the R-square value was99.50%. The adjusted 

R-square value was 99.1%.Further analysis about the role individual variables played in this model (Table 

4.19) showed that the bulk density of the borrow material and the bulk density of the embankment 

exhibited a significant statistical result to warrant their inclusion in the model. The p-value for the bulk 

density of borrow material was 0.000, and that for the bulk density of embankment was 0.001, an 

indication of their high probability of occurrence. 

The clay content, the dry density of borrow material, and the dry density of the embankment were 

eliminated from the shrinkage-factor function on the basis of their low correlation and their probability of 

occurrence. In the variance of the model (Table 4.20), the sum of squares error of regression was 159.254, 

which was significantly higher than the unknown error (residual error) of 0.746. The mean square error 

was 31.851, and the p-value of the model was observed to be 0.000. The known regression error from 

each independent variable is listed in Table 4.21. 



 

91 

 

Table 4.20. Variance analysis of initial shrinkage-factor function for Valley City 

Source DF SS MS F P 

Regression 5 159.254 31.851 256.22 0.000 

Residual Error 6 0.746 0.124   

Total 11 160    

 

Table 4.21. Independent variables and known sum of squares error associated with each predictor 

Source DF Seq SS 

% clay 1 5.7 

Bulk Den Borrow 1 127.373 

Dry Den. Borrow 1 1.768 

Dry Den. Emb 1 20.362 

Bulk Den. Emb 1 4.052 

 

On the basis of the decision model, the bulk density of borrow material and the bulk density of 

the embankment were used as the new independent variables in the new shrinkage-factor function. In the 

function, the expected value of the shrinkage factor was given by 

52 71411.078978.0286.90)( xxyE
      (4.5)

 

The correlation outputs of the model are; S = 0.301007   R-Sq = 99.5%   R-Sq(adj) = 99.4% 

Table 4.22. Coefficient analysis of the refined shrinkage-factor function for Valley City 

Predictor Coef SE Coef T P Decision 

Constant 90.286 6.889 13.11 0.000 Reject H0 

Bulk Den Borrow 0.78978 0.02473 31.94 0.000 Reject H0 

Bulk Den. Emb -0.71411 0.04203 -16.99 0.000 Reject H0 

 

Table 4.23. Variance analysis for the refined function for Valley City 

Source DF SS MS F P 

Regression 2 159.185 79.592 878.45 0.000 

Residual Error 9 0.815 0.091   

Total 11 160    
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The statistical outputs of the refined shrinkage-factor function (Equation 4.5) were significant. 

The R-squared was improved from 99.1% to 99.4% in the new model. The standard error decreased from 

0.352578 to 0.301007. The sum of squares error for regression with the new model was 159.18, and the 

value was significantly higher than the unknown residual error of 0.815. The residual error, however, 

increased from 0.746 to 0.815 in the new model.  

The normal probability plot for the residuals of the variables in the new model in Figure 4.15 

showed a fairly skewed distribution. 
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Figure 4.15. Residual plots for Valley City refined model 

The histogram of the residual plot also showed a distribution that is skewed to the left, an 

indication of a deviation from normal distribution. The plot of the residual against the observation order 

showed a snapshot with nonlinear behavior in the first section and irregular behavior in the other section. 

The residual plot against the fitted values was observed to be irregular. Equation 4.5 was, therefore, 

maintained as the best-fit model for the expected value of shrinkage-factor calculation for Valley City. 
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4.5. Discussion of Dickinson results 

In the Dickinson transportation district, the selected project was a 4.897-mile stretch of Highway 

22 that involved lane widening, paving, lighting, signals, and structural replacement. The project ran 

across Dunn and Stark Counties (AC-SOI-SS-5-022(095)074; Figure 4.16). 

 
Figure 4.16. Dickinson research site with borrow pits 

The project started at Sta. 3863+82 and ended at Sta. 4124+30. Four in-place density tests were 

run in the borrow pit that served as the material source for the road. Another set of density tests was run 

on the placed compacted material from the pit at locations Sta. 4039+00, Sta. 4034+00,Sta. 4041+00, and 

Sta. 4044+00. 
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4.5.1. Step 2 

In step 1 of the methodology (Figure 3.1), the average clay content of the Dickinson project area 

was obtained by performing geostatistical kriging on the georeferenced soil data set extracted from 

NRCS. 

4.5.1.1. Preliminary data set analysis 

A total of 149 data points were used in modeling the soils’ clay content in the Dickenson district. 

The maximum clay content was 54.929%. Twenty-five percent of the data sets actually had clay content 

higher than 36.028%, an indication of high clay content in the data set. The first quartile was 16.359%. 

The average clay content of the data set was 26.5025 with a standard deviation of 13.154%.  From the 

histogram plot in Figure 4.17, the data set was positively skewed, and the skewness is reflected in the 

median of 24.938.  

 
Figure 4.17. Histogram of Dickinson data points 
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The Q-Q plot of the data set revealed a distribution which is not normal along the symmetry. The 

trend analysis plot showed some evidence of a trend in the data. The trend was, therefore, explored 

through anisotropy. The preliminary results of a Q-Q plot between clay and silt showed that there is a 

high correlation between them. On the basis of this observation, a co-kriging module was performed to 

analyze the degree of correlation. 

The results of both linear and nonlinear kriging for the NRCS data set for the Dickinson 

transportation district are shown in Table 4.24. The ranked, crossvalidated results in Table 4.22 showed 

that ordinary kriging performed best relative to simple and universal kriging for linear kriging. The 

indicator kriging module was observed to be the best ranked for nonlinear kriging. 

The corresponding kriged surface is shown in Figure 4.18. The map shows that the clay content 

for the Dickinson transportation district varies from 11-57%. Across the project length, the variation in 

clay was 11-25%. 
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Table 4.24. Observed results for the Dickinson project 

LINEAR KRIGING 

Kriging 

method 

Mean Rank RMS Rank MS Rank RMSS Rank ASE Rank Total 

Rank 

OK 0.15367 1 10.33797 1 0.010801 1 0.944656 2 11.0441 2 7 

SK 0.562214 3 10.51415 2 0.049873 3 0.942216 1 11.21815 3 12 

UK 0.40737 2 11.09658 3 0.036806 2 1.081457 3 10.16749 1 11 

 NON LINEAR 

 

 

IK 0.008595 1 0.411366 1 0.016733 2 0.969237 2 0.416809 2 8 

PK 0.006944 2 0.41156 2 0.011761 1 0.971929 3 0.414341 1 9 

DK 0.024338 3 0.415943 3 0.04073 3 0.897378 1 0.454841 3 13 
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Figure 4.18. Ordinary kriging of clay for Dickinson transportation district 

4.5.2. Step 3 

4.5.2.1. Construction process and test result 

The construction process from the borrow pit to the embankment where compaction was carried 

out was observed. In the process, four loads of the Volvo L110F were used to fill each bottom dump truck 

at the pit. The truck then transported the borrow material about three miles to the spot along the roadway 

where the material was dumped.  A grader and a dozer were used by the construction team to level the 

dumped borrow material before the sheep foot compactor ran over it for a specific number of passes. 
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The field results for the Dickinson project are shown in Tables 4.25 and 4.26. The results 

represented a matrix of both the in-field and laboratory tests that were conducted on the project. These 

results were subsequently used in the next stage of data analysis. 

Table 4.25. Observed results for Dickinson project 

Calculated 

SF(%) 
Pb of Clay(%) 

Avg. Bulk 

density of 

Borrow 

Dry 

Density of 

Borrow 

Dry Density of 

embankment 

Avg. Bulk 

density of 

compacted 

100.4 13 116.6 106.1 105.7 120 

99.7 17 117.5 109.2 109.5 123.6 

94.6 21 114.9 102 107.8 121.5 

98.7 24 117.2 105.4 106.8 121.9 

99.9 14 118 105.6 105.7 116.4 

99.4 13 121.9 110.3 111 119 

99.0 22 115 103 104 127 

100.0 20 120 108 108 115 

      

 

Table 4.26. Classification of Dickinson soil 

AASHTO Class PL LL PI Passing No 200. Sieve 

A-6    11.7 

A-2-4    16.2 

A-2-4    18.9 

A-2-4    19.2 

A-2-4    19.3 
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4.5.3. Step 4 

A preliminary analysis of the Dickinson data set was performed in Minitab. In the analysis, the 

residual plot of the independent variables was performed against the shrinkage factor. The normal 

probability plot in Figure 4.19 shows that the residuals had a normal distribution. The plot of independent 

variables against the residuals showed that the data set was skewed. 
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Figure 4.19. A residual plot for Dickinson data set 

The correlation matrix that was developed between the variables is shown in Table 4.27. The 

initial observation showed that the dry density of the borrow material had a significant correlation with 

the dry density of the embankment. The shrinkage factor did not exhibit a high correlation with all the 

variables within the defined confidence interval of 95%. 
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Table 4.27. Correlation matrix of Dickinson variables 

Material SF 

Clay 

content 

Bulk Den 

Borrow 

Dry Den. 

Borrow 

Dry Den. 

Emb 

Bulk Den. 

Emb 

Clay content -0.469      

p 0.241      

Bulk Den Borrow 0.489 -0.472     

p 0.219 0.238     

Dry Den. Borrow 0.634 -0.540 0.866    

p 0.091 0.167 0.005    

Dry Den. Emb -0.069 -0.286 0.687 0.728   

p 0.871 0.492 0.060 0.041   

Bulk Den. Emb -0.263 0.423 -0.642 -0.390 -0.277  

p 0.529 0.296 0.086 0.339 0.506  

 

After the preliminary analysis, a shrinkage factor function (Equation 4.6) was developed using all 

the independent variables. In the function, the expected shrinkage-factor value was given by 

54321 002488.09224.092564.000406.000323.0524.99)( xxxxxyE
     (4.6) 

The correlation outputs of the model are; S = 0.0376841   R-Sq = 100.0%   R-Sq(adj) = 100.0%. 

From the results, Equation 4.6 had a good statistical outcome. A 100.0% R-square value was significant. 

However, some independent variables did not show a significant correlation with the shrinkage factor in 

the general function. 

Table 4.28. Coefficients and their test values 

Predictor Coef SE Coef T P Decision 

Constant 99.524 1.565 63.6 0.000 Reject H0 

% clay -0.00323 0.004213 -0.77 0.523 Retain H0 

Bulk Den Borrow 0.00406 0.01671 0.24 0.831 Retain H0 

Dry Den. Borrow 0.92564 0.01273 72.71 0.000 Reject H0 

Dry Den. Emb -0.9224 0.009564 -96.45 0.000 Reject H0 

Bulk Den. Emb -0.00249 0.005738 -0.43 0.707 Retain H0 
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From Table 4.28., the p-values for the dry density of the borrow material and the dry density of 

the embankment were significant and, therefore, showed a high probability of occurrence. The p-value for 

clay content, the bulk density of borrow material, and the bulk density of embankment showed that these 

variables have little to do with the shrinkage factor’s variability. The variance of the model is shown in 

Table 4.29. 

Table 4.29. Analysis of variance table for Equation 4.6 

Source DF SS MS F P 

Regression 5 23.8559 4.7712 3359.77 0.000 

Residual Error 2 0.0028 0.0014   

Total 7     

 

The known sum of squares regression error in Equation 4.6 was significantly higher than the 

residual error. The residual error in the model was 0.0028 and was significantly low. The sum of squares 

error in Table 4.29 was significantly higher than the mean square error of 4.7712. The overall p-value for 

Equation 4.6 was 0.000 relative to 0.05, an indication of a robust equation. 

A new model of the shrinkage was designed to use the variables of the rejected null hypothesis. In 

the function, the shrinkage factor was modeled as a function of the dry density of borrow material and the 

dry density of the embankment. In the resultant function (Equation 4.7), the expected shrinkage factor 

was given by 

43 923357.0933034.00.99)( xxyE
                    (4.7) 

The correlation outputs of the model are; S = 0.0326088   R-Sq = 100.0%   R-Sq(adj) = 100.0%. 

The R-square of this model was 100.0%. Table 4.30 shows the p-values of the coefficients. Table 4.30 

also shows the other modeling parameters. All variables exhibited significant correlation with the 

shrinkage factor. 
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Table 4.30. Coefficients and their test values 

Predictor Coef SE Coef T P 

Constant 98.962 0.5886 168.13 0.000 

Dry Den. Borrow 0.933034 0.006244 149.42 0.000 

Dry Den. Emb 0.923357 0.007974 -115.79 0.000 

 

Table 4.31. Variance analysis for the refined Dickinson model 

Source DF SS MS F P 

Regression 2 23.853 11.927 11216.37 0.000 

Residual Error 5 0.005 0.001   

Total 7 23.606    

 

The residual plot for the final shrinkage-factor model for Dickinson is shown in Figure 4.20. 
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Figure 4.20. Residual plots for Dickinson refined model 

In the plot of the independent variables against the residuals, a skewed data set was observed. 

However, the residual plot against the observation order did not reveal any trend in the error distribution. 
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The residual plot against the fitted values also produced a somewhat constant distribution along the 

horizontal line. On the basis of reducing the standard error from 0.0376841 to 0.0326088, Equation 4.7 

was accepted for the final check against their NOF and EF. 

4.6. Devils Lake results and modeling 

For the Devils Lake transportation district, the site was project Job #17-SNH-SER-3-057(047)006 

(Figure 4.21). The project was located partly in Benson and Ramsey Counties. The 6.5-mile road project 

involved lane widening, grade raising, and placing rip rap and bedding stones at certain sections of the 

existing base road. The project started at Sta. 320+00 and ended at Sta. 658+14.90 along Highway 57 

(from Fort Totten to 1mile west of the junction with ND 20).  In the contract for this project, the NDDOT 

used a shrinkage factor of 30% for earthwork embankment. The borrow material for the construction of 

this road was taken from two pits: the Tester pit and the Borestad pit. Soil from the Borestad pit was not 

used for the study because of the significantly high shale content. The content of the pit varied with the 

20% shale limitation set by the NDDOT. The Tester pit was located at station 459+32 of the project. Two 

in-place density tests (nuclear gage test and the sand cone test) were performed on the Tester borrow pit. 

The test was conducted at the following sites (N, E, elevation): (368185.93, 2350494.6, 1506ft) and 

(368206.71, 2350648.95, 1497.50ft). The in-place density test was conducted at approximately 4ft and 5ft 

depths in the Tester borrow pit. Two samples were taken from each pit for AASHTO T 99, T 180, and T 

224. The results are shown in Appendix B. 
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Figure 4.21. Devils Lake project SNH-SER-3-057 (047) 006 profile 

4.6.1. Step 2 

The data set extracted from the NRCS database for the Devils Lake transportation district was 

kriged to develop the best clay surface. Observations from an initial analysis of the data set are described 

in the next section.  

4.6.1.1. Preliminary data set analysis 

Forty-two data points were obtained from the NRCS database for modeling this district. A 

histogram plot was performed on the data points. The histogram plot is shown in Figure 4.22, and the 

corresponding plot results are shown in Table 4.32. The maximum clay content in the data set was 43.267 

with 25% higher than 29%. Twenty-five percent of the data set also had clay content below 14.9%. The 

mean clay content was 22.42% with a standard deviation of 8.6495%. The median was 22.69%. The 

closeness of the median to the mean was an indication of the closeness to the normal distribution nature of 

the data set. This observation of closeness to normal distribution was also evident in the QQ plot. There 

was no transformation of the data set during modeling. 
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Figure 4.22. Histogram of Devils Lake data points 

Linear and nonlinear kriging was performed on the data set. With linear kriging, simple, ordinary, 

and universal modules were combined with spherical, Gaussian, and exponential variograms to estimate 

the clay distribution across the transportation district. The crossvalidated results of linear modeling were 

ranked. The ranked results in Table 4.32 showed that, for linear kriging, ordinary kriging produced the 

best results for the data set.  For nonlinear kriging, the indicator, probability, and disjunctive kriging were 

used to investigate the probability of exceeding 25% clay across the district. The ranked results in Table 

4.31 showed that indicator kriging produced the best results. The corresponding clay distribution map for 

Devils Lake plotted with the best, ranked linear-kriging method is shown in Figure 4.23.
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Table 4.32. Ranked crossvalidated kriging result for Devils Lake 

     LINEAR       

Kriging 

method 

Mean Rank RMS Rank MS Rank RMSS Rank ASE Rank Total 

Rank 

OK 0.15367 1 10.33797 1 0.010801 1 0.944656 2 11.0441 2 7 

SK 0.562214 3 10.51415 2 0.049873 3 0.942216 1 11.21815 1 10 

UK 0.40737 2 11.09658 3 0.036806 2 1.081457 3 10.16749 1 11 

 

NON LINEAR 

  

IK 0.001389 1 0.498931 2 0.005101 2 1.011373 1 0.492011 3 9 

PK -0.00174 2 0.516798 3 0.001924 1 1.15374 3 0.461068 2 11 

DK -0.01617 3 0.314686 1 -0.05518 3 1.073542 2 0.293128 1 10 
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Figure 4.23. Map of clay distribution in Devils Lake district 

 

4.7. Discussion of Fargo results 

4.7.1. Step 2 

The total data points obtained from the NRCS soil-characterization data mart for Fargo was 65. 

These data points were spatially distributed over the transportation district. Preliminary analysis was 

conducted on the data set to look for possible spatial dependency. The output histogram for the Fargo data 

set is shown in Figure 4.24. 
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Figure 4.24. Histogram of Fargo data points 

4.7.1.1. Preliminary data set analysis 

Analysis of the Fargo clay content data set showed that the average clay content across the 

transportation district was 22.7% with a standard deviation of 13.9%.The median of 19.3% showed 

deviation from the mean of 22.7%, a clear indication that the data set is not normally distributed. A 

3
rd

quartile of 32.6 gave an indication about the high clay content in the data set. Twenty-five percent of 

the data points had clay content higher than 32.6%.The Q-Q plot (Figure 4.25) also gave the same 

indication of a deviation from a normal distribution. The data were skewed, with a skewness value of 

0.614. The data set was also positively skewed. The trend analysis of the data sets gave an indication 

about a trend in the clay distribution, hence the need to explore anisotropy during clay content modeling 

(directional trend). The kurtosis value of 2.7 was an indication that the outliers were on the lower side of 

the mean, hence below 22.7%. 
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Figure 4.25. Q-Q Plot for Fargo clay data set     

Linear kriging (ordinary, simple, and universal kriging) was performed on the clay content of the 

NRCS soil data set for the Fargo transportation district. Optimized variograms were fitted to the data sets, 

and the resulting interpolated surface was generated. The best-fit variograms were used to estimate the 

clay content at the unmeasured locations. The best linear kriging technique was obtained by ranking the 

crossvalidated results. The ranked results for the district are shown in Table 4.33. The results showed that, 

for linear kriging of clay in the Fargo district, the simple kriging method performed best, and for 

nonlinear kriging, indicator and disjunctive kriging performed best.  

In the ranked results for linear kriging, simple kriging provided the best results compared to 

ordinary and universal kriging. The simple kriging map (Figure 4.26) was, therefore, selected to represent 

the clay distribution for the Fargo district. 
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Table 4.33. Ranked kriging results for the Fargo district 

LINEAR KRIGING 

Kriging 

method Mean Rank RMS Rank MS Rank RMSS Rank ASE Rank 

Total 

Rank 

OK 0.4160715 2 8.907366 1 -0.03158 2 0.987933 2 8.978669 2 9 

SK 0.1008057 1 9.588301 2 0.022497 1 0.878352 1 10.81047 3 8 

UK 0.7576561 3 9.956997 3 -0.10262 3 1.467241 3 6.36096 1 13 

 NONLINEAR KRIGING   

IK 0.0096846 2 0.303896 1 -0.01625 2 1.216733 3 0.274011 1 9 

PK 0.0157471 3 0.318064 2 -0.02868 3 0.894603 2 0.330311 2 12 

DK 0.0094655 1 0.347797 3 -0.01228 1 0.84433 1 0.404879 3 9 
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Indicator, probability, and disjunctive kriging were performed the clay content for the Fargo 

transportation district. Variograms were varied from spherical, exponential, to Gaussian models, and in 

each case, the nugget and sills were observed until the best-fit model was obtained (optimized 

variograms). The resulting model was then used to interpolate the chance of obtaining 25% clay across 

the transportation district, and the crossvalidated results were documented for each model. The result for 

the Fargo district is shown in Table 4.33. The results showed that indicator and disjunctive kriging 

provided the best results for nonlinear modeling of the clay content in the transportation district. 

 

 
Figure 4.26. Map of clay distribution in Fargo district 
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4.8. Discussion of Bismarck results 

4.8.1. Step 2 

Data exploration was performed on the NRSC data set for Bismarck prior to kriging the clay 

surface for the district. 

4.8.1.1. Preliminary data set analysis 

The total data points used to analyze the clay content in Bismarck was 62. The histogram plot for 

the Bismarck data points is shown in Figure 4.27. From the results, the mean clay content in Bismarck 

from the data set was 19.9%, with a 10.6% deviation from the mean. The median of 20.1% showed that 

the data set was negatively, but highly, skewed. The Q-Q plot is a further indication for the closeness of 

the distribution to a normal distribution. 

 
Figure 4.27. Histogram of Bismarck data points 

On the basis of the observed closeness to a normal distribution, the data were not transformed 

before modeling. Trend analysis revealed a polynomial relationship. The directional trend in clay content 

was, therefore, explored when kriging. 
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Based on the preliminary observations for the data explorations, linear kriging was conducted on 

the data for the Bismarck district. Universal, ordinary, and simple kriging modules were used with the 

spherical, exponential, and Gaussian variograms to model the clay content of soil across the entire 

transportation district. The best model for interpolating the soil’s clay content in the district was obtained 

by ranking the crossvalidated results. Table 4.34 shows the results of the linear and nonlinear 

crossvalidated results. 

For linear modeling, the results showed that ordinary kriging provided the best ranked results. 

Ordinary kriging was, therefore, used in developing the clay-distribution map for the Bismarck 

transportation district. The map is shown in Figure 4.28. 

Nonlinear interpolation was also performed on the NRCS soil for the Bismarck district. With 

nonlinear modeling, indicator, probability, and disjunctive kriging techniques were applied to the data set 

to determine the probability of obtaining a certain level of clay content in the soil. Spherical, exponential, 

and Gaussian variograms were combined with the indicator, probability, and disjunctive kriging 

techniques to produce the best interpolated surface. The best interpolated surface was obtained by ranking 

the crossvalidated modeling results. The best kriging module from the ranked results in Table 4.34 was all 

three nonlinear kriging methods. 
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Table 4.34. Ranked crossvalidated modeling results 

LINEAR KRIGING 

Kriging 

method 

Mean Rank RMS Rank MS Rank RMSS Rank ASE Rank Total 

Rank 

OK 0.313453 1 8.652218 2 0.020897 1 0.957116 2 8.320241 3 9 

SK 0.484879 3 8.261728 1 0.05619 3 0.844296 1 8.794221 2 10 

UK 0.365582 2 9.665143 3 0.027077 2 1.878023 3 4.287802 1 11 

 

NON LINEAR 

  

IK 0.015884 1 0.416269 3 0.026893 1 0.926529 2 0.4482183 3 10 

PK 0.032231 3 0.401354 2 0.083175 3 1.154215 1 0.3524681 1 10 

DK 0.025605 2 0.38664 1 0.045223 2 0.93957 3 0.4106156 2 10 
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Figure 4.28. Clay distribution in Bismarck district modeled with ordinary kriging 

4.9. Discussion of Williston results 

4.9.1. Step 2 

The geostatistical methodology outlined in Figure 3.0 was used to interpolate the clay content of 

soils across the Williston transportation district. The initial observation from the preliminary data analysis 

is discussed in the next section. 

4.9.1.1. Preliminary data set analysis 

A total of 43 data points were obtained for the district from the NRCS database. A histogram plot 

(Figure 4.29) was performed on the data points. The mean clay content was, on average, 23.577% and had 

a median of 25.22%. The two-point difference between the mean and median was an indication of the 
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data set’s variation from a normal distribution. The data set was negatively skewed. The maximum clay 

content of 49.33% gave an indication of the high clay content in the district. The 3
rd

 quartile of 28.781 

provided an indication that a quarter of the data sets were in the high value range (greater than 28.78). 

 
Figure 4.29. Histogram of Williston data points 

Ordinary, simple, and universal kriging were done with the data set. The developed model was 

used to interpolate the clay content across the transportation district. In some models, the data set was 

transformed. For instance, in simple kriging, normal score transformation was performed to get the data 

set to a normal distribution. The ranked, crossvalidated results for linear kriging are shown in Table 4.35. 

In the ranked, crossvalidated results of linear kriging, simple kriging performed best in estimating 

the clay distribution across the transportation district. The map in Figure 4.30 is an outline of the 

transportation district showing the clay content across the district using simple kriging. 
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Table 4.35. Ranked, crossvalidated results of linear kriging 

LINEAR KRIGING 

Kriging 

method 

Mean Rank RMS Rank MS Rank RMSS Rank ASE Rank Total 

Rank 

OK -0.35808 2 8.389901 1 -0.0377 2 0.974777 2 8.110387 2 9 

SK -0.02009 1 8.443145 2 0.002955 1 0.949837 1 8.571393 3 8 

UK -0.46758 3 9.241507 3 -0.06644 3 1.40218 3 6.16303 1 13 

 NON LINEAR 

 

 

IK -0.02165 2 0.466411 3 -0.07082 2 1.526221 3 0.27739 1 11 

PK -0.02424 3 0.465917 2 -0.11662 3 1.140519 2 0.409675 2 12 

DK 0.001522 1 0.441702 1 0.002048 1 0.918421 1 0.471164 3 7 
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The probability, indicator, and disjunctive kriging modules were combined with exponential, 

Gaussian, and spherical variograms to model the probability of obtaining certain percentages of clay in 

the soil data set. For instance, a threshold of exceeding 25% clay was used to estimate the clay 

distribution across the district. The ranked results for the nonlinear modeling of clay are shown in Table 

4.35. Disjunctive kriging performed best for the ranked results. 

 

 
Figure 4.30. Clay distribution in Williston district modeled with simple kriging 
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4.10. Discussion of Grand Forks results 

4.10.1. Step 2 

The geostatistical methodology outlined in Figure 3.1 was used to interpolate the clay content of 

soils across the Grand Forks transportation district. The initial observation from the preliminary data 

analysis is discussed in the next section. 

4.10.1.1. Preliminary data set analysis 

Eighty eight data points were used to model clay content in the Grand forks district. In the 

histogram plot (Figure 4.31) for the NRCS soil data set, the highest clay content in the data set was 

65.7%, with an average of 28.3% and a standard deviation of 9.6%. The median clay content was 28.7%, 

an indication of a normally distributed data set; 25% of the data set had clay content higher than 32.9%, 

and another 25% had clay content lower than 21.85%. This was an indication of the high clay content in 

the district. 

 
Figure 4.31. Histogram of  Grand Forks data points 
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The Q-Q plot was explored, and it confirmed a normal distribution of clay content for the data 

set. The trend analysis of the clay content suggested a second-order relationship in all directions. In one of 

the models, anisotropy was explored to incorporate the trend into the model. 

Ordinary, simple, and universal kriging methods were applied to the data set, and in each case, a 

best-fit variogram was used to model the relationship between the clay across the transportation district. 

The resultant model was then used to interpolate the clay content across all parts of the transportation 

district. The ranked crossvalidated results in Table 4.36 showed that, for linear kriging, universal kriging 

performed best. 

For nonlinear kriging, indicator, probability, and disjunctive kriging was performed on the data 

set to predict the chance of exceeding a clay content threshold of 25% across the district. The results in 

Table 4.36 showed that indicator kriging performed best compared to probability and disjunctive kriging. 

Figure 4.32 is the clay distribution across the Grand Forks transportation district using the universal 

kriging module. 
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Table 4.36. Ranked crossvalidated kriging result 

LINEAR KRIGING 

Kriging 

method Mean Rank RMS Rank MS Rank RMSS Rank ASE Rank 

Total 

Rank 

OK 0.08748 2 7.291281 1 0.01223 2 0.980553 2 7.162845 2 9 

SK 0.703973 3 7.935783 3 0.087564 3 0.83415 1 9.013158 3 13 

UK 0.062253 1 7.713525 2 0.006195 1 1.193013 3 6.040732 1 8 

 NON LINEAR   

IK -0.00275 1 0.354537 1 -0.00646 1 0.970644 2 0.366475 1 6 

PK 0.006992 2 0.378599 2 0.007801 2 1.148905 3 0.369844 2 11 

DK 0.029959 3 0.396162 3 0.06296 3 0.866017 1 0.455928 3 13 

 

 

 

 



 

122 

 

 
Figure 4.32. Clay distribution in Grand Forks district modeled with universal kriging 
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4.11. General shrinkage factor model 

All the field data for the Minot, Dickinson, and Valley City transportation districts were 

combined to develop a single function to correlate the variables, irrespective of transportation district. 

From the preliminary data set analysis in Figure 4.33, it was apparent the data were randomly distributed. 
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Figure 4.33. Residual plot for combined data set 

The random distribution indicated the existence of a linear relationship in the data set and a 

reduced outlier presence. The normal probability plot in Figure 4.33 also showed that the residuals are 

somewhat normally distributed. There was, however, the presence of a few outliers. The plot of the 

residuals versus their order in Figure 4.32 showed a random pattern, an indication that the error terms 

were not correlated. The histogram plot also showed a somewhat normal distribution. 

A correlation matrix for all the variables is shown in Table 4.37. The results showed a significant 

correlation between the shrinkage factor and the clay content. The dry density of embankment also 

displayed a significant correlation with the shrinkage factor.  
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Table 4.37. Correlation matrix for the combined data set 

 Material SF 

Clay 

content 

Bulk Den 

Borrow 

Dry Den. 

Borrow 

Dry Den. 

Emb 

Bulk Den. 

Emb 

Clay content -0.803           

p 0.000           

Bulk Den Borrow 0.207 -0.049         

p 0.281 0.802         

Dry Den. Borrow 0.479 -0.321 0.815       

p 0.009 0.089 0.000       

Dry Den. Emb -0.791 0.673 0.343 0.129     

p 0.000 0.000 0.068 0.505     

Bulk Den. Emb -0.400 0.255 0.189 -0.100 0.389   

p 0.031 0.181 0.327 0.607 0.037   

 

In the matrix plot, the shrinkage factor was highly correlated with all variables except the bulk 

density of the borrow material. The bulk density of the borrow material showed a correlation of 0.207 at a 

p-value of 0.281. The clay content showed the most significant correlation of -0.803 at a 100% 

probability. On the basis of these initial observations, a general shrinkage-factor model was developed. In 

the model, the expected value of the shrinkage factor was given by  

54321 04348.075143.06905.010717.005044.0731.99)( xxxxxyE
(4.8)

 

The correlation outputs of the model are; S = 1.03501   R-Sq = 97.5%   R-Sq(adj) = 96.9%. The 

overall function showed a significant R-square value of 96.9% and a standard error1.03501. The 

corresponding influence of each coefficient in the function is shown in Table 4.38. 
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Table 4.38. Predictors with their p-values for the combined model 
Predictor Coef SE Coef  T  P Decision 

Constant 99.731 9.072 10.99 0.000 Reject H0 

% clay -0.05044 0.02815 -1.79 0.086 Retain H0 

Bulk Den Borrow 0.10717 0.05979 1.79 0.086 Retain H0 

Dry Den. Borrow 0.6905 0.1117 6.18 0.000 Reject H0 

Dry Den. Emb -0.75143 0.05123 -14.67 0.000 Reject H0 

Bulk Den. Emb -0.04348 0.04415 -0.98 0.335 Retain H0 

The sum of square regression of 956.87 relative to the sum of square error of 191.37 was an 

indication of a good regression model. The large mean square of regression of 191.37 relative to 1.07 for 

the error was also an indication of a good model. The other modeling outputs are shown in Table 4.39 

Table 4.39. Variance analysis of initial shrinkage factor function for combined data set 

Source DF SS MS F P 

Regression 5 956.87 191.37 178.65 0.000 

Residual Error 23 24.64 1.07   

Total  981.51    

 

It was also clear from the p-values in Table 4.37that the bulk density of the borrow material has a 

limited influence on the variability of the shrinkage factor. Based the p-values and the decision criteria, 

the dry density of the borrow material and the dry density of the embankment were used to produce a 

refined model. 

In the new model, the expected value for the shrinkage factor is given by 

43 80544.091022.0899.88)( xxyE
                           (4.9)

 

The correlation outputs of the model are; S = 1.08291   R-Sq = 96.9%   R-Sq(adj) = 96.7%. The 

statistical results of the new shrinkage factor function were similar to the initial combined function. 

However, the R-square value decreased on the new model from 96.9% to 96.7% in the new model 

(Equation 4.9). The standard error in the new model also increased from 1.03501 to 1.08291. The results 
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indicated that the initial model performed better than the refined model. The p-value for the variables 

improved. Table 4.40 shows the p- values associated with the variables and the constant. 

Table 4.40. Predictors with the p-value 
Predictor Coef SE Coef T P 

Constant 88.899 6.35 14.00 0.000 

Dry Den. Borrow 0.91022 0.05368 16.96 0.000 

Dry Den. Emb -0.80544 0.03238 -24.88 0.000 

 

The residual plot for the refined model is shown in Figure 4.34.The normal probability plot 

showed a high deviation for the residuals along the fitted values. 
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Figure 4.34. Residual plot for modified combined data set 

The histogram plot showed a skew to the left. On the basis of the results, Equation 4.9 was 

accepted as the better of the two. 
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4.12. Comparison of all models 

The accepted functions for each transportation district were used to predict the shrinkage factor 

based on the variable requirements. The results were compared with the general shrinkage-factor function 

and theoretical shrinkage factor derived with Equation 2.1. 

 

4.13. Results comparison 

In the Minot transportation district, Equation 4.3 was accepted for use as the best-fitting model to 

predict the shrinkage factor. In Equation 4.3, the shrinkage factor is a function of the dry density of the 

borrow material and the dry density of the embankment. The general shrinkage-factor function (Equation 

4.9) was also a combination of the same variables. In Table 4.41, the expected shrinkage (factors) of the 

samples obtained from the Minot project were calculated using all three equations. 

Table 4.41. Minot shrinkage factor comparison 

Theoretical S 

F(Equation 2.1) 

Expected 

shrinkage 

S FPredicted by 

Minot 

model(Equation 4.3) 
Expected 

shrinkage 

S F Predicted by 

General Model( 

Equation 4.9) 

Expected 

shrinkage 

90.8 9.20 90.9 9.1 91.3 8.7 

90.1 9.90 90.5 9.5 90.7 9.3 

87.1 12.90 87.3 12.7 87.3 12.7 

95.9 4.10 95.6 4.4 96.5 3.5 

81.2 18.80 80.8 19.2 80.2 19.8 

86.2 13.80 86.3 13.7 86.3 13.7 

94.2 5.80 94.0 6.0 94.7 5.3 

86.5 13.50 86.6 13.4 86.9 13.1 

87.6 12.40 87.7 12.3 88.0 12.0 

      

88.844 11.16 88.8 11.2 89.1 10.9 
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The average expected shrinkage factor for the Minot data set was found to be 88.84%. Invariably, 

the expected shrinkage was recorded as 11.16%. Based on the USCS classification system, the Minot 

material was classified as sandy lean clay with traces of gravel. The average shrinkage factor of 88.84% 

obtained by the theoretical shrinkage-factor function and the designed Minot model were consistent with 

the quoted values in the U.S. Army Corps of Engineers’ manual in Table 2.2 and the reference material in 

Table 2.1.  

The normalized objective function and modeling efficiency for both linear models were obtained 

and analyzed (Table 4.42). For the Minot transportation district, the Minot model (Equation 4.3) 

performed best on both the normalized objective function and modeling efficiency compared to the 

general model. 

In the Dickinson transportation district, the best-fitting model was Equation 4.6. The Dickinson 

equation performed better compared to the general equation designed for the district. The model 

expressed the shrinkage factor as a function the dry density of the borrow material and the dry density of 

the embankment. The results showed that the Dickinson model performed better in terms of normalized 

frequency and modeling efficiency (Table 4.42). The results of prediction using all models for the 

Dickinson district are shown in Table 4.42. The average shrinkage factor for Dickinson material was 

97.7% based on the theoretical shrinkage-factor function. The model predicted the average shrinkage 

factor to be 97.1% (or 2.9% shrinkage). The material from Dickinson was classified as poorly graded 

sand. The values of the shrinkage factor obtained for the district were consistent with Tables 2.1 and 2.2. 
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Table 4.42. Normalized objective function and modeling efficiency for linear models 
Model NOF EF 

Minot 

  

Minot model (Eqn 4.3) 0.0027 0.9966 

General model (Eqn 4.9) 0.0062 0.9826 

Dickinson 

  

Dickinson model (Eqn. 4.7) 0.0075 0.9718 

General model (Eqn 4.9) 0.0416 0.0852 

Valley city 

  

Valley city model (Eqn. 4.5) 0.0156 0.8226 

General model (Eqn 4.9) 0.0152 0.8304 

   

 

Table 4.43. Dickinson shrinkage-factor comparison 

Theoretical S 

F(Equation 2.1) 

Expected 

shrinkage 

S F Predicted by 

Dickinson 

model(Equation 4.7) Expected shrinkage 

S F Predicted by 

General Model( 

Equation 4.9) 

Expected 

shrinkage 

97.2 2.80 96.7 3.32 100.3 -0.3 

95.1 4.90 94.8 5.18 100.1 -0.1 

94.6 5.40 94.3 5.73 94.9 5.1 

96.1 3.90 95.8 4.20 98.8 1.2 

101.4 -1.40 100.4 -0.36 99.9 0.1 

102.4 -2.40 101.6 -1.58 99.9 0.1 

90.6 9.40 90.4 9.58 98.9 1.1 

104.3 -4.30 102.9 -2.94 100.2 -0.2 

      

97.713 2.29 97.1 2.9 99.1 0.9 
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In the Valley City transportation district, the best-fitting model was observed to be Equation 4.4. 

The model expressed the expected shrinkage factor as a function of the bulk density of the borrow 

material and the dry density of the embankment. The model was applied when calculating the shrinkage 

factor for samples collected in the field and compared with the results of the theoretical shrinkage factor 

(Table 4.44). The material from Valley City was classified as clayey soil based on the USCS 

classification. The average shrinkage factor was obtained to be 99.0% for the material. This shrinkage 

factor was higher than the quoted value of 90% in Tables 2.1 and 2.2. 

The normalized objective function and modeling efficiency of the Valley City model was 

obtained and compared with the general shrinkage-factor model. The results (Table 4.42) showed that the 

general model performed better in terms of the normalized objective frequency and modeling efficiency 

compared to the Valley City model.
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Table 4.44. Valley City shrinkage-factor comparison 

Theoretical S 

F(Equation 

2.1) 

Expected 

shrinkage 

S F Predicted by 

Valley City 

model(Equation 4.5) 

Expected 

shrinkage 

S F Predicted by 

General Model( 

Equation 4.9) 

Expecte

d 

shrinkag

e 

97 3.00 98.9 1.14 98.9 1.1 

98 2.00 95.3 4.70 95.4 4.6 

97 3.00 96.4 3.59 96.4 3.6 

106 -6.00 103.8 -3.78 103.6 -3.6 

94 6.00 94.2 5.79 94.6 5.4 

100 0.00 100.1 -0.07 100.1 -0.1 

102 -2.00 101.5 -1.54 101.4 -1.4 

101 -1.00 101.9 -1.92 101.8 -1.8 

104 -4.00 105.1 -5.08 104.8 -4.8 

93 7.00 93.6 6.44 94.0  6.0 

98 2.00 98.0 2.00 97.9  2.1 

98 2.00 94.9 5.13 95.3  4.7 

99. 1.00 98.6 1.4 98.7  1.3 
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From the results, all the best-fitting models for each district (Equations 4.3, 4.5, 4.7, and 4.9) 

were found to be functions of the bulk density of the borrow material, the dry density of the borrow 

material, the bulk density of the embankment, and the dry density of the embankment. All these models 

performed significantly better than the other models without the same combination of independent 

variables. 

The average shrinkage factor obtained for each project was compared to the quoted shrinkage 

factor for each project’s contract in Table 4.45. The comparison showed a significant difference among 

the shrinkage factor quoted by the NDDOT contract documents, the theoretical shrinkage factor, and the 

modeled shrinkage factor.  The theoretical shrinkage factor and the modeled shrinkage factor were highly 

correlated from the results in Table 4.45 and Figure 4.35. 

Table 4.45. Shrinkage factor comparison 

Project 
Transportation 

District 

Shrinkage 

factor on 

Contract 

Avg. 

Theoretical 

Shrinkage 

factor 

Avg. Modeled 

shrinkage 

factor 

Shrinkage factor 

quoted for such soils 

AC-SOI-NH-4-

023(018)066 Minot - 88.84%(11.16) 88.84%(11.2) 80%-95% 

      

AC-SOI-SS-5-

022(095)074 Dickinson 70% 97.71%(2.29) 97.10%(2.9) 90%-95% 

      

SER-2-046(041)014 Valley City - 99.00%(1.0) 98.7%(1.3) 80%-90% 

      

SNH-SER-3-

057(047)006 Devils Lake 70% - - - 
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.  
Figure 4.35. Three districts with their shrinkage values 
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CHAPTER 5. CONCLUSION AND FURTHER RESEARCH 

 

5.1. Conclusion 

In this research a systematic process was used to model a location dependent predictive model for 

soil shrinkage factor. The model predicts shrinkage factors at locations within the state of North Dakota 

by correlating soil bulk and dry densities and clay content of soil. 

  These shrinkage factor parameters are linked to soil structure and the amount of compactive effort 

that could be applied to it. The proposed model derives its inputs from georeferenced soil database for 

modeling shrinkage factor variability. In this research, of the five proposed shrinkage factor drivers (clay 

content, bulk density of borrow, dry density of borrow, bulk density of embankment and dry density of 

embankment), only the clay content of soil was obtained from a georeferenced database. The other soil 

parameters were obtained in the field and laboratory from randomly sample soil in four transportation 

districts in North Dakota. ArcGIS was used to quantitatively express the variability in soil shrinkage 

factor from one transportation district to the other through a map. ArcGIS was also used to predict the 

probability of occurrence of shrinkage factor values by modeling the errors associated with the occurrence 

of shrinkage factor parameters across the different locations.  

The shrinkage factor model developed in two of three transportation districts expressed the 

expected shrinkage factor at any location as a function of the dry density of the borrow material and the 

dry density of the embankment. These outcomes are consistent with the general shrinkage-factor function 

in the literature. 

 The initial models developed for all districts expressed high levels of correlation between the 

expected shrinkage factor and the clay content, moisture content, and bulk density, with very high 

standard error and R-square values. The probability for the occurrence of such a multivariate combination 

was below the set 95% confidence interval. The elimination of clay content, for instance, by the high p-
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value, resulted in the loss of correlation between the moisture content and bulk densities in the 

multivariable functions. The results showed that there is a correlation between the expected shrinkage 

factor and the clay content, moisture content, and bulk density. However, the degree to which this 

correlation influenced the variability of the shrinkage factor was limited based on the results of the data 

collected. 

For various transportation districts, different kriging variants were ranked best for modeling the 

clay-content variability. The ranked kriging results showed that not one particular kriging method could 

be used in modeling the soil property’s variability. The lack of a constant kriging module could be 

explained by the fact that the variograms used for modeling soil property did not exhibit a fixed response 

to autocorrelation. The variogram responses were determined by the intrinsic nature and behavior of the 

samples. For instance, directional variation in the soil property changed the nature of autocorrelation and 

the variograms used to model the autocorrelation. 

From the results, the average expected shrinkage factor in the Minot, Dickinson, and Valley City 

transportation districts was88.8% (11.2%, 97.7% (2.3%), and 98% (2%) respectively (Table 4.43). The 

relatively conservative expected shrinkage-factor values for Dickinson and Valley City could be 

explained by the relatively high densities of the borrow materials in these areas. This observation could be 

predicted by using the density distribution kriging map and incorporated into the process of setting 

shrinkage factors for projects in that area. 

The deterministic shrinkage factor suggested for use in the contracts of these projects was 70% 

(30% shrinkage). The DOT-suggested shrinkage factor was found to be significantly higher than the 

expected shrinkage factor for the field results and the U.S. Army Corps of Engineers’ recommended 

values (Table 2.2).This variability could be explained by the density changes for the same soil types 

across the transportation district. The use of geostatistical kriging for modeling soil density would help in 

capturing s variability. 
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From the results of this research, it can be concluded that geostatistics can be used to model 

shrinkage-factor variables that are responsive to variation in space. A combination of spatial modeling 

and the linear equation developed could be used to predict the value of the shrinkage factor in earthwork 

projects.  This approach ensures the use of a more reliable shrinkage factor because it provides a measure 

of the statistical estimate for the accuracy of the values. The robustness of the shrinkage factor developed 

from this approach could be assessed based on the statistical measurements associated with modeling the 

variable maps.  

To practically carry out this model, a georeferenced database of field densities for soil across the 

state would have to be collected and kriged. These densities would then be linked with the densities of 

embankments developed during construction. Shrinkage factor maps would then be developed from them 

using the density maps. 

 

5.2. Future research recommendation 

The development of a linearly correlated shrinkage factor function does not preclude the 

existence of a nonlinear function. In fact, in the analysis of the residuals for some models, the observation 

was made that some residuals for the models that performed badly were not randomly distributed but, 

rather, exhibited a nonlinear distribution. It is, therefore, important to conduct a nonlinear modeling of the 

shrinkage factor with the same independent variables. There is also the need to conduct the same studies 

across the other transportation districts in order to increase the spread and to make the general function 

representative of conditions across the state. 

The current historical data provided by the DOT for use in this project do not allow the 

development of shrinkage-factor maps. An effort would have to be made by the DOT to collect 
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georeferenced soil density and embankment densities during construction in order to build a database that 

could be used to develop a progressively robust model.  

I also recommend the study and development of a function that models time based variability in 

shrinkage factor of soils in the various transportation districts of North Dakota. This recommendation is 

driven by the knowledge that weathering is a time based soil forming activity. 
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APPENDIX B. OPTIMUM MOISTURE CONTENT REPORT FOR DEVILS LAKE 
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