
 

 

THE MECHANICS OF BONDS BETWEEN CONCRETE AND FRP PLATE USING THREE 

PARAMETER ELASTIC FOUNDATION MODELS 

 
 
 
 

A Thesis 
Submitted to the Graduate Faculty 

of the 
North Dakota State University 

of Agriculture and Applied Science 
 
 
 

By 

 
Linjing Che 

 
 
 
 

In Partial Fulfillment of the Requirements 
for the Degree of 

MASTER OF SCIENCE 
 
 
 
 

Major Department: 
Construction Management and Engineering 

 
 
 

July 2011 
 
 

Fargo, North Dakota 



 

 

North Dakota State University 
Graduate School 

 
Title 

 THE MECHANICS OF BONDS BETWEEN CONCRETE 
AND FRP PLATE USING THREE PARAMETER 

ELASTIC FOUNDATION MODELS 

 

  
  By  
  

LINJING CHE 
 

     
    
  The Supervisory Committee certifies that this disquisition complies 

with North Dakota State University’s regulations and meets the 
accepted standards for the degree of 

 

  MASTER OF SCIENCE  

    

    

  SUPERVISORY COMMITTEE:  
    
  ZHILI (JERRY) GAO   

  Chair  
  CHARLES MCINTYRE  

  JONGCHUL SONG  

  SIVAPALAN GAJAN  

    
  Approved:  
   
 03-01-2013 YONG BAI   

 Date Department Chair  
    

 



 

iii 

ABSTRACT 

Traditional metallic materials lead steel-reinforced concrete structures to a durability 

problem due to its low value of resistance to corrosion. The superior performances of FRP, 

including the high resistance to corrosion, the flexible and complex shapes… give it a big 

advantage. However, premature failure due to debonding of adhesives between concrete and 

reinforcing materials is the major concern for all types of reinforcement containing FRP plate 

reinforcement. This thesis gradually develops three elastic foundation models, which are mainly 

derived from the solution of superficial stress in the foundations-soil system. The one-parameter 

Winkler’s elastic foundation model is simple and easy. The two-parameter elastic foundation 

model thinks over the interfacial shear force of the joint bond. And the three-parameter 

foundation model additionally considers the adhesive layer’s transverse displacement to meet the 

boundary condition of zero shear stress. Finite element analysis (FEA) is used to compare with 

the proposed three foundation methods.  
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CHAPTER 1. INTRODUCTION 

1.1. Background 

Reinforced concrete as a traditional and qualified construction material is widely used due 

to its durability and fire resistance. However, combined with the great financial losses, corrosion 

of the steel is still a serious problem that needs to be solved, especially at the harbor, wharf, road, 

bridge, and some other soil-related aggressive environments. Then anticipated service life of a 

structure is hopeless to fulfill when faced with the sharply reduced overall strength.  

It is known that a new, properly constructed, alkaline (pH 13) concrete cover of 2 inches 

will inhibit corrosion of the rebar. This alkalinity and its protection will decrease over time due to 

carbon dioxide (CO2) and other acidic materials in the environment penetrating into the concrete 

and dropping the pH below 11, at which point the natural corrosion inhibition is lost. Also, if air 

and water (moisture) are in contact with the rebar, corrosion will take place, because CO2 absorbed 

from the atmosphere decreases the pH (carbonation). Another main source of corrosion is from salt 

(chloride ions). This process can originate from salt water and deicing materials penetrating the 

concrete and migrating to the rebar level where they accelerate corrosion. These corrosion 

products expand, and cause the concrete to degrade and spoil [1]. 

Early in 1990, Dr. Metha, in his book Concrete in the Marine Environment [2], points out 

that corrosion has exceeded the freezing and erosion, and is becoming the most severe damage for 

concrete. Especially for highway bridges, Bezad Bavarian gives us Figure 1Figure 1 to show the 

distribution of annual corrosion costs. According to the report of the United States in 2002, the cost 
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of corrosion accounts for approximately 3% of the Gross Domestic Product (GNP), or $276 billion 

dollars [3], $20 billion annually of which were attributed to the oversight of the Department of 

Defense (DoD). For appropriateness and to estimate cost effectively, several proposed 

technologies were further analyzed during 2003. A variety of commercial and emerging corrosion 

prevention and control (CPC) technologies were also established at that time. One selected area of 

great pith and moment was that of maintaining and improving steel-reinforced concrete 

infrastructure and infrastructure components. 

 

Figure 1. Annual direct cost of corrosion for highway bridges 

Several statistics over the last 25 years indicate that the corrosion of steel in concrete has 

become a costly problem in the United States. Approximately half of the nearly 600,000 bridges in 

the U.S. Federal Aid Highway system have structural deficiencies or are functionally outmoded. A 
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quarter of U.S. bridge decks are badly deteriorated according to US Federal Highway 

Administration (FHWA) estimates. Even severely, with the existing of road-salt application, 

expensive repairs are often required within 5 to 10 years. This harsh situation is spreading to the 

entire world. Research indicates that the service life of buildings in the Arabian Gulf may be 5 to 

15 years. Reinforced concrete bridges near the seashore in Japan show rapid deterioration within 

10 years of construction. 

1.2. Related Durability-Increasing Methods 

To overcome the durability problem that steel-reinforced concrete brings to us, researchers 

tried lots of measures: epoxy-coated rebar [4], cathodic protection [5], and increasing the thickness 

of the concrete cover. Each method has its advantage and disadvantage due to its original 

properties. For instance, cathodic protection method is outstanding in protecting a great deal of 

metallic structures in various environments, from storage tanks, fuel pipelines, and 

offshore oil-well platforms to metal bars in concrete structures. However, three significant 

problems ---- cathodic shield, cathodic disbond, and the generation of hydrogen ions, are adversely 

manifest. Similarly, the protective method of increasing the thickness also has its corresponding 

pros and cons. Obviously, this method is a very simple and practical way, because it perfectly 

meets the durability quality and subjects to the requirements of the effective reinforced anchorage; 

up to optimum, leads to a reduction in the out-of-plane deflection rate of the steel plate; and 

effectively avoids the exposure of steel to the outside world, thus relieving the steel corrosion. 

Also, the two layers of concrete covering both sides of the steel plate are a great help in decreasing 
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the secondary moment. In contrast, the oversized protective layer will inevitably lead to economic 

waste by neglecting the concrete tensile effect. The cracks intensified by the oversized protective 

layer under the action of forces will finally affect the performance of concrete components (such as 

damaging the decoration surface and bringing people panic anxiety). An overview of these 

methods is given in Table 1. 

Table 1. A brief comparison of various durability-increasing methods 

Method Pros Cons 

Epoxy-coated FRP 

sheet [4] 
The most popular choice

Bond degradation between the sheet and the concrete. 

The bond strength of a coated FRP sheet will have a 

decrease when compare to a steel sheet without coat.

Cathodic protection [5] 

Protecting a great deal of 

metallic structures in 

various environments 

Athodic shield, cathodic disbond, and the generation 

of hydrogen ions 

Increasing thickness of 

concrete cover 
Simple and practical  

Economic waste 

intensified cracks 

1.3. Previous Work 

As an innovative and effective substitution, Fiber Reinforced Polymer (FPR), made of a 

fibers-reinforced polymer matrix, is produced because of its outstanding corrosion resistance; 

flexible, complex shapes; electromagnetic transparency and high strength-density ratio. In this 

FRP-reinforced method, the efficient force transfer is crucially depending on the quality of 

FRP-concrete interface. What needs to be stated is that the terminology “interface” is defined as 

the adhesive, adherents, bonded joint, and even the relative slip between two parts in contact. 

Actually, a lot of premature failure caused by the debonding of adhesives between concrete and 

reinforcing materials is the major concern for FRP reinforcement. Therefore, it is need to soundly 
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understand the behavior of the FRP-reinforced concrete interface in relation to structural safety for 

a wide variety of applications [6][7][8][9][10]. 

As far back as the 1970’s, the interfacial stress between concrete and the plate has received 

great attention. Numerous experiments and research were conducted to assess the mechanism of 

FRP-reinforced concrete structures. At early stage, the experiments mostly attributed the stress to 

the maximum axial force and the minimum bonded length [11][12] without considering the strains. 

Lately, experiments measured the axial strains along the interface, including Axial compression 

test, pull-out test, single-lap test, and double-shear test [13][14][15][16]. 

In addition, practical-use structural applications were also put into action and established 

both design guidelines and code provisions for further FPR design and construction. However, real 

experiences told us that premature failure due to delamination of adhesives between the FRP plate 

and concrete is the major concern. Quantitatively characterizing the kinetics of debond growth 

along the concrete-to-FRP interface is becoming the most pressing matter of the moment [17][18]. 

In order to obtain a high level of insight into the mechanical stress analysis of such new materials 

and to guarantee their structural function under service conditions, several methods and models 

were proposed to evaluate the accurate bond strength. J. Yang et al. present Fourier series and the 

minimization of complementary energy to solve the interfacial stresses in FRP-strengthened 

beams undergoing thermal and mechanical loads placed at the mid-span symmetrically [19]. 

Boucif Guenaneche et al. use linear elastic theory to consider the interfacial slip generated by the 

time-dependent slow deformations (ex. creep and shrinkage) and the adherent shear deformations 
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[20]. With the help of higher-order beam theory, Rabinovitch and Frostig apply a 2D linear elastic 

continuum to simulate the adhesive part with negligible longitudinal stiffness [41].  

1.4. Problem Statement 

However, above methods, combined with other relative methods, such as high-order beam 

theory and the fracture mechanics model, take both bending deformations and shear deformation 

into account, but are relatively complex due to integration with high-order variables. Not to 

mention the encountered, tired endless integrals in the way to problem solving, the higher 

equilibrium equations are also not a small challenge.  

Then, an investigation on how to effectively calculate the bending deformations and shear 

deformation with a much simpler method is desired.  

1.5. Purpose and Objectives 

Based on the problem stated in the above paragraph, the purpose of the study in this thesis 

is to simply the solution method. In general, the objectives to reach can be summarized: 

1) Clarify the parameters affecting the bond strength. 

2) Exactly capture the interfacial normal stress and shear stress. 

3) Properly model the interfacial stress. 

4) Generate a usefully solution method for the given model. 

1.6. Organization of Thesis 

This thesis is organized by a logical sequence – the sequence that the author study and 

unfold the interfacial stress-related problem. Chapter 1 introduces background and defines the 
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problem statement as well as the study objectives. The detailed study methodology is described in 

Chapter 2. Chapter 3 reviews the mechanical properties of interface, by analyzing the existing test 

of bonded structures, and distinguishing the most appropriate one for current problem. From the 

chosen test, the data of impacting parameters is obtained and how these parameters influence the 

interfacial stress is discussed. Chapter 4 builds a bond-slip constitutive relation based on the 

chosen test for further mechanical study, completely considers the possible failure types and the 

affecting factors of bending reinforcement, and analyzes current existing interfacial stress analysis 

model. Chapter 5 uses the created parameter foundation models to solve the interfacial stress 

problem following a logic sequence from one-parameter model to three-parameter model. Chapter 

6 verifies the accuracy of the created models by comparing with other existing methods and data. 

Chapter 7 concludes the study findings and discusses the potential future study areas. 
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CHAPTER 2. METHODOLOGY 

This study gradually develops three elastic-foundation models, which is mainly derived 

from the solution of superficial stress in the foundations-soil system. The one-parameter Winkler’s 

elastic foundation model is simple and easy to use by representing the stiffness of the vertical 

springs with a parameter, k. The two-parameter elastic foundation model calculates the interfacial 

shear force of the joint bond on the basis of the one-parameter one. The three-parameter model 

additionally considers the adhesive layer’s transverse displacement to meet the boundary 

condition of zero shear stress. Finite element analysis (FEA) as a reference group is adopted to 

validate the three proposed foundation methods. The structure performance and durability under 

service conditions need to be taken into account [21]. The details of study methodology (The 

sequence of this methodology are illustrated in Figure 2) are: 

1) Collecting the existing experimental and theoretical research results, and discussing 

their rationality and the further problems. 

2) Based on the in-plane shear test, proposing reliable numerical model, discussing the 

spin-off failure mechanism, and obtaining the bond - slip constitutive relations for 

FRP-plated concrete interface. 

3) According to the numerical model and constructive relations gained from in-plane 

shear research, comprehensively studying the interfacial flexural peeling and shear 

peeling problem. 

4) Studying the possible failure types and the affecting factors of bending reinforcement. 
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Figure 2. A flowchart of methodology 
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5) Proposing own numerical models to discuss the bond’s failure mechanism according to 

the characters of shear and peeling stress, by following the logic developing sequence 

from one-parameter to three-parameter model. 

6) Comparing the results from this thesis with existing methods to approve the 

reasonableness and accuracy. 
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CHAPTER 3. MECHANICAL PROPERTIES OF INTERFACE 

3.1. Introduction 

With the general growth of construction requirements quality, safety, and durability in 

many civil fields, it is hardly surprising that the FPR-bonded concrete has attracted considerable 

attention in recent years. In an attempt to ensure “safety-guard” assumptions about how FPR plates 

improve the properties of the structure (the assumption that FPR plates limit the cracks along the 

concrete surface, for example), studies have focused on anything from different mechanical, 

structural, or aesthetic uses of FRP plates to strength of the concrete. While some researchers have 

looked at why it performs outstanding on the basis of a mechanical advantage, other workers are 

focused on the properties of multifarious FRP. Accordingly, H.R. Meyer-Piening and Koganti M. 

Rao suggest that research on FRP-faced beams can be studied by the following five parameters: 

boundary conditions, ratio of FRP thicknesses, FRP’s fiber orientation, thickness to width ratio, 

and length to width ratio [22]. Experiments show that large number damages of FRP-reinforced 

concrete structures occur because of the interfacial peeling, so the accurate interfacial peeling 

strength model and the exact bond-slip model are of paramount essence in establishment of the 

FRP-reinforced concrete structure calculation theory. To this end, scholars from various countries 

have conducted a lot of the research in this area. 

3.2. Test of Bonded Structures 

To better evaluate the resistance of the bonded structures, and monitor the interfacial stress 

along the bond interface, several tests can be adopted. Various testing devises are devised 
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according to the types of the test. This thesis shortly reviews some of the most popular test as 

following sections [23].   

3.2.1. Peel tests 

This type of test is outstanding in testing the interfacial fracture resistance while a thin 

layer placed on a thick adherent or between two adherents. As in Figure 3, by executing forces to 

tear two adherents apart from each other or tear an adhesive layer from its substrate, it is widely 

suitable in all kinds of structure, especially for some non-symmetrical ones.  

 

 

Figure 3. Peel test 

Applied force
(a) case 1

Applied force

Applied force

(b) case 2
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3.2.2. Wedge tests  

 As in Figure 4, in this test, an opening or tensile load, normal to the crack, are directly 

executed on the bond by inserting a wedge in between the two parts of bonded structures. During 

the process of testing, a critical energy release rate can be derived by monitoring the crack length. 

However, with the different thickness of the two bonded adherents and the adhesive, especially 

when adhesive exhibits a high stiffness, a sliding or in-plane shear mode can be introduced that one 

adherents slide over another in the longitudinal direction. 

 

 

Figure 4. Wedge test 

3.2.3. Double cantilever beam tests  

As in Figure 5, by applying opposite opening or tensile forces, normal to the crack, on the 

two adherents at the end, this test value resistance of bond in a fracture mechanics framework.  

However, in most cases, the crack in this test is fragile and easy to propagate along the 

entire interface of the composites, so this type of crack must be limited to avoid totally separation 

Applied force

(a) case 1

slide

(b) case 2
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from two adjacent adherents. The collapse velocity of the composites depends on the different 

thickness of the two bonded adherents and the adhesive, and the bonding stresses between them. In 

the industry, the type of composite is not recommended to put into practice. 

 

Figure 5. Double cantilever beam tests 

3.2.4. End notch flexure tests  

As in Figure 6, the two adjacent adherents in this test are fixed at one end and loaded on the 

other side. Open cracks of the bond are not permitted in this type of test, and only force 

perpendicular to the interface is accepted rather than axial force. 

 

Figure 6. End notch flexure tests 

3.2.5. Mixed-mode delaminating beam tests  

As in Figure 7, two starting cracks subjected to four point loads are consisted this test. This 

test is kind of complexity with crack due to the peeling force normal to the bonded interface and 

Applied force

Applied force

Applied force
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the slide of two adherents due to the shear force executing on the adhesive. The thicknesses of 

adherents have a great influence on the failure types. 

 

Figure 7. Mixed-mode delaminating beam tests 

3.2.6. In-plane shear test 

This type of test is the most widely used method in practical engineering applications, 

especially for concrete beam related area. All of following analysis in this thesis about the 

constitutive relations is also based on this test, as in Figure 8.  

 

Figure 8. In-plane shear test 

3.3. Types of In-Plane Shear Test 

Interfacial shear properties can be generally studied by the in-plane shear test. Although 

different researchers use a variety of in-plane shear test methods, all of the tests can be integrated 

into the basic mechanical model (Table 2) as classified by Chen et al. (2001) in his paper [12].  

Applied force

Applied force

Applied force

Applied force

Applied force
Applied force
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Table 2. Types of in-plane shear test [12] 

Single lap 

Near-end  

Far-end   

Double lap 

Near-end  

Far-end 

Comparing the result from those in-plane shear tests, the reasons for shear peeling damage 

can be demonstrated in the following five points [24]: 

1) Laminated peeling debonding within the FRP plate; 

2) Interfacial peeling debonding between the FRP and the adhesive; 

3) Laminated peeling debonding within the adhesive layer; 

4) Interfacial peeling debonding between the concrete beam and the adhesive; 

5) Laminated peeling debonding within the concrete beam. 

For the current most commonly used organic layer, since adhesive layer and fibers can 

infiltrate well with each other, and the tensile strength of the adhesive layer is much higher than 

Concrete

FRP plate

Concrete

FRP plate

Concrete

FRP plate

Concrete

FRP plate
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that of concrete, the first four failure modes are not acceptable in the case of reliable layer 

construction and not allowed in FRP-reinforced concrete, otherwise will be treated as inferior 

quality in materials and construction. Thus the "ideal reliable" interface debonding is ripping off at 

the concrete bottom. 

3.4. Impacting Parameters 

3.4.1. Concrete strength 

As the peeling failure happens at the concrete bottom, the strength of concrete takes a 

significant impact the interfacial bonding performance and the peeling capacity. Many researchers 

have pointed out that the interfacial failure is mainly associated with the concrete strength. 

[25][26]. 

3.4.2. Bonding length 

The bonding length of FRP plate is an important influence factor. If the bonding length is 

smaller than the effective anchorage length Le, the bonding length has a positive impact on the 

peeling capacity. 

3.4.3. Stiffness of FRP sheet 

Studies from experiments have shown that the greater the stiffness of FRP plate is, the 

more uniform the interfacial bonding stress can be.  

3.4.4. Width ratio 

One phenomenon observed from the tests is that the width of peeled concrete is bigger than 

that of the FRP part. 
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 Therefore, the width of affected concrete under shear force is bigger than the FRP plate, 

and the peeling stress is positively influenced by the width ratio  (  is the width of concrete 

adherend, is the width of FRP plate), however, the increase is not infinite; there is a highest 

peeling capacity limitation. 

3.4.5. Adhesive 

In the in-plane shear test, the tension force directly instruct on the FRP plate, so the 

adhesive layer between the FRP and concrete is close to pure shear stress state. The tensile strength 

of common organic layer is greatly higher than that of concrete, so the adhesive has little effect on 

the bonding properties of the interface. Although studies have shown [27] that a very soft layer 

(shear stiffness is 1 / 20 ~ 1 / 5 than a common layer) can improve the interfacial peeling capacity, 

but this theory is not approved by most of the academic researchers. 

3.4.6. Position and the end constraints 

If the non-bonding length of the loaded component is not surplus enough, the concentration 

of the shear force at the end is obvious, and the corner of the concrete block will be stripped off. 

That means, in the in-plane shear test, the minimum value of the non-bonding length of the loaded 

component is required to avoid concrete collapse in the corner area. 

3.5. Bond-Slip Constitutive Relation 

The in-plane shear test is not only used to determine the FRP-concrete interfacial peeling 

capacity, but also suitable for local bond - slip constitutive relations. The following equation 

b

f

b
b bb

fb
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illustrates one of the widely recognized theories. By arranging serious strain gauges on the 

surfaces of FRP plate, axial strain distribution  (  is the axial strain distribution of the FRP 

plate) can be easily measured. Next, the local bonding stress  is obtained by conducting 

differential.   

f f
f

E d

dx

ε
τ =    (1) 

The local strain fS  can also be achieved by integration from the free end of the FRP plate. 

f fS dxε=      (2) 

Although this method is very simple in theory, many difficulties have encountered in the 

tests. First, the interfacial bonding stress gained from the differential equation  is not precise 

as expected, since the gauges cannot be arranged closely enough. More importantly, the interfacial 

cracks at the middle bottom of concrete component and the random distribution of material 

，composition have a great influence on the measured FRP strain. For example if concrete cracks 

just under the strain gauge, the measured strain will be much greater than that of adjacent the strain 

gauge; If the strain gauge just attached a piece of aggregate, the measured strain will be much 

smaller than that of adjacent the strain gauge.  

Therefore, many researchers have found that even for different specimens with same 

parameters, the measured local bond - slip relationships result in different outcomes. That means, 

the local bond-slip relationships are hard to be obtained by putting gauges of the strain distribution. 

Then, it is obvious that the results get from the in-plane shear test is not reliable relatively. 

fε fε

τ

fd

dx

ε
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3.6. Summary 

This chapter focuses on of a comprehensive review of the mechanical properties of 

concrete - FRP interface, collects and collates the knowledge of the existing test results, analysis, 

and bond - slip constitutive models. This information provides a reliable experimental basis for the 

in-depth analysis on the FRP-concrete interfacial stress. Although one widely accepted bond - slip 

constitutive model is planned in this chapter, the following questions still exist at current stage. 

Although a lot of experimental research has done about this bond - slip constitutive model, 

it is not enough to build an accurate numerical model to embody the internal mechanism of 

debonding failure. 

It is tough to measure interfacial bond - slip relationship in the in-plane shear test [23], and 

the results are of large dispersion, so the accuracy of the measured bond - slip model is under 

doubt. 
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CHAPTER 4. BENDING REINFORCEMENT 

4.1. Introduction 

The adhesion of FRP plate to concrete beam is important to ensure the cooperation of two 

components. Generally believed that, in the FRP-reinforced concrete structures, the bonding stress 

along FRP-concrete interface is mainly on account of shear stress. It can be illustrated in the 

bending reinforcement and in the shear reinforcement. For example, in the bending reinforcement, 

the bottom-pasted FRP plate (Figure 9) bears part of the cross-section moment and improves the 

flexural capacity because of the tensile force generated by the shear stress along the FRP-concrete 

interface.  

 

 

Figure 9. FRP plate bonding types 

In the shear reinforcement, the side-pasted FRP plate (Figure 9) bears part of the shear 

tension through the shear stress along the FRP-concrete interface, prevents the development of 

inclined cracks and improves the component shear strength. Only in rare cases, the interfacial 

normal stress will have a major impact. For instance, in the bending reinforcement, a mutation of 

 (a) Bottom-bonded FRP plate

Concrete

Adhesive
FRP plate

 (b) Side-bonded FRP plate
Concrete

Adhesive
FRP plate
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the cross-section flexural stiffness occurs at the end of FRP component, and a force concentration 

leads the bond joint into a severely peeling situation. Also, the normal stress results from rigid 

dislocation of the inclined cracks greatly aggravate the peeling damage.  

In practical engineering applications, since the adverse effects of the interfacial normal 

stress can be avoided by arranging FRP U-type clamps or mechanical anchoring, etc, the 

mechanical research properties are focused on the interfacial shear stress and the resulting peeling 

debonding, rather than the interfacial normal stress. 

4.2. Failure Types of the Bottom-Reinforced FRP Plates 

Using outwardly pasted FRP plate to improve the flexural strength of the concrete is one of 

the main technologies for concrete reinforcement. In the bending reinforcement, FRP plate is 

affixed to the bottom of beam bears the cross-section tensile stress with tensile steel. 

As we stated above, the mechanical property of FRP-reinforced structure is mainly 

characterized by the bond quality. In addition to two common failure cases: tensile ruptures of FRP 

plate and crushes of concrete, the debonding of concrete beam and FRP component are often seen 

and subject to the following possible cases [28].  

1) Plate end debonding firstly induces at the plate end, and then propagates to the middle 

along the beam-plate interface (Figure 10b).  

2) Flexural crack debonding starts at the high-moment area and derived from the 

generated point to the both ends of the plate (Figure 10c).   

3) Concrete cover debonding (Figure 10d).    
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4) ，Critical diagonal crack debonding generated near plate end by a shear crack, expands 

from the crack to each end of the components (Figure 10e).    

5) Combination of the above four modes. 

 

 

 

 

 

Figure 10. Failure types of the FRP plates 

(e) Critical diagonal crack debonding 

debonding Stress concentration

(d) Concrete Cover debonding

debonding propagation

debonding propagation

Stress concentration
(c) Flexural crack debonding

Stress concentration

debonding propagation

(b) Plate end debonding
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The above four types of debonding failure can be divided into two categories: one is 

stress-induced debonding failure, generated by the force concentration at the FRP sheet end, 

including the FRP plate end debonding (Figure 10b) and the concrete cover debonding (Figure 

10d); the other is crack-induced debonding failure, caused by the development of bottom cracks, 

including the flexural crack debonding (Figure 10c) and the critical diagonal crack debonding 

(Figure 10e). The author summaries the reasons and the protection measures for above various 

flexural debonding failure in Table 3. Currently, for each type of debonding, there are 

corresponding measures to avoid its appearance.  

Table 3. The reasons and the protection measures for various flexural debonding failure 

Category Types  Reason Measures 

Stress - 

induced 

Debongding 

failure 

FRP plate end 

(Figure 10b) 

Because of the truncation of FRP plate, the 

stress concentrates and the cross-section 

flexural stiffness is not continuous at the FRP 

sheet end. Stress-induced debonding is closely 

in connection with the stiffness of FRP plate; 

the greater rigidity the FRP plate has, the more 

possibly the joint debonds. 

Currently, this category of 

spin-off has been handled by 

attaching U-shaped hoop at the 

end of FRP plate or taking other 

mechanically anchoring 

measures. [29][30][31] 

Concrete 

cover (Figure 

10d); 

Crack - 

induced 

Debonding 

failure 

 

Flexural crack 

(Figure 10c) 

Once formed a large bending crack, stress is 

sectionally concentrated at the adjunct areas. It 

is common in the FRP flexural reinforcement. 

This is on account of the much lower strength 

of concrete. Due to the property limitation, 

concrete yields prior to FRP plate, and cracks 

firstly appear in the concrete rather than in the 

FRP plate. 

This peeling failure is depended 

on the trend of concrete flexural 

cracks. U-shaped hoop or other 

anchoring measures is not 

completely useful at this 

situation. , so it is necessary for 

this form of in-depth study of 

debonding. 

Critical 

diagonal crack 

(Figure 10e) 

In this type of debonding failure, appearance 

of a large diagonal shear crack is a siginficant 

sign. It is due to the inadequate resistance to 

shear of the reinforced concrete. After that, the 

structures on both sides of the crack detach 

and dislocate from each other. 

In the actual engineering, the 

general requirement “strong 

shear, weak bending” 

effectively avoids the lack of 

shear strength, and this type of 

failure is not persuasive. 
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4.3. Factors Affecting the Bond Strength 

In the major applications of reinforced concrete over the past several decades, 

steel-strengthening bars are widely employed because of their outstanding characters -- economic 

benefit and efficiency. The similar ability of elongtation of these bars makes them match with 

reinforcing concrete. Unfortunately, the enormous cost for maintenance might be a great challenge 

due to marked corrosion of steel, when it exposed to severe environments. Consequently, various 

new techniques have been utilized to lengthen the service lifetime of structures and to slow the 

deterioration of steel reinforcing bars, such as using synthetic membranes. Among them, 

fiber-reinforced polymer (FRP) is acting as the most outstanding alternate for reinforcing materials 

successfully reduce the weight and size of concrete, and to greatly improve the long-term 

performance of civil construction facilities.      

A polymer with various agents added to enhance its material properties is referred to as a 

plastic. After the combination process, a final product in seized of reliable material properties is 

composite plastics, by bonding two or three homogeneous plastics together. [32]. Due to its low 

material and productions costs, global polymer production began in the mid-20th century, along 

with the emergence of new production technologies and new product categories, and lastly in the 

late 1970’s, full-grew when its productions world-widely used in FRP: glass, carbon, and aramid. 

From the first utilization of GFPR at the end of World War II, to the application of CFRP in the late 

1950’s, and to the stage of omnipresent material today, these fibers have gained a lot of progress 

and achievement in the investigation of strength and elasticity. To comprehensively understand the 
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properties of FRP and its contribution to current society, this thesis reviews a class of structural 

materials involving the influence factors of FRP bond strength in every aspect.   

4.3.1. Type of FRP reinforcement   

The demands for FRPs in the field of construction have considerably increased, especially 

for the two major construction types: CFRP and GFRP as in Figure 11. Due to its strength and 

elasticity, FRP, as a pretty charming material, has been world widely accepted. To efficiently 

improve the properties of structural materials, the influence of the FRP types on the bond strength 

and adhesive expresses an open issue requiring analysis in further detail [33]. 

The prime mechanisms of the joint bond can be concluded into the following three parts: 

adhesive force, frictional force, and engage force.  

For traditional steel rebars, the engage force is the major origin of the bond due to its 

surface characteristics: high shear strength, rib geometry, high rigidity, and so on. However, that 

engage force is also the major limitation for bond strength of FRP sheets. While steel rebars are 

outstanding of lateral confinement owing to their unique rib bearing, FRPs attribute their bond 

strength to the adhesion and the friction. Different mechanical ways of two materials directly lead 

to distinct results that bond-strength values of steel rebars present markedly higher than that of 

FRP sheets [34]. For exterior FRP systems, Marianovella Leone et al. have done some experiments 

about this and present a paper to detailedly illustrate his opinion.[33]. The experimental results 

shown in Table 4 prove that the maximum bond stresses vary with the type of reinforcement 

according to the mechanical properties [33]. 
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     (a) CFRP rebar             (b) GFRP rebar with screw thread 

     

     (c) GFRP bar             (d) Steel 

      

      (e) CFRP Tape            (f) CFRP Laminate 

Figure 11. Types of FRP reinforcement 

In particular, samples faced with the CFRP laminates have the highest value of the 

maximum bond stress. Compared with sheets, the factory production of laminates reacts positively 

on the utmost bond stress, which greatly improves the quality of the reinforcement. The instinct 

gaps of maximum bond stresses between CFRP-faced samples and GFRP-faced samples proves 
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that the mechanical properties of CFRP are much better than GFRP according as reduced 

imperfections.  

Table 4. Maximum bond stresses with types of reinforcement [33] 

Specimens Temperature (0) Maximum bond stress (Mpa) 

CFRP sheet 

20 

4.22 

CFRP laminate 5.65 

GFRP sheet 3.41 

CFRP sheet 

80 

1.96 

CFRP laminate 4.21 

GFRP sheet 0.96 

Also, in other literature, the relationship between the utmost bond stress and the type of 

FRP plate is analyzed. [33]. 

4.3.2. Bonding length 

The most important parameter to measure the performance of FRP-concrete interface is the 

effective anchorage length Le [35]. If the actual bonding length L is smaller than Le, the peeling 

capacity will be increase with the increase of bonding length; if FRP bond length is bigger than if 

Le, the peeling capacity will not be effected by the bonding length.  

4.3.3. Concrete strength 

Several specialists have found that the bond strength occupies a heavily dependent on 

concrete strength. Marta Baena et al. did a tests based on this assumption and show us a 

relationship between the concrete strength and the bond strength. His experimental results are 

illustrated in Table 5 [36].  
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In Table 5, the C2’s bond strength of (high-stress concrete) is almost 1.5 times than C1’s 

(low stress concrete), and the ratio is vitiating up to 2.1. Obviously, the positive influence of 

concrete strength is clear exhibited. 

Table 5. Bond stresses change with concrete strength  

Concrete type Concrete Strength Location of Bond Failure Restraint Factor 

C1(low strength concrete) 15 Mpa At the surface of the FRP sheet Value of concrete strength 

C2(high strength concrete) > 30 Mpa At the concrete matrix FRP’s properties 

4.3.4. Temperature 

Compared to only 30% decrease of steel strength in the scope of 150–200°C, the bond 

reduces approximately 90% at the same temperature range. The temperature impact on the joint 

along the interface of concrete and FRP rebars was discussed by Amnon Katz and Neta Berman in 

their paper. Besides the test, they also developed a semi-empirical model to present that a rise in 

temperature accompanies a decrease in bond strength in Table 6 [37].  

Table 6. Temperature affects bond behavior [36]. 

Specimens Temperature 

(0)

Maximum bond stress 

(M )

Calculated slip 

( )

Experimental 

Sli ( )

CFRP sheet 
20 4.22 0.181 0.661 

80 1.96 0.116 0.078 

CFRP 

laminate 

20 5.65 0.087 0.270 

80 4.21 0.237 0.866 

GFRP sheet 
20 3.41 0.186 0.645 

80 0.96 0.182 0.221 

Besides, Marta Baena et al experiments also give us some ideas that temperature affects 

bond behavior [36]. 
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Finally, the results can be obtained that two parameters are affecting the bond-strength 

reduction: crosslinking and glass transition temperature [37]. 

1) The critical point where the polymer loses its mechanical property is controlled by the 

glass transition temperature of the polymer layer at the surface of the rod. 

2) The quantity of crosslinks is related to the degrading rate of the polymer’s property 

after the glass transition temperature has been attained. 

4.4. Interfacial Stress Analysis Model 

Normally, the behavior of the concrete and FRP interface is the critical parameter that 

affects the FRP-reinforced structures. As far back as the 1970’s, the interfacial stress between 

concrete and the plate received great attention. Numerous studies were conducted to measure the 

mechanism property of FRP-strengthened concrete structures. Quantitatively characterizing the 

kinetics of debond growth is becoming the most pressing matter of the moment [17]. To deeply 

understand the mechanical stress analysis of this advanced material, several methods and models 

were proposed to evaluate the accurate bond strength. 

4.4.1. Closed-form rigorous method 

In simply supported FRP plated-bonded beams, A. Benachour et al. initially worked out a 

closed-form rigorous solution under three load cases: an arbitrarily positioned, single-point and a 

uniformly distributed load. Their model is outstanding, classical, which is general essentially, but 

applicable to various load cases. Their general solutions of adhesive for all three load cases are 

shown below [38]: 
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Figure 12. Three load cases of imply supported FRP plated-bonded beams 

In their model, the stress is related to the properties of the plated beams such as width, 

height and the shear modulus.  
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 Where, G is the shear modulus, and the b, h are the width, height separately.  

(c) Uniformly distributed load

P

(b) Two symmetric point load

P

P 

(a) Single point load
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Different load cases lead to various interfacial stresses. With the help of three boundary 

conditions, A. Benachour et al. separately count the interfacial stresses subjected to various load 

cases. In addition, the high concentrations of normal stress and shear stress are also taken into 

consideration in the process of applying the boundary condition. To better catch the parameters 

that affect the interface behavior, such as the thickness of plate, the fiber orientations, and the 

adhesive stiffness, A. Benachour and his coworkers conduct a parametric study and compare the 

results with other existing solutions  

1) There exist high shear force and normal force concentration at the boundary. 

2) With the increase of beam’s longitudinal fiber, the effective modulus of FRP enhanced.  

3) The higher E-modulus plated has a lower interfacial stress concentration at the 

boundary. 

4) The G-modulus is taken into account in evaluating the peak interfacial stress at the 

boundary.  

4.4.2. Fourier series: minimization of complementary energy 

For FRP-faced beam, to solve the interfacial stress problem, J. Yang et al. present the 

Fourier series and the minimization of complementary energy yielding thermal loads and arbitrary 

loads.[39]. This method is outstanding in accounting the interfacial normal stress has a dramatic 

difference between the two adherent-adhesive interfaces. What is more, in this paper, the stress 

distribution is non-uniform, and the boundary condition is stress free. Same as the closed-form 

rigorous solution, J. Yang et al. method is also set up for various load cases, not only the three 
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basic-load cases: pure bending, pure tension, and partial distributed loading. Their analytical 

predictions can be given as the following main conclusions. 

1) The normal stresses and the shear stresses influence the interfacial stresses at the 

close-by areas together while the former takes more contribution. 

2) When coming to the two types of peak interfacial stresses, they are in proportion to 

axial stiffness’ square root. 

3) Interfacial stresses caused by a uniform temperature can be represented as axial loads 

which are accordingly equivalent, and the temperature gradient caused interfacial 

stresses are relative to bending moment.  

4.4.3. Linear elastic theory 

To solve the interfacial stresses, Boucif Guenaneche et al. use a relatively simple linear 

elastic theory in the FRP-strengthened concrete. Then, on the structural performance, the interface 

slip, which is generated by the time-dependent shear deformations (such as concrete creep and 

shrinkage) and the adherent shear deformations, is seriously considered [40].  

Compared with other solutions, the difference this unique method has is that it innovatively 

uses only one differential equation to express the normal and shear stresses rather than two 

differential equations. Besides, Boucif Guenaneche et al., like some other researchers, also 

conduct a parametric study showing the effects of relative variables to the interface behavior, for 

example, the adhesive stiffness and thickness. Their solutions are very serviceable in the numerical 

studies and experimental research. 
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4.4.4. Higher-order beam theory 

By using higher-order beam theory, Frostig and Rabinovitch presented a 2D linear elastic 

continuous medium to describe the adhesive layer[41]. The model’s governing equations, derived 

from a high-order, closed-form analytical method, are used to characterize the behavior of the 

FRP-bonded beam under the conditions of appropriate continuity and boundary. Although the 

high-order theory is relatively complex in calculation, its dominance in evaluating the 

concentration distribution of shear stress at the boundary cannot be ignored. What is more, it is 

amazing for the ability to be transferred to the simpler theories by omitting the appropriate terms. 

The same as the above methods, Rabinovitch and Frostig are also parametrically studying the 

governing factors that affect the intensity and magnitude of concentrated edge stresses. 
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CHAPTER 5. ANALYTICAL MODEL 

5.1. Basic Assumptions 

The simplified model of a beam plated with an external FRP is usually met in the research 

of harbor, wharf, highway and so on. Figure 13 is the basic simplified model for these types of 

beams, and Figure 14 shows the basic geometry and notation for them.  

 

Figure 13. Simple supported beam placed by FRP  

 

Figure 14. Geometry and notation of a strengthened beam 

5.1.1. Continuous beam assumption 

It is assumed that the substance is fully filled in the entire volume without voids; in simple 

terms, the material is dense. Under this assumption, we can pick up any unit of the adhesively 

bonded structures to process stress analysis. It is worth mentioning that, under normal operating 

conditions, the deformed solid should still maintain its continuity. Therefore, the deformation of 
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the solid deformable body must meet the geometric compatibility; that is, neither “gap” nor 

“squeeze” happens after deformation. 

5.1.2. Homogeneity assumption 

Any volume element of the structure can represent the entire object for the mechanical 

properties. Obviously, this representation varies with different materials. For example, the size of a 

representative unit for concrete is almost ten times that for metal. The minimum size of the 

selected unit is restrictive in order to maintain the average statistics of materials’ mechanical 

properties at a constant value. 

5.1.3. The assumption of isotropy 

Along all directions of the materials, the mechanical properties are same. For metal, the 

statistic is an average value from all oriented crystals. For the FPR materials, due to the 

re-arrangement of the crystal in the rolling process, there is some discrepancy of mechanical 

properties between the rolling direction and perpendicular rolling direction. Also, this small 

discrepancy varies with the type of materials and the degree of rolling, which have little effect on 

the beam’s stress analysis. To simplify the problem, scientists usually adopt the assumption of 

isotropy, so does this thesis’s calculation.  

5.2. One-Parameter Elastic Foundation Model  

So far, most beam research is based on the classical Euler-Bernoulli theory, a simple and 

practical tool used to calculate the beam deflection, but the theory is only suitable for a laterally 

loaded beam without taking the shear deformation into consideration. The Euler-Bernoulli beam 
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theory, discovered by Jacob Bernoulli, is also called classical beam theory, engineering’s beam 

theory, or beam theory. After the generations of the Ferris wheel, it is widely spreading because it 

creatively hypothesizes that cross sections keep plane and perpendicular to the beam’s central axis. 

However, while this theory contributes a lot to the slender beams’ case, the error in shear force and 

moment distribution caused by neglecting transverse shear deformations is a fatal factor for thick 

beams with discrete loads [42]. Therefore, most current mechanical analyses are based on the 

Timoshenko beam theory.  

 

Figure 15. Simply supported sandwich plate subjected to a lateral pressure load 

Winkler’s elastic foundation model (Figure 15), as the most classical mechanical model, 

assumes a linear force-deflection relationship between the beam and the jointed FPR plate. In this 

model, the mechanical interaction of the two parts can be represented by several vertical mutually 

independent springs with a stiffness parameter k to resist beam’s deformation, and these linear 

springs are closely spaced. 
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Within a representative adhesive joint, two adherents of concrete and the FPR plate are 

linked by an adhesive of latex-based layer. Two adherents are built as Winkler’s beam with 

thickness h1 and h2 and with width b. Based on Winkler’s elastic foundation model, the slide along 

the connecting interface is neglected. We take the vertical displacement into consideration. 

 

Figure 16. Cross section of FRP-reinforced concrete 

Serials of equilibrium equations can be derived from the force diagram in Figure 16. The 

adhesive layer is thinner when compared with the joint adherents, then through the layers thickness, 

the stresses of which could be deemed as constant. 

 

Figure 17. Adhesive modeled as a vertical spring 

In this one-parameter model, the separation of two adherents generated an interfacial 

normal stress, which is the stress normal to the FPR-concrete interface, represented by ( )xσ in 

Figure 17 [43] [44] [45]. 
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5.2.1. Applying continuative equations 

The relationship between stress and strain can be written as following:  

( )

( )

   
      a a
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w x
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In equation (5), the adhesive is built as a liner-vertical spring with a stiffness of 
a
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σ = Δ = −    (6) 

The curvature is determined by the moment in the cross section 

( ) ( ) ( ) ( ) ( )22

2 2
   ,  f fb b

b b f f

dw x M xM x dw x M x
w

EI dx E I dx E I
′′ = −  = − = −  (7) 

EI is the bending rigidity. 

5.2.2. Applying equilibrium equations  

 

 

Figure 18. Free-body diagram for one-parameter model 
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With the help of equilibrium equations, the relationship of moments, shear forces, axial 

forces can be built showing in Figure 18.   

Forces are balanced in x direction. 

0, 0fb
dNdN

dx dx
= =       (8) 

Forces are balanced in y direction 

( ) ( ) ( ),b f f fQ q x x x b x Q x b xσ σΔ = Δ + Δ Δ = − Δ    (9) 

( ) ( ) ( ), fb
f f

dQdQ
q x x b x b

dx dx
σ σ= + = −        (10) 

Moments are balanced round the right bottom point. 

( ) ( ) ( ) ( )

( ) ( )

2 2

2

1 1
0,

2 2
1

0
2

b b f

f f

M Q x q x x x b x

M Q x x x

σ

σ

Δ + × Δ − × Δ − × Δ =

Δ + × Δ + × Δ =
      (11) 

( ) ( ) ( )1 1 1
,

2 2 2
fb

b f f f

dMdM
Q q x dx x b dx Q x b dx

dx dx
σ σ= − + + = − −        (12) 

dx is very small, ( ) ( )1 1
0, 0

2 2 fq x dx x b dxσ≈ ≈    (13) 

Then , fb
b f

dMdM
Q Q

dx dx
= − = −        (14) 

Summarizing the relationship ( ) ( ) ( )

0, 0

,

,

fb

fb
f f

fb
b f

dNdN

dx dx
dQdQ

q x x b x b
dx dx

dMdM
Q Q

dx dx

σ σ


= =


 = + = −



= − = −


   (15) 
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5.2.3. Calculating ( )xσ  

Differentiating equation (6) on both side and combining the above-mentioned equations, 

equation (12) can be expressed on the basis of ( )xσ  as follows: 

( ) ( ) ( ) ( )( )
4 2

4 2

1 1 1b b b
f

b b b b b b

dw x dM x dQ
q x x b

dx E I dx E I dx E I
σ= − = = +       (16) 

( ) ( ) ( )
4 2

4 2

1 1 1
=f f f

f
f f f f f f

dw x dM x dQ
x b

dx E I dx E I dx E I
σ= − = −        (17) 

And substituting equation (16) and (17) into equation (6), the differential equation of 

( )xσ  can be achieved in terms of external force. 

( ) ( ) ( ) ( ) ( )( ) ( )
44 4

4 4 4

1 1f ba a
f f

a a b b f f

dw xd x dw xE E
q x x b x b

dx h dx dx h E I E I

σ
σ σ

  
= − = − + +        

    

   (18) 

Simplifying the above equation can get 

( ) ( ) ( )
4

4

1 1a f a

a b b f f a b b

E bd x E
x q x

dx h E I E I h E I

σ
σ

 
+ + = −  

 
     (19) 

Assuming 1

1 1a f

a b b f f

E b
A

h E I E I

 
= +  

 
 and 2

a

a b b

E
A

h E I
= , the governing equation changes 

into 
( ) ( ) ( )

4

1 24

d x
A x A q x

dx

σ
σ+ = −        (20) 

The corresponding homogeneous equation is 
( ) ( )

4

4
0

d x
A x

dx

σ
σ+ =        (21) 

The characteristic equation corresponding to the above governing differential equation is 

( )4
1 0r A+ =                       (22) 
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And the corresponding characteristic root 

 1 1 1 1 1 14 4 4 4 4 4 4 4
1 2 3 4, , ,

4 4 4 4 4 4 4 4

A A A A A AA A
r i r i r i r= + = − = − + = − −      (23) 

Assume 14 4
1 1

4 4
a

a b b f f

E bA

h E I E I
λ

 
= = +  

 
       (24) 

1 2 3 4, , ,r i r i r i r iλ λ λ λ λ λ λ λ= + = − = − + = − −        (25) 

Then, the solution of the corresponding homogeneous equation  

( ) ( ) ( )11 12 13 14 11( cos sin ) cos sinx xx e C x C x e C x C x xλ λσ λ λ λ λ σ−= + + + +      (26) 

C11, C12, C13and C14 are arbitrarily constant coefficients determined by the boundary. 

( ) ( )2
11

1

A
x q x

A
σ = −  is one special solution of equation (20) corresponding to ( )2A q x−  

With the increase of x, the normal stress is approaching to zero. When x is large enough,

11 12 0C C= = . The general result then becomes ( ) ( ) ( )2
13 14

1

cos sinx A
x e C x C x q x

A
λσ λ λ−= + −  

5.2.4. Applying boundary conditions 

At x=0, the moment of FRP plate is boundary free with zero moment ( )0 0f xM = = and zero 

axial force ( )0 0f xQ = = . Between the plate end and the beam end, the moment in this section is only 

resisted by the concrete beam. 

0x = :   ( )0 0f xQ = = ,  ( ) ( )0 0b x T xQ Q= == , ( )0 0f xM = = ,  ( ) ( )0 0b x T xM M= ==             (27) 

( ) ( ) ( ) ( )( )a a
f b

a a

E E
x w x w x w x

h h
σ = Δ = −      (28) 

Where, 
( ) ( ) ( ) ( ) ( )22

2 2
   ,  f fb b

b b f f

dw x M xM x dw x M x
w

EI dx E I dx E I
′′ = −  = − = −    (29) 
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Differentiating equation (28) on both sides, and input equation (29), 

( ) ( ) ( )( ) ( ) ( )2
'' '' f ba a
f b

a a f f b b

M xd x M xE E
w x w x

dx h h E I E I

σ  
= − = − +  

 
   (30) 

When x=0, the above equation (30) changes into 

( ) ( ) ( )2

0

0 0b ba a

a b b a b bx

d x M ME E

dx h E I h E I

σ

=

 
= = 

 
   (31) 

Substituting equation (26) into equation (31), the express changes as: 

( ) ( ) ( )2 2
2 2 2

14 13
1 0

0
2 cos 2 sin Tx x a

a b bx

d x dq x MEA
C e x C e x

dx A dx h E I
λ λσ

λ λ λ λ− −

=

= − + − =   (32) 

Where, 
( ) ( )2

2
14 2 2

1 0

01 1

2 2
Ta

a b b x

M dq xE A
C

h E I A dxλ λ
=

= − −    (33) 

Continuing to differentiate on both sides of equation (32) 

( ) ( )
3 1a

f b
a b b

d x E
Q Q

dx h E I

σ
= −    (34) 

( ) ( ) ( )
3

3 3
34 33 34 332 cos +2 sinx xd x

e x C C e x C C
dx

λ λσ
λ λ λ λ− −= + −    (35) 

( )3
2

3
1

1 1a a
f b

a f f a b b

dq x E EA
Q Q

A dx h E I h E I
− = −    (36) 

( ) ( ) ( ) ( )
3 3

3 2
14 13 3

10 0

1
2 0a

T
a b bx x

d x dq x EA
C C Q

dx A dx h E I

σ
λ

= =

= + − = −    (37) 

By calculating equation (37) and C14, C13 is easy to be answered. 

( ) ( ) ( )

( ) ( ) ( )

3
2

13 143 3 3 2
1 0

3 2
2 2

3 3 3 2
1 10 0

01 1 1 1
0

2 2 2

1 1 1 1
0

2 2 2

Ta a
T

a b b a b bx

a
T

a b b x x

dq x ME EA
C Q C

h E I A dx h E I

dq x dq xE A A
Q

h E I A dx A dx

λ λ λ

λ λ λ

=

= =

= − + − =

− + +
    (38) 
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5.3. Two-Parameter Elastic Foundation Model 

As is stated above, though the one-parameter model is simple and easy to use by 

representing the stiffness of the vertical springs with a parameter, k, the inability to take the shear 

force and the shear strain along the adhesive layers into account makes the one-parameter theory 

clearly less precise. To confront this shortage, the improved two-parameter elastic foundation 

theory, in which various types of interactions between Winkler’s independent springs are closer to 

reality, is introduced and developed by Filonenko-Borodich, Hetényi, Pasternak, Kerr, Vlasov and 

Leontievt (Figure 19).  

 

Figure 19. Free body diagram for two-parameter 

( )
( )

2 2
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0
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1
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xx xx

zz zz
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E vE u
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  ∂      − − ∂            ∂     = =       − − − ∂       −     ∂ ∂ −   +     ∂ ∂ −  

   (39) 

Both theories have been used to find an applicable and simple model of representing a joint 

adhesive. Two-parameter elastic foundation models are much more acceptable. While one of the 
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two parameters is allocated, as in Winkler’s model, to the rigidity of normal springs, the other one 

is assigned to interfacial shear force of the joint bond [1][2]. 

{ }

( )

0

0

f
M N T
f xx f xx f xx

f xx
ff f

f f zz
f

f xz
f f f f

N
fb

f f
f f

f

N
f f

u

x x
uw w

y wz z
r

u w u w
y x

z x z x

uy
M x t

E I x

w

z

u w

z

ε ε ε
ε

ε ε

α

− − −
−

−

−

∂   
   ∂  + +∂    ∂   ∂ ∂       ∂= = = =        ∂∂ ∂       

  ∂ ∂∂ ∂ ∂ ∂    ∂ ∂+ +    ∂ ∂ ∂ ∂  

∂
± + + Δ

∂

∂
=

∂
∂ ∂

+
∂

N

x

 
 
 
  
 
 
 
 

∂  

   (40) 

5.3.1. Applying equilibrium equations    

With the help of equilibrium equations, the relationship of moments, shear forces, axial 

forces can be built showing in Figure 20.   

 

 

Figure 20. Free-body diagram for two-parameter model 
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Differential axial force can be calculated by tracking the balance of force in x direction. 

,b xx f f xx fN b x N b xτ τΔ = Δ Δ = − Δ       (41) 

, fb
xx f xx f

dNdN
b b

dx dx
τ τ= = −     (42) 

Differential shear force can be calculated by tracking the balance of force in y direction. 

( ) ( ) ( ),b f f fQ q x x x b x Q x b xσ σΔ = Δ + Δ Δ = − Δ        (43) 

( ) ( ) ( ), fb
f f

dQdQ
q x x b x b

dx dx
σ σ= + = −       (44) 

Differential shear force can be calculated by tracking the balance of moment at the right 

bottom of each component. 

( )

( )
1

2

0,
2 2

0
2 2

b b b b xx f

f f f f xx f

x x
M Q Q Q b xy

x x
M Q Q Q b xy

τ

τ

Δ ΔΔ + × + + Δ × − Δ =

Δ ΔΔ + × + + Δ × − Δ =
    (45) 

yi(i=a,b) is the distance from interface of the bond joint to the centroidal principal axis of 

the respective adherent.  

Therefore,  

1

2

,
2

2

b b
b xx f

f f
f xx f

dM Q
Q b y

dx
dM Q

Q b y
dx

τ

τ

Δ= − − +

Δ
= − − +

   (46)

xΔ is very small, 0, 0
2 2

fb
QQ ΔΔ ≈ ≈  

Then 
1 1

,
2 2

fb
b f b xx f f f xx

dMdM
Q b h Q b h

dx dx
τ τ= − + = − +      (47) 
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Summarizing the relationship as bellow  

( ) ( ) ( )

1 2

,

,

,

fb b
xx f xx f

fb
f f

fb
b f xx f f xx

dNdN dN
b b

dx dx dx
dQdQ

q x x b x b
dx dx

dMdM
Q b y Q b y

dx dx

τ τ

σ σ

τ τ


= = − = −


 = + = −



= − + = − +


   (48) 

5.3.2. Applying continuative equations 

In the continuative equations, the strains of components takes consider in all three 

deformations: axial, bending and shear. Figure 21 takes part of the FRP plate under consideration. 

Firstly to separately consider the moment effects, it is assumed that the FRP-reinforced is 

subjected to pure bending. 

 

Figure 21. Differential segment of partial FRP plate 

Under pure bending, the force can be worked out through integration 

( ) ( ) ( )

2
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h
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σ

σ
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 
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   

  
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1 2 and σ σ are the normal stress at 1y y= . In the longitudinal direction, ydF bdxτ= , 

Assuming that yτ  remains same at the same y, and neglecting the change of yτ  in dx.  

For the concrete beam, 

The equilibrium equation for dx is ( )2 1 0b b b bN N dF x b dxτ− + − =    (50) 

( )1 2b b b b yb bdF N N x b dx b dxτ τ= − + =    (51) 

( ) ( )
2

2
1 2 2 4

b b b
yb b b b b b b

z

dM b h
b dx N N x b dx y x b dx

I
τ τ τ 

= − + = − − + 
 

   (52) 

( )
2

21

2 4
b b

yb b
z

dM h
y x

dxI
τ τ 

= − − + 
 

   (53) 

( )Inserting the beam equilibrim equation, b
b f b

dM
Q b y x

dx
τ= − +  

( )( ) ( )

( ) ( )

2
2

2 2
2 2

1

2 4

1 1 1

2 4 2 4

b f b b
yb b

z

f bb b
b b b

z z

Q b y x h
y x

dxI

b yh h
y Q y x x

I I

τ
τ τ

τ τ

− +  
= − − + 

 
   

= − − − +   
   

   (54) 

( ) ( )
2 2

2 2

With the reciprocal law of shear stress  

1 1 1

2 4 2 4

y

f bb b
b b b b

z z

b yh h
y Q y x x

I I

τ τ

τ τ τ

=

   
= − − − +   

   

   (55) 

In this equation, bQ and bτ have the same direction 

bQ  is the shear stress, 

zbI  is the moment of inertia, 

bb  is the width of the concrete beam, 

bh  is the height of the concrete beam. 

The shear strain generated by the shear force is 
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( ) ( )
2 2

2 21 1 1 1
=

2 4 2 4
f bb b b b b

b b b
b z b z b b

b yh h u w
y Q y x x

G I G I G G y x

τγ τ τ    ∂ ∂= − − − + = +    ∂ ∂   
 (56) 

G is the shear modulus, u,w are the displacements in the x, y direction. 

Assuming there is no deformation in the cross-section, w and y are independent. 

( ) ( ) ( ) ( )
22

2 2 21 1 1
2

2 4 3 8
f bb b b b

b b b b b b
z b z b b

b yw y h y
u y y Q h y x x C x

x I G I G G
τ τ ∂= − + − − − + + ∂  

 

   (57) 

At the neutral axis, there is no longitude displacement. 

0
0

b
b y

u
=

= ,     ( )0
0

b
b y

u C x
=

= =  

( ) ( ) ( )

2 2
2

2

2
2 2

1 1

2 4 3

1
2

8

b b b b b
xb b b

z b

f b b
b b

z b b

du d w y h dQ
y y

dx x I G dx

b y d x d xy
h y

I G dx G dx

ε

τ τ

 
= = − + − ∂  

− − +
   (58) 

 

Figure 22. Differential segment of partial concrete beam 
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( )

( ) ( ) ( )

2
2

2
2 2

1 1
 

2 4 3

1
2

8

b b b b
xb b b

b b z b

f b b
b b

z b b

M x y h dQ
y y

E I I G dx

b y d x d xy
h y

I G dx G dx

ε

τ τ

 
= + − 

 

− − +
   (59) 

Following the same steps above, xfε is calculated as: 

( )

( ) ( )

2
2

2
2 2

1 1
 

2 4 3

1
2

8

f f f f f
xf f f

f f f f

f f
f f

f b

du M x y h dQ
y y

dx E I I G dx

b y d x
h y

I G dx

ε

τ

 
= = + −  

 

− −
   (60) 

The adhesive layer is subjected to uniform shear stresses, and then across the thickness of 

adhesive, u remains linear. The above analysis are all based on the pure bending, to get the whole 

strain, the strain generated by axial deformation are added into the equation (59) and (60).  

( ) ( )

( ) ( )

3

4

1
,  

2 2 24

1

64 2

f b bb b b
xb

b b b b zb b

f b b

zb b b

h M x N xh h dQ
x

E I E A I G dx

b h d x d xh

I G dx G dx

ε

τ τ

 
= + + 

 

− +
   (61) 

( ) ( ) ( )3
41 1

,
2 2 24 64

f f f f f f f
f f

f f f f zf f zf f

h h M x N x h dQ b d x
x h

E I E A I G dx I G dx

τ
ε  

− = − + − − 
 

   (62) 

5.3.3. Calculating ( )xτ  

In this analysis,  is assumedly uniform and the ( ),u x y can be deemed to change 

linearly across the adhesive height. 

( ) ( )( )1
, ,a

b f
a

du
u x y u x y

dy h
= −    (63) 

( ) ( ) ( )2 2

2

, ,a a
a

d x d u x y d w x y
G

dx dxdy dx

τ  
= + 

 
   (64) 

xxτ
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( ) ( )

( ) ( )

2

2

2

,,1 1
, ,

2 2

,
0

f fba b
b f

a a

a a

a a

du x y hdu x yd u h
x x

dxdy h dx dx h

d w x y M x

dx E I

ε ε
     = − = − −     

      

= − ≈
   (65) 

( ) ( )2 ,
, ,

2 2
fa a b

a b f
a

hd x d u x y G h
G x x

dx dxdy h

τ
ε ε
   ≈ = − −   

    
    (66) 

Inputting the equation (61) and the equation (62) into (64), it is the governing differential 

equation of ( )xτ  

( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )
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3 4

1 1
 

2 24 64 2

1 1

2 24 64

2 2

f bb bb b b b

b b b b zb b zb b b
a

a f f f f f f f

f f f f zf f zf f

f f f b bb

f f f f b ba

a

d x

dx

b hM x N x d x d xh h dQ h

E I E A I G dx I G dx G dxG

h h M x N x h dQ b h d x

E I E A I G dx I G dx

h M x N x M x N xh

E I E A E IG

h

τ

τ τ

τ

  
+ + − +     =  

  − − + − −   
  

− + +

=
( ) ( ) ( )

3

4 43

1

24

1 1 1

24 64 64 2

f f

b b zf f

f f f bb b b

zb b zf f zb b b

h dQ

E A I G dx

b h b hd x d x d xh dQ h

I G dx I G dx I G dx G dx

τ τ τ

 
+ 

 
 
 + + − + 
 

 (67) 

Since the deflections are small, by approximately assuming they have same curvature, the 

relationship between the moments could be written as ( ) ( )b b
b f

f f

E I
M x M x

E I
= , the Amir M. Malek 

et al.[46] listed the equations of bending moment, but they omitted the affection of peeling stress. 

So their answers are not applicable. 

( ) ( )
2 2

fb
T b f f a

hh
M M x M x N h

 
= + + + + 

 
   (68) 

Where,  
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( )

( )

2 2

2 2

f f fb
f T f a

b b f f

fb b b
b T b a

b b f f

E I hh
M x M N h

E I E I

hE I h
M x M N h

E I E I

  
= − + +  +   

  
= + + +  +   

   (69) 

Inputting equation (68) into equation (67), the governing differential equation is  

( )
( ) ( )

( ) ( ) ( ) ( )

3
2

4 5
2

2 21

2

1

fb
a

a
T f f b b

a b b f f

f ba a

a f f a b b

hh
h

d x G
B M h N h N

dx B h E I E I

N x N xG G
B x B q x

B h E A h E A

τ

σ

 
+ + 

 = − − −
+

− + + −

   (70) 

( ) ( ) ( ) ( )2

1 3 4 52
T

d x d x dq xdM
B x B B B

dx dx dx dx

τ σ
τ− = − + −    (71) 

Where ( ) ( )1
2

2 2 1 1 1

2

fb
a

a
f f b

a f f b bb b f f

hh
h

G
B b h h

h E A E A BE I E I

  
+ +  

  = + + +
 +
 
 

   (72) 

4 4

2

1 1
1

64 64 2
f b f fa b

a zb b zf f b

b h b hG h
B

h I G I G G

 
= − − −  

 

( )
( )3

2

1

2

f ba

a b b f f

h hG
B

B h E I E I

+
= −

+
   (73) 

3 3

4
2

1 1 1

24
f fa b

a zf f zb b

b hG h
B

B h I G I G

 
= − −  

 
, 

3

5
2

1 1

24
a b

a zb b

G h
B

B h I G
= −    (74)  

The general solution to equation (70) and (71) is given by 

( ) ( ) ( )
1 1 3 54

1
2

1 1
21 2

TB x B x d x dq xB BdM B
x

B dx B dx B d
C e

x
e C

σ
τ −= × ++ × + −    (75) 

5.3.4. Calculating ( )xσ  

Based on the above one-parameter analysis, we can get the normal stress first. 
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The stiffness of the vertical spring is 
a

a
a

E
k

h
=  

( ) ( ) ( ) ( )( )a a
f b

a a

E E
x w x w x w x

h h
σ = Δ = −       (76) 

For a differential element, its curvature can be indicated by its applied moment ( )M x  

 
( ) ( ) ( ) ( ) ( )22

2 2
   , f fb b

b b f f

dw x M xM x dw x M x
w

EI dx E I dx E I
′′ = −  = − = −         (77) 

Here, EI is the flexural stiffness for each component. 

Differentiating equation (77) on both side twice, the differential equations are changed into 

follows in the light of , 

( ) ( ) ( ) ( )
4 2

14 2

1 1b b xx
f f

b b b b

dw x dM x d
q x x b b y

dx E I dx E I dx

τσ = − = + − 
 

       (78) 

( ) ( ) ( )
4 2

24 2

1 1f f xx
f f

f f f f

dw x dM x d
x b b y

dx E I dx E I dx

τσ = − = − + 
 

       (79) 

Substituting (78) and (79) into (76) 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

2

244 4

4 4 4

1

1

1

1

1 1

1 1 1

1

f f
f ff ba a

a a

f f
b b

f f
f f f fa

a

f f
b b b b b b

a

a f f

d x
x b b y

E I dxdw xd x dw xE E

dx h dx dx h d x
q x x b b y

E I dx

d x
x b b y

E I E I dxE

h d x
q x x b b y

E I E I E I dx

E

h E I

τ
σ

σ
τ

σ

τ
σ

τ
σ

  
− +  

    = − =         − + −    
 

− − 
 =  
 − − + 
 

= − + ( ) ( )1 21 f fa
f

b b a b b f f

b y b y d xE
x b

E I h E I E I dx

τ
σ

   
+ −      

   

 (80) 

( )xσ
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 and  are coupled in this differential equations and difficult to solve this 

equations set. In order to simple this problem, the author neglect the influence of shear 

deformations in both structures. 

Then ( )xτ change into ( ) ( )
1 1 3

21 22
5

1 1

B x B x T
dq xB BdM

C ex
B d

C
x B dx

eτ − += × + × +  

The governing equation changes into  

( ) ( ) ( )
1

4
2

14

d x d xF
F x

d dxBx

σ τ
σ+ =             (81) 

( ) ( ) ( )
1 1

4 22
3 52 2

1 2 34 2 2
1 11

21

1

22
B x B x TC e C

d x d q xB BF d M F
F x F F

dx B dx B dxB B
e

σ
σ −× +++ ×= −   

   (82) 

Where, 1

1 1a f

a f f b b

E b
F

h E I E I

 
= +  

 
, 1

1 2
2

a
f

a b b f f

E y y
F b

h E I E I
B

 
= −  

 
, 3 2F F= ,  

1

3
4 2

1

B
F F

B B
= , 

1

5
5 2

1

B
F F

B B
=    (83) 

Using the same method in the one-parameter medal, the general solution of the 

corresponding homogeneous equation is 

( ) ( )
( ) ( ) ( ) ( )

31 32 33 34

31 32 33 34

( cos sin ) cos sinx xx e C x C x e C x C x

x x x x

β βσ β β β β
σ σ σ σ

−= + + +

+ + + +
       (84) 

Where 14

4

Fβ =  

C31, C32, C33, and C34 are arbitrarily constant coefficients decided by boundary 

conditions 

( )xσ ( )xτ
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( ) 12
31

1
21

B xx C
F

F
eσ =  is one special solution corresponding to 1

212
B xCF e×  

( ) 13
32

1
22

B xF
C ex

F
σ −− ×= is one special solution corresponding to 1

223
B xCF e−− ×  

( )
2

4
33 2

1

TF d M
x

F dx
σ = −  is one special solution corresponding to 

2

4 2
Td M

F
dx

 

( )2
5

35 2
1

d q xF

F dx
σ =  is one special solution corresponding to 

( )2

5 2

d q x
F

dx
 

x is starting from the left intersection of concrete beam and FRP plate, in another word, x is 

always positive. With the increase of x, the normal stress is approaching zero, and as a result

31 32 0C C= =  for large x.  

( ) ( ) ( )
1 1

21 22

22
3 52 4

33 34 2 2
1 1 1

cos sin B xx TB x d q xF FF F d M
x e C x C x

F F F dx F
C e C e

dx
βσ β β− −= + + − + +

   (85) 

Substituting ( )xσ into ( )xτ , the expression of ( )xτ is given  

( ) ( ) ( )

( ) ( )

( )

1 14 2 4
33

1 1 1

33
4 4

34

1 21

4 53 3
1 1 1

3 5
1

221 cos sin

1
sin cos

1

B x B x x

T

T

B F B
x e C x x

B F B

d q xB B d M
C x x F F

B B F dx dx

dq xdM
B B

B dx

B C e C e

dx

βτ β β β

β β β

−− 
+ += − +



 



+ − − + 

 
 

+ 





+

   (86) 

5.3.5. Using the boundary conditions 

The moment of FRP plate is boundary free at x=0 with zero moment ( )0 0f xM = = and zero 

axial force ( )0 0f xQ = = . Between the plate end and the beam end, the moment in this section is only 
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resisted by the concrete beam.The secondary boundary condition is at sx L= , where shear force 

and stress are both zero.  

X=0,       ( ) ( ) ( ) ( )0 0 0, 0 0 0 0f b f fN N Q M= = = =    (87) 

sx L=        ( ) 0sLτ =     (88) 

Assuming sL is the length from left end of FRP plate (x=0) to the point of zero shear force. 

The equation (70) at the plate end yields: 

( ) ( )

( )

( )

( ) ( )

1 21 1 22

1 21 1 2

22
3 5

2 2
1 100 0

44
2 3 54 2 4

34 4 4
1 1 1 1 0 0

32
3 4 33 4 4

1 1

22
54

4 4 52 2
1

2

21 22

0 0

2

0

0

T

xx x

T

x x

T

T

x x

d x d q xB Bd M

dx B dx B dx

d q xF FB F F d M
C

B F F F

B C B C

B C B
dx F dx

FF
B M B C B B

F F

d q xFF d M
B B B q

F d

C

C

x dx

C

F

τ

β

== =

= =

= =

+

 
− − + − + +  

 

= − + + −

+ + −

= − +

   (89) 

( )

( ) ( )( ) ( )

2
24 4

4 33 34 4 3 2
1 1 1

21 22 7 7 7

7

7 7

0

2
5

4 5 2
1 0

44
54 4 4

5 3 4 4
1 1 1 10 0

1
2

1

0 0

T

x

x

T
T

x x

B F d M
B C C B B

B F B dx

d q xF
B B

F B dx

d q xFB F d M B
B q B M

B F dx B F

C C F F F

F F
x

F

d

β
=

=

= =

 
− + − + 

 

 
+ − 

 

 
− + + +  

 

= +

   (90) 

Where,  

7

4
1

1
2

1

2

F
F

B
F

B


=


− 
 

 

( ) ( )
1 1

21 22
3 5

1 1

0s s

s s

B BL L T
s

x L x L

dq xB BdM
L

B
C e C e

dx B dx
τ

= =

−= × + × + + =    (91) 
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( ) ( )

( )
( )

( )

( )

1 1

1 1 1 1

1

1 1

1

1 1

1

1 1

24
4 33 34

1

44
54 4 4

4 4
1 1 1 10 0

2
4

4 3 2

22 7 7

7

7

7

1 1 0

5
4

2

1

1

s s

s s s s

s

s s

s

s s

s

s s

B B

B B B B

B

B B

B

B B

B

B B

L L

L L L L

L
T

L L
x x

L
T

L L
x

L

L L

B
B C C

B

d q xFB F d M B

B F dx B F dx

F d M

e e
C F F

e e e e

e
F

e

B B

e

e
F

F B dx

F
B

F

e e

e
F

e e

β
− −

−

−

−

= =

=

+

 
−

= −
+ +

+

+

+

+  
 

 
− − + 

 

− − ( )

( ) ( ) ( )( )

( ) ( )
( )

1

1 1

1 1 1 1

2

5 2
1 0

5 3

3

1 1

7

5

0 0

11

s

s s

s s s s
s s

x

L

TL L

T

L L L L
x L x

B

B B

B B B
L

B

e
F

e e

e

d q x
B

B dx

B q B M

dq xB BdM

B d Bex e dxe

=

−

=
− −

=

+

−
+ +

 
 
 

+ +

−

   (92) 

Inputting 22C into equation (89) and (90), 21C  is expressed in term of 33C , 34C  

( ) ( )

( )
( )

( )

( )

1 1

1 1 1 1

1

1 1

1

1 1

1

1 1

24
4 33 34

1

44
54 4 4

4 4
1 1

21 7 7

7

7

7

1 10 0

2
4

4 3 2
1 1 0

5
4

2

1

s s

s s s s

s

s s

s

s s

s

s s

L L

L L L L

L
T

L L
x x

L
T

L L

B B

B B B B

B

B B

B

B B

B

B L B

x

L

L

B
B C C

B

d q xFB F d M B

B F dx B F dx

F d M
B B

F B dx

F
B

e e
C F F

e e e e

e
F

e e

e
F

e e

e
F

e e

β
− −

− −

−

−

−

= =

−

−

−

=

−

 
+ +  

 

 
+ − 



+ +

+



+

=

+

+

( )

( ) ( ) ( )( )

( )
( )

1

1 1

1 1

2

5 2
1

5 3

3
1

7

0

5

1

1

0 0

1

s

s s

s s
s s

B

x

L

TL L

T

L L
x L

B B

B B
x L

d q x
B

F B dx

B q B M
e

F
e

dq xdM
B B

B dx dx

e

e e

=

=

−

=

−

−

+

−

 
− 

 

− +

 
 +

 + 

   (93) 

Differentiating equation (76) and putting equation (67) (85) into the results lead to  
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( ) ( )

( )

2 44
2 3 52 4

34 4 4
1 1 1 10

1 21 1 2

0 0

22

0

T

xx x

Ta

a b b

d x d q xF FF F d M
C

d
B C

x F F F dx F dx

ME

h E

B C

I

σ
β

== =

= − + − + +

=
   (94) 

( ) ( ) ( )44
52 4

34 4 4
1 1 1 1 1 1 10 0

1 21 22

01 TaT

a b bx x

d q x MF EF F d M
C

d
B C C

x dx h E IF F F F F F F= =

+ + −−=  (95) 

Substituting equation (92) and (81) into the above equation, 

 

( )

( )

( ) ( )( ) ( )

44
7 2

34 4 33 4 54 4
8 1 1 1 1 0 0

22
3 5 52 4

7 4 42 2
1 1 1 18 1 1 0 0

2
7

1

1

3 5

8 1 1 8 1

1

1

01
0 0

T

x x

T

x x

Ta
T

a b b

d q xF F d M
C B C F F

dx dxF F F F F

d q xB F BF F d M
F B B

F B dx F B dxF F F

MEF
F B M B q

h E IF F F F

B

F

B

B

= =

= =

 
= − + +  

 
    

− + +        

+ + −

+


    (96) 

Where, 
2 4

8 7
1

1
1

1
F B

F FB
F B

= +  

Continuing to differentiate equation (94) once again, substituted by the equation (85) and 

applying ( ) ( ) ( ) ( )0 0 0, 0 0, 0 0f b f fN N Q M= = = = at the plate end, the boundary condition is: 

( ) ( ) ( )

( )

3

3

1 1

1 1 1 1

f ba

a f f b b

a a a
f b f b f f

a f f a b b a b b f f

dM xd x dM xE

dx h E I dx E I dx

E E E
Q Q b y b y x

h E I h E I h E I E I

σ

τ

 
= − +  

 
 

= − + −  
 

   (97) 

( ) ( )

( ) ( )

( )

55
3 54

34 33 5 5
1 0 0

2
21 22 1

1

5

1

3

01 1 0

2

1
0

T

x x

fa a b
T f

a b b a b b f f

f fa b a bT
f f

xa b b f f a b b f f x

d q xFF d M
C C

F dx F dx

yE E y F
Q b

h E I h E I E I F

y y dq xE y B E y BdM
b b

h E I E I B dx h E I E I

C C B B

B dx

β
= =

= =

+ + +

  
= − + − −      

   
− + −      +

   

+    (98) 
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Substituting equation (92) (93) and (84) into above equations, 33C  is finally worked out. 

( )

( )

( )

55

33 4 55 5
11 1 0 0

44
4

10 9 4 54 4
11 1 11 0 0

22
2

7 9 10

6 7

3 52 2
11

1 6

1 6

1 8 1 1 0 0

2
9

11 8 1 1

1 1

1 1 1

1 1

1

T

x x

T

x x

T

x x

d q xd M
C F F

F F dx dx

d q xB d M
F F F F

F B F dx dxF

d q xF d M
F F F B B

F B dx dxF F

F F

F

F
F

F F F

B F

F
F

B

= =

= =

= =

 
= − +  

 
  

+ − +        
  

+ − +      

+ + ( )

( )

( ) ( )( )

( ) ( )

22

10 7 4 4 52 2
1 0 0

3 5
011 1 0

2
9 10 7 3 5

11 8 1 1

9
11 118 1

1 6

1

1 1

1
0 0

01 1 1 1
0

1

T

x x

fa b T
f

xa b b f f x

T

Ta a
T

a b b a b b

d q xd M
F F B F F

F dx dx

y dq xE y dM
b B B

F h E I E

B

I B dx dx

F
F F F B M B q

F F F F

ME E
F Q

F h E I F h E IF F

F

= =

= =

  
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5.4. Three-Parameter Elastic Foundation Model 

As is mentioned before, the one-parameter model is obviously simple and easy to use by 

representing the stiffness of the vertical springs with a parameter, k, the inability to take the shear 

force and the shear strain along the adhesive layers into account makes the one-parameter theory 
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clearly less precise. To confront this shortage, the improved two-parameter elastic foundation 

theory, in which various types of interactions between Winkler’s independent springs are closer to 

reality, is introduced and developed by Filonenko-Borodich; Hetényi, Pasternak, Kerr, Vlasov and 

Leontiev. Both theories have been used to find an applicable and simple model of representing a 

joint adhesive. Two-parameter elastic foundation models are much more acceptable. While one of 

the two parameters is allocated to the rigidity of normal springs, the other one is assigned to 

interfacial shear force of the joint bond. 

As this thesis stated above, serious continuous shear springs and distributed normal springs 

are used to modelthe adhesive is built as without any interactions between this two types of springs. 

This kind of adhesive layer simulation is a called two-parameter foundation model, and is 

elaborated in Goland and Reissner’s paper [47]. Although the closed-form formula of interfacial 

stresses from the two-parameter foundation model is rather acceptable and its accuracy is proven 

by other continuum methods such as FEM, there are still small deviations at the small area close to 

the edge of the adhesive layer. In other words, the two-parameter foundation model is deficient in 

satisfying the boundary conditions: no shear stress generated at the adhesive border with free 

boundary condition. To achieve more accurate interfacial stresses of the bond, this thesis refines 

the model by developing the two-parameter foundation model into a three-parameter, elastic 

foundation model. In the two-parameter model, there is a rudimental flaw with the adhesive layer. 

The peel stresses in the beam, adhesive and FRP system are assumed the same; however, they are 

not. Then, the equilibrium equations of the adhesive are not met. The advanced, three-parameter 
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foundation model revises this problem by drawing an additional parameter to separate the two 

interfacial peel stresses. At this stage, the existing interfacial stresses can be cataloged into three 

categories: the peel stresses along the beam-adhesive interface , along the adhesive-FRP 

plate interface , and the shear stress of the adhesive layer . Accordingly, to fulfill this 

idea, this adhesive layer can be modeled as one shear spring layers plus two interconnected normal 

spring layers, one more normal spring layer when compared with the two-parameter foundation 

model. Because of this additional spring layer, the three-parameter foundation model is much 

stricter in measuring the debonding situations and the crack conditions. From this developed 

model, the closed-form expressions of interfacial stresses are simple and clear to work out to meet 

the boundary conditions. Based on the statement above, we can draw the free-body diagram for 

Figure 23. 

`  

Figure 23. Cross section of RFP-reinforce concrete in three-parameter 

5.4.1. Applying equilibrium equations    

Repeating steps in the two-parameter model, the equations for the three-parameter model 

showing the relationship of moments, shear forces, axial forces in Figure 24 be built: 
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Figure 24. Free-body diagram for three-parameter model. (a) concrete beam (b) 
adhesive (c) FRP plate 
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5.4.2. Calculating ( )xτ  

Redoing calculations in the two-parameter model, the governing differential equation of 

( )xτ  can be expressed on the basis of the axial force, the shear force and the moment.  

( )

( )
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Differentiating once on both size of equation and substituted by equation (36), the 

governing differential equation is  

( ) ( ) ( ) ( ) ( )
2

1 3 6 2 7 1 52
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d x dM
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( )4 6 7R R R= − −    (105) 

5.4.3. Calculating ( )1 xσ  and ( )2 xσ  

The vertical stress is represented by a serial of vertical spring with stiffness 2 a
a

a

E
k

h
=  
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Where, 
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According to the Euler–Bernoulli beam theory [48], the curvature is given by 
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Where E  is the Young's modulus, EI is the bending stiffness.  

Differentiating equation four times are 
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Combine equations (109) and (110) (111) together, the governing equation, on the basis of 

the component deflections, is 
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Substituting 
( )
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σ σ  into the above equation, the governing equation changes 
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The governing equations are coupled and difficult to solve this equations set. In order to 

simple this problem, the author neglect the influence of shear deformations in both structures. 

Then ( )xτ change into ( ) ( )
1 1
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Using the same method in the one-parameter medal, the solution of the corresponding 

homogeneous equation is 
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Where 14

4

Sγ =    (119) 

Take the boundary conditions into consideration, is easy to get the arbitrarily constant 

coefficients C51, C52, C53and C54. 
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is the special solution corresponding to ( )2
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Since x is starting from the left intersection of concrete beam and FRP plate, in another 

word, x is always positive. With the increase of x, the normal stress is approaching zero. In the next 

calculation for C33 and C34, to simple the problem, for x at large, it is deemed to be zero, and as a 

result C31=C32=0  
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5.4.4. Using the following two boundary conditions 

The 1st one is at x=0. Here, FRP plate is boundary free with ( )0 0f xM = = and zero axial 

force ( )0 0f xQ = = . Between the plate end and the beam end, the moment in this section is only 

resisted by the concrete beam. 

The 2nd one is at sx L= , where shear force and shear stress are zero.  

X=0,     ( ) ( )0 0 0f bN N= = , ( )0 0fQ = , ( )0fM , ( )0 0τ =  

sx L=     ( ) 0sLτ =                                          (129) 

Assuming sL is the distance from x=0 to the location of zero shear force. 

To simple this problem, assuming that the external load are distributed load or point load, 

so the high order of M(x) and q(x) can be neglected. 
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   (130) 

The equation (103) at the plate end yields: 
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1

h
h

2

1

1

T

x

a
T a

aT

a b b

d x d q x d M
R R R

dx R dx dx

R M R q x R C R S R R

d q x ES d M S
R R R R q x

R dx dx h E

C C

B C C
S

S S I

τ

=

 
= − +  

 

 = − + + + − −

+

 
− 

 

 
+ −



 


+  

 (134) 

( )( ) ( )

( )

2
4 53 3 5 4

4 4 4

22
2

4 3

41 42

1
5

4

1

2 2
1

1 1 1 1

1 1
1

a
T

a b b

T

ES
R C R M R q x R q x

S S S h E I

d q xS d M
R

C C
S

R R
S R dx dxS

= − + −

  
− +  

 

+


+

    (135) 

Where 2
14 6 4 2 1

1

1h
1 h

2
a

a BS R R S R
S

  = + − −  
  

,  

2
3 1 1

11

12

h

2

1 h1
+

2
a aS RS R R

SS

 − 
 

 
=  

 
           (136) 
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( ) ( )
1 1

41 42
3 5

1 1

0s s

s s

R L R L T
s

x L x L

dq xR RdM
L

R
C e C e

dx R dx
τ

= =

−= × + × + + =    (137) 

( )

( )
( )

( ) ( )( ) ( ) ( )

( )
( )

1

1 1

1

1 1

1 1

1 1 1 1

1 1

42

1

1

4 53
4

22
2

4 3 52 2
4 1

4 2
3 5

44

3 5
1

1

1 1
1

1

1 1

s

s s

s

s s

s s

s s s s

s s
s s

R L

R L R L

R L
T

R L R L

R L R L
a

TR L R L R L R L
a b b

T

R L R L
x L x L

R C
S

d q xS d M
R R R

S R dx dx

ER S
R M R q x q x

S h E IS

d

e
C

e e

e

Se e

e

q xdM
R R

R dx d

e

Se e e e

e xe

−

−

−

=

−

=
−

= −
+

−
+

+ +

−
+

  
− +  

  

+ + +


+


 
 
 

 (138) 

Inputting 42C into equation (132), (133), (134) , (135), 41C  is expressed by 53C  and 54C  

( )

( )
( )

( ) ( )( )

( ) ( )

( )
( )

1

1 1

1

1 1

1

1 1

1

1 1

1 1

4 53
4

22
2

4 3 52 2
4 1

3 5
4

2
4

4

3
1

4

1

5

1

1

1

1 1
1

1

1 1

11

s

s s

s

s s

s

s s

s

s s

s s
s

R L

R L R L

R L
T

R L R L

R L

TR L R L

R L
a

R L R L
a b b

T

R L R L
x L

R C
S

d q xS d M
R R R

S R dx dx

R M R q x
S

ES
R q x

S h E I

dq xdM
R R

R d

e
C

e e

e

Se e

e

e e

e

Se

x de x

e

e

−

−

−

−

−

−

−

−
=

−

  
− +  

  

− +

=
+

+
+

+

−
+

+
+−

sx L=

 
 
 
 

   (139) 

( )
1 1

1 1
12

s s

s s

R L R L

R L R L

e e
S

e e

−

−

−=
+

   (140) 

Since x is starting from the left intersection of concrete beam and FRP plate, in another 

word, x is always positive. With the increase of x, the normal stress is approaching zero. In the next 
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calculation for 53C  and 54C , to simple the problem, for x at large, it is deemed to be zero, and as 

a result 51 52 0C C= =   

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )2 1

2 2 2
f a a b f b

a a a

E E E
x x w x w x w x w x w x w x

h h h
σ σ+ = − − − = −  (141) 

( ) ( ) ( ) ( ) ( )22

2 2
   ,  f fb b

b b f f

dw x M xM x dw x M x
w

EI dx E I dx E I
′′ = −  = − = −    (142) 

Differentiating equation (108) twice and substituting (109) into (141),(142) gives  

( ) ( ) ( ) ( )2 2
1 1

2 2

2
 f b

a f f b b

M xd x d x M xE

dx dx h E I E I

σ σ  
+ = − +  

 
   (143) 

( ) ( )
( )

1 1

2
1

22

2 2 2
5

2 1
1 1 41 42

1

1
4 53

h

2

1
2 cos 2 sin

x xR Ra

x x a

a b b

d x R
S R R

dx

dq xES
C e x C e

C e C e
S

x
E I dxS h

γ γ

σ

γ γ γ γ− −

− = − − 
 

− + −

× ×
   (144) 

( ) ( )
( )

1 12
1 1 1 41 42

1

1

2
2

22

2 2 2
54 53

h
+h

2

1
2 cos 2 sin

1 R Ra
a

x x a

a b

x x

b

C e C
d x

S R R R
dx

dq xES
C e x C e x

h E x

e
S

I dS
γ γ

σ

γ γ γ γ

−

− −

 
× ×

 = − − 


+



− −




   (145) 

( ) ( )

( ) ( ) ( )

2 2
1 2

2 2

0 0

2 2
54 3 41 41

0

2
1

021
4 2 2

x x

Ta a

a b b a b bx

d x d x

dx dx

dq x ME ES
C S S

h E I dx h
C

I
C

S E

σ σ

γ

= =

=

+

= − − + − =
   (146) 

( ) ( ) ( )2
41 42

1
54 3

1 10

01 1 1 Ta a

a b b a b bx

dq x ME ES
C S

h E I dx ES
C C

S h IS =

−= − + −     (147) 

Where, 
2

3 1 1
11

12

h

2

1 h1
+

2
a aS RS R R

SS

 − 
 

 
=  

 
   (148) 

Substituting equation (138) and (139) into the above equation (147)  
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( )

( )

( )

( ) ( )( )

22
3 2

54 4 53 3 4 3 52 2
8 4 8 4 1 0 0

4 2
3

8 4 1 1 0

2
3 4

8 4

1

1

1

3 3 5
8 8 41

1 1 1
1

1 1 1 1

1 1 1
0

01 1 1 1
0

T

x x

a

a b b x

a

a b b

Ta
T

a b b

d q xS S d M
C R C S R R R

S S S S R dx dx

dq xER S
S

S S R h E I dxS

ES
S R q

S S h E I

ME
S R M R q

S h E I S SS

S

S

S

= =

=

  
= − +     

 
− +  

 

−

− +

+

−

   (149) 

Where 24
8 3

4 1

1
1 2

R
S S

S R
γ

 
= + 
 

   (150) 

Continuing to differentiate equation (143) once again, and applying the equilibrium 

equation, the results lead to 

( ) ( ) ( ) ( )

( ) ( )

3 3
2 11 1

3 3

2 1

2

2
 

f f b f

a f f b b

f f fb

a b b f f f f b b

Q b y x Q b y xd x d x E

dx dx h E I E I

Q b y b yQE
x x

h E I E I E I E I

τ τσ σ

τ τ

 − + − +
+ = − +  

 
 

= − − +  
 

   (151) 

( ) ( ) ( ) ( )

( )
( )

( ) ( )

1 1

1 1

41 4

3 3
1 2 3 3

54 53 54 533 3

1 3 1

6

4 4
6 53 6 54

1 1

6

2

5 41

3
1

42

4 cos +4 sin

2

1 1
2 2 2

2 cos sin 2 sin cos

1
2

x x

R R

R Ra

x x

x xa
f b

a f f a b b

x x

T

d x d x
e x C C e x C C

dx dx

S S R

E E
Q Q S

h E I h E I

R R
S e C x x S e C x x

R R

C e C e

S C e C e

dM
S R

R d

γ γ

γ γ

σ σ
γ γ γ γ

γ γ γ γ β β

− −

−

−

−

−

+ = + −

+ +

= − +

+ + +

× ×

× +

−

×

+ ( ) ( )4 2
5 6

1 1

1
2 a

a b b

dq x dq xER S
R S

x dx R h E IS dx

 
+

 
+ 

   (152) 

Where, 6
2

1
1

45 2

h
h

2

1
1 a

aR R S RS
S

 +
 

=  


− 
  

− ,  6

1 1a
f b f f

a b b f f

E
S b y b y

h E I E I

 
= −  

 
 (153) 
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( ) ( )( )

( ) ( )

5 41 4
3 4

54 53 6 1 3 1 6 53
1

4 4 2

2

1
6 54 6 3 5 6

1 1 1

1
2

1 1

a
b

a b b

aT

a b b

E R
C C Q S S S R S C

h E I R

dq x dq xER dM R S
S C S R R S

R R dx dx R h E

S

S I dx

C Cγ γ

γ

+ = − + +

 
− + + 

 

− +

+
   (154) 

Assuming ( )7 56 1 3 1S S RSS S= − , 

( ) ( )

( ) ( )

3 4 4
54 53 7 6 5341 42

1

6 54
1 1

4 2
6 6 3 5

1 1

2

1 1 1a a T
b

a b b a b b

R R
C C S S C S C

R R

dq x dq xE ER S dM
S Q S R R

R h E I dx h E I R

C C

S dx dx

γ γ γ+ = + + −

 
+ − + 


+ 



   (155) 

Substituting equation (138), (139) and (149) into equation (153), (154), all the coefficients 

are finally worked out. 

( )

( )

( )( )

22
2

53 9 3 7 4 3 52 2
11 8 4 1 0 0

6 3 5
11 1 11

9 3 7 3 5
11 8 4

9 3 4
7

11 8 4

12
1

12

12
1 1

1 1 1 1
1

1 1 1 1

1 1 1
0

1 1 1

T

x x

aT
b

a b b

T

d q xS d M
C S S S R R R

S S S R dx dx

dq x EdM
S R R Q

S R dx dx S h E I

S S S R M R q
S S S

S S R
S

S S S

S

S
S R

S

S

S
= =


+

+

   
= − +         

 
+ − 

 
 

− + 
 

 
− + + 

+


 

( )

( ) ( )

( )
( )

1 1

4 2

1

1

6
4 1 0

92
9 3 7 4

11 8 4 11 8 1

7 3 5
11 1

2
1

1

01 1 1 1
0

1 2 1
s s

s s

a

a b b x

Ta a

a b b a b b

T

R L R L
x L x L

dq xER S
S

R h E I dx

ME S ES
S S S R q

S S S h E I S S h E IS

d

S

S
S

e

q xdM
S R R

S Re dx dx

=

=
−

=

  
 −    
 

− + −

−
+

 
 

 
 +
 
 

   (156) 

34
9 6

1

2
R

S S
R

γ γ
 

= − + 
 

, 3 4
10 7 4 6

4
12

1

1
2

R
S S R S

S R
Sγ γ

 
= − − 
 

, 11 10 9 3 4
8 4

1 1
S S S S R

S S

 
= − 
 

,  

( )
1 1

1 1
12

s s

s s

R L R L

R L R L

e e
S

e e

−

−

−=
+

   (157) 
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5.5. Summary 

In this chapter, there elastic foundation models are gradually developed to analysis the 

stresses of FRP-reinforced concrete. In the progress from one-parameter model to three-parameter 

model, the model is becoming more complicated and completed. Three-parameter model not only 

overcomes the neglection of shear stress in the one-parameter model, but also solves the boundary 

problem.  
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CHAPTER 6. NUMERICAL VERIFICATION 

6.1. Shear Stress and Peeling Stress under Point Load 

For the FRP-reinforce concrete under point load as shown in Figure 12, the shear force 

( )0TV x =  at the left-end point of FRP plate and the moment ( )0TM x = at this point are: 

( ) 1 2 0q x a x a= + =    (158) 

( ) ( )0 1

0

0 P
T

P L L L
Q x R

L

− −
= = − = −    (159) 

0 1M RL=   ( )
0

0T
T

x

dM
Q x R

dx =

= − = =    (160) 

R is the left reaction force at support, Lp is the distance from the load to the left FRP end. 

 If p is more than one, using the moment balance and the force balance equations to find a 

invented force and its distance to the plate end. 

As shown above, under point load, the solutions of three parameter models are greatly 

simplified. Substituting the shear stress, moment and the distributed force into the results, the 

calculated equation is changed into Table 7 and Table 8.  

Table 7. Solution of one-parameter model under point load 

Solutions ( ) ( )13 14cos sinxx e C x C xλσ λ λ−= +  

Coefficients 

14 4
1 1

4 4
a

a b b f f

E bA

h E I E I
λ

 
= = +  

 
 

1
14 2

1

2
a

a b b

E RL
C

h E Iλ
= −

1
13 2 3

1 1 1

2 2
a a

a b b a b b

E ERL
C R

h E I h E Iλ λ
= +  



 

76 

Table 8. Solution of two-parameter model under point load 

Solutions 

( ) ( )
1 1

21 22
4

1

B x B xC e C e
d xB

x
B dx

σ
τ −= × + × −

( ) ( ) 1 132
33 3 21 2

1
24

1

cos sin B x B xx FF
x e C x C x C C

F
e e

F
βσ β β −−= + + −  

Coefficients 

( ) ( ) ( ) ( )
1 1 1

1 1 1 1 1 1

24
4 33 34 3 1

1

21

7 7 72
s s s

s s s s s s

L L L

L L L L L

B B B

B B B B B LB

C

e e e
F F F

e e e e e

B
B C R

e
C B L

B
β

− − −

− − −
=

+ + +
− −

( ) ( ) ( ) ( )
1 1 1

1 1 1 1 1 1

24
4 33 34 3 1

1

22

7 7 72
s s s

s s s s s s

L L L

L L L

B B B

B B B LB B BL L

C

e e e
F F F

B
B C C B RL

Be e e e e e
β

− − −
= −

+ + +
+ +

( )

( )

33 3
11 1

9 12
9 10 7 3 1

11 118 1 1

1 6

8 1

1 1

1 1
1

fa b
f

a b b f f

a

a b b

yE y
C b B R

F h E I E I B

F L EF R
F F F B RL

F F h E IF
B F

F F F F

 
= −  

 
   

− + +      
   

+

( )7 2 2 1
34 4 33 7 3 1

8 1 1 8 1

1 1

1 8 1

1 a

a b b

F F EF RL
C B C F B RL

h E IF F F F F
B

F F
B

F
= − + −  

Table 9. Solution of three-parameter model under point load 

Solutions ( ) ( ) ( )
1 1

41 4
2 13 6

2
7

1 1 1

R Rx x d x d xR R R
x R

R R dx R dx
C e C e

σ σ
τ − + −= × + × +  

Coefficients 

( ) ( )
1

1 1

24
4 53 54 3 1

4 4 1
41

4

1 1 1
2

s

s s

R L

R L R L

R
R C C R RL

S S R

e

e S
C

e
γ

−

−

 
− − 


=

+

( ) ( )
1

1 1

24
54 3 1 4 53

4
42

1 4 4

1 1 1
2

s

s s

R L

R L R L

e
C

R
C R RL R C

S Se e R S
γ

−

 
= − 

+  
+

( ) ( ) 1
1253 6 3 9 3 7 3 1 9

11 11 1 11 8 4 11 8 1

1 1 1 1 1 1 1 1 1 1a a

a b b a b b

E E RL
C R S R R S S S R RL S

S h E I S R S S S S S h E
S

IS
+

 
= + −  


−



( )1
54 3 4 53 3 3 1

8 4 8 8 41

1 1 1 1 1 1a

a b b

E RL
C S R C S R RL

S S S h E I S SS
−= −  
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6.2. Simplified Formula under Point Load 

In practical engineering, , , and the item with  is much 

larger than others, so in this simplified formula, it is logic to define  

   (161) 

Therefore, the peeling stress and shearing stress can be simplified, and the whole set of 

equations changes into Table 10, Table 11, and Table 12. 

Table 10. Simplified formula of one-parameter model under point load 

Solutions ( ) ( )13 14cos sinxx e C x C xλσ λ λ−= +  

Coefficients 

14 4
1 1

4 4
a

a b b f f

E bA

h E I E I
λ

 
= = +  

 
 

1
14 2

1

2
a

a b b

E RL
C

h E Iλ
= −

1
13 2 3

1 1 1

2 2
a a

a b b a b b

E ERL
C R

h E I h E Iλ λ
= +  

Table 11. Simplified formula of two-parameter model under point load 

Solutions ( ) ( )
1

2
4

1
2

B x d xB
C ex

B dx

σ
τ −= −× ( ) ( ) 13

33 34
1

22cos sin B xx F
x e C x C x

F
C eβσ β β− −= + −  

Coefficients 

( ) ( )

( ) ( )

1 1

1 1 1 1

1

1 1

24
4 33 34

1
22

7 1

7

3

7 2
s s

s s s s

s

s s

L L

L L L L

L

L

B B

B B B B

B

B B L

B
B C C

B

B RL

e e
C F F

e e e e

e
F

e e

β
− −

−

= −
+ +

+

+

+

( )

( )

33 3
11 1

9 12
9 10 7 3 1

11 118 1 1

1 6

8 1

1 1

1 1
1

fa b
f

a b b f f

a

a b b

yE y
C b B R

F h E I E I B

F L EF R
F F F B RL

F F h E IF
B F

F F F F

 
= −  

 
   

− + +      
   

+

 

( )7 2 2 1
34 4 33 7 3 1

8 1 1 8 1

1 1

1 8 1

1 a

a b b

F F EF RL
C B C F B RL

h E IF F F F F
B

F F
B

F
= − + −  

 

1 4sR L >> 1 0sR Le− ≈ 1 s
R L

21 41 0C C= =
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Table 12. Simplified formula of three-parameter model under point load 
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6.3. Finite Element Method Validation and Parameter Analysis 

6.3.1. Theoretical analysis and comparison of finite element results 

The calculated stresses from three models have been compared with the result from finite 

element method. The dimensions, the mechanical behaviors, and the loading case of the specimen 

showing in Figure 25 are obtained from the experiments by Hamid Saadatmanesh [46] and the 

closed-form high-order analysis by O. Rabinovich and Y. Frostig. T. [42]. The load for this test is 

P=100kN. 
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Figure 25. Mechanical Properties of the FRP-strengthened Beam 

The elastic modulus of the total concrete beam can be calculated using the following 

equations. 

1

200,000 27,990
27,990 1 0.018634 31195.23( )

27,990

s c
b c

c

E E
E E

E

MPa

μ
 −= + 
 

− = + = 
 

   (162) 

2 2

6

2 6.5 3 12.5
0.018634 1.86%

0.093275 10
s

b

A

A

π πμ × + ×= = = =
×

   (163) 

The cross-sectional attributes of this system are concluded in [46] and Table 13. 

PP

(a) Loading Case of the FRP-strengthened Beam

     9.5mm
 @330mm

3  25mm

2  13mm

(b) Geometry, Mechanical Propertiesof
the FRP-strengthened Beam
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Table 13. The cross-sectional attributes  

 
Area 
(m2) 

Elastic 
modulus 
(MPa) 

Inertia 
moment 
(m4) 

v 
Shear 
modulus 
(MPa) 

y 
(m) 

Beam 0.09328 31,195 31,195 0.18 11,860 0.2275 
Adhesive 0.00023 814 814 0.37 297  
FRP plate 0.00091 37230 37,230 0.35 13,788 0.003 

Y -- the distance between neutral axis and interface. 

As verifications, in this section, the interfacial stress along the interface of FRP-reinforced 

concrete is obtained by four methods: one-parameter, two-parameter, three-parameter, and finite 

element method (FEM). Shown in Figure 26, the FRP-strengthened concrete beam is modeled 

linearity and meshed with eight-node, isoperimetric elements in Figure 27. Since there is a 

concentration of stress at FRP plate end, to achieve more accurate results, a very fine mesh is 

adopted at this area than automatic one [21]. 

   

Figure 26. Finite element mesh 

 

Figure 27. Finite elment model of FRP-reinforced concrete under two-point load: 
(a) overall mesh; (b) detailed mesh at FRP plate end 

(a) Overall view

(b) Detailed view at the FRP plate end
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The comparison results from the two-parameter, three-parameter and FEM are concluded 

in the following Table 14. 

Table 14. Numerical comparison of three different models 

 Models 
Maximum standard 

stress(MPa) 
relative error 

shear stress 
two-parameter 0.3525 -12.09% 
three-parameter 0.361 -9.98% 

FEM 0.401 -- 

normal 
stress 

one-parameter 0.0062 -97.69% 
two-parameter 0.2279 -15.08% 

Three 
-parameter 

beam-adhesive 0.2229 -16.95% 
adhesive-FRP 0.2284 -14.91% 

FEM 0.2684 -- 

In the section, the interfacial stresses are calculated for three different models and 

compared with the FEM results. As shown in Figure 28, the maximum shear stress happens almost 

at the FRP plate end, and then finally reaches a fixed value. 

 

Figure 28. Interfacial shear stress of three different models along the whole beam 

.  

Figure 29. Interfacial normal stress of three different models along the whole beam 
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Figure 30. Interfacial shear stress at the FRP plate end 

 

Figure 31. Interfacial normal stress at the FRP plate end 

From the above calculation, results in the two-parameter models and the three-parameter 

models are almost matched with the calculation of finite element method. As shown in Figure 28, 

Figure 29, Figure 30, and Figure 31 from the FRP end to the middle cross, shear stress is subjected 

to nonlinear distribution. It reduces sharply near the end, and then changes to flat decrease until 

zero at the middle span. The peeling stress is quickly dropping to zero. 
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6.3.2. Parameter analysis of maximum shear stress and peeling stress  

The following figures are based on the same data verified by the finite element method in 

section 6.3.1. This section uses three-parameter model as a representative to analyze the 

relationship between maximum shear stress maxτ , maximum peeling stress maxσ  and several 

parameters, as shown in the following figures.  

1) Thickness of adhesive layer 

In Figure 32, thickness of adhesive has an important impact on . It is approximate 

that reduces linearly with the increase of . In the practical engineering, thickness of 

adhesive layer ranges from 1mm to 3mm mostly. In this calculation, when ha = 1, 2, 3mm, is 

0.3763MPa, 0.34818MPa, 0.3276MPa accordingly. When comparing with at ha = 1mm, 

at ha = 1mm decrease 7.47% and  at 3mm decrease 12.93%.  

The same as , varies with the change of adhesive thickness, especially sharp 

when ha < 1mm. For the common used value 1mm – 3mm, at the beam-adhesive interface 

changes from 0.2572037 MPa to 0.199658617 MPa to 0.168669837 MPa when ha = 1, 2, 3mm. 

When comparing with at ha = 1mm, at ha = 1mm decrease -22.37%and  at 3mm 

decrease -34.42% separately.  

Therefore, in the FRP reinforcing technologies, thickness of adhesive layers affects the 

value of and greatly, and should be under serious consideration. In order to ensure the 

safety of reinforced concrete, design code should set up a limit for the adhesive thickness to reduce 

the maximum shear stress and maximum peeling stress. 

ah maxτ

maxτ ah

maxτ

maxτ maxτ

maxτ

maxτ maxσ

maxσ

maxσ maxσ maxσ

maxτ maxσ
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Figure 32. Influences of adhesive thickness on stress 

To avoid local shear failure of concrete, increasing adhesive thickness is a useful way. But 

on the other hand, high adhesive thickness will lead to huge shrinkage of concrete in the curing 

process, which results in failed bond by separating the concrete and FRP plate one from the other. 

Therefore, an appropriate adhesive thickness is essential in the FRP pasted concrete. Besides, 
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reducing the elastic modulus, shear modulus are also convictive ways to minish the maximum 

shear stress maxτ . 

2) Elastic modulus of adhesive layer 

In Figure 33, the maximum peeling stress maxσ  and the maximum shear stress maxτ  are 

basically subjected to linear relation with the shear modulus of adhesive layer aE . maxτ  grows 

smoothly with the increase of aE while maxσ reduces sharply. It is easy to capture in the figure that 

a difference of 0.5188% increase in maximum shear stress maxτ happens when aE changes from 

4GPa to 6GPa, and that of 12.31% in maximum peeling stress maxσ . Therefore, it is obvious that 

maxσ are mostly affected by aE  while maxτ does not be influenced too much.  

Currently the in industry, most adhesive used in concrete-related areas are harden by 

mixing two or more component together by chemically reacting, such as polyester resin - 

polyurethane resin combination, polyols - polyurethane resin combination and acrylic polymers - 

polyurethane resins combination. Those types of combined adhesive have a elastic modulus 

mostly ranging from 5GPa to 6GPa.  

3) Thickness of FRP 

Known in Figure 34, thickness of FRP plate has a positively linear influence on the 

maximum shear stress maxτ while a negatively linear influence on the maximum peeling stress maxσ . 

In this calculation, when hp = 2, 6mm, max 0.2MPaτ = and max 0.361MPaτ = with a discrepancy of 

79.6326%; max 0.26MPaσ = and max 0.223MPaσ =  with a discrepancy of -14.655%. Currently, in 

reinforced design, hp is determined by the required axial force without the consideration of maxτ . 
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Sometimes, extra thickness of FRP plate is added to the calculated value as a safety reservation in 

pursuit of security. 

 

 

 

Figure 33. Effects of elastic modulus of adhesive on interfacial stress 

Although this extra thickness improves the degree of safety in the view of overall damage 
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increase of maxτ . Therefore, in concrete design, it is rational to double check the maximum shear 

stress maxτ for the selected FRP thickness, or may be somehow dangerous.  

 

 

 

Figure 34. Influence of FRP thickness on interfacial stress 
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Figure 35. Effects of elastic modulus of FRP plate on interfacial stress 
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4) Elastic modulus of FRP plate 

In Figure 35, a linear relation can be built between the FRP elastic modulus and the 

maximum shear stress maxτ . maxτ increases with the grow of Ep and maxσ is almost not influenced. 

At present, the FRP plate used to strengthen the concrete mainly have: high elastic modulus carbon 

fiber CFRP plate (FTS-C5-30), Ep = 380GPa; high tensile strength carbon fiber CFRP plate 

(FTS-C1-30), Ep = 230GPa; Glass fiber GFRP plate, Ep = 74GPa.  

Comparing the values of shear stress at Ep= 74, 230, 380 GPa, maxτ is 0.484MPa, 

1.355MPa, and 2.105MPa. maxτ  grows in 3.5 times from Ep = 74GPa to Ep = 380GPa. So, the 

firstly issue need to be consider to minimize the shear stress is choose the appropriate flexible 

materials with a low value of elastic modulus. 

5) Distance from supporting point to FRP end 

As known in Figure 36, distance from the supporting point to the FRP end L1 occupies a 

positively linear influence on the maximum shear stress maxτ while not much influence on the 

maximum peeling stress maxσ . Decrease of the distance is meaning increment of the bonding 

length, accordingly maxτ definitely runs low. When L1 = 0, 300mm, max 0.263MPaτ = , 0.283MPa

with a discrepancy of 7.441%; This shows that FRP plate should pasted on the surface of concrete 

beam and reach the end of beam as much as possible to significantly reduce maxτ . But more costs 

are generated accordingly.  

So, to meet the double requirements of safety and economy, the maximum shear stress 

should be double checked based on the selected L1.  
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Figure 36. Effects of distance from support to FRP end on interfacial stress 
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6) Height of concrete beam 

In Figure 37, it is easy to find that trends of 
maxσ and

maxτ are mostly same, decreasing with 

the development of concrete beam height and following a non-linear relation. The reason of 

non-linearity is because under certain load, if hb increase, the axial force shared by the FRP drops, 

and according so does the maximum shear stress
maxτ . 

 

 

 

Figure 37. Effects of beam height on interfacial stress  
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CHAPTER 7. CONCLUSION 

7.1. Summary 

FRP debonding at the end is a commonly brittle failure type for pasted concrete beam. 

Based on the previous studies, following the development of interfacial stress theory, this study 

initially derived three-parameter model by analyzing the cross-section mechanics. Studies are on 

the light of on elasticity theory, and mainly focusing on constitutive relationship, bending 

performance and interfacial stress of FRP-reinforced concrete. The main achievement can be 

concluded as following six points:  

1) Improving the bending strength of concrete beam with FRP can effectively improve the 

stiffness and ultimate bending capacity of the concrete beam, especially for the beam 

with a low reinforcement ratio. 

2) The failure types of FRP-strengthened flexural beam have two catalogs: cross-section 

strength failure and debonding failure. The debonding failure occurs at FRP plate end. 

Local concrete is subjected to an integration of maximum bending and shear stress. 

Because debonding of the interface is belonging to brittle damage, so in practical 

engineering, this type of failure is not allowed.  

3) The study comprehensively analyzed the development of elastic foundation models 

from one-parameter model to three-parameter model. 

4) The study creatively built the governing differential equation from the segmental 

constitutive relation. Most of existing research are not satisfied with the free boundary 
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conditions, and the three-parameter model proposed in this thesis perfectly solved this 

problem. 

5) It systematically considers the influences of the performance of concrete, FRP and 

adhesive on the bond properties, builds the elastic interfacial stress analysis model 

under the application of external forces, and quantitatively characterizes the effects of 

FRP elastic modulus, adhesive height, FRP height. General calculation formulas are 

worked out to suit all kinds of load: distributed load, concentrated load, and middle 

span load and so on. Comparing with the finite element method, the equations derived 

by the constitutive relations, considering the strain generated by moment, axial force 

and shear force, have a wide suitable range, high accuracy. 

6) This study proposed a standard in identifying the failure type of FRP-faced flexural 

concrete beam, and provided logic methods to improve the bonding performance and 

peeling strength of the concrete-FRP interface from material selection, construction 

technologies, and so on. For example, appropriately choose the types and dimensions 

of adhesive and FRP, make sure enough bonding length or set U-stirrup.   

7.2. Further Areas of Research 

The interfacial failure of FRP-reinforced concrete is related to a complex mechanical 

problem about material nonlinearity, geometry nonlinearity, and the cracks development. During 

the study, the author feels the following problem need to be further studied: 

1) Various ways to place the FRP plate and the reinforcing devices. 
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2) Destruction experiment and theoretical bond research at the end of FRP-faced 

concrete. 

3) Theoretical studies of bending-strengthen beam and shear-strengthen beam under 

long-term external loads. 

4) Mechanical performance for concrete columns with different types of cross-section: 

rectangular, square and round.  

5) Mechanical performance of FRP-reinforced concrete beam under cyclic loading.  

6) Theoretical studies of concrete beam in a variety of axial compression ratio, stirrup 

ratio, and so on. 
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