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ABSTRACT 

A composite rigid frame bridge replaces a certain portion of the concrete middle span of a 

bridge with a section of the steel girder. While the steel span improves the bending moment 

distribution of the rigid frame structure, it increases the stress level of certain cross-sections of the 

girder. There is little research reporting the effects of the addition of the steel span on the layout 

and structural design. This research studies the influence of the steel span on the structural behavior 

of the rigid frame bridge and conducts the structural optimization regarding the steel span ratio, 

curve order of the girder’s bottom line, and depth-to-span ratio using the bending strain energy as 

the objective function. Finally, this study develops the computer program for structural analysis of 

composite rigid frame bridge structure using MATLAB, which can be used for advanced structural 

optimization.  
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1. INTRODUCTION 

1.1. Composite Rigid Frame Bridge 

A continuous rigid frame bridge has a rigid connection between the girders and piers, 

making them work together under traffic loads. The fact that the piers bear both axial force as well 

as bending moment decreases the positive bending moment at the midspan of the girder and thus 

reduces the girder depth [1-3]. A composite rigid frame bridge, composed of steel-concrete girder 

and reinforced concrete piers, has a lower bridge weight and more reasonable internal force 

distribution compared to traditional rigid frame bridge. Sharing the benefits of both a rigid frame 

bridge and a composite structure, the composite rigid frame bridge has advantages over other 

bridge types with respect to the spanning capability and material and construction costs [4-7].  

Figure 1 shows the comparison of the bending moment distribution of the concrete rigid frame 

bridge with the composite rigid frame bridge. The overall design of the composite rigid frame 

bridge generally follows the same procedures of the steel or concrete rigid frame bridge design, 

except the determination of the position of the steel-concrete intersection point with a given main 

span, i.e. the portion of steel segment in the midspan [8-11]. 

 

  

Figure 1. Bending Moment Distribution of Composite Bridge Girder. 
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1.2. Structural Optimization 

The main importance of structure engineering is to design a safe and economical structure. 

Economy in design can be achieved through an optimization procedure. The purpose of structural 

optimization is to find the most efficient structure, which  satisfies the chosen criteria [12] . Wild 

et al. [13] defined the optimum design “the best feasible design according to a preselected 

quantitative measure of effectiveness”. Researchers have implemented and developed many 

optimization methods. Genetic Algorithm (GA) has been used for the optimization of concrete 

structures. Lute et al. [14] combined a Genetic Algorithm (GA) and support vector machine (SVM) 

to carry out the optimization design of cable-stayed bridge structures. Cheng et al. [15] proposed 

an algorithm integrating the concepts of the GA and the finite element method, which used the 

weight of the structure, strength (stress), and serviceability (deflection) constraints as the objective 

function. Hassan et al. [16] developed a design optimization technique combined finite element 

method, B-spline curves, and Genetic Algorithm, which was tested and assessed by application to 

a practical sized cable-stayed bridge. Martins et al. [17] and Baldomir et al. [18] applied a gradient 

based approach to optimize stay cabled bridges, however, they used different software. Martins et 

al. [17] used the software MATLAB to optimize the cable forces, and Baldomir et al. [18] used 

the software Abaqus to model the structure to optimize the cross-sectional areas of a cable-stayed 

bridge in the design phase. Kusano et al. [19] investigated the reliability based design optimization 

of long-span bridges with consideration to flutter. Based on the Simulated Annealing (SA), Martí 

et al. [20] developed an optimization algorithm to minimize the cost of prestressed concrete 

bridges. The study of Martínez et al. [21] applied the Ant Colony Optimization (ACO) for optimum 

design of  tall bridge piers. Even though there are many optimum design methods, they have the 

similar characteristics: (1) preassigned parameters, (2) design variables, (3) load conditions, (4) 
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failure modes, and (5) objective function, also termed merit or criterion function [22]. An 

important procedure of structural optimization is the determination of objective function. In the 

optimization method, the optimization of certain objective functions may either be related to 

structural efficiency or economy.  

Sensitivity can be defined as a response derivative with regards to a design variable, that 

is, a structural property with a potential for change. This derivative can be understood as the 

expected change in the response when the considered design variable is perturbed [23-25]. 

Sensitivity is an important part to help the designer avoid unreasonable design results by following 

a guided design process. There are several publications about the application of sensitivity found, 

which gained confidence to be applied to the bridge design [26-29].  The fundamental principle of 

a composite rigid frame bridge design is to balance the weight and traffic load from the midspan 

with the concrete side span which has more weight and stiffness. The maximum internal force or 

stress itself can’t reflect the performance of a bridge design plan due to the fact that an optimization 

plan may reduce the responses of a cross section while increase the responses elsewhere. Bridge’s 

strain energy comprehensively reflects the influence of bending moments considering the 

members’ flexural stiffness. It has been widely used as the objective function for structural 

optimization [30-36].For girder type bridge, e.g., rigid frame bridge, the strain energy from axial 

forces is very small compared with the bending strain energy. In this case, the bending strain 

energy itself is sufficient for the structural optimization purpose. 

1.3. Problem Statement and Research Objectives 

Majority of optimization applications are for steel structures and very few for composite 

and concrete structures[12]. The literature review indicates that the state-of-the-art of research on 
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composite rigid frame bridge lacks a comprehensive structural optimization considering the 

contributions to the bridge’s performance from different structural parameters. 

To solve this challenge, the main objective of this dissertation is to develop a systematic 

method for structural optimization of composite rigid frame bridge. The main tasks in this study 

include: 

1) Develop a finite element model using a commercial software MIDAS CIVIL;  

2) Conduct parametric analysis on structural parameters of bridge including steel span 

ratio, curve order of bottom line, and depth-to-span ratio; 

3) Optimize the bridge structure based on the contributions of structural parameters to the 

bridge performance; 

4) Develop and validate a computer program for composite rigid frame bridge modelling 

and analysis using MATLAB.  

1.4. Thesis Organization  

Based on the specific tasks aligned to achieve the main objective of this study above, this 

thesis is divided into seven chapters as follows: Chapter 2 develops the finite element model for 

structural analysis and optimization; Chapters 3, 4, 5, and 6 conduct the parametric analysis and 

optimization on steel span ratio, curve order of bottom line, and depth-to-span ratio of composite 

rigid frame bridge, respectively; Chapter 7 develops the computer program for structural analysis 

using MATLAB and validates the program by comparison with a commercial software. Chapter 8 

presents conclusions and recommended future work. 
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2. FINITE ELEMENT MODEL DEVELOPMENT 

2.1. Case Study 

This section introduces a case study to illustrate a detailed implementation using the 

structural optimization method both theoretically and numerically. This case study takes the 

Oujiang Bridge as an example for structural optimization. The Oujiang Bridge is part of the 

Zhuyong Highway and the second steel-concrete composite rigid frame bridge in China. It has 

three spans with a midspan of 200m and two side spans of 84m, respectively. Figure 2 shows the 

layout of the Oujiang Bridge. The center 80m section of the 200m midspan is steel girder with the 

rest of the bridge made of concrete. The depth of the concrete girder is 9.0m at the inner supports 

and 3.5m at the intersection, and the steel girder has the same depth with the concrete girder at the 

intersection for geometry compatibility and consistence. The top and bottom surfaces of the bottom 

flange follow two parabolas of 1.6 order, as are shown in Equations 1 and 2, respectively.  

 

 

Figure 2. The Layout of Oujiang Bridge (Unit: cm) 

 

yt = 0.000478982x1.6                                                              (1)                                  

yb = 0.000553684x1.6                                                              (2) 
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2.2. Finite Element Model Development 

Numerical analysis such as finite element analysis plays an important role for structure 

design and optimization. Validated finite element model can be used for structural parametric 

analysis and further optimization. This study develops the beam-element numerical model of the 

composite rigid frame bridge using MIDAS/CIVIL 2016 and validates the numerical model with 

the analytical model developed in 3.1. The finite element model also considers the cantilever-

construction stages including the concrete casting and steel girder erection. As to the boundary 

conditions, the bottom ends of the piers are fixed and the beam is simply supported. Figure 3 

illustrates the finite element model of the bridge. 

 

 

Figure 3. The Bridge Finite Element Model. 
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3. STEEL SPAN RATIO: PARAMETRIC ANALYSIS AND OPTIMIZATION 

3.1. Parametric Analysis on Steel Span Ratio 

This study conducts the structural parametric analysis taking the steel span ratio as the 

variable using the finite element model that is developed and validated in 3.2. In the parametric 

analysis, the steel span ratio ranges from 0.2 to 0.8 at an interval of 0.05, ending up with 13 cases. 

Considering that the dead load takes a large part compared with live load for large-span bridge, 

the study uses dead load for parametric analysis and structural optimization. For each case, the 

bridge responses including the bending moment, stress, and displacement of several important 

sections are extracted from the finite element analysis results. In each case, the bending strain 

energy is calculated by Equation 2. Coefficient of variation (C.V.) is used to measure the amount 

of variability relative to the mean. Coefficients of variation of different cases are comparable as 

the influence from the unit difference and mean value magnitude are eliminated [37]. The 

expression of coefficient of variation is as shown in Equation 3, 

                                                                                                                             (3) 

where is the standard deviation, and is the mean value. 

3.1.1. Bending moments 

Table 1 lists the bending moments of the beam at different steel span ratios. The locations 

of cross sections for consideration and comparison include ¼, ½, and ¾ side span from the 

abutment support, the top of left pier and right pier, ¼ midspan from the right pier, the intersection 

of steel and concrete girders, and the center of midspan, considering the symmetricity of the bridge 

structure. The bending moment with the bottom of the section in tension is labeled as positive, and 

the moment with the top in tension as negative. As the steel span ratio increases, the bending 

moments of all the eight cross sections increase except that of the intersection location, which 

%100
μ

σ
C.V. 
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decreases to a negative moment from a positive moment. The moments at the ¼ and ½ side spans 

also change directions. The bending moment magnitudes don’t reach minimum at the same or 

close steel span ratio, indicating that the bending moment itself is not sufficient for structural 

optimization. The coefficient of variation reaches the maximum at the ½ side span and the second 

maximum at the intersection, which mean that the steel span ratio has largest influence on the 

bending moment distribution at these two locations. 

Table 1. Bending Moment at Steel Span Ratio of 0.2 - 0.8 (Unit: kN.m). 

Steel span ratio 
¼ side 

 span 

½ side 

span 

¾ side 

span 
Left pier 

Right 

pier 

¼ 

midspan 
Intersection 

Center of 

midspan 

0.2 -48752 -279682 -754166 -1400801 -1587499 -237100 46651 79218 

0.25 -16447 -215622 -651348 -1263821 -1442163 -188412 32428 78623 

0.3 10035 -162532 -564573 -1148905 -1328613 -154641 16528 83987 

0.35 32576 -117314 -489427 -1047308 -1218547 -125658 -1695 89785 

0.4 51422 -79889 -426066 -960580 -1117568 -103981 -23756 96372 

0.45 67782 -47962 -371201 -883581 -1022386 -86940 -47877 103736 

0.5 86447 -12430 -311509 -800311 -934798 -83529 -75656 112177 

0.55 93707 1320 -285369 -759210 -859249 -56935 -108217 120274 

0.6 104348 20446 -251163 -707191 -781317 -56578 -141602 132042 

0.65 114105 38637 -221059 -660206 -714973 -45348 -179642 143630 

0.7 125109 59221 -188644 -610591 -651762 -29973 -218351 159006 

0.75 133655 75207 -164119 -570560 -602368 -18047 -265016 170932 

0.8 142761 99551 -156743 -530097 -595087 -2932 -312956 186046 

C.V., % 87.0 -245.5 -52.0 -31.6 -33.4 -75.7 -119.6 30.2 

 

 

3.1.2. Stresses 

Table 2 and Table 3 tabulate the bending stresses on the top and bottom edges of the cross 

sections at different steel span ratios, respectively. The positive stress in the charts indicates 

tension, while the negative stress indicates compression. All the stresses at the top edge decrease 

with the increase of the steel span ratio due to the monotonic increase of bending moments as 

shown in Table 1,  except the stresses at the ¼ midspan and the intersecting cross sections. The 

top edge stress at the ¼ midspan cross section decreases smoothly before the steel span ratio 
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surpasses 0.5, when the ¼ midspan cross section becomes the concrete side of the intersecting 

cross section. At steel span ratios is 0.55, an abrupt increase happens due to the material and 

dimension change at this cross section. The top edge stress decreases smoothly after this sudden 

change. The top edge stress increases monotonically at the cross section of intersection due to the 

monotonic decrease of bending moment thereof as shown in Table 2. Correspondingly, the bottom 

edge stress shows opposite variation trend due to the sign difference. Consistent with that of the 

bending moment, C.V. of bending stresses reaches it first and second maximum at the ½ side span 

and the intersecting cross sections, respectively. The largest tension and compressive stress 

magnitudes both increase consistently with the steel span ratio. Furthermore, both of them happen 

at the center of midspan, which is located on the steel section of the composite rigid frame bridge 

with much larger strength than concrete. Additionally, other the stress magnitudes don’t variate 

consistently with that of the midspan center. Therefore, the parametric analysis on bending stresses 

does not yield a steel span ratio that optimizes the stress level at all the critical locations. 

Table 2. Stresses at the Top Edge at Different Steel Span Ratios (Unit: MPa). 

Steel 

span ratio 

¼ side 

 span 

½ side 

span 

¾ side 

span 
Left pier 

Right 

pier 

¼ 

midspan 
Intersection 

Center of 

midspan 

0.2 2.28 8.93 15.50 11.20 12.60 8.75 -2.92 -45.00 

0.25 0.82 7.26 13.70 10.10 11.10 7.36 -2.11 -46.80 

0.3 -0.55 5.81 12.20 9.15 10.60 6.43 -1.21 -47.90 

0.35 -1.85 4.50 10.90 8.33 9.70 5.60 -0.17 -48.60 

0.4 -2.98 3.31 9.79 7.64 8.89 4.98 1.10 -55.00 

0.45 -3.93 2.17 8.90 7.03 8.13 4.47 2.48 -59.00 

0.5 -5.02 0.61 7.86 6.36 7.43 4.51 4.08 -63.70 

0.55 -5.44 -0.09 7.69 6.03 6.83 32.45 5.96 -68.10 

0.6 -6.06 -1.19 7.37 5.61 6.21 26.10 7.88 -74.50 

0.65 -6.62 -2.25 7.26 5.24 5.68 19.85 10.10 -80.70 

0.7 -7.26 -3.44 7.25 4.84 5.17 11.53 12.30 -89.00 

0.75 -7.76 -4.37 7.83 4.52 4.78 5.29 15.00 -95.30 

0.8 -8.29 -5.35 9.20 4.20 4.69 -2.79 17.80 -103.00 

C.V., % -83.6 372.5 27.8 32.0 33.1 95.6 125.3 -29.2 
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Table 3. Stresses at the Bottom Edge at Different Steel Span Ratios (Unit: MPa). 

Steel span 

ratio 

¼ side 

 span 

½ side 

span 

¾ side 

span 
Left pier 

Right 

pier 

¼ 

midspan 
Intersection 

Center of 

midspan 

0.2 -3.44 -11.9 -18.6 -13.5 -15.3 -12.6 4.2 80.7 

0.25 -1.28 -9.81 -16.5 -12.2 -19.8 -10.9 2.85 79.9 

0.3 0.84 -8.01 -14.8 -11.1 -12.8 -9.91 1.32 85.3 

0.35 2.98 -6.35 -13.3 -10.1 -11.8 -8.99 -0.42 91.3 

0.4 4.87 -4.82 -12.1 -9.29 -10.8 -8.38 -2.53 98 

0.45 6.42 -3.28 -11.1 -8.54 -9.88 -7.88 -4.83 106 

0.5 8.19 -0.99 -9.97 -7.74 -9.04 -8.14 -7.47 114 

0.55 8.88 0.1 -9.93 -7.35 -8.31 -76.55 -10.6 123 

0.6 9.88 1.94 -9.75 -6.85 -7.56 -64.5 -13.7 135 

0.65 10.8 3.66 -9.95 -6.39 -6.92 -52.1 -17.4 147 

0.7 11.9 5.61 -10.5 -5.92 -6.31 -36 -21 163 

0.75 12.7 7.13 -12.2 -5.53 -5.84 -23.4 -25.5 176 

0.8 13.5 8.74 -14.83  -5.14 -5.80 -7.4 -30 192 

C.V., % 82.7 -479.7 -22.7 -31.4 -41.1 -96.6 -116.3 30.7 

 

3.1.3. Deformation 

Table 4 tabulates the deformation of the bridge girder at different steel span ratios. Similar 

to the bending moment and stress, deformation demonstration various trends with the increase of 

steel span ratio, as is displayed in Figure 7. However, the coefficients of variation don’t show much 

difference at different sections. 
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Table 4. Deformation at Different Steel Span Ratios (Unit: cm). 

Steel span ratio 
¼ side 

span 

½ side 

span 

¾ side 

span 
¼ midspan Intersection 

Center of 

midspan 

0.2 -17.44 -9.27 -0.99 -21.75 -48.77 -21.06 

0.25 -14.15 -7.94 -0.85 -19.94 -39.12 -22.23 

0.3 -11.19 -8.17 -0.72 -18.20 -31.38 -24.60 

0.35 -8.64 -5.84 -0.63 -16.70 -24.91 -26.90 

0.4 -1.75 -5.25 -0.59 -15.41 -17.59 -29.52 

0.45 -2.62 -4.80 -0.56 -14.17 -15.04 -32.30 

0.5 -3.80 -3.99 -0.48 -13.88 -12.83 -35.67 

0.55 -4.39 -4.35 -0.56 -14.98 -9.93 -38.98 

0.6 -5.24 -4.18 -0.59 -17.27 -8.64 -44.46 

0.65 -6.06 -4.71 -0.62 -19.96 -6.45 -50.28 

0.7 -7.17 -5.92 -0.67 -24.67 -5.01 -59.15 

0.75 -7.83 -6.89 -0.70 -28.69 -3.29 -66.41 

0.8 -8.79 -8.19 -1.91 -34.97 -2.43 -76.79 

C.V., % -59.5 -29.2 -21.4 -31.0 -84.3 -43.8 

 

3.1.4. Bending strain energy  

Table 5 lists the bending strain energy at different steel span ratios calculated by Equation 

2. The relative energy in the third row is calculated taking the minimum strain energy as the 

reference, which is also illustrated in Figure 8. The bending strain energy reaches the minimum 

value at a steel span ratio of 0.55, which means that the bending moment of the bridge reaches a 

reasonable distribution considering the stiffness variation along the bridge. 

Table 5. Bending Strain Energy at Different Steel Span Ratios (Unit: kJ). 

Steel span ratio  0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 

Bending strain energy (kJ) 11395 9138 7524 6279 5415 4758 4324 4105 4164 4307 5032 5399 6369 

Relative energy 2.74 2.19 1.81 1.51 1.30 1.14 1.04 1.00 1.01 1.03 1.21 1.30 1.48 
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3.2. Optimization on Steel Span Ratio 

3.2.1. Optimization principle 

The fundamental principle of composite rigid frame bridge design is to balance the weight 

and traffic load from the midspan with the concrete side span with more weight and stiffness. The 

maximum internal force or stress itself can’t reflect the perforce of a bridge design plan due to the 

fact that an optimization plan may reduce the responses of a cross section while increase the 

responses elsewhere. Bridge’s bending strain energy comprehensively reflects the influence of 

bending moments considering the members’ flexural stiffness. It has been widely used as the 

objective function for bridge structural optimization [30, 31]. Equation 1 is the expression of 

bending strain energy. 

 

 

2

b
2i

i

L
i i

M x
U dx

EI


                                                        (3) 

where m is the total number of the elements, Ub is the bending strain energy, Li is the length of the 

ith element, E is the modulus of elasticity, I is the moment of inertia, and Mi(x) is the magnitude of 

moment at the location x of the ith element. The discrete expression of bending strain energy for 

numerical calculation is  

 
 2 2

b

1 4

m
i

iL iR

i i

L
U M M

EI

 
                                                 (4) 

where MiL and MiR are the bending moment at the left and right end of the ith element, respectively.  

The bridge structural optimization in this study takes the steel span ratio of the midspan as 

the variable and the bending strain energy as the objective function.  

3.2.2. The structural optimization 

The parametric analysis in 3.1 indicates that a small value of steel span ratio leads to a 

significant bending moment and that a large value results in a large bending stress and a 
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considerable deformation. The compromise of bending moment, bending stress, and bridge 

deformation ends up with a moderate value of steel span ratio for structural optimization. The 

analysis on bending strain energy, a comprehensive evaluation of bridge’s mechanical 

performance and economic benefits, concludes a steel span ratio of 0.55. Figures Figure 4- Figure 

7 illustrate the sum of responses at the important sections at different span ratios. These figures 

demonstrate that the case with a span ratio of 0.55 has a relative low value of bending moment and 

deformation summation while a high level of stress summation. As the high stresses always happen 

on steel girder that has much higher strength than concrete, a span ratio of 0.55 is an acceptable 

result of structural optimization. 

 

 

Figure 4. Sum of Bending Moment at Different Span Ratios (Unit: kN.m). 
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Figure 5. Sum of Top Edge Stress at Different Span Ratios (Unit: MPa). 

 

 

Figure 6. Sum of Bottom Edge Stress at Different Span Ratios (Unit: MPa). 
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Figure 7. Sum of Bridge Deformation at Different Span Ratios (Unit: cm). 

 

 

 

 

 

 

 

 

 

 

 

 

60

80

100

120

140

0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u

m
 o

f 
d

ef
o

rm
at

io
n

 (
cm

)

Steel span ratio



 

16 

4. CURVE ORDER: PARAMETRIC ANALYSIS AND OPTIMIZATION 

4.1. Parametric Analysis on Curve Order 

This section conducts the parametric analysis on the order of the girder’s bottom curve that 

ranges from 1.3 to 2. The indicators of bridge’s performance include bending moments, stresses 

at the top and bottom edges of cross sections, deformations, and bending strain energy. The 

parametric analysis lays a foundation for structural optimization. 

4.1.1. Bending moments 

Table 6 and Figure 8 lists and illustrates the bending moments at the eight important cross 

sections at with the increase of curve orders. All of the moments are increasing with the curve 

orders in the direction of positive bending moments. The moment at the right pier has the largest 

increase of 87364KN.m. The coefficient of variation reaches the maximum at the steel-concrete 

intersection, i.e., 30.7%, which indicates that the bridge girder’s curve order has the largest 

influence on the bending moment at the intersection. 
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Table 6. Bending Moments at Different Curve Orders (Unit: kN.m). 

Curve 

order 

¼ side 

span 

½ side 

span 

¾ side 

span 
Left pier Right pier 

¼ 

midsp

an 

Intersection 

Center 

of 

midspan 

1.3 77630 -32993 -372608 -919342 -1278044 -83369 10991 130742 

1.35 77994 -31933 -368340 -910466 -1267978 -81509 12847 132601 

1.4 78093 -31424 -365147 -903248 -1259302 -80254 14105 133866 

1.45 78488 -30385 -361388 -895490 -1250618 -78447 15918 135682 

1.5 78546 -29909 -358276 -888612 -1242770 -77233 17148 136919 

1.55 79008 -28874 -355127 -882097 -1235628 -75491 18891 138663 

1.6 79228 -28301 -352825 -877053 -1217204 -72995 19676 139509 

1.65 79571 -27410 -349739 -870611 -1222886 -72681 21721 141501 

1.7 79884 -26692 -347447 -865716 -1217063 -71322 23110 142894 

1.75 80175 -25987 -345129 -860834 -1212188 -70046 24375 144161 

1.8 80621 -25032 -342074 -854179 -1205256 -68353 26077 145868 

1.85 80792 -24593 -340931 -851988 -1202706 -67518 26922 146715 

1.9 81094 -23926 -339017 -847983 -1198448 -66317 28135 147930 

1.95 81473 -23183 -337354 -844579 -1194353 -65120 29341 149133 

2 81694 -22618 -335411 -840558 -1190680 -63989 30483 150283 

C.V. 1.8% -13.0% -3.6% -3.1% -2.4% -9.1% 30.7% 4.7% 

 

 

Figure 8. Bending Moments at Different Curve Orders. 

 

4.1.2. Stresses 

Table 7 tabulates the Stresses at the top edge of the important cross sections at different 

curve orders, which is also shown in Figure 9. It can be seen that the curve order has very limited 
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influence on the stresses at the top edge. The coefficients of variation are within 5% except that at 

the steel-concrete intersection where the variation of stress is less than 1 MPa. This indicates that 

the stress at the top edge of bridge girder needs not to be included for consideration during the 

structural optimization of curve order.  

Table 8 and Figure 10 are the diagrams for stresses at the bottom edge at different curve 

orders. Similar to the stresses at the top edge the curve order has little influence on the stress at the 

bottom edge with all the coefficients of variation below 5%. Therefore, the stress at the bottom 

edge will not be considered for the curve order optimization. 

Table 7. Stresses at the Top Edge at Different Curve Orders (Unit: MPa). 

Curve 

order 

¼ side 

 span 

½ side 

span 

¾ side 

span 

Left 

pier 

Right 

pier 

¼ 

midspan 
Intersection 

Center of 

midspan 

1.3 -4.51 1.17 7.74 7.31 10.10 3.52 -0.60 -73.60 

1.35 -4.53 1.16 7.75 7.24 10.10 3.50 -0.68 -74.60 

1.4 -4.53 1.17 7.78 7.19 9.99 3.50 -0.73 -75.30 

1.45 -4.56 1.15 7.80 7.12 9.92 3.47 -0.80 -76.20 

1.5 -4.56 1.15 7.84 7.07 9.86 3.47 -0.85 -76.90 

1.55 -4.59 1.13 7.87 7.02 9.80 3.44 -0.92 -77.80 

1.6 -4.60 1.13 7.91 6.98 9.65 3.36 -0.96 -78.20 

1.65 -4.62 1.12 7.95 6.93 9.70 3.39 -1.03 -79.30 

1.7 -4.64 1.10 8.00 6.89 9.65 3.38 -1.09 -80.00 

1.75 -4.65 1.09 8.04 6.85 9.61 3.33 -1.14 -80.70 

1.8 -4.68 1.07 8.10 6.79 9.56 3.27 -1.21 -81.50 

1.85 -4.69 1.06 8.15 6.78 9.54 3.26 -1.24 -82.00 

1.9 -4.71 1.05 8.20 6.74 9.50 3.22 -1.29 -82.60 

1.95 -4.73 1.02 8.26 6.72 9.47 3.19 -1.34 -83.30 

2 -4.74 1.02 8.31 6.69 9.44 3.15 -1.39 -83.90 

C.V. -1.8% 5.0% 2.5% 3.0% 2.4% 3.9% -26.8% -4.4% 
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Figure 9. Stress at the Top Edge of Sections at Different Curve Orders. 

 

Table 8. Stresses at the Bottom Edge at Different Curve Orders (Unit: MPa). 

Curve 

order 

¼ side 

 span 

½ side 

span 

¾ side 

span 

Left 

pier 

Right 

pier 

¼ 

midspan 
Intersection 

Center of 

midspan 

1.3 7.35 -1.63 -9.19 -8.89 -12.40 -5.90 0.46 134 

1.35 7.39 -1.64 -9.28 -8.80 -12.30 -5.95 0.57 136 

1.4 7.40 -1.68 -9.39 -8.73 -12.20 -6.03 0.64 137 

1.45 7.44 -1.68 -9.48 -8.66 -12.10 -6.06 0.74 139 

1.5 7.44 -1.72 -9.57 -8.59 -12.00 -6.12 0.82 140 

1.55 7.48 -1.71 -9.67 -8.53 -12.00 -6.11 0.91 142 

1.6 7.51 -1.72 -9.76 -8.48 -11.80 -6.02 0.96 143 

1.65 7.54 -1.72 -9.88 -8.42 -11.90 -6.12 1.07 145 

1.7 7.57 -1.71 -9.98 -8.37 -11.80 -6.16 1.15 147 

1.75 7.60 -1.70 -10.10 -8.32 -11.70 -6.09 1.23 148 

1.8 7.64 -1.68 -10.20 -8.26 -11.70 -6.02 1.32 150 

1.85 7.65 -1.68 -10.30 -8.24 -11.70 -6.03 1.37 151 

1.9 7.68 -1.66 -10.40 -8.20 -11.60 -5.99 1.44 152 

1.95 7.72 -1.62 -10.50 -8.16 -11.60 -5.95 1.51 153 

2 7.74 -1.63 -10.60 -8.13 -11.50 -5.90 1.57 155 

C.V. 1.8% -2.3% -4.9% -3.1% -2.4% -1.4% 35.4% 4.9% 
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Figure 10. Stress at the Bottom Edge at Different Curve Orders. 

 

4.1.3. Deformation 

Table 9 and Figure 11 are the deformation of bridge at the important locations with the 

increase of curve order. The deformations demonstrate insignificant variation with coefficients of 

variation below 8%, indicating that the deformation is also not a key indicator of the bridge’s 

performance with respect to curve orders. 

 

 

 

 

 

 

 

 

 



 

21 

Table 9. Deformations at Different Curve Orders (Unit: cm). 

Curve order 
¼ side 

span 

½ side 

span 

¾ side 

span 
¼ midspan Intersection 

Center of 

midspan 

1.3 -4.62 -5.53 -1.10 -27.00 -32.49 -46.88 

1.35 -4.71 -5.64 -1.11 -27.37 -33.04 -47.64 

1.4 -4.71 -5.69 -1.10 -27.61 -33.39 -48.14 

1.45 -4.80 -5.81 -1.11 -28.00 -33.95 -48.90 

1.5 -4.80 -5.84 -1.09 -28.25 -34.31 -49.40 

1.55 -4.89 -5.98 -1.11 -28.67 -34.89 -50.15 

1.6 -4.93 -6.24 -1.19 -28.41 -34.75 -50.51 

1.65 -4.98 -6.16 -1.11 -29.36 -35.82 -51.37 

1.7 -5.03 -6.26 -1.12 -29.69 -36.28 -51.97 

1.75 -5.07 -6.35 -1.12 -30.06 -36.74 -52.54 

1.8 -5.12 -6.48 -1.11 -30.55 -37.36 -53.32 

1.85 -5.15 -6.55 -1.12 -30.77 -37.66 -53.69 

1.9 -5.19 -6.65 -1.13 -31.12 -38.11 -54.24 

1.95 -5.23 -6.75 -1.14 -31.47 -38.56 -54.79 

2 -5.27 -6.84 -1.14 -31.82 -38.99 -55.33 

C.V. -7.3% -2.3% -5.7% -6.3% -5.7% -4.5% 

 

 

Figure 11. Deformation at Different Curve Orders. 
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4.1.4. Bending strain energy 

The summation of bending strain energy of all the bridge elements are calculated at 

different curve orders. Though the bending strain energy shows an increasing trend with the 

increase of curve order, the maximum increase is only 10% at a curve order of 2. 

Table 10. Bending Strain Energy at Different Curve Orders (Unit: kJ). 

Curve order 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2 

Bending strain 

energy(kJ) 
5526 5548 5574 5603 5630 5664 5616 5748 5790 5835 5893 5920 5974 6022 6069 

Relative value 1.00 1.00 1.01 1.01 1.02 1.02 1.02 1.04 1.05 1.06 1.07 1.07 1.08 1.09 1.10 

 

 

Figure 12. Bending Strain Energy at Different Curve Orders. 

 

4.2. Optimization on Curve Order 

It can be seen from the analysis above that when the curve order variates, the bending 

moments and stresses have the maximum of C.V. at the concrete-steel intersection. Therefore, 

taking the moments and stresses at the intersection as the objective function for, the optimal curve 

order happens at 1.3 where the stress reaches the minimum as well as the bending strain energy.   
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5. MIDSPAN DEPTH-TO-SPAN RATIO: PARAMETRIC ANALYSIS AND 

OPTIMIZATION 

The depth-to-span ratio is not only the important part of the steel-concrete composite rigid 

frame bridges, but also one of the important parameters to design this type of bridge. This 

parameter can relate to the appearance of the bridge, the volume of work for the whole bridge, the 

arrangement of the prestressed, the clearance of the bridge and the mechanical performance. It also 

can directly affect the safety and durability of the bridges. The small depth-to-ratio has the 

advantages of light structure, low volume of work, low cost, etc. However, too small ratio may 

cause the stress and deformation of the structure not meeting the design requirements. In this 

chapter, depth-to-span rations are decided to two parts, namely midspan depth-to-span ratio which 

is without changing of the depth of box girder at the support and support depth-to-span ratio 

without changing of the depth of box girder at the midspan. From the experience of this type of 

the bridge, this chapter studied the range of the value and characteristics of midspan depth to span 

ratio, then built the numerical model, further analysis the relationship between midspan depth-to-

span ratio, the weight of bridge and the force, finally provide the appropriate value of this ratio 

[38-40]. 

With the longer span of the prestressed concrete rigid frame bridges built, there are 

abundant experience to refer. However, the range value of the depth-to-ratio is not defined. The 

range of depth to span ratio of with the same high box-girders at the middle of box girder is 1/30 

- 1/50. The range of support depth to span ratio of variational high box-girders is 1/16 - 1/25 [41]. 

When the main span is larger than 100m, the range support depth to span ratio of box girder to the 

main span is 1/17 - 1/21. When the main span is less than 100m, that ratio of box girder is 1/14 - 

1/22. Generally, the depth of prestressed concrete straight box girders is the 1/18 - 1/20 of the main 
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span, support depth to span ratio of variational high box-girders is 1/16 - 1/20, and midspan depth 

to span ratio is 1/30 - 1/50. There are not definitely national codes about midspan and support 

depth to span ratio [42-44]. However, the data of the bridges built has the following characteristics: 

the depth to the span ratio of the same depth of the box girder is 1/13.3 - 1/28.3 and midspan depth 

to span ratio of variational high box-girders is l/34.6 - l/50, support midspan depth to span ratio of 

variational high box-girders is l/15.8 - l/20.2. 

From the reference, generally the midspan depth-to-span ratio is 1/30 - 1/50 and the support 

depth-to-span ratio is 1/16 - 1/25 (Xue, Yuan, and Li 2012; Yang 2012).  Compared to both ratios, 

the support depth to ratio is larger than the midspan depth-to-span ratio. Table 11 shows the depth 

of the girder at the support and midspan and the depth-to-span ratio. 

Table 11. Examples of Depth-to-Span Ratio of Large-Span Rigid Frame Bridges. 

Number Bridge name 
Length of 

midspan (L) 
Hsupport Hmidspan Hsupport /L Hmidspan /L 

1 Humen 270 14.8 5 0.0548 0.0185 

2 Huangshi Yangtze 245 13 4.1 0.0531 0.0167 

3 Jinchangling Lancang  200 13 4 0.0650 0.0200 

4 James River 205 12 4.9 0.0585 0.0239 

5 Houston 228 14.6 4.6 0.0640 0.0202 

6 Orwell 190 12 4 0.0632 0.0211 

7 Donau 190 10.6 5 0.0558 0.0263 

8 Tuas Second Link 165 10 3 0.0606 0.0182 

9 Stolma 301 15 3.5 0.0498 0.0116 

10 Gate Way 260 15 5.2 0.0577 0.0200 

 

As shown in Table 11, the support depth-to-span ratio H /L distribution of prestressed concrete 

continuous rigid frame bridge is between 0.05 - 0.06, which is 1/20 - 1/16.7; and its average value is 1/17 

in China, which is between 1/25 - 1/14.3, and its average value is 1/19 in other countries, which is 

between1/20 - 1/16.7. In China, the midspan depth-to-span ratio H/L is distributed between 1/40 and 1/73, 

and the value is mainly distributed between 1/55 and 1/66.7, of which average value is 1/58. In the other 
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countries, the midspan depth-to-span ratio H /L is distributed between 1/27.8 to 1/91, and the value is 

mainly distributed between 1/40 and 1/67, of which average value is 1/50. 

5.1. Parametric Analysis on Depth-to-Span Ratio 

Oujing bridge is used as the model, and software MIDAS CIVIL 2010 is used to build the 

different models with the different span depth-to-span ratio and support depth-to-span ratio to 

analysis the inert loads and the range of span depth to span ratio is between 1/30 to 1/72 with 22 

different models and that of the support depth to span ratio is between 1/16 and 1/25 with different 

10 models. Elements, joints, and the order of the construction of these 32 models are the same with 

the original ones, however the depth of the girders is different. The design of structure is focused 

on the bending moment, stress and displacement of the important section. The bending moment, 

stress and displacement of the structures are analyzed and compared with each other as follows.  

5.1.1. Bending moments 

Table 12 and Figure 13 lists and illustrates the bending moments and their trend of the 

important sections with different span depth to span ratio. The moments of middle of side span 

and the quarter of the middle span are increasing with the decreasing of the depth to span ratio, 

and conversely the other sections are decreasing. The moment at the middle of main span has the 

largest increase of 108679KN.m and that at the quarter of the main span has the largest decrease 

of 76445KN.m. The coefficient of variation reaches the maximum at the steel-concrete intersection, 

i.e., 110%, which indicates that the bridge girder’s span depth to ratio has the largest influence on 

the bending moment at the intersection.  
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Table 12. Bending Moments at Different Midspan Depth-to-Span Ratio (Unit: kN.m). 

Depth-to 

-span ratio 

¼ side 

 span 

½ side 

span 

¾ side 

span 
Left pier Right pier 

¼ 

midspan 
Intersection 

Center of 

midspan 

1/30 108500 -2250 -358893 -911588 -1288320 -15844 84677 208334 

1/32 104698 -5497 -358829 -911942 -1280542 -26817 70880 188008 

1/34 101714 -7650 -356552 -904760 -1271986 -34245 62373 178692 

1/36 99075 -9575 -354171 -897319 -1261915 -41074 54389 169555 

1/38 96516 -11603 -353207 -893523 -1255881 -47119 47349 161675 

1/40 94198 -13546 -352245 -889443 -1249739 -52636 41023 154405 

1/42 91833 -15714 -351862 -885520 -1244226 -58466 34296 146927 

1/44 89913 -17290 -350983 -882694 -1236896 -61103 30970 143091 

1/46 85900 -21493 -353125 -882452 -1231656 -65176 26185 137534 

1/48 86088 -20941 -350782 -878321 -1226499 -68405 22350 133187 

1/50 84314 -22720 -350951 -876714 -1221947 -71341 18898 129286 

1/52 82614 -24482 -351288 -875448 -1217370 -74040 15645 125598 

1/54 80993 -26205 -351736 -874591 -1213129 -76979 12108 121237 

1/56 79439 -27943 -352395 -874068 -1209505 -79230 9467 118223 

1/58 77904 -29638 -353055 -873531 -1205338 -81309 6860 115247 

1/60 76423 -31349 -353852 -873283 -1201769 -83188 4586 112648 

1/62 74959 -33118 -354946 -873651 -1198898 -85054 2370 110144 

1/64 73637 -34669 -355752 -873491 -1195518 -86656 382 107754 

1/66 72324 -36287 -356776 -874088 -1193605 -88561 -1692 105406 

1/68 71008 -37918 -357867 -874429 -1189789 -89850 -3492 103269 

1/70 71101 -37712 -356899 -874460 -1197001 -93173 -5324 105347 

1/72 68519 -41096 -360181 -875700 -1183745 -92289 -6649 99655 

C.V. 14% -50% -1% -1% -3% -33% 110% 23% 

 

 

Figure 13. Bending Moment at Different Depth-to-Span Ratios. 
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5.1.2. Stresses 

Table 13 tabulates the Stresses at the top edge of the important cross sections at different 

span depth to span ratio, which is also shown in Figure 14. The stresses at middle of main span, 

the left pier, the right pier, and the steel-concrete intersection are decreasing with the decreasing 

of the depth to span ratio, and conversely the other sections are increasing. The stress at the top 

edge at the middle of main span has the largest increase of 23.5MPa and that at steel-concrete 

intersection has the largest decrease of 1.65MPa. The coefficient of variation reaches the maximum 

at the steel-concrete intersection, i.e., 75%, which indicates that the span depth to span ratio has 

the largest influence on the stress at the intersection. 

Table 14 tabulates the Stresses at the bottom edge of the important cross sections at 

different span depth to span ratio, which is also shown in Figure 15. The stresses at middle of main 

span, the left pier, the right pier, and the steel-concrete intersection are decreasing with the 

decreasing of the depth to span ratio, and conversely the other sections are increasing. The stress 

at the bottom edge at the middle of main span has the largest increase of 35MPa and that at steel-

concrete intersection has the largest decrease of 2.6MPa. The coefficient of variation reaches the 

maximum at the steel-concrete intersection, i.e., 123%, which indicates that the span depth to span 

ratio has the largest influence on the stress at the intersection. 
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Table 13. Stresses at the Top Edge at Different Midspan Depth-to-Span Ratios (Unit: MPa). 

Depth-to-

span ratio 

¼ side 

 span 

½ side 

span 

¾ side 

span 

Left 

pier 

Right 

pier 

¼ 

midspan 
Intersection 

Center of 

midspan 

1/30 -2.74 0.03 6.46 7.26 10.2 0.23 -1.39 -77.5 

1/32 -2.87 0.11 6.39 7.27 10.2 0.53 -1.29 -75.6 

1/34 -3.02 0.17 6.53 7.21 10.1 0.78 -1.25 -77 

1/36 -3.17 0.23 6.67 7.15 10 1.04 -1.2 -78.1 

1/38 -3.31 0.30 6.8 7.12 9.98 1.30 -1.14 -79.2 

1/40 -3.45 0.38 6.93 7.08 9.92 1.57 -1.08 -80.3 

1/42 -3.59 0.47 7.06 7.05 9.88 1.88 -0.99 -80.6 

1/44 -3.74 0.54 7.17 7.03 9.82 2.08 -0.97 -82.8 

1/46 -4.02 0.71 7.34 7.02 9.78 2.36 -0.90 -83.8 

1/48 -4.03 0.72 7.4 6.99 9.74 2.62 -0.83 -85.2 

1/50 -4.18 0.81 7.53 6.98 9.7 2.88 -0.77 -86.5 

1/52 -4.32 0.91 7.64 6.97 9.66 3.14 -0.70 -87.8 

1/54 -4.46 1.01 7.75 6.96 9.63 3.43 -0.60 -88.7 

1/56 -4.61 1.12 7.86 6.96 9.6 3.7 -0.53 -90.1 

1/58 -4.75 1.23 7.96 6.95 9.56 3.98 -0.44 -91.4 

1/60 -4.89 1.35 8.07 6.95 9.53 4.25 -0.36 -92.8 

1/62 -5.03 1.47 8.17 6.95 9.51 4.53 -0.27 -94.1 

1/64 -5.18 1.58 8.28 6.95 9.48 4.8 -0.17 -95.9 

1/66 -5.31 1.7 8.38 6.95 9.47 5.1 -0.06 -96.9 

1/68 -5.46 1.83 8.47 6.96 9.43 5.37 0.04 -98.2 

1/70 -5.46 1.85 8.51 6.94 9.47 5.74 0.13 -97.2 

1/72 -5.74 2.09 8.67 6.97 9.38 5.93 0.26 -101 

C.V. -22% 67% 10% 2% 3% 58% -75% -9% 

 

 

Figure 14. Stress at the Top Edge at Different Midspan Depth-to-Span Ratio. 
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Table 14. Stresses at the Bottom Edge at Different Midspan Depth-to-Span Ratios (Unit: MPa). 

Depth-to-

span ratio 

¼ side 

span 

½ side 

span 

¾ side 

span 

Left 

pier 

Right 

pier 

¼ 

midspan 
Intersection 

Center of 

midspan 

1/30 4.49 -0.09 -8.22 -8.8 -12.5 -0.76 1.86 119 

1/32 4.71 -0.22 -7.96 -8.8 -12.4 -1.28 1.69 117 

1/34 4.95 -0.31 -8.13 -8.74 -12.3 -1.7 1.6 118 

1/36 5.2 -0.40 -8.32 -8.66 -12.2 -2.13 1.5 120 

1/38 5.44 -0.51 -8.44 -8.63 -12.2 -2.57 1.4 121 

1/40 5.68 -0.62 -8.59 -8.59 -12.1 -3.02 1.29 124 

1/42 5.91 -0.75 -8.75 -8.55 -12 -3.51 1.15 124 

1/44 6.15 -0.86 -8.88 -8.53 -12 -3.87 1.1 127 

1/46 6.6 -1.1 -9.08 -8.52 -11.9 -4.32 0.98 129 

1/48 6.62 -1.11 -9.15 -8.49 -11.9 -4.74 0.87 130 

1/50 6.85 -1.25 -9.3 -8.47 -11.8 -5.17 0.77 132 

1/52 7.07 -1.4 -9.43 -8.46 -11.8 -5.59 0.66 134 

1/54 7.3 -1.55 -9.55 -8.45 -11.8 -6.05 0.51 137 

1/56 7.51 -1.7 -9.68 -8.45 -11.7 -6.49 0.40 139 

1/58 7.74 -1.86 -9.8 -8.44 -11.7 -6.92 0.27 140 

1/60 7.95 -2.03 -9.92 -8.44 -11.6 -7.35 0.14 142 

1/62 8.16 -2.2 -10 -8.44 -11.6 -7.79 0.01 144 

1/64 8.38 -2.36 -10.2 -8.44 -11.6 -8.21 -0.13 145 

1/66 8.58 -2.53 -10.3 -8.45 -11.6 -8.68 -0.28 149 

1/68 8.8 -2.72 -10.4 -8.45 -11.5 -9.1 -0.43 151 

1/70 8.78 -2.77 -10.5 -8.46 -11.6 -9.77 -0.62 160 

1/72 9.2 -3.08 -10.6 -8.47 -11.5 -9.95 -0.74 154 

C.V. 21% -64% -9% -1% -3% -53% 123% 9% 

 

 

Figure 15. Stress at the Bottom Edge at Different Depth-to-Span Ratios. 
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5.1.3. Deformations 

Table 15 and Figure 16 are the deformation of bridge at the important locations with the 

decrease of span depth to span ratio. With the increase of the span depth to span ratio, the 

deformations are increasing. The deformation at the middle of main span has the largest increase 

of 20.43cm. The coefficient of variation reaches the maximum at middle of the side span, i.e., 64%, 

which indicates that the span depth to span ratio has the largest influence on the deformation at 

middle of side span. 

Table 15. Deformations at Different Midspan Depth-to-Span Ratios (Unit: cm). 

Depth-to-

span ratio 

¼ side 

 span 

½ side 

span 

¾ side 

span 
Left pier Right pier 

Center of 

midspan 

1/30 -1.62 -3.68 -0.76 -22.74 -25.09 -30.66 

1/32 -1.83 -3.76 -0.81 -22.54 -25.07 -31.14 

1/34 -2.05 -3.94 -0.82 -23.09 -25.91 -32.72 

1/36 -2.27 -4.16 -0.85 -23.65 -26.77 -34.36 

1/38 -2.51 -4.34 -0.88 -24.11 -27.51 -35.83 

1/40 -2.75 -4.54 -0.90 -24.63 -28.34 -37.44 

1/42 -2.99 -4.72 -0.92 -25.17 -29.21 -38.47 

1/44 -3.26 -4.94 -0.97 -25.53 -29.83 -40.53 

1/46 -3.77 -5.21 -1.02 -25.95 -30.53 -42.10 

1/48 -3.80 -5.34 -1.03 -26.41 -31.32 -43.71 

1/50 -4.09 -5.54 -1.07 -26.84 -32.06 -45.30 

1/52 -4.38 -5.74 -1.10 -27.24 -32.77 -46.86 

1/54 -4.67 -5.94 -1.14 -27.65 -33.50 -48.54 

1/56 -4.98 -6.14 -1.17 -28.07 -34.25 -50.21 

1/58 -5.29 -6.34 -1.21 -28.43 -34.93 -51.79 

1/60 -5.60 -6.54 -1.24 -28.81 -35.64 -53.44 

1/62 -5.92 -6.72 -1.27 -29.14 -36.28 -55.04 

1/64 -6.25 -6.93 -1.31 -29.54 -37.01 -56.76 

1/66 -6.57 -7.12 -1.34 -29.94 -37.77 -58.63 

1/68 -6.92 -7.32 -1.38 -30.24 -38.39 -60.23 

1/70 -6.89 -7.34 -1.35 -31.06 -39.80 -63.28 

1/72 -7.62 -7.71 -1.46 -30.87 -39.68 -63.67 

C.V. 21% -64% -9% -1% -3% -53% 
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Figure 16. Deformation at Different Depth-to-Span Ratios. 

 

5.1.4. Bending strain energy 

Table 16 and Figure 17 illustrate the variation of bending strain energy with the midspan 

depth-to-span ratio. A ratio of 1/32 has the minimum value of bending strain energy, while a ratio 

of 1/70 leads to the maximum of bending strain energy. 

Table 16. Bending Strain Energy at Different Midspan Depth-to-Span Ratios (Unit: kJ). 

Depth-to-Span 

Ratio 
1/30 1/32 1/34 1/36 1/38 1/40 1/42 1/44 1/46 1/48 1/50 

Bending strain 

energy (kJ) 
4571 4463 4538 4608 4679 4759 4825 4908 5004 5066 5148 

Relative value 1.11 1.08 1.10 1.12 1.14 1.15 1.00 1.19 1.21 1.23 1.07 

Depth-to-Span 

Ratio 
1/52 1/54 1/56 1/58 1/60 1/62 1/64 1/66 1/68 1/70 1/72 

Bending strain 

energy (kJ) 
5227 5306 5392 5470 5554 5631 5769 5819 5894 6101 6062 

Relative value 1.27 1.29 1.31 1.33 1.35 1.37 1.40 1.41 1.43 1.48 1.47 
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Figure 17. Relative Bending Strain Energy at Different Depth-to-Span Ratios. 

 

5.2. Optimization on Midspan Depth-to-Span Ratio 

It can be seen from the analysis above that when the midspan depth-to-span ratio variates, 

the bending moments and stresses have the maximum of C.V. at the concrete-steel intersection. 

Therefore, the structural optimization takes the moments and stresses at the intersection as the 

objective function. The bending moment at the intersection reaches the minimum, i.e., 382 kN.m 

at the ratio of 1/64; the top stress reaches the minimum, 0.04 MPa at 1/68; the bottom stress reaches 

the minimum, 0.01 MPa, at 1/62. On the other hand, a ratio of 1/32 has the minimum value of 

bending strain energy. With the preference of uniform distribution of bending moment, the 

midspan depth-to-span ratio is optimized at 1/32. 
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6. SUPPORT DEPTH-TO-SPAN RATIO: PARAMETRIC ANALYSIS AND 

OPTIMIZATION 

6.1. Parametric Analysis on Depth-to-Span Ratio 

6.1.1. Bending moments 

Table 17 and Figure 18 demonstrate the bending moments at significant intersections with 

the variation of the support depth-to-span ratio. It can be seen that with the decrease of the ratio, 

the bending moments increase at the ¼ side span, the midspan and the steel-concrete intersection 

that changes from negative moment to positive moment and decrease at other cross sections. The 

midspan bending moment has the maximum increase, i.e., 34490 kN.m, while the bending moment 

decreases the most at the left-pier cross section that is 140723 kN.m. The C.V. has the minimum 

value at the right-pier cross section and the maximum at the steel-concrete intersection, which are 

-2% and 87%, respectively. 

Table 17. Bending Moments at Different Depth-to-Span Ratios (Unit: kN.m). 

Depth-to-

span ratio 

¼ side 

 span 

½ side 

span 

¾ side 

span 
Left pier Right pier 

¼ 

midspan 
Intersection 

Center of 

midspan 

1/16 63889 -58087 -406580 -981023 -1288674 -97806 -4234 115649 

1/17 66648 -52717 -396622 -961116 -1276459 -93786 -219 119653 

1/18 69295 -47569 -387208 -942610 -1265443 -89840 3759 123621 

1/19 71840 -42628 -378283 -925306 -1255265 -85936 7698 127550 

1/20 74286 -37881 -369800 -909052 -1245771 -82068 11597 131440 

1/21 76638 -33322 -361731 -893742 -1236855 -78231 15463 135298 

1/22 78856 -29025 -354166 -879614 -1228484 -74457 19264 139092 

1/23 81103 -24741 -346772 -865637 -1220483 -70652 23094 142914 

1/24 83186 -20645 -339640 -852390 -1212900 -66904 26866 146678 

1/25 85110 -16922 -333194 -840300 -1205950 -63460 30331 150139 

C.V. 10% -38% -7% -5% -2% -14% 87% 9% 
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Figure 18. Bending Moment at Different Depth-to-Span Ratios. 

 

6.1.2. Stresses 

Table 18 tabulates the Stresses at the top edge of the important cross sections at different 

support depth-to-span ratio, which is also shown in Figure 19. The top-edge stresses at ½ side span, 

¼ midspan, and the steel-concrete intersection are decreasing with the decrease of the depth to 

span ratio, and conversely the stressed at other sections are increasing. The stress at the top edge 

at the middle of main span has the largest increase of 18.7MPa and that at ¼ midspan has the 

largest decrease of 1.29MPa. The coefficient of variation reaches the maximum at the steel-

concrete intersection, i.e., 75%, which indicates that the span depth to span ratio has the largest 

influence on the stress at the intersection. 

Table 19 tabulates the stresses at the bottom edge of the important cross sections at different 

support depth to span ratio, which is also shown in Figure 20. The stresses at ½ side span, ¼ 

midspan, and the steel-concrete intersection are decreasing with the decrease of the depth to span 

ratio, and conversely the other sections are increasing. The stress at the bottom edge at midspan 

has the largest increase of 36 MPa and that at ¼ midspan intersection has the largest decrease of 

1.99 MPa. The coefficient of variation reaches the maximum at the steel-concrete intersection, i.e., 



 

35 

109%, which indicates that the support depth to span ratio has the largest influence on the stress at 

the intersection. 

Table 18. Stresses at the Top Edge at Different Depth-to-Span Ratios (Unit: MPa). 

Depth-to-

span ratio 

¼ side 

 span 

½ side 

span 

¾ side 

span 

Left 

pier 

Right 

pier 

¼ 

midspan 
Intersection 

Center of 

midspan 

1/16 -3.71 1.97 6.37 4.59 6.01 4.24 0.02 -65.3 

1/17 -3.87 1.85 6.65 4.98 6.59 4.12 -0.14 -67.5 

1/18 -4.02 1.72 6.92 5.38 7.19 3.99 -0.31 -69.7 

1/19 -4.17 1.59 7.17 5.79 7.83 3.86 -0.47 -71.8 

1/20 -4.31 1.45 7.41 6.21 8.48 3.72 -0.63 -73.9 

1/21 -4.45 1.3 7.64 6.64 9.16 3.57 -0.79 -76 

1/22 -4.58 1.16 7.86 7.08 9.86 3.42 -0.95 -78 

1/23 -4.71 1 8.06 7.53 10.6 3.26 -1.1 -80.1 

1/24 -4.83 0.851 8.25 7.98 11.3 3.1 -1.26 -82.1 

1/25 -4.94 0.707 8.44 8.44 12.1 2.95 -1.4 -84 

C.V. -10% 32% 9% 20% 23% 12% -68% -8% 

 

 

Figure 19. Stress at the Top Edge at Different Depth-to-Span Ratios. 
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Table 19. Stresses at the Bottom Edge at Different Depth-to-Span Ratios (Unit: MPa). 

Depth-to-

span ratio 

¼ side 

 span 

½ side 

span 

¾ side 

span 

Left 

pier 

Right 

pier 

¼ 

midspan 
Intersection 

Center of 

midspan 

1/16 6.05 -2.98 -8.11 -6.33 -8.33 -7.39 -0.39 118 

1/17 6.31 -2.8 -8.4 -6.74 -8.98 -7.21 -0.16 122 

1/18 6.56 -2.6 -8.68 -7.17 -9.65 -7.02 0.06 127 

1/19 6.81 -2.4 -8.95 -7.62 -10.4 -6.81 0.28 131 

1/20 7.04 -2.18 -9.21 -8.07 -11.1 -6.59 0.50 135 

1/21 7.26 -1.97 -9.45 -8.53 -11.8 -6.36 0.72 139 

1/22 7.47 -1.75 -9.68 -9 -12.6 -6.13 0.93 143 

1/23 7.68 -1.53 -9.9 -9.46 -13.4 -5.88 1.15 147 

1/24 7.88 -1.3 -10.1 -9.93 -14.2 -5.63 1.36 151 

1/25 8.06 -1.09 -10.3 -10.4 -15 -5.4 1.55 154 

C.V. 10% -31% -8% -17% -19% -11% 109% 9% 

 

 

Figure 20. Stress at the Bottom Edge at Different Depth-to-Span Ratios. 

 

6.1.3. Deformations 

Table 20 and Figure 21 are the deformation of bridge at the important locations with the 

decrease of support depth to span ratio. With the decrease of the span depth to span ratio, the 

deformation is increasing. The deformation at the midspan has the largest increase of 19.74 cm. 

The coefficient of variation reaches the maximum at ¾ side span, i.e., 62%, which indicates that 

the support depth to span ratio has the largest influence on the deformation at ¾ side span. 
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Table 20. Deformations at Different Depth-to-Span Ratios (Unit: cm). 

Depth-to-

span ratio 

¼ side 

 span 
½ side span ¾ side span Left pier Right pier 

Center of 

midspan 

1/16 -3.54 -2.81 -0.14 -18.50 -23.43 -37.13 

1/17 -3.77 -3.30 -0.28 -20.07 -25.24 -39.29 

1/18 -3.99 -3.80 -0.42 -21.68 -27.09 -41.46 

1/19 -4.22 -4.33 -0.58 -23.34 -28.96 -43.65 

1/20 -4.45 -4.87 -0.75 -25.04 -30.87 -45.85 

1/21 -4.67 -5.44 -0.93 -26.77 -32.80 -48.05 

1/22 -4.89 -6.01 -1.12 -28.51 -34.73 -50.25 

1/23 -5.13 -6.64 -1.33 -30.34 -36.74 -52.50 

1/24 -5.35 -7.25 -1.55 -32.18 -38.75 -54.74 

1/25 -5.53 -7.85 -1.77 -33.98 -40.69 -56.87 

C.V. -15% -33% -62% -20% -18% -14% 

 

 

Figure 21. Deformation at Different Support Depth-to-Span Ratios. 

 

6.1.4. Bending strain energy 

Table 21 and Figure 22 illustrate the variation of bending strain energy with the support 

depth-to-span ratio. A ratio of 1/16 has the minimum value of bending strain energy, while a ratio 

of 1/25 leads to the maximum of bending strain energy. 
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Table 21. Bending Strain Energy at Different Depth-to-Span Ratios (Unit: kJ). 

Depth-to-span ratio 1/16 1/17 1/18 1/19 1/20 1/21 1/22 1/23 1/24 1/25 

Bending strain energy  3628 3941 4264 4595 4934 5281 5628 5999 6367 6742 

Relative value 1.00 1.09 1.18 1.27 1.36 1.46 1.55 1.65 1.76 1.86 

 

 

Figure 22. Bending Strain Energy at Different Support Depth-to-Span Ratios. 

 

6.2. Optimization on Support Depth-to-Span Ratio 

It can be seen from the analysis above that when the support depth-to-span ratio variates, 

the bending moments and stresses have the maximum of C.V. at the concrete-steel intersection. 

Therefore, the structural optimization takes the moments and stresses at the intersection as the 

objective function. The bending moment at the intersection reaches the minimum, i.e., -219 kN.m 

at the ratio of 1/17; the top stress reaches the minimum, 0.02 MPa at 1/16; the bottom stress reaches 

the minimum, 0.06 MPa, at 1/18. On the other hand, a ratio of 1/16has the minimum value of 

bending strain energy. With the preference of uniform distribution of bending moment, the 

midspan depth-to-span ratio is optimized at 1/16. 
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7. COMPUTER PROGRAM DEVELOPMENT FOR MATRIX STIFFNESS 

STRUCTURAL ANALYSIS 

This chapter develops the computer program for bridge structural analysis using matrix 

stiffness method. The program can be used for further analysis in the future, e.g. advanced 

structural optimization, nonlinear analysis, etc. It is suitable for the matrix stiffness method to 

analyze complex structures using computer. This method is the most common conduction of the 

FEM.  First, the system must be modeled as a set of simpler, idealized elements interconnected at 

the nodes in applying the method. Second, the material stiffness properties of these elements are 

compiled into a single matrix equation through matrix mathematics. Third, the solution of this 

equation can determine the structure’s unknown displacements and forces. The direct stiffness 

method forms the basis for most commercial and free source finite element software [46]. 

7.1. Implementation of Matrix Stiffness Method 

This part is about the theoretical implementation of matrix stiffness method based on frame 

structures and frame elements. This work begins with the structural discretization, followed by the 

degree of freedom of frame element, element stiffness matrix, coordinate systems, global stiffness 

matrix, load assembly, and problem solving and internal force and reaction calculation. It lays the 

foundation for the program development in 7.2. 

7.1.1. Structural discretization 

Determining the individual elements is the first step of the stiffness method. The structure 

is discretized and divided into more than one elements where there is a bearing support, a variation 

in material property, cross section area or moment of inertia, or where more than one components 

positioned in different directions intersect. While determining the elements, the structure is 

discretized at the nodes which are used to connect the different elements together. Member 
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stiffness equations are formed through analysis of each element. The forces and displacements are 

related to the element stiffness matrix which depends on the geometry and properties of the 

element. 

7.1.2. Degree of freedom 

The frame element in this study for rigid frame bridge analysis has three degree of freedoms 

(DOF) at each node with two for translation and one for rotation, and the truss element has two 

DOFs of translation, as is shown in Figure 23. 

  

 

Figure 23. Degree of Freedom of Frame Element. 

 

7.1.3. Element stiffness matrix 

The local element stiffness matrix of frame element is expressed in Equation 6 based on its 

DOF as shown in Figure 23, 
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where kL is the local element stiffness, E is the modulus of elasticity, A is the area of element cross 

section, L is the element length, and I is the moment of inertia. 
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7.1.4. Coordinate systems 

There are two coordinate systems for the structural analysis, i.e. the global coordinate 

system and the local element coordinate system, as indicated in Figure 24 by XOY and xoy, 

respectively. 

 

Figure 24. Coordinate Systems for Structural Analysis. 

 

After we get the stiffness matrices of all the frame elements of a structure, we need to 

transform the stiffness matrices to the global coordinate system before we assemble them to form 

the global stiffness matrix. The same transformation needs to be done for displacement and force 

vectors. The matrix for coordinate transformation is as shown in Equation 7. 
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7.1.5. Global stiffness matrix 

Once the individual element stiffness matrices have been developed, they must be 

assembled into the original structure. The first step in this process is to convert the stiffness 
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relations for the individual elements into a global system by the coordinate transformation matrix 

as shown in Equation 7.  

After forming the element stiffness matrix in the global coordinate system, the elements 

must be merged into a single global stiffness matrix. The merging process follows the principle of 

compatibility of displacements and force equilibrium at each node. These rules are confirmed and 

supported by relating the element nodal displacements to the global nodal displacements. 

The global displacement and force vectors each contain one entry for each degree of 

freedom in the structure. The element stiffness matrices are merged by augmenting or expanding 

each matrix in conformation to the global displacement and load vectors. 

Finally, the global stiffness matrix is developed by adding the individual expanded element 

matrices together. 

Figure 25 (a) shows an example frame structure consisting of two members. The material 

properties and geometric dimensions are uniform along the structure for simplicity. It has a 

uniform loading on the beam, a concentrated force at the intersection of beam and column, and a 

concentrated force at the midpoint of the column. The frame is discretized into two frame elements 

following the discretization rule described in 7.1.1 ending up with three nodes and 9 degree of 

freedoms in total, as is illustrated in Figure 25 (b). Then the stiffness matrices of Elements 1 and 

2, by Equation 6, are as shown in Equation 8. 
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(a) frame structure                 (b) discretization   (c) coordinate system 

Figure 25. Example Frame Structure and its Discretization and Coordinate System. 

 

The local coordinate system of Element 1 has angle of 90° with respect to the global 

coordinate system, then its transformation matrix is calculated in Equation 9 by Equation 7. Then 

the global stiffness matrix is as shown in Equation 10. 
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The local coordinate system of Element 2 is positioned the same along the global 

coordinate system, so its global stiffness matrix is the same with its local stiffness matrix, as is 

shown in Equation 9.  
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The assembly of the global stiffness matrix only needs to include DOFs 4, 5, and 6 due to 

the fact that DOFs 1, 2, and 3 and DOFs 7, 8, and 9 are constrained. The elements in the global 

stiffness matrix is the result of adding the elements in the global stiffness matrices of Elements 1 

and 2 that are contributive to the stiffness corresponding to DOFs 4,5, and 6, as is shown in 

Equation 12. 
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7.1.6. Load assembly 

The nodal load vector in the global coordinate system corresponding to DOFs 4, 5, and 6 

is as shown in Equation 13. 

 T1 00][ QF                                                      (12) 

All the non-nodal loads need to be transformed to equivalent nodal loads according to the 

method introduced in structural analysis [47]. The equivalent nodal loads in the global coordinate 

system of Elements 1 and 2 are as shown in Equations 14 and 15, respectively. 

   TTT
1

1
0 8/02/8/02/8/2/08/2/0][][ QLQQLQQLQQLQTF   (13) 

 T222
0 12/2/012/2/0][ pLpLpLpLF                          (14) 

Then the global load vector for the matrix stiffness method in this case is as shown in 

Equation 16, which is the nodal load minus equivalent load contributive to the loading at DOFs, 

4, 5, and 6.  

[P] = [Q1+Q/2 - pL/2    QL/8+pL2/12]T                               (15) 

7.1.7. Problem solving and internal force and reaction calculation 

With the global stiffness matrix and the load assembled for the active degree of freedoms, 

the displacement can be solved easily by dividing the load vector by the stiffness matrix or 

multiplying the inverse of the stiffness matrix with the load vector, as is shown in Equation 17. 

Then the element internal forces can be calculated by multiplying the element displacement vector 

with the element stiffness matrix plus the equivalent nodal load as developed in Equation 15, and 

then transformed to the forces in the local element coordinate system. The reaction forces are sum 

of element forces in the global coordinate system of elements connected by that support. 

[] = [K]-1[P]                                                          (16) 
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In the example described in 7.1.5, the displacement vector solved by Equation 17 can be 

expressed in detail with the displacements at Node 2, as is shown in Equation 18. 

[] = []T                                                   (17) 

Then the element forces can be calculated by Equations 19 and 20, and transformed to local 

element forces by Equations 21 and 22, respectively. 
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Then the reaction forces at Nodes 1 and 3 are the element internal forces in the global 

coordinate system, as are shown in Equations 23 and 24. 
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7.2. Program Development and Validation 

7.2.1. Program development 

The computer program for matrix stiffness method of structural analysis. The program 

includes the following modules:  

1. Input 

2. Generation of element stiffness matrix in local coordinates  

3. Coordinate transformation  

4. Assembly of global stiffness matrix  

5. Assembly of global load vectors  

6. Solving stiffness equations  

7. Calculating element forces  

8. Calculating support reactions  

9. Organized output report (geometry, loads, deformations, forces, reactions, etc.)  

The MATLAB scripts as attached in APPENDIX. SCRIPTS are the developed computer 

code. The input data include the number of elements (Nelems), number of nodes (Nndoes), element 

modulus of elasticity (ElemE), element area (ElemArea), element moment of inertia (ElemInertia), 

element length (ElemLength), element coordinate system angle with respect to global coordinate 

system (ElemAlpha), element node number (ElemNodes), boundary conditions (NOdeMov) with 
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1 indicating restrained and 0 free, nodal load (NodeLoads), and element load (ElemLoads). The 

script “main.m” contains the input information and the implementation of the program; 

“fillFrameGdof.m” is the assembly of degree of freedom based on the boundary condition, the 

outcome of this module is a matrix demonstrating the effective DOF number of each DOF at each 

node (DOFNum) and the total number of DOFs (Ndof); “assmblFrameGS.m” assembles the global 

stiffness matrix of the bridge structure; “prepareFrameLoadVec.m” is the preparation of loading 

conditions for the problem solution, generating the nodal load vector (P) and the equivalent nodal 

load vector (Pf); The global displacement is obtained by dividing the load vector by the global 

stiffness matrix; “elemForcesFrame.m” calculates the element forces as mentioned in 7.1.7; 

“supportR.m” is for the calculation of reaction forces. 

7.2.2. Program validation 

The composite rigid frame bridge is modelled using the computer program developed in 

this section. The bridge is discretized into frame elements of 1m in element length, ending up with 

464 elements and 465 nodes. For the elements of concrete girder with non-uniform cross-section 

area and moment of inertia, the computer program takes the average of the values at the element 

ends. The dead load case is used for validation. All the loads are applied onto the element nodes 

directly for simplicity.  

To validate the computer program developed above, this section calculates and compares 

the bending moments of several cross sections of the bridge girder under dead load using the finite 

element method and the computer program as is tabulated in Table 22. The last row lists the relative 

difference of the bending moments by computer program compared with that from the finite 

element method. It shows that the bending moments of the bridge girder calculated from the two 

methods are very close to each other with a relative difference below 15%, validating the 
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effectiveness of the computer program. In future work, the computer program will be used for 

advanced analysis of the bridge, e.g., nonlinear analysis, structural optimization. etc., considering 

the various analysis tools available in MATLAB Toolbox. 

Table 22. Comparison of Bending Moments from Finite Element Analysis and Computer 

Program (kN.m) 

Method 
¼ side 

span 

½ side 

span 

¾ side 

span 
Left pier Right pier 

¼ 

midspan 
Intersection 

Center of 

midspan 

Finite element 

method 
51422 -79889 -426066 -960580 -1117568 -103981 -23756 96372 

Computer 

program 
54803 -78683 -489064 -1121069 -1155164 -120098 -27806 88765 

Relative 

difference 
7% -2% 15% 17% 3% 15% 17% -8% 
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8. CONCLUSIONS AND FUTURE WORK 

This thesis optimizes the structural parameters of composite rigid frame bridge based on 

the results of parametric analysis and develops the computer program for matrix stiffness method 

of structural analysis using MATLAB. This work provides structural engineers with suggestions 

with respect to the structural design and analysis of composite rigid frame bridge. The computer 

program developed in this thesis lays a foundation for further advanced structural analysis and 

optimization using the powerful toolboxes included in MATLAB. The conclusions of this thesis 

study include: 

1) This study developed the finite element model of the composite rigid frame bridge 

based on beam elements using the finite element software MIDAS CIVIL 2010. 

2) Parametric analysis on steel span ratio shows that a large ratio or a small ratio leads to 

large tension stress on the concrete girders. A steel span ratio of 0.55 has the minimum 

bending strain energy, uniform bending moment distribution, and generally lower 

stress level on concrete girder, though the steel girder has relatively high stress level 

that is acceptable for structural design. 

3) A composite rigid frame bridge with a large bottom girder curve order has a relatively 

large stress at the ¼ side span, and a small curve order increases the weight of bridge 

and thus the tension stress of girder at the inner supports. A curve order of 1.3 has a 

low value to bending strain energy and a minimum bending moment at the intersection. 

4) A large midspan depth-to-span ratio brings high stress level at ¼ span, and a small ratio 

high stress on the concrete girder at the inner supports. An optimization based on 

bending strain energy ends up with an optimal midspan depth-to-span ratio of 1/32. 
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5) Different from the midspan depth-to-span ratio, a high stress on the concrete girder at 

the inner supports happens when the support depth-to-span ratio has a relatively large 

magnitude. A bridge with small support depth-to-span ratio has a large girder weight 

and can’t make full use of the concrete girder’s capability. A ratio of 1/16 or 1/17 has 

the minimum bending strain energy and a uniform bending moment distribution. 

6) This thesis study also developed the computer program for structural analysis using the 

matrix stiffness method with MATLAB. A comparison with the results from finite 

element analysis validates the effectiveness of the computer program. 

Future work will be remaining to analyze and optimize the composite rigid frame bridge 

using the developed computer program and the advanced analyzing capabilities of MATLAB 

toolbox. 
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APPENDIX. SCRIPTS 

main.m  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  

% This is the main script of this program.  

% It contains the lines for information input and  

% that for the execution of other scripts  

% taking the information as input.  

% By Yanmei Xie, 2016  

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  

clear all  

%% Input data, Unit: N, m  

Nelems = 464;     % Number of elements  

Nnodes = 465;     % Total number of nodes in system  

ElemE = zeros(Nelems,1);   % Element modulus of elasticity  

ElemArea = zeros(Nelems,1);   % Element area  

ElemInertia = zeros(Nelems,1);  % Element momnet of inertia  

ElemLength = zeros(Nelems,1);   % Element length  

ElemAlpha = zeros(Nelems,1);   % Element angle vs global coord system  

ElemNodes = zeros(Nelems,2);   % Element node numbers  

NodeMov = zeros(Nnodes,3);  % Node movements 1: restrained 0: free  

NodeLoads = zeros(Nnodes,3);  % Node loads in the global coord system  

ElemLoads = zeros(Nelems,6);  % Elem loads in the local element coord system  

%%  

% DOFNum matrix and number of effective DOF  

[DOFNum, Ndof] = fillFrameGdof(Nnodes, NodeMov);  

% Global stiffness matrix  

[S] = assmblFrameGS(ElemE,ElemArea,ElemInertia,ElemLength,ElemAlpha,Nelems,Ndof,ElemNodes,DOFNum);  

% Global load vector: nodal load and equivalent nodal load  

[P, Pf] = prepareFrameLoadVec(NodeLoads,ElemLoads,ElemAlpha,Nelems,Nnodes,Ndof,DOFNum);  

% Solving the global displacement  

Gdelta = S \ (P-Pf);  

% element forces in local coordinate system  

elemMV = 

elemForcesFrame(Nelems,ElemNodes,DOFNum,ElemLoads,ElemArea,ElemE,ElemInertia,ElemLength,ElemAlpha

,Gdelta);  

% support reactions in global coordinate system  

supportR = suppReactionsFrame(Nelems,Nnodes,ElemNodes,ElemAlpha,DOFNum,elemMV);  
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fillFrameGdof.m  
function [DOFNum, Ndof] = fillFrameGdof(Nnodes, NodeMov)  

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  

% This script fills the array DOFNum(Nnodes*3)  

% for frame structure  

% with appropriate global DOF number.  

% It also determines the total number of DOFs  

% in the problem  

% By Yanmei Xie, 2016  

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  

% initialize an empty matrix of the right order Nnodes*3.  

% 3 columns are needed with two for translations and  

% the other for rotations. Other element types may require  

% a different number of columns  

NumDofNode = 3;  

DOFNum = zeros(Nnodes,NumDofNode);  

%% initialize the DOF counter for valid global DOFs  

DOFCounter = 0;  

% loop over all nodes  

for Inode = 1:Nnodes  

% loop over each DOF  

for Idof = 1:NumDofNode  

if(NodeMov(Inode,Idof)==0)  

% increase totla DOF number for each new DOF  

DOFCounter = DOFCounter + 1;  

DOFNum(Inode,Idof) = DOFCounter;  

else  

% enter a zero for restrained DOFs  

DOFNum(Inode,Idof) = 0;  

end  

end  

end  

% store the totoal number of DOFs for future use  

Ndof = DOFCounter;  

end  
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getFrameElemK.m  
function [K] = getFrameElemK(E,A,I,L)  

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  

% This function generates the stiffness matrix  

% for a frame element DIRECTLY  

% E: Modulus of elasticity  

% A: Area  

% I: Moment of inertia  

% L: Element length  

% By Yanmei Xie, 2016  

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  

K = [ E*A/L,   0,   0,   -E*A/L   0   0;...  

0,   12*E*I/L^3,  6*E*I/L^2,  0,   -12*E*I/L^3,  6*E*I/L^2;...  

0,   6*E*I/L^2  4*E*I/L,  0,   -6*E*I/L^2,  2*E*I/L;...  

-E*A/L,   0,   0,   E*A/L,   0,   0;...  

0,   -12*E*I/L^3,  -6*E*I/L^2,  0,   12*E*I/L^3,  -6*E*I/L^2;...  

0,   6*E*I/L^2,  2*E*I/L,  0,   -6*E*I/L^2,  4*E*I/L 

 ];  

end  
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coordTransMatrix.m  
function [T] = coordTransMatrix(beta)  

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  

% This function generates the coordinate transforming matrix T  

% for a frame element DIRECTLY  

% beta: angle between local axis and global axis in radians  

% By Yanmei Xie, 2016  

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  

c = cos(beta);  

s = sin(beta);  

T = [  c,  s,  0,  0,  0,  0;...  

-s,  c,  0,  0,  0,  0;...  

0,  0,  1,  0,  0,  0;...  

0,  0,  0,  c,  s,  0;...  

0,  0,  0,  -s,  c,  0;...  

0,  0,  0,  0,  0,  1  ];  

end 
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assmblFrameGS.m  
function [S] = 

assmblFrameGS(ElemE,ElemArea,ElemInertia,ElemLength,ElemAlpha,Nelems,Ndof,ElemNodes,DOFNum)  

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  

% This script assembles the global stiffness matrix  

% for the frame problems.  

% By Yanmei Xie, 2016  

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  

%% Initialize an empty square matirx of Ndof*Ndof  

S = zeros(Ndof,Ndof);  

%% Loop over all elements  

for Ielem = 1:Nelems,  

%% get the local element stiffness matrix and transform it into the global coord system  

K = getFrameElemK(ElemE(Ielem),ElemArea(Ielem),ElemInertia(Ielem),ElemLength(Ielem));  

T = coordTransMatrix(ElemAlpha(Ielem));  

K_bar = T'*K*T;  

%% get end node numbers for the element Ielem  

NodeNum1 = ElemNodes(Ielem,1);  

NodeNum2 = ElemNodes(Ielem,2);  

%% find the global numbering of DOFs for this element and store them  

% in a vector  

NumDof = zeros(6,1);  

NumDof(1) = DOFNum(NodeNum1,1);  

NumDof(2) = DOFNum(NodeNum1,2);  

NumDof(3) = DOFNum(NodeNum1,3);  

NumDof(4) = DOFNum(NodeNum2,1);  

NumDof(5) = DOFNum(NodeNum2,2);  

NumDof(6) = DOFNum(NodeNum2,3);  

%% build a 2-column array that stores the non-zero NumDof in the first  

% column and its index (1~6) in the second column  

tempArray = zeros(6,2);  

tempIndex = 0;  

for Indof = 1:6  

if NumDof(Indof) ~= 0  

tempIndex = tempIndex + 1;  

tempArray(tempIndex,1) = NumDof(Indof);  

tempArray(tempIndex,2) = Indof;  

else  

tempArray(tempIndex+1,:) = [];  

end  

end  

%% fill in upper triangular terms of [K] in [S] ONLY for FREE DOFS  

for i = 1:length(tempArray)  

for j = i:length(tempArray)  
S(tempArray(i,1),tempArray(j,1)) = S(tempArray(i,1),tempArray(j,1))...  

+ K_bar(tempArray(i,2),tempArray(j,2));  

end  

end  

end  

%% fill in the symmetric terms  

for Irow = 1:Ndof  

for Icol = 1:Irow-1  

S(Irow,Icol) = S(Icol,Irow);  

end  

end  

end  
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prepareFrameLoadVec.m  
function [P, Pf] = prepareFrameLoadVec(NodeLoads,ElemLoads,ElemAlpha,Nelems,Nnodes,Ndof,DOFNum)  

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  

% This script prepares the load vector [14] and {Pf}  

% of order Ndof*1 using the input information stored  

% in NodeLoads and ElemLoads  

% By Yanmei Xie, 2016  

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  

%% initialize two empty vectors of the order Ndof*1  

P = zeros(Ndof,1);  

Pf = zeros(Ndof,1);  

%% transform the equivalent element loads to the global coord system  

ElemLoadsGlobal = zeros(size(ElemLoads,1),size(ElemLoads,2));  

for Ielem = 1:Nelems  

T = coordTransMatrix(ElemAlpha(Ielem));  

ElemLoadsGlobal(Ielem,:) = (T' * ElemLoads(Ielem,:)')';  

end  

%% first deal with nodal loads  

for Inode = 1:Nnodes  

for Idof = 1:size(DOFNum,2)  

if(DOFNum(Inode,Idof) ~= 0)  

P(DOFNum(Inode,Idof)) = P(DOFNum(Inode,Idof)) + NodeLoads(Inode,Idof);  

end  

end  

end  

%% now deal with element loads  

for Inode = 1:Nnodes  

for Idof = 1:size(DOFNum,2)  

if DOFNum(Inode,Idof) ~= 0  

% the Pf at (Inode,Idof)) is composed of two parts  

% 1. Element Inode at DOF Idof  

% 2. Element Inode-1 at DOF Idof+size(DOFNum,2)  

if Inode <= Nnodes-1  

Pf(DOFNum(Inode,Idof)) = ...  

Pf(DOFNum(Inode,Idof)) + ElemLoadsGlobal(Inode,Idof);  

end  

if Inode >= 2  

Pf(DOFNum(Inode,Idof)) = ...  

Pf(DOFNum(Inode,Idof))+ ElemLoadsGlobal(Inode-1,Idof+size(DOFNum,2));  

end  

end  

end  

end  

end  
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elemForcesFrame.m  
function elemMV = 

elemForcesFrame(Nelems,ElemNodes,DOFNum,ElemLoads,ElemArea,ElemE,ElemInertia,ElemLength,ElemAlpha

,Gdelta)  

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  

% This script calculates element forces  

% after extracting local data.  

% By Yanmei Xie, 2016  

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  

%% Initialize an empty matrix  

elemMV = zeros(Nelems,6);  

%% Loop over all elements  

for Ielem = 1:Nelems  

% local element displacement at nodes in GLOBAL COORD SYSTEM!!!  

Ldelta = zeros(6,1);  

% local element stiffness matrix  

K = getFrameElemK(ElemE(Ielem),ElemArea(Ielem),ElemInertia(Ielem),ElemLength(Ielem));  

% local element DOF  

Ldof = 0;  

for Inode = 1:2  

NodeNum = ElemNodes(Ielem,Inode);  

for Idof = 1:size(DOFNum,2)  

Ldof = Ldof + 1;  

Gdof = DOFNum(NodeNum,Idof);  

if Gdof ~= 0  

Ldelta(Ldof) = Gdelta(Gdof);  

else  

Ldelta(Ldof) = 0;  

end  

end  

end  

% calculate local element forces  

T = coordTransMatrix(ElemAlpha(Ielem));  

LP = K * (T*Ldelta) + ElemLoads(Ielem,:)';  

elemMV(Ielem,:) = LP';  

end  

end  
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suppReactionsFrame.m  
function supportR = suppReactionsFrame(Nelems,Nnodes,ElemNodes,ElemAlpha,DOFNum,elemMV)  

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  

% This script calculates support reaction  

% element forces.  

% By Yanmei Xie, 2016  

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  

%% initialize an empty matrix  

supportR = zeros(Nnodes,3);  

%% loop over all elements  

for Ielem = 1:Nelems  

% local element DOF  

Ldof = 0;  

for Inode = 1:2  

NodeNum = ElemNodes(Ielem,Inode);  

for Idof = 1:size(DOFNum,2)  

Ldof = Ldof + 1;  

if (DOFNum(NodeNum,Idof) == 0)  

T = coordTransMatrix(ElemAlpha(Ielem));  

% transform the elment force into the global coord system  

% so that the final support reactions are in the global coord system  

elemMVglobal = T'*elemMV(Ielem,:)';  

supportR(NodeNum,Idof) = supportR(NodeNum,Idof) + elemMVglobal(Ldof);  

end  

end  

end  

end  

end 

 


