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ABSTRACT

In this thesis, we investigate new multi-echelon vehicle routing problems for logistics op-

erations using unmanned autonomous vehicles. This can provide immediate tangible outcomes,

especially in high-demand areas that are otherwise difficult or costly to serve. This type of problem

differs from the commonly used multi-echelon supply chain management systems in that here there

exist no intermediate facilities that consolidate/separate products for delivery; instead all decisions

are made on a per-vehicle basis. We describe here how we can obtain the necessary parameters

(data collection) to evaluate the performance of such multi-echelon systems. We also provide three

mathematical formulations based on different assumptions and case scenarios. We then study the

differences between the three models in practice, as far as routing cost and duration of operations

are concerned. We finally show that there are savings to be had by properly employing unmanned

vehicles for logistics operations.
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1. INTRODUCTION

Typically freight is transferred from its origin (suppliers/production plants) to its desti-

nation (customers) through one or more intermediate facilities (distribution centers/warehouses).

This type of distribution system is called multi-echelon distribution system where origin, destina-

tion, and intermediate facilities are termed as layers/stages and each pair of layers transferring

freight from one to another is termed as a level or an echelon. A special case of muti-echelon

distribution system is two-echelon distribution system. This distribution system composed of three

layers: origin, intermediate facilities or satellites, and destination, and two echelons: origin-satellite

or first echelon, and satellite-destination or second echelon. First echelon vehicle(s) is used to trans-

fer freight from its origin to its satellite station, and second echelon vehicle(s) is used to transfer

freight from its satellite station to its destination.

To minimize the total cost of two-echelon distribution system two echelon vehicle routing

problems (2E-VRPs) are formulated. In these problems freight’s origin and destination(s) are fixed,

a set of satellites are given, and the goal is to find a set of routes for first echelon vehicles and second

echelon vehicles.

In this thesis, we investigate new multi-echelon vehicle routing problems for logistics oper-

ations in high-demand areas that are otherwise difficult to reach and serve. This extension of the

classical vehicle routing problem is different than the similarly named and commonly used multi-

echelon supply chain management systems. The difference lies in the fact that in this extension

there exist no intermediate facilities that consolidate/separate products for delivery; instead all

decisions are made on a per-vehicle basis. This is a new type of problem that has though tangible

advantages in modern logistics systems, namely:

(a) it can be used to parallelize the “last-mile” of the delivery process;

(b) it enables city logistics where larger vehicles ensure the routing of goods from one general ge-

ographic location to another, while smaller (and potentially environmentally friendly) vehicles

are tasked with the final delivery within an urban area;

1



(c) with the increase of the availability of unmanned vehicles, it provides us with a venue to

automate the routing process, while at the same time servicing areas that are difficult to reach,

or totally inaccessible

For the first advantage, let us consider the example of a traditional postal service, where a

truck parks in a convenient location, and the employee/driver picks up packages of nearby customers

and walks them from door to door. This happens because it is easier to serve multiple customers

in the vicinity of the parked vehicle, before returning to it and leaving for the next set of suitable

customers. Similarly, in a two-echelon vehicle routing problem, the first vehicle would stop and

wait somewhere appropriately before releasing the other, more flexible vehicle to serve that area.

In the case of multiple secondary vehicles, this can be easily parallelized, minimizing the total time

to delivery.

Continuing, in many cases, larger trucks are not allowed to park and/or stop within the

confines of an urban center. Very often the sheer size of the trucks makes them unfit for use within

a city. This creates the need for multi-echelon vehicle routing, where again the secondary units are

released to serve the demand in areas inaccessible to the original vehicle. In the case of unmanned

aerial and ground vehicles, some more advantages are also the decrease in emissions and the limited

traffic caused during the last-mile.

Last, and perhaps more importantly in our work, both drones and autonomous vehicles are

gaining traction. They have been extensively used for data collection, surveillance and monitoring,

as well as in military operations, however private initiatives are now positioning them as a major

player for logistics operations. As an example, recently Amazon stated that their goal is to have

products delivered to special customers within less than 30 minutes with the use of drones. While

research has been ample for the technical characteristics of unmanned aerial vehicles, the same

cannot be said for the logistical challenges associated with this new paradigm. We provide more

details about these challenges and how our research is slated to address them in the next section.

1.1. Problem Definition

Formally, the problem we aim to address can be described as follows. Contrary to the

traditional vehicle routing problem, we consider here a two echelon system where a customer can

be served by a vehicle of either echelon. A first echelon vehicle can also stop and deploy any and

2
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Figure 1.1. Traditional approach where a delivery truck visits all customers.

all of the second echelon vehicles it controls and then wait for them to service the area before

returning. Some of the assumptions that we consider in this work follow:

A1. There exist a set of locations from where a second echelon vehicle can be deployed and/or

picked up, and no deployment or pick-up is allowed en route.

A2. A second echelon vehicle deployed from a specific first echelon vehicle needs to return to that

same vehicle.

A3. The first and second echelon vehicles experience different travel distances and can traverse a

predefined set of arcs. This implies that some customers might be accessible by only certain

vehicles and that specific modes can cover faster or slower certain routes.

A4. A second echelon vehicle has a predefined capacity in that it can only serve a limited number

of customers at each round performed. Second echelon vehicles are allowed to be deployed

multiple times from the same first echelon vehicle, so long as they are picked up at the end

of each round.

3
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Figure 1.2. Drone delivers to all customers within flight range from main depot and satellite stations
and truck moves within main depot and satellite stations.

The above problem definition is naturally fitted for applications involving autonomous ve-

hicles, but can also describe problems where a vehicle is responsible for the transportation of many

different actors in an area, where each actor can then be routed where needed. As a potentially

transformative application, consider a simple humanitarian supply chain model where doctors are

needed in a location after a humanitarian crisis. Employing a framework like the above to model

the routing decisions, doctors can be transported from city to city within a larger, safer, and faster

convoy, but can then move from patient to patient or from neighborhood to neighborhood using

more convenient means of transportation, such as motorbikes or smaller cars. For a small example

of how the traditional routing problems in logistics differ to the problem defined here, the interested

reader is referred to Figures 1.1 and 1.2, which present the two versions of the problem (classical

VRP vs. 2-echelon VRP).
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1.2. Outline

This thesis is structured as follows. We proceed with an extensive literature review of

classical vehicle routing problems, simultaneous facility location and vehicle routing problems, and

two-echelon vehicle routing problems in Chapter 2. Then, in Chapter 3, we discuss the data

collection and organization processes used in this thesis. Chapter 4 focuses on three mathematical

programs designed to model and solve three specific instances of the problem defined above. We

then proceed to describe our experimentation and our results in Chapter 5. This thesis concludes

with our observations and remarks, along with our insight in future work in Chapter 6.
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2. LITERATURE REVIEW

The Vehicle Routing Problem (VRP) is a very well-studied combinatorial optimization

problem. It is a generalization of the infamous traveling salesman problem (TSP). Ever since the

VRP was proposed as a single vehicle version [7], it has been hailed as one of the most important

optimization problems. In the classical VRP, a set of vehicle routes is devised in order to satisfy the

following set of “rules”: (i) every customer location is visited exactly once, (ii) every vehicle route

begins and ends at the same depot, and (iii) a set of other constraints is satisfied. The last set of

constraints can be as diverse as vehicle capacities (i.e., no vehicle can satisfy more than an upper

bound of demand at each round), priorities (e.g., a specific customer needs to be visited before

or after anothe customer), time windows constraints (i.e., customers can only be served in specific

times), among many others. As its practical applications are numerous, it comes as no surprise

that significant research has been invested in the context of vehicle routing problems.

The VRP is well-known to be NP-hard [13], even under the assumption that the underlying

network is planar. More specifically, the problem remains NP-hard for distances that satisfy the

triangle inequality, as is the case in our work. After the first works that focused on a single vehicle

version of the problem, focus shifted towards multi-vehicle counterparts since their introduction in

[8]. Therein, a mathematical formulation is first introduced, to be followed by a decomposition of

the original problem into smaller TSPs that are solved using linear programming. This work was

immediately followed by the introduction of one of the most used heuristic approaches, the savings

method, as described in [4]. Since then, of course, the amount of research in the topic has been

exponentially increased. We refer the interested reader in the excellent surveys of VRP models,

solution approaches, and challenges in [12], [10], [17], as well as the taxonomic review offered by

Eksioglu et al. [9].

Our problem involves studying both vehicle routing and facility location in a simultaneous

setting. An application of such a setting in healthcare logistics in the Netherlands is provided in

[18]. In their work, a local pharmacy is wanting to set up lockers that can be used by prospective

patients: if a patient is within the coverage zone (radius) of a specific locker, then they no longer

need to be visited by a deliver vehicle. Instead, they an pick up their medication by a simple visit

6



to their assigned locker. To solve the problem, a mixed integer linear program is formulated and a

hybrid heuristic method is devised. The authors also show that the heuristic method consistently

outperforms exact methods, such as branch-and-bound, as far as solution time is concerned.

In modern supply chain systems, we rely on an interrelated arrangement of plants, ware-

houses (distribution centers), and transportation networks to deliver the final goods to customers.

A study of the existing complex distribution network design problem is then offered in [2]: therein,

they consider a distribution network consisting of four layers. Those layers are, namely, supply

points, central depots, regional facilities, and demand points. The setup of the problem then be-

comes the following. Where should the central depots and regional facilities be located? How are

clients allocated/assigned to the open facilities? How are vehicles routed from supply points to

central depots; from central depots to regional facilities; from regional facilities to end customers?

Last, how much inventory should be the target in each of the central depots and regional facilities to

maintain a desirable customer service level? To answer the above questions in [2], a comprehensive,

large-scale mixed integer linear program is formulated and solved using commercial solvers, such

as CPLEX.

A two-echelon distribution network is then a special case of multi-echelon distribution net-

work. There are three layers in a two-echelon distribution network and these are supply points or

depots, intermediate points or satellites, and customers. Freights are transferred from depots to

satellites using first echelon vehicles, and from satellites to customers using second echelon vehi-

cles. In [6], the authors address decision problems of two-echelon distribution network design as

two-echelon location routing problems where decisions on the location of depots and satellites and

decisions on the routing of first and second echelon vehicles are to be made simultaneously. To

tackle this proble, Crainic et al. develop three mixed integer programming formulations: a three

index formulation, a two index formulation, and a one index formulation for two-echelon location

routing problems [6].

Two-echelon vehicle routing problems (2E-VRPs) are solved under a common objective of

minimizing the global routing cost of first echelon vehicles (usually associated with freight costs of

transferring goods from a depot to a satellite stations) and second echelon vehicles (associated with

the final delivery of goods to customers from a satellite station). In their work, [5] have performed

three sets of experiments to investigate how the objective value in 2E-VRP varies as instance

7



parameters are varied: these parameters include the mean transportation cost, the accessibility

index, the customer distribution, the satellite location rules, the depot location, the number of

satellites. In the first set of experiment in their work, the mean transportation cost from the depot

to the satellites, the mean accessibility index of the satellites, and the global routing costs for both

2E-VRP and the regular VRP are calculated for a set of instances. After that the ratio of the

global routing cost of VRP, and 2E-VRP are calculated. In the second set of experiments, the

impact of different customer and satellite location distributions, as well as varying the number of

satellites are analyzed to see their effect on the cost of the 2E-VRP. At the last set of experiments,

the impact of variable customer density, as well as depot locations are analyzed on global routing

cost of 2E-VRP and VRP.

Two-echelon VRPs are seeing increasing interest, due in part to the advent of unmanned,

autonomous vehicles. A drone, technically described as unmanned aerial vehicle, is a remote con-

trolled flying robot. Because of its remote control capabilities and its autonomous flying features,

it has been well-suited for military purpose; nowadays though, it is also used for a series of other

purposes, including but not limited to surveying, aerial photography, monitoring and searching,

and even for commercial delivery purposes. Even though drones are now quite ubiquitous and they

enjoy multiple uses in everyday life, the optimal logistics and operations for deploying them in a

commercial setting are still a major area of research.

In a recent contribution [15], the authors have researched a scenario in which a traditional

vehicle (e.g., a truck), carries a drone which is controlled and routed to satisfy the demand of

customers located in different geographic locations. The characteristics of the scenario investigated

in their work are similar to the ones investigated here: the drone can be deployed from and picked

up by the vehicle multiple times, it can only visit one customer before returning to the vehicle,

it has a maximum range of flight, and there exist customers that (due to capacity considerations)

can never be satisfied by a drone and will instead be visited by the truck. This problem, aptly

named “the flying sidekick problem”, is solved via the introduction of two mixed integer linear

programming formulations. Larger scale problems that are of practical interest are solved via two

heuristic solution procedures. To that extent, in [1] the authors investigate a variant of the TSP

with drones, and they propose a series of “first route then cluster” heuristic approaches to solving

the problem. These heuristics are based on local search and dynamic programming techniques.

8



While recent focus on routing problems with drones has peaked, there was no quantitative

measure of the extent in which the solution of this new paradigm actually helps defray costs obtained

by solving traditional VRPs. This gap was recently filled by Wang et al., with an excellent worst-

case analysis of how much the duration of operations with and without drones can be affected [19].

To do that the authors develop two sets of problems for satisfying the same set of customers: the

first problem is viewed as a traditional vehicle routing problem, while the second one is defined

with similar characteristics to the work in [15], with the exception of allowing for a truck to carry

more than one drones, which enables parallelization.

We finish this overview of the literature with a note on the navigation of unmanned aerial

vehicles. Most of them are well equipped to be navigated by civil global positioning system (GPS)

signals [14]. However, the open nature of this system makes such systems vulnerable to GPS

spoofing. The University of Texas Radionavigation Laboratory indeed developed a spoofer that

can be used to counterfeit civil GPS signals and hijack an unmanned aerial vehicle [11]. Although a

number of civil GPS spoofing defense techniques have been developed, none of them are foolproof.

This is indeed cause for careful planning, as it has been identified as one of the most important

cyberthreats to the viability of autonomous and connected vehicles [16].

Another concern with the viability of using unmanned vehicles for logistics operations is

their positional accuracy. However, positional accuracy of customer grade global positioning sys-

tem (GPS) devices have improved significantly over the last years by differential correction i.e.,

incorporating wide area augmentation system (WAAS) with GPS. Horizontal positional accuracy

of GPS has improved to 3-4 meters from 10-15 meters after differential correction [3].

In general, unmanned aerial vehicles are controlled by a human operator through a common

data link (CDL) or video data link (VDL) from a ground station. This remote control makes

UAVs vulnerable and to overcome this vulnerability [20] propose a decentralized control strategy,

aptly named region-sharing strategy. Solution of decentralized time allocation problem required to

implement region-sharing strategy but it is computationally intractable. In their work, the authors

develop an approximate formulation which first decompose the time allocation problem and then

the decomposed problem is solved by decentralized Markov decision process. This work is a great

indication of how UAV vulnerabilities can be addressed, improved upon, and lead to fruitful policies

through the proper use of mathematical modeling and operations research.
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3. DATA COLLECTION SYSTEMS AND DATABASE

3.1. Introduction

Both distance matrices and travel-time matrices are very commonly used in location prob-

lems, vehicle routing, and, of course, logistics and multi-echelon distribution systems. Combina-

torial optimization models for these fields and their problems often rely on such matrices and the

solutions of the above models can vary based on the matrix contents. Even though their applica-

tions are vast, obtaining the actual distance and travel time matrices can prove time consuming

and tiresome. In this chapter, we present two Java projects that have been specifically developed

to obtain the road distance matrix and the aerial distance (“as the crow flies”) matrix easily. The

contents of these matrices is then saved in a relational database, such as MySQL, for ease of access.

3.2. Methods

Distance matrices are positively correlated with travel time matrices and, naturally, in some

cases they can be and are used interchangeably. To generate the distance matrix given a range

of points of interest, we can calculate the great circle distance (used for measuring the shortest

distance between two points in a spherical surface), the Euclidean distance (used for measuring

shortest distance between two points in a plane surface), among other metrics. In location science,

vehicle routing, and distribution system design Euclidean distances are more common. Great circle

distances are typically used for airplane routing.

3.2.1. Methods for Road Distance Matrix

In our case, Euclidean distances are used to calculate the road distance between two given

points. However, this can prove cumbersome and unrealistic, since even in the case of “straight-

line roads”, the distance experiences is rarely the straight line distance. Moreover, in the case of

curvilinear roads, the process of calculating this distance can become even harder. That said, an

openly available resource for calculating these distances (and their traversal time counterparts) is

Google Maps. Using the Google Maps API, one can obtain the distance and travel time between

two points for a sequence of different modes, including driving, walking, biking, etc. In this work,

we use the Google Maps API to obtain and store the road distance and travel time between two

points for a specific travel mode.
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A java application is developed to get the road distances and the travel times from Google

Maps, and they are then used to store and build the distance matrix and the travel time matrix.

The block diagram of this java project is given in Figure 3.1. In this application, first, the java

program takes input file using Scanner class. This input file has two columns, one column is for

latitudes and the other one is for longitudes. Each row of this input file represents a location. After

getting the locations from input file the program sends request to Google Maps for getting distance

and travel time between an origin and a destination using HttpUrlConnection class. Google Maps

sends its response to the java program in JSON format. Program then separates specific array

elements containing distance and travel time of the JSON object. After that the main program

creates output files of distance matric and travel time matrix using PrintWriter class, and stores

these values in the MySQL data base via JDBC class. Each time the program is run it creates a

new distance matrix file and a new travel time matrix file but it saves all the distance and travel

time data in the data base.

3.2.2. Methods for Aerial Distance Matrix

Great Circle distance is used to calculate aerial distance between two points on a sphere.

The formula to get the Great Circle distance between two points is given below:

d = r · arccos
(
sinφ1 · sinφ2 + cosφ1 · cosφ2 · cos(∆λ12)

)
where,

d = aerial distance between two locations,

r = radius of the Earth,

φi = latitude of a given location i,

λi = longitude of a given location i,

∆λij = |λi − λj | = absolute difference between two longitudes i and j.

A java application is developed to calculate the aerial distance between pair of locations,

to create aerial distance matrix, and to save them in the database. The block diagram of this
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Figure 3.1. Block design of road distance and travel time extracting system from Google Maps.

Java Main Program

Input File
Output files

DataBase

Scanner

PrintWriter

JDBC

Figure 3.2. Block design of aerial distance measuring system using Great Circle Distance.

application is given in Figure 3.2. In this application, first, the java program takes input file using

Scanner class. This input file has two columns, one column is for latitudes and the other one is

for longitudes. Each row of this input file represents a location. After getting the locations from

input file the program calculates aerial distance between every pair of locations using Great Circle

distance formula and save them in the database. After that the main program creates output file

of aerial distance matrix.

3.3. Conclusion

The two java applications developed to calculate, create, and save road distance matrix and

aerial distance matrix are used to provide with data inputs the models presented in the following

chapter.

12



4. MATHEMATICAL FORMULATIONS

In this chapter, we discuss the three mathematical models and their notations. We begin

with a general overview of the notation, however we also provide the necessary notation for improved

readability upon the beginning of each mathematical model description. The three mathematical

models presented here are named Single Vehicle Drone-Only Delivery, Single Vehicle Drone and

Truck Delivery, and Multiple Vehicle Drone and Truck Delivery, respectively.

4.1. Notation

Let G(V,E) be a graph on n = |V | vertices and m = |E| edges and let K1,K2 be the set

of vehicles in the first and second echelon respectively. For simplicity, we assume that all vehicles

in the set K2 can be found within every vehicle k ∈ K1. Node set V consists of the original depot

locations (set O), the customers (set C), the satellite locations that can be used to deploy and pick

up a second echelon vehicle (set S), and a set of intermediary locations on the map (set I). The edge

set E can be defined as the union of a series of sets Ek, ∀k ∈ (K1,K)2. Each set Ek represents the

edges that vehicle k can traverse; associated with every edge (i, j) ∈ Ek,∀k ∈ K1,K2 we have the

time that vehicle k needs to traverse the edge, T k
ij . Similarly, for every customer node i ∈ C and

every vehicle k ∈ K1,K2, we have a parameter dki that signals the demand of that specific customer

for the unit in question, and a parameter (tied to the demand) λki to capture the time that the unit

needs to spend at the location of the customer to fully serve them. Last, every satellite station

is associated with a parameter µs denoting the set-up time, as well as deployment and picking up

times for all second echelon vehicles k ∈ K2 in that same station, denoted by V k
s .

We can now proceed to define the decision variables of our optimization models. Our

decisions are two-fold (strategic and operational) and can be summed up to the following questions:

(a) Which customers are visited by a first and which by a second echelon vehicle?

(b) In which satellite stations are the first echelon vehicles expected to stop and deploy the second

echelon vehicles?

(c) How are the vehicles routed from location to location, starting from a depot/satellite station and

ending in that same depot/satellite station, for first and second echelon vehicles, respectively?
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(d) How much time does a unit spend at each location it stops?

We now define the following binary variables; in parentheses, we provide the question (a,

b, c, and d) that each decision variable serves to address. First, define ucs = 1 if customer c ∈ C

is assigned to a second echelon vehicle deployed from satellite station s ∈ S; similarly, let vck = 1

if customer c ∈ C is assigned to first echelon vehicle k ∈ K1 (a). Clearly, every customer needs to

be assigned to one or the other, leading to an assignment constraint that will be described later.

Continuing, let yks = 1, if vehicle k ∈ K1 is planned to set up and deploy its second echelon vehicles

at satellite station s ∈ S (b).

Now, for the routing decisions we define variables fkij and x
(k,s)
ij for the first and second

echelon vehicles, respectively. More specifically, fkij is equal to 1 if vehicle k ∈ K1 is routed using

(i, j) ∈ Ek and x
(k,s)
ij if vehicle k ∈ K2 uses arc (i, j) ∈ Ek, when deployed from satellite station

s ∈ S (c). Note that the second echelon vehicles can be redeployed from several satellite stations

and hence it is important to properly index the decision variable to keep track of that.

For time considerations, we are concerned with two components. The first one has to do

with the time a second echelon vehicle takes to perform a round, while the second one deals with

the time that a first echelon vehicle spends waiting for its second echelon counterparts to return.

For the former, let tks be the time that vehicle k ∈ K2 takes to return to satellite station s ∈ S; for

the latter, define wk
s to be the time that any first echelon k ∈ K1 vehicle spends idle at satellite

station s ∈ S (d). Finally, some auxiliary variables are necessary. We define li, ∀i ∈ V as an

integer variable used for subtour elimination and zks , ∀s ∈ S, ∀k ∈ K2 as a binary selection variable

whenever second echelon vehicle k is deployed when the first echelon vehicle is set up at satellite

station s: equivalently, this implies that second echelon vehicle k is required by a customer c that

has been assigned to satellite station s.

4.2. Mathematical Formulations

We develop three models in an attempt to capture the intricacies of different use scenarios

for unmanned aerial vehicles. In the first scenario, a single first echelon vehicle is deployed with

several drones that are then used to satisfy the demand of all customers. We refer to this model

as the Single Vehicle Drone-Only Delivery model. In the second scenario, there exist customers

that cannot be served by a drone, due to customer order specifications, capacity considerations,
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or location. We refer to this model as the Single Vehicle Drone and Truck Delivery model. Last,

scenario 3 is similar to the second one and serves as a generalization as far as the number of first

echelon vehicles are concerned. This model is referred to as the Multiple Vehicle Drone and Truck

Delivery model. Notation that is specific to each of these models is presented in the beginning of

each subsection.

4.2.1. Single Vehicle Drone-Only Delivery

In this model a first echelon vehicle like a truck carries a set of drones to each open satellite

station, deploy drones from satellite station to serve the customers assigned to that and the truck

waits there until all the deployed drones come back, when all the drones are back from customer

location the truck receives them and moves to another satellite station to satisfy customers assigned

to that satellite station. This is how when all the open satellite stations are covered the truck goes

back to the main depot or warehouse.

Let us introduce the sets, parameters, and variables of this model below:

I. Sets:

1. K2 : set of second echelon drones for last-mile delivery/service.

2. O: depot node

3. C: customer nodes

4. S: satellite stations

II. Parameters:

1. λc: service time for customer c ∈ C.

2. dc: demand for customer c ∈ C.

3. µs: setup time for satellite station s ∈ S.

4. Vs: deployment/pickup time for station s ∈ S.

5. Tij= time/distance to traverse (i, j) ∈ Ek for the first echelon vehicle.

6. T k2
ij = time/distance to traverse (i, j) ∈ Ek for a second echelon drone k2 ∈ K2.
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III. Routing Variables:

1. xksij = 1 if vehicle k ∈ K2 uses arc (i, j) ∈ Ek having deployed from station s ∈ S.

2. fij = 1 if the first echelon vehicle uses arc (i, j) ∈ Ek.

IV. Assignment Variables:

1. vsc = 1 if customer c ∈ C is assigned to satellite station s ∈ S.

2. ys = 1 if the first echelon vehicle sets up satellite station s ∈ S.

V. Time Variables:

1. τs= duration of time a first echelon vehicle spent in satellite station s ∈ S.

2. tks= time vehicle k ∈ K2 spends during a round starting at s ∈ S.

3. ρ= total time required to satisfy all customers.

VI. Other Variables:

1. li= subtour elimination variable for second echelon vehicles, where i ∈ V .

2. mi= subtour elimination variable for first echelon vehicles, where i ∈ V .

VII. Others:

1. C1= maximum number of nodes the first echelon vehicle can visit in its tour.

2. C2= maximum number of customers second echelon vehicles can visit in its tour.

3. ∆= Number of drones required to complete the operation

The formulation is the following:

(F ) minimize
∑
i∈V

∑
j∈V

Tij ∗ fij +
∑
k∈K2

∑
s∈S

∑
i∈S∪C

∑
j∈S∪C

T k
ij ∗ xksij (4.1)

∑
s∈S

vsc = 1 ∀c ∈ C (4.2)

vsc ≤ ys ∀c ∈ C,∀s ∈ S (4.3)
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Figure 4.1. A feasible solution of the first model to satisfy 5 customers.

∑
i∈V

fis = ys ∀s ∈ S (4.4)

∑
s∈S

fsi −
∑
s∈S

fis = 0 ∀i ∈ V (4.5)

mi −mj + C1 ∗ fij ≤ C1 − 1 ∀ i, j ∈ S ∪ C, i 6= j (4.6)

∑
i∈O

∑
j∈S∪C

fji = 1 (4.7)

∑
s∈S

∑
k∈K2

∑
j∈S,s=j

xkscj +
∑
s∈S

∑
k∈K2

∑
j∈C,j 6=c

xkscj = 1 ∀c ∈ C (4.8)

∑
s∈S

∑
k∈K2

∑
j∈S,s6=j

xkscj +
∑
s∈S

∑
k∈K2

∑
j∈S,s6=j

xksjc = 0 ∀c ∈ C (4.9)
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∑
j∈C

xksij −
∑
j∈C

xksji = 0 ∀i ∈ S ∪ C,∀k ∈ K2,∀s ∈ S (4.10)

li − lj + C2 ∗
∑
k∈K2

∑
s∈S

xksij ≤ C2 − 1 ∀ i, j ∈ C, i 6= j (4.11)

∑
p∈S

∑
j∈S∪C

xkpcj +
∑
p∈S

∑
j∈S∪Z

xkpsj − v
s
c ≤ 1 ∀c ∈ C,∀k ∈ K2, ∀s ∈ S (4.12)

tks =
∑

i∈S∪C

∑
j∈S∪C

xksij ∗ T k
ij +

∑
i∈S∪C

∑
j∈C

xksij ∗ λc ∀s ∈ S, ∀k ∈ K2 (4.13)

τs ≥ tks + (µs + Vs) ∗ ys ∀s ∈ S,∀k ∈ K2 (4.14)

ρ =
∑
i∈V

∑
j∈V

Tij ∗ fij +
∑
s∈S

τs (4.15)

∆ ≥
∑
c∈C

vsc ∀s ∈ S (4.16)

The objective function (4.1) tries to minimize the global routing cost of the first echelon

vehicle, and drones. Constraint (4.2) ensures that every customer is assigned to a satellite station.

Constraint (4.3) makes sure that if a customer is assigned to a satellite station then that station

must be open. Each open satellite station must be visited by the first echelon vehicle is confirmed

by constraint (4.4). Flow preservation of the first echelon vehicle is confirmed by the the constraint

(4.5). Constraint (4.6) is the subtour elimination constraint of the first echelon vehicle. Constraint

(4.7) ensures the first echelon vehicle comes back to the depot at the end of its tour. Constraint

(4.8) makes sure every customer is satisfied by a drone. Constraint (4.9) ensures that if a drone

is launched from a satellite station then it would come back to the same station after visiting

customer location(s). Constraint (4.10) is the flow preservation constraint of second echelon drones.

Constraint (4.11) is the subtour elimination constraint for drones. Constraint (4.12) links between

allocation and routing variables. Constraint (4.13) calculates the time each drone take in its tour
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from a satellite station. Constraint (4.14) calculates the waiting time of the first echelon vehicle

to an open satellite station. Constraint (4.15) calculates the duration of operation in satisfying

the customers. Constraint (4.16) calculates the number of drones required to run the operation.

Right side of the constraint (4.15) can be used as an objective function if one wants to minimize

the duration of operation to satisfy all customers but this does not guarantee that global routing

cost would be optimal.

4.2.2. Single Vehicle Drone and Truck Delivery

Like first model in this model a first echelon vehicle like a truck carry a set of drones to each

open satellite station, deploy drones from satellite station to serve the customers assigned to that

and the truck waits there until all the deployed drones come back, when all the drones are back

from customer location the truck receives them and moves to another satellite station to satisfy

customers assigned to that satellite station. In addition to that the first echelon vehicle visits

customer locations to satisfy them in order to optimize the global routing cost. And constraint like

certain customers have to be satisfied by the first echelon vehicle is also considered in this model.

In addition to the sets, parameters, and variables of the first model, this model needs

following parameters, and variables:

I. Parameters:

1. bc= 1 if customer c ∈ C needs to be served by a first echelon vehicle.

2. E= unit distance/time operating cost of the first echelon vehicle.

3. G= unit distance/time operating cost of the second echelon drones.

II. Variables:

1. uc=1 if the first echelon vehicle visits the customer c ∈ C.

The formulation is the following:

(S) minimize E ∗
∑
i∈V

∑
j∈V

Tij ∗ fij +G ∗
∑
k∈K2

∑
s∈S

∑
i∈S∪C

∑
j∈S∪C

T k
ij ∗ xksij (4.17)
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Figure 4.2. A feasible solution of the second model to satisfy 5 customers where 4th customer is
initially assigned to be satisfied by the first echelon vehicle.

Subject to constraints (4.3)-(4.7), (4.9)-(4.16), and following new constraints

∑
s∈S

vsc + uc = 1 ∀c ∈ C (4.18)

uc ≥ bc ∀c ∈ C (4.19)

∑
i∈V

fic = uc ∀c ∈ C (4.20)

∑
s∈S

∑
k∈K2

∑
j∈S,s=j

xkscj +
∑
s∈S

∑
k∈K2

∑
j∈C,j 6=c

xkscj =
∑
s∈S

vsc ∀c ∈ C (4.21)

The objective function (4.17) seeks to minimize the global routing cost in presence of two

unit parameters. These two unit parameters represent the unit cost of operating the first echelon

vehicle and drones. Unit cost of these two parameters vary based on geographic attributes, risk of

lives in war zone, risk of being hijacked, road conditions, price and availability of fuel and battery,

etc. If the unit cost of these two parameters are not significantly different then the solution ends
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up giving a single vehicle routing solution. Constraint (4.18) makes sure each customer is assigned

to either a satellite station or the first echelon vehicle. Constraint (4.19) ensures that a customer

can be satisfied by the first echelon vehicle even if it is not assigned to the first echelon vehicle.

Constraint (4.20) ensures that the first echelon vehicle visits a customer if it is satisfied by the first

echelon vehicle. And constraint (4.21) makes sure that a drone satisfies a customer if the customer

is assigned to a satellite station.

4.2.3. Multiple Vehicle Drone and Truck Delivery

This is the generalization of the previous two models and considers more than one first

echelon vehicles. In this model a number of first echelon vehicle equipped with drones come out

from the depot to satisfy customers by either first echelon vehicles or drones launched from a

satellite station.

In order to cope with the generalization of this model some sets, parameters, and variables

of the previous two models are modified besides using the others unchanged. The modified or new

sets, parameters, and variables are given below:

I. Sets:

1. K1: set of first echelon vehicles.

II. Parameters:

1. T k
ij : time/distance to traverse (i, j) ∈ Ek for the first echelon vehicle k ∈ K1.

III. Variables:

1. fkij=1 if first echelon vehicle k ∈ K1 visits arc (i, j) ∈ Ek.

2. yks=1 if satellite station s ∈ S is set up by a first echelon vehicle k ∈ K1.

3. ukc=1 if customer c ∈ C is satisfied by a first echelon vehicle k ∈ K1.

The formulation is the following:

(T ) minimize E ∗
∑
k∈K1

∑
i∈V

∑
j∈V

T k
ij ∗ fkij +G ∗

∑
k∈K2

∑
s∈S

∑
i∈S∪C

∑
j∈S∪C

T k
ij ∗ xksij (4.22)
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Figure 4.3. A feasible solution of the third model to satisfy 5 customers where 1st customer is
initially assigned to be satisfied by the first echelon vehicle.

Subject to constraints (4.9)-(4.13), (4.21), and following new constraints

∑
s∈S

vsc +
∑
k∈K1

ukc = 1 ∀c ∈ C (4.23)

∑
k∈K1

ukc ≥ bc ∀c ∈ C (4.24)

vsc ≤
∑
k∈K1

yks ∀c ∈ C,∀s ∈ S (4.25)

∑
s∈S

fksi −
∑
s∈S

fkis = 0 ∀i ∈ V,∀k ∈ K1 (4.26)

∑
i∈V

fkis = yks ∀s ∈ S, ∀k ∈ K1 (4.27)

mi −mj + C1 ∗
∑
k∈K1

fkij ≤ C1 − 1 ∀ i, j ∈ S ∪ C, i 6= j (4.28)
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τs ≥ tks + (µs + Vs) ∗
∑
k∈K1

yks ∀s ∈ S, ∀k ∈ K2 (4.29)

∑
i∈O

∑
j∈S∪C

fkji = 1 ∀k ∈ K1 (4.30)

∑
i∈O∪S

fkij = ukj ∀k ∈ K1,∀j ∈ C (4.31)

The objective function (4.22) seeks to minimize the global routing cost and waiting time of

first echelon vehicles in satellite stations in presence of unit distance/time operating cost parameter

of first echelon vehicles and drones. Constraint (4.23) ensures that each customer is satisfied

by either first echelon vehicle or drone from satellite station. Constraint (4.24) indicates that a

customer can be satisfied by a first echelon vehicle even if initially the customer is not assigned to

satisfy by any first echelon vehicle. Constraint (4.25) indicates that a customer can be assigned to

a satellite station if that station is set up by a first echelon vehicle. Constraint (4.26) is the flow

preservation constraint of first echelon vehicles. Constraint (4.27) indicates every open satellite

station must be visited by a first echelon vehicle. Constraint (4.28) is the subtour elimination

constraint of first echelon vehicles. Constraint (4.29) calculates the waiting time of a first echelon

vehicle in a satellite station. Constraint (4.30) indicates every first echelon vehicle goes back to the

depot at the end of its tour. And constraint (4.31) ensures that a customer is satisfied by a first

echelon vehicle if the vehicle visits the customer location.
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5. COMPUTATIONAL EXPERIMENTS

We perform two distinct sets of experiments on the three models presented in the previ-

ous chapter. The numerical experiments are described based upon the distribution of customers

(demand points) on the map. We opted to use the metropolitan area of Fargo-Moorhead for our

experiments. In the first set of experiments, the locations of all customers are random, while in

the second set of experiments, the locations are bordering. In all experiments, the locations of the

main depot and the potential satellite stations to be used remain unchanged. The geographical

detalis for their locations are presented in Table 5.1. For the set of customers, those are randomly

generated from iteration to iteration. However, for pictorial purposes, we use the set of location as

shown in Table 5.2 as an example for the numerical differences between each model.

5.1. Random Customer Distribution

In this set of experiments customers are randomly located in Fargo city. Using the random

customer location generator, a java project which is given in appendix C, 10 customer locations are

generated. The latitude and longitude of these customer locations are given in table 5.2. Running

the java projects in appendix A, and appendix B, distance matrices of road distance and aerial

distance among the depot, satellite stations, and customer locations are created. The geographic

locations of each layer elements are shown in Figure 5.1.

5.1.1. Single Vehicle Drone-Only Delivery with Random Customer Locations

A two-echelon vehicle routing solution is obtained from running this model for random cus-

tomers. The first echelon vehicle containing drones visits each open satellite and deploy drones to

satisfy customers assigned to that satellite, and when drones are back the vehicle moves to another

satellites untill all open satellites are covered, finally the vehicle goes back to the main depot.

Table 5.1. Geographical details of the depot and potential satellite stations.

Number Type of location Location Name Latitude Longitude

1 Depot 4731 13th ave s (Walmart) 46.864038 -96.865825
2 Satellite Station (sat1) 22 25th street s 46.876282 -96.819364
3 Satellite Station (sat2) 1020 19th ave n 46.904747 -96.793564
4 Satellite Station (sat3) 2520 40th ave s 46.818025 -96.819371
5 Satellite Station (sat4) 4014 45th street s 46.818074 -96.861859
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Table 5.2. Random customer locations that are used for model results presentation.

Number Customer Name Latitude Longitude

1 C1 (6) 46.930075225291 -96.8140615671068
2 C2 (7) 46.881646330250184 -96.80983027814386
3 C3 (8) 46.894012618262344 -96.77169210011992
4 C4 (9) 46.90943311397734 -96.81660980517788
5 C5 (10) 46.842044909863475 -96.79064743397912
6 C6 (11) 46.88610605120827 -96.81221359022248
7 C7 (12) 46.79526740327874 -96.81290639051734
8 C8 (13) 46.90817944537533 -96.82733315898396
9 C9 (14) 46.878470088135586 -96.77310811803093
10 C10 (15) 46.93230515051098 -96.77883258093172

Figure 5.1. Geographic locations of the depot, satellites, and customers
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Figure 5.2. Solution from the fist model for randomly generated customers

The parameters of this model are: the first echelon vehicle can visit utmost 4 satellites, a

drone can satisfy only one customer in its each tour, service time for each customer is two minutes,

set up time for each satellite station is two minutes, pick up time of a drone in a satellite station

is two minutes, the upper limit of the drone variable is 10.

The solution gives: 10 customers are satisfied by drones where five drones are launched

from satellite sat2, three drones are launched from satellite sat1, and two drones are launched from

satellite sat3; the first echelon vehicle first visits sat2, then sat1, finally sat3 before coming back

to the depot; sat2 satisfies customer C1, C3, C4, C8, and C10; sat1 satisfies customer C2, C6, and

C9; sat3 satisfies customer C5 and C7. The model is developed in GAMS platform, and it is solved

using CPLEX solver from neos-server. The routing solution of this model is shown in Figure 5.2.

5.1.2. Single Vehicle Drone and Truck Delivery with Random Customer Locations

The second model has two unit operating cost parameters and to see how the solution varies

with the change of these two parameters we considered three scenarios in this experiment. The

scenarios are shown in Table 5.3.
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Table 5.3. Unit operating cost combinations for different scenarios.

Scenario Number Vehicle Operating Cost (E) Drone Operating Cost (G)

1 1 1
2 2 1
3 3 1

Figure 5.3. Solution of the second model for randomly generated customers when E=1, and G=1

5.1.2.1. Scenario 1 for Random Customers

A single vehicle routing solution is obtained from running this model for random customers.

The parameters of this model are: unit operating cost of the vehicle (E)=1 and unit operating cost

of each drone (G) =1,the first echelon vehicle can visit utmost 14 locations, a drone can satisfy

only one customer in its each tour, service time for each customer is two minutes, set up time for

each satellite station is two minutes, pick up time of a drone in a satellite station is two minutes,

the upper limit of the drone variable is 10, and no customers are assigned initially to be satisfied

by the first echelon vehicle.

The solution is all 10 customers are satisfied by the first echelon vehicle. The vehicle first

leaves the depot for the sat1, then visits C2, C6, C4, C8, C1, C10, C3, C9, C5, and C7 one after

another in a row before coming back to the depot. No drone is deployed in this solution. The

model is developed in GAMS platform, and it is solved using CPLEX solver from neos-server. The

routing solution of this model is shown in Figure 5.3.
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Figure 5.4. Solution of the second model for randomly generated customers when E=2, and G=1

5.1.2.2. Scenario 2 for Random Customers

A combination of first echelon vehicle and drone routing solution is obtained from running

this model for random customers. The parameters of this model are: unit operating cost of the

vehicle (E)=2 and unit operating cost of each drone (G) =1,the first echelon vehicle can visit utmost

14 locations, a drone can satisfy only one customer in its each tour, service time for each customer

is two minutes, set up time for each satellite station is two minutes, pick up time of a drone in a

satellite station is two minutess, the upper limit of the drone variable is 10, and no customers are

assigned initially to be satisfied by the first echelon vehicle.

The solution is: the first echelon vehicle visits sat1, C2, C6, C8, sat2, C3, C9, C5, and sat3

one after another before coming back to the depot; three drones are launched form sat2 to satisfy

C1, C4, and C10 and one drone is launched form sat3 to satisfy C7. The solution of this experiment

is shown in Figure 5.4.

5.1.2.3. Scenario 3 for Random Customers

A second echelon drone routing solution is obtained from running this model while the first

echelon vehicle carries drones to satellites. The parameters of this model are: unit operating cost

of the vehicle (E)=3 and unit operating cost of each drone (G) =1,the first echelon vehicle can

visit utmost 14 locations, a drone can satisfy only one customer in its each tour, service time for
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Figure 5.5. Solution of the second model for randomly generated customers when E=3, and G=1

each customer is two minutes, set up time for each satellite station is two minutes, pick up time

of a drone in a satellite station is two minutes, the upper limit of the drone variable is 10, and no

customers are assigned initially to be satisfied by the first echelon vehicle.

The solution is: the first echelon vehicle equipped with drones visits sat1 and deploys all

10 drones to satisfy C1, C2, C3, C4, C5, C6, C7, C8, C9, and C10. When all drones are back the

vehicle comes back to the depot. The solution of this experiment is shown in Figure 5.5.

5.1.3. Multiple Vehicle Drone and Truck Delivery with Random Customer Locations

The specialty of this model is it allows more than one first echelon vehicles. We have

considered three first echelon vehicles here, and similarly to the second model three scenarios are

experimented with this model to see the routing solutions.

5.1.3.1. Scenario 1 for Random Customers

Like the previous scenario 1, a single vehicle routing solution is obtained from running this

model but other two first echelon vehicles are routed to a satellite station for no purpose. The

parameters of this model are: unit operating cost of the vehicle (E)=1 and unit operating cost of

each drone (G) =1, a first echelon vehicle can visit utmost 14 locations, a drone can satisfy only

one customer in its each tour, service time for each customer is two minutes, set up time for each

satellite station is two minutes, pick up time of a drone in a satellite station is two minutes, the
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Figure 5.6. Solution of the third model for randomly generated customers when E=1, G=1, and
three first echelon vehicles

upper limit of the drone variable is 10, and no customers are assigned initially to be satisfied by

the first echelon vehicle.

The solution is: a first echelon vehicle visits C6, C2, C4, C8,C1, C10, C3, C9, C5, and

C7 one after another before coming back to the depot; two other first echelon vehicle visits sat1

and come back to the depot for no purpose. No drone is deployed in this solution. The model is

developed in GAMS platform, and it is solved using CPLEX solver from neos-server. The routing

solution of this model is shown in Figure 5.6.

5.1.3.2. Scenario 2 for Random Customers

A combination of first echelon vehicles and drone routing solution is obtained from running

this model for random customers. The parameters of this model are: unit operating cost of each

first echelon vehicle (E)=2 and unit operating cost of each drone (G) =1,the first echelon vehicle

can visit utmost 14 locations, a drone can satisfy only one customer in its each tour, service time

for each customer is two minutes, set up time for each satellite station is two minutes, pick up time

of a drone in a satellite station is two minutes, the upper limit of the drone variable is 10, and no

customers are assigned initially to be satisfied by the first echelon vehicle.
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Figure 5.7. Solution of the third model for randomly generated customers when E=2, G=1, and
three first echelon vehicles

The solution is: one first echelon vehicle first visits C8, then sat2 and deploys five drones

to satisfy C1, C3, C4, C9, and C10 and waits for drones coming back, then visits C6 before coming

back to the depot; another first echelon vehicle visits sat1 and deploys two drones to satisfy C2,

and C5 and when drones are back it moves to the depot; the other first echelon vehicle moves to

sat4 and deploys a drone to satisfy C7, when the drone comes back the vehicle moves to the depot.

The solution of this experiment is shown in Figure 5.7.

5.1.3.3. Scenario 3 for Random Customers

A second echelon drone routing solution is obtained from running this model. The pa-

rameters of this model are: unit operating cost of the vehicle (E)=3 and unit operating cost of

each drone (G) =1,the first echelon vehicle can visit utmost 14 locations, a drone can satisfy only

one customer in its each tour, service time for each customer is two minutes, set up time for each

satellite station is two minutes, pick up time of a drone in a satellite station is two minutes, the

upper limit of the drone variable is 10, and no customers are assigned initially to be satisfied by

the first echelon vehicle.

The solution is one first echelon vehicle equipped with drones visits sat1 and deploys all 10

drones to satisfy C1, C2, C3, C4, C5, C6, C7, C8, C9, and C10 and when all drones are back the
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Figure 5.8. Solution of the third model for randomly generated customers when E=3, G=1, and
three first echelon vehicles

vehicle comes back to the depot, but other two first echelon vehicle visits sat1 for no reason and

come back to the depot. The solution of this experiment is shown in Figure 5.8.

5.2. Bordering Customer Distribution

In this set up customers are distributed to the border region of Fargo City. The set of

bordering customers are generated arbitrarily and their locations are shown in Table 5.4. For ease

of presentation, the geographic locations of each layer of this distribution network on a map are

shown in Figure 5.9.

Table 5.4. Bordering customer locations.

Number Customer Name Latitude Longitude

1 C1 (6) 46.915580 -96.776561
2 C2 (7) 46.906722 -96.777582
3 C3 (8) 46.880026 -96.790176
4 C4 (9) 46.873380 -96.787027
5 C5 (10) 46.870060 -96.790245
6 C6 (11) 46.835552 -96.803165
7 C7 (12) 46.928149 -96.838797
8 C8 (13) 46.922293 -96.796837
9 C9 (14) 46.814643 -96.818757
10 C10 (15) 46.806209 -96.845361

32



Figure 5.9. Geographic locations of depot, satellites, and bordering customers

5.2.1. Single Vehicle Drone-Only Delivery with Bordering Customer Locations

Like randomly distributed customers for the first model of bordering customers a two-

echelon vehicle routing solution is obtained. The first echelon vehicle containing drones visits each

open satellite and deploy drones to satisfy customers assigned to that satellite, and when drones are

back the vehicle moves to another satellites until all open satellites are covered, finally the vehicle

goes back to the main depot.

The parameters of this model are: the first echelon vehicle can visit utmost 4 satellites, a

drone can satisfy only one customer in its each tour, service time for each customer is two minutes,

set up time for each satellite station is two minutes, pick up time of a drone in a satellite station

is two minutes, the upper limit of the drone variable is 10.

The solution gives: 10 customers are satisfied by drones where four drones are launched

from satellite sat2, three drones are launched from satellite sat1, two drones are launched from

satellite sat3, and one drone is launched from sat4; the first echelon vehicle first visits sat2, then

sat1, sat3, and sat4 in a row before coming back to the depot; sat2 satisfies customer C1, C2, C7,

and C8; sat1 satisfies customer C3, C4, and C5; sat3 satisfies customer C6 and C9; sat4 satisfies
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Figure 5.10. Solution of the first model for bordering customers

customer C10. The model is developed in GAMS platform, and it is solved using CPLEX solver

from neos-server. The routing solution of this model is shown in Figure 5.10.

5.2.2. Single Vehicle Drone and Truck Delivery with Bordering Customer Locations

Like the second model with randomly distributed customers with this model three scenarios

are experimented to see the routing results.

5.2.2.1. Scenario 1 for Bordering Customer Locations

A combination first echelon vehicle and second echelon drone routing solution is obtained

from running this model for bordering customers. The parameters of this model are: unit operating

cost of the vehicle (E)=1 and unit operating cost of each drone (G) =1,the first echelon vehicle can

visit utmost 14 locations, a drone can satisfy only one customer in its each tour, service time for

each customer is two minutes, set up time for each satellite station is two minutes, pick up time

of a drone in a satellite station is two minutes, the upper limit of the drone variable is 10, and no

customers are assigned initially to be satisfied by the first echelon vehicle.

The solution is 9 customers are satisfied by the first echelon vehicle and the other one by a

drone. The vehicle first leaves the depot for C7, then visits C8, C1, C2, C3, C4, C5, C6, sat3, and

C10, C5, and C7 one after another in a row before coming back to the depot. At sat3 the vehicle
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Figure 5.11. Solution of the second model for bordering customers when E=1, and G=1

launches a drone to satisfy C9 and wait for the drone before moving to C10. The routing solution

of this model is shown in Figure 5.11.

5.2.2.2. Scenario 2 for Bordering Customer Locations

A combination of the first echelon vehicle and drone routing solution is obtained from

running this model for bordering customers. The parameters of this model are: unit operating cost

of the vehicle (E)=2 and unit operating cost of each drone (G) =1,the first echelon vehicle can

visit utmost 14 locations, a drone can satisfy only one customer in its each tour, service time for

each customer is two minutes, set up time for each satellite station is two minutes, pick up time

of a drone in a satellite station is two minutes, the upper limit of the drone variable is 10, and no

customers are assigned initially to be satisfied by the first echelon vehicle.

The solution is: the first echelon vehicle visits sat4, sat3, C6, C5, C4, C3, and sat2 one after

another in a row before coming back to the depot; one drone is launched form sat4 to satisfy C10,

ine drone is launched form sat3 to satisfy C9, and four drones are launched from sat2 to satisfy C1,

C2, C7, and C8. The solution of this experiment is shown in Figure 5.12.
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Figure 5.12. Solution of the second model for bordering customers when E=2, and G=1

5.2.2.3. Scenario 3 for Bordering Customer Locations

A combination of first echelon vehicle and second echelon drone routing solution to satisfy

customer demand is obtained from running this model. The parameters of this model are: unit

operating cost of the vehicle (E)=3 and unit operating cost of each drone (G) =1,the first echelon

vehicle can visit utmost 14 locations, a drone can satisfy only one customer in its each tour, service

time for each customer is two minutes, set up time for each satellite station is two minutes, pick

up time of a drone in a satellite station is two minutes, the upper limit of the drone variable is 10,

and no customers are assigned initially to be satisfied by the first echelon vehicle.

The solution is: the first echelon vehicle equipped with drones visits sat3 and deploys two

drones to satisfy C9 and C10, when drones are back then the vehicle moves to C6, C5, C4, and

C3 one after another in a row to satisfy their demand, then the vehicle moves to sat2 and deploys

four drones to satisfy C7, C8, C1, and C2 and waits, when drones are back the vehicle moves to

the depot. The solution of this experiment is shown in Figure 5.13.
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Figure 5.13. Solution of the second model for bordering customers when E=3, and G=1

5.2.3. Multiple Vehicle Drone and Truck Delivery with Bordering Customer Locations

In this experiments three scenarios are considered as mentioned above and three first eche-

lon vehicles are used.

5.2.3.1. Scenario 1 for Bordering Customer Locations

In this experiment a combination of first echelon vehicles and second echelon drone routing

solution is achieved to satisfy customers. The parameters of this model are: unit operating cost

of the vehicle (E)=1 and unit operating cost of each drone (G) =1, a first echelon vehicle can

visit utmost 14 locations, a drone can satisfy only one customer in its each tour, service time for

each customer is two minutes, set up time for each satellite station is two minutes, pick up time

of a drone in a satellite station is two minutes, the upper limit of the drone variable is 10, and no

customers are assigned initially to be satisfied by the first echelon vehicle.

The solution is: one first echelon vehicle visits sat1, C4, C5, C3, C2,C1, C8, and C7 in a

row before coming back to the depot; another first echelon vehicle visits sat4, C10, and sat3 in a

row and at sat3 launches a drone to satisfy C9, when the drone is back the vehicle visits C6 before
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Figure 5.14. Solution of the third model for bordering customers when E=1, and G=1

going back to the depot. The other first echelon vehicle visits sat1 and comes back to the depot

for no reason. The routing solution of this model is shown in Figure 5.14.

5.2.3.2. Scenario 2 for Bordering Customer Locations

A combination of first echelon vehicles and second echelon drone routing solution is obtained

from running this model for bordering customers. The parameters of this model are: unit operating

cost of each first echelon vehicle (E)=2 and unit operating cost of each drone (G) =1,the first echelon

vehicle can visit utmost 14 locations, a drone can satisfy only one customer in its each tour, service

time for each customer is two minutes, set up time for each satellite station is two minutes, pick

up time of a drone in a satellite station is two minutes, the upper limit of the drone variable is 10,

and no customers are assigned initially to be satisfied by the first echelon vehicle.

The solution is: one first echelon vehicle first visits C4, then C5, C3, and sat2 one after

another in a row and at sat2 deploys four drones to satisfy C1, C2, C7, and C8, then when drones

are back the vehicle moves to the depot; another first echelon vehicle visits sat4 and deploys two

drones to satisfy C9 and C10, and when drones are back it goes back to the depot; the other first

echelon vehicle visits sat1 and deploys a drone to satisfy C6 and receiving the drone back it comes

back to the depot location. The solution of this experiment is shown in figure 5.15.
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Figure 5.15. Solution of the third model for bordering customers when E=2, and G=1

5.2.3.3. Scenario 3 for Bordering Customer Locations

TM scenario 2 for bordering customers a combination of first echelon vehicles and second

echelon drone routing solution with slight difference is obtained from running this model for border-

ing customers. The parameters of this model are: unit operating cost of each first echelon vehicle

(E)=3 and unit operating cost of each drone (G) =1,the first echelon vehicle can visit utmost 14

locations, a drone can satisfy only one customer in its each tour, service time for each customer

is two minutes, set up time for each satellite station is two minutes, pick up time of a drone in a

satellite station is two minutes, the upper limit of the drone variable is 10, and no customers are

assigned initially to be satisfied by the first echelon vehicle.

The solution is: one first echelon vehicle first visits C5, then C4, C3, and sat2 one after

another in a row and at sat2 deploys four drones to satisfy C1, C2, C7, and C8, then when drones

are back the vehicle moves to the depot; another first echelon vehicle visits sat4 and deploys two

drones to satisfy C9 and C10, and when drones are back it goes back to the depot; the other first

echelon vehicle visits sat1 and deploys a drone to satisfy C6 and receiving the drone back it comes

back to the depot location. The solution of this experiment is shown in Figure 5.16.
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Figure 5.16. Solution of the third model for bordering customers when E=3, and G=1

5.3. Comparison of Results

5.3.1. Primary Experiments

The scenarios of our experiments are also tested with single vehicle routing model and

multiple vehicle routing model. The results of our experiments are shown in Table 5.5 and other

results are shown in Table 5.6.

From the results of Tables 5.5 and 5.6 we summarize our observations as follows:

I. Single Vehicle Drone only Delivery:

1. Duration of operation is better (minimum is better) in case of random customers but is

worse in case of bordering customers when compared with traditional single vehicle routing

model.

2. Total routing cost is worse in case of both type of customers when compared with tradi-

tional single vehicle routing model.
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Table 5.5. Experimental results.

Model Customer Distribution Scenario Routing Cost Duration of Operation

Single Vehicle Random - 81,153 52,327
Drone-Only Delivery Bordering - 73,100 53,280

Random 1 58,349 58,353
Random 2 101,890 91,816

Single Vehicle Random 3 119,039 50,183
Drone and Truck Delivery Bordering 1 48,256 48,266

Bordering 2 90,460 80,544
Bordering 3 121,335 110,660
Random 1 80,113 58,447
Random 2 135,556 50,340

Multiple Vehicle Random 3 183,305 50,191
Drone and Truck Delivery Bordering 1 71,301 35,569

Bordering 2 128,918 54,712
Bordering 3 173,738 77,209

Table 5.6. Single and multiple vehicle routing results.

Scenario Name
Single Vehicle Routing Multiple(3) Vehicle Routing

Routing Cost Duration of Operation Routing Cost Duration of Operation

Scenario 1 for
53,260 53,280 82,831 46,012

Random Customers
Scenario 2 for

106,520 106,540 165,662 92,010
Random Customers
Scenario 3 for

159,780 159,800 248,493 137,994
Random Customers
Scenario 1 for

48,560 48,580 74,422 32,916
Bordering Customers
Scenario 2 for

97,120 97,140 148,844 65,822
Bordering Customers
Scenario 3 for

145,680 145,700 223,266 98,728
Bordering Customers
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II. Single Vehicle Drone and Truck Delivery:

1. Except scenario 1 of random customers in all other cases this model outperforms the tra-

ditional single vehicle routing model when duration of operation is considered.

2. Except scenario 1 of random customers in all other cases this model outperforms the tra-

ditional single vehicle routing model when total routing cost is considered.

III. Multiple Vehicle Drone and Truck Delivery:

1. In all scenarios and all type of customers this model outperforms multiple vehicle routing

model when total routing cost is considered.

2. Except scenario 1 this model outperforms the multiple vehicle routing model when duration

of operation is considered.

5.3.2. Extensive Experiments

Six set of experiments are conducted with the same set up of depot and satellites locations

as before. Only varying thing in this experiments is customer locations. Customer locations

generated using random customer generator and each set of experiments has different customer

locations. Experimental results are given in table 5.7 and 5.8.

From the results of Tables 5.7 and 5.8 we summarize our observations as follows:

I. Single Vehicle Drone only Delivery:

1. In case of scenario 1 total routing cost is worse for all experiments when compared with

traditional single vehicle routing model.

2. In case of scenario 2 total routing cost is worse for two experiments but is better for four

experiments when compared with traditional single vehicle routing model.

3. In case of scenario 3 total routing cost better in all experiments when compared with

traditional single vehicle routing model.

II. Single Vehicle Drone and Truck Delivery:

1. In case of scenario 1 total routing cost is same for two experiments, is better for three

experiments, and is worse for one experiment when compared with traditional single vehicle

routing model.
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Table 5.7. Experimental results 1.

Model Experiment No. Scenario Routing Cost Job No

Single Vehicle 1 1 95,536 5487887
Drone-Only Delivery 1 2 1,12,352 5487891

1 3 1,23,063 5487894
2 1 84,279 5487943
2 2 1,06,306 5487946
2 3 1,23,771 5487950
3 1 78,814 5487986
3 2 1,03,712 5487988
3 3 1,14,423 5487990

1 1 51,174 5487900
1 2 1,03,782 5487905

Single Vehicle 1 3 1,27,270 5487906
Drone and Truck Delivery 2 1 53,105 5487952

2 2 88,710 5487955
2 3 1,16,076 5487956
3 1 52,818 5488182
3 2 87,614 5488187
3 3 1,12,823 5488190

1 1 70483 5487907
1 2 1,24,578 5487911

Multiple Vehicle 1 3 1,61,629 5487914
Drone and Truck Delivery 2 1 65,236 5487959

2 2 1,06,762 5487962
2 3 1,49,028 5487965
3 1 58,226 5488193
3 2 98,028 5488196
3 3 1,30,322 5488200

1 1 51,174 5487924
1 2 1,02,348 5487926

Single Vehicle 1 3 1,53,522 5487929
Routing 2 1 53,656 5487969

2 2 1,07,312 5487972
2 3 1,60,968 5487974
3 1 53,092 5488209
3 2 1,06,184 5488212
3 3 1,59,276 5488215

1 1 66,981 5487933
1 2 1,33,962 5487935

Multiple Vehicle 1 3 2,00,943 5487937
Routing 2 1 62,099 5487979

2 2 1,24,198 5487980
2 3 1,86,297 5487983
3 1 57,226 5488220
3 2 1,14,452 5488223
3 3 1,71,678 5488228
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Table 5.8. Experimental results 2.

Model Experiment No. Scenario Routing Cost Job No

Single Vehicle 4 1 88,600 5488235
Drone-Only Delivery 4 2 1,04,402 5488237

4 3 1,15,113 5488240
5 1 92,356 5488288
5 2 1,17.726 5488290
5 3 1,35,744 5488294
6 1 70,402 5488350
6 2 91,764 5488352
6 3 1,03,469 5488355

4 1 43,803 5488244
4 2 87,606 5488247

Single Vehicle 4 3 1,11,962 5488251
Drone and Truck Delivery 5 1 55,334 5488298

5 2 1,08,772 5488301
5 3 1,35,744 5488303
6, 1 44,318 5488358
6 2 76,876 5488362
6 3 87,897 5488365

4 1 58,126 5488253
4 2 1,18,632 5488258

Multiple Vehicle 4 3 1,45,545 5488260
Drone and Truck Delivery 5 1 74,559 5488307

5 2 1,28,886 5488314
5 3 1,62,276 5488318
6 1 51,562 5488369
6 2 90,088 5488374
6 3 1,11,170 5488378

4 1 43,803 5488262
4 2 87,606 5488267

Single Vehicle 4 3 1,31,409 5488271
Routing 5 1 54,301 5488321

5 2 1,08,602 5488326
5 3 1,62,903 5488329
6 1 50,594 5488386
6 2 1,01,188 5488394
6 3 1,51,782 5488399

4 1 59,825 5488276
4 2 1,19,650 5488279

Multiple Vehicle 4 3 1,79,475 5488284
Routing 5 1 73,170 5488335

5 2 1,46,340 5488339
5 3 2,19,510 5488344
6 1 57207 5488405
6 2 1,14,414 5488408
6 3 1,71,621 5488414
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2. In case of scenario 2 total routing cost is same for one experiments, is better for three ex-

periments, and is worse for two experiments when compared with traditional single vehicle

routing model.

3. In case of scenario 3 total routing cost is better for all experiments when compared with

traditional single vehicle routing model.

III. Multiple Vehicle Drone and Truck Delivery:

1. In case of scenario 1 total routing cost is better for two experiments, and is worse for four

experiments when compared with multiple vehicles routing model.

2. In case of scenario 2 total routing cost is better for all experiments when compared with

multiple vehicles routing model.

3. In case of scenario 3 total routing cost is better for all experiments when compared with

multiple vehicles routing model.

5.3.3. Distance Matrices for Random Customers and Bordering Customers

Distance matrices obtained from the road distance matrix generator and aerial distance

matrix generator are given in table 5.9 and table 5.11 for random customers, and in table 5.10 and

table 5.12 for bordering customers respectively.

Table 5.9. Road distance matrix for random customers

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 5278 10140 9011 5412 14275 6856 10427 8758 8619 6521 12151 8583 9309 15790
2 5433 0 5141 7419 10549 12772 1333 5546 5533 6285 1997 13831 5359 4392 14287
3 10022 5271 0 15105 15130 5100 3748 2850 3032 7876 4001 18413 2857 5377 4989
4 9005 6852 14381 0 3258 18516 7809 11534 12999 4392 8472 3174 12824 11010 20031
5 6200 13650 18281 3997 0 22417 14586 18699 16899 9852 15489 6355 16724 14934 23932
6 14185 13375 5100 19050 19075 0 8178 7963 8044 18658 10812 22358 6902 12887 2995
7 6576 3231 3748 7809 11663 10868 0 4153 4140 5837 714 11272 3966 4315 8375
8 10443 5839 2850 11603 15462 7950 4173 0 5882 7376 4443 13721 5707 3766 6290
9 10438 8608 4830 15522 15547 9843 5938 7680 0 15130 5882 18830 2941 9374 11359

10 8393 6342 7740 4394 7651 18407 6340 7423 12890 0 6925 6512 12715 5918 19922
11 6516 2104 4012 8115 11603 11220 846 4417 4084 6419 0 14885 3910 4579 8319
12 11581 12837 17468 3136 6394 21604 13773 17886 16086 6351 14676 0 15911 12862 23119
13 8465 6635 2857 13549 13574 6902 3966 5707 1142 13157 3910 16857 0 7401 8418
14 9228 4359 5204 10999 14230 10305 4139 3774 7377 5953 4409 12987 7202 0 9923
15 15700 9590 4989 20565 20590 2995 8067 6290 7350 20173 8337 23873 8418 9893 0
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Table 5.10. Road distance matrix for bordering customers

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 5278 10140 9011 5412 12615 11649 8207 7462 7638 9069 11367 11802 9388 9482
2 5433 0 5141 7419 10549 7600 6634 2760 3039 3351 6735 9864 7767 7796 11162
3 10022 5271 0 15105 15130 2475 1509 3655 4363 4942 8326 5233 2333 15482 15744
4 9005 6852 14381 0 3258 16856 15890 8719 8204 7632 3425 15608 16043 377 3651
5 6200 13650 18281 3997 0 20756 19790 12982 12467 11895 7431 19509 19943 4375 3004
6 12497 7893 2475 17580 17605 0 1076 4951 5462 6100 10790 8260 2447 17957 18219
7 11404 6927 1383 16488 16513 1076 0 3985 4496 5134 9824 6615 3479 16865 17127
8 8199 2760 3014 8682 12290 4951 3985 0 1383 1412 5816 7399 5348 9050 13358
9 7476 2607 4020 8288 11895 5473 4507 1609 0 578 5421 8404 6354 8656 13206

10 7651 2783 4377 7671 11279 6322 5356 1967 578 0 4804 8762 6711 8039 12236
11 8917 6441 8264 3426 6726 10723 9757 5853 5338 4766 0 16023 16458 3803 7120
12 11276 10466 5233 16141 16166 8260 6742 7395 8370 8682 16199 0 5915 16518 16780
13 11684 6934 2333 16768 16793 2447 3487 5318 6293 6605 9989 5915 0 17145 17407
14 11273 7229 17160 377 3635 19635 18669 9087 8572 8000 3802 18388 18822 0 3546
15 9942 11198 15829 3651 2666 18304 17338 13281 13382 12194 7437 17057 17491 3624 0

Table 5.11. Aerial distance matrix for random customers

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 3785 7117 6218 5120 8330 4685 7893 6282 6218 4757 8642 5714 7228 10065
2 3785 0 3723 6478 7234 5995 939 4125 3692 4389 1220 9022 3598 3524 6949
3 7117 3723 0 9841 10947 3218 2851 2046 1827 6976 2511 12262 2594 3310 3262
4 6218 6478 9841 0 3233 12466 7111 9194 10166 3451 7590 2578 10043 7586 13076
5 5120 7234 10947 3233 0 12973 8101 10877 10725 6038 8455 4507 10357 9521 14183
6 8330 5995 3218 12466 12973 0 5395 5142 2303 9949 4891 14990 2635 6527 2686
7 4685 939 2851 7111 8101 5395 0 3208 3132 4639 528 9608 3236 2813 6105
8 7893 4125 2046 9194 10877 5142 3208 0 3819 5956 3202 11419 4511 1732 4292
9 6282 3692 1827 10166 10725 2303 3132 3819 0 7749 2615 12698 826 4773 3834

10 6218 4389 6976 3451 6038 9949 4639 5956 7749 0 5166 5470 7865 4264 10077
11 4757 1220 2511 7590 8455 4891 528 3202 2615 5166 0 10101 2710 3091 5729
12 8642 9022 12262 2578 4507 14990 9608 11419 12698 5470 10101 0 12603 9734 15457
13 5714 3598 2594 10043 10357 2635 3236 4511 826 7865 2710 12603 0 5281 4557
14 7228 3524 3310 7586 9521 6527 2813 1732 4773 4264 3091 9734 5281 0 6002
15 10065 6949 3262 13076 14183 2686 6105 4292 3834 10077 5729 15457 4557 6002 0

Table 5.12. Aerial distance matrix for bordering customers

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 3785 7117 6218 5120 8880 8216 6019 6080 5785 5722 7419 8333 6556 6616
2 3785 0 3723 6478 7234 5447 4641 2257 2479 2319 4693 5953 5395 6854 8039
3 7117 3723 0 9841 10947 1766 1234 2761 3523 3865 7729 4310 1967 10201 11643
4 6218 6478 9841 0 3233 11325 10362 7243 6629 6196 2306 12334 11720 379 2374
5 5120 7234 10947 3233 0 12633 11757 8785 8379 7942 4870 12365 12599 3302 1821
6 8880 5447 1766 11325 12633 0 988 4087 4759 5167 9126 4929 1711 11673 13239
7 8216 4641 1234 10362 11757 988 0 3119 3776 4189 8149 5224 2266 10707 12308
8 6019 2257 2761 7243 8785 4087 3119 0 777 1108 5043 6502 4727 7588 9219
9 6080 2479 3523 6629 8379 4759 3776 777 0 443 4382 7250 5490 6963 8688

10 5785 2319 3865 6196 7942 5167 4189 1108 443 0 3961 7438 5830 6533 8245
11 5722 4693 7729 2306 4870 9126 8149 5043 4382 3961 0 10647 9657 2610 4578
12 7419 5953 4310 12334 12365 4929 5224 6502 7250 7438 10647 0 3252 12713 13568
13 8333 5395 1967 11720 12599 1711 2266 4727 5490 5830 9657 3252 0 12086 13425
14 6556 6854 10201 379 3302 11673 10707 7588 6963 6533 2610 12713 12086 0 2231
15 6616 8039 11643 2374 1821 13239 12308 9219 8688 8245 4578 13568 13425 2231 0
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6. CONCLUSION AND FUTURE WORK

In this thesis, we are discussing a new paradigm for organizing and operating logistics

systems using unmanned aerial vehicles. By orienting these systems to take advantage of the

advancements in unmanned autonomous vehicles, aerial and ground, we can expect significant

savings and an increase in the efficiency and reliability of the overall system. If we especially

consider the infrastructure limitations when under duress, then the opportunities that arise for

better and faster procurement when using two-echelon routing systems become clear.

Our preliminary results do indeed reveal that there are significant cost and time savings to

be had by properly setting up a logistics system to take advantage of independent actors and/or

autonomous vehicles as second echelon units. More specifically, from the results of our experiments

we can observe that with the increase of the unit operating cost of first echelon vehicles, the

proposed logistics setup works better. Of course, our results point to the same direction if the

unit operating costs of first echelon vehicles stay the same, when the same unit costs for operating

drones are decreased. Seeing as the cost of operations for manned and slow trucks is significantly

higher under scenarios of war zones, emergency operations, and humanitarian applications, our

proposed paradigm here could lead to significant time and cost savings.

Last, although the use of unmanned vehicles in supply chain logistics is inevitable, it has yet

to become widespread. The reasons behind that are technical and legislative limitations. Some of

the most important ones as identified in this work are the following. Better spoof resistance would

prevent logistical and economical nightmares of cybersecurity during logistics operations. Improved

battery life would also prove beneficial as it will provide unmanned vehicles with better autonomy.

Similarly, improving navigation capabilities (and/or navigation systems) would also prove highly

useful for drone adoption in logistics operations.

Overall, unmanned vehicles provide an excellent technology for improving our replenishment

operations, especially when the logistics systems are under duress, autonomously, seamlessly, and

with less costs. Our work here is the first step towards establishing public trust towards the

economic viability of such projects.
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APPENDIX A. JAVA CODES FOR RDM GENERATOR

package DbProject;

import java.io.BufferedReader;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.InputStreamReader;

import java.io.PrintWriter;

import java.net.HttpURLConnection;

import java.net.URL;

import java.sql.*;

import java.util.Scanner;

import org.json.*;

import com.mysql.jdbc.PreparedStatement;

public class ProjectCode {

public static void main(String[] args) throws FileNotFoundException {

// TODO Auto-generated method stub

String File1= ”DistanceMatrix3.txt”;

String File2= ”TravelTimeMatrix3.txt”;

PrintWriter outDistance= new PrintWriter(File1);

PrintWriter outTime= new PrintWriter(File2);

Scanner input= new Scanner(new File(”walmartExperiment.txt”));

double[] lattitude = new double[61];

double[] longitute = new double[61];
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for(int k=0; k¡61; k++){

lattitude[k]= input.nextDouble();

longitute[k]= input.nextDouble();

}

input.close();

for(int i=0; i¡61; i++){

for(int j=0; j¡61; j++){

double originLat = lattitude[i];

double originLong = longitute[i];

double distLat = lattitude[j];

double distLong = longitute[j];

int [] arr = calcDistance(originLat, originLong, distLat, distLong);

System.out.println(”Distance: ” + arr[0]);

System.out.println(”Duration: ” + arr[1]);

outDistance.print(arr[0] + ” ”);

outTime.print(arr[1] + ” ”);

int a=i+1;

int b=j+1;

int c=arr[0];

int d=arr[1];

int[] data= dataToDatabase(a, b, c, d);

}

outDistance.print(””);

outTime.print(””);

}

51



outDistance.close();

outTime.close();

if(true){

return; }

}

public static int[] dataToDatabase(int a, int b, int c, int d){

String url = ”jdbc:mysql://localhost:3306/demo”;

String username = ””;

String password = ””;

FileInputStream input1= null;

FileInputStream input2= null;

try {

// 1. create a connection to the database

Connection myConn = DriverManager.getConnection(url, username, password);

// 2. make a statement

PreparedStatement myStmt = (PreparedStatement) myConn.prepareStatement(”insert

into wal3(Origin, Destination, Distance, TTime)” +” values(?, ?, ?, ?)”);

myStmt.setInt(1, a);

myStmt.setInt(2, b);

myStmt.setInt(3, c);

myStmt.setInt(4, d);

// 3. Execute SQL query

myStmt.executeUpdate();

System.out.println(”Update Complete”);}

catch (Exception exc) {

exc.printStackTrace();
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}

return null;

}

public static int[] calcDistance(double originLat, double orignLong, double distLat, double dist-

Long) {

String url = ”https://maps.googleapis.com/maps/api/directions/json?origin=url = String.format

(url, originLat, orignLong, distLat, distLong);

try {

URL obj = new URL(url);

HttpURLConnection con = (HttpURLConnection) obj.openConnection();

// optional default is GET

con.setRequestMethod(”GET”);

//add request header

con.setRequestProperty(”User-Agent”, ”Mozilla/5.0”);

int responseCode = con.getResponseCode();

// System.out.println(”Sending ’GET’ request to URL : ” + url);

// System.out.println(”Response Code : ” + responseCode);

BufferedReader in = new BufferedReader( new InputStreamReader(con.getInputStream()));

String inputLine;

StringBuffer response = new StringBuffer();

while ((inputLine = in.readLine()) != null) { response.append(inputLine);

}

in.close();

System.out.println(response.toString());

JSONObject json = new JSONObject(response.toString());

JSONObject routes = json.getJSONArray(”routes”).getJSONObject(0);

JSONObject legs = routes.getJSONArray(”legs”).getJSONObject(0);

int distance = legs.getJSONObject(”distance”).getInt(”value”);
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int duration = legs.getJSONObject(”duration”).getInt(”value”);

return new int[]distance, duration;

}

catch (Exception e) {

System.out.println(e.toString());

return null;

}

}

}
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APPENDIX B. JAVA CODES FOR ADM GENERATOR

import java.io.File;

import java.io.FileNotFoundException;

import java.io.PrintWriter;

import java.util.Scanner;

public class GrtCrlDist {

public static void main(String[] args) throws FileNotFoundException {

// TODO Auto-generated method stub

String File1= ”GCDistanceMatrix.txt”;

PrintWriter outDistance= new PrintWriter(File1);

final double AverageEarthRadius = 6371010;

Scanner input= new Scanner(new File(”walmartExperiment.txt”));

double[] lattitude = new double[61];

double[] longitute = new double[61];

double d;

int e;

for(int k=0; k¡61; k++){

lattitude[k]= input.nextDouble();

longitute[k]= input.nextDouble();

}

input.close();

for(int i=0; i¡61; i++){

for(int j=0; j¡61; j++){
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double originLat = lattitude[i];

double originLong = longitute[i];

double distLat = lattitude[j];

double distLong = longitute[j];

d= AverageEarthRadius*

Math.acos(Math.sin(Math.toRadians(originLat))*Math.sin(Math.toRadians(distLat))+

Math.cos(Math.toRadians(originLat))*Math.cos(Math.toRadians(distLat))*

Math.cos(Math.toRadians(originLong)-Math.toRadians(distLong)));

e = (int) Math.round(d);

System.out.print(e);

outDistance.print(e+ ” ”);

}

outDistance.print(””);

}

outDistance.close();

}

}
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APPENDIX C. JAVA CODES FOR RL GENERATOR

package randomNumber;

import java.io.File;

import java.io.FileNotFoundException;

import java.io.PrintWriter;

import java.util.Random;

import java.util.Scanner;

public class mainClass {

private static Random Random;

public static void main(String[] args) throws FileNotFoundException {

// TODO Auto-generated method stub

String File1= ”ExpCusLatLong.txt”;

PrintWriter outTime= new PrintWriter(File1);

Random lat= new Random();

double lmin=46.789837;

double lmax=46.934513;

double lrange=lmax-lmin;

Random lon= new Random();

double lomin=-96.882492;

double lomax=-96.768813;

double lorange=lomax-lomin;

for(int counter=1; counter¡=10; counter++){
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outTime.println(lat.nextDouble()*lrange+lmin);

//outTime.print(’ ’);

outTime.println(lon.nextDouble()*lorange+lomin);

outTime.print(”);

}

outTime.close();

}

}
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APPENDIX D. GAMS CODES FOR THE FIRST MODEL

set K2 set of second echelon drones /1,2,3,4,5,6,7,8,9,10/;

set P /1,2,3,4,5,6,7,8,9,10,11,12,13,14,15/;

alias (P, O);

alias (P, S);

alias (P, C);

parameter cap1/4/;

parameter cap2/1/;

parameter b(C)

/

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 0

11 0

12 0

13 0

14 0

15 0

/;

59



parameter lambda(C) service time for customer c

/

1 0

2 0

3 0

4 0

5 0

6 2

7 2

8 2

9 2

10 2

11 2

12 2

13 2

14 2

15 2

/;

parameter d(C) demand for customer c

/

1 0

2 0

3 0

4 0

5 0

6 1

7 1

8 1

9 1
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10 1

11 1

12 1

13 1

14 1

15 1

/;

parameter mu(S) set up time for satellite station s

/

1 0

2 2

3 2

4 2

5 2

6 0

7 0

8 0

9 0

10 0

11 0

12 0

13 0

14 0

15 0

/;

table Tk1(S,P) travel time for the first echelon vehicle

(this table is same as table 5.9 or table 5.10)

;
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table Tk2(K2,S,P) travel time for the second echelon drones

(this table is created by the table 5.11 or table 5.12)

;

parameter V(S)

/

1 0

2 2

3 2

4 2

5 2

6 0

7 0

8 0

9 0

10 0

11 0

12 0

13 0

14 0

15 0

/;

binary variable y(S) if station s is set up;

binary variable v(S,C) if customer c is assigned to a drone from station s;

binary variable f(P,S) if vehicle visits node s from node p;

binary variable x(K2,S,P,C) if drone K2 deployed from station s visits node c from node p;

positive variable tau(S) time the first echelon vehicle spends at station s;

positive variable t(K2,S) time drone k2 spends during a round trip at station s;
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positive variable DurationOfOperation;

positive variable NumberOfDronesRequired;

integer variable L(P);

integer variable M(P);

free variable obj;

equations objEquation1, equation2(C), equation3(C,S), equation4(S), equation5(P), equation6(P,S),

equation7, equation8(C), equation9(C), equation10(C,P), equation11(P,S,K2), equation12(C,S,K2),

equation13(S,K2), equation14(S,K2), equation15, equation16(S);

objEquation1.. obj =e= sum(P,sum(C,Tk1(P,C)*f(P,C)))+sum(K2,sum(S$(ord(S) gt 1 and ord(S)

lt 6),sum(P$(ord(P) gt 1),sum(C$(ord(C) gt 1),Tk2(K2,P,C)*x(K2,S,P,C)))));

equation2(C)$(ord(C) gt 5).. sum(S$(ord(S) gt 1 and ord(S) lt 6),v(S,C))=e=1;

equation3(C,S)$(ord(C) gt 5 and ord(S) gt 1 and ord(S) lt 6).. v(S,C)=l= y(S);

equation4(S)$(ord(S) gt 1 and ord(S) lt 6).. sum(P$(ord(P) ne ord(S)),f(P,S))=e= y(S);

equation5(P).. sum(S$(ord(S) ne ord(P)),f(S,P))-sum(S$(ord(S) ne ord(P)),f(P,S))=e=0;

equation6(P,S)$(ord(P) gt 1 and ord(S) gt 1 and ord(S) ne ord (P)).. M(P)-M(S)+cap1*f(P,S)

= l = (cap1-1);

equation7.. sum(P$(ord(P) lt 2),sum(S$(ord(S) gt 1),f(S,P)))=e= 1;

equation8(C)$(ord(C) gt 5).. sum(K2,sum(S$(ord(S) gt 1 and ord(S) lt 6),sum(P$(ord(P) gt 1

and ord(P) lt 6 and ord(P) eq ord(S)),x(K2,S,C,P))))+sum(K2,sum(S$(ord(S) gt 1 and ord(S) lt

6),sum(P$(ord(P) gt 5 and ord(P) ne ord(C)),x(K2,S,C,P))))=e=1;

equation9(C)$(ord(C) gt 5).. sum(K2,sum(S$(ord(S) gt 1 and ord(S) lt 6),sum(P$(ord(P) gt 1
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and ord(P) lt 6 and ord(P) ne ord(S)),x(K2,S,C,P))))+sum(K2,sum(S$(ord(S) gt 1 and ord(S) lt

6),sum(P$(ord(P) gt 1 and ord(P) lt 6 and ord(P) ne ord(S)),x(K2,S,P,C))))=e=0;

equation10(C,P)$(ord(P) gt 5 and ord(C) gt 5 and ord(C) ne ord(P)).. L(P)-L(C)+ cap2* sum(K2,

sum(S$(ord(S) gt 1 and ord(S) lt 6),x(K2,S,P,C)))=l=cap2-1;

equation11(P,S,K2)$(ord(S) gt 1 and ord(S) lt 6 and ord(P) gt 1).. sum(C$(ord(C) gt 1),x(K2,S,P,C))-

sum(C$(ord(C) gt 1),x(K2,S,C,P))=e=0;

equation12(C,S,K2)$(ord(C) gt 5 and ord(S) gt 1 and ord(S) lt 6).. sum(P$(ord(P) gt 1 and ord(P)

lt 6),sum(O$(ord(O) gt 1),x(K2,P,C,O)))+sum(P$(ord(P) gt 1 and ord(P) lt 6),sum(O$(ord(O) gt

1),x(K2,P,S,O)))-v(S,C)=l= 1;

equation13(S,K2)$(ord(S) gt 1 and ord(S) lt 6).. sum(P$(ord(P) gt 1), sum(C$(ord(C) gt 1),

x(K2,S,P,C)* Tk2(K2,P,C)))+ sum(P$(ord(P) gt 1), sum(C$(ord(C) gt 5),x(K2,S,P,C)*

lambda(C))) =e= t(K2,S);

equation14(S,K2)$(ord(S) gt 1 and ord(S) lt 6).. tau(S)=g= t(K2,S)+ (mu(S)+V(S))*y(S);

equation15.. DurationOfOperation =e= sum(P,sum(C,Tk1(P,C)*f(P,C)))+ sum(S$(ord(S) gt 1

and ord(S) lt 6),tau(S));

equation16(S)$(ord(S) gt 1 and ord(S) lt 6).. NumberOfDronesRequired =g= sum(C$(ord(C)

gt 5),v(S,C));

model FirstModel /all/;

solve FirstModel using mip minimizing obj;
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APPENDIX E. GAMS CODES FOR THE SECOND MODEL

set K2 set of second echelon drones /1,2,3,4,5,6,7,8,9,10/;

set P /1,2,3,4,5,6,7,8,9,10,11,12,13,14,15/;

alias (P, O);

alias (P, S);

alias (P, C);

parameter cap1/14/;

parameter cap2/1/;

parameter E unit operating cost of the vehicle /2/;

parameter G unit operating cost of drones /1/;

parameter b(C)

/

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 0

11 0

12 0

13 0

14 0
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15 0

/;

parameter lambda(C) service time for customer c

/

1 0

2 0

3 0

4 0

5 0

6 2

7 2

8 2

9 2

10 2

11 2

12 2

13 2

14 2

15 2

/;

parameter d(C) demand for customer c

/

1 0

2 0

3 0

4 0

5 0

6 1
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7 1

8 1

9 1

10 1

11 1

12 1

13 1

14 1

15 1

/;

parameter mu(S) set up time for satellite station s

/

1 0

2 2

3 2

4 2

5 2

6 0

7 0

8 0

9 0

10 0

11 0

12 0

13 0

14 0

15 0

/;
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table Tk1(S,P) travel time for the first echelon vehicle

(this table is created by the table 5.9 or table 5.10)

;

table Tk2(K2,S,P) travel time for the second echelon drone

(this table is created by the table 5.11 or table 5.12)

;

parameter V(S)

/

1 0

2 2

3 2

4 2

5 2

6 0

7 0

8 0

9 0

10 0

11 0

12 0

13 0

14 0

15 0

/;

binary variable y(S) if station s is set up;

binary variable u(C) if the vehicle visits or satisfies customer c;
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binary variable v(S,C) if customer c is assigned to a drone from station s;

binary variable f(P,S) if the vehicle visits node s from node p;

binary variable x(K2,S,P,C) if drone k2 deployed from station s visits node c from node p;

positive variable tau(S) time the first echelon vehicle spends at station s;

positive variable t(K2,S) time a drone k2 spends during a round trip at station s;

positive variable DurationOfOperation;

positive variable NumberOfDronesRequired;

integer variable L(P);

integer variable M(P);

free variable obj;

equations objEquation1, equation2(C), equation3(C),equation4(C,S), equation5(S), equation6(P),

equation7, equation8(C), equation9(P,S), equation10(C), equation11(C), equation12(P,S,K2), equa-

tion13(C,P), equation14(C,S,K2), equation15(S,K2), equation16(S,K2), equation17, equation18(S);

objEquation1.. obj =e= E*sum(P,sum(C,Tk1(P,C)*f(P,C)))+ G*sum(K2,sum(S$(ord(S) gt 1 and

ord(S) lt 6), sum(P$(ord(P) gt 1), sum(C$(ord(C) gt 1), Tk2(K2,P,C)*x(K2,S,P,C)))));

equation2(C)$(ord(C) gt 5).. u(C)+sum(S$(ord(S) gt 1 and ord(S) lt 6),v(S,C))=e=1;

equation3(C)$(ord(C) gt 5).. u(C)=g=b(C);

equation4(C,S)$(ord(C) gt 5 and ord(S) gt 1 and ord(S) lt 6).. v(S,C)=l= y(S);

equation5(S)$(ord(S) gt 1 and ord(S) lt 6).. sum(P$(ord(P) ne ord(S)),f(P,S))=e= y(S);

equation6(P).. sum(S$(ord(S) ne ord(P)),f(S,P))- sum(S$(ord(S) ne ord(P)),f(P,S)) =e= 0;

equation7.. sum(P$(ord(P) lt 2), sum(S$(ord(S) gt 1),f(S,P))) =e= 1;
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equation8(C)$(ord(C) gt 5).. sum(P$(ord(P) ne ord(C)),f(P,C))=e= u(C);

equation9(P,S)$(ord(P) gt 1 and ord(S) gt 1 and ord(S) ne ord (P)).. M(P)-M(S)+ cap1* f(P,S)

=l= (cap1-1);

equation10(C)$(ord(C) gt 5).. sum(K2,sum(S$(ord(S) gt 1 and ord(S) lt 6), sum(P$(ord(P) gt

1 and ord(P) lt 6 and ord(P) eq ord(S)), x(K2,S,C,P))))+ sum(K2,sum(S$(ord(S) gt 1 and ord(S)

lt 6), sum(P$(ord(P) gt 5 and ord(P) ne ord(C)), x(K2,S,C,P)))) =e= sum(S$(ord(S) gt 1 and

ord(S) lt 6), v(S,C));

equation11(C)$(ord(C) gt 5).. sum(K2,sum(S$(ord(S) gt 1 and ord(S) lt 6),sum(P$(ord(P) gt

1 and ord(P) lt 6 and ord(P) ne ord(S)), x(K2,S,C,P))))+ sum(K2,sum(S$(ord(S) gt 1 and ord(S)

lt 6), sum(P$(ord(P) gt 1 and ord(P) lt 6 and ord(P) ne ord(S)), x(K2,S,P,C)))) =e= 0;

equation12(P,S,K2)$(ord(S) gt 1 and ord(S) lt 6 and ord(P) gt 1).. sum(C$(ord(C) gt 1), x(K2,S,P,C))-

sum(C$(ord(C) gt 1), x(K2,S,C,P))=e=0;

equation13(C,P)$(ord(P) gt 5 and ord(C) gt 5 and ord(C) ne ord(P)).. L(P)-L(C)+ cap2*sum(K2,

sum(S$(ord(S) gt 1 and ord(S) lt 6), x(K2,S,P,C))) =l= cap2-1;

equation14(C,S,K2)$(ord(C) gt 5 and ord(S) gt 1 and ord(S) lt 6).. sum(P$(ord(P) gt 1 and ord(P)

lt 6), sum(O$(ord(O) gt 1), x(K2,P,C,O)))+ sum(P$(ord(P) gt 1 and ord(P) lt 6), sum(O$(ord(O)

gt 1), x(K2,P,S,O)))-v(S,C) =l= 1;

equation15(S,K2)$(ord(S) gt 1 and ord(S) lt 6).. sum(P$(ord(P) gt 1), sum(C$(ord(C) gt 1),

x(K2,S,P,C)* Tk2(K2,P,C)))+ sum(P$(ord(P) gt 1),sum(C$(ord(C) gt 5), x(K2,S,P,C)* lambda(C)))

=e= t(K2,S);

equation16(S,K2)$(ord(S) gt 1 and ord(S) lt 6).. tau(S)=g= t(K2,S)+ (mu(S)+ V(S))* y(S);
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equation17.. DurationOfOperation =e= sum(P,sum(C,Tk1(P,C)* f(P,C)))+ sum(S$(ord(S) gt 1

and ord(S) lt 6), tau(S));

equation18(S)$(ord(S) gt 1 and ord(S) lt 6).. NumberOfDronesRequired =g= sum(C$ (ord(C)

gt 5), v(S,C));

model SecondModel /all/;

solve SecondModel using mip minimizing obj;
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APPENDIX F. GAMS CODES FOR THE THIRD MODEL

set K1 set of first echelon vehicles /1,2,3/;

set K2 set of second echelon drones/1,2,3,4,5,6,7,8,9,10/;

set P /1,2,3,4,5,6,7,8,9,10,11,12,13,14,15/;

alias (P, O);

alias (P, S);

alias (P, C);

parameter cap1/14/;

parameter cap2/1/;

parameter E/2/;

parameter G/1/;

parameter b(C)

/

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 0

11 0

12 0

13 0

14 0

72



15 0

/;

parameter lambda(C) service time for customer c

/

1 0

2 0

3 0

4 0

5 0

6 2

7 2

8 2

9 2

10 2

11 2

12 2

13 2

14 2

15 2

/;

parameter d(C) demand for customer c

/

1 0

2 0

3 0

4 0

5 0

6 1
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7 1

8 1

9 1

10 1

11 1

12 1

13 1

14 1

15 1

/;

parameter mu(S) set up time for satellite station s

/

1 0

2 2

3 2

4 2

5 2

6 0

7 0

8 0

9 0

10 0

11 0

12 0

13 0

14 0

15 0

/;
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table Tk1(K1,S,P) travel time for the first echelon vehicles

(this table is created using table 5.9 or table 5.10)

;

table Tk2(K2,S,P) travel time for the second echelon vehicle

(this table is created using table 5.11 or table 5.12)

;

parameter V(S)

/

1 0

2 2

3 2

4 2

5 2

6 0

7 0

8 0

9 0

10 0

11 0

12 0

13 0

14 0

15 0

/;

binary variable y(K1,S) if station s is set up;

binary variable u(K1,C) if vehicle k1 satisfies customer c;

binary variable v(S,C) if customer c is assigned to a drone from station s;
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binary variable f(K1,P,S) if vehicle k1 visits node s from node p;

binary variable x(K2,S,P,C) if vehicle k2 deployed from station s visits node c from node p;

positive variable tau(S) time a first echelon vehicle spends at station s;

positive variable t(K2,S) time vehicle k2 spends during a round trip at station s;

integer variable L(P);

integer variable M(P);

free variable obj;

equations objEquation1, equation2(C), equation3(C), equation4(C,S), equation5(P,K1),

equation6(P,S,K2), equation7(S,K1), equation8(C,S,K2), equation9(C,P), equation10(C),

equation11(C), equation12(P,S), equation13(S,K2), equation14(S,K2), equation15(K1),

equation16(K1,C);

objEquation1.. obj =e= E*sum(K1,sum(P,sum(C,Tk1(K1,P,C)* f(K1,P,C))))+

G*sum(K2,sum(S$(ord(S) gt 1 and ord(S) lt 6), sum(P$(ord(P) gt 1), sum(C$(ord(C) gt 1),

Tk2(K2,P,C)* x(K2,S,P,C)))));

equation2(C)$(ord(C) gt 5).. sum(K1,u(K1,C))+ sum(S$(ord(S) gt 1 and ord(S) lt 6),v(S,C))

=e=1;

equation3(C)$(ord(C) gt 5).. sum(K1,u(K1,C)) =g= b(C);

equation4(C,S)$(ord(C) gt 5 and ord(S) gt 1 and ord(S) lt 6).. v(S,C) =l= sum(K1, y(K1,S));

equation5(P,K1).. sum(S$(ord(S) ne ord(P)), f(K1,S,P))-sum(S$(ord(S) ne ord(P)), f(K1,P,S))

=e=0;

equation6(P,S,K2)$(ord(S) gt 1 and ord(S) lt 6 and ord(P) gt 1).. sum(C$(ord(C) gt 1),

x(K2,S,P,C))-sum(C$(ord(C) gt 1), x(K2,S,C,P))=e=0;
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equation7(S,K1)$(ord(S) gt 1 and ord(S) lt 6).. sum(P$(ord(P) ne ord(S)), f(K1,P,S)) =e= y(K1,S);

equation8(C,S,K2)$(ord(C) gt 5 and ord(S) gt 1 and ord(S) lt 6).. sum(P$(ord(P) gt 1 and ord(P)

lt 6),sum(O$(ord(O) gt 1), x(K2,P,C,O)))+ sum(P$(ord(P) gt 1 and ord(P) lt 6), sum(O$(ord(O)

gt 1), x(K2,P,S,O)))- v(S,C)=l= 1;

equation9(C,P)$(ord(P) gt 5 and ord(C) gt 5 and ord(C) ne ord(P)).. L(P)-L(C)+ cap2*sum(K2,

sum(S$(ord(S) gt 1 and ord(S) lt 6), x(K2,S,P,C))) =l= cap2-1;

equation10(C)$(ord(C) gt 5).. sum(K2,sum(S$(ord(S) gt 1 and ord(S) lt 6), sum(P$(ord(P) gt

1 and ord(P) lt 6 and ord(P) eq ord(S)), x(K2,S,C,P))))+ sum(K2,sum(S$(ord(S) gt 1 and ord(S)

lt 6), sum(P$(ord(P) gt 5 and ord(P) ne ord(C)), x(K2,S,C,P))))=e= sum(S$(ord(S) gt 1 and

ord(S) lt 6), v(S,C));

equation11(C)$(ord(C) gt 6).. sum(K2,sum(S$(ord(S) gt 1 and ord(S) lt 6),sum(P$(ord(P) gt

1 and ord(P) lt 6 and ord(P) ne ord(S)), x(K2,S,C,P))))+ sum(K2,sum(S$(ord(S) gt 1 and ord(S)

lt 6), sum(P$(ord(P) gt 1 and ord(P) lt 6 and ord(P) ne ord(S)), x(K2,S,P,C))))=e=0;

equation12(P,S)$(ord(P) gt 1 and ord(S) gt 1 and ord(S) ne ord (P)).. M(P)-M(S)+ cap1*sum(K1,

f(K1,P,S)) =l= (cap1-1);

equation13(S,K2)$(ord(S) gt 1 and ord(S) lt 6).. sum(P$(ord(P) gt 1),sum(C$(ord(C) gt 1),

x(K2,S,P,C)* Tk2(K2,P,C)))+ sum(P$(ord(P) gt 1),sum(C$(ord(C) gt 5), x(K2,S,P,C)*lambda(C)))

=e= t(K2,S);

equation14(S,K2)$(ord(S) gt 1 and ord(S) lt 6).. tau(S) =g= t(K2,S)+ (mu(S)+V(S))*

sum(K1,y(K1,S));
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equation15(K1).. sum(P$(ord(P) lt 2),sum(S$(ord(S) gt 1), f(K1,S,P)))=e= 1;

equation16(K1,C)$(ord(C) gt 5).. sum(P$(ord(P) ne ord(C)), f(K1,P,C))=e= u(K1,C);

model ThirdModel /all/;

solve ThirdModel using mip minimizing obj;
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