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ABSTRACT 

Maintaining a continuous and robust supply of power could be challenging task, because 

power networks depend on proper communication to coordinate and schedule supply, as well as 

recognize and mitigate failures; communication networks depend on power to function. This 

interdependency is a cause for greater failure risks due to the rapid cascading of failures from 

one network to the other.  

The objective of this work is to investigate the vulnerability of interdependent networks 

under various scenarios and coupling assumptions. To do so, we employ heuristic techniques to 

detect critical nodes in either network which lead to the maximum number of failed nodes in the 

interdependent networks. We put to the test a series of topographical importance metrics to 

heuristically identify said important nodes and compare our results with the literature. 

Furthermore, we test different coupling methods for how interdependency works and compare 

the results under different failure assumptions. 
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CHAPTER 1. INTRODUCTION 

Societal welfare and well-being are intertwined with access to a fully functioning power 

system. This dependence of our lives on electricity has increased the necessity for power 

networks that are flexible and robust, and hence can be there for continuous support of human 

activity without any outage. To ensure the continuous and uninterrupted flow of power, modern 

power stations and substations depend on sophisticated communication systems for their control 

and coordination; similarly, communication systems depend on the power network for their 

support. This necessary interdependency renders both networks more vulnerable, as a failure in 

one of the networks could cascade to the other with catastrophic consequences. An example of 

such a failure comes from 2003, where cascading failures in the Northeast American power 

network affected 45 million people in 8 US states, and 10 million people in Canada. Moreover, 

power was not fully restored until one week after the event. From investigations, it was found 

that the sequence of events leading to the blackout was a different, seemingly unrelated failure in 

northern Ohio. The above situation was not an exception, as shown from more power blackouts 

observed in Italy in 2003, in Japan in 2011, and in India in 2012 (Feltes & Grande-Moran, 2014;  

Liu et al., 2014; Corsi & Sabelli, 2004; Mimura, Yasuhara, Kawagoe, Yokoki, & Kazama, 2011; 

Loi Lei Lai, Hao Tian Zhang, Chun Sing Lai, Fang Yuan Xu, & Mishra, 2013; 

Ramasubramanian et al., 2012). This phenomenon is attributed to an aging infrastructure, along 

with the deregularization of the power industry worldwide.  

Such interdependency between modern infrastructures is not limited to power networks 

though. Instead, such coupled systems include water distribution, telecommunications, 

transportation, and social networks. These large socio-technical systems and the problem of 

random and targeted failures has attracted significant scientific interest recently. 
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To keep the flow continuous and uninterrupted, power stations depend on the 

communication network for control and management; the communication network also depends 

on a fully functional power network for electrical support and continuous operation. The 

interdependency of these networks renders the power network more vulnerable, as the overall 

scale of failure could be significantly increased due to cascading effect induced by 

communication network (Parandehgheibi & Modiano, 2013; Bashan, Berezin, Buldyrev, & 

Havlin, 2013). Should a perpetrator be interested in breaking down the power network, it would 

take only a targeted select set of nodes to significantly disrupt operations (Yilin Shen, Nguyen, 

Ying Xuan, & Thai, 2013). Seeing as a failure of certain nodes in the communication network 

can cascade and cause failure in the power network, and vice versa, protection from such attacks 

(or random failures) is a hard task. It is, hence, important to detect these nodes, as well as study 

the interdependency of these networks, in advance so that they can maintain the interdependency 

and at the same time mitigate the risk from targeted attacks. 

Studying the importance of an entity in a network of operations is a topic that has 

attracted significant interest from a wide variety of scientific and practice fields. A brief 

literature review on this topic with an emphasis on power networks is provided in Chapter 2. In 

the general literature, some studies capture the importance of a node in a multi-layered network 

while treating each network as independent (Estrada, Estrada, Prof, & Knight, 2015;Freeman, 

1978;Freeman, 1977): as an example, the degree of a node, which states the number of nodes 

directly connected to it, the number of shortest paths passing through a node, or the sum of 

length of shortest paths between nodes. As these approaches do not consider any underlying 

interdependencies, they are typically outperformed on interdependent networks by more 

specialized metrics and are inaccurate estimates of importance.  
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While assessing the vulnerability of interdependent networks, it became necessary to also 

investigate different interdependency models between the two networks, and how these could 

affect the existing approaches of finding interdependent network centrality. An interesting 

approach in literature called Iterative Interdependent Centrality (Nguyen, Shen, & Thai, 2013) 

aims to calculate the local intra-centrality (the centrality of a node within its network) of nodes 

using traditional centrality metrics (e.g., degree) and then iteratively update that value based on 

its interdependencies. The initial objective of this work then was to see how the IIC of a node 

varies when changing the means of calculating intra-centrality and how this would affect the 

efficiency and accuracy of finding such critical nodes. Then, a hybrid approach to measure 

interdependent network centrality is introduced, which includes combining a novel centrality 

metric with a modified version of IIC. Last, considering the fact that real world power networks 

usually receive information from several nodes in the communication network (Amin, 2001), it 

became necessary to also study different coupling models to assess the vulnerability of the power 

network under different scenarios. Our results from the mentioned models and approaches 

should provide more information regarding vulnerabilities of interdependent power networks and 

help making better informed decisions to protect power networks and render them less 

susceptible to targeted attacks and random failures. 



 

4 

CHAPTER 2. BACKGROUND LITERATURE 

The following section introduces some related literature on interdependent networks, the 

specific problem we are trying to address on coupled networks, and the models and algorithms 

used to study, analyze, and solve it. 

2.1. Introduction to the power grid and network models 

The United States power grid has faced 4 major large-scale blackouts due to cascading 

failures, starting from the first one in 1965 (Vassell, 1991) and reaching out to the latest on in 

2003 which affected more than 45 million people (Farmer & Allen, 2006). Since 2003, scientific 

and practitioner interest in investigating the root causes of such network failures has peaked. 

That said, graph theoretic analyses of the underlying network were popular even in the early 

1970s and 1980s. Networks were mined for their topological properties, and several metrics were 

proposed to explain and predict network behaviors. However, the inherent computational 

intractability of many of those metrics made progress slow due, in part, to the lack of the 

necessary computational resources, especially for studying real-life, large-scale networks, such 

as the power distribution network. Much has changed in the last decade, leading to the 

development of several complex models for network analysis, which albeit harder to solve, 

require less time to execute (Nardelli et al., 2014). These models have been helpful to better 

assess important real-world networks, like the power grid. Topological models have also been 

used to study other real-world networks, e.g., transportation networks (Yingfei, Chao, & 

Xiaohong, 2010), climate networks (Yamasaki, Gozolchiani, & Havlin, 2008), neural networks 

(Torres, Muñoz, Marro, & Garrido, 2004), among others. 
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2.2. Individual network models & scale free network 

The introduction of the Erdős–Rényi (ER) random graph model (P Erdös & Rényi, 1959) 

gave rise to the development of multiple network models, including the Barabási–Albert (BA) 

random scale-free model (A. Barabási, 2013), and the Watts–Strogatz (WS) model (Watts & 

Strogatz, 1998), which can be utilized to explain most of the smaller and larger scale real-life 

complex networks. The ER model states that the probability of a vertex having an edge is 

independent of the other vertices present in the graph (P Erdös & Rényi, 1959; Gilbert, 1959). 

Using BA models, it was shown that most real world networks possess similar characteristics, 

like nodal degree or clustering coefficient distributions (Amaral, Scala, Barthelemy, & Stanley, 

2000; A. L. Barabási, Albert, & Jeong, 1999), which classifies them as “scale-free networks”. 

The BA model also reveals that networks consist of a small number of nodes, referred to as 

“hubs”, which have a significantly higher degree than the rest of the nodes. Such networks are 

shown to have a degree distribution which follows the power law. This implies that the 

probability of a fraction of nodes 𝑃𝑑𝑒𝑔(𝑘) having 𝑘 connections (a degree of 𝑘) is proportional to 

1

𝑘𝛾, where 𝛾 is the scaling exponent (Barabasi, 2009). This scaling exponent is typically between 

2 and 3 for most large-scale, real-world networks. The introduction of such models also provided 

us with insight on the universality of network topology in many real networks and the realization 

that such networks, independent of size or function, tend to converge to similar architectures. 

Examples of a well-known studied networks possessing the scale-free property include 

biological networks (see, e.g., Han et al., 2004), the world wide web (see, e.g., A.-L. Barabási & 

Albert, 1999a), collaborations in Hollywood (A.-L. Barabási & Albert, 1999b), research 

collaborations in neuroscience and mathematics (A. L. Barabási et al., 2002), the E. coli 

metabolism network (Oltvai, Barabási, Jeong, Tombor, & Albert, 2000), the S. cerevisiae protein 
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interactions (Jeong, Mason, Barabási, & Oltvai, 2001), citation networks (Redner, 1998), phone 

call networks (Aiello, Chung, & Lu, 2001), as well as the co-occurrence of words (Cancho & 

Solé, 2001) and synonyms (Yook, Jeong, Barabási, & Tu, 2001). 

An important parameter for the structural properties of a scale-free network is the power 

law exponent, with research revealing that the lower the exponent, the higher the number of hubs 

in the network (Reka Albert & Barabasi, 2002; Newman, 2003). Another important graph 

theoretic perspective comes from percolation theory (Stauffer & Aharony, 1994), which has 

been employed to evaluate network robustness. This is done through proper analysis of the 

structural properties of the giant connected component, which is qualitatively defined as the 

connected component of the network containing the majority of its nodes. Usually, the term 𝑃∞ is 

reserved to represent the probability of the existence of a giant connected component of a 

network. 𝑃∞~1, then, represents the existence of a giant connected component almost surely, 

while 𝑃∞~0 reveals the absence of a giant connected component. Now, randomly selecting and 

failing (removing them and its connections) a fraction of nodes equal to 1 − 𝑝 gives us the 

largest connected component of the remaining network represented by 𝑃∞(p). There exists a 

critical threshold, or percolation threshold, 𝑝𝑐 ∈ [0,1] which determines the critical point where 

the network goes through a second order phase transition, also called a percolation phase 

transition. When 𝑝 > 𝑝𝑐, the network converges into one giant connected component and goes 

into a super critical state. However, when 𝑝 < 𝑝𝑐, the probability 𝑃∞(𝑝) is always 0 (i.e., 𝑝 < 𝑝𝑐,

𝑃∞(𝑝) ≡ 0) (Bollobás & Riordan, 2006; Gilbert, 1961; Wierman, 1990). Almost all scale-free 

networks with long tailed degree distributions have a threshold of 𝑃𝑐 ≡ 0, which, in turn, 

explains the robustness of these networks to random failures (Cohen, Erez, Ben-Avraham, & 

Havlin, 2000). The ER model has a percolation threshold of 𝑝𝑐 =
1

𝑘
 where 𝑘 is the average nodal 
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degree in the network (Bollobas & Erdös, 1976; P Erdös & Rényi, 1959; Paul Erdös & Rényi, 

1960). Some examples of real-world networks, with their power law exponents and average path 

lengths can be found in Table 1.  

Table 1  

Properties and data from several real-world networks.  

Network Size k γout γin lreal lpow Reference 

Internet 325729 4.51 2.45 2.1 11.2 4.77 
Réka Albert, 

Jeong, & 

Barabási, 1999 

Internet 4 ∗ 107 7 2.38 2.1   

Kleinberg, 

Kumar, 

Raghavan, 

Rajagopalan, & 

Tomkins, 1999 

Internet 2*108 7.5 2.72 2.1 16 7.61 
Broder et al., 

2000 

Internet-

Domains 
3015~4389 3.42~3.76 2.1~2.2 2.1~2.2 4 5.2 

Faloutsos, 

Faloutsos, & 

Faloutsos, 1999 

Internet-

routers 
3888 2.57 2.48 2.48 12.15 7.67 

Faloutsos et al., 

1999 

Internet- 

routers 
150000 2.66 2.4 2.4 11  

Govindan & 

Tangmunarunkit, 

2000 

Movie 

actors co-

stardom 

network 

212250 28.78 2.3 2.3 4.54  
A.-L. Barabási 

& Albert, 1999b 

Co-authors 

in 

neuroscience 

209293 11.54 2.1 2.1 6  
A. L. Barabási et 

al., 2002 

Co-authors 

in 

mathematics 

70975 3.9 2.5 2.5 9.5  
A. L. Barabási et 

al., 2002 
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Table 1. Properties and data from several real-world networks (continued) 

Network Size k γout γin lreal lpow Reference 

Metabolism 

E. coli 
778 7.4 2.2 2.2 3.2  

Oltvai et 

al., 2000 

Protein S. 

cerevisiae 
1870 2.39 2.4 2.4   

Jeong et al., 

2001 

Citation 

network 
783339 8.57  3   

Redner, 

1998 

Phone call 53*106 3.16 2.1 2.1   
Aiello et 

al., 2001 

Words, co-

occurrence 
460902 70.13 2.7 2.7   

Cancho & 

Solé, 2001 

Words, 

synonyms 
22311 13.48 2.8 2.8   

Yook et al., 

2001 

All network sizes (total vertices), the average degree (k), the power law exponents for both in 

and out degrees (𝛾),the real network average path length (𝑙𝑟𝑒𝑎𝑙) and the average path length for 

the power law degree distribution (𝑙𝑝𝑜𝑤) are provided. Note that most networks shown here have 

power law exponents between 2 and 3. 

2.3. Interdependence and cascading 

Most complex real-world networks do not function independently; instead they rely on 

information or resources from other networks. This phenomenon is common for several types of 

applications; for example, consider networks such as the communication network which is used 

for both voice and data by more than 90% of population (Poushter, 2016). Telecommunication 

networks today function correctly due to the electrical support of their operations from a 

functioning power grid. Similarly, power networks utilize communication networks for 

monitoring and control purposes (Hu, Yu, Cao, Ni, & Yu, 2014; Rinaldi, Peerenboom, & Kelly, 

2001). Researchers study these networks to keep them robust (Parandehgheibi & Modiano, 2013; 

Zhang & Tse, 2015), well-connected (Bairey & Stowell, 2014), and with increased accessibility 
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(Wheeler & O’Kelly, 1999). Then, there also exist networks in which researchers are interested 

in identifying key elements to decrease connectedness and reachability, as in the epidemic 

spreading problem in which diseases spread to different locations due to a moving population 

(Son, Bizhani, Christensen, Grassberger, & Paczuski, 2012; Wheeler & O’Kelly, 1999), or as in 

financial networks where the banking firms are interdependent entities that can be modeled to 

analyze the failure propagation in the economy (Huang, Vodenska, Havlin, & Stanley, 2013). 

Unlike simple, single, isolated network models which consist of simple, local node-to-node links 

called connectivity edges (intra-links), interdependent networks also have a set of links which 

serve to connect nodes from different networks to one another: these are called dependency links 

(inter-links). However, it is not necessary for every network to be dependent on every other 

network in an interdependent setting. Moreover, we have the general case in which dependency 

is asymmetric. As an example, power networks rely on a functioning transportation network for 

fuel and maintenance operations, whereas the transportation network, in general, does not require 

the power network to be operational (albeit electrical support does make it safer to use).  

The introduction and research of such models has revealed the importance of 

interdependency when studying robustness. When an interdependent network is considered as 

isolated or single network it leads to overestimation of network robustness (Huang, Shao, et al., 

2013). This is due to the fact that failures occurring in interdependent networks tend to cascade 

over the other networks using inter-links causing more failures (Bashan et al., 2013; Dong, Du, 

Tian, & Liu, 2015; Havlin et al., 2010). For this reason, a broader degree distribution in an 

isolated network protects it from random attacks and increases robustness (Yuan, Shao, Stanley, 

& Havlin, 2015); instead, in the case of interdependent networks higher degree renders it, 

potentially, more vulnerable. The well-connected hub nodes could be interdependent on a failed 
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node, which ultimately leads to their failures, and with them, the failure of a large fraction of 

nodes, which is, of course, a major concern (Gao, Buldyrev, Havlin, & Stanley, 2011). 

Furthermore, percolation in interdependent networks is significantly different than in single 

networks. In a single, isolated network the percolation transition is a second order continuous 

transition, whereas in interdependent networks percolation transition occurs when there is a 

discontinuity in the giant connected component due to cascading failures. Consider two networks 

which are interconnected where one of the network is subject to failure of 1 − 𝑝 fraction of 

nodes. If the failed number of nodes are lower than the critical threshold ie. 𝑝 > 𝑝𝑐, the size of 

giant connected component is finite 𝑃∞ > 0 and there remains a cluster of nodes connected to 

GCC and the cascading failures stop before whole network collapses. But if the fraction of failed 

nodes 1 − 𝑝 is higher than critical threshold ie. 𝑝 < 𝑝𝑐, then this leads complete failure of nodes 

in both networks. When 𝑝 decreases below 𝑝𝑐 from one, 𝑃∞ falls to zero instantly showing 

discontinuity as first order transition. This cascading of failures is also referred to as an 

avalanche (Bashan, Parshani, & Havlin, 2011; Baxter, Dorogovtsev, Goltsev, & Mendes, 2012; 

Dong et al., 2015; Dong, Tian, Du, Fu, & Stanley, 2014; Havlin, Stanley, Bashan, Gao, & 

Kenett, 2015; Leicht & D’Souza, 2009a). 

A simple pictorial example of percolation and cascading failures in interdependent 

networks is provided in Figure 1. Initially, a fraction of nodes 1 − 𝑝 is disabled from Network 1 

along with all their connections. This initial failure then propagates to the interdependent 

Network 2. All the nodes in Network 2 with dependency links to any failed nodes in Network 1 

will also fail as a result. Based on percolation theory all nodes separated from the giant 

connected component are now non-functional. This failure further cascades back to Network 1 

and its interdependent nodes, and this process goes on until either there is a mutual giant 
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connected component, or when the network is completed disconnected. Interdependent networks 

are, then, more vulnerable to random attacks and failure of even a small subset of nodes can 

cause large scale failure (Havlin et al., 2015). 

 

Figure 1. An example of percolation and cascading failures in interdependent networks.  

2.3.1. Interdependence of power and communication networks 

One of the most studied pairs of interdependent networks are the power distribution and 

the communication network (Parandehgheibi & Modiano, 2013; Parandehgheibi, Modiano, & 

Hay, 2014). This is mainly because of how intertwined these networks are on one another in their 

current state, as well as the importance of maintaining the robustness of these networks seeing as 

they affect multiple and diverse facets of human activities. A series of probabilistic, 

deterministic, and heuristic methods have been developed to identify the network vulnerabilities 

and the risk of cascading failures in the power grid. An excellent overview of some of those 

methods has been curated by Papic et al. (2011). Nowadays, due to several load and tripping 

control measures, the power grid is more robust (NERC, 2017). Yet, there exist scenarios where 

failures occurring in specific substations, transmission lines, or power stations could render both 
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the power distribution and the communication networks non-operational; as seen before the 

initial failure could also be on the communications side. It is indeed true that a common reason 

behind blackouts is often these types of cascading failures (Wei, Luo, & Zhang, 2012; Motter, 

2004), and, when such failures occur, it is both a very expensive and long process to restore 

everything back to their normal state. 

2.4.  Critical node problem 

The Critical Node Problem (CNP), introduced in (Borgatti, 2006) and (Arulselvan, 

Commander, Elefteriadou, & Pardalos, 2009), is described as an optimization problem of finding 

a set of k vertices, whose removal from the graph minimizes the pairwise connectivity (increased 

fragmentation) between nodes in the resulting subgraph. Another variation of CNP was later 

introduced in (Arulselvan, Commander, Shylo, & Pardalos, 2011), referred to as CC-CNP or 

Cardinality-Constrained Critical Node Detection Problem, with a different objective of finding 

the minimum set of vertices whose removal leads to a connectivity index below a specified limit. 

The CNP has many applications: as an example, in (Boginski & Commander, 2009) the authors 

use both CNP and CC-CNP to find a set of proteins which are responsible for the most important 

interactions in protein-protein interaction networks for drug design. In a different study by 

(Ventresca & Aleman, 2013) related to disease spread mitigation, critical nodes are considered as 

target nodes for vaccination to decrease the transmissibility of a disease.  

Extensions of the critical node problem, like the Critical Node and Critical Link 

Disruptor problems, are studied in (Yilin Shen et al., 2013); therein, a linear programming based 

𝑂 (
𝑛−𝑘

𝑛𝜀
)-approximation rounding algorithm is proposed to help identify critical nodes and edges. 

Like in our work, studies have also been performed on finding critical nodes in interdependent 

networks: for example, the work by (Seo, Mishra, Li, & Thai, 2015) introduces and studies the 
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Cascading Critical Node Problem (CasCN) and proposes an 𝑂(𝑛1−𝜖)-approximation algorithm. 

This work employs the Load Redistribution model and weighted flow distribution model 

proposed in (Wu, Peng, Wang, Chan, & Wong, 2008) to find a set of critical nodes by failing 

nodes iteratively. This effectively captures the direct impact of a node and the mutual impact of a 

set of failed nodes. Other variations of CNP include node and edge disruptor problems like 𝛽 

edge and vertex disruptor problem (Dinh, Xuan, Thai, Pardalos, & Znati, 2012) which admits an 

𝑂(log 𝑛 log log 𝑛) pseudo-approximation algorithm for node disruptor and an 𝑂(log1.5 𝑛)-

approximation algorithm for the edge disruptor. This algorithm finds the minimum cardinality 

set of elements in a directed graph to cause a prespecified quantified level of degradation in its 

pairwise connectivity metric. When a level of degradation 𝛽 is given where 0 ≤ 𝛽 ≤ 1, the 

network overall pairwise connectivity is decreased to 𝛽 (
𝑛

2
). 

Last, a few studies have proposed strategies to reduce the risk of cascading failures in 

interdependent networks when subjected to targeted and random attacks. In their work, (Tang, 

Jing, He, & Stanley, 2016) study the interdependent supply chain network robustness to targeted 

attacks. Two networks, namely the physical supply chain network and the cyber layer network, 

each with the same number of nodes have one to one interdependence. Nodes are then assigned 

maximum capacity and failed nodes propagate their load onto neighboring nodes, based on the 

proposed priority redistribution model.  Nodes are removed in ascending degree, descending 

degree, random single, random multiple order, and finally network robustness is measured in 

terms of a Comprehensive Effectiveness Index (CEI). In (Nguyen et al., 2013), the authors study 

the Interdependent Power Network Disruptor problem, a problem shown to be NP-Complete but 

that admits an approximation of (2 − 𝜀). The proposed algorithm, Iterative Interdependent 

Centrality uses weighted centrality from intra-links as well as inter-links providing the minimum 
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cardinality set of critical nodes up to a given 𝑘 to decrease the initial LCC to the smallest 

possible size.  

2.5. Interdependent network coupling models 

In most studies that aim to quantify topological properties of or detect critical nodes in 

interdependent networks, coupling models to accurately model the interdependencies are used. 

This is based on several assumptions, and it needs to happen as a preprocessing step due to the 

lack of exact data on dependency links of real-world interdependent networks (Radicchi, 2015). 

As an example, whose paradigm we follow here, Nguyen, Shen, & Thai (2013) investigate 

coupling methods, such as the random positive and random negative degree correlation 

coupling, based on weighted permutations, reverse degree coupling, and same degree coupling. 

They then proceed to use the dependency links generated by the above coupling methods in 

order to determine the efficiency of their critical node detection algorithms. In their work, it is 

also assumed that the degree distributions for both intra- and inter- network connectivity follow a 

Poisson distribution (Leicht & D’Souza, 2009b). 
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CHAPTER 3. METHODOLOGY 

3.1. Power and communication network model 

Many real-world networks are shown to belong to a class of networks called scale-free 

networks. These networks possess a small number of nodes with very high connectivity (hubs) 

and a big number of nodes with low connectivity. The degree distribution of scale-free networks 

is based on a power law. In a scale-free network with exponential factor γ, the fraction of nodes 

with degree k is proportional to 𝑘−γ, that is P(k) ~ 𝑘−γ. In practice, the exponential factor for the 

communications network is observed to be between 2 and 2.6, while the exponential factor for 

power networks is observed to be between 2.5 and 4. Due to the lack of exact graph data for the 

both networks, a synthetic network is generated using an exponential factor that varies from 2.2 

to 3.0. 

One method of generating a scale-free network is by using the Barabasi-Albert generator 

model. The BA model uses preferential attachment to form edges in the network based on the 

provided exponential factor γ. The insight is to form a network having degree distribution that 

follows a power law with the chosen scaling exponent. 

3.2. Cascading failures model 

Considering two network graphs 𝐺𝑘 = (𝑉𝑘, 𝐸𝑘) and  𝐺𝑙 = (𝑉𝑙, 𝐸𝑙) where 𝑉𝑘 are the 

vertices of graph 𝑘 and 𝐸𝑘 are the edges of graph 𝑘, whereas 𝑉𝑙 are the vertices of graph 𝑙 and 𝐸𝑙 

are the edges of graph 𝑙, and 𝐸𝑘𝑙 = {(𝑢, 𝑣): 𝑢 ∈ 𝑉𝑘, 𝑣 ∈ 𝑉𝑙 } represents the interdependency links 

between graphs 𝑘 𝑎𝑛𝑑 𝑙. Any node 𝑢 𝑜𝑟 𝑣 is only functional when they are connected to the 

giant connected component of their respective graph i.e.. 𝐺𝑘 or 𝐺𝑙.  

The cascading failure model in this study (Havlin et al., 2010) has been used and 

evaluated in several studies before. Initially, a set of nodes in 𝐺𝑘 fail; nodes are then separated 
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from the Giant Connected Component of 𝐺𝑘 because of the failures are also impacted and are 

considered failed. This new failure from these nodes propagates to the connected nodes in the 

interdependent network and causes failure in these nodes of 𝐺𝑙 , which, in turn, are interdependent 

on failed nodes from 𝐺𝑘.  

In this study, we consider three cascading effect scenarios. We opted for three scenarios 

so as to gather more detailed information on the cascading effects occurring due to the presence 

of interdependency links. The three failure scenarios are described as follows: (a) in the first 

scenario, a node fails when all of its interconnected nodes fail; (b) in the second scenario, a node 

only fails when at least 50% or more of its interconnected nodes fail; and (c) in the third 

scenario, a node fails when at least one of its interconnected nodes fail. 

3.3. Iterative interdependent centrality 

Iterative Interdependent Centrality, proposed in (Nguyen et al., 2013) is an algorithm to 

find critical nodes in interdependent networks. Considering an interdependent system 

𝐽(𝐺𝑘, 𝐺𝑙 , 𝐸𝑘𝑙)  and 𝐸𝑘𝑙 = {(𝑢, 𝑣): 𝑢 ∈ 𝑉𝑘, 𝑣 ∈ 𝑉𝑙 } , IIC works on the phenomenon that if 𝑢 is 

critical then its coupled node 𝑣 should be treated as critical, too, and the neighbors of 𝑢 should 

also play a key role in determining the criticality of 𝑢. For this reason, IIC aims to capture both 

intra- and inter- centrality. Intra-centrality, being one of the traditional centrality measures like 

degree, closeness etc., gives the importance of a node within the network; these intra centrality 

scores are then updated on to the coupled nodes in the interdependent network to obtain new 

weighted centrality scores. The centrality vector 𝑥𝑡 of IIC at 𝑡𝑡ℎ iteration is formed using  

𝑥𝑡 =
𝑀𝑢,𝑣

𝑘 𝑀𝑢,𝑣
𝑙 𝑥𝑡−2

𝐶𝑘𝐶𝑙
  where 𝑀𝑢,𝑣

𝑘 {

𝛼
1

𝑑𝑣

0

   

𝑖𝑓 𝑢 = 𝑣
𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸𝑘

𝑒𝑣𝑒𝑟𝑦𝑡ℎ𝑖𝑛𝑔 𝑒𝑙𝑠𝑒
 and  𝑀𝑢,𝑣

𝑙 {

𝛼
1

𝑑𝑣

0

   

𝑖𝑓 𝑢 = 𝑣
𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸𝑙

𝑒𝑣𝑒𝑟𝑦𝑡ℎ𝑖𝑛𝑔 𝑒𝑙𝑠𝑒
 

are two matrices formed using networks 𝐺𝑘 𝑎𝑛𝑑 𝐺𝑙, whereas 𝐶𝑘 𝑎𝑛𝑑 𝐶𝑙 and two constants used 
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for the convergence of the centrality vector. Our approach to finding critical nodes replaces the 

intra-centrality of IIC using a novel centrality algorithm explained below. 

3.4. Star degree and modified IIC 

Consider, like before, two interconnected networks 𝐺𝑘 and  𝐺𝑙 where (𝑉𝑘 , 𝐸𝑘) represent 

nodes and edges of network 𝑘, similarly (𝑉𝑙, 𝐸𝑙) for network 𝑙, also 𝐸𝑘𝑙 = {(𝑢, 𝑣): 𝑢 ∈ 𝑉𝑘, 𝑣 ∈

𝑉𝑙 } represents interdependency links between nodes of 𝑘 and 𝑙. The calculation of the star 

degree centrality score, introduced by (Vogiatzis & Camur, 2017), is done by analyzing three 

levels of failure for each selected node. At the first level of failure the selected node and all its 

adjacent nodes in other interdependent networks stop working. These nodes are categorized as 

“center” nodes. Then the failures cascade further to all the nodes that are connected to “center” 

nodes but also do not have any inter- or intra-connections between these nodes. These nodes are 

categorized as “failed” nodes. After that the failure cascades further to all nodes that are 

connected to “failed” nodes, with these nodes being categorized as “affected” nodes. The main 

objective of Star Degree is to maximize the cardinality of the “affected” nodes set. Let us define 

the following three decision variables: 

𝑥𝑖
(𝑘)

{
1
0

 
𝑖𝑓 𝑛𝑜𝑑𝑒 𝑖 ∈ 𝑉𝑘 𝑖𝑠 "𝑐𝑒𝑛𝑡𝑒𝑟"
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑦𝑖
(𝑘)

{
1
0

 
𝑖𝑓 𝑛𝑜𝑑𝑒 𝑖 ∈ 𝑉𝑘 𝑖𝑠 "𝑓𝑎𝑖𝑙𝑒𝑑"
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑧𝑖
(𝑘)

{
1
0

 
𝑖𝑓 𝑛𝑜𝑑𝑒 𝑖 ∈ 𝑉𝑘 𝑖𝑠 "𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑"
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Moreover, let the following sets be defined as: 

𝑁𝑘(𝑖) ∶  𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑜𝑓 𝑖 ∈ 𝑉𝑘 

𝑁𝑘[𝑖] ∶  𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑜𝑓 𝑖 ∈ 𝑉𝑘 & 𝑖 

𝑁𝑘𝑙(𝑖) ∶  𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑜𝑓 𝑖 ∈ 𝑉𝑘 𝑖𝑛 𝑉𝑙 



 

18 

𝑁𝑘𝑙[𝑖] ∶  𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑜𝑓 𝑖 ∈ 𝑉𝑘 𝑖𝑛 𝑉𝑙 & 𝑖 

Then, the formulation can now be presented as:  

Maximize ∑ ∑ 𝑧𝑖
(𝑘)

𝑖∈𝑉𝑘𝑘

 

Subject to 

𝑧𝑖
(𝑘)

≤  ∑ 𝑦𝑗
(𝑘)

𝑗∈𝑁(𝑖)

+ ∑ ∑ 𝑦𝑗
(𝑙)

𝑗∈𝑁𝑘𝑙(𝑖)𝑙≠𝑘

         ∀𝑖, ∀𝑘 

𝑦𝑖
(𝑘)

≤ ∑ 𝑥𝑗
(𝑘)

𝑗𝜖𝑁[𝑖]

+ ∑ ∑ 𝑥𝑗
(𝑙)

𝑗∈𝑁𝑘𝑙(𝑖)𝑙≠𝑘

          ∀𝑖, ∀𝑘 

𝑦𝑖
(𝑘)

+ 𝑦𝑗
(𝑘)

≤ 1                                             ∀(𝑖, 𝑗) ∈ 𝐸𝑘, ∀𝑘 

𝑦𝑖
(𝑘)

+ 𝑦𝑗
(𝑙)

≤ 1                                              ∀(𝑖, 𝑗) ∈ 𝐸𝑘𝑙 , ∀𝑘, ∀𝑙 ≠ 𝑘 

𝑦𝑖
(𝑘)

+ 𝑧𝑖
(𝑘)

≤ 1                                             ∀  𝑖 ∈ 𝑉𝑘, ∀𝑘 

𝑥𝑖
(𝑘)

, 𝑦𝑖
(𝑘)

, 𝑧𝑖
(𝑘)

∈ {0,1}                                 ∀  𝑖 ∈ 𝑉𝑘, ∀𝑘 

𝑥𝑢
(𝑘)

= 1 

𝑥𝑗
(𝑙)

= 𝑥𝑖
(𝑘)

                                                     ∀∈ 𝑉𝑙 ; (𝑢, 𝑗) ∈ 𝐸𝑘𝑙 , ∀𝑘, ∀𝑙 ≠ 𝑘  

Larger and more well-connected networks require a higher number of critical nodes 

before the network breaks down, and this can consume a significant amount of computational 

time. It is for that reason that a modified version of IIC embeds the process of cascading into 

each iteration. Initially a converged centrality vector is calculated using the characteristic matrix 

obtained from the considered power and communication networks. The critical node is extracted 

from this centrality vector and then disconnected from the power network. This process causes a 

cascade of failures in both networks through inter- and intra-links, based on the cascading failure 

model explained earlier. Only one connected component exists in both graphs at the end of the 
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cascading process implying that the failure cannot cascade any further because all the remaining 

nodes are connected to the largest connected component of their individual network and also 

have a functional interdependent node. Consider subgraphs of both power and communication 

network 𝐺𝑘
′ = (𝑉𝑘

′, 𝐸𝑘
′ ) and 𝐺𝑙

′ = (𝑉𝑙
′, 𝐸𝑙

′) where (𝑉𝑘
′, 𝐸𝑘

′ ) and (𝑉𝑙
′, 𝐸𝑙

′)  are the vertices and edges 

of 𝐿𝐶𝐶(𝐺𝑘) and 𝐿𝐶𝐶(𝐺𝑙) respectively. These subgraphs are then used to find the new 

characteristic matrix 𝑀𝑢,𝑣
𝑘′

𝑀𝑢,𝑣
𝑙′

 in the next iteration. The process continues until a number of k 

critical nodes are found or the specified total level of disruption is reached. The size of the 

characteristic matrix decreases as the numbed of failed nodes increases.  

3.5. Coupling models 

3.5.1. One to one model 

This coupling strategy uses the Random Positive Degree Correlation Coupling shown in 

(Nguyen et al., 2013). Two random weighted permutations are generated with nodes of graph 𝐺𝑘 

and 𝐺𝑙 as elements of set and having the length equal to total number of vertices 𝑛 in each graph. 

The degree of the node is considered as the weight for the permutation. In both the generated sets 

{𝑣1
𝑘′

, 𝑣2
𝑘′

, 𝑣3
𝑘′

, … 𝑣𝑛
𝑘′

} and {𝑣1
𝑙′

, 𝑣2
𝑙′

, 𝑣3
𝑙′

, … 𝑣𝑛
𝑙′

}, elements with higher degrees tend to have lower 

indices because of the considered weights. This results in positive degree correlation and 𝑣1
𝑘′

 is 

coupled with 𝑣1
𝑙′

, 𝑣2
𝑘′

 with 𝑣2
𝑙′

,…., 𝑣𝑛
𝑘′

 with 𝑣𝑛
𝑙′

.  

3.5.2. One to multiple model 

In the one to multiple coupling strategy the primary rule is that one node of the power 

network is allowed to be coupled with several nodes in the communications network; however, a 

node in the communications network can only be coupled with a single node from the power 

network  𝐸𝑘𝑙 = {(𝑢, 𝑣): 𝑢 ∈ 𝑉𝑘, 𝑣 ∈ 𝑉𝑙 }.  The distribution of interdependent links follows a long-

tailed distribution, like power law graphs. A small subset of nodes in 𝐺𝑘 have a high number of 
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interdependent links per node whereas a large subset of nodes has fewer or no interdependent 

links. Initially, a random weighted permutation is generated for nodes of the power network 

where the weight of the nodes is their intra-centrality. Using this random weighted set, each node 

is assigned a certain number of interdependent links and from this permuted set, nodes which 

have lower indices are assigned a higher number of interdependent links. Further explanations on 

how this model is used are provided in Section 4.2.2 of the Computational Results. 

3.5.3. Multiple to one model 

The multiple to one model is similar to the previous case; in this one, though, nodes of 

the communications network (𝐺𝑙) can have multiple interdependent links per node, but each node 

of the power network (𝐺𝑘) can only have one interdependent link. Similar to one to multiple, a 

random weighted permutation is generated with the intra-centrality score of the nodes in the 

communications network as the weights. Nodes from the communications network are assigned 

interdependent links based on their indices in the permuted set. The total interdependent links per 

node for overall network follows a long tail distribution. The exact working is explained further 

in Section 4.2.3. 

3.5.4. Multiple to multiple model 

Finally, the multiple to multiple model is the combination of the above models. Nodes are 

selected on the similar basis such that the number of interdependent links per node follow a long 

tail distribution for both networks. Each node can have any number of interdependent links. Two 

random weighted permutations are generated for both networks with intra centrality score of 

nodes as their weight and nodes based on their indices in the permuted set, they are assigned total 

number of interdependent links. The exact working is explained further in Section 4.2.4. 
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CHAPTER 4. COMPUTATIONAL RESULTS 

In this section, we describe our experimental framework. We perform a series of 

experiments on two coupled (power and communications) networks, as described in Section 3.1. 

We compare the total breakdown of both networks for different values of 𝛾 ∈ {2.2, 2.6, 3.0} and 

for different metrics for both networks, considering the cascading effects discussed in Section 

3.2. More specifically, we compare the resulting Largest Connected Component (LCC) for Star 

Degree with Modified IIC (described in Section 3.4), Degree with the Original IIC (described in 

Section 3.3), Simple Star Degree (described in Section 3.4), Simple Degree, and Simple 

Betweenness centralities. We perform our experiments on a series of coupling models (see 

Section 3.5). Our results (per coupling model) follow in the remainder of this chapter. 

4.1. One to one coupling model 

The idea behind the one to one model is given in Section 3.5.1. This model is tested on 

synthetic scale free networks of sizes of a 150-nodes power network coupled with a 150-nodes 

communication network, 300-nodes power network coupled with 300-nodes communication 

network, 500-nodes power network coupled with 500-nodes communication network. The 

networks have degree distributions that follow the power law, and as the scaling exponent 

increases, the networks become denser having an increased number of intra-links. A total of 9 

experiments are conducted which contain all possible combination of pairs with 𝛾(2.2, 2.6, 3.0). 

The performance is evaluated across 5 independent runs and the average of the two outputs, 

namely the size of the LCC and the total number of critical nodes initially removed from the 

power network are used to construct the plots shown below in Figures 2-4. 
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Figure 2. One to One model, Average LCC vs Critical Nodes removed for 150-node networks across 5 runs 
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Figure 3. One to One model, Average LCC vs Critical Nodes removed for 300-node networks across 5 runs 



 

 

2
4
 

 
Figure 4. One to One model, Average LCC vs Critical Nodes removed for 500-node networks across 5 runs 
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4.2. Other models 

This subsection describes the experimental setup of the three other models used in this 

study. We first describe the different scenarios that arise for these models. 

4.2.1. Scenarios 

There are three main scenarios that arise in each of the models. In the first one, a node 

stops functioning either when all its interconnected nodes have failed or if the node has been 

disconnected from the largest connected component of its own network.  

In the second scenario, a node stops functioning either when half or more of its 

interconnected nodes have failed or if the node has been disconnected from the largest connected 

component of its own network. 

Last, in the final scenario under consideration, a node stops functioning when any of its 

interconnected nodes have failed or if the node has been disconnected from the largest connected 

component of its own network. We can now proceed to describe the remaining models. 

4.2.2. One to multiple coupling model 

For experimentation, a synthetic power and communications network are generated based 

on the selected combination of total number of nodes and scaling exponent 𝛾 for both networks. 

A weighted random permutation is generated {𝑑1
𝑘𝑙, 𝑑2

𝑘𝑙 , … , 𝑑𝑛
𝑘𝑙} with a total length equal to the 

number of nodes in the power network where 𝑑1
𝑘𝑙 is the the number of interdependent links for 

𝑣1
𝑘. The permuted set contains one of these elements {1,2,3,4} and their weights are selected to 

be {0.6,0.2,0.15,0.05}. This implies that a power network node can be connected to 1, 2, 3, or 4 

communications network nodes with probabilities 0.6, 0.2, 0.15, 0.05, respectively. Two more 

random weighted permutations are generated with vertices of the power and communications 

networks and now the degree of nodes are considered as weights {𝑣1
𝑘′

, 𝑣2
𝑘′

, 𝑣3
𝑘′

, … 𝑣𝑛
𝑘′

} and 
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{𝑣1
𝑙′

, 𝑣2
𝑙′

, 𝑣3
𝑙′

, … 𝑣𝑛
𝑙′

}. Both networks are coupled using the set {𝑑1
𝑘𝑙, 𝑑2

𝑘𝑙 , … , 𝑑𝑛
𝑘𝑙}, i.e. if 𝑑1

𝑘𝑙 is 3 

then 𝑣1
𝑘′

 is coupled with {𝑣1
𝑙′

, 𝑣2
𝑙′

, 𝑣3
𝑙′

}.  Results are plotted based on an average of 5 runs with 

power and communications network pairs of 150 nodes, 300 nodes, and 500 nodes (as was the 

case for the first model) for all 3 scenarios and all possible combinations of 𝛾 from (2.2, 2.6. 

3.0). This results again in a total of 9 experiments for each scenario under the one to multiple 

coupling model. The results are presented in Figures 5-13. 
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Figure 5. One to Multiple model, Scenario 1 Average LCC vs Critical Nodes removed for 150-node networks across 5 runs 
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Figure 6. One to Multiple model, Scenario 1 Average LCC vs Critical Nodes removed for 300-node networks across 5 runs 
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Figure 7. One to Multiple model, Scenario 1 Average LCC vs Critical Nodes removed for 500-node networks across 5 runs 
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Figure 8. One to Multiple model, Scenario 2 Average LCC vs Critical Nodes removed for 150-node networks across 5 runs 
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Figure 9. One to Multiple model, Scenario 2 Average LCC vs Critical Nodes removed for 300-node networks across 5 runs 
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Figure 10. One to Multiple model, Scenario 2 Average LCC vs Critical Nodes removed for 500-node networks across 5 runs 
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Figure 11. One to Multiple model, Scenario 3 Average LCC vs Critical Nodes removed for 150-node networks across 5 runs 
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Figure 12. One to Multiple model, Scenario 3 Average LCC vs Critical Nodes removed for 300-node networks across 5 runs 
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Figure 13. One to Multiple model, Scenario 3 Average LCC vs Critical Nodes removed for 500-node networks across 5 runs 
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4.2.3. Multiple to one coupling model 

The opposite model is also designed for experimentation. Now, a weighted random 

permutation is generated {𝑑1
𝑙𝑘, 𝑑2

𝑙𝑘, … , 𝑑𝑛
𝑙𝑘} with total length as the number of nodes in the 

communications network where 𝑑1
𝑙𝑘 is the the number of interdependent links for 𝑣1

𝑙  and 𝑑1
𝑙𝑘 is 

the the number of interdependent links for 𝑣1
𝑙 . Following the same setup as before, but starting 

the discussion from the communications network, we obtain the results again a total of 9 

experiments for each scenario under the multiple to one coupling model. The results of all three 

scenarios are shown in Figures 14-22.  
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Figure 14. Multiple to One model, Scenario 1 Average LCC vs Critical Nodes removed for 150-node networks across 5 runs 
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Figure 15. Multiple to One model, Scenario 1 Average LCC vs Critical Nodes removed for 300-node networks across 5 runs 
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Figure 16. Multiple to One model, Scenario 1 Average LCC vs Critical Nodes removed for 500-node networks across 5 runs 
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Figure 17. Multiple to One model, Scenario 2 Average LCC vs Critical Nodes removed for 150-node networks across 5 runs 
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Figure 18. Multiple to One model, Scenario 2 Average LCC vs Critical Nodes removed for 300-node networks across 5 runs 
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Figure 19. Multiple to One model, Scenario 2 Average LCC vs Critical Nodes removed for 500-node networks across 5 runs 
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Figure 20. Multiple to One model, Scenario 3 Average LCC vs Critical Nodes removed for 150-node networks across 5 runs 
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Figure 21. Multiple to One model, Scenario 3 Average LCC vs Critical Nodes removed for 300-node networks across 5 runs 
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Figure 22. Multiple to One model, Scenario 3 Average LCC vs Critical Nodes removed for 500-node networks across 5 runs 
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4.2.4. Multiple to multiple coupling model 

Last, we investigate a multiple to multiple coupling model. In this model, two weighted 

random permutations are generated {𝑑1
𝑘𝑙 , 𝑑2

𝑘𝑙, … , 𝑑𝑛
𝑘𝑙} and {𝑑1

𝑙𝑘, 𝑑2
𝑙𝑘, … , 𝑑𝑛

𝑙𝑘} with total length 

equal to the number of nodes in the power network and the communications network, 

respectively, where 𝑑1
𝑘𝑙 is the the number of interdependent links for 𝑣1

𝑘 and 𝑑1
𝑙𝑘 is the number of 

interdependent links for 𝑣1
𝑙 . The permuted sets contain one of these elements {1,2,3,4} and their 

weights are (as earlier) {0.6,0.2,0.15,0.05}. Two more random weighted permutations are 

generated with elements as vertices of power and communications network and the degree of the 

nodes in their network are considered as weights {𝑣1
𝑘′

, 𝑣2
𝑘′

, 𝑣3
𝑘′

, … 𝑣𝑛
𝑘′

} and {𝑣1
𝑙′

, 𝑣2
𝑙′

, 𝑣3
𝑙′

, … 𝑣𝑛
𝑙′

}, 

respectively. Both networks are coupled using the set {𝑑1
𝑘𝑙, 𝑑2

𝑘𝑙 , … , 𝑑𝑛
𝑘𝑙}, i.e. if 𝑑1

𝑘𝑙 is 3 then 𝑣1
𝑘′

 is 

coupled with {𝑣1
𝑙′

, 𝑣2
𝑙′

, 𝑣3
𝑙′

}; similarly, if  𝑑1
𝑙𝑘 is 3 then 𝑣1

𝑙′
 is coupled with {𝑣1

𝑘′
, 𝑣2

𝑘′
, 𝑣3

𝑘′
}.  Using 

the same setup as before for sizes and 𝛾 results in a total of 9 experiments per scenario under the 

multiple to multiple coupling model. The results are shown in Figures 23-31. 
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Figure 23. Multiple to Multiple model, Scenario 1 Average LCC vs Critical Nodes removed for 150-node networks across 5 runs 
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Figure 24. Multiple to Multiple model, Scenario 1 Average LCC vs Critical Nodes removed for 300-node networks across 5 runs 
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Figure 25. Multiple to Multiple model, Scenario 1 Average LCC vs Critical Nodes removed for 500-node networks across 5 runs 
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Figure 26. Multiple to Multiple model, Scenario 2 Average LCC vs Critical Nodes removed for 150-node networks across 5 runs 
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Figure 27. Multiple to Multiple model, Scenario 2 Average LCC vs Critical Nodes removed for 300-node networks across 5 runs 
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Figure 28. Multiple to Multiple model, Scenario 2 Average LCC vs Critical Nodes removed for 500-node networks across 5 runs 
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Figure 29. Multiple to Multiple model, Scenario 3 Average LCC vs Critical Nodes removed for 150-node networks across 5 runs 
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Figure 30. Multiple to Multiple model, Scenario 3 Average LCC vs Critical Nodes removed for 300-node networks across 5 runs 
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Figure 31. Multiple to Multiple model, Scenario 3 Average LCC vs Critical Nodes removed for 500-node networks across 5 runs 
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4.3. Analysis 

Let us begin with the one to one model. As we observe, simple star degree shows a 

superior performance to all other metrics compared, and finds the smallest number of critical 

nodes that lead to maximum network breakdown. This behavior is the same for densely and 

loosely connected networks. Simple betweenness performs similarly well in loosely connected 

networks (𝛾=2.2, 2.6); however, it fails to find a small set of critical nodes in densely connected 

networks. Star degree IIC is outperformed in loosely connected networks, but reaches maximum 

breakdown faster in densely connected networks, even in cases where convergence is slower 

than other metrics for the first few critical nodes. Degree IIC performs slower than simple star 

degree in all network configurations tested, while in dense configurations it surpasses other 

conventional metrics, and surpasses node degree in loosely connected networks. 

For the one to multiple model, simple star degree performs best and converges faster in 

all the tests conducted. Although simple betweenness shows good performance in loosely 

connected networks for all scenarios of this model, once the nodes are more densely connected 

the performance starts going down and the network stays connected even when a larger number 

of high betweenness nodes are disconnected from the power network. Simple node degree 

performance stays similar to betweenness but is more efficient in scenarios where the power 

network is densely connected. Degree with original IIC maintains its performance in loosely 

connected networks and combination of loosely connected power network with dense 

communication network. Star degree with modified IIC converges slower than other centrality 

scores in loosely connected power network. When it comes to densely connected power and 

communication network, though, the maximum network breakdown is achieved sooner with 
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some scenarios where it converges significantly faster than degree IIC, betweenness, or simple 

degree. These patterns are reflected in networks of all tested sizes. 

The results of multiple to one model reveal a similar pattern to the one to multiple model, 

where simple star degree shows a superior performance in all scenarios and star degree with 

modified IIC performs well in scenarios with a dense power network. Even though it converges 

slowly after the removal of the first few critical nodes, the maximum breakdown is reached faster 

than betweenness, simple degree, or degree IIC. Failure scenario 3 causes the most amount of 

disruption with the smallest number of critical nodes out of all 3 scenarios, due to its setup. 

Last, the results of multiple to multiple model show that in scenarios 1 and 2, the network 

is much less vulnerable since for a node to fail all or at least half of the interdependent nodes 

from other networks need to fail as well. In this scenario, both networks have multiple 

interdependent links keeping them well-connected and, hence, the cascading of failures is 

stopped sooner than all other coupling models. However, in scenario 3, this effect is completely 

the opposite as the failure propagates much further for every critical node failed. As we can 

observe in the Figures, it takes only 5 to 15 critical nodes for the whole network to completely 

break apart in scenario 3. As seen previously in other models, simple star degree performs better 

here, as well with degree IIC performing better than simple node degree and betweenness in 

dense networks. Star degree IIC performs better in densely connected power networks and 

converges faster than other models in these dense network configurations. 
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CHAPTER 5. CONCLUDING REMARKS 

In this work, we investigated the coupling of two networks (namely a power and a 

communications network) from a graph theoretic perspective. Our objective was to identify 

metrics that can help us predict the importance of a node and the overall breakdown of the 

network should it fail. We proposed three new coupling models, based on the literature, and 

extended the one to one coupling model that is typically used. We also proposed three failure 

scenarios for the different coupling models.  

More importantly though we developed a new modified IIC technique to identify critical 

nodes, as well as tried a new centrality metric (star centrality) in both its simple and its IIC 

versions. From our experimental setup, we were able to show that the newly proposed metrics 

are performing well in small and medium sized networks that are generated by a power law 

distribution.  

The star centrality metric is also defined for more than 2 coupled networks. It is hence 

one of our goals to investigate how well its performance is in the presence of multiple 

interdependent networks. This would also have applications in real life, as it is usually many 

infrastructures that are coupled (pipelines, transportation networks, power, communications, 

etc.). Another important aspect of our work has to do with the study of networks that are scale-

free: it would be interesting to investigate how the performance of the studied metrics is affected 

when different networks follow different distributions. Last, our cascading setup and metrics are 

computationally expensive, which makes them prohibitive to use in very large-scale networks. It 

is for that reason that we would like to propose new heuristic techniques to identify critical nodes 

in such intertwined networks.  
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