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Abstract 

This thesis proposes a novel synergy of the classical scenario and robust approaches used for 

strategic supply chain optimization under uncertainty. Two novel formulations, namely the naïve 

robust scenario formulation and the affinely adjustable robust scenario formulation, are 

developed, which can be reformulated into tractable deterministic optimization problems if the 

uncertainty is bounded by the infinity-norm. The two formulations are applied to a classical farm 

planning problem and an energy and bioproduct supply chain problem. The case study results 

demonstrate that, compared to the scenario formulation, the proposed formulations can achieve 

the optimal expected economic performance with smaller number of scenarios, and they can 

correctly indicate the feasibility of a problem. The results also show that the affinely adjustable 

robust scenario formulation can better address uncertainties than the naïve robust scenario 

formulation.  

 

Next, a strategic optimization problem for an industrial chemical supply chain from DuPont was 

studied. The supply chain involves one materials warehouse, five manufacturing plants, five 

regional product warehouses and five market locations. Each manufacturing plant produces up to 

23 grades of final products from 55 grades of primary raw materials. The goal of the strategic 

optimization is to determine the capacities of the five plants to maximize the total profits of the 

supply chain system while satisfying uncertain customer demands at the different market 

locations. A mathematical model is developed to relate the material and product flows in the 

supply chain, based on which the classical scenario approach and the affinely adjustable robust 

scenario formulation were developed to address the uncertainty in the demands. The case study 

results show the advantages of the affinely robust scenario formulation over the scenario 

formulation.  
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Using the affinely adjustable robust scenario formulation often results in problems with very 

large sizes, which cannot be solved by regular optimization solvers efficiently. In order to exploit 

the decomposable structure of the formulation, Dantzig-Wolfe decomposition is studied in the 

thesis. Two approaches to implement Dantzig-Wolfe decomposition are developed, and both 

approaches involve the solution of a sequence of linear programming (LP) and mixed-integer 

linear programming (MILP) subproblems. The computational study of the industrial chemical 

supply chain shows that a combination of the two Dantzig-Wolfe approaches can achieve an 

optimal or a near-optimal solution much more quickly than a state-of-the-art commercial 

LP/MILP solver, and the computational advantage increases with the increase of number of 

scenarios involved in the problem. 
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Chapter 1 

Introduction 

1.1 Background 

 

With modern enterprises commonly incorporating multiproduct and multi-site facilities, the need 

for supply chain analysis is vital to remain competitive. Supply chain management is defined as a 

set of approaches utilized to efficiently integrate suppliers, manufacturers, warehouses, and 

stores, so that merchandise is produced and distributed at the right quantities, to the right 

locations, and at the right time, in order to minimize system wide costs while satisfying service 

level requirements (Simchi-Levi et al., 1999). A simple example of a supply chain network is 

given in Figure 1.1 which shows potential layers and channels that can be used. 

 

 

 

 

                     Figure 1.1. Example of a network for a supply chain problem 
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The design and planning of supply chains typically involve many decisions which can be 

classified under the appropriate levels of operational, tactical and strategic decision-making. 

McNair and Vangermeersch (1998) provide descriptions of the three levels. Operational decisions 

are focused on short-term problems and strive to ensure that product is available for when and 

where the customer demands it. The tactical perspective can be bounded by a six month to three 

year time frame and decisions are focused on improving performance by reducing the required 

resources and by eliminating bottle-necks and nonvalue-added activities. The strategic level 

defines the processes and activities that will form a competitive advantage for industries. The 

decisions are related to the total quantity and type of capacity needed, the location of 

infrastructure, and the attainment and segmentation of infrastructure. Each level of decision-

making is vital to the overall success of the supply chain. 

 

Within the process systems engineering community (PSE), supply chain optimization (SCO) has 

emerged as a major research direction. Oil and gas, chemical, biorefinery, and carbon capture and 

storage networks are a few examples of the fields of research within the PSE community. There 

are not only measures based off financial flow or customer responsiveness, but also increased 

competition and shorter product life-cycles, the need for improved sustainability and 

environmental impacts, and future regulations and compliance requirements that dictate the need 

of SCO research (Papageorgiou, 2004). SCO models can be either mathematical programming or 

simulation-based. Mathematical programming models are for optimizing important decisions 

involving unknown configurations, such as supply chain network design or distribution planning. 

Simulation models cover the dynamic operation of a fixed configuration featuring operational 

uncertainty, in order to gauge performance measures. 
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1.2 Supply Chain Optimization and Consideration of Uncertainty 

 

The necessity to account for uncertainty in supply chains has been accepted as a significant issue 

(Sahinidis, 2004). Sources of uncertainty can be related to raw material supplies, transportation 

and logistics, production and operation uncertainties, product prices, emissions, etc. Models that 

account for these uncertainties can be large in size and difficult to solve. Approaches to 

optimization under uncertainty will have objectives to minimize deviations of goals, minimize 

expectations, or most commonly minimize overall costs. These main approaches can be based off 

of fuzzy programming (which includes flexible and possabilistic programming) or stochastic 

programming (which includes recourse models, robust stochastic programming, and probabilistic 

models). Within recourse models, by considering a finite number of uncertain parameters 

sampled, the scenario formulation can be used. The general recourse model for a two-stage 

stochastic problem, the scenario formulation and robust formulation will be described below. 

 

1.2.1 General Recourse Model 

 

A standard formulation for a two-stage stochastic formulation with recourse is given below 

(Birge and Louveaux, 2011) 

Problem (P) 

 
 min ( , )T

x X
c x E Q x 




                                                                           (1.1) 

. .s t Ax b  ,                                                                                               (1.2) 

where xn
x X  represents the first-stage decision variables, which can be either continuous 

or integer depending on the problem, and are made before the realizations of uncertainty. Related 

to strategic supply chain optimization under uncertainty, the first-stage variables are typically 

design decisions, such as whether or not to develop a unit in the network, the capacity of a plant 
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or warehouse or the mode of transportation. These design variables are decided before the actual 

realization of the uncertain parameters. xn
c symbolizes the costs related to the first-stage 

decisions, such as the cost related to capacities of the manufacturing plants. 1 xm n
A


 , 

1 ,
m

b  and constraint (1.2) includes the limitations of the first-stage decisions, such as the 

topology relationship for the units in the supply chain network, maximum capacity limits of 

plants and warehouses, etc. The costs related to the second-stage decisions are 

( , ) min{ ( ) : ( ) ( )}TQ x q y T x Wy h      , in which   denotes the uncertain parameters 

that are realized when making the second-stage decisions, such as raw material and product 

prices, customer demands, product conversions, etc. yn
y  denotes the second-stage 

continuous variables and in relation to strategic supply chain optimization, they represent the 

operational decisions such as material and product transportation plans for the various layers of 

the supply chain. ( ) yn
q   , 2( ) xm n

T  
 ,  2 ym n

W


 ,  2( )
m

h   are parameters in 

relation to the second stage,   in the parentheses after the parameters indicates that the they are 

dependent on the realization of uncertainty. W  is a known constant assumed to be independent of 

the uncertain parameters here which means Problem P  has fixed-recourse (Birge and Louveaux, 

2011).  ( , )E Q x   in the objective function of Problem P, denotes the expected second-stage 

cost over different realizations of uncertainty. 

 

1.2.2 Scenario Formulation 

 

Since Problem P is intractable, as it assumes full knowledge of the uncertain parameters, it can be 

transformed approximately into a tractable optimization problem for practical solution. A 

common approach to approximate the general problem, is to address a finite number of 
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realizations of uncertainty within the optimization. These realizations are typically called 

scenarios, and it leads to the formulation outlined below. 

Problem (S) 

1

,
1,...,

min

s

s
T T

x X
y y

c x p q y  





                                                                                                (1.3) 

. .s t Ax b ,                                                                                                                 (1.4)  

, 1,..., .T x Wy h s                                                                                            (1.5) 

 

The parameters dependent on uncertainty are characterized by s scenarios (indexed by subscript 

 ) and the relevant probabilities are denoted by p . The second-stage variables are now 

explicitly optimized for s groups for Problem S. If the number of scenarios is 1, and the uncertain 

parameters realize their expected value, the resulting formulation becomes the so-called expected 

value (or deterministic) formulation. 

1.2.3 Robust Formulation 

 

Another approach to approximate the general Problem P, is to address the “worst-case scenario” 

(i.e., the scenario in which the constraint is most likely to be violated), as opposed to addressing a 

finite number of predetermined scenarios. The resulting problem is called a robust optimization 

problem (Ben-Tal et al., 2004), and is typically motivated by applications in which feasibility is 

more important than optimality of the solution. The robust optimization problem is written in the 

form 

Problem (R) 

,
min T T

x X y
c x q y


                                                                                                      (1.6) 

 . .s t Ax b ,                                                                                                            (1.7) 

            max{ ( ) ( )} 0T T

i i it x w y h


 


   ,     21,...,i m .                                                  (1.8)  
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For convenience, the group of second-stage constraints (1.8) are expressed as 
2m individual 

inequality constraints. Vectors 2, ( 1,..., )yn

i it w i m   are obtained from disassembling the 

matrices T and W, i.e., 
21[ ] ,T

mt t T  
21[ ] ,T

mw w W  
2( 1,..., ),ih i m   

21[ ] ,T

mh h h a bar ‘-’ over parameters or variables indicates the nominal (usually is set to the 

expected value) of that parameter or variable. 

 

1.2.4 Affinely Adjustable Formulations 

 

In order to reduce the conservativeness of robust optimization, an affinely adjustable robust 

formulation is developed by Ben-Tal et al. (2004). Here the second-stage decision variables are 

adjusted for different realizations of uncertainty according to an affine function of the uncertain 

parameters, y U v  . The second-stage decisions can then be optimized through matrix 

yn n
U 
  and vector yn

v . This approximation to the general problem P is given by 

Problem (AAR) 

 
 

, ,
min T T

x X U v
c x q U v


 

                                                                                            (1.9) 

  . .s t Ax b ,                                                                                                                 (1.10) 

2max{ ( ) ( ) ( )} 0, 1,..., .T T

i i it x w U v h i m


  


                                                    (1.11) 

 

Problem (AAR) contains more decision variables than problem R, but by having more flexibility 

in deciding the second-stage decision variables, increased optimality of solution can be achieved. 

As shown later in Chapter 3, this formulation can be reformulated into a tractable, single-level, 

convex optimization problem with the assumption on the uncertainty set   (Ben-Tal and 

Nemirovski, 1999).  
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1.2.5 Advantages/Disadvantages of the Scenario Formulation and Robust Formulation 

 

The scenario formulation is widely used in SCO research and manages to retain flexibility in of 

determining the second-stage decisions according to different realizations of uncertainty. Often it 

will achieve a good estimation of the expected performance and return reasonable solutions. The 

drawback to using the scenario formulation is that it cannot guarantee feasibility of the solution, 

since not all uncertainty realizations for each parameter can be included. By increasing the 

number of uncertainty realizations, the chances of obtaining a feasible solution would rise. 

However, this could cause the size of the formulation to drastically increase, making it 

computationally intractable. It is difficult to identify how many scenarios are required for a 

reliable solution. 

 

The robust formulation was developed to guarantee feasibility against a given set of uncertainty 

realizations (if a feasible solution exists). The shortcoming of the formulation is that it usually 

cannot accurately predict expected performances, since only the worst-case uncertainty 

realization is addressed in the problem. As a result, the robust formulation should only be used in 

applications where the feasibility of the problem is of much greater importance than its 

optimality. Since the objective function of the affinely adjustable robust formulation still involves 

the nominal costs instead of expected second-stage costs, this formulation may still lead to poor 

solutions as well. 
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1.3 Decomposition Algorithms 

 

With the large problem sizes and complexities involved in optimization under uncertainty, there 

is a focus on developing efficient solution procedures. Incorporation of decomposition algorithms 

is a promising solution to this problem. Two-stage stochastic linear models have a problem 

structure that can allow it to be solved by a variety of different methods (Birge, 1985). Benders 

decomposition (Benders, 1962), is a popular approach for exploiting the structure of a model that 

contains complicating variables. Geoffrion (1972) proposes generalized Benders decomposition 

which can be applied to a wider array of problems. In stochastic programming literature, benders 

decomposition is referred to as the L-shaped method. Multi-cut strategies can be applied when 

discrete distributions of the uncertain parameters are considered. For continuous uncertain 

parameter distributions, sample-based decomposition and approximation schemes, as well as 

gradient-based algorithms can be used. Dantzig and Wolfe (1960) developed a decomposition 

algorithm for linear programs that involves an iterative process of solving subproblems and 

generating columns. For integer programming, algorithms contain ideas from lift-and-project and 

reformulation-linearization techniques for Benders-like decomposition approaches (Sahinidis, 

2004). 

 

1.4 Research Objectives 

 

The objective of the thesis is to first develop a novel formulation in order to solve two-stage 

strategic supply chain optimization problems under uncertainty. The formulation is to be a 

synergy of the classical scenario formulation and robust formulation used to solve two-stage 

stochastic supply chain problems. The solutions obtained by the new formulation should provide 

better estimations of performance  (which is a weakness in the robust formulation and sometimes 
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the scenario formulation) and feasibility (which the scenario formulation cannot guarantee). This 

hybrid formulation will then be compared to the classical approaches for case studies of varying 

complexities. The cases solved will be linear programming (LP) and mixed-integer linear 

programming (MILP) problems. It should be noted that independent uniform distributions 

(further explained in Chapter 3) are assumed for uncertain parameters in all case studies in the 

thesis, as the focus of the thesis is not related to figuring out the structure of uncertainty. 

 

The mathematical model for an industrial chemical supply chain problem will be developed from 

data provided by DuPont. The supply chain network consists of one materials warehouse, five 

manufacturing plants, five regional product warehouses and five market locations. Each 

manufacturing plant produces up to 23 grades of final products from 55 grades of primary raw 

materials. The goal is to determine the capacities of the five plants to maximize the total profits of 

the supply chain system while satisfying uncertain customer demands at the different market 

locations. The developed hybrid formulation will be used to address the uncertainties and solve 

this strategic optimization problem.  

 

In addition to developing the novel formulation, the Dantzig-Wolfe decomposition algorithm will 

be studied and applied to the new hybrid formulation for an industrial case study. The objective is 

to show the benefits of the decomposition algorithm for MILP problems compared to using the 

state-of-the-art CPLEX solver (IBM CPLEX, 2014). 
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To summarize, the major contributions of the thesis are: 

 Develop a hybrid formulation based on the synergy of the scenario and robust 

formulations, in order to improve the solutions achieved for strategic supply chain 

optimization problems under uncertainty.  

 Formulate the mathematical model for a large-scale industrial chemical supply chain 

problem, and apply the developed hybrid formulation to address uncertainties. 

 Develop Dantzig-Wolfe decomposition procedures to improve computing times when 

using the novel hybrid formulation. 

 

1.5 Thesis Structure 

 

The thesis is arranged as follows: Chapter 2 presents a review of the literature.  In chapter 3, the 

developed novel formulations will be discussed, and their benefits will be displayed in two case 

studies. In Chapter 4, the mathematical equations for an industrial sized case study are developed, 

and the benefits of the hybrid formulation are again shown. In chapter 5, the Dantzig-Wolfe 

decomposition algorithm will be discussed along with its results compared to those of the CPLEX 

solver for the industrial case study. Lastly, in Chapter 6 the conclusions and future works are 

presented.  
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Chapter 2 

Literature Review 

2.1 Supply Chain Design and Planning 

 

In this section, literature related to supply chain design and planning is reviewed. It has been 

divided such that deterministic models are examined in section 2.1.1 and studies that consider 

uncertainty are examined in section 2.1.2. 

 

2.1.1 Deterministic Models 

 

Through coordinated planning in supply chain design, costs can be minimized, market-size can 

increase and other objectives may be achieved such as a focus on sustainable supply chains and 

waste management. Numerous studies related to the operational, tactical and strategic levels of 

decision-making have been made at static and multi-period levels. 

 

Within early research, an optimization-based decision support system was developed for the 

company Nabisco to manage problems involving facility selection, equipment location and 

utilization, manufacturing and distributing the products (Brown et al., 1987). The resulting MILP 

model allows for savings on transportation and production costs. Camm et al. (1997) performed 

studies to aid Procter and Gamble’s North American supply chain. Annual savings of $200 

million were resulted by combining integer programming, network optimization and geographical 

information systems. Sabri and Beamon (2000) develop an integrated multi-objective supply 

chain model at the strategic and operational levels. A performance measurement system is used 

that incorporates cost, customer service levels, and flexibility. A MILP model is developed by 
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Tsiakis and Papageorgiou (2008) to determine the optimal configuration of a production and 

distribution network that is subject to capacity and financial constraints. The operational 

constraints consider quality, production, and supply restrictions and the financial constraints 

include production costs, transportation costs, and duties for the material flow. Out-sourcing 

production is considered when demand cannot be satisfied. Sustainable supply chains under the 

emission trading scheme are studied by Chaabane et al. (2012). A MILP model is used that 

considers life cycle assessment in addition to the material balance constraints of the supply chain. 

Marvin et al. (2013) proposes a MILP model for determining the locations and capacities of 

economical biomass facilities. The feasibility of meeting the governmental biofuel mandates in 

2015 is examined. Akgul et al. (2012) examine the economical and environmental performance of 

a static biofuel supply chain system. Potential greenhouse gas savings and the impact of carbon 

tax are analyzed. Within pharmaceutical research, Susarla and Karimi (2012) examine an 

industrial scale planning problem for a multinational pharmaceutical enterprise. Their model 

incorporates procurement, production, distribution, the effects of international tax differentials, 

inventory holding costs, material shelf-lives, and waste treatment and disposal. The oil and gas 

industry features work performed by Stebel et al. (2012) in which they aim to reduce the gap 

between scheduling activities in pipeline networks for supply of petroleum products. Their MILP 

model is applied to a case study involving a Brazilian Oil company. An optimization-based 

supply chain network is proposed by Elia et al. (2013) for nationwide, statewide, and regional 

analyses of natural gas to liquids systems across the United States. The large-scale MILP model is 

solved by minimizing the costs of fuel production. 

 

For multi-period models at the operational and tactical levels of SCO problems, the time horizon 

is usually a few days to several months and faces decisions such as equipment changeovers and 

inventory management. Wilkinson et al. (1996) propose an aggregate model as an approximate 



 

13 

 

formulation to allocate production over a week-long horizon. Equipment changeovers and 

intermediate storage is considered in the model. McDonald and Karimi (1997) consider a 

deterministic MILP formulation for scheduling of a semi-continuous process. Safety stock and 

short fall penalties are included in the inventory costs and multiple facilities are considered for 

geographically distributed customers. Another MILP formulation is proposed by Timpe and 

Kallrath (2000) for a multi-site production network. Equipment items can operate in different 

modes and the model is flexible in the fact that timescales for production and distribution can be 

altered. Jin-Kwang et al.
 
(2000) focus on operational decisions, specifically a supply chain for 

sales, intermittent deliveries, production shortfalls, delivery delays, inventory profiles and job 

changeovers, for their multi-period optimization model.  More recently, Lim et al.
 
(2012) design a 

rice mill complex based on fluctuating thermal and electrical demands, diverse energy supply 

options, varying product demands, resource availability and product degradation. Inventory has 

the potential to degrade at each time period and 12 months are considered. Multi-period models at 

the strategic decision making, covers matters such as capacity, production and distribution, 

regularly involves a time horizon of a few years. A multi-period model was proposed by Liu and 

Sahinidis
 
(1996)

 
which focuses on a two-stage stochastic model for process planning under 

uncertainty. Up to four time periods are considered as well as 5
24

 scenarios. Bok et al. (1998) 

extend the previous model to consider the investment for long-term capacity expansions. They 

use a mixed-integer nonlinear programming (MINLP) model to trade-off between the expected 

net present value, its expected square of deviation and the anticipated square of excess capacity. 

Iyer and Grossmann (1998) determine the optimal selection and expansion of processes using a 

MILP model. Up to eight scenarios are considered and 10 time periods are used. Another MILP 

model is described by Papageorgiou et al. (2001) for a pharmaceutical industry problem. Product 

development, capacity expansion and investment strategy are included in the optimization with a 

time period of several years. Jackson and Grossmann (2003) outline a multi-site, multiproduct 
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plant in which nonlinear process models are used. A success story of a multi-period model for a 

chemical industry is revealed by Kallrath (2002). A horizon of up to 15 years was used and the 

paper features a sensitivity analysis outlining varying product demands. Within the oil industry, 

MINLP multi-period formulations are developed for large-scale operations by Neiro and Pinto 

(2004) and Schulz et al. (2005). Sundaramoorthy et al. (2012) examine a multi-period MILP 

model in which they determine the capacities for integrated continuous facilities for potential 

products facing clinical trial uncertainty. 

 

For further studies, Papageorgiou (2009) outlines the advances and opportunities of supply chain 

optimization for the process industries. Works related to both static and multi-period models are 

examined. Nikolopoulou and Ierapetritou (2012) present a review on the optimal design of 

sustainable chemical processes and supply chains. They focus on sustainable supply chains 

related to energy efficiency and waste management, environmentally sustainable supply chains 

and sustainable water management. Awudu and Zhang (2012) address studies related to biofuel 

supply chain management in relation to uncertainties and sustainability concepts. 

 

2.1.2 Consideration of Uncertainty 

 

Through consideration of uncertainty (e.g., raw material supplies, product demands and prices, or 

conversion factors) the accuracy of the solution can increase with the trade-off that the model is 

usually large in size and difficult to solve. Two-stage stochastic formulations with recourse and 

robust optimization are common approaches to solve these types of programming problems. 

Gupta and Maranas (2000) develop a two-stage stochastic model for a multi-site midterm supply 

chain planning problem. Demand is included as the uncertain parameter and production decisions 

are considered as the first-stage variables. Guillen et al. (2006) also consider demand uncertainty 
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for the design of a chemical supply chain. Their model maximizes profits through a multi-stage 

stochastic MILP model. Salema et al. (2007) use a scenario-based approach for the design of a 

reverse logistics network that incorporates capacity limits, multi-product management, and 

uncertainties on product demands and returns. Within the oil and gas industry, Ribas et al. (2010) 

use a two-stage stochastic model with a finite number of scenarios to address the development of 

a strategic planning model for a Brazil oil supply chain. The sources of uncertainty include crude 

oil production, demand for refined products and market prices. Terrazas-Moreno et al. (2012) 

utilize a MILP model for a two-stage stochastic problem with endogenous uncertainty for the 

design of a large-scale chemical process with integrated sites and random process failures. 

Gebreslassie et al. (2012) propose a bicriterion, multi-period stochastic MILP model for the 

optimal design of a hydrocarbon biorefinery supply chain. The objective is minimization of 

expected annualized costs and of the financial risks with supply and demand uncertainties. Han 

and Lee (2012) study a multi-period stochastic programming model for planning carbon capture 

and storage network which includes CO2 utilization and disposal. A two-stage approach is used to 

account for uncertainties in product prices, operating costs, and CO2 emissions. Chu and You 

(2013) examine a two-stage stochastic programming problem for integration of scheduling and 

dynamic optimization of a production process under uncertainty.  

 

Robust optimization, which seeks to attain a feasible solution to an uncertain system, has not been 

widely studied within the PSE community, especially at the strategic level (Grossmann and 

Guillén-Gosálbez, 2010). At the operational level, Janak et al. (2007) consider robust 

optimization for a short-term scheduling problem for multipurpose batch processes. Robust 

optimization has been examined more so in control applications (Goulart et al., 2008) and 

operations research literature (Kuhn et al., 2011). 

 



 

16 

 

2.2 Decomposition Strategies 

 

This section is divided such that decomposition strategies from literature are reviewed in section 

2.2.1. Next, in section 2.2.2, the Dantzig-Wolfe decomposition algorithm is outlined for a typical 

linear programming problem. 

 

2.2.1 Decomposition Strategies Review 

 

Due to the nature of the large problem sizes when accounting for uncertainty, it becomes 

necessary to consider the implementation of decomposition strategies, so that the problems can be 

solved within reasonable computing times. In literature, there are many works in the PSE 

community related to Lagrangian decomposition and Benders decomposition techniques. 

 

Jackson and Grossman (2003) consider a Lagrangian based method on a multi-site, multiproduct 

network in which nonlinear process models are applied. They compare temporal and spatial 

decomposition methods, in which the effectiveness of the temporal method is detailed. Neiro and 

Pinto (2004) use a similar Lagrangian strategy for their large-scale petroleum supply chain model 

and soon after, the work is extended by Chen and Pinto (2008). You and Grossmann
 
(2008, 2010) 

extend the strategy to nonlinear models with stochastic inventories. Iyer and Grossmann
 
(1998) 

suggest a bilevel decomposition technique to reduce the computational times of their mixed-

integer linear programming (MILP) formulation involving the selection and expansion of 

processes. Jin-Kwang and Grossmann (2000)
 
use the bilevel approach on a problem involving 

operational decisions such as sales, deliveries, production shortfalls, etc. You et al.
 
(2011) later 

performed a comparison of Lagrangian and bilevel decomposition schemes involving a multi-

period MILP model for a multisite system. Their results show that the bilevel decomposition 

gives faster computational times and a smaller optimality gap for their specific problem. Liu and 
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Sahinidis (1996) test both a Branch-and-Bound and a Benders decomposition algorithm on their  

two-stage stochastic multi-period model. Terrazas-Moreno et al. (2012) and Gebreslassie et al. 

(2012), whose papers were discussed in the previous section, use Benders decomposition and a 

multi-cut L-shaped method, respectively, to overcome the complexities of their MILP models. A 

slight deviation from the Benders algorithm is used by Egging (2013), in which a large-scale, 

multi-period stochastic model is applied to a global natural gas problem. Vaskan et al. (2013) 

propose a decomposition method for MILP problems based off a bilevel decomposition strategy. 

A lower bounding master problem is solved followed by an upper bounding slave problem where 

the pixels of the master problem are disaggregated. This technique is applied to a case study on 

sewage sludge amendment in Catalonia.  

 

An alternative approach, not as commonly implemented within supply chain optimization 

problems or for MILP models, is the Dantzig-Wolfe decomposition algorithm which consists of a 

restricted master problem that contains the active columns from the solutions of the subproblems. 

Pimental et al. (2010) utilize the Dantzig-Wolfe algorithm, along with a branch-and-price 

algorithm, where a MILP model is applied to multi-item capacitated lot sizing problem with setup 

times. The subproblems of the Dantzig-Wolfe algorithm are defined by items and then by periods. 

The algorithm has also been featured in such research areas as security-constrained unit 

commitment problems (Fu et al., 2005) and moral-hazard programs (Prescott, 2004). 

 

2.2.2 Dantzig-Wolfe Decomposition Algorithm 

 

This section introduces the Dantzig-Wolfe algorithm based on the discussion in Bertsimas and 

Tsitsiklis (1997).  
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2.2.2.1 Overview of the Restricted Master Problem and Subproblems 

 

A typical linear programming is considered for the procedure to implement the Dantzig-Wolfe 

decomposition algorithm. The problem is shown by 

1 1 2 2min T Tc x c x                                                                                                                 (2.1) 

1 1 2 2 0. . ,s t D x D x b                                                                                                    (2.2) 

1 1,x P                                                                                                                              (2.3) 

   
2 2 ,x P                                                                                                                             (2.4) 

where, 

 0: , 1,2.i i i i iP x F x b i                                                                                    (2.5) 

 

Here, 
1x and 

2x are decision variables that are vectors of dimensions 
1n and 

2 ,n  respectively. The 

vectors 
0 ,b 1,b and 

2b  have dimensions 
0 ,m 1,m and 

2 ,m respectively. 
1x  satisfies 

1m  

constraints, 
2x satisfies 

2m constraints, and together 
1x and 

2x satisfy 
0m coupling constraints. 

Next, it is assumed without loss of generality that sets 
1P  and 

2P  are bounded, as two-stage 

strategic supply chain optimization problems can always be formulated with bounded feasible 

sets. For 1,2,i  , wherej

i ix j J  is defined as the extreme points of set iP . The resolution 

theorem implies that any element of a bounded polyhedron can be expressed as a combination of 

its extreme points (Lasdon, 1970). Therefore any element  of i ix P can be expressed as follows 

,
i

j j

i i i

j J

x x


                                                                                                                   (2.6) 

where, 1, 1,2
i

j

i

j J

i


   and 0, ,j

i i j   .  
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The original problem can now be written as 

1 2

1 1 1 2 2 2min j T j j T j

j J j J

c x c x 
 

                                                                                           (2.7) 

1 2

1 1 1 2 2 2 0. . ,j j j j

j J j J

s t D x D x b 
 

                                                                                  (2.8) 

1

1 1,j

j J




                                                                                                                       (2.9) 

2

2 1,j

j J




                                                                                                                     (2.10) 

0, , .j

i i j                                                                                                                 (2.11) 

This formulation is known as the master problem. It is equivalent to the original formulation and 

is a linear programming problem with decision variables
j

i . Another way to represent the 

constraints (2.8), (2.9), and (2.10) is shown below which shows more clearly the structure of each 

column 

1 2

1 1 2 2 0

1 21 0 1 .

0 1 1

j j

j j

j J j J

D x D x b

 
 

     
     

      
         

                                                                       (2.12) 

The number of extreme points used in the master problem can be extremely large. Instead, a 

restricted master problem will be used, in which the number of variables are set to equal zero at 

the start. The solution to the restricted master problem is defined as RMPobj . Promising variables, 

based off of the solution to subproblems, will enter the restricted master problem when the 

algorithm is executed. 

 

Suppose there is a basic feasible solution to the master problem which has a basis matrix B. It is 

assumed that 
1B
 is available, along with the dual vector denoted by 

1T T

Bp c B . Since there 

are 0 2m   equality constraints, the vector p has a dimension of 0 2m  . The first 0m  
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components are the dual variables associated with constraint (2.8) denoted by . The last two 

components, denoted by 
1  and 

2 , are the dual variables associated with the “convexity” 

constraints (2.9) and (2.10). Altogether,  1 2p    . To decide if the current basic 

feasible solution is optimal, the reduced costs of the different variables are checked whether or 

not they are negative. The reduced cost of variable 
1

j  is given by 

 
1 1

1 1 1 2 1 1 1 11 .

0

j

T j T T T j

D x

c x c D x    

 
 

      
 
 

                                                   (2.13) 

Instead of checking the reduced costs of each variable 
1

j , the following linear programming 

problem is formed 

 1 1 1min T Tc D x                                                                                                            (2.14) 

1 1. . .s t x P                                                                                                                         (2.15) 

This optimization problem is known as the pricing problem. From its solution there are two 

scenarios to consider: 

(1) If the optimal cost of the pricing problem is finite and smaller than 
1 , then there is an 

extreme point 1

jx  that satisfies  1 1 1 1.
T T jc D x    The reduced cost of the variable 1

j  is 

negative and 

1 1

1

0

jD x 
 
 
 
 

 is the column generated to enter the basis of the restricted master problem. 

(2) If the optimal cost of the subproblem is finite and no smaller than 1 , then 

 1 1 1 1

T T jc D x    for all extreme points 1

jx . The reduced cost of each variable 1

j  is 

nonnegative.  
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The same methodology is applied to the second subproblem 

 2 2 2min T Tc D x                                                                                                             (2.16) 

2 2. . ,s t x P                                                                                                                         (2.17) 

and once solved, either the optimal cost is greater than or equal to 
2  or there is a variable 

2

j  

with a negative reduced cost that enters the basis for the restricted master problem. The restricted 

master problem and pricing problems described above refer to the optimization problems solved 

for the phase 2 component of the Dantzig-Wolfe algorithm. In order to begin this phase, a basic 

feasible solution is required. 

 

2.2.2.2 Phase 1 Problem 

 

In order to begin the algorithm, a basic feasible solution to the master problem is required. A 

phase 1 feasibility problem is performed for each of the polyhedra 
1P  and 

2P , to find their 

respective extreme points, 
1

1x  and 
1

2x . By letting y be a vector of auxiliary variables with a 

dimension of 
0m , the auxiliary master problem is formed 

0

1

min
m

t

t

y


                                                                                                                          (2.18) 

0

1,2

. . ,
i

j j

i i i

i j J

s t D x y b
 

 
  

 
                                                                                        (2.19) 

1

1 1,j

j J




                                                                                                                          (2.20) 

2

2 1,j

j J




                                                                                                                          (2.21) 

0, 0 , , .j

i ty i j t                                                                                                         (2.22) 
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Now, a basic feasible solution is obtained by letting 
1 2

1 1 1,    0j

i   for 1,j   and 

1 1

0 1 1 2 2.y b D x D x    The decomposition algorithm can be used to solve the auxiliary master 

problem. If the optimal cost reaches zero, then the optimal solution to the auxiliary master 

problem is a basic feasible solution to the master problem. 

 

2.2.2.3 Termination Criteria 

 

The phase 1 problem involves solving the auxiliary master problem and the subproblems until the 

following condition is met 

0

1

,
m

t

t

y 


                                                                                                                        (2.23) 

 

where  is the required tolerance. If the solution to the auxiliary master problem is positive, then 

the master problem is infeasible and the algorithm will terminate. If the tolerance criterion is 

satisfied, then the basic feasible solution to the master problem is used for the phase 2 problem.  

 

Here for phase 2, the restricted master problem and subproblems are solved until the following is 

achieved 

.UBD LBD                                                                                                            (2.24) 

UBD stands for the upper bound and is updated during each iteration as the solution to the 

objective function of the restricted master problem 

.RMPUBD obj                                                                                                             (2.25) 

LBD stands for the lower bound and can be updated for every iteration by the expression 

1 2

1,2

,
nRMP PP

n

LBD obj Obj  


                                                                           (2.26) 
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where 
nPPObj is the solution to the respective objective function of the pricing problems, 

1 and 

2  are the multipliers obtained from the “convexity” constraints of the restricted master problem. 

If the termination criterion is satisfied, then the following optimal solution to the problem would 

be returned

1 2

1 1 2 2,j j j j

j J j J

x x 
 

 
 
 
  .  

 

 

In this chapter, literature related to supply chain design and planning was reviewed for 

deterministic studies and for those in which uncertainty is considered. Scenario formulations have 

been utilized for strategic supply chain optimization problems under uncertainty, but there is little 

work performed in this area related to robust formulation. This reinforces the need to developing 

a hybrid robust scenario formulation, as seen in Chapter 3, to improve on the quality of solutions 

obtained for strategic supply chain optimization problems. Next, the focus was on decomposition 

techniques and the Dantzig-Wolfe decomposition algorithm was specifically outlined. This 

methodology has the potential to obtain solutions faster than the state-of-the-art CPLEX solver 

for two-stage optimization problems and is studied further in Chapter 5. 

 

 

  



 

24 

 

Chapter 3 

Novel Robust Scenario Formulations 

 

In section 3.1, the hybrid robust scenario formulations are derived based on the need to improve 

on optimality and feasibility of the generated solution. Next in section 3.2, the classical and new 

formulations are applied to two case study problems in order to show the benefit of the robust 

scenario formulations.  

 

3.1 Robust Scenario Formulations 

 

The scenario formulation and robust formulation that are used as approximations to the general 

Problem (P), have inherent disadvantages. The scenario formulation cannot guarantee optimality 

or feasibility of the generated solution, whereas the robust formulation can guarantee feasibility 

but at the expense that it will generally produce an overly conservative solution. Next, one of the 

main contributions of the thesis is presented, in which hybrid formulations are developed in the 

next sections by combining the classical formulations to achieve better solutions. 

3.1.1 Naïve Robust Scenario Formulation 

 

The naïve robust scenario formulation is developed from the synergy of formulation (S) and 

formulation (R). The infinite number of uncertainty realizations are approximated by considering 

a finite number of scenarios, and each scenario now contains a set of uncertainty realizations as 

opposed to a single realization. The formulation is given by 
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Problem (NRS) 

1

,
1,...,

min

s

s
T T

x X
y y

c x p q y  





                                                                                                 (3.1) 

. .s t Ax b ,                                                                                                                   (3.2) 

, ,max{ ( ) ( )} 0T T

i i it x w y h
 

    


 


   ,  
21,...,i m , 1,..., s  ,                              (3.3) 

   ( ) ( ) ( )

, , ,( ) ( ) 0
T T

eq eq eq

j j jt x w y h         ,    ,
( )

21,..., eqj m , 1,..., s  .    (3.4) 

 

For formulation (NRS), the uncertainty region is expressed by   and is covered by s uncertainty 

subregions 
s for the s scenarios, that is, 

1

s


  . This shows that a scenario is now 

associated with a set of uncertainty realizations as opposed to a single uncertainty realization as 

what is used for Formulation S. The deterministic inequalities shown by eq. (1.5) for formulation 

S become the “robust inequalities” in eq. (3.3) for Problem (NRS), and the second-stage cost 

coefficient q now becomes the nominal value of the coefficient q . The equality constraints are 

now explicitly addressed in eq. (3.4) since they have to be satisfied for all realizations of 

uncertainty, as opposed to a single worst-case realization.  

 

Problem (NRS) can be transformed into a tractable problem if the assumption that uncertainty is 

bounded by the infinity-norm is made. The inequality constraints of eq. (3.3) are rewritten to 

separate the deterministic and uncertain elements. This is shown by 

 
, ,

, , , , ,max 0
i i

T T T

d i d i i u i it x x w y
 

  





   ,      21,...,i m ,   1,..., s  .                        (3.5) 

Here the uncertainty subregion is expressed by    ,

, , , , , ,: il

i i i i i iM 

        


     , 

where ,il n  (as a constraint may not involve all the uncertain parameters), ,iM   is an 

invertible weighting matrix, and , 0i   . A visualization of the infinity-norm assumption is 

shown in Figure 3.1 for an example with two uncertain parameters and nine scenarios. 
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Figure 3.1. Example of uncertainty bounded by the infinity-norm 

 

From this example based on the box distribution, invertible matrix ,iM  would be a diagonal 

matrix. Typically this assumption is used for cases in which the uncertain parameters are 

independent of each other. If the parameters are dependent on each other, then the uncertainty 

region and uncertainty subregions would be rotated and ,iM  would be a non-diagonal matrix. 

The uncertain parameters in the uncertainty subregion  are now described in different 

subregions 1, , 2, , …, 
2 ,m  . , , , , ,

T T T

d i i i it t h          , in which ,1

, ,
x in l

d it 



 
  contains 

the deterministic elements in , ,

T

i it h 
   and ,i  contains the uncertain elements. 

, , 1T T T

d i u ix x x        , in which ,1

,
x in l

d ix  
  contains the elements in 1Tx   that are 

associated with , ,d it  and ,

,
il

u ix   contains the elements in 1Tx    that are associated with 

,i  . By separating the deterministic parts from the optimization operation, the inequality is now 

shown by 
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 
, ,

, , , , ,max 0
i i

T T T

d i d i i i u it x w y x
 

  





   ,      
21,...,i m ,   1,..., s  .                                (3.6) 

 

Since constraint (3.6) involves an optimization problem, Problem (NRS) is a bilevel optimization 

problem that is difficult to solve. The following proposition can be used to reduce the overall 

formulation to a single-level problem.  

 

 

Proposition 1: From the optimization problem 

 max
T

x


 
 
                                                                                                (3.7) 

 . . ,s t M   


                                                                                          (3.8) 

where M is invertible and 0  , the optimal objective value is 
1

1
( )TM x 

.  

 

 

Proof of Proposition 1 can be found in Appendix A. Based off of this solution, inequality (3.6) 

can be written as 

 1

, , , , , ,
1

0
T

T T

d i d i i i i u it x w y M x       ,   21,...,i m ,  1,..., s  .                         (3.9) 

 

This inequality can be reformulated into no more than ,2 il  linear inequalities. This reformulation 

is shown in section 3.1.3. Usually, ,il n  , which will not result in a much larger problem.  

 

From the equality constraints in eq. (3.4), they can also be expressed by separating the 

deterministic and uncertain elements 

     ( ) ( ) ( ) ( ) ( )

, , , , , 0
T T T

eq eq eq eq eq

d j d j j u j jt x x w y     ,  
( ) ( )

, ,

eq eq

j j   , 
( )

21,..., eqj m , 1,..., s  . (3.10) 
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( )

,

eq

j   is the uncertainty subregion for the uncertain parameters involved in the equation indexed 

by j and ω. No assumptions are necessary on this subregion for its reformulation. 

     ( ) ( ) ( ) ( )

, , , , ,

T T T
eq eq eq eq

d j j j jt t h      
      

, where 
( )

, ,

eq

d jt   contains the deterministic elements in 

 ( ) ( )

, ,

T
eq eq

j jt h 
 
  

 and 
( )

,

eq

j   contains the uncertain elements.    ( ) ( )

, , 1
T T

eq eq T

d j u jx x x       
, 

where 
( )

,

eq

d jx contains the elements in 1Tx   associated with 
( )

, ,

eq

d jt  and 
( )

,

eq

u jx contains the 

elements in 1Tx   associated with 
( )

,

eq

j  . 

 

Assuming that the uncertain components in 
( )

,

eq

j   are not linearly dependent on each other, then 

( )

, 0eq

u jx  ,     
( )

21,..., eqj m ,                                                                                          (3.11)
 

 

has to hold for eq. (3.10), otherwise it would mean that the “uncertain part”  ( ) ( )

, ,

T
eq eq

j u jx has 

different values for different realizations of 
( )

,

eq

j  . Similarly, the “deterministic part” must hold as 

well 

   ( ) ( ) ( )

, , , 0
T T

eq eq eq

d j d j jt x w y   ,     
( )

21,..., eqj m , 1,..., s  .                                   (3.12) 

 

Therefore eq. (3.10) can be transformed into eq. (3.11) and (3.12). Problem (NRS) can now be 

expressed as the following problem, if uncertainty is bounded by the infinity-norm 

Problem (NRS_IN) 

1

,
1,...,

min

s

s
T T

x X
y y

c x p q y  





                                                                                              (3.13) 

. .s t Ax b ,                                                                                                               (3.14) 
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 1

, , , , , ,
1

0
T

T T

d i d i i i i u it x w y M x       ,   
21,...,i m ,  1,..., ,s                       (3.15) 

( )

, 0eq

u jx  ,   
( )

21,..., ,eqj m                                                                                           (3.16)

   ( ) ( ) ( )

, , , 0
T T

eq eq eq

d j d j jt x w y   ,    
( )

21,..., eqj m , 1,..., s  .                                (3.17) 

 

3.1.2 Affinely Adjustable Robust Scenario Formulation 

 

To improve on formulation (NRS), which can still be overly conservative, an affinely adjustable 

robust scenario formulation is proposed. This formulation is a hybrid of formulation (S) and 

formulation (AAR). Here, the second-stage decision variables are adjusted affinely with respect 

to the uncertainty realizations in a scenario. These adjustments are expressed by 

 y U v      for scenario ω, where U and v are the constant coefficients for the affine 

relationship for scenario ω. This will allow for less restriction when determining the second-stage 

decisions, and the formulation is written in the form 

Problem (AARS) 

    
1 1, , , , ,

1

min
s s

s
T T

x X U v U v
c x p E q U v

     







                                                               (3.18) 

  . .s t Ax b ,                                                                                                                      (3.19) 

        , ,max{ ( ) ( )} 0T T

i i it x w U v h
 

      


  


    ,   21,...,i m , 1,..., s  ,                (3.20)   

         
     ( ) ( ) ( )

, , ,( ) ( ) 0
T T

eq eq eq

j j jt x w U v h             , 

     ,
( )

21,..., eqj m , 1,..., s  .     (3.21)  

 

The inequality constraint (3.23) is now over all the uncertain parameters, as dependence of the 

second-stage decisions are on all uncertain parameters. Due to these affine functions for different 

uncertainty regions, problem (AARS) essentially uses piece-wise affine function over the entire 

uncertainty region for the adjustments of second-stage decisions. This will lead to a less 
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conservative approach than problem (AAR), which contains a single affine function over an 

uncertainty region. If only one scenario is used for problem (AARS), then it will degrade into 

problem (AAR). 

Similar to problem (NRS), this hybrid formulation can also be transformed into a tractable 

problem if the uncertainty is bounded by the infinity-norm. Expected second-stage costs in the 

objective function can be rewritten as 

       ,T T TE q U v q U E v q U v
                      

                        

(3.22) 

 

where   is the expected value of   for scenario  . Next, the inequality constraints (3.20), can 

be written as 

  , , , , ,max 0T T T

d i d i i u i it x x w U v
 

    


 


    ,      
21,...,i m ,   1,..., .s               (3.23) 

 

From the assumption that uncertainty is bounded by the infinity-norm, that is, 

{ : ( ) }M       


    , where M is invertible and 0  . By allowing 

, ,i iP    for convenience, the inequality becomes 

  , , , , ,max 0T T T T T

d i d i i i u i it x w v P x U w
 

    





    ,      21,...,i m ,   1,..., s  .        (3.24) 

 

Again, by following Proposition 1, it can now be written by 

 1

, , , , ,
1

( ) 0T T T T T

d i d i i i u i it x w v M P x U w          ,    21,...,i m ,   1,..., s  .     (3.25)      

Similarly, the transformation for the equality constraints (3.21) can be made by first rewriting the 

constraints as 

       ( ) ( ) ( ) ( ) ( )

, , , , , 0
T T T

eq eq eq eq eq

d j d j j u j jt x x w U v         ,   

( ) ( )

, ,

eq eq

j j   , 
( )

21,..., eqj m , 1,..., s  .    (3.26) 
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By letting 
( )

, ,

eq

j jP    , it now becomes 

       ( ) ( ) ( ) ( ) ( ) ( )

, , , , , 0
T T T T

eq eq eq eq eq eq

d j d j u j j j jt x x P w U w v        
  

, 

( ) ( )

, ,

eq eq

j j   , 
( )

21,..., eqj m , 1,..., s  .    (3.27) 

 

From here, similar to problem (NRS), the deterministic and uncertain parts must hold to 0 and can 

be written by the following two equations 

   ( ) ( ) ( )

, , 0
T T

eq eq eq

u j j jx P w U   ,  
( )

21,..., eqj m , 1,..., s  ,                                     (3.28) 

   ( ) ( ) ( )

, , , 0
T T

eq eq eq

d j d j jt x w v   ,
 
 

( )

21,..., eqj m , 1,..., s  .                                      (3.29) 

 

The result of the transformation can be seen below as Problem (AARS) can now be described by 

Problem (AARS_IN) 

 
1 1, , , , ,

1

min
s s

s
T T

x X U v U v
c x p q U v    








                                                                 (3.30) 

            . .s t Ax b ,                                                                                                                 (3.31)
    

 1

, , , , ,
1

( ) 0T T T T T

d i d i i i u i it x w v M P x U w          , 21,...,i m ,   1,..., s  ,     (3.32)      

   ( ) ( ) ( )

, , 0
T T

eq eq eq

u j j jx P w U   ,  
( )

21,..., eqj m , 1,..., s  ,                                    (3.33) 

   ( ) ( ) ( )

, , , 0
T T

eq eq eq

d j d j jt x w v   ,
 
 

( )

21,..., eqj m , 1,..., s  .                                     (3.34) 

 

Compared to formulation (RS_IN), problem (AARS_IN) will involve more decision variables 

and constraints, so it will be more difficult to solve, but it should improve on the optimality of the 

generated solutions. 
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3.1.3 Reformulation of the 1-Norm function in Inequality Constraints 

 

Constraint (3.15) for formulation (NRS_IN) and constraint (3.32) for formulation (AARS_IN) 

contain the 1-norm function which is nonlinear. These constraints can be reformulated into linear 

constraints, so that the overall problem is a LP or MILP problem as opposed to a nonlinear 

optimization problem. To show the reformulation used for the inequality constraints with a 1-

norm, the following example is used 

1
z b ,                                                                                                                     (3.35) 

 

where 
1( ,...., ) n

nz z z R   and b  is any non-zero value. From the definition of 1-norm 

   1mod 2 ,2

1
1,...,2 1

1 1

max 1
i

n

n n
j

i i
j

i i

z z z
 

 

 
 

 
   

 
  ,                                                     (3.36) 

 

where mod( , )x y finds the remainder from the division of x by y.     is a function returns the 

largest integer that is smaller than its argument. Inequality (3.38) now becomes 

   1mod 2 ,2

0,...,2 1
1

max 1
i

n

n
j

i
j

i

z b
 

 

 


 
  

 
 ,                                                                      (3.37) 

 

which can then be transformed into the following 2n
linear inequalities, 

   1mod 2 ,2

1

1
in

j

i

i

z b
 

 



  ,   0,...,2 1nj   .                                                            (3.38) 

 

As an example, if 3n  , constraint (3.38) would be transformed into 8 linear inequalities in the 

following form 

 
 

 
 

 
 mod ,2 mod /2 ,2 mod /4 ,2

1 2 31 1 1
j j j

z z z b
            ,   0,...,7j  ,                    (3.39) 

 

which would be 
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1 2 3z z z b   ,   0j  ,                                                                                           (3.40) 

1 2 3z z z b    ,   1j  ,                                                                                           (3.41) 

1 2 3z z z b   ,   2j  ,                                                                                           (3.42) 

1 2 3z z z b    ,   3j  ,                                                                                           (3.43)  

1 2 3z z z b   ,   4j  ,                                                                                           (3.44) 

1 2 3z z z b    ,   5j  ,                                                                                            (3.45) 

1 2 3z z z b   ,   6j  ,                                                                                           (3.46) 

1 2 3z z z b    ,   7j  .                                                                                           (3.47) 

 

It should be noted that 2n
linear equalities are not always required for the 1-norm transformation. 

For example if all the elements in z are known to be non-negative, then it can be reformulated 

into simply one linear inequality.   

 

3.2 Case Studies 

 

The purpose of the case studies section is to evaluate the solutions of the novel robust scenario 

formulations in comparison with the solutions of the scenario formulation and expected value 

formulation (which is a special scenario formulation with one scenario that involves the expected 

values of the uncertain parameters).  

 

All uncertain parameters are assumed to be independently and uniformly distributed, so only the 

ranges of the uncertain parameters are given when explaining the subsequent case study 

problems. As this article is not focused on scenario generation, a simple approach is used to 

construct the scenarios for the different formulations. The range of each uncertain parameter is 

divided into sn  subintervals, and the uncertainty region is divided into 
n

sn  subregions (where 
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n is the total number of uncertain parameters), which lead to 
n

sn  scenarios. For the affinely 

adjustable robust scenario formulation, each scenario addresses the relevant uncertainty 

subregion; for the S formulation, each scenario addresses the mean values of the uncertain 

parameters over the relevant uncertainty subregion. These uncertainty subregions can be readily 

represented using the infinity norm, so the affinely adjustable robust scenario formulation can be 

transformed to the computationally tractable problem (AARS_IN) as described. Figure 3.2 

displays how the scenario formulation uses a finite number of realizations each made by a 

recourse action, to address uncertainty. Figure 3.3 shows how the novel robust scenario 

formulations are represented by groups of uncertainty realizations. The formulation (NRS_IN) 

incorporates actions for each uncertainty group, and the formulation (AARS_IN) incorporates an 

affine policy for each group. 

 

 

 

 

 

Figure 3.2. Scenario generation for the scenario formulation 
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Figure 3.3. Scenario generation for the robust scenario formulations 

 

 

The two case study problems were modeled using GAMS 22.9.3 (Rosenthal, 2008), and they 

were solved on a machine with 3.40 GHz CPU and Linux operating system using CPLEX 12.4. 

 

3.2.1 Case Study 1 – Farm Planning Problem 

 

Problem 1 is a classical farm planning problem from the stochastic programming literature (Birge 

and Louveaux, 2011).
 
In this problem, a farmer needs to plan the allocation of his land area for 

raising three crops: wheat, corn and sugar beets. The goal of the planning is to achieve the best 

overall profit while reserving a certain amount of wheat and corn for feeding cattle. If the 

harvested wheat or corn is not enough for feeding cattle, it can be purchased on the market at a 

relatively high price. Sugar beets are the most profitable crop among the three, but the selling 

price drops after a certain amount (i.e., the quota on the sugar beet production) of sugar beets has 

been sold. Although it is not a typical SCO problem, the farm planning problem has similar 

features to the strategic supply chain planning problem of interest. 
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The deterministic formulation for the farm planning problem is described below. The list of 

indices and sets, parameters and variables that are used in the formulation can be found below in 

Table 3.1.  

 

 

 

 

 

 

 

 

Table 3.1 Indices and sets, parameters, and variables for the farm planning problem 

   Indices and Sets 

m   - wheat, corn, sugar beets 

1m   - wheat, corn 

2m   - sugar beets 

   Parameters 
pl

mc - Planting cost for crop m, $/acre 
pur

mc - Purchasing cost of crop m, $/t 
sell

mc - Selling cost of crop m, $/t 

,sell h

mc - Selling cost of sugar beets below the quota, $/t 
,sell l

mc - Selling cost of sugar beets above the quota, $/t 

mF - Amount of crop m reserved for feeding cattle, t 

L  - Total land area, acre 

mQ - Quota on sugar beet production, t 

mY  - Yield of crop m, t/acre 

   Variables 

mw  - Amount of crop m sold on the market, t 
h

mw - Amount of crop m sold below the quota, t 
l

mw  - Amount of crop m sold above the quota, t 

mx - Area allocated for crop m, acre 

my - Amount of crop m purchased on the market, t 
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Objective function in which costs are minimized 

   
1 2

, ,min pl pur sell sell h h sell l l

m m m m m m m m m m

m m m

c x c y c w c w c w
  

                           (3.48) 

The constraints to the model are described by equations (3.49)-(3.55). The total amount of crops 

planted is bounded by the total available area 

.m

m

x L


                                                                                                                        (3.49) 

Material balance ensuring that the amount of corn and wheat is sufficient to feed the cattle 

requirements 

m m m m mY x y w F    ,   
1.m                                                                                    (3.50) 

 

Material balance for the amount of sugar beets planted and sold 

h l

m m m mw w Y x   ,  
2.m                                                                                           (3.51) 

The amount of sugar beets sold at the favourable price is bounded by a quota 

h

m mw Q ,  2.m                                                                                                          (3.52) 

The first and second-stage variables are to be non-negative 

0mx  ,    ,m                                                                                                           (3.53)    

, 0m my w  ,   1,m                                                                                                    (3.54) 

, 0h l

m mw w  ,    2.m                                                                                                   (3.55)     

 

Formulations (S),  (NRS_IN), and (AARS_IN) can be found in Appendix B. The first-stage 

decision variables for this problem are the areas planned for each of the crops. The second-stage 

operational variables are the amounts of crops sold or purchased on the market. The objective 

function aims to minimize the costs associated with planting and purchasing the materials. 
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3.2.1.1 Results and Discussion – Uncertain Case A 

 

In this case, the amount of wheat and corn that is required for feeding cattle is uncertain; 

specifically, 
wheat 300 300F    t, 

corn 340 320F    t. In addition, the selling price of the sugar 

beets below the quota is changed to 27 $/t. Figure 3.4 depicts the uncertainty regions and 

subregions used for formulations (NRS_IN) and (AARS_IN) with 9 scenarios. 

 

 

 

 

 

 

Figure 3.4 Uncertainty region for uncertain case A 
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Here, the uncertainty region can be defined by   : M   


    , where the uncertain 

parameters are denoted by  
wheat

corn

F

F


 
  
 

, the nominal values are denoted by 
300

340


 
  
 

, 

1 0

0 1
M

 
  
 

, and 
300

320


 
  
 

.  

 

The uncertainty subregions are defined as   , , , , , ,:i i i i i iM        


    , where 

wheat,

,

corn, 

i

F

F








 

  
 

, 
wheat,

,

corn, 

i

F

F








 

  
 

, ,

1 0
,

0 1
iM  

 
  
 

, and , ,
wheat

i

corn




 



 
  
 

. As an 

example based on Figure 3.4, if 9 scenarios are used then 
wheat,

,

corn, 

,i

F

F








 

  
 

 the nominal values 

can be calculated by the midpoints of each subregion (e.g. ,'1'

100

126.5
i

 
  
 

if 1   refers to the 

bottom left subregion), ,

1 0
, 1,...,9

0 1
iM  

 
  
 

, and ,

100
, 1,..,9

106.67
i  

 
  
 

. 

 

Table 3.2 summarizes the results of expected value formulation (EV), scenario formulation (S), 

naïve robust scenario formulation (NRS_IN) (with uncertainty bounded by the infinity-norm), 

affinely adjustable robust scenario formulation (AARS_IN) (with uncertainty bounded by the 

infinity-norm). The results include formulation sizes, solution times, optimal decisions obtained 

(i.e., the crop area allocation results), predicted expected profit, and the achieved expected profit. 

The predicted expected profits are predicted by the formulation if the first-stage decisions are 

implemented. The achieved expected profits are the profits that can actually be achieved by 

implementation of the first-stage variables. To estimate the achieved expected profits, the 
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expected second-stage cost is approximated over a large number of uncertainty realizations. In 

this article, 99 realizations of each uncertain parameter were sampled for the estimation of the 

achieved expected profits for each case study. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.2 Solution results of the farm planning problem for uncertain case A 

 Formulation 
a
 

 EV S NRS_IN AARS_IN 

Number of Scenarios 1 9 9
 

9 

Number of Variables 12 60 60 366 

Number of Constraints 6 38 38 506 

Solution Time (s) 0.02 0.02 0.02 0.06 

Crop Area Allocation Result 

(acre) 
    

Wheat 120 200 240 240 

Corn 113 113 149 149 

Sugar Beets 267 187 111 111 

Predicted Expected Profit 
b
 ($) 30,600 25,933 - 9,400 25,733 

Achieved Expected Profit 
c
 ($) 20,700 24,833 25,733 25,733 

Note: 
a
 EV: Expected value formulation; S: Scenario formulation; NRS_IN: Naïve robust scenario 

formulation; AARS_IN: Affinely adjustable robust scenario formulation. 
b
 The predicted expected 

profit is the expected profit predicted by the formulation at its solution. 
c
 The achieved expected 

profit refers to the expected profit that can be achieved with the obtained area allocation, which is 

estimated by using 99
2
=9801 sampled scenarios.  
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It can be found that formulation (EV) obtains the lowest achieved expected profit, even though it 

predicts a much higher value. This formulation allocates most of the available area for sugar beets 

(which are most profitable) leaving wheat and corn areas that are just enough for the expected 

cattle feeding needs. Therefore, in the uncertainty realizations with higher cattle feeding needs, 

the farmer might have to purchase wheat and corn from the market at high prices, which can 

significantly reduce the overall expected profit. Formulation S considering 9 scenarios achieves a 

better expected profit, because it allocates more wheat area to hedge against higher cattle feeding 

needs. But it still overestimates the expected profit it can achieve (because of its incapability of 

considering all uncertainty realizations). The two robust scenario formulations (NRS_IN) and 

(AARS_IN) achieve the highest expected profit by allocating sufficient wheat and corn areas. In 

addition, formulation (AARS_IN) gives a perfect prediction of the expected profit, while 

formulation (NRS_IN) gives a poor prediction due to its inherent conservativeness. 

 

Although formulation (AARS_IN) provides the best performance, it leads to the largest problem 

size and longest required solution time with the same number of scenarios considered for each of 

the formulations. Therefore, it is beneficial to show whether formulation (S) or (NRS_IN) might 

achieve equivalently good performance with increased number of scenarios. The expected profits 

predicted and achieved are shown in Figures 3.5-3.7 for formulations (S), (NRS_IN), and 

(AARS_IN), respectively, using increased number of scenarios. 
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Figure 3.5. Predicted and achieved expected profits with formulation (S) 

 

In Figure 3.5, it can be seen that, as the number of scenarios increase, the expected profit 

predicted by formulation (S) approaches the achieved expected profit. These profits converge at 

$25,733 with 225 scenarios, and this profit is exactly the same as the predicted and achieved 

profits of the (AARS_IN) formulation with 9 scenarios. It should be noted that formulation (S) 

with 225 scenarios requires 1356 variables and 902 constraints, whereas formulation (AARS_IN) 

with 9 scenarios only involves 366 variables and 506 constraints. Thus, formulation (S) can 

achieve the same performance as formulation (AARS_IN) at the expense of solving a larger 

problem.  

 

Figure 3.6 displays that formulation (NRS_IN) achieves a consistently good expected 

performance, and its prediction of the expected profits improves as the number of scenarios 

increases. But due to its conservative nature, the profits still do not converge with 1000 scenarios.  
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Figure 3.6. Predicted and achieved expected profits with formulation (NRS_IN) 

 

 

 

 

Figure 3.7. Predicted and achieved expected profits with formulation (AARS_IN) 
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Figure 3.7 shows that formulation (AARS_IN) provides consistently good predicted and achieved 

expected profits as the number of scenarios increase.  

 

3.2.1.2 Results and Discussion – Uncertain Case B 

 

In this case, the yields of the crops are uncertain and range between 20%  of their nominal 

values; specifically, 
wheat 2.5 0.5Y   t/acre, 

corn 3.0 0.6Y   t/acre, 
sugar beets 20 4Y    t/acre. 

Wheat and corn can no longer be purchased on the market, so there may be insufficient wheat or 

corn to feed cattle if the yield of wheat or corn is lower than anticipated. In addition, the allocated 

planting areas of crops need to be multiples of 5 acres, so an allocation decision is modelled in 

the optimization as 5 acres times an integer variable. The uncertainty region can be defined by 

  : M   


    , where the uncertain parameters are denoted by  ,

wheat

corn

sugar beets

Y

Y

Y



 
 

  
 
 

 

the nominal values are denoted by 

2.5

3.0

20



 
 


 
 
 

, 

1 0 0

0 1 0

0 0 1

M

 
 


 
  

, and 

0.5

0.6

4



 
 


 
 
 

. The 

uncertainty subregions can be defined by the approach shown in section 3.2.1.1. 

 

Table 3.3 summarizes the results of the different formulations for uncertain case B. Formulation 

(EV) leads to an infeasible area allocation. Formulation (S) leads to infeasible result as well when 

27 scenarios are considered, and it achieves a feasible result (which is also optimal) when the 

number of scenarios considered increases to 12,167. Formulations (NRS_IN) and (AARS_IN) 

achieve the optimal result with 27 scenarios, while formulation (NRS_IN) gives a poor 

prediction. As in Uncertain Case A, formulation (S) here needs to solve a larger problem to 
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achieve the same performance to formulation (AARS_IN); and in this case, solution time for S 

several orders of magnitude larger than that of formulation (AARS_IN).  

 

 

 

 

 

 

 

 

 

 

Table 3.3 Solution results of the farm planning problem for uncertain case B 

 Formulation 
a
 

 EV S NRS_IN AARS_IN 

Number of Scenarios 1 27  12,167 
e
 27 27 

Number of Variables 
b
 3/10 3/114 3/48,674 3/168 3/816 

Number of Constraints 6 110 48,670 110 1,946 

Solution Time (s) 0.03 0.03 109.86 0.05 0.06 

Crop Area Allocation Result (acres)      

Wheat 120 140 150 150 150 

Corn 115 135 145 145 145 

Sugar Beets 265 225 205 205 205 

Predicted Expected Profit ($) 
c
 78,200 69,700 65,450 47,010                65,450 

Achieved Expected Profit  ($) 
d
  Infeasible Infeasible 65,450 65,450 65,450 

Note: 
a
 EV: Expected value formulation; S: Scenario formulation; NRS_IN: Naïve robust scenario 

formulation; AARS_IN: Affinely adjustable robust scenario formulation. 
b
 Number of integer 

variables/Number of continuous variables. 
c
 The predicted expected profit is the expected profit 

predicted by the formulation at its solution. 
d
 The achieved expected profit refers to the expected 

profit that can be achieved with the obtained area allocation, which is estimated by using 99
2
=9801 

sampled scenarios. 
e
 The scenario formulation keeps generating infeasible allocation results until the 

number of scenarios is increased to 23
3
=12,167. 
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3.2.2 Case Study 2 – Energy and Bioproduct Supply Chain 

 

The energy and bioproduct supply chain optimization problem is adapted from Čuček et al. 

(2010). The supply chain network involves four layers. At layer 1, different biomass materials are 

harvested from 10 supply zones and then sent to up to six preprocessing centres. At layer 2, the 

materials go through different preprocessing procedures (e.g., drying, compaction and collection) 

in the preprocessing centres and are then sent to up to three main plants. At layer 3, materials are 

converted into different final products at the main processing plants. A number of technologies 

are available for the main processing. At layer 4, the final products are shipped to three demand 

locations, including two local cities, denoted by j1 and j2, and one export location, denoted by j3. 

The superstructure of the supply chain network is shown in Figure 3.8. The dashed line denotes a 

railway that joins the preprocessing centres with the processing plants. The export location j3 is 

located in the north of the region shown in the figure. 

 

 

 

 

 

Figure 3.8. Superstructure of the energy and bioproduct supply chain network 
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The goal of the strategic SCO problem is to determine the optimal configuration of the supply 

chain network and the technologies used in the processing plants, such that the total profit is 

maximized and the customer demands at the three demand locations are satisfied. The first-stage 

decisions are whether or not specific units or technologies are to be included in the supply chain, 

and are represented by binary variables in the optimization. The second-stage decisions are 

material or product flows that determine the operation of the supply chain, and are represented by 

continuous variables in the optimization.  

 

The deterministic formulation for the energy and bioproduct supply chain problem is described 

below. The list of nomenclature for the problem are provided in Table 3.4.  
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Table 3.4 Nomenclature for the energy and bioproduct supply chain problem 

   Sets and Subsets 

I - supply zones, I = {i1,…,i10} 

J - Demand locations, J = {j1, j2, j3} 

J
o
 - Subset for local demand locations, J

o
 = {j1, j2} 

J
e
 - Subset for export location, J

e
 = {j3} 

M - Preprocessing centres, M = {m1,…,m6} 

N - Process plants, N = {n1, n2, n3} 

PI - Set of raw materials, PI = {corn, corn-stover, wood chips, MSW, manure, timber} 

PP - Set of produced products, PP = {electricity, heat, bioethanol, digestate, DDGS, 

boards} 

PT - Pairs of intermediated products and technologies, PT = {(corn, dry grind), (corn 

stover, digestion), (corn stover, incineration), (wood chips, incineration), (MSW, incineration), 

(manure, incineration), (manure, digestion), (timber, sawing)} 

PIPT - Groups of intermediate products, their produced products and related 

technology, PIPT = {(Corn, bioethanol, dry grind), (Corn, DDGS, dry grind), (Corn stover, 

digestate, digestion), (Corn stover, electricity, incineration), (Corn stover, heat, incineration), 

(wood chips, electricity, incineration), (wood chips, heat, incineration), (MSW, electricity, 

incineration), (MSW, heat, incineration), (manure, digestate, digestion), (manure, electricity, 

digestion), (manure, heat, digestion), (timber, boards, sawing)} 

T - Technology options, T = {dry grind, digestion, sawing, incineration} 

   Superscripts 

conv – conversion 

fix – fixed part of investment costs 

inv – investment costs 

L1 – harvesting layer 

L2 – preprocessing layer 

L3 – main processing layer 

L4 – demand layer 

LO – lower bound 

op – operating costs 

price – price of products 

road – road conditions 

tr – transportation 

UP – upper bound 

var – variable part of investment costs 

   Indices 

i – supply zones 

j – demand locations 

j
o
 – local level 

j
e
 – export level 

m – preprocessing centres 

n – main processing plants 

pi – raw materials 

pp – produced products 

t – technology options 

   Parameters 

,i piA  – available area of material, km
2 

, 2op L

pic  – operating costs of material in preprocessing centre, €/t 
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, 3

,

op L

pi tc  – operating costs of material in main plant, €/t 

, , 2fix inv Lc  – fixed investment costs of preprocessing centre, €/y 
, , 3fix inv L

tc   – fixed investment costs of main plant technology, €/y 

var, , 3inv L

tc   – variable investment costs of main plant technology, €/t 

price

ppc   – price of produced product, €/t or €/MWh or €/MJ 

pic  – cost of raw material, €/t 

, ,tr La Lb

pc   – cost coefficient for transportation from layer a to layer b, €/(t·km) 

,

,

La Lb

x yD   – distance between object x in layer a and object y in layer b, km 

,

LO

j ppDem  – lower bound of product demand, t/y or MWh/y or MJ/y 

,

UP

j ppDem   – upper bound of product demand, t/y or MWh/y or MJ/y 

, 2conv L

pif  – conversion factor through preprocessing centre 

, 3

, ,

conv L

pi pp tf   – conversion factor through main plant 

, ,

,

road La Lb

x yf   – road condition factor of object x in layer a and object y in layer b 

piHY  – yield of raw material, t/(t·km) 

2,L UPq   – overall capacity of preprocessing centres, t/y 

1, 2,L L UP

piq  – capacity of preprocessing centres for each raw material, t/y 

3,L UP

tq  – capacity of technology t, t/y 

   Continuous Variables 
trc  – total transportation costs, €/y 
opc   – total operating costs, €/y 
invc   – total investment costs, €/y 

1

,

L

i piq  – rate of raw material harvesting, t/y 

1, 2

, ,

L L

i m piq   – rate of material entering preprocessing centre, t/y 

2, 3

, ,

L L

m n piq   – rate of material exiting the preprocessing centre, t/y 

2, 3

, ,

L L

n pi tq  – rate of material sent to technology option, t/y 

2, 3

, , ,

L L

m pi pp tq  – rate of product production, t/y 

3, 4

, ,

L L

n j ppq   – rate of product sent to demand location, t/y 

   Binary Variables 

2L

my  – selection or rejection of preprocessing centres 

3

,

L

n ty  – selection or rejection of main plants 
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Equation (3.59) describes the objective function in which total profits are to be maximized 

 L3,L4 price L3,L4 price

, ,  , , 

L1 tr op inv

,

Objective Revenue Total Costs

  0.9

         

o e

o e

pp ppn j pp n j pp
n N pp PP n N pp PPj J j J

i pi pi

i I pi PI

q c q c

q c c c c

    

 

 

  



 

   

   



                                    (3.59) 

where 0.9 represents the discount factor for selling products at the export location j3. 

 

The total transportation cost considering distance and road conditions is 

tr L1,L2 road,L1,L2 tr,L1,L2 L1,L2

, , , ,

L2,L3 road,L2,L3 tr,L2,L3 L2,L3

, , , ,

L3,L4 road,L3,L4 tr,L3,L4 L3,L4

, , , , .

i m i m pi i m pi

i I m M pi PI

m n m n pi m n pi

m M n N pi PI

n j n j pp n j pp

n N j J pp PP

c D f c q

D f c q

D f c q

  

  

  

  

  

  







 



 

                                                      (3.60) 

The total operating cost for preprocessing centres and processing plants is 

op op,L2 L1,L2 op,L3 L2,L3

, , , , ,

( , )

,pi i m pi pi t n pi t

i I m M pi PI n N pi t PT

c c q c q
    

                                                  (3.61) 

and the total investment cost for the preprocessing centres and processing plants is  

inv fix,inv,L2 L2 fix,inv,L3 L3 var,inv,L3 L2,L3

, , ,

( , )

.m t n t t n pi t

m M n N t T pi t PT

c c y c y c q
   

 
    





                    (3.62) 

It should be noted that 
var,inv,L3 L2,L3

, ,

( , )

t n pi t

pi t PT

c q


  denotes total variable investment cost that is 

dependent on material flow rate. 

 

The amount of each biomass material that can be harvested at each supply zone is subject to the 

capacity of that supply zone, 

L1

, , ,i pi pi i piq HY A     , ,pi PI i I        
                                                               (3.63)    
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and the mass balance for the materials harvested and sent out for preprocessing is 

L1 L1,L2

, , , , i pi i m pi

m M

q q


      , .pi PI i I                                                                        (3.64)                                                                  

The material flows going through the preprocessing centres are subject to preprocessing 

capacities as  

L1,L2 L1,L2,UP L2

, , , i m pi pi m

i I

q q y


     ,  ,m M pi PI                                                        (3.65)                                                                               

L1,L2 L2,UP L2

, , , i m pi m

i I pi PI

q q y
 

    ,m M    
                                                                 (3.66)                                              

 

and the inlet and outlet material flows of the preprocessing centres are subject to the following 

mass balance that taking into account the loss of mass in the preprocessing, 

L1,L2 conv,L2 L2,L3

, , , , ,  i m pi pi m n pi

i I n N

q f q
 

   ,  .m M pi PI                                                 (3.67) 

The materials sent into the main processing plants are processed using different technologies, 

L2,L3 L2,L3

, , , ,

( , )

,m n pi n pi t

m M pi t PT

q q
 

       ,  ,n N pi PI                                                          (3.68)                                                                         

and the processing is subject to the capacities of the technologies, 

L2,L3 L3,UP L3

, , ,

( , )

, n pi t t n t

pi t PT

q q y


       , .n N t T                                                              (3.69)                                                       

The materials are converted into the products in the processing plants at specific conversion rates,  

L2,L3 conv,L3 L2,L3

, , , , , , , ,  n pi t pi pp t n pi pp tq f q   , ( , , ) .n N pi pp t PIPT                                          (3.70)                                         

The final products sent to demand locations are limited by the products generated in the 

processing center,   

L2,L3 L3,L4

, , , , ,

( , , )

,n pi pp t n j pp

pi pp t PIPT j J

q q
 

     , ,n N pp PP                                                     (3.71)    
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and it is also bounded by a certain amount of customer demands it has to satisfy (i.e., contracted 

demands) as well as the capacity of the market at the demand locations,  

LO L3,L4 UP

, , , , ,  j pp n j pp j pp

n N

Dem q Dem


    ,  .j J pp PP                                               (3.72)                                               

 

 

 

The overall optimization model can be expressed as 

               maximize Objective 

               subject to  Constraints (3.63)-(3.72), 

                                 All continuous variables are non-negative. 

 

Formulations (S), (NRS_IN), and (AARS_IN) can be found in the Appendix C. The parameter 

values used for the following cases are shown in Appendix D. 

 

3.2.2.1 Results and Discussion – Uncertain Case A 

 

 

In this case, the upper demand limits for electricity and the yield of corn stover are assumed to be 

uncertain; specifically, 
UP

,electricity 200,000 150,000jDem    MWh and corn stover 840 300HY  

2t/(km y) . In addition, the capacity of incineration in the processing plants is 

L

incineration

3,UP 390,000q   t/year. Here, the uncertainty region can be defined by 

  : M   


    , where the uncertain parameters are denoted by  
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UP

,electricity

corn stover

jDem

HY


 
  
 

, the nominal values are denoted by 
200,000

840


 
  
 

, 
1 0

0 1
M

 
  
 

, and 

150,000

300


 
  
 

.  

 

 

The uncertainty subregions are defined as   , , , , , ,:i i i i i iM        


    , where 

UP

,electricity,

corn stove

,

r,

i

jDem

HY 




 

   
 

, 

UP

,electricity,

corn stove

,

r,

i

jDem

HY 






 
 
 
 

, ,

1 0
,

0 1
iM  

 
  
 

, and 

, ,
electricity

i

corn stover




 



 
  
 

. 

 

 

Table 3.5 summarizes the results of each formulation. Whereas all of the formulations lead to 

feasible configurations of the supply chain network, the expected profits achieved by 

formulations (S), (NRS_IN) and (AARS_IN) are more than 15% better than the one achieved by 

formulation (EV). In addition, formulation (S) overestimates the expected profit because of its 

incomplete consideration of uncertainty, while formulations (NRS_IN) and (AARS_IN) 

underestimate the expected profit because of their inherent conservativeness. 
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Table 3.5 Solution results of the energy and bioproduct problem for uncertain case A 

 Formulation 
a
 

 EV S NRS_IN AARS_IN 

Number of Scenarios 1 25 25 25 

Number of Variables 
b
 18/670 18/16,078 18/16,078 18/59,428 

Number of Constraints 376 9,088 9,088 84,013 

Solution Time (s) 0.16 4.02 4.85 2,420.25 

Preprocessing Centres to be 

Developed 
1, 2, 4, 5, 6 1, 2, 4, 5, 6 1, 2, 3, 4, 5, 6 1, 2, 4, 5, 6 

Processing Technologies to be 

Applied 
c
 

    

Drygrind 1, 3 1, 3 1, 3 1, 3 

Digestion 1  1  

Incineration 1 1, 3  1, 3 1, 3 

Sawing 3 3 3 3 

Predicted Expected Profits 
d
 

(million $) 
78.66  76.23 65.29  75.08 

Achieved Expected Profits 
e
 

(million $) 
65.77 76.00 75.98 76.00 

Note: 
a
 EV: Expected value formulation; S: Scenario formulation; NRS_IN: Naïve robust scenario 

formulation; AARS_IN: Affinely adjustable robust scenario formulation. 
b
 Number of binary 

variables/Number of continuous variables. 
c
 Processing technology – Processing plant. 

d
 The 

predicted expected profit is the expected profit predicted by the formulation at its solution. 
e
 The 

achieved expected profit refers to the expected profit that can be achieved with the obtained area 

allocation, which is estimated by using 99
2
=9801 sampled scenarios. 

 

 

3.2.2.2 Results and Discussion – Uncertain Case B 

 

In this case, both the lower and upper demand limits for electricity are assumed to be uncertain; 

specifically, 
LO

,electricity 90,000 56,000jDem    
UP

,electricityjDem  500,000 10,000 MWh, and  

MWh. In addition, the capacity of incineration in the processing plants is 
L

incineration

3,UP 290,000q    

t/year. Here, the uncertainty region can be defined by   : M   


    , where the 
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uncertain parameters are denoted by  

LO

,electricity

UP

,electricity

j

j

Dem

Dem


 
 
 
 

, the nominal values are denoted by 

90,000

500,000


 
  
 

,  
1 0

0 1
M

 
  
 

, and 
56,000

10,000


 
  
 

. The uncertainty subregions can be defined 

by the approach shown in section 3.2.2.1. 

 

Table 3.6 summarizes the results of each formulation. It can be seen that formulation (EV) and 

formulation (S) with 25 scenarios lead to infeasible supply chain configurations, whereas 

formulations (NRS_IN) and (AARS_IN) lead to a feasible and optimal supply chain 

configuration. Although it is featured with high conservativeness, formulation (NRS_IN) even 

gives a very good prediction of the expected profit in this case. The key difference between the 

two supply chain configurations is the number of plants that are equipped with incineration 

technology (for electric power generation). The infeasible configuration only has incineration in 

processing plant 2, and the optimal configuration has incineration in both processing plant 1 and 

3. When the number of scenarios addressed increased to 2809, formulation (S) results in the 

optimal configuration; but this solution is obtained through a very large scale MILP problem, 

which requires more than 46 hours. Thus formulation S is outperformed by formulation 

(AARS_IN), which requires less than one hour to obtain the optimal configuration.  

 

 

 

 

 

 

 



 

56 

 

Table 3.6 Solution results of the energy and bioproduct problem for uncertain case B 

 Formulation 
a
 

 EV S NRS_IN AARS_IN 

Number of Scenarios 1 25 2809
f
 25 25 

Number of Variables 
b
 18/670 18/16,078 18/1,803,406 18/16,078 18/59,428 

Number of Constraints 376 9,088 1,019,680 9,088 84,013 

Solution Time (s) 0.17 21.80 166,890.05 13.75 2,245.73 

Preprocessing Centres to 

be Developed 
1, 2, 3, 4, 6 1, 2, 3, 4, 6 1, 2, 3, 5, 6 1, 2, 3, 5, 6 1, 2, 3, 5, 6 

Processing Technologies 

to be Applied 
c
 

     

Drygrind 2 2 2 2 2 

Digestion 1 1 1 2 1 

Incineration 2 2 1, 3 1, 3 1, 3 

Sawing 3 3 3 3 3 

Predicted Expected 

Profits 
d
  

(million $)  

57.01 57.01 57.01 56.80 57.01 

Achieved Expected 

Profits 
e
  

(million $) 

Infeasible Infeasible 57.01 57.01 57.01 

Note: 
a
 EV: Expected value formulation; S: Scenario formulation; NRS_IN: Naïve robust scenario 

formulation; AARS_IN: Affinely adjustable robust scenario formulation. 
b
 Number of binary 

variables/Number of continuous variables. 
c
 Technology – Processing plant. 

d
 The predicted expected 

profit is the expected profit predicted by the formulation at its solution. 
e
 The achieved expected 

profit refers to the expected profit that can be achieved with the obtained area allocation, which is 

estimated by using 99
2
=9801 sampled scenarios. 

f
 The scenario formulation (S) keeps generating 

infeasible planning results until the number of scenarios is increased to 53
2
=2,809. 

 

3.2.2.3 Results and Discussion – Uncertain Case C 

 

In this case, both the lower demand limit for electricity and the yield of corn stover are assumed 

to be uncertain; specifically, 
LO

,electricity 80,000 18,000jDem    MWh and 

corn stover 840 300HY   2t/(km y)  . In addition, the capacity of incineration in the processing 

plants is 
L

incineration

3,UP 500,000q   t/year. These parameters were selected such that no feasible 

configuration exists for the given superstructure of the supply chain network, as the purpose is to 
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investigate whether the optimization formulations can identify the infeasibility. Here, the 

uncertainty region can be defined by   : M   


    , where the uncertain 

parameters are denoted by  

LO

,electricity

corn stover

jDem

HY


 
  
 
 

, the nominal values are denoted by 

80,000

840


 
  
 

, 
1 0

0 1
M

 
  
 

, and 
18,000

300


 
  
 

. The uncertainty subregions can be defined 

by the approach shown in section 3.2.2.1. 

 

 

Table 3.7 summarizes the results of each formulation. It can be seen that formulations (NRS_IN) 

and (AARS_IN) with 9 scenarios indicate the infeasibility of the problem within low computing 

times. Formulation (EV) and formulation (S) do not identify the infeasibility and report infeasible 

configurations as a solution. Formulation (S) does not report infeasibility even when it addresses 

2500 uncertainty realizations (which requires almost 17 hours to solve). This result demonstrates 

that when a feasible solution does not exist, formulations (NRS_IN) and (AARS_IN) can report 

infeasibility efficiently and effectively. 
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Table 3.7 Solution results of the energy and bioproduct problem for uncertain case C 

 Formulation 
a
 

 EV S NRS_IN AARS_IN 

Number of Scenarios 1 9 2500 9 9 

Number of Variables 
b
 18/670 18/5,806 18/1,605,028 18/5,806 18/21,412 

Number of Constraints 376 3,280 907,513 3,280 30,301 

Solution Time (s) 0.16 2.99 61,044.77 0.13 113.01 

Preprocessing Centres to be 

Developed 
1, 2, 3, 4, 6 1, 2, 3, 4, 6 1, 2, 3, 4, 6 - - 

Processing Technologies to 

be Applied 
c
 

     

Drygrind 2 2 2 - - 

Digestion 1 1 1   

Incineration 2 2 2   

Sawing 3 3 3   

Predicted Expected Profits  
d
 

(million $) 
57.98 57.98 57.98 

Infeasibility 

indicated 

Infeasibility 

indicated 

Achieved Expected Profits 
e
 

(million $) 
Infeasible Infeasible Infeasible - - 

Note: 
a
 EV: Expected value formulation; S: Scenario formulation; NRS_IN: Naïve robust scenario 

formulation; AARS_IN: Affinely adjustable robust scenario formulation. 
b
 Number of binary 

variables/Number of continuous variables. 
c
 Technology – Processing plant. 

d
 The predicted expected 

profit is the expected profit predicted by the formulation at its solution. 
e
 The achieved expected 

profit refers to the expected profit that can be achieved with the obtained area allocation, which is 

estimated by using 99
2
=9801 sampled scenarios 

 

In this chapter, the classical scenario approach, which commonly provides good optimality and 

the robust approach, which can guarantee feasibility of a problem (if a feasible solution exists) are 

combined to develop hybrid formulations. Two robust scenario formulations were generated, 

namely the naïve robust scenario formulation and the affinely adjustable robust formulation. The 

formulations were then applied to a farm planning problem and an energy and bioproduct supply 

chain optimization problem. The results demonstrate that the proposed formulations can 

effectively avoid infeasibility of the problem or report infeasibility for a situation when no 

feasible solution exists. They also outperform the classical scenario approach by generating the 

optimal solutions in a smaller number of scenarios and shorter solution times.  
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Chapter 4 

Optimization of an Industrial Chemical Supply Chain 

 

In this chapter, a case study at the industrial level is considered. With collaboration and data 

provided from DuPont, the mathematical optimization model is derived for an industrial chemical 

supply chain problem. The derivation of the model is shown in section 4.1. Next in section 4.2, 

the goal is to again show the benefits of formulation (AARS_IN), but for the more complex and 

realistic problem. Formulation (NRS_IN) is not considered for this case study problem, since its 

results from the previous chapter were too conservative. Since formulation (AARS_IN) can better 

address uncertainties, formulation (NRS_IN) can be neglected at this stage. 

 

 

4.1 The Industrial Chemical Supply Chain  

 

The supply chain case study problem is formulated from data provided by DuPont. The supply 

chain involves 55 grades of Primary Raw Material (PRM) which when purchased, can either be 

transported to the PRM warehouse or to any of the 5 on-site PRM warehouses. From the on-site 

warehouses, the raw material is then processed in one of the 5 production plants and then sent to 

the on-site final product warehouses. The final products (FP), which are classified under one of 

the appropriate 23 possible FP grades, can be transported to regional warehouses for additional 

storage or to the 5 regional markets to be sold to the end users. The superstructure of the supply 

chain problem is shown in Figure 4.1. 

 

The goal of this industrial strategic SCO problem is to determine the capacities for each of the 

plants iz , such that the total profits are maximized and the customer demands at the 5 regional 
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markets are satisfied. Final product demands at each of the regional markets are the uncertain 

parameters considered for this case study. Capacities at the plants are the first-stage decision 

variables and are represented by continuous variables in the optimization. The second-stage 

variables are the raw material or product flows that determine the operation of the supply chain, 

and are also represented by continuous variables in the optimization.  

 

 

 

 

 

Figure 4.1. Diagram of the industrial chemical supply chain network. 

 

The variables and parameters for this model are listed in Table 4.1. Following, the deterministic 

optimization model is given. 
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Table 4.1 Nomenclature for the industrial chemical supply chain problem 
  Indices and Sets 

i   I = {1,…,5} - Plants 

j   J = {1,…,5} - Regional warehouses 

k   K = {1,…,5} - Regional markets 

n   N – Time periods 

nu   NU – Number of uncertain parameters 

s   S – Scenarios 

u   U = {1,…,55} - PRM grades 

v   V = {1,…,23} - FP grades 

w   W = {1,…,41} – Impurities 

( , )i j  - FP shipment routes for plants to regional warehouses 

( , )i k   - FP shipment routes for plants to regional markets 

( , )i v  - FP grades available for production at plant i  

( , )j k  - FP shipment routes for regional warehouses to regional markets 

   Parameters 
avg,FP

ia - Average additive factor for plant i 

td

ib  - Intercept related to minimum turndown for 

plant i 
wl

ib  - Intercept related to waste limit for plant i 

penC - Penalty cost for not meeting demand 

requirements, $/t 
capC - Capacity cost, $/t 
fix

iC - Fixed cost for plant i, $MM 

var

iC - Other variable costs for plant i, $/t 

fr,FP,PD

,i kC - Freight cost of FP from plant i to market 

k, $/t 
fr,FP,PW

,i jC - Freight cost of FP from plant i to 

regional warehouse j, $/t 
fr,FP,WD

,j kC - Freight cost of FP from regional 

warehouse j to market k, $/t 
PI

iC - Plant i on-site inventory cost, $/t 

WI

jC - Regional warehouse j inventory cost, $/t 

PRM

,i uC - Cost of PRM grade u for plant i, $/t 

RM2

iC - Cost of RM2 for plant i, $/t 

RM3

iC - Cost of RM3 for plant i, $/t 

waste

iC - Cost of waste for plant i, $/t 

FP

,i vD - Demand of FP grade v at plant i, t 

FP

,j vD - Demand of FP grade v at regional warehouse 

j, t 
min

,v kD - Minimum demand of FP grade v from at 

FP

,k vP - Price of FP grade v for market k, $/t 

FP

,
ˆ

j vP - Estimated price of FP grade v for regional 

warehouse j, $/t 
RM2

,i uq - RM2 to PRM grade u ratio for plant i, QPU 

RM3

,i uq - RM3 to PRM grade u ratio for plant i, QPU 

waste

uq - Waste to PRM grade u ratio, % 

imp

,u wq - Impurity w content in PRM grade u, % 

fr,PW

,i jq - Proportion of FP shipped from plant i to the 

regional warehouse j, % 
imp

,i wQ - Maximum impurity w limit for PRM at plant 

i, % or PPM 
imp

iQ - Maximum limit for total blend at plant i, %  

inc

ir - Income tax rate for plant i, % 

du

,i kr - Duty rate for shipments from plant i to market 

k, % 
du

,î jr - Estimated duty rate for shipments from plant i 

to regional warehouse j, % 
tpr - Transfer price rate, % 
FP

,i vR - Target inventory day supply of FP grade v for 

plant i, day 
FP

,j vR - Target inventory day supply of FP grade v for 

regional warehouse j, day 
PRM,P

,i uR - Target inventory of PRM grade u for plant 

i, t 
PRM,W

uR - Target inventory of PRM grade u for the 
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market k, t 
PRM

uE - Effective percentage in PRM grade u, for 

generating FP, % 
td

im - Slope related to minimum turndown for plant i 

wl

im - Slope related to waste limit for plant i 

PRM

uM - PRM grade u availability, t 

iO  - Scheduled outage at plant i, d/y 

PRM warehouse, t 

iU  - Uptime for plant i, % 

FP

,i vX - Beginning inventory of FP grade v at plant i, 

t 
FP

,j vX  - Beginning inventory of FP grade v at 

regional warehouse j, t 
PRM,P

,i uX - Beginning inventory of PRM grade u at 

plant i, t 
PRM,W

uX - Beginning inventory of PRM grade u at 

the PRM warehouse, t 
FP

iY - Yield of FP at plant i, % 

max

iZ - Maximum allowable capacity at plant i, t 

   Variables 
fr

ic  - Freight cost for plant i, $ 

du

ic  - Duty cost for plant i, $ 

I

ic  - Inventory cost for plant i, $ 

PRM

ic  - PRM cost for plant i, $ 

RM2

ic  - RM2 cost for plant i, $ 

RM3

ic - RM3 cost for plant i, $ 

waste

ic  - Waste cost for plant i, $ 

OPVC

ic  - Other plant i variable costs, $ 

cap

ic - Capacity cost for plant i, $ 

pen

,v kc - Penalty cost of FP grade v at market k, $ 

FP,PD

, ,i k vf - Shipment of FP grade v from plant i to market k, t 

FP,PW

, ,i j vf - Shipment of FP grade v from plant i to regional warehouse j, t 

FP,WD

, ,j k vf - Shipment of FP grade v from regional warehouse j to market k, t 

PRM,c

,i uf - PRM grade u consumed at plant i, t 

PRM,P

,i uf - PRM grade u purchased and sent to plant i, t 

PRM,W

uf - PRM grade u purchased and sent to the PRM warehouse, t 

PRM,WP

,i uf - Shipments of PRM grade u from the PRM warehouse to plant i, t 

FP,p

,i vf - Amount of FP grade v produced from plant i, t 

,v ky - Slack variable to penalize demand not satisfied of grade v at location k, t 

iz - Capacity of plant i, t 
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The total profit objective function to be maximized is 

   incmax Revenue TC 1i i i

i I

r


  
                                                                            (4.1) 

Revenue is calculated at each plant i, based on the FP flow rates from the plants to the regional 

markets and the FP flow rates from the plants to the regional warehouses 

   FP,PD FP FP,PW FP

, , , , , ,

( , ) ( , )

ˆRevenue  = , .i i k v k v i j v j v

i k v V i j v V

f P f P i I
   

                                 (4.2) 

The individual cost terms featured in the objective function are summed 

fix cap fr du I PRM RM2 RM3 waste OPVCTC  = , .i i i i i i i i i i ic c c c c c c c c c i I                    (4.3) 

Capacity costs are considered at each of the plants 

cap cap , .i ic z C i I                                                                                             (4.4) 

Freight costs are calculated based on the FP flow rates from the plants to regional warehouses, 

plants to regional markets, and from the regional warehouses to the regional markets 

   

 

fr FP,PD fr,FP,PD FP,PW fr,FP,PW

, , , , , ,

( , ) ( , )

FP,WD fr,FP,WD fr,PW

, , , ,

( , ) ( , )

, .

i i k v i k i j v i j

i k v V i j v V

j k v j k i j

i j j k v V

c f C f C

f C q i I

   

  

   

   

   

  
                                   (4.5) 

Duty costs are calculated by subjecting the amount of final products produced by duty rates and a 

transfer price rate 

   du tp FP,PD FP du FP,PW FP du

, , , , , , , ,

( , ) ( , )

ˆ ˆ , .i i k v k v i k i j v j v i j

i k v V i j v V

c r f P r f P r i I
   

 
        

 
               (4.6) 

Inventory costs are equated at the on-site plant warehouses and the regional warehouses for the 

storage of final products 

   I FP,p PI FP,PW WI

, , ,

( , ) ( , )

, .i i v i i j v j

i v i j v V

c f C f C i I
  

                                                    (4.7) 
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Equations (4.9)-(4.13) calculate the costs of PRM, Raw Material 2, Raw Material 3, waste and 

other pant variable costs, respectively at each of the plants 

 PRM PRM,c PRM

, , , ,i i u i u

u U

c f C i I


                                                                                 (4.8) 

 RM2 PRM,c RM2 RM2

, , , ,i i u i u i

u U

c f q C i I


                                                                       (4.9) 

 RM3 PRM,c RM3 RM3

, , , ,i i u i u i

u U

c f q C i I


                                                                        (4.10) 

 waste PRM,c waste waste

, , ,i i u u i

u U

c f q C i I


                                                                      (4.11) 

 OPVC var FP,p

,

( , )

, .i i i v

i v

c C f i I


 
   

 
                                                                          (4.12) 

Equations (4.14)-(4.26) describe the constraints for the supply chain problem. 

The amount of each grade of PRM consumed is subject to a turndown limit at each plant 

  

  

FP,p

,PRM,c td td

, ,
( , ) / 24 / 365 / 365

24 365 365 / 365 , .

i v

i u i iavg FP
u U i v i i i

i i

f
f m b

a O U

O U i I

 

   
     

       

     

 
               (4.13) 

The amount of each grade of PRM consumed is subject to a waste limit at each plant 

  

  

FP,p

,PRM,c wl wl

, ,
( , ) / 24 / 365 / 365

24 365 365 / 365 / , .

i v

i u i iavg FP
u U i v i i i

i i i i

f
f m b

a O U

O U y y i I

 

   
     

       

      

 
               (4.14) 

Material balance relationship between the FP capability from PRM consumption and FP 

production is 

   PRM,c PRM avg,FP FP FP,p

, ,

( , )

, .i u u i i i v

u U i v

f E a Y f i I
 

                                                (4.15) 

The ending FP inventory at the plants is subject to a target inventory limit 
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    FP,PW FP,PD FP FP,p FP FP

, , , , , , , ,

( , ) ( , )

/ 365, ( , ) .i j v i k v i v i v i v i v

i j i k

f f X f D R i v
 

                 (4.16) 

The ending FP inventory at the regional warehouses is subject to a target inventory limit 

   FP,WD FP FP,PW FP FP

, , , , , , ,

( , )

/ 365, , .j k v j v i j v j v j v

j k i I

f X f D R j J v V
 

                           (4.17) 

Constraints (4.18) and (4.19) show that the amount of impurity w within the PRM consumed at 

plant i must be less than the impurity limit of the PRM consumption for each individual impurity 

(4.18) and for the total product mix (4.19) 

   PRM,c imp PRM,c imp

, , , , , , ,i u u w i u i w

u U u U

f q f Q i I w W
 

                                                 (4.18) 

     PRM,c PRM PRM,c imp

, , , .i u u i u i

u U u U

f E f Q i I
 

                                                           (4.19) 

The PRM purchased and sent to the plants and PRM warehouse must be less than the PRM 

availability 

 PRM,P PRM,W PRM

, , .i u u u

i I

f f M u U


                                                                   (4.20) 

PRM ending inventory at the PRM warehouse must be greater than the target inventory  

 PRM,W PRM,W PRM,W PRM,WP

, 0, .u u u i u

i I

X R f f u U


                                           (4.21) 

PRM ending inventory at each of the plants must be greater than the target inventory 

PRM,c PRM,P PRM,P PRM,WP PRM,P

, , , , , , , .i u i u i u i u i uf X f f R i I u U                                       (4.22) 

FP shipped to customers at the regional markets must meet the demand requirements in place at 

each location and for each FP grade 

FP,PD FP,WD min

, , , , ,

( , ) ( , )

, , .i k v j k v v k

i k j k

f f D k K v V
 

                                                      (4.23) 
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The determined capacity, which is the first-stage decision variable must be lower than the 

maximum allowable capacity limit 

max , .i iz Z i I                                                                                                       (4.24) 

Production of FP at each of the production plants must be lower than the determined capacity 

FP,p

,

( , )

, .i v i

i v

f z i I


                                                                                                (4.25) 

Formulations (S) and (AARS_IN) are provided within the Appendix E. The parameter values 

used for the case study are listed in Appendix F. 

4.2 Case Studies 

 

As was the case in Chapter 3, the uncertain parameters are assumed to be independently and 

uniformly distributed. The same method is again used in constructing the scenarios for the 

formulations. The case study problem was modeled using GAMS 23.9.2, and solved on a 

machine with 3.40 GHz CPU and Linux operating system using CPLEX 12.4.  A relative 

termination criterion of 10
-4

 was used for all the problems. 

4.2.1 Results and Discussion – Uncertain Case A 

 

In this case, the lower demand limits at the regional markets are used as the uncertain parameters, 

and have nominal values represented by 
min ( )

,

a

v kD  which are shown in Appendix D. The ranges of 

±40% for locations 1, 2 and 3, and ±30% for locations 4 and 5 are used and there are no penalty 

costs used in this case. Production of the final product cannot be lower than the demand limits, or 

the result is infeasible. The uncertainty regions are defined in Appendix E. 

 

Table 4.2 summarizes the results of the expected value formulation (EV), formulation (S) and 

affinely adjustable robust scenario formulation (AARS_IN) (with uncertainty bounded by the 
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infinity norm). The results include formulation sizes, solution times, optimal decisions obtained 

(i.e., capacity results), predicted expected profits and achieved expected profits. The predicted 

expected profits are predicted by the formulation if the first-stage decisions are implemented. The 

achieved expected profits are the profits that can actually be achieved by implementation of the 

first-stage variables. To estimate the achieved expected profits, the expected second-stage cost is 

approximated over a large number of uncertainty realizations. In this chapter, 99 realizations of 

each uncertain parameter were sampled for the estimation of the achieved expected profits for 

each case study. 

 

In Table 4.2, formulation (EV) and formulation (S) with 9 scenarios both lead to an infeasible 

solution, whereas formulation (AARS_IN) leads to a result that is feasible and optimal. The 

difference in results is that formulation (AARS_IN) predicts a higher capacity for plants 2, 3 and 

4 which results in the demands satisfied for each of the final product grades. When the number of 

scenarios is increased to 1225 for formulation (S), the result is still an infeasible solution and 

requires 37 minutes to solve. Formulation (AARS_IN) considering 9 scenarios requires only 6 

minutes reaching the optimal solution.   
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Table 4.2 Solution results of the industrial chemical case study for uncertain case A 

 Formulation
a
 

 EV S AARS_IN 

Number of Scenarios 1 9 1,225
 

9 

Number of Variables 2,335 20,927 2,846,911 73,901 

Number of Constraints 1,021 9,101 1,237,261 132,941 

Solution Time (s) 0.09 0.51 2,245.53 346.72 

Capacity
b
 at Location(kt)     

1 8870 7890 7940 7400 

2 880 1060 1160 1170 

3 440 530 570 580 

4 2120 2240 2130 2270 

5 440 1010 1430 1310 

Predicted Expected Profits
c 
(billion $) 22.03 21.86 21.73 21.70 

Achieved Expected Profits
d
 (billion $) Infeasible Infeasible Infeasible 21.71 

Note: 
a
 EV, expected value formulation; S, scenario formulation; AARS_IN, affinely adjustable 

robust scenario formulation. 
b 

Allowable capacities at each processing plants. 
c
 Expected profit 

predicted by the formulation at its solution. 
d
 Expected profit that can be achieved with the obtained 

capacities, as estimated using 99
2
 = 9801 sampled uncertainty realizations. 

 

4.2.2 Results and Discussion – Uncertain Case B 

 

In this case, the lower demand limits for the final product are again assumed to be uncertain; 

specifically the nominal demand values for regional markets 1, 2, and 3 have a range of ±40%, 

and regional markets 4 and 5 have a range of ±30%. The nominal demand values are again 

represented by
min ( )

,

a

v kD . Penalty costs, 200,000$ / tpenC  , are introduced for this case in which 

the lower demand limits are not satisfied. This is included so that feasible solutions can be 

obtained, even if the demand limits are not satisfied. A high penalty cost is used to reflect the 

market share that is lost by not meeting the customer demands. To calculate the total penalty 

costs, the following equation is used 

pen pen

, , , , ,v k v kc y C v V k K                                                                                    (4.26) 
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where 
,v ky is introduced as a second-stage variable to represent the amount of final products that 

cannot meet the demand requirements. Constraint (4.23) is then updated to consider this new 

variable 

FP,PD FP,WD min

, , , , , ,

( , ) ( , )

, , .v k i k v j k v v k

i k j k

y f f D k K v V
 

                                            (4.27) 

 

The objective function is also updated to include the penalty costs 

  inc pen

,max Revenue TC 1i i i v k

i I v V k K

r c
  

  
    

  
                                             (4.28) 

 

 

 

 

In Table 4.3, it can be seen that formulation (EV) obtains the worst achieved expected profits, 

although it predicts the highest profits. This is due to its allocation of a high capacity in plant 1, 

which will allow producing final product grades which are highly profitable. However, from the 

lower capacity predictions for plants 2, 3, 4, and 5, the penalty costs will be very high for not 

meeting the demand requirements of numerous final product grades. Formulation (S) considering 

9 scenarios, allocates more capacity to plants 2, 3, 4 and 5, which causes a reduction in the 

penalty costs leading to better achieved expected profits. However, it still overestimates the 

predicted expected profits, due to its inability to consider the entire range for uncertainty 

realizations. Formulation (AARS_IN) provides a nearly perfect prediction of expected profits 

from considering 9 scenarios. The capacity is assigned to each plant in a manner that reduces the 

total amounts of capacity and penalty costs. 
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Table 4.3 Solution results of the industrial chemical case study for uncertain case B 

 Formulation
a 

 EV S AARS_IN 

Number of Scenarios 1 9 9 

Number of Variables 2,452 21,972 77,016 

Number of Constraints 1,023 9,111 137,091 

Solution Time (s) 0.09 0.53 340.24 

Capacity
b
 at Location (kt)    

1 8870 7890 7400 

2 880 1060 1170 

3 440 530 580 

4 2120 2240 2270 

5 440 1010 1310 

Predicted Expected Profits
c
 (billion $) 22.03 21.86 21.69 

Achieved Expected Profits
d
 (billion $) -31.55 19.57 21.71 

Note: 
a
 EV, expected value formulation; S, scenario formulation; AARS_IN, affinely adjustable 

robust scenario formulation. 
b 

Allowable capacities at each processing plants. 
c
 Expected profit 

predicted by the formulation at its solution. 
d
 Expected profit that can be achieved with the obtained 

capacities, as estimated using 99
2
 = 9801 sampled uncertainty realizations. 

 

 

4.2.3 Results and Discussion – Uncertain Case C 

 

In this case, the lower demand limits are again used as the uncertain parameters. The nominal 

values are increased and are shown by
min ( )

,

b

v kD , and again have a range of ±40% for locations 1, 2 

and 3, and ±30% for locations 4 and 5. A penalty cost is no longer used in this case, as it is 

assumed that production below the demand limits is not allowed. The parameters were selected 

such that no feasible operation exists, as the goal is to investigate whether the optimization 

formulations can identify this infeasibility.  
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Table 4.4 summarizes the results of each formulation. Formulation (EV) and formulation (S) 

considering 9 scenarios do not identify the infeasibility and report infeasible first-stage decisions. 

When the number of scenarios addressed is increased to 1225, the S formulation still does not 

indicate infeasibility, and requires 41 minutes to solve. Formulation (AARS_IN) is able to 

indicate the infeasibility of the problem using 9 scenarios and within a short time. This 

demonstrates that the robust scenario formulation can report infeasibility effectively and 

efficiently when a feasible solution does not exist. 

 

 

 

 

 

Table 4.4 Solution results of the industrial chemical case study for uncertain case C 

 Formulation
a
 

 EV S AARS_IN 

Number of Scenarios 1 9 1,225
 

9 

Number of Variables 2,335 20,927 2,846,911 73,901 

Number of Constraints 1,021 9,101 1,237,261 132,941 

Solution Time (s) 0.12 0.49 2,466.30 433.51 

Capacity
b
 at Location (kt)     

1 6810 5350 4670 - 

2 1330 1600 1750  

3 660 800 870  

4 2284 2600 2810  

5 1630 2350 2600  

Predicted Expected Profits
c 
(billion $) 20.97 20.47 20.19 

Infeasibility 

indicated 

Achieved Expected Profits
d
 (billion $) Infeasible Infeasible Infeasible - 

Note: 
a
 EV, expected value formulation; S, scenario formulation; AARS_IN, affinely adjustable 

robust scenario formulation. 
b 

Allowable capacities at each processing plants. 
c
 Expected profit 

predicted by the formulation at its solution. 
d
 Expected profit that can be achieved with the obtained 

capacities, as estimated using 99
2
 = 9801 sampled uncertainty realizations. 
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In this chapter, the mathematical model for an industrial chemical supply chain problem was 

formulated from data provided from DuPont. The problem modeled involves 55 grades of 

primary raw materials that are converted to 23 grades of final products at five plant facilities. 

From the plants, the final products can either be transported to regional warehouses for additional 

storage or to customers at five regional markets. With the determined capacities at each of the 

plants being the first-stage variables, the goal was to maximize profits for the supply chain system 

considering demand uncertainties. After completion of the mathematical model, the classical 

scenario approach and the affinely adjustable robust scenario formulation were used to solve 

three uncertain cases. The results demonstrate that the affinely adjustable robust scenario 

formulation can effectively avoid infeasibility, can report infeasibility (for cases in which no 

feasible solution can be obtained), and can obtain optimal solution with a small number of 

scenarios.   
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Chapter 5 

Application of Dantzig-Wolfe Decomposition Algorithm 

 

Since the AARS_IN formulation is of a greater size than the scenario formulation (using the same 

number of scenarios), it becomes even more important to consider the use of a decomposition 

algorithm to improve the computing times of generating the optimal solution. The Dantzig-Wolfe 

algorithm developed by Dantzig and Wolfe (1960) was chosen to be studied for this thesis, as it 

has not received much attention for solving two-stage stochastic problems within the PSE 

community. In section 5.1, the Dantzig-Wolfe decomposition algorithm will be described for 

solving a class of decomposable optimization problems. Section 5.2 will introduce an alternative 

formulation of this class of optimization problems, resulting in a different set of Dantzig-Wolfe 

subproblems. Lastly, section 5.3 will show and discuss computational results. 

 

5.1 Dantzig-Wolfe Decomposition Algorithm for Stochastic Problems  

 

This section describes the Dantzig-Wolfe subproblems and solution procedure for decomposable 

optimization problems in the following form 

Problem (SP1) 

0 0

1

min
s

T Tc x c x 


                                                                                                            (5.1) 

0 0. . , 1,... ,s t A x A x b s                                                                                           (5.2) 

 0

0 0 0 0 0 0: ,xn
x X x B x d                                                                                      (5.3) 

 : , 1,..., .xn
x X x B x d s                                                                        (5.4) 
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Note the formulations (S), (NRS_IN), and (AARS_IN) discussed in Chapter 3 all exhibit the 

structure of Problem (SP1). Here, 
0x  would represent the first-stage design decisions and x

would represent the second-stage operational decisions. The first-stage variables could involve 

integer variables. However, when integer variables are involved, the solution obtained by 

Dantzig-Wolfe decomposition may be suboptimal due to a lack of strong duality (Dantzig and 

Wolfe, 1960). The typical strategy for deriving the master problem, involves adding multiple 

columns corresponding to a scenario at each iteration of the algorithm (Birge, 1985). For this 

Dantzig-Wolfe decomposition procedure, the set X  can be defined as follows 

 : , 0, 1, , 1,..., .xn j j j j

j J j J

X x x x j J s         
 

 
         
 

              (5.5) 

 

The master problem for Problem (SP1) can now be written as 

Problem (MP1) 

0 0

1

min
s

T T j j

j J

c x c x  



 

 
  

 
                                                                                          (5.6) 

0 0. . , 1,..., ,j j

j J

s t A x A x b s   


 
   

 
                                                                   (5.7) 

1, 1,..., ,j

j J

s 


                                                                                                    (5.8) 

0, 1,..., ,s                                                                                                         (5.9) 

0 0.x X                                                                                                                       (5.10) 

 

 

 



 

75 

 

5.1.1 Restricted Master Problem and Pricing Problems 

 

The master problem considers the set of all extreme points, which will make it a very large 

problem. To reduce the size of the master problem, the following set is introduced 

 1,...,k

kJ N J  , so that only a subset of extreme points are considered. This restricted 

master problem is shown by 

Problem (RMP1) 

0 0

1

min
k

s
T T j j

j J

c x c x  



 

 
   

 
                                                                                        (5.11) 

0 0. . , 1,..., ,
k

j j

j J

s t A x A x b s   


 
    

 
                                                                   (5.12) 

1, 1,..., ,
k

j

j J

s 


                                                                                                     (5.13) 

0, 1,..., ,s                                                                                                            (5.14) 

0 0.x X                                                                                                                           (5.15) 

The optimal objective value is denoted as RMPobj . The Lagrange multipliers from constraint 

(5.12), which are denoted by 
k

 , are used to construct the pricing problems. The subset of 

extreme points is generated through solving pricing problems, which are decomposed into a set of 

pricing subproblems and are solved for 1,..., s    

Problem (PP1ω) 

  min
T

T kc A x                                                                                                     (5.16) 

. . .s t x X                                                                                                                    (5.17) 
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Here, the optimal objective value is denoted as kPP
obj



 for 1,..., s  . The subproblems are 

solved in order to add promising extreme points to the restricted master problem. Solving the 

restricted master problem and the corresponding subproblems is known as phase 2 of the Dantzig-

Wolfe algorithm. 

 

5.1.2 Phase 1 Feasibility Problem 

The first step of the algorithm is to obtain an initial set of extreme points to be used. To do so, an 

initial phase 1 feasibility problem is solved 

Problem (FP1) 

0

,

1 1

min
ms

t

t

y 

 

                                                                                                                (5.18) 

0 0. . , 1,..., ,s t A x A x b y s                                                                               (5.19) 

   0, 1,..., ,y s                                                                                                           (5.20) 

0 0 ,x X                                                                                                                          (5.21) 

, 1,..., .x X s                                                                                                         (5.22) 

 

Here the slack variables are denoted by   0

01, ,,..., , 1,...
m

my y y s       . The 

corresponding pricing problems would have the following form and would be required to be 

solved for 1,..., s   

Problem (SFP1ω) 

 min
T

k x                                                                                                                  (5.23) 

. . .s t x X                                                                                                                  (5.24) 
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5.1.3 Termination Criteria 

 

For this phase 1 problem, the convergence criterion is simply
0

, 1

1 1

ms

t

t

y 



 

 .  If this is satisfied, 

then a basic feasible solution is obtained for the phase 2 problem. Every iteration for the phase 2 

problem, the upper and lower bounds are updated based on the following 

 

,RMPUBD obj                                                                                                               (5.25) 

 
1

.k

s
k

RMP PP
LBD obj obj









                                                                                  (5.26) 

Here, 
k

  is the multiplier obtained from constraint (5.13) of the restricted master problem. The 

tolerance criterion for the phase 2 problem is 

2 .UBD LBD UBD                                                                                              (5.27) 

If the condition is met, then the optimal solution 0 1 1, ,...,
k k

k k j k j

s s

j J j J

x x x 
 

 
  
 

   is returned.  

To summarize the Dantzig-Wolfe algorithm, the following steps are taken as outlined in Table 

5.1. 
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Table 5.1 Dantzig-Wolfe decomposition algorithm for problem SP1 

(1) Initialization (Phase 1): Select a large positive number M, such that UBD M  and 

.LBD M  Set the tolerance   and initial iteration counter as 1.k   Solve the phase 1 

feasibility problem (problem FP1 and SFP1ω) to obtain the initial set of extreme points for when 

the convergence criterion, 
0

, 1

1 1

ms

t

t

y 



 

 , is satisfied. If the convergence criterion cannot be 

met, then the problem is infeasible.  

(2) Restricted Master Problem: Solve the phase 2 restricted master problem and set 

RMPUBD obj . Set the Lagrange multipliers 1 ,...,k k

  , 
1 ,...,k k

s   from the constraints of the 

problem. 

(3) Pricing Problem: For all  1,..., s  , solve the pricing problems to obtain the optimal 

solutions. Set  
1

k

s
k

RMP PP
LBD obj obj









   . 

(4) Termination Check: If 2UBD LBD UBD   return 0 1 1, ,...,
k k

k k j k j

s s

j J j J

x x x 
 

 
  
 

  as the 

optimal solution. Otherwise set 1k k   and repeat steps 2-4. 
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5.2 Alternative Formulation for Dantzig-Wolfe Decomposition 

 

Using the Dantzig-Wolfe algorithm for formulation (SP1) leads to suboptimal solutions, which 

are much worse than the true solution. A second approach to apply the Dantzig-Wolfe 

decomposition was studied to see if more favourable results could be achieved. The Dantzig-

Wolfe procedure is similar, but the subproblems to be solved are different than those described in 

section 5.1. In this this Problem (SP1) is reformulated as 

Problem (SP2) 

0 0

1

min
s

T Tc x c x 


                                                                                                            (5.28) 

0 0,. . , 1,..., ,s t A x A x b s                                                                                         (5.29) 

 0

0, 0, 0, 0 0, 0: ,xn
x X x B x d                                                                                 (5.30) 

 : , 1,..., ,xn
x X x B x d s                                                                         (5.31) 

0 0, , 1,..., .x x s                                                                                                            (5.32) 

 

The key difference of the alternative formulation is to introduce 0,x  which represents the first 

stage-variables and constraint (5.32) to ensure that the capacities will be the same for each 

scenario. The second-stage variables are again represented by x . For this Dantzig-Wolfe 

decomposition procedure, the set 0,X   can be defined as follows 

 0

0, 0, 0, 0,: , 0, 1, , 1,..., .xn j j j j

j J j J

X x x x j J s         
 

 
         
 

       (5.33) 
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The master problem is now formulated  

Problem (MP2) 

0, 0,

1 1

min
s s

T j j T j j

j J j J

c x c x     
 

 
   

   
   

   
                                                                   (5.34) 

0 0,. . , 1,..., ,j j

j J

s t x x s  


                                                                                     (5.35) 

1, 1,..., ,j

j J

s 


                                                                                                    (5.36) 

0, 1,..., .s                                                                                                         (5.37) 

 

5.2.1 Restricted Master Problem and Pricing Problems 

 

To reduce the size of the master problem, the following set is again introduced 

 1,...,k

kJ N J  . This restricted master problem is shown by 

Problem (RMP2) 

0, 0,

1 1

min
k k

s s
T j j T j j

j J j J

c x c x     
 

 
  

   
      

   
                                                                   (5.38) 

0 0,. . , 1,..., ,
k

j j

j J

s t x x s  


 
   
 
                                                                                 (5.39) 

1, 1,..., ,
k

j

j J

s 


                                                                                                     (5.40) 

0, 1,..., .s                                                                                                            (5.41) 

 



 

81 

 

Here the optimal objective value is denoted by 
RMPobj . The Lagrange multipliers from constraint 

(5.39), which are denoted by 
k

 , are used to construct the pricing problems. The pricing 

problems are decomposed into a set of pricing subproblems and are solved for 1,...,s    

Problem (PP2ω) 

  0, 0,min
T

T k Tc x c x                                                                                             (5.42) 

0 0,. . , 1,..., ,s t A x A x b s                                                                                      (5.43) 

,x X                                                                                                                             (5.44) 

0, 0, .x X                                                                                                                         (5.45) 

The optimal objective values for this formulation are denoted by kPP
obj



for 1,..., s  . 

 

5.2.2 Phase 1 Feasibility Problem 

 

The initial phase 1 feasibility problem is formulated as 

Problem (FP2) 

0

,

1 1

min
xns

t

t

y 

 

                                                                                                                 (5.46) 

0 0,. . , 1,..., ,
k

j j

j J

s t x x y s   


 
    
 
                                                                        (5.47) 

   0, 1,..., .y s                                                                                                           (5.48) 

Here the slack variables are denoted by   0

0
1, ,,..., , 1,...x

x

n

ny y y s       . The 

corresponding subproblems would have the following form and would be required to be solved 

for 1,..., s   
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Problem (SFP2ω) 

  0,min
T

k x                                                                                                                   (5.49) 

0 0,. . ,s t A x A x b                                                                                                        (5.50) 

,x X                                                                                                                             (5.51) 

0, 0, .x X                                                                                                                         (5.52) 

 

5.2.3 Termination Criteria 

For the phase 1 problem, the convergence criterion is 
0

, 1

1 1

xns

t

t

y 




 

 .  If this is satisfied, then a 

basic feasible solution is obtained for the phase 2 problem. For every iteration, the upper and 

lower bounds are updated based on the following 

 

,RMPUBD obj                                                                                                               (5.53) 

 
1

.k

s
k

RMP PP
LBD obj obj









                                                                                  (5.54) 

Here, 
k

  is the multiplier obtained from constraint (5.40) of the restricted master problem. The 

tolerance criterion for the phase 2 problem is 

2 .UBD LBD UBD                                                                                               (5.55) 

If the condition is satisfied, then the optimal solution 

1 0,1 0, 1 1,..., , ,...,
k k k k

k j k j k j k j

s s s s

j J j J j J j J

x x x x   
   

 
  
 
     is returned.  
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5.3 Computational Results 

 

The Dantzig-Wolfe decomposition procedure described in section 5.1 is referred to as DWD1 and 

the procedure described in section 5.2 is referred to as DWD2. These algorithmic procedures 

were applied to formulation (AARS_IN) for uncertain case A of the industrial chemical supply 

chain problem described in Chapter 4. Though the capacity will now be represented by integer 

variables, such that the solution of the first-stage variables will be a multiple of 500. This is done 

so that the capacity cannot simply be set to an arbitrary number. This means that the first-stage 

variables denoted by 
0x  within the DWD1 and DWD2 procedures will be represented by 

int500 iz for the industrial case study as opposed to 
iz . Formulation (AARS_IN) is used, with the 

goal of improving its computing times when compared to the CPLEX solver. The pricing 

problems solved were LP formulations and the restricted master problems were MILP 

formulations. Note that neither the DWD1 nor DWD2 procedure will guarantee achieving the 

optimal solution because the loss of strong duality due to the presence of the integer variables. 

The major purpose of this case study is to see whether the DWD procedure can effectively 

generate satisfactory solutions. The full list of equations for the DWD1 and DWD2 subproblems 

are provided in Appendix G. 

 

The case study problems were modeled using GAMS 24.1.1, and solved on a machine with 3.20 

GHz CPU and Linux operating system using CPLEX 12.5.0.1 with a tolerance of 
310
.  A 

relative termination criterion of 
3

1 10   was used for the phase 1 termination criteria and 

3

2 10   was used for the phase 2 termination criteria of the DWD procedures. 
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In the case studies, DWD1 tends to obtain a feasible solution quickly but generates poor sub-

optimal solutions. The DWD2 procedure would fail in generating an initial feasible solution, but 

if a feasible solution is provided, it tends to generate high quality sub-optimal/optimal solutions. 

This motivated the idea of combining both the DWD1 and DWD2 procedures. The sub-optimal 

solutions quickly obtained by DWD1 are used for the phase 2 procedure of DWD2. 

 

Shown in Table 5.2 are the optimal objective values for the CPLEX solver, the DWD1 and 

DWD2 algorithms for 9, 25, 49, 81, 121, and 169 scenarios. Also displayed are the required 

computing times for CPLEX, DWD1, DWD2, and the total time summed for the two 

decomposition algorithms. It is important to note the optimal objective values obtained from the 

DWD1 algorithm differ from the CPLEX results. Whereas, the optimal solution can be obtained 

from the DWD2 algorithm, except when using 49 scenarios where a high quality sub-optimal 

solution is obtained. This shows the significance of combining the DWD1 and DWD2 procedures 

to obtain higher quality solutions. 

Table 5.2 Dantzig-Wolfe decomposition results 

Scenarios 9 25 49 81 121 169 

CPLEX objective (billion $) 21.22 21.23 21.23 21.23 21.23 21.23 

CPLEX time (s) 4,087 17,173 47,533 73,630 111,593 318,567 

DWD1
a
 objective (billion $) 17.80 17.81 18.54 19.21 19.21 19.21 

DWD2
b
 objective (billion $) 21.21 21.22 20.92 21.22 21.22 21.22 

DWD1 time (s) 90 343 1,319 5,472 9,138 10,424 

DWD2 time (s) 3,940 11,486 22,226 40,998 53,296 75,778 

Total DWD time (s) 4,030 11,829 23,545 46,470 62,434 86,202 

Note: 
a
 Algorithm DWD1 solves problems FP1 and SFP1ω until phase 1 convergence is satisfied, and 

problems RMP1 and PP1ω until phase 2 convergence is satisfied. 
b 

Algorithm DWD2 uses the solution 

from DWD1 as the initial feasible solution and solves problems RMP2 and PP2ω until phase 2 

convergence is satisfied. 
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Also from Table 5.2, it can be seen that with 25 scenarios, it is beneficial to use the 

decomposition formulations as 3.3 hours is required compared to 4.8 hours for CPLEX. As the 

number of scenarios increase, the CPLEX time increases dramatically. The decomposition time is 

more reasonable as only 24 hours are required for the 169 scenarios. This shows the importance 

of using the DWD1 procedure together with DWD2, in order to achieve a high quality solution 

more quickly than the state-of-the-art CPLEX solver. 

 

 

In this chapter, two approaches to the Dantzig-Wolfe decomposition algorithm were developed to 

exploit the decomposable structure of the formulation. The sub-optimal solutions generated from 

the first procedure were then used for the initial extreme points required for phase 2 of the second 

procedure. This led to obtaining high quality sub-optimal/optimal solutions. From comparing the 

results of the Dantzig-Wolfe procedure to the CPLEX, it was found that at 25 scenarios the 

computing times for the Dantzig-Wolfe procedures were faster than that of CPLEX. As the 

number of scenarios increase, the benefit of using the Dantzig-Wolfe decomposition algorithm 

over the CPLEX solver grows dramatically. 

 

 

  



 

86 

 

Chapter 6 

Conclusions and Future Work 

6.1 Conclusions 

 

In this thesis, a novel framework is proposed to solve two-stage stochastic programs with 

recourse that come from strategic supply chain optimization under uncertainty. The framework 

integrates the classical scenario approach, which commonly provides good optimality and the 

robust approach, which can guarantee feasibility of a problem (if a feasible solution exists). Two 

robust formulations were generated, namely the naïve robust scenario formulation and the 

affinely adjustable robust formulation. In the two hybrid formulations, a scenario represents a 

group of uncertainty realizations instead of a single realization and it was shown that both 

formulations can be transformed into tractable optimization problems if uncertainty is assumed to 

be bounded by the infinity-norm. The formulations were applied to a farm planning problem and 

an energy and bioproduct supply chain optimization problem. The results demonstrate that the 

proposed formulations can effectively avoid infeasibility of the problem or report infeasibility for 

a situation when no feasible solution exists. They also outperform the classical scenario approach 

by generating the optimal solutions in a smaller number of scenarios and shorter solution times. 

The affinely adjustable robust scenario formulation outperforms the naïve robust scenario 

formulation, as the latter is often overly conservative and gives poor performance predictions. 

 

Next, with collaboration from DuPont, a mathematical model for an industrial chemical supply 

chain problem was formulated. The problem modeled involves 55 grades of primary raw 

materials that are converted to 23 grades of final products at five plant facilities which all have 

raw material and product storage warehouses. From the plants, the final products can either be 

transported to regional warehouses for additional storage or to customers at five regional markets. 
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The raw materials consumed are subject to turndown limits, waste limits, impurity restrictions, 

etc. whereas the final products must meet demand requirements at the five regional markets. With 

the determined capacities at each of the plants as the first-stage variables, the goal was to 

maximize profits for the supply chain system considering demand uncertainties. After completion 

of the mathematical model, the classical scenario approach and the affinely adjustable robust 

scenario formulation were used to solve three uncertain cases. The results demonstrate again that 

the affinely adjustable robust scenario formulation can effectively avoid infeasibility, can report 

infeasibility (case in which no feasible solution can be obtained), and can obtain optimal solution 

with a small number of scenarios.  

 

Due to the large-scale nature of the industrial case study problem, there is a need to consider 

decomposition techniques for the affinely adjustable robust scenario formulation. Two 

approaches to the Dantzig-Wolfe decomposition algorithm were developed to exploit the 

decomposable structure of the formulation. The sub-optimal solutions generated from the first 

procedure were then used for the phase 2 stage of the second procedure, which led to obtaining 

high quality sub-optimal/optimal solutions. From comparing the results of the Dantzig-Wolfe 

procedure to the CPLEX solver at 9, 25, 49, 81, 121, and 169 scenarios, it was found that at 25 

scenarios the computing times for the Dantzig-Wolfe procedures were faster than that of CPLEX. 

As the number of scenarios increase, the benefit of using the Dantzig-Wolfe decomposition 

algorithm over the state-of-the-art CPLEX solver grows dramatically.  
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6.2 Future Work 

 

A weakness to the Dantzig-Wolfe decomposition algorithm is that for MILP problems, it cannot 

guarantee to converge to the optimal solution. In terms of possible future work, one area is to use 

Benders decomposition for the industrial chemical supply chain problem. The benefit of using 

Benders decomposition is not only that may it provide better solution times than the Dantzig-

Wolfe formulations, but it can also be guaranteed to converge to the optimal solution for 

problems involving first-stage integer variables. 

 

Further work may involve addressing ellipsoidal uncertainty regions. Uncertainty should be 

addressed with an ellipsoidal region if joint confidence regions that are normally distributed are 

used to characterize uncertain parameters. This will change the reformulation of the robust 

scenario formulations developed in the thesis. It is known that, if an ellipsoidal uncertainty region 

is used then uncertainty can be represented by the 2-norm and the resulting robust scenario 

formulations can be transformed into a deterministic formulation involving the 2-norm 

(Bertsimas et al., 2004). A challenging issue with incorporating ellipsoidal uncertainty would be 

how to generate reasonable uncertainty subregions for each scenario.  

 

With collaboration from DuPont, there may be a desire to consider multi-period operation of the 

supply chain. This multi-period problem would then be an operational problem, which only 

contains continuous variables and is decomposable over different time periods. It is well known 

that Dantzig-Wolfe decomposition is ideal for solving this type of optimization problem, while 

Benders decomposition is not.  
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Appendix A 

Proof of Proposition 1 

 

Proposition 1: From the optimization problem 

 max
T

x


 
 
                                                                                                (A.1) 

 . . ,s t M   


                                                                                          (A.2) 

where M is invertible and 0  , the optimal objective value is 
1

1
( )TM x 

.  

 

Let    1, , nM z z z    ,  1

1( ) , ,T

nM x r r r   , then the problem to solve 

becomes 

max T

z
z r                                                                                                                    (A.3) 

. . .s t z 

                                                                                                             (A.4) 

A feasible solution of this optimization problem is  

,     if 0,

,   if 0.

i

i

i

r
z

r






 

 
                                                                                                 (A.5) 

With this solution 

11
.

nT

ii
z r r r 


                                                                                              (A.6) 

So 
1

r is a lower bound on the optimal objective value. When z 

 , 

11 1 1
,

n n nT

i i i i ii i i
z r z r z r r r 

  
                                                           (A.7) 
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so 
1

r is an upper bound on the optimal objective value. Therefore, 
1

r is the optimal 

objective value of problem (A.3) with constraint (A.4). Thus, 
1

1
( )TM x 

is the optimal 

objective value of problem (A.1) with constraint (A.2). 
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Appendix B 

Farm Planning Case Study – Equations and Parameter Values 

 

Formulation (S), formulation (NRS_IN) and formulation (AARS_IN) are provided for the farm 

planning problem – uncertain case A. 

 

B.1 Scenario Formulation (S) 

 

 

1

2

, ,

, ,

, ,

min Pr

pur sell

m m s m m s

mpl

m m s

m s S sell h h sell l l

m m s m m s

m

c y c w

c x

c w c w



 



  
    

    
  

      
   


 


                                    (B.1)

 

 

subject to 

,m

m

x L


                                                                                                                         (B.2) 

, , ,m m m s m s m sY x y w F    ,     1, ,m s S                                                                   (B.3)

   

, ,

h l

m s m s m mw w Y x   ,      
2 , ,m s S                                                                           (B.4)

   

 ,

h

m s mw Q ,       
2 , ,m s S                                                                                           (B.5)      

0mx  ,      ,m                                                                                                            (B.6)                                    

, ,, 0m s m sy w  ,      1, ,m s S                                                                                      (B.7)  

, ,, 0h l

m s m sw w  ,      2 , .m s S                                                                                     (B.8)    

 

Here, s S is defined as the set of scenarios, Prs denotes the probability of a given scenario s 

occurring. The first stage variables are the amounts of land allocated to each crop denoted by mx . 

The second stage variables are the amounts of corn and wheat purchased ( ,m sy ) and sold ( ,m sw ), 
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and the amounts of sugar beets sold below ( ,

h

m sw ) and above ( ,

l

m sw ) the quota. The amounts of 

corn and wheat required to feed cattle are the uncertain parameters and is denoted by
,m sF . 

 

B.2 Naïve Robust Scenario Formulation (NRS_IN) 

 

The naïve robust scenario formulation is a hybrid of formulation (S) and formulation (R). The 

intermediate representation is shown below by formulation (NRS) 
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 
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 
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Here, s S is defined as the set of scenarios, Prs
denotes the probability of a given scenario s 

occurring. With the assumption of uniform distribution, 
1

Pr ,s s S
S

  where S  refers to the 

cardinality of set S. The first stage variables are the amounts of land allocated to each crop 

denoted by
mx . The second stage variables are the amounts of corn and wheat purchased (

,m sy ) 

and sold (
,m sw ), and the amounts of sugar beets sold below ( ,

h

m sw ) and above ( ,

l

m sw ) the quota. 

The amounts of corn and wheat required to feed cattle are the uncertain parameters and is denoted 

by ,m sF .  

 

By applying Proposition 1 to constraint (B.11), the bilevel optimization problem is reduced to a 

single-level problem. This problem is shown below as formulation (NRS_IN)  

 

 

 

1

2

, ,

, ,

, ,

min Pr

pur sell

m m s m m s

mpl

m m s

m s S sell h h sell l l

m m s m m s

m

c y c w

c x

c w c w



 



  
    

    
  

      
   


 

  

                               (B.17)

   

subject to 

,m

m

x L


                                                                                                                 (B.18) 

   1

, , , , ,
1

T

m m m s m s m s m s m sY x y w M F       ,     1, ,m s S                         (B.19)

   

, ,

h l

m s m s m mw w Y x   ,      2 , ,m s S                                                                  (B.20)

   

,

h

m s mw Q ,       2 , ,m s S                                                                                  (B.21) 

0mx  ,       ,m                                                                                                  (B.22)
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 , ,, 0m s m sy w  ,      
1, ,m s S                                                                             (B.23)

   

  , ,, 0h l

m s m sw w  ,         
2 , .m s S                                                                         (B.24) 

The constraints containing the 1-Norm functions can be reformulated into linear equations based 

on the example provided in section 3.1.3. The  1

,

T

m sM 
values are provided in Table B.1. 

Table B.1  1

,

T

m sM 
values for the farm planning problem – uncertain case A 

 1

wheat,

T

sM 
 1, s  

 1

,

T

corn sM 
 1, s  

 

                    

B.3 Affinely Adjustable Robust Scenario Formulation (AARS_IN) 

 

The uncertain parameters, ,m sF ,  are now described by  , , , ,m s nu s nu m s

nu NU

  


  to separate the 

deterministic and uncertain elements. nu NU  is the set introduced as the number of uncertain 

elements. Here,  1,2nu NU  , since there are two uncertain parameters (corn required to 

feed cattle and wheat required to feed cattle). The values for , ,m s nu and ,m s are shown below in 

Table B.2.  

Table B.2 , ,m s nu and ,m s values for the farm planning problem – uncertain case A 

' ', ,'1'wheat s  1, s  

' ', ,'2'wheat s  0, s  

' ', ,'1'corn s  0, s  

' ', ,'2'corn s  1, s  

,m s  10, ,s m   
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The second stage variables are now represented by affine functions of uncertain parameters, 

where 
,m sy  in Problem (S) is replaced by , , , ,

pur pur

m s nu s nu m s    , ,m sw is replaced by 

, , , ,

sell sell

m s nu s nu m s    , ,

h

m sw is replaced by 
, ,

, , , ,

sell h sell h

m s nu s nu m s    and ,

l

m sw is replaced by 

, ,

, , , ,

sell l sell l

m s nu s nu m s    .  

 

The intermediate formulation (AARS) formulation is given below and is a hybrid of formulation 

(S) and formulation (AAR) 

    

    

1

2

, , , , , , , ,

, , , , , ,

, , , , , , , ,

min

Pr

pl

m m

m

pur pur pur sell sell sell

m m s nu s nu m s m m s nu s nu m s

m

s

sell h sell h sell h sell l sell l sell l

m m s nu s nu m s m m s nu s nu m s

m

c x

c c

c c

   

   







 

  
          

  
  

            
   






s S



  

        (B.25)

   

subject to 

,m

m

x L


                                                                                                                        (B.26) 

   

 
,

, , , , , , , ,

, , , , , , , , ,

1

max
0,

, ,

s nu

pur sell

s nu s nu m s nu m s nu m s nu

m m
pur sell pur sellnu NU

m s nu m s nu m s nu s nu m s m s

Y x

m s S


  

   

      
   

 
       
 

 


     (B.27)

   

  , , , ,

, , , , , , ,

sell h sell l sell h sell l

m s nu m s nu s nu m s m s m m

nu NU

Y x  


      ,      
2 , ,m s S                  (B.28)

   

  , ,

, , , ,

sell h sell h

m s nu s nu m s m

nu NU

Q 


    ,     2 , ,m s S                                                 (B.29)

   

0mx  ,         ,m                                                                                                        (B.30) 

 
,

, , , , , , , ,max 0
s nu

pur pur pur

s nu s nu m s nu m s nu s nu m s

nu NU


   


          
 ,    1, ,m s S         (B.31)
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 
,

, , , , , , , ,max 0
s nu

sell sell sell

s nu s nu m s nu m s nu s nu m s

nu NU


   


          
 ,    

1, ,m s S          (B.32)

   

    , ,

, , , , 0sell h sell h

m s nu s nu m s

nu NU

 


    ,     
2 , ,m s S                                                     (B.33) 

    , ,

, , , , 0sell l sell l

m s nu s nu m s

nu NU

 


    ,     
2 , .m s S                                                      (B.34) 

 

By applying Proposition 1 to constraints (B.27), (B.31), and (B.32) the bilevel optimization 

problem is reduced to a single-level problem. This problem is shown below as formulation 

(AARS_IN)  

    

    

1

2

, , , , , , , ,

, , , , , ,

, , , , , , , ,

min

Pr

pl

m m

m

pur pur pur sell sell sell

m m s nu s nu m s m m s nu s nu m s

m

s

sell h sell h sell h sell l sell l sell l

m m s nu s nu m s m m s nu s nu m s

m

c x

c c

c c

   

   







 

  
          

  
  

            
   






s S



  

       (B.35)

   

subject to 

,m

m

x L


                                                                                                                        (B.36) 

   

 

1

, , , , , , , ,
1

, , , , , , , , ,

1

0,

, ,

T
pur sell

s nu s nu m s nu m s nu m s nu

m m
pur sell pur sellnu NU

m s nu m s nu m s nu s nu m s m s

M
Y x

m s S

 

   





      
 

 
 
       
 

 


               (B.37)

   

  , , , ,

, , , , , , ,

sell h sell l sell h sell l

m s nu m s nu s nu m s m s m m

nu NU

Y x  


      ,      
2 , ,m s S                  (B.38)

   

  , ,

, , , ,

sell h sell h

m s nu s nu m s m

nu NU

Q 


    ,     2 , ,m s S                                                  (B.39)

   

0mx  ,         ,m                                                                                                        (B.40) 



 

102 

 

   1

, , , , , , , ,
1

0
T

pur pur pur

s nu s nu m s nu m s nu s nu m s

nu NU

M  



         
 

 ,    
1, ,m s S         (B.41)

   

   1

, , , , , , , ,
1

0
T

sell sell sell

s nu s nu m s nu m s nu s nu m s

nu NU

M  



         
 

 ,    
1, ,m s S          (B.42)

   

    , ,

, , , , 0sell h sell h

m s nu s nu m s

nu NU

 


    ,     
2 , ,m s S                                                     (B.43) 

    , ,

, , , , 0sell l sell l

m s nu s nu m s

nu NU

 


    ,     
2 , .m s S                                                     (B.44) 

Constraints (B.41)-(B.44) are to ensure that the affine functions for the second stage variables are 

non-negative. For formulation (AARS_IN), 
1,

2,












 
  
 

 and  1
1 0

0 1

T

M

  
  
 

. To obtain the 

appropriate values from the vector and matrix, ,s nu and  1

,

T

s nuM 
were used as seen in the above 

equations. Their values are shown in Table B.3. 

Table B.3 ,s nu and  1

,

T

s nuM 
values for the farm planning problem – uncertain case A 

,'1's  ,wheat s   

,'2's  ,corn s   

 1

,'1'

T

sM 
 1, s  

 1

,'2'

T

sM 
 1, s  
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B.4 Parameter Values 

Table B.4 below displays the parameter values used for the deterministic formulation in the farm 

planning case study. 

Table B.4 Parameters and their values for the farm planning problem 

Crop, m, Wheat Corn Sugar Beets 

Total land area, L  (acre) 500 

Planting Cost,  
pl

mc  ($/acre) 150 230 260 

Purchase price,  
pur

mc  ($/T) 238 210 - 

Selling price, 
sell

mc  ($/T) 170 150 - 

Selling price (under quota), 
,sell h

mc  ($/T) - - 36 

Selling price (over quota), 
,sell l

mc  ($/T) - - 10 

Yield, 
mY  (T/acre) 2.5 3 20 

Reserved for feeding cattle, mF  (T) 300 340 - 

Quota on production, 
mQ  (T) - - 6,000 
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Appendix C 

Energy and Bioproduct Supply Chain Case Study – Equations 

 

Formulation (S), formulation (NRS_IN) and formulation (AARS_IN) are provided for the energy 

and bioproduct supply chain – uncertain case A. 

 

C.1 Scenario Formulation (S) 

 L3,L4 price L3,L4 price

, ,  , , ,  ,

L1 tr op inv

, ,

0.9

max  Pr
         

o e

o e

pp ppn j pp s n j pp s
n N pp PP n N pp PPj J j J

s

s S
i pi s pi s s s

i I pi PI

q c q c

q c c c c

    



 

   
  

  
 

 

    
 

   

   




               (C.1) 

subject to 

tr L1,L2 road,L1,L2 tr,L1,L2 L1,L2

, , , , ,

L2,L3 road,L2,L3 tr,L2,L3 L2,L3

, , , , ,

L3,L4 road,L3,L4 tr,L3,L4 L3,

, , , , ,

s i m i m pi i m pi s

i I m M pi PI

m n m n pi m n pi s

m M n N pi PI

n j n j pp n j pp s

n N j J pp PP

c D f c q

D f c q

D f c q

  

  

  

  

  



 



 

 



 
L4 ,

 

                                                     (C.2) 

op op,L2 L1,L2 op,L3 L2,L3

, , , , , , ,

( , )

,s pi i m pi s pi t n pi t s

i I m M pi PI n N pi t PT

c c q c q
    

                                                 (C.3) 

inv fix,inv,L2 L2 fix,inv,L3 L3 var,inv,L3 L2,L3

, , , ,

( , )

,s m t n t t n pi t s

m M n N t T pi t PT

c c y c y c q
   

 
 

   
 

                     (C.4) 

L1

, , , , ,i pi s pi s i piq HY A   , , ,pi PI i I s S         
                                                  

(C.5) 

L1 L1,L2

, , , , , , i pi s i m pi s

m M

q q


   , ,,pi PI i s SI                                                          (C.6) 

L1,L2 L1,L2,UP L2

, , , , i m pi s pi m

i I

q q y


   ,, , m M p Si sPI                                          (C.7) 
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L1,L2 L2,UP L2

, , , , i m pi s m

i I pi PI

q q y
 

  , ,sm M S     
                                                   

(C.8) 

L1,L2 conv,L2 L2,L3

, , , , , , ,  i m pi s pi m n pi s

i I n N

q f q
 

   ,, , m M p Si sPI                             (C.9) 

L2,L3 L2,L3

, , , , , ,

( , )

,m n pi s n pi t s

m M pi t PT

q q
 

     ,, , n N pi s SPI                                        (C.10) 

L2,L3 L3,UP L3

, , , ,

( , )

, n pi t s t n t

pi t PT

q q y


  , , ,  s Sn N t T                                               (C.11) 

L2,L3 conv,L3 L2,L3

, , , , , , , , , ,  n pi t s pi pp t n pi pp t sq f q  , ( , , , ,)n N pi pp t s SPIPT                           (C.12) 

L2,L3 L3,L4

, , , , , , ,

( , , )

,n pi pp t s n j pp s

pi pp t PIPT j J

q q
 

     ,, ,n N p Sp sPP                             (C.13) 

LO L3,L4 UP

, , , , , , ,  j pp n j pp s j pp s

n N

Dem q Dem


   ,, , j J p Sp sPP                               (C.14) 

L1,L2 L2,L3 L2,L3 L2,L3 L3,L4

, , , , , , , , , , , ,, , , ,

1

,

L

, , , , , , 0, , , , , , , , .i m pi s m n pi s n pi t s n pi pp t s n j ppi pi s sq i m n j pi pq q q p sq tq                (C.15) 

 

Here, s S is defined as the set of scenarios, Prs
denotes the probability of a given scenario s 

occurring and is again calculate by 
1

Pr ,s s S
S

  . The first stage variables are the binary 

variables denoted by 
L2

my and 
L3

,n ty . The second stage variables are flow rates of the materials and 

products denoted by 
L1

, ,i pi sq , 
L1,L2

, , ,i m pi sq , 
L2,L3

, , ,m n pi sq ,
L2,L3

, , ,n pi t sq , 
L2,L3

, , , ,n pi pp t sq , and 
L3,L4

, , ,n j pp sq . The uncertain 

parameters are denoted by ,pi sHY and 
UP

, ,j pp sDem . 

 

C.2 Naïve Robust Scenario Formulation (NRS_IN) 

 

Formulation (NRS) is a hybrid of formulation (S) and formulation (R). This intermediate 

formulation can be formed in the similar method shown in Appendix B. Once Proposition 1 has 
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been applied to the constraints containing uncertain parameters, formulation (NRS_IN) is shown 

below 

 L3,L4 price L3,L4 price

, ,  , , ,  ,

L1 tr op inv

, ,

0.9

max  Pr
         

o e

o e

pp ppn j pp s n j pp s
n N pp PP n N pp PPj J j J

s

s S
i pi s pi s s s

i I pi PI

q c q c

q c c c c

    



 

   
  

  
 

 

    
 

   

   



            (C.16) 

subject to 

tr L1,L2 road,L1,L2 tr,L1,L2 L1,L2

, , , , ,

L2,L3 road,L2,L3 tr,L2,L3 L2,L3

, , , , ,

L3,L4 road,L3,L4 tr,L3,L4 L3,

, , , , ,

s i m i m pi i m pi s

i I m M pi PI

m n m n pi m n pi s

m M n N pi PI

n j n j pp n j pp s

n N j J pp PP

c D f c q

D f c q

D f c q

  

  

  

  

  



 



 

 



 
L4 ,

 

                                                   (C.17) 

op op,L2 L1,L2 op,L3 L2,L3

, , , , , , ,

( , )

,s pi i m pi s pi t n pi t s

i I m M pi PI n N pi t PT

c c q c q
    

                                                (C.18) 

inv fix,inv,L2 L2 fix,inv,L3 L3 var,inv,L3 L2,L3

, , , ,

( , )

,s m t n t t n pi t s

m M n N t T pi t PT

c c y c y c q
   

 
 

   
 

                    (C.19) 

   L1 1
,, , , , , , ,

1

,
T

pi si pi s i pi s i pi s i piq M HY A       , , ,pi PI i I s S         
        

(C.20) 

L1 L1,L2

, , , , , , i pi s i m pi s

m M

q q


   , ,,pi PI i s SI                                                        (C.21) 

L1,L2 L1,L2,UP L2

, , , , i m pi s pi m

i I

q q y


   ,, , m M p Si sPI                                     (C.22) 

L1,L2 L2,UP L2

, , , , i m pi s m

i I pi PI

q q y
 

  , ,sm M S     
                                              

(C.23) 

L1,L2 conv,L2 L2,L3

, , , , , , ,  i m pi s pi m n pi s

i I n N

q f q
 

   ,, , m M p Si sPI                        (C.24) 

L2,L3 L2,L3

, , , , , ,

( , )

,m n pi s n pi t s

m M pi t PT

q q
 

     ,, , n N pi s SPI                                      (C.25) 

L2,L3 L3,UP L3

, , , ,

( , )

, n pi t s t n t

pi t PT

q q y


  , , ,  s Sn N t T                                              (C.26) 
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L2,L3 conv,L3 L2,L3

, , , , , , , , , ,  n pi t s pi pp t n pi pp t sq f q  , ( , , , ,)n N pi pp t s SPIPT                          (C.27) 

L2,L3 L3,L4

, , , , , , ,

( , , )

,n pi pp t s n j pp s

pi pp t PIPT j J

q q
 

     ,, ,n N p Sp sPP                              (C.28) 

   UPLO L3,L4
,

1
,, , ,

1
, ,, , , ,  

,  , ,

T

j pp s j p j pp sj pp n j p s p sp

n N

MDem q Dem

j J pp P s SP




  

   

 

 


 (C.29) 

L1,L2 L2,L3 L2,L3 L2,L3 L3,L4

, , , , , , , , , , , ,, , , ,

1

,

L

, , , , , , 0, , , , , , , , .i m pi s m n pi s n pi t s n pi pp t s n j ppi pi s sq i m n j pi pq q q p sq tq              (C.30) 

 

The first stage variables are the binary variables denoted by 
L2

my and 
L3

,n ty . The second stage 

variables are flow rates of the materials and products denoted by 
L1

, ,i pi sq , 
L1,L2

, , ,i m pi sq , 
L2,L3

, , ,m n pi sq ,
L2,L3

, , ,n pi t sq , 

L2,L3

, , , ,n pi pp t sq , and 
L3,L4

, , ,n j pp sq . The uncertain parameters are denoted by ,pi sHY and 
UP

, ,j pp sDem . 

 

C.3 Affinely Adjustable Robust Scenario Formulation (AARS_IN) 

 

Formulation (AARS) is composed of formulation (S) and formulation (AAR). For simplicity, 

constraints (C.5) and (C.6) are combined and constraints (C.12) and (C.13) are combined to form 

the following 

L1,L

,

2

, , ,, , pi s i pi i m pi s

m M

H qY A


   , ,,pi PI i s SI                                           (C.31) 

L2,L3 conv,L3 L3,L4

, , , , , , , ,

( , , )

,n pi t s pi pp t n j pp s

pi pp t PIPT j J

q f q
 

      ., ,n N p Sp sPP                              (C.32) 

This reduces the number of second stage variables to four and now they are repalced by affine 

functions, where 
L1,L2

, , ,i m pi sq is replaced by 
L1,L2 L1,L2

, , , , , , , ,i m pi s nu s nu i m pi s    , 
L2,L3

, , ,m n pi sq  is replaced by 

L2,L3 L2,L3

, , , , , , , ,m n pi s nu s nu m n pi s    , 
L2,L3

, , ,n pi t sq  is replaced by 
L2,L3 L2,L3

, , , , , , , ,n pi t s nu s nu n pi t s     and 
L3,L4

, , ,n j pp sq is 

replaced by 
L3,L4 L3,L4

, , , , , , , ,n j pp s nu s nu n j pp s    .  
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The uncertain parameters, 
,pi sHY is now replaced by  , , , ,pi s nu s nu pi s

nu NU

  


  , and 
UP

, ,j pp sDem

is replaced by  , , , , , ,j pp s nu s nu j pp s

nu NU

  


   to distinguish the deterministic and uncertain 

elements.  The set  1,2nu NU   is introduced. The values for  and  are shown below in 

Table C.1.  

Table C.1   and   values for the energy and bioproduct supply chain – uncertain case A 

' ', ,'1'corn stover s  1, s  

' ', ,'2'corn stover s  0, s  

, ,pi s nu  0, , ,s nu pi corn stover   

,' ', ,'2'j electricity s  1, ,j s  

,' ', ,'1'j electricity s  0, ,j s  

, , ,j pp s nu  0, , , ,j s nu pp electricity   

' ',corn stover s  0, s  

,pi s  , ,piHY s pi corn stover   

,' ',j electricity s  0, ,j s  

, ,j pp s  UP

, , , ,j pp j s pp electrDem icity   

 

 

Once Proposition 1 has been applied to the constraints containing uncertain parameters as seen in 

Appendix B, formulation (AARS_IN) is given as 

 

  

L3,L4 L3,L4

,, , , , , , ,

L3,L4 L3,L4

,, , , , , , ,

L1,L2 L1,L

, , , , , , ,

price

pr

,

icemax Pr 0.9

o o

o

e

e e

s nun j pp s nu n j pp s

s nun j

pp

nu NUn

pp s nu n j pp s

i

N pp PPj J

s pp

nu NUn N pp

m pi s nu s nu i m p

PPj J

i I pi PI

i s

c

c

 

 

 

 

 

 

   

   



 

 



 

 

     tr op in2 v         

s S

pi s s s

m M nu NU

c c c c



 

  
  
  
  
  
  
  

  
  

  





 

      (C.33) 

subject to 
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 

 

L1,L2 L1,L2tr L1,L2 road,L1,L2 tr,L1,

, , , , , , , ,

L2,L3 L2,L3

, , , , , , , ,

L2

, ,

L2,L3 road,L2,L3 tr,L2,L3

, ,

s i m i m pi

n

i m pi s nu s nu i m pi s

m n pi s nu s

u NUi I m M pi PI

m n m n pi

nu NUm M n N pi

nu m n pi

PI

n N

s

c D f c

D f c

 

 

  

  







     

    





 



 L3,L4 road,L3,L4 tr,L3,L4 L3,L4 L3,L4

, , , , ,, ,, , , ,n j pp s nu s nun j n j pp

nu NUj

n j

p P

p

J p

p s

P

D f c  
 

      

  

 

              (C.34) 

 

 

 

L1,L2 L1,L2

, , , , , , , ,

L2,L3 L2

op op,L2

op, ,L3

,

( , )

L3

, , , , , , , , ,

s pi

nu NUi I m M pi PI

pi t

n

i m pi s nu s nu i m pi s

n pi t s nu s n

u NUn N pi t PT

u n pi t s

c c

c

 

 

  

 

   

   

  

 
                                              (C.35) 

 L2,L3 L2,L3

, , , ,

fix,inv,L3 L3

,
inv fix,inv,L

, , , ,

2 L2
var,inv,L3

( , )

,
t n t

s m
t n pi t s nu s nm M n N t T u n p

nu NUt

t

i

i s

p PT

c y

c c y
c  

  


 
  
 
 




   

 

  
  (C.36) 

 1 L1,L2

, , , , , , , , ,

1

L1,L2 L1,L2

, , , , , , , , , , , , ,

0,

, , ,

T

s nu s nu i m pi s nu i pi pi s nu

m M

nu NU

i m pi s nu i pi pi s nu s nu i m pi s i pi pi s

m M m M

M A

A A

pi PI i I s S

 

   







 

  
       

   
 

           
  

     




 
       (C.37)          

 
L1,L2,U

1 L1,L2

, , , , , ,

1

L1,L2 L1,L2

, , , , , ,

P L

, ,

2 ,

,, ,

 

 

T

s nu s nu i m pi s nu

i I

nu NU

i m pi s nu s nu i m pi s

i I i

pi m

I

q y

m M pi P SI

M

s



 







 

  
    

   
 

      



   


  

 




 
          (C.38) 

 1 L1,L2

, , , , , ,

1

L1,L2 L1,L2

, , , ,

L2,UP L2

, , , ,

, 

, ,

T

s nu s nu i m pi s nu

i I pi PI

nu NU

i m pi s nu s nu i m pi s

i I pi PI i I pi PI

mq y

m M

M

s S



 



 



   

  
    

  
 

  
   





 
  

 

 


   
                      (C.39) 

conv,L1,L2 L2,L3

, , , , , , ,

L2

, 0,  pi

i

i m pi s nu m n pi s nu

I n N

f
 

     , , ,,  s S nu Nm pi PI UM           (C.40) 
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conv,LL1,L2 L2,L3

, , , , , ,

2 0,  pii m pi s m n pi s

i I n N

f 
 

     ,, , m M p Si sPI                                   (C.41) 

 

L2,L3 L2,L3

, , , ,

(

,

)

, ,

,

, 0,
m M pi t

m n pi s nu n pi t s

PT

nu

 

      ,  , ,,  s S nu Nn pi PI UN                  (C.42) 

L2,L3 L2,L3

, , , , , ,

( , )

0,
m M pi t

m n pi s n pi

T

t

P

s 
 

      ,, , n N pi s SPI                                                 (C.43) 

 1 L2,L3

, , , , , ,

1

L2,L3 L2,L

( , )
L3,UP L3

,

( , )

3

, , , , , ,

( , )

, ,

,

, 

  , ,

pi t PT

t n

T

s nu s nu n pi t s nu

t

pi t PT

nu NU

n pi t s nu s nu n pi t s

pi t PT

M

s

q y

n N t ST



 





 



  
    

  
 

  
  



   

  
  

 







                          (C.44) 

conv,L3

, ,

( , , )

L2,L3 L3,L4

, , , , , , , ,

,

,

,

0

, ,

pi pp t

pi

n pi t s nu n j pp s nu

pp t PIPT j J

s S nu N

f

n N p P Up P

 

   

   



   

 
      (C.45) 

conv,L3

, ,

( , ,

L2,L3 L3,L4

, , , , , ,

)

,0pi pp tn pi t s n

pi pp t P

j pp s

IPT j J

f 
 

            ,, ,n N p Sp sPP                          (C.46) 

 1 L3,L4

, , , , , , , , ,

1

L3,L4 L3,L4

, , , , , , , , , , , , ,

0,  

, , , 

T

s nu s nu j pp s nu n j pp s nu

nu NU

j pp s nu n j pp s nu s nu n j pp

n N

n N

s j p

N

p s

n

j J pp P

M

s SP

 

   



 





  
     

  
 

    







   

   
  

 



 


           (C.47) 

 1 L3,L4

, , , , , ,

1

L3,L4 L3,L4

, , , , , ,

,

,

O

,

L ,,  ,  , 

T

s nu s nu n j pp s nu

nu NU

n j pp s nu s nu n j pp s

n N

j pp

n N n N

De

M

sm j J pp PP S



 










  
     

  
 

 
    

    

  
  
 




      (C.48) 

   1 L1,L2

, , , , , ,
1

L1,L2 L1,L2

, , , , , , , ,

0

T

s nu s nu i m pi s nu

nu NU
i m pi s nu s nu i m pi s

M

 





    
  
 
    

 ,   , , , ,pi PI i I m M s S                (C.49)
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   1 L2,L3

, , , , , ,
1

L2,L3 L2,L3

, , , , , , , ,

0

T

s nu s nu m n pi s nu

nu NU
m n pi s nu s nu m n pi s

M

 





    
  
 
    

 ,  , , , ,pi PI n N m M s S                (C.50)

   

   1 L2,L3

, , , , , ,
1

L2,L3 L2,L3

, , , , , , , ,

0

T

s nu s nu n pi t s nu

nu NU
n pi t s nu s nu n pi t s

M

 





    
  
 
    

 ,  , , , ,pi PI n N t T s S                    (C.51)

   

   1 L3,L4

, , , , , ,
1

L3,L4 L3,L4

, , , , , , , ,

0

T

s nu s nu n j pp s nu

nu NU
n j pp s nu s nu n j pp s

M

 





    
  
 
    

 ,   , , , .n N j J pp PP s S               (C.52)

   

 

Here, constraints (C.49)-(C.52) are to ensure that the second-stage affine functions are non-

negative. The values for ,s nu and  1

,

T

s nuM 
 are shown in Table C.2. 

Table C.2 ,s nu and  1

,

T

s nuM 
values for the energy and bioproduct supply chain – uncertain case 

A 

,'1's  ,electricity s   

,'2's  ,corn stover s   

 1

,'1'

T

sM 
 1, s  

 1

,'2'

T

sM 
 1, s  
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Appendix D 

Energy and Bioproduct Supply Chain Case Study – Parameters 

 

Tables D.1 to D.11provide the required parameter values for the energy and bioproduct supply 

chain case study. 

Table D.1 Availability of raw materials in each supply zone ( ,i piA ) 

Zone Corn (km
2
) 

Corn stover 

(km
2
) 

Wood chips 

(km
2
) 

Timber 

(km
2
) 

Manure 

(t/day) 

MSW 

kg/capita day   

1 20 (80) 20 (80) - - 4 - 

2 20 (80) 20 (80) - - 4 - 

3 65 (75) 65 (75) 15 15 2.75 - 

4 30 (40) 30 (40) 60 60 1.25 - 

5 40 (90) 40 (90) 10 10 2.75 1 

6 25 (100) 25 (100) - - 2.75 1 

7 65 (100) 65 (100) - - 3 - 

8 45 (85) 45 (85) 15 15 2 - 

9 - - 100 100 - - 

10 10 (70) 10 (70) 30 30 2.5 - 

Note: The values in parenthesis are used for Uncertain Case A of Problem 2. Zones 5 and 6 have 

populations of 30,000 and 28,000, respectively. 

 

Table D.2 Yields ( piHY ) and costs ( pic ) of raw materials 

 Corn Corn stover Wood chips Timber Manure MSW 

Yield  

(
 t / (km2 × y)) 

730 840 9.6 96 - - 

Cost (€/t) 85 30 40 90 10 -48 

Note: Yield of manure and MSW is reflected in Table 1. 

 

Table D.3 Upper limit of product demands ( ,j ppDem ) and product prices (
price

ppc ) 

 Heat Electricity Bioethanol DDGS Digestate Boards 

Maximum 

Demand 

6.2610
8
 

MJ/y 

87,000 

MWh/y 
3,480 t/y 

No upper 

bound 

No upper 

bound 

No upper 

bound 

Price 0.017 €/MJ 100 €/MWh 550 €/t 120 €/t 24 €/t 300 €/t 

Note: Minimum demands are zero unless indicated in the case studies. 
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Table D.4 Preprocessing and main processing costs (
, , 2fix inv Lc ,

, , 3fix inv Lc   ,
var, , 3inv Lc  ,

, 2op L

pic ,
, 3

,

op L

pi tc ) 

 
Fixed Investment Cost 

(€/y) 

Variable Investment 

Cost (€/t) 
Operating Cost (€/t) 

Preprocessing Centres 50,000 - - 

Corn stover – 

compressing 
- - 3.0 

Corn grains - drying - - 25.0 

Timber - drying - - 25.0 

Main Plant    

Dry grind process 370,000 0.0047 40.0 

Anaerobic digestion 30,658 7.0 15.3 

Incineration 1,300,000 20.32 23.0 

Sawing 20,000 3.07 7.43 

 

 

Table D.5 Conversion factors of materials to products (
, 2conv L

pif ,
, 3

, ,

conv L

pi pp tf ) 

Biomass 

Weight 

Loss 

Ratio for 

Drying 

Heat (MJ/t) 
Electricity 

(MWh/t) 

Bioethanol 

(t/t) 

Boards 

(t/t) 

Digestate 

(t/t) 

DDGS 

(t/t) 

Corn 0.2 - - 
0.323 

(dry grind) 
- - 

0.25 

(dry 

grind) 

Wood 

chips 
- 

7,200 

(incineration) 

1.4 

(incineration) 
- - - - 

MSW - 
4,600 

(incineration) 

0.9 

(incineration) 
- - - - 

Corn 

stover 
- 

8,000 

(incineration) 

1.55 

(incineration) 
- - 

0.4 

(digestion) 
- 

Manure - 
1,350 

(digestion) 

0.26 

(digestion) 
- - 

0.4 

(digestion) 
- 

Timber 0.41 - - - 
0.8 

(sawing) 
- - 

Note: Related technology to produce the product is shown underneath the conversion factors.  
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Table D.6 Transportation costs for materials and products (
, ,tr La Lb

pc ) 

Material 
Tractor with trailer 

(€/ t km )  
Rail (€/ t km ) 

Tank trailer  

(€/ t km ) 

MSW Truck  

(€/ t km ) 

Corn 0.142 0.064 - - 

Wood chips 0.24 0.064 - - 

MSW - - - 1.15 

Corn stover 0.75 0.064 - - 

Manure - - 0.132 - 

Timber 0.15 0.064 - - 

Bioethanol - - 0.12 - 

Digestate - - 0.132 - 

DDGS - - 0.132 - 

Boards - 0.064 - - 

Note: Rail option is used for transportation from preprocessing centres to processing plants and for 

transporting boards.  

 

 

Table D.7 Distances between supply zones and preprocessing centres (
1, 2

,

L L

x yD ) 

 m1 m2 m3 m4 m5 m6 

i1 12 9 16 22 36 38 

i2 16 6 7 17 26 28 

i3 24 14 7 8 17 18 

i4 33 24 16 6 8 8 

i5 42 33 25 15 6 3 

i6 2 8 16 21 36 40 

i7 11 6 7 17 26 30 

i8 21 14 7 8 17 22 

i9 31 24 16 6 8 14 

i10 41 33 25 15 6 12 

Note: m1, …, m6 denote the six preprocessing centres, respectively. i1, …, i10 denote the ten supply 

zones, respectively. Road condition factors are set to be 1 for all routes.  
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Table D.8 Distances between preprocessing centres and main plants (
2, 3

,

L L

x yD ) 

 n1 n2 n3 

m1 2 22 41 

m2 8 14 34 

m3 16 5 25 

m4 26 6 15 

m5 36 16 6 

m6 40 19 3 

Note: n1, …, n3 denote the three main plants, respectively. m1, …, m6 denote the six preprocessing 

centres. Road condition factors are set to be 1 for all routes. 

 

 

 

Table D.9 Distances between main plants and customer locations (
3, 4

,

L L

x yD ) 

 j1 j2 j3 

n1 3 40 34 

n2 21 20 27 

n3 42 3 32 

Note: j1, …, j3 denote the three demand locations, respectively. n1, …, n3 denote the three main 

plants. Road condition factors are set to be 1 for all routes. 

 

 

Table D.10 Preprocessing capacities for different materials (
1, 2,L L UP

piq ,
2,L UPq ) 

Material Capacity (t/y) 

Corn 500,000 

Corn stover 160,000 

Wood chips 3,000 

Timber 30,000 

Manure 10,000 

MSW 30,000 

Total raw materials 500,000 
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Table D.11 Capacities of different processing technologies (
3,L UP

tq ) 

Technology Capacity (t/y) 

Dry grind 250,000 

Anaerobic digestion 160,000 

Incineration 390,000, 290,000, 500,000 

Sawing 20,000 

Note: Different incineration capacities are used for the three respective case studies. 
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Appendix E 

Industrial Chemical Supply Chain Case Study - Equations 

Formulation (S), and formulation (AARS_IN) are provided for the industrial and chemical supply 

chain case study – uncertain case A 

 

E.1 Scenario Formulation (S) 

 

   inc

, ,max Pr Revenue TC 1s i s i s i

i I s S

r
 

   
                                                      (E.1) 

subject to 

   FP,PD FP FP,PW FP

, , , , , , , , ,

( , ) ( , )

ˆRevenue  = , , ,i s i k v s k v i j v s j v

i k v V i j v V

f P f P i I s S
   

                (E.2) 

fix cap fr du I PRM RM2 RM3 waste OPVC

, , , , , , , , ,TC  = ,

, ,

i s i i i s i s i s i s i s i s i s i sc c c c c c c c c c

i I s S

        

 
            (E.3) 

cap cap , ,i ic z C i I                                                                                                      (E.4) 

   

 

fr FP,PD fr,FP,PD FP,PW fr,FP,PW

, , , , , , , , ,

( , ) ( , )

FP,WD fr,FP,WD fr,PW

, , , , ,

( , ) ( , )

, , ,

i s i k v s i k i j v s i j

i k v V i j v V

j k v s j k i j

i j j k v V

c f C f C

f C q i I s S

   

  

   

    

   

  
                                  (E.5)

 

   du tp FP,PD FP du FP,PW FP du

, , , , , , , , , , ,

( , ) ( , )

ˆ ˆ ,

, ,

i s i k v s k v i k i j v s j v i j

i k v V i j v V

c r f P r f P r

i I s S

   

 
       

 

 

   
             (E.6) 

   I FP,p PI FP,PW WI

, , , , , ,

( , ) ( , )

, , ,i s i v s i i j v s j

i v i j v V

c f C f C i I s S
  

                                      (E.7) 

 PRM PRM,c PRM

, , , , , , ,i s i u s i u

u U

c f C i I s S


                                                                       (E.8) 

 RM2 PRM,c RM2 RM2

, , , , , , ,i s i u s i u i

u U

c f q C i I s S


                                                              (E.9) 

 RM3 PRM,c RM3 RM3

, , , , , , ,i s i u s i u i

u U

c f q C i I s S


                                                             (E.10) 
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 waste PRM,c waste waste

, , , , , ,i s i u s u i

u U

c f q C i I s S


                                                            (E.11) 

 OPVC var FP,p

, , ,

( , )

, , ,i s i i v s

i v

c C f i I s S


 
    

 
                                                              (E.12) 

  

  

FP,p

, ,PRM,C td td

, , ,
( , ) / 24 / 365 / 365

24 365 365 / 365 , , ,

i v s

i u s i iavg FP
u U i v i i i

i i

f
f m b

a O U

O U i I s S

 

   
     

       

      

 
                 (E.13) 

  

  

FP,p

, ,PRM,C wl wl

, , ,
( , ) / 24 / 365 / 365

24 365 365 / 365 , , ,

i v s

i u s i iavg FP
u U i v i i i

i i

f
f m b

a O U

O U i I s S

 

   
     

       

      

 
                 (E.14) 

   PRM,c PRM avg,FP FP FP,p

, , , ,

( , )

, , ,i u s u i i i v s

u U i v

f E a Y f i I s S
 

                                         (E.15) 

    FP,PW FP,PD FP FP,p FP FP

, , , , , , , , , , ,

( , ) ( , )

/ 365, ( , ) , ,i j v s i k v s i v i v s i v i v

i j i k

f f X f D R i v s S
 

            (E.16) 

       FP,WD FP FP,PW FP FP

, , , , , , , , ,

( , )

/ 365, , , ,j k v s j v i j v s j v j v

j k i I

f X f D R j J v V s S
 

                  (E.17) 

   PRM,c imp PRM,c imp

, , , , , , , , , ,i u s u w i u s i w

u U u U

f q f Q i I w W s S
 

                                        (E.18) 

   PRM,c PRM PRM,c imp

, , , , , , ,i u s u i u s i

u U u U

f E f Q i I s S
 

                                                   (E.19) 

 PRM,P PRM,W PRM

, , , , , ,i u s u s u

i I

f f M u U s S


                                                            (E.20) 

 PRM,W PRM,W PRM,W PRM,WP

, , 0, , ,u u u i u s

i I

X R f f u U s S


                                    (E.21) 

PRM,c PRM,P PRM,P PRM,WP PRM,P

, , , , , , , , , , , ,i u s i u i u s i u s i uf X f f R i I u U s S                                (E.22)

 

 min
FP,PD FP,WD

,, , , , , , , ,

( , ) ( , )

, , , ,v ki k v s j k v s k nu s nu

i k j k nu NU

f f D k K v V s S 
  

                   (E.23) 

max , ,i iz Z i I                                                                                                            (E.24)

 
FP,p

, ,

( , )

, , ,i v s i

i v

f z i I s S


                                                                                          (E.25) 
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FP,PD FP,PW FP,WD PRM,C PRM,P PRM,W PRM,WP FP,p

, , , , , , , , , , , , , , , , , ,, , , , , , , , 0, , , , , , .i i k v s i j v s j k v s i u s i u s u s i u s i v sz f f f f f f f f i j k v u s    (E.26) 

Here, s S is defined as the set of scenarios, Prs
denotes the probability of a given scenario s 

occurring and is calculated by 
1

Pr ,s s S
S

  . The first stage variables are the determined 

capacities of the plants 
iz . The second stage variables are flow rates of the primary raw materials 

and the final products denoted by 
FP,PD

, , ,i k v sf , 
FP,PW

, , ,i j v sf , 
FP,WD

, , ,j k v sf , 
PRM,C

, ,i u sf , 
PRM,P

, ,i u sf , PRM,W

,u sf , 
PRM,WP

, ,i u sf , 

and  
FP,p

, ,i v sf . The uncertainty in demand is now represented through the expression 

 min

,, ,v kk nu s nu

nu NU

D 


  , where 
min

,v kD  represents the nominal values used in the deterministic 

formulation. ,s nu  are the uncertain parameters that is multiplied by the nominal demand value 

and ,k nu  is introduced so that the uncertain parameters are multiplied for the correct regional 

market locations. These   and   values are shown below in Table E.1.    

 

Table E.1   and   values for the industrial chemical supply chain – uncertain case A 

,'1's   1 0.4  

,'2's   1 0.3  

,'1'k  1, 1,2,3k   

,'1'k  0, 4,5k   

,'2'k  0, 1,2,3k   

,'2'k  1, 4,5k   
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Here, the uncertainty region can be defined by   : M   


    , where the uncertain 

parameters are denoted by  
1

2






 
  
 

, the nominal values are denoted by 
1

1


 
  
 

, 
1 0

0 1
M

 
  
 

, and 
0.4

0.3


 
  
 

.  

 

The uncertainty subregions are defined as   , , , , , ,:i s i s i s i s i s i sM   


    , where 

1,

,

2,

s

i s

s






 
  
 

, 
1,

,

2,

s

i s

s






 
  
 
 

, ,

1 0
,

0 1
i sM s

 
  
 

, and 
1

,

2

,i s s





 
  
 

. 

 

 

 

E.2 Adjustable Robust Scenario Formulation (AARS_IN) 

 

Formulation (AARS) is a hybrid of formulation (S) and (AAR). The second stage variables here 

are now replaced by affine functions, in which 
FP,PD

, , ,i k v sf is replaced by 
FP,PD FP,PD

, , , , , , , ,i k v s nu s nu i k v s    , 

FP,PW

, , ,i j v sf  is replaced by 
FP,PW FP,PW

, , , , , , , ,i j v s nu s nu i j v s    , 
FP,WD

, , ,j k v sf  is replaced by 
FP,WD FP,WD

, , , , , , , ,j k v s nu s nu j k v s    ,

PRM,C

, ,i u sf is replaced by 
PRM,c PRM,c

, , , , , ,i u s nu s nu i u s    , 
PRM,P

, ,i u sf  is replaced by 
PRM,P PRM,P

, , , , , ,i u s nu s nu i u s    , 

PRM,W

,u sf is replaced by PRM,W PRM,W

, , , ,u s nu s nu u s    , 
PRM,WP

, ,i u sf is replaced by 
PRM,WP PRM,WP

, , , , , ,i u s nu s nu i u s   

and 
FP,p

, ,i v sf is replaced by 
FP,p FP,p

, , , , , ,i v s nu s nu i v s    . 

 

The intermediate formulation (AARS) can be expressed through a method shown in Appendix B. 

Once Proposition 1 has been applied to the constraints containing an optimization expression, 

formulation (AARS_IN) is given as 
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   inc

, ,max Pr Revenue TC 1s i s i s i

i I s S

r
 

   
                                                         (E.27) 

subject to 

FP,PD FP,PD FP

, , , , , , , , , ,

( , )

FP,PW FP,PW FP

, , , , , , , , ,

( , )

Revenue  = 

ˆ , , ,

i s i k v s nu s nu i k v s k v

i k v V nu NU

i j v s nu s nu i j v s j v

i j v V nu NU

P

P i I s S

 

 

  

  

  
     

  

  
        

  

  

  

                              (E.28) 

fix cap fr du I PRM RM2 RM3 waste OPVC

, , , , , , , , ,TC  = ,

, ,

i s i i i s i s i s i s i s i s i s i sc c c c c c c c c c

i I s S
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cap cap , ,i ic z C i I                                                                                                      (E.30) 
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               (E.39) 

where, 
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             (E.40) 

where, 
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 PRM,c PRM avg,FP FP FP,p

, , , , , ,

( , )

0, , , ,i u s nu u i i i v s nu

u U i v

E a Y i I s S nu NU
 

                     (E.41) 



 

123 
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   

 

 

1 PRM,P PRM,W

, , , , , , ,

1

PRM,P PRM,W PRM

, , , , , ,

PRM,P PRM,W

, , ,

, , ,

T

s nu s nu i u s nu u s nu

i I

i u s nu u s nu s nu u

nu NU i I

i u s u s

i I

M

M u U s S





 





 



  
     

  
 

         
  
 
  
 
 



 



          (E.47) 

 

   

 

 

1 PRM,W PRM,WP

, , , , , , ,

1

PRM,W PRM,W PRM,W PRM,WP

, , , , , ,

PRM,W PRM,WP

, , ,

0,

, ,

T

s nu s nu u s nu i u s nu

i I

u u u s nu i u s nu s nu

nu NU i I

u s i u s

i I

M

X R

u U s S





 





 



  
       

  
 

          
  
 
  
 
 

 



 



       (E.48) 

 



 

125 

 

 

   

 

1 PRM,c PRM,P PRM,WP

, , , , , , , , , , ,
1

PRM,c PRM,P PRM,WP PRM,P PRM,P

, , , , , , , , , , , ,

PRM,c PRM,P PRM,WP

, , , , , , ,

,

,

T

s nu s nu i u s nu i u s nu i u s nu

i u s nu i u s nu i u s nu s nu i u i u

nu NU

i u s nu i u s i u s

M

X R

i I u





  





      
 
 
      

 
   
 

 



, ,U s S

    (E.49)

 

 

 

 

1 FP,PD FP,WD min

, , , , , , , , , , , ,

( , ) ( , )
1

FP,PD FP,WD min

, , , , , , , , , , ,

( , ) ( , )

FP,PD FP,WD

, , , , , ,1 3

T

s nu s nu i k v s nu j k v s nu k v k nu

i k j k

i k v s nu j k v s nu k v k nu s nu

i k j k

i k v s j k v s

M D

D

 

 

 



 

 

  
         
  


 
       
 

 



 

  0,

, , ,

nu NU

k K v V s S











 
 
 



  


   (E.50) 
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Here constraints (E.52)-(E.59) are to ensure that the affine functions for the second stage 

variables are non-negative. The values for ,s nu and  1

,

T

s nuM 
 are shown in Table E.2. 

Table E.2 ,s nu and  1

,

T

s nuM 
values for the industrial supply chain – uncertain case A 

,'1's  
1, s   

,'2's  
2 , s   

 1

,'1'

T

sM 
 1, s  

 1

,'2'

T

sM 
 1, s  
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Appendix F 

Industrial Chemical Supply Chain Case Study - Parameters 

Tables F.1 to F.35 provide the parameter values used for the industrial chemical supply chain 

case study problem. The capacity cost (
capC ) is a scalar set to $1500 $/t and the transfer price 

rate ( tpr ) is 96.00%.  

 

 

Table F.1 Income tax rates ( inc

ir ) 

Plant 1 2 3 4 5 

Income Tax 

Rate 
10.0% 30.0% 30.0% 30.0% 2.5% 

 

Table F.2 Duty rates (
du

,i kr ) from plants to regional markets 

Ship From / Ship To Region1 Region2 Region3 Region4 Region5 

PLANT1 2.5% 6.5% 0.0% 1.2% 0.0% 

PLANT2 2.5% 6.5% 0.0% 1.2% 0.0% 

PLANT3 2.5% 6.5% 0.0% 1.2% 0.0% 

PLANT4 2.5% 6.5% 2.5% 1.2% 0.0% 

PLANT5 1.8% 0.0% 0.6% 1.2% 6.0% 

 

Table F.3 Estimated duty rates (
du

,î jr ) from plants to regional warehouses 

Ship From / Ship To Region1 Region2 Region3 Region4 Region5 

PLANT1 2.5% 6.5% 0.0% 1.2% 0.0% 

PLANT2 2.5% 6.5% 0.0% 1.2% 0.0% 

PLANT3 2.5% 6.5% 0.0% 1.2% 0.0% 

PLANT4 2.5% 6.5% 2.5% 1.2% 0.0% 

PLANT5 1.8% 0.0% 0.6% 1.2% 6.0% 

 

 

Table F.4 Maximum allowable capacities (
max

iZ ) 

Plant 1 2 3 4 5 

Capacity (t) 12,000,000 7,600,000 5,600,000 4,000,000 7,200,000 
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Table F.5 RM2 to PRM grade ratio (
RM2

,i uq ) 

PRM NAME PLANT1 PLANT2 PLANT3 PLANT4 PLANT5 

PRM-1 0.25 0.23 0.21 0.22 0.25 

PRM-2 0.25 0.23 0.21 0.22 0.25 

PRM-3 0.25 0.23 0.21 0.22 0.25 

PRM-4 0.25 0.23 0.21 0.22 0.25 

PRM-5 0.25 0.23 0.21 0.22 0.25 

PRM-6 0.25 0.23 0.21 0.22 0.25 

PRM-7 0.24 0.23 0.20 0.21 0.25 

PRM-8 0.25 0.23 0.21 0.22 0.25 

PRM-9 0.24 0.22 0.20 0.21 0.25 

PRM-10 0.25 0.23 0.20 0.22 0.25 

PRM-11 0.24 0.22 0.20 0.21 0.24 

PRM-12 0.24 0.23 0.20 0.21 0.25 

PRM-13 0.25 0.23 0.21 0.22 0.25 

PRM-14 0.10 0.10 0.10 0.10 0.10 

PRM-15 0.24 0.22 0.20 0.21 0.24 

PRM-16 0.22 0.21 0.19 0.20 0.23 

PRM-17 0.25 0.23 0.21 0.22 0.25 

PRM-18 0.25 0.23 0.20 0.22 0.25 

PRM-19 0.24 0.23 0.20 0.21 0.25 

PRM-20 0.24 0.22 0.20 0.21 0.24 

PRM-21 0.25 0.23 0.21 0.22 0.25 

PRM-22 0.25 0.23 0.21 0.22 0.25 

PRM-23 0.25 0.23 0.21 0.22 0.25 

PRM-24 0.24 0.22 0.20 0.21 0.24 

PRM-25 0.25 0.23 0.21 0.22 0.25 

PRM-26 0.23 0.21 0.19 0.20 0.23 

PRM-27 0.23 0.22 0.19 0.20 0.24 

PRM-28 0.22 0.21 0.19 0.20 0.23 

PRM-29 0.23 0.21 0.19 0.20 0.23 

PRM-30 0.23 0.22 0.19 0.20 0.24 

PRM-31 0.22 0.21 0.19 0.19 0.23 

PRM-32 0.23 0.21 0.19 0.20 0.23 

PRM-33 0.23 0.21 0.19 0.20 0.23 

PRM-34 0.22 0.21 0.19 0.19 0.23 

PRM-35 0.22 0.21 0.19 0.20 0.23 

PRM-36 0.22 0.21 0.19 0.20 0.23 

PRM-37 0.22 0.21 0.19 0.20 0.23 

PRM-38 0.22 0.21 0.18 0.19 0.23 

PRM-39 0.22 0.21 0.19 0.19 0.23 

PRM-40 0.00 0.00 0.00 0.00 0.00 

PRM-41 0.23 0.21 0.19 0.20 0.23 

PRM-42 0.22 0.21 0.19 0.20 0.23 

PRM-43 0.22 0.21 0.19 0.20 0.23 

PRM-44 0.23 0.21 0.19 0.20 0.23 

PRM-45 0.22 0.21 0.18 0.19 0.23 

PRM-46 0.22 0.21 0.18 0.19 0.23 

PRM-47 0.22 0.21 0.18 0.19 0.23 

PRM-48 0.23 0.21 0.19 0.20 0.23 

PRM-49 0.21 0.20 0.18 0.18 0.21 

PRM-50 0.23 0.21 0.19 0.20 0.23 
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PRM-51 0.23 0.21 0.19 0.20 0.23 

PRM-52 0.17 0.16 0.14 0.15 0.17 

PRM-53 0.22 0.21 0.18 0.19 0.22 

PRM-54 0.23 0.21 0.19 0.20 0.23 

PRM-55 0.21 0.20 0.18 0.18 0.21 

 

 

Table F.6 RM3 to PRM grade ratio (
RM3

,i uq ) 

PRM NAME PLANT1 PLANT2 PLANT3 PLANT4 PLANT5 

PRM-1 0.11 0.11 0.15 0.13 0.11 

PRM-2 0.12 0.12 0.15 0.14 0.12 

PRM-3 0.13 0.13 0.17 0.16 0.14 

PRM-4 0.13 0.13 0.17 0.16 0.14 

PRM-5 0.14 0.14 0.18 0.17 0.14 

PRM-6 0.13 0.13 0.17 0.16 0.13 

PRM-7 0.12 0.12 0.16 0.15 0.12 

PRM-8 0.15 0.15 0.18 0.18 0.15 

PRM-9 0.10 0.10 0.14 0.12 0.09 

PRM-10 0.19 0.18 0.24 0.23 0.19 

PRM-11 0.17 0.16 0.21 0.20 0.17 

PRM-12 0.17 0.17 0.21 0.21 0.18 

PRM-13 0.19 0.19 0.25 0.23 0.19 

PRM-14 0.70 0.60 0.66 0.80 0.70 

PRM-15 0.22 0.21 0.27 0.27 0.22 

PRM-16 0.44 0.39 0.54 0.51 0.44 

PRM-17 0.30 0.28 0.34 0.35 0.30 

PRM-18 0.22 0.21 0.26 0.27 0.22 

PRM-19 0.21 0.20 0.27 0.25 0.21 

PRM-20 0.25 0.23 0.29 0.29 0.25 

PRM-21 0.24 0.23 0.30 0.29 0.25 

PRM-22 0.24 0.22 0.29 0.28 0.24 

PRM-23 0.24 0.22 0.29 0.28 0.24 

PRM-24 0.22 0.21 0.27 0.26 0.29 

PRM-25 0.30 0.28 0.34 0.35 0.30 

PRM-26 0.37 0.33 0.43 0.42 0.39 

PRM-27 0.31 0.29 0.38 0.37 0.38 

PRM-28 0.41 0.36 0.49 0.47 0.42 

PRM-29 0.36 0.33 0.43 0.42 0.43 

PRM-30 0.37 0.34 0.45 0.43 0.37 

PRM-31 0.47 0.42 0.57 0.54 0.52 

PRM-32 0.41 0.36 0.49 0.47 0.48 

PRM-33 0.40 0.36 0.48 0.46 0.47 

PRM-34 0.46 0.41 0.55 0.53 0.52 

PRM-35 0.42 0.38 0.51 0.49 0.49 

PRM-36 0.44 0.39 0.54 0.51 0.44 

PRM-37 0.42 0.37 0.49 0.48 0.44 

PRM-38 0.44 0.39 0.53 0.51 0.49 

PRM-39 0.45 0.40 0.55 0.52 0.45 

PRM-40 0.00 0.00 0.00 0.00 0.00 

PRM-41 0.38 0.34 0.47 0.44 0.38 

PRM-42 0.46 0.41 0.56 0.53 0.52 

PRM-43 0.44 0.39 0.54 0.51 0.44 
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PRM-44 0.39 0.35 0.48 0.45 0.39 

PRM-45 0.48 0.42 0.57 0.55 0.53 

PRM-46 0.48 0.42 0.57 0.55 0.53 

PRM-47 0.48 0.42 0.57 0.55 0.49 

PRM-48 0.44 0.39 0.53 0.51 0.44 

PRM-49 0.50 0.45 0.59 0.58 0.58 

PRM-50 0.39 0.35 0.48 0.45 0.39 

PRM-51 0.41 0.36 0.49 0.47 0.48 

PRM-52 0.38 0.33 0.38 0.44 0.37 

PRM-53 0.49 0.43 0.60 0.56 0.49 

PRM-54 0.39 0.35 0.47 0.45 0.46 

PRM-55 0.52 0.46 0.61 0.60 0.57 

 
 

 

Table F.7 Waste to PRM grade ratio ( waste

uq ) 

PRM 

NAME 

WASTE 

FACTOR 

PRM-1 4.00% 

PRM-2 4.40% 

PRM-3 5.00% 

PRM-4 5.00% 

PRM-5 5.00% 

PRM-6 5.50% 

PRM-7 6.50% 

PRM-8 6.50% 

PRM-9 5.80% 

PRM-10 11.50% 

PRM-11 9.20% 

PRM-12 9.30% 

PRM-13 10.30% 

PRM-14 4.31% 

PRM-15 16.00% 

PRM-16 40.72% 

PRM-17 16.60% 

PRM-18 11.86% 

PRM-19 14.70% 

PRM-20 15.00% 

PRM-21 14.90% 

PRM-22 14.70% 

PRM-23 14.70% 

PRM-24 14.23% 

PRM-25 16.60% 

PRM-26 31.70% 

PRM-27 25.00% 

PRM-28 36.30% 

PRM-29 29.59% 

PRM-30 30.22% 

PRM-31 42.10% 

PRM-32 34.70% 

PRM-33 33.70% 

PRM-34 40.00% 

PRM-35 36.20% 
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PRM-36 40.24% 

PRM-37 36.50% 

PRM-38 40.00% 

PRM-39 41.90% 

PRM-40 34.00% 

PRM-41 34.63% 

PRM-42 40.20% 

PRM-43 40.72% 

PRM-44 35.00% 

PRM-45 43.00% 

PRM-46 43.00% 

PRM-47 43.00% 

PRM-48 38.20% 

PRM-49 48.00% 

PRM-50 35.00% 

PRM-51 34.70% 

PRM-52 52.00% 

PRM-53 46.36% 

PRM-54 32.95% 

PRM-55 50.00% 

 

 

Table F.8 Impurity content (
imp

,u wq ) in PRM 

PRM 

grade / 

Impurity 

1 2 3 4 5 6 7 8 9 10 11 12 13 

1 0.00% 0.76% 0.00% 0.51% 0.01% 0.14% 0.03% 0.05% 0.34% 0.02% 0.78% 0.26% 0.33% 

2 0.00% 0.42% 0.00% 0.30% 0.02% 0.13% 0.01% 0.03% 0.37% 0.02% 1.15% 0.25% 1.00% 

3 0.00% 2.88% 0.00% 0.40% 0.03% 0.13% 0.04% 0.03% 0.36% 0.04% 1.30% 0.25% 0.80% 

4 0.00% 2.19% 0.00% 0.33% 0.04% 0.05% 0.08% 0.03% 0.32% 0.10% 1.06% 0.11% 0.02% 

5 0.00% 0.64% 0.00% 0.90% 0.00% 0.10% 0.05% 0.05% 0.00% 0.01% 2.00% 0.38% 1.00% 

6 0.00% 2.50% 0.00% 0.40% 0.04% 0.12% 0.04% 0.12% 0.38% 0.06% 1.20% 0.18% 0.65% 

7 0.00% 0.66% 0.00% 0.11% 0.00% 0.21% 0.05% 0.06% 0.21% 0.04% 0.72% 0.58% 1.08% 

8 0.00% 0.66% 0.00% 0.45% 0.09% 0.11% 0.04% 0.04% 0.30% 0.02% 1.70% 0.20% 1.80% 

9 0.00% 2.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

10 0.00% 5.50% 0.00% 1.10% 0.07% 0.18% 0.40% 1.30% 0.27% 0.03% 1.40% 0.21% 0.20% 

11 11.64% 4.40% 0.00% 1.00% 0.04% 0.13% 0.39% 1.10% 0.23% 0.03% 1.15% 0.16% 0.15% 

12 0.00% 1.80% 0.00% 0.38% 0.02% 0.11% 0.03% 0.05% 0.36% 0.04% 1.95% 0.17% 2.30% 

13 0.00% 8.30% 0.00% 1.40% 0.10% 0.08% 1.15% 0.51% 0.33% 0.00% 1.00% 0.13% 0.11% 

14 0.00% 0.84% 0.00% 0.22% 0.02% 0.15% 0.04% 0.03% 0.38% 0.05% 0.61% 0.62% 0.93% 

15 0.00% 8.74% 0.00% 0.67% 0.15% 0.18% 0.34% 1.37% 0.12% 0.13% 1.30% 0.46% 0.09% 

16 0.00% 36.02% 0.00% 0.84% 0.03% 0.23% 0.36% 1.05% 0.13% 0.07% 0.64% 0.25% 0.10% 

17 0.00% 8.20% 0.00% 1.90% 0.32% 0.17% 5.10% 0.27% 0.04% 0.00% 1.70% 0.29% 0.02% 

18 0.00% 4.24% 0.00% 1.79% 0.06% 0.23% 0.12% 0.04% 0.27% 0.07% 3.08% 0.24% 0.24% 

19 0.00% 9.76% 0.00% 0.76% 0.02% 0.21% 0.78% 1.65% 0.17% 0.06% 0.76% 0.29% 0.13% 

20 10.00% 6.00% 0.00% 1.60% 0.08% 0.65% 1.30% 1.20% 0.15% 0.05% 2.00% 0.35% 0.25% 

21 0.00% 11.20% 0.00% 1.10% 0.15% 0.16% 0.85% 1.77% 0.14% 0.00% 1.70% 0.23% 0.18% 

22 0.00% 11.70% 0.00% 1.00% 0.15% 0.16% 0.87% 1.72% 0.15% 0.01% 1.35% 0.23% 0.22% 

23 0.00% 11.70% 0.00% 1.00% 0.15% 0.16% 0.87% 1.72% 0.15% 0.01% 1.35% 0.23% 0.22% 

24 0.00% 7.87% 0.00% 1.15% 0.04% 0.18% 0.06% 0.11% 0.33% 0.21% 0.83% 0.22% 0.23% 

25 0.00% 8.20% 0.00% 1.90% 0.32% 0.17% 5.10% 0.27% 0.04% 0.00% 1.70% 0.29% 0.02% 

26 0.00% 20.00% 0.00% 1.40% 0.09% 0.29% 0.40% 0.70% 0.18% 0.20% 1.36% 0.32% 0.24% 
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27 0.00% 20.00% 0.00% 0.85% 0.04% 0.07% 0.14% 0.75% 0.24% 0.19% 0.60% 0.10% 0.40% 

28 0.00% 27.30% 0.00% 0.72% 0.04% 0.37% 0.22% 0.87% 0.16% 0.09% 1.50% 0.36% 0.55% 

29 0.00% 20.94% 0.00% 1.67% 0.02% 0.10% 0.13% 0.61% 0.20% 0.06% 1.04% 0.21% 0.52% 

30 0.00% 23.37% 0.00% 2.63% 0.06% 0.32% 0.19% 0.62% 0.19% 0.05% 1.37% 0.16% 0.06% 

31 0.00% 37.69% 0.00% 0.87% 0.02% 0.07% 0.10% 1.39% 0.15% 0.06% 0.67% 0.11% 0.46% 

32 0.00% 28.60% 0.00% 1.30% 0.03% 0.06% 0.19% 1.03% 0.13% 0.16% 0.75% 0.08% 0.27% 

33 0.00% 26.00% 0.00% 1.00% 0.12% 0.77% 0.33% 1.00% 0.13% 0.14% 0.90% 0.70% 0.09% 

34 0.00% 31.50% 0.00% 1.30% 0.02% 0.17% 0.21% 1.00% 0.19% 0.08% 1.60% 0.20% 0.70% 

35 0.00% 30.40% 0.00% 1.00% 0.05% 0.21% 0.72% 0.30% 0.08% 0.14% 0.95% 0.26% 0.11% 

36 0.00% 35.45% 0.00% 1.06% 0.02% 0.04% 0.54% 0.39% 0.28% 0.08% 1.05% 0.06% 0.12% 

37 0.00% 24.90% 0.00% 1.33% 0.08% 0.70% 0.60% 0.86% 0.13% 0.18% 1.35% 0.66% 0.40% 

38 0.00% 33.40% 0.00% 0.84% 0.01% 0.06% 0.12% 1.15% 0.16% 0.04% 0.57% 0.15% 0.10% 

39 0.00% 37.60% 0.00% 0.46% 0.11% 0.12% 0.23% 0.95% 0.09% 0.09% 0.90% 0.32% 0.06% 

40 0.00% 21.74% 2.90% 2.20% 0.03% 0.12% 0.15% 0.48% 0.19% 0.14% 4.05% 0.18% 1.38% 

41 0.00% 27.95% 0.00% 0.80% 0.11% 0.68% 0.37% 0.79% 0.13% 0.08% 0.59% 0.60% 0.03% 

42 0.00% 36.50% 0.00% 0.90% 0.02% 0.06% 0.12% 1.45% 0.15% 0.06% 0.85% 0.08% 0.46% 

43 0.00% 36.02% 0.00% 0.84% 0.03% 0.23% 0.36% 1.05% 0.13% 0.07% 0.64% 0.25% 0.10% 

44 0.00% 29.98% 0.00% 0.96% 0.02% 0.28% 0.60% 0.86% 0.12% 0.07% 0.72% 0.23% 0.06% 

45 0.00% 36.30% 0.00% 0.82% 0.02% 0.42% 0.33% 1.55% 0.19% 0.06% 0.80% 0.40% 0.30% 

46 0.00% 36.30% 0.00% 0.82% 0.02% 0.42% 0.33% 1.55% 0.19% 0.06% 0.80% 0.40% 0.30% 

47 0.00% 34.50% 0.00% 1.10% 0.07% 1.25% 1.40% 0.90% 0.10% 0.13% 0.76% 0.30% 0.14% 

48 0.00% 32.30% 0.00% 0.88% 0.08% 0.09% 0.24% 0.88% 0.18% 0.03% 2.37% 0.15% 0.04% 

49 0.00% 36.10% 0.00% 0.85% 0.08% 0.15% 0.54% 0.33% 0.13% 0.14% 0.62% 0.19% 0.15% 

50 0.00% 29.98% 0.00% 0.96% 0.02% 0.28% 0.60% 0.86% 0.12% 0.07% 0.72% 0.23% 0.06% 

51 0.00% 28.60% 0.00% 1.30% 0.03% 0.06% 0.19% 1.03% 0.13% 0.16% 0.75% 0.08% 0.27% 

52 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

53 0.00% 43.65% 0.00% 0.48% 0.01% 0.13% 0.49% 1.04% 0.11% 0.04% 0.48% 0.18% 0.08% 

54 0.00% 27.05% 0.00% 1.22% 0.03% 0.06% 0.18% 0.98% 0.15% 0.16% 0.72% 0.08% 0.29% 

55 0.00% 36.30% 0.00% 0.82% 0.02% 0.42% 0.33% 1.55% 0.19% 0.06% 0.80% 0.40% 0.30% 

 

Table F.8 Continued 
PRM 

grade / 

Impurity 

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

1 0.00% 0.02% 0.0013% 0.0021% 0.0000% 0.0900% 0.0018% 0.0005% 0.0023% 0.0096% 0.0246% 0.0000% 0.0018% 0.0044% 0.0000% 

2 0.00% 0.03% 0.0018% 0.0044% 0.0200% 0.1400% 0.0025% 0.0008% 0.0070% 0.0250% 0.0218% 0.0000% 0.0017% 0.0000% 0.0000% 

3 0.00% 0.03% 0.0012% 0.0038% 0.0200% 0.1400% 0.0025% 0.0003% 0.0070% 0.0180% 0.0251% 0.0000% 0.0017% 0.0000% 0.0000% 

4 0.00% 0.02% 0.0039% 0.0018% 0.0000% 0.3800% 0.0658% 0.0004% 0.0003% 0.0027% 0.0224% 0.0000% 0.0017% 0.0068% 0.0000% 

5 0.00% 0.00% 0.0072% 0.0045% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 

6 0.00% 0.03% 0.0025% 0.0030% 0.0200% 0.0200% 0.0125% 0.0025% 0.0200% 0.0093% 0.0311% 0.0000% 0.0018% 0.0007% 0.0000% 

7 0.00% 0.03% 0.0031% 0.0030% 0.0000% 0.0000% 0.1665% 0.0010% 0.0018% 0.0023% 0.0053% 0.0000% 0.0008% 0.0010% 0.0000% 

8 0.00% 0.03% 0.0055% 0.0055% 0.0200% 0.1800% 0.0030% 0.0008% 0.0128% 0.0135% 0.0214% 0.0078% 0.0017% 0.0003% 0.0000% 

9 0.00% 0.00% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 

10 0.00% 0.03% 0.0300% 0.0010% 0.0000% 0.0000% 0.2000% 0.0010% 0.0000% 0.0040% 0.0210% 0.0000% 0.0019% 0.0004% 0.0000% 

11 0.00% 0.02% 0.0130% 0.0013% 0.0000% 0.2500% 0.4500% 0.0001% 0.0017% 0.0025% 0.0000% 0.0000% 0.0028% 0.0020% 0.0000% 

12 0.00% 0.02% 0.0080% 0.0060% 0.0000% 0.3000% 0.0085% 0.0063% 0.0285% 0.0550% 0.0247% 0.0000% 0.0018% 0.0010% 0.0000% 

13 0.00% 0.03% 0.0120% 0.0005% 0.0000% 0.0000% 0.0660% 0.0000% 0.0000% 0.0000% 0.0206% 0.0000% 0.0017% 0.0000% 0.0000% 

14 0.00% 0.02% 0.0047% 0.0027% 0.0200% 0.1400% 0.0100% 0.0041% 0.0257% 0.0206% 0.0258% 0.0000% 0.0018% 0.0003% 0.0000% 

15 0.00% 0.00% 0.0053% 0.0025% 0.0000% 0.0000% 0.0114% 0.0049% 0.0143% 0.0006% 0.0318% 0.0000% 0.0022% 0.0330% 0.0000% 

16 0.00% 0.02% 0.0096% 0.0006% 0.0000% 0.0000% 0.0000% 0.0039% 0.0339% 0.0059% 0.0156% 0.0000% 0.0020% 0.0155% 0.0000% 

17 0.00% 0.02% 0.0030% 0.0005% 0.0100% 0.0700% 0.0370% 0.0013% 0.0048% 0.0005% 0.0206% 0.0000% 0.0017% 0.0005% 0.0000% 

18 0.00% 0.00% 0.0223% 0.0016% 0.0000% 0.0000% 0.0243% 0.0110% 0.0787% 0.0124% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 

19 0.00% 0.04% 0.0076% 0.0012% 0.0000% 0.0000% 0.0000% 0.0029% 0.0271% 0.0083% 0.0223% 0.0000% 0.0033% 0.0241% 0.0000% 
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20 0.00% 0.03% 0.0160% 0.0025% 0.0000% 0.2000% 0.3000% 0.0010% 0.0000% 0.0040% 0.0210% 0.0000% 0.0019% 0.0004% 0.0000% 

21 0.00% 0.02% 0.0010% 0.0010% 0.0100% 0.1000% 0.0600% 0.0005% 0.0000% 0.0004% 0.0210% 0.0210% 0.0018% 0.0001% 0.0010% 

22 0.00% 0.02% 0.0012% 0.0005% 0.0100% 0.1200% 0.0680% 0.0009% 0.0027% 0.0011% 0.0197% 0.0210% 0.0017% 0.0003% 0.0010% 

23 0.00% 0.02% 0.0012% 0.0005% 0.0100% 0.1200% 0.0680% 0.0009% 0.0027% 0.0011% 0.0197% 0.0210% 0.0017% 0.0003% 0.0010% 

24 0.00% 0.03% 0.0240% 0.0020% 0.2000% 0.7300% 0.0126% 0.0200% 0.0881% 0.0132% 0.0226% 0.0150% 0.0019% 0.0037% 0.0000% 

25 0.00% 0.02% 0.0030% 0.0005% 0.0100% 0.0700% 0.0370% 0.0013% 0.0048% 0.0005% 0.0206% 0.0000% 0.0017% 0.0005% 0.0000% 

26 0.02% 0.02% 0.0140% 0.0020% 0.0000% 0.8000% 0.0600% 0.0155% 0.0630% 0.0200% 0.0220% 0.0000% 0.0000% 0.0190% 0.0163% 

27 0.00% 0.02% 0.0030% 0.0020% 0.2000% 0.7000% 0.0090% 0.0060% 0.0520% 0.0135% 0.0200% 0.0610% 0.0020% 0.0085% 0.0010% 

28 0.00% 0.02% 0.0115% 0.0018% 0.0000% 0.6300% 0.0210% 0.0195% 0.0732% 0.0130% 0.0154% 0.0000% 0.0022% 0.0187% 0.0000% 

29 0.00% 0.03% 0.0369% 0.0017% 0.2000% 0.6000% 0.0342% 0.0101% 0.0784% 0.0093% 0.0195% 0.0200% 0.0020% 0.0111% 0.0000% 

30 0.00% 0.00% 0.0175% 0.0010% 0.0000% 0.0000% 0.0228% 0.0110% 0.1000% 0.0078% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 

31 0.00% 0.00% 0.0043% 0.0009% 0.2000% 0.0200% 0.0161% 0.0025% 0.0291% 0.0071% 0.0146% 0.0000% 0.0022% 0.0268% 0.0030% 

32 0.01% 0.02% 0.0030% 0.0015% 0.2000% 0.6500% 0.0070% 0.0050% 0.0500% 0.0085% 0.0160% 0.0000% 0.0022% 0.0150% 0.0010% 

33 0.01% 0.02% 0.0045% 0.0019% 0.2000% 0.6000% 0.0100% 0.0117% 0.0900% 0.0075% 0.0163% 0.0150% 0.0024% 0.0180% 0.0010% 

34 0.00% 0.00% 0.0420% 0.0014% 0.2000% 0.3746% 0.0101% 0.0150% 0.1008% 0.0093% 0.0166% 0.0240% 0.0024% 0.0285% 0.0028% 

35 0.00% 0.02% 0.0210% 0.0018% 0.2000% 0.6000% 0.2000% 0.0026% 0.0300% 0.0060% 0.0200% 0.0000% 0.0030% 0.0250% 0.0000% 

36 0.00% 0.02% 0.0122% 0.0021% 0.0000% 0.0000% 0.0461% 0.0034% 0.0340% 0.0074% 0.0162% 0.0000% 0.0019% 0.0283% 0.0000% 

37 0.01% 0.01% 0.0165% 0.0025% 0.0000% 0.8000% 0.0210% 0.0115% 0.0500% 0.0125% 0.0180% 0.0000% 0.0025% 0.0229% 0.0000% 

38 0.00% 0.02% 0.0170% 0.0015% 0.2000% 0.1000% 0.0216% 0.0065% 0.0560% 0.0076% 0.0159% 0.0000% 0.0023% 0.0114% 0.0000% 

39 0.00% 0.00% 0.0037% 0.0017% 0.0000% 0.0000% 0.0079% 0.0034% 0.0099% 0.0004% 0.0220% 0.0000% 0.0015% 0.0228% 0.0000% 

40 0.00% 0.14% 0.0450% 0.0030% 0.0000% 0.0000% 0.0190% 0.0028% 0.0238% 0.0061% 0.0000% 0.0000% 0.0000% 0.0205% 0.0000% 

41 0.00% 0.00% 0.0055% 0.0017% 0.0000% 0.0000% 0.0000% 0.0099% 0.0000% 0.0078% 0.0000% 0.0000% 0.0000% 0.0154% 0.0000% 

42 0.00% 0.00% 0.0045% 0.0015% 0.2000% 0.4000% 0.0120% 0.0020% 0.0300% 0.0070% 0.0146% 0.0000% 0.0022% 0.0280% 0.0030% 

43 0.00% 0.02% 0.0096% 0.0006% 0.0000% 0.0000% 0.0000% 0.0039% 0.0339% 0.0059% 0.0156% 0.0000% 0.0020% 0.0155% 0.0000% 

44 0.01% 0.01% 0.0032% 0.0008% 0.0000% 0.0000% 0.0145% 0.0035% 0.0220% 0.0095% 0.0315% 0.0000% 0.0035% 0.0185% 0.0000% 

45 0.00% 0.00% 0.0185% 0.0015% 0.2000% 0.0200% 0.0010% 0.0055% 0.0550% 0.0105% 0.0140% 0.0000% 0.0026% 0.0230% 0.0010% 

46 0.00% 0.00% 0.0185% 0.0015% 0.2000% 0.0200% 0.0010% 0.0055% 0.0550% 0.0105% 0.0140% 0.0000% 0.0026% 0.0230% 0.0010% 

47 0.01% 0.02% 0.0100% 0.0016% 0.0000% 0.5700% 0.0121% 0.0089% 0.0324% 0.0100% 0.0143% 0.0000% 0.0000% 0.0237% 0.0000% 

48 0.00% 0.02% 0.0113% 0.0000% 0.0000% 0.0000% 0.0059% 0.0042% 0.0284% 0.0360% 0.0100% 0.0000% 0.0010% 0.0200% 0.0000% 

49 0.01% 0.05% 0.0159% 0.0010% 0.2000% 1.0000% 0.0136% 0.0027% 0.0173% 0.0014% 0.0058% 0.0188% 0.0084% 0.0402% 0.0030% 

50 0.01% 0.01% 0.0032% 0.0008% 0.0000% 0.0000% 0.0145% 0.0035% 0.0220% 0.0095% 0.0315% 0.0000% 0.0035% 0.0185% 0.0000% 

51 0.01% 0.02% 0.0030% 0.0015% 0.2000% 0.6500% 0.0070% 0.0050% 0.0500% 0.0085% 0.0160% 0.0000% 0.0022% 0.0150% 0.0010% 

52 0.00% 0.00% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 

53 0.00% 0.02% 0.0048% 0.0008% 0.0000% 0.0000% 0.0000% 0.0019% 0.0171% 0.0052% 0.0140% 0.0000% 0.0021% 0.0152% 0.0000% 

54 0.00% 0.02% 0.0030% 0.0016% 0.2000% 0.6590% 0.0074% 0.0052% 0.0504% 0.0094% 0.0167% 0.0110% 0.0022% 0.0138% 0.0010% 

55 0.00% 0.00% 0.0185% 0.0015% 0.2000% 0.0200% 0.0010% 0.0055% 0.0550% 0.0105% 0.0140% 0.0000% 0.0026% 0.0230% 0.0010% 

 

Table F.8 Continued 
PRM 

grade / 

Impurity 

29 30 31 32 33 34 35 36 37 38 39 40 41 

1 6.58% 0.0034% 0.09% 0.07% 0.67% 43.42% 44.74% 0.00% 0.58% 0.04% 0.12% 0.01% 10.53% 

2 6.55% 0.0062% 0.05% 0.05% 1.37% 238.10% 88.10% 0.00% 0.00% 0.03% 0.08% 0.02% 8.93% 

3 0.95% 0.0050% 0.10% 0.10% 1.16% 27.78% 12.50% 0.00% 0.00% 0.07% 0.13% 0.03% 2.34% 

4 1.37% 0.0057% 0.15% 0.14% 0.34% 0.91% 14.61% 0.00% 0.31% 0.12% 0.17% 0.04% 5.02% 

5 7.81% 0.0117% 0.10% 0.05% 1.00% 156.25% 0.00% 0.00% 0.00% 0.05% 0.10% 0.00% 15.63% 

6 4.80% 0.0055% 0.20% 0.12% 1.03% 26.00% 15.20% 0.00% 0.03% 0.08% 0.24% 0.04% 6.40% 

7 8.33% 0.0061% 0.11% 0.06% 1.29% 163.64% 31.06% 0.00% 0.15% 0.06% 0.11% 0.00% 15.91% 

8 5.30% 0.0110% 0.16% 0.15% 2.10% 272.73% 45.45% 0.00% 0.04% 0.13% 0.18% 0.09% 11.36% 

9 0.00% 0.0000% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

10 22.35% 0.0310% 1.77% 0.49% 0.47% 3.64% 4.91% 0.00% 0.01% 0.53% 1.79% 0.08% 30.91% 

11 25.00% 0.0143% 1.53% 0.43% 0.38% 3.41% 5.23% 0.00% 0.05% 0.47% 1.53% 0.04% 33.86% 

12 2.78% 0.0140% 0.10% 0.08% 2.66% 127.78% 20.00% 0.01% 0.06% 0.06% 0.13% 0.02% 4.44% 
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13 6.14% 0.0125% 1.76% 1.27% 0.44% 1.33% 3.98% 0.00% 0.00% 1.39% 1.78% 0.11% 20.00% 

14 3.57% 0.0074% 0.09% 0.08% 1.30% 110.12% 44.64% 0.00% 0.04% 0.06% 0.11% 0.02% 7.74% 

15 15.67% 0.0078% 1.86% 0.53% 0.21% 0.99% 1.42% 0.01% 0.38% 0.58% 1.89% 0.18% 19.50% 

16 2.92% 0.0101% 1.44% 0.40% 0.23% 0.28% 0.36% 0.01% 0.04% 0.65% 0.04% 0.05% 3.90% 

17 3.29% 0.0035% 5.69% 5.44% 0.06% 0.24% 0.49% 0.00% 0.01% 6.50% 5.71% 0.38% 65.49% 

18 0.94% 0.0239% 0.22% 0.18% 0.51% 5.67% 6.37% 0.01% 0.00% 0.20% 0.22% 0.07% 3.73% 

19 16.86% 0.0087% 2.44% 0.82% 0.30% 1.30% 1.79% 0.00% 0.25% 0.93% 2.46% 0.02% 24.85% 

20 6.00% 0.0185% 2.58% 1.40% 0.40% 4.17% 2.50% 0.00% 0.01% 1.62% 2.60% 0.09% 41.67% 

21 15.80% 0.0020% 2.77% 1.02% 0.32% 1.61% 1.25% 0.00% 0.00% 1.18% 2.79% 0.18% 23.39% 

22 14.70% 0.0017% 2.74% 1.04% 0.37% 1.88% 1.28% 0.00% 0.00% 1.20% 2.76% 0.18% 22.14% 

23 14.70% 0.0017% 2.74% 1.04% 0.37% 1.88% 1.28% 0.00% 0.00% 1.20% 2.76% 0.18% 22.14% 

24 1.40% 0.0260% 0.21% 0.13% 0.56% 2.92% 4.19% 0.02% 0.05% 0.12% 0.24% 0.05% 2.16% 

25 3.29% 0.0035% 5.69% 5.44% 0.06% 0.24% 0.49% 0.00% 0.01% 6.50% 5.71% 0.38% 65.49% 

26 3.50% 0.0160% 1.19% 0.53% 0.42% 1.20% 0.90% 0.02% 0.10% 0.72% 1.23% 0.13% 5.50% 

27 3.75% 0.0050% 0.93% 0.20% 0.64% 2.00% 1.20% 0.01% 0.04% 0.23% 0.95% 0.05% 4.45% 

28 3.19% 0.0133% 1.13% 0.28% 0.71% 2.01% 0.59% 0.03% 0.07% 0.41% 1.15% 0.06% 3.99% 

29 2.90% 0.0386% 0.76% 0.17% 0.72% 2.47% 0.96% 0.01% 0.05% 0.21% 0.78% 0.03% 3.51% 

30 2.66% 0.0185% 0.87% 0.25% 0.26% 0.27% 0.82% 0.02% 0.00% 0.35% 0.87% 0.09% 3.45% 

31 3.68% 0.0052% 1.51% 0.14% 0.61% 1.21% 0.40% 0.00% 0.07% 0.22% 1.53% 0.04% 3.95% 

32 3.60% 0.0045% 1.25% 0.24% 0.40% 0.94% 0.45% 0.01% 0.05% 0.34% 1.27% 0.05% 4.27% 

33 3.85% 0.0064% 1.45% 0.48% 0.22% 0.35% 0.50% 0.02% 0.07% 0.68% 1.48% 0.18% 5.12% 

34 3.17% 0.0434% 1.23% 0.25% 0.89% 2.22% 0.62% 0.03% 0.09% 0.38% 1.25% 0.03% 3.84% 

35 0.99% 0.0228% 1.07% 0.79% 0.19% 0.36% 0.26% 0.00% 0.08% 1.20% 1.09% 0.07% 3.36% 

36 1.10% 0.0143% 0.94% 0.57% 0.40% 0.34% 0.79% 0.01% 0.08% 0.92% 0.96% 0.03% 2.61% 

37 3.45% 0.0190% 1.54% 0.71% 0.53% 1.61% 0.52% 0.02% 0.09% 1.07% 1.57% 0.13% 5.86% 

38 3.43% 0.0184% 1.27% 0.14% 0.26% 0.29% 0.48% 0.01% 0.03% 0.21% 1.29% 0.02% 3.77% 

39 2.52% 0.0054% 1.29% 0.36% 0.15% 0.16% 0.23% 0.01% 0.06% 0.58% 1.31% 0.18% 0.00% 

40 2.21% 0.0116% 2.37% 1.49% 0.24% 0.41% 0.29% 0.02% 0.07% 2.58% 2.39% 0.12% 6.67% 

41 2.83% 0.0072% 1.27% 0.48% 0.16% 0.11% 0.47% 0.02% 0.06% 0.73% 1.27% 0.17% 4.15% 

42 3.97% 0.0060% 1.59% 0.16% 0.61% 1.26% 0.41% 0.00% 0.08% 0.23% 1.61% 0.03% 4.30% 

43 2.92% 0.0101% 1.44% 0.40% 0.23% 0.28% 0.36% 0.01% 0.04% 0.65% 0.04% 0.05% 3.90% 

44 2.87% 0.0040% 1.48% 0.66% 0.18% 0.20% 0.40% 0.01% 0.06% 0.95% 1.52% 0.03% 4.87% 

45 4.29% 0.0200% 1.90% 0.36% 0.49% 0.83% 0.52% 0.01% 0.06% 0.61% 1.91% 0.03% 5.18% 

46 4.27% 0.0200% 1.90% 0.36% 0.49% 0.83% 0.52% 0.01% 0.06% 0.61% 1.91% 0.03% 5.18% 

47 2.61% 0.0116% 2.37% 1.49% 0.24% 0.41% 0.29% 0.02% 0.07% 2.58% 2.39% 0.12% 6.67% 

48 2.74% 0.0113% 1.20% 0.33% 0.21% 0.12% 0.54% 0.01% 0.06% 0.51% 1.21% 0.12% 3.48% 

49 0.90% 0.0169% 0.94% 0.63% 0.29% 0.42% 0.37% 0.01% 0.11% 1.18% 0.95% 0.15% 2.39% 

50 2.87% 0.0040% 1.48% 0.66% 0.18% 0.20% 0.40% 0.01% 0.06% 0.95% 1.52% 0.03% 4.87% 

51 3.60% 0.0045% 1.25% 0.24% 0.40% 0.94% 0.45% 0.01% 0.05% 0.34% 1.27% 0.05% 4.27% 

52 0.00% 0.0000% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

53 2.37% 0.0055% 1.54% 0.51% 0.19% 0.18% 0.25% 0.00% 0.03% 0.93% 0.03% 0.02% 3.49% 

54 3.63% 0.0046% 1.19% 0.23% 0.44% 1.13% 0.59% 0.01% 0.05% 0.32% 1.21% 0.05% 4.30% 

55 4.29% 0.0200% 1.90% 0.36% 0.49% 0.83% 0.52% 0.01% 0.06% 0.61% 1.91% 0.03% 5.18% 

 

Table F.9 Proportion of FP shipped from plant to the regional warehouse (
fr,PW

,i jq ) 

Shipped from RegWrhs1 RegWrhs2 RegWrhs3 RegWrhs4 RegWrhs5 

PLANT1 0.0% 0.0% 23.9% 43.5% 0.0% 

PLANT2 35.3% 7.7% 72.8% 56.4% 29.6% 

PLANT3 0.0% 0.0% 2.9% 0.2% 25.9% 

PLANT4 24.9% 10.1% 0.4% 0.0% 44.6% 

PLANT5 39.9% 82.1% 0.0% 0.0% 0.0% 
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Table F.10 Maximum impurity limit (
imp

,i wQ ) 

Impurity / 

Plant 

Plant1 Plant2 Plant3 Plant4 Plant5 

Impurity-1 100.0% 100.0% 100.0% 100.0% 100.0% 

Impurity-2 100.0% 100.0% 100.0% 100.0% 100.0% 

Impurity-3 100.0% 100.0% 100.0% 100.0% 100.0% 

Impurity-4 1.50% 1.20% 1.50% 1.50% 1.00% 

Impurity-5 0.21% 0.12% 0.10% 0.16% 0.08% 

Impurity-6 100.0% 0.45% 0.20% 0.25% 100.0% 

Impurity-7 1.00% 1.00% 1.10% 100.0% 0.35% 

Impurity-8 1.00% 100.00% 100.00% 100.00% 100.00% 

Impurity-9 100.0% 1.08% 100.0% 100.0% 100.0% 

Impurity-10 0.25% 0.10% 0.20% 0.20% 100.0% 

Impurity-11 1.50% 1.50% 2.00% 2.50% 100.0% 

Impurity-12 1.00% 100.0% 100.0% 100.0% 100.0% 

Impurity-13 1.00% 100.0% 100.0% 100.0% 100.0% 

Impurity-14 100.0% 100.0% 100.0% 100.0% 100.0% 

Impurity-15 100.0% 100.0% 100.0% 100.0% 100.0% 

Impurity-16 100.00% 100.00% 100.00% 100.00% 100.00% 

Impurity-17 100.00% 100.00% 100.00% 100.00% 100.00% 

Impurity-18 100.0% 100.0% 100.0% 100.0% 100.0% 

Impurity-19 100.0% 100.0% 100.0% 100.0% 100.0% 

Impurity-20 100.0% 100.0% 100.0% 100.0% 100.0% 

Impurity-21 50 90 60 42.5 1,000,000 

Impurity-22 100.0% 100.0% 100.0% 100.0% 100.0% 

Impurity-23 100 120 75 130 600 

Impurity-24 100.0% 100.0% 100.0% 100.0% 100.0% 

Impurity-25 100.0% 100.0% 100.0% 100.0% 100.0% 

Impurity-26 100.0% 100.0% 100.0% 100.0% 100.0% 

Impurity-27 100.0% 100.0% 100.0% 100.0% 100.0% 

Impurity-28 100.0% 100.0% 100.0% 100.0% 100.0% 

Impurity-29 100.0% 100.0% 4.0% 100.0% 100.0% 

Impurity-30 183 500 100 150 500 

Impurity-31 100.0% 100.0% 100.0% 2.55% 100.0% 

Impurity-32 100.0% 1.85% 100.0% 100.0% 100.0% 

Impurity-33 100.0% 100.0% 100.0% 100.0% 1.60% 

Impurity-34 100.0% 100.0% 1.00% 100.0% 100.0% 

Impurity-35 100.0% 100.0% 0.66% 100.0% 100.0% 

Impurity-36 1,000,000.00 1,000,000.00 1,000,000.00 52 1,000,000.00 

Impurity-37 100.0% 100.0% 0.07% 100.0% 100.0% 

Impurity-38 1.20% 100.0% 100.0% 100.0% 100.0% 

Impurity-39 100.00% 1.85% 100.00% 100.00% 100.00% 

Impurity-40 100.0% 0.12% 100.0% 100.0% 100.0% 

Impurity-41 100.0% 100.0% 100.0% 100.0% 100.0% 
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Table F.11 Price of final product (
FP

,k vP ) in $/t 

FP GRADE Region1 Region2 Region3 Region4 Region5 

Grade-1 5,000 5,000 5,100 5,300 5,300 

Grade-2 5,000 5,100 5,100 5,300 5,300 

Grade-3 - - - - - 

Grade-4 - - - - - 

Grade-5 - - - - - 

Grade-6 - - - - - 

Grade-7 5,000 5,000 5,100 5,300 5,200 

Grade-8 5,000 5,000 5,100 5,300 5,200 

Grade-9 5,000 5,000 5,100 5,300 5,200 

Grade-10 5,000 5,100 5,100 5,300 5,200 

Grade-11 5,000 5,100 5,100 5,300 5,200 

Grade-12 5,000 5,000 5,200 5,300 5,200 

Grade-13 5,000 5,100 5,200 5,200 5,200 

Grade-14 5,000 5,000 5,100 5,300 5,200 

Grade-15 5,000 5,000 5,100 5,300 5,200 

Grade-16 5,000 5,100 5,100 5,300 5,200 

Grade-17 5,000 5,100 5,100 5,300 5,200 

Grade-18 5,000 5,000 5,100 5,200 5,200 

Grade-19 5,000 5,000 5,100 5,200 5,200 

Grade-20 5,000 5,100 5,100 5,200 5,200 

Grade-21 5,000 5,000 5,100 5,300 5,200 

Grade-22 5,000 5,100 5,100 5,200 5,200 

Grade-23 5,000 5,000 5,100 5,300 5,200 

 

Table F.12 Estimated price of FP at regional warehouse (
FP

,
ˆ

j vP )  in $/t 

FP GRADE RW1 RW2 RW3 RW4 RW5 

Grade-1 5,000 5,000 5,100 5,300 5,300 

Grade-2 5,000 5,100 5,100 5,300 5,300 

Grade-3 - - - - - 

Grade-4 - - - - - 

Grade-5 - - - - - 

Grade-6 - - - - - 

Grade-7 5,000 5,000 5,100 5,300 5,200 

Grade-8 5,000 5,000 5,100 5,300 5,200 

Grade-9 5,000 5,000 5,100 5,300 5,200 

Grade-10 5,000 5,100 5,100 5,300 5,200 

Grade-11 5,000 5,100 5,100 5,300 5,200 

Grade-12 5,000 5,000 5,200 5,300 5,200 

Grade-13 5,000 5,100 5,200 5,200 5,200 

Grade-14 5,000 5,000 5,100 5,300 5,200 

Grade-15 5,000 5,000 5,100 5,300 5,200 

Grade-16 5,000 5,100 5,100 5,300 5,200 

Grade-17 5,000 5,100 5,100 5,300 5,200 

Grade-18 5,000 5,000 5,100 5,200 5,200 

Grade-19 5,000 5,000 5,100 5,200 5,200 

Grade-20 5,000 5,100 5,100 5,200 5,200 

Grade-21 5,000 5,000 5,100 5,300 5,200 

Grade-22 5,000 5,100 5,100 5,200 5,200 

Grade-23 5,000 5,000 5,100 5,300 5,200 
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Table F.13 Fixed costs ( fix

iC ) and other plant variable costs ( var

iC )  

 
PLANT1 PLANT2 PLANT3 PLANT4 PLANT5 

Other Plant Variable Cost of 

FG - $/T 
200 250 275 300 400 

FIXED COST ($MM) 30.00 120.00 40.00 100.00 20.00 

 

Table F.14 Freight cost from plants to regional markets (
fr,FP,PD

,i kC ) in $/t 

Ship From / Ship To Region1 Region2 Region3 Region4 Region5 

PLANT1 181 212 194 83 251 

PLANT2 201 258 215 166 138 

PLANT3 455 455 455 383 176 

PLANT4 205 205 275 196 135 

PLANT5 53 45 226 226 226 

 

Table F.15 Freight cost from plants to regional warehouses (
fr,FP,PW

,i jC ) in $/t 

Ship From / Ship To RW1 RW2 RW3 RW4 RW5 

PLANT1 181 212 194 83 251 

PLANT2 201 258 215 166 138 

PLANT3 455 455 455 383 176 

PLANT4 205 205 275 196 135 

PLANT5 53 45 226 226 226 

 

Table F.16 Freight cost from regional warehouses to regional markets (
fr,FP,WD

,j kC ) in $/t 

Ship From / Ship To Region1 Region2 Region3 Region4 Region5 

RW1 105 - - - - 

RW2 - - - - - 

RW3 - - 105 - - 

RW4 - - - 105 - 

RW5 105 105 105 105 105 

 

Table F.17 Plant on-site inventory cost ( PI

iC ) in $/t 

PLANT Cost 

PLANT1 9.5 

PLANT2 23.0 

PLANT3 0.0 

PLANT4 20.0 

PLANT5 3.1 

 

Table F.18 Regional warehouse inventory cost (
WI

jC ) in $/t 

Warehouse Cost 

RW1 9.5 

RW2 23.0 

RW3 0.0 

RW4 20.0 

RW5 3.1 
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Table F.19 Cost of primary raw material (
PRM

,i uC ) in $/t 

PRM NAME PLANT1 PLANT2 PLANT3 PLANT4 PLANT5 

PRM-1 10,061.00 10,059.00 10,064.00 10,069.00 10,072.00 

PRM-2 2,062.00 2,060.00 2,065.00 2,070.00 2,073.00 

PRM-3 2,062.00 2,060.00 2,065.00 2,070.00 2,073.00 

PRM-4 10,076.00 10,074.00 10,079.00 10,084.00 10,087.00 

PRM-5 10,071.00 10,069.00 10,074.00 10,079.00 10,082.00 

PRM-6 2,072.00 2,070.00 2,075.00 2,080.00 2,083.00 

PRM-7 2,062.00 2,060.00 2,065.00 2,070.00 2,073.00 

PRM-8 2,552.00 2,553.00 2,558.00 2,563.00 2,566.00 

PRM-9 1,962.00 1,960.00 1,965.00 1,970.00 1,973.00 

PRM-10 2,562.00 2,560.00 2,565.00 2,570.00 2,573.00 

PRM-11 2,562.00 2,560.00 2,565.00 2,570.00 2,573.00 

PRM-12 1,962.00 1,960.00 1,965.00 1,970.00 1,973.00 

PRM-13 1,957.00 1,955.00 1,960.00 1,965.00 1,968.00 

PRM-14 10,061.00 10,059.00 10,064.00 10,069.00 10,072.00 

PRM-15 10,071.00 10,069.00 10,074.00 10,079.00 10,082.00 

PRM-16 10,071.00 10,069.00 10,074.00 10,079.00 10,082.00 

PRM-17 10,071.00 10,069.00 10,074.00 10,079.00 10,082.00 

PRM-18 10,071.00 10,069.00 10,074.00 10,079.00 10,082.00 

PRM-19 10,061.00 10,059.00 10,064.00 10,069.00 10,072.00 

PRM-20 1,562.00 1,560.00 1,565.00 1,570.00 1,573.00 

PRM-21 1,562.00 1,560.00 1,565.00 1,570.00 1,573.00 

PRM-22 752.00 753.00 758.00 763.00 766.00 

PRM-23 10,051.00 10,052.00 10,057.00 10,062.00 10,065.00 

PRM-24 10,061.00 10,059.00 10,064.00 10,069.00 10,072.00 

PRM-25 557.00 555.00 560.00 565.00 568.00 

PRM-26 562.00 560.00 565.00 570.00 573.00 

PRM-27 612.00 570.32 556.40 584.61 673.00 

PRM-28 662.00 660.00 665.00 670.00 673.00 

PRM-29 10,061.00 10,059.00 10,064.00 10,069.00 10,072.00 

PRM-30 10,061.00 10,059.00 10,064.00 10,069.00 10,072.00 

PRM-31 10,061.00 10,059.00 10,064.00 10,069.00 10,072.00 

PRM-32 612.00 570.32 556.40 584.61 673.00 

PRM-33 572.00 570.00 575.00 580.00 583.00 

PRM-34 10,071.00 10,059.00 10,064.00 10,069.00 10,072.00 

PRM-35 372.00 370.00 375.00 380.00 383.00 

PRM-36 10,066.00 10,064.00 10,069.00 10,074.00 10,077.00 

PRM-37 362.00 360.00 365.00 370.00 373.00 

PRM-38 462.00 460.00 465.00 470.00 473.00 

PRM-39 372.00 370.00 375.00 380.00 383.00 

PRM-40 362.00 360.00 365.00 370.00 373.00 

PRM-41 10,071.00 10,069.00 10,074.00 10,079.00 10,082.00 

PRM-42 1,511.00 594.99 548.58 600.00 1,512.00 

PRM-43 10,061.00 10,059.00 10,064.00 10,069.00 10,072.00 

PRM-44 10,071.00 10,069.00 10,074.00 10,079.00 10,082.00 

PRM-45 362.00 360.00 365.00 370.00 373.00 

PRM-46 362.00 360.00 365.00 370.00 373.00 

PRM-47 262.00 260.00 265.00 270.00 273.00 

PRM-48 10,061.00 10,059.00 10,064.00 10,069.00 10,072.00 

PRM-49 10,071.00 10,069.00 10,074.00 10,079.00 10,082.00 

PRM-50 10,071.00 10,069.00 10,074.00 10,079.00 10,082.00 
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PRM-51 10,071.00 10,069.00 10,074.00 10,079.00 10,082.00 

PRM-52 10,061.00 10,059.00 10,064.00 10,069.00 10,072.00 

PRM-53 10,061.00 10,059.00 10,064.00 10,069.00 10,072.00 

PRM-54 10,061.00 10,014.00 10,019.00 10,024.00 10,027.00 

PRM-55 10,061.00 10,059.00 10,064.00 10,069.00 10,072.00 

 

Table F.20 Cost of RM2 ( RM2

iC ), RM3 ( RM3

iC ), and waste ( waste

iC ) in $/t 

 
PLANT1 PLANT2 PLANT3 PLANT4 PLANT5 

RM-2 Price 200 250 300 275 400 

RM-3 Price 300 250 350 275 375 

Waste Price 40 35 100 110 55 

 

Table F.21 Average additive factors ( avg,FP

ia ), minimum turndown slope (
td

im ) and intercept 

(
td

ib ), waste limit slope (
wl

im ) and intercept (
wl

ib ), scheduled outage (
iO ), plant uptime (

iU ), 

Yield of FP ( FP

iY ) and maximum limit for total blend (
imp

iQ ) 

 PLANT1 PLANT2 PLANT3 PLANT4 PLANT5 

Average 

additive 

factor 

1.078 1.046 1.022 1.077 1.070 

Minimum 

turndown 

slope 

3.50 4.20 4.00 3.00 2.40 

Minimum 

turndown 

intercept 

0 0 0 0 0 

Waste limit 

slope 
2.00 2.50 2.50 2.00 2.50 

Waste limit 

intercept 
15 31 23 27 6 

Scheduled 

outage (d/y) 
10.0 15.0 15.0 10.67 8.0 

Plant uptime 95.00 % 90.00 % 85.00 % 93.33 % 95.00 % 

Yield 98.0 % 98.0 % 98.0 % 98.0 % 98.0 % 

Product blend 

limit 
100.0% 80.0 % 80.0 % 90.0 % 100.0% 

 

Table F.22 Effective percentage in PRM for generating FP ( PRM

uE ) 

PRM NAME 
PRODUCT 

Mix 

PRM-1 96.00% 

PRM-2 0.00% 

PRM-3 95.00% 

PRM-4 95.00% 

PRM-5 95.00% 

PRM-6 94.50% 

PRM-7 93.50% 

PRM-8 93.50% 

PRM-9 94.20% 

PRM-10 88.50% 
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PRM-11 77.86% 

PRM-12 90.70% 

PRM-13 89.70% 

PRM-14 95.69% 

PRM-15 84.00% 

PRM-16 59.28% 

PRM-17 83.40% 

PRM-18 88.14% 

PRM-19 85.30% 

PRM-20 73.89% 

PRM-21 85.10% 

PRM-22 85.30% 

PRM-23 85.30% 

PRM-24 85.77% 

PRM-25 83.40% 

PRM-26 68.30% 

PRM-27 75.00% 

PRM-28 63.70% 

PRM-29 70.41% 

PRM-30 69.78% 

PRM-31 57.90% 

PRM-32 65.30% 

PRM-33 66.30% 

PRM-34 60.00% 

PRM-35 63.80% 

PRM-36 59.77% 

PRM-37 63.50% 

PRM-38 60.00% 

PRM-39 58.10% 

PRM-40 66.00% 

PRM-41 65.37% 

PRM-42 59.80% 

PRM-43 59.28% 

PRM-44 65.00% 

PRM-45 57.00% 

PRM-46 57.00% 

PRM-47 57.00% 

PRM-48 61.80% 

PRM-49 52.00% 

PRM-50 65.00% 

PRM-51 65.30% 

PRM-52 48.00% 

PRM-53 53.64% 

PRM-54 67.05% 

PRM-55 50.00% 
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Table F.23 Beginning inventory of FP at plants (
FP

,i vX ) in t 

FP Grade PLANT1 PLANT2 PLANT3 PLANT4 PLANT5 

Grade-1 35,000 0 0 10,000 0 

Grade-2 30,000 30,000 0 1,800 10,000 

Grade-3 0 0 0 0 0 

Grade-4 0 0 0 0 0 

Grade-5 0 0 0 0 0 

Grade-6 0 0 0 0 0 

Grade-7 0 18,000 0 1,600 0 

Grade-8 0 0 0 25 0 

Grade-9 0 200 0 20,000 0 

Grade-10 0 45,000 0 0 0 

Grade-11 0 8,000 0 0 2,000 

Grade-12 0 0 0 500 0 

Grade-13 0 6,000 0 0 0 

Grade-14 0 25,000 0 43,000 3,000 

Grade-15 0 0 0 13,000 0 

Grade-16 0 0 0 45,000 1,500 

Grade-17 0 0 8,000 0 0 

Grade-18 350 15,000 0 750 7,500 

Grade-19 0 60 0 19,000 5,000 

Grade-20 0 0 10,000 0 0 

Grade-21 0 500 0 25,000 0 

Grade-22 0 0 40,000 0 0 

Grade-23 0 150 0 1,000 0 

 

Table F.24 Beginning inventory of FP at regional warehouses (
FP

,j vX ) in t 

FP Grade RegWrhs1 RegWrhs2 RegWrhs3 RegWrhs4 RegWrhs5 

Grade-1 1,000 13,000 60,000 0 0 

Grade-2 50,000 30,000 35,000 55,000 100 

Grade-3 0 0 0 0 0 

Grade-4 0 0 0 0 0 

Grade-5 0 0 0 0 0 

Grade-6 0 0 0 0 0 

Grade-7 4,500 325 3,500 1,100 19,000 

Grade-8 0 25 0 0 0 

Grade-9 30,000 6,000 16,000 5,000 0 

Grade-10 26,000 4,500 35,000 9,000 10,000 

Grade-11 3,000 15,000 20,000 350 1,900 

Grade-12 2,500 200 1,000 0 0 

Grade-13 10,000 3,000 1,300 650 1,600 

Grade-14 48,000 30,000 43,000 19,000 3,000 

Grade-15 0 0 0 0 0 

Grade-16 1,000 0 0 0 2,000 

Grade-17 0 0 0 0 0 

Grade-18 8,000 6,000 12,000 4,000 1,000 

Grade-19 6,500 700 10,000 3,000 0 

Grade-20 0 0 0 0 800 

Grade-21 13,000 3,500 8,500 2,000 500 

Grade-22 0 0 8,000 150 13,000 

Grade-23 7,000 350 1,900 75 0 
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Table F.25 Beginning inventory of PRM at plants (
PRM,P

,i uX ) in t 

PRM NAME PLANT1 PLANT2 PLANT3 PLANT4 PLANT5 

PRM-1 0 0 0 0 0 

PRM-2 80,088 0 0 2,280 0 

PRM-3 0 0 0 0 0 

PRM-4 0 0 0 0 0 

PRM-5 0 0 0 0 0 

PRM-6 0 0 0 0 20,216 

PRM-7 0 0 0 0 0 

PRM-8 0 0 0 0 181,952 

PRM-9 0 0 0 0 149,928 

PRM-10 0 0 0 83,632 0 

PRM-11 2,144 0 0 0 12,312 

PRM-12 0 0 0 77,688 0 

PRM-13 259,592 0 2,592 53,456 80,800 

PRM-14 0 0 0 0 0 

PRM-15 0 0 0 0 0 

PRM-16 0 0 0 0 0 

PRM-17 0 0 0 0 0 

PRM-18 0 0 0 0 0 

PRM-19 0 0 0 0 0 

PRM-20 0 0 0 317,704 0 

PRM-21 0 0 0 0 0 

PRM-22 168,456 0 0 336,232 53,720 

PRM-23 0 0 0 0 0 

PRM-24 0 0 0 0 39,440 

PRM-25 0 128,256 11,136 209,488 0 

PRM-26 0 0 6,576 145,056 0 

PRM-27 0 0 28,312 0 0 

PRM-28 37,584 604,992 0 6,296 27,928 

PRM-29 0 0 0 0 0 

PRM-30 0 0 0 0 0 

PRM-31 0 0 0 0 0 

PRM-32 0 19,968 45,752 0 0 

PRM-33 57,440 0 488 0 0 

PRM-34 0 0 0 0 0 

PRM-35 4,816 0 80,000 0 0 

PRM-36 0 0 0 0 0 

PRM-37 119,912 263,808 0 40,000 0 

PRM-38 0 0 0 0 0 

PRM-39 0 0 0 0 0 

PRM-40 0 0 0 33,800 0 

PRM-41 0 0 0 0 0 

PRM-42 0 57,112 285,776 4,872 0 

PRM-43 0 0 0 0 0 

PRM-44 0 0 0 0 0 

PRM-45 0 275,528 0 0 0 

PRM-46 0 0 0 0 0 

PRM-47 0 244,136 12,000 0 0 

PRM-48 0 0 0 0 0 

PRM-49 0 0 0 0 0 

PRM-50 0 0 0 0 0 
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PRM-51 0 0 0 0 0 

PRM-52 0 0 0 0 0 

PRM-53 0 0 0 0 0 

PRM-54 0 0 0 0 0 

PRM-55 0 0 0 0 0 

 

Table F.26 Beginning inventory of PRM at PRM warehouse ( PRM,W

uX ) in t 

PRM NAME 
PRM 

Warehouse 

PRM-1 0 

PRM-2 0 

PRM-3 0 

PRM-4 0 

PRM-5 0 

PRM-6 0 

PRM-7 0 

PRM-8 0 

PRM-9 0 

PRM-10 0 

PRM-11 0 

PRM-12 0 

PRM-13 0 

PRM-14 0 

PRM-15 0 

PRM-16 0 

PRM-17 0 

PRM-18 0 

PRM-19 0 

PRM-20 0 

PRM-21 0 

PRM-22 0 

PRM-23 0 

PRM-24 0 

PRM-25 0 

PRM-26 0 

PRM-27 0 

PRM-28 0 

PRM-29 0 

PRM-30 0 

PRM-31 0 

PRM-32 0 

PRM-33 0 

PRM-34 0 

PRM-35 0 

PRM-36 0 

PRM-37 0 

PRM-38 0 

PRM-39 0 

PRM-40 0 

PRM-41 0 

PRM-42 0 

PRM-43 0 
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PRM-44 0 

PRM-45 0 

PRM-46 0 

PRM-47 0 

PRM-48 0 

PRM-49 0 

PRM-50 0 

PRM-51 0 

PRM-52 0 

PRM-53 0 

PRM-54 0 

PRM-55 0 

 

Table F.27 Demand parameters for uncertain case A and B (
min ( )

,

a

v kD ) in kt 

 Regional Market 

FP 

Grade 
1 2 3 4 5 

1 147 1 343 60 56 

2 181 361 213 638 15 

3 0 0 0 0 0 

4 0 0 0 0 0 

5 0 0 0 0 0 

6 0 0 0 0 0 

7 6 25 21 7 26 

8 1 0 0 0 0 

9 53 99 53 39 57 

10 43 172 249 172 119 

11 84 28 126 23 35 

12 4 14 6 0 0 

13 28 67 7 7 18 

14 186 329 263 158 158 

15 0 0 0 0 77 

16 0 13 0 0 270 

17 0 0 0 0 49 

18 38 84 85 57 49 

19 4 116 56 53 11 

20 0 0 0 0 60 

21 23 83 50 9 145 

22 0 0 2 2 301 

23 3 43 11 1 4 
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Table F.28 Demand parameters for uncertain case C (
min ( )

,

b

v kD ) in kt 

 Regional Market 

FP 

Grade 
1 2 3 4 5 

1 220 1 513 89 84 

2 270 539 318 954 23 

3 0 0 0 0 0 

4 0 0 0 0 0 

5 0 0 0 0 0 

6 0 0 0 0 0 

7 8 37 31 10 39 

8 1 0 0 0 0 

9 78 149 78 58 86 

10 64 256 371 256 178 

11 126 42 188 35 52 

12 5 21 9 0 0 

13 42 99 10 10 26 

14 278 492 392 235 235 

15 0 0 0 0 115 

16 0 19 0 0 404 

17 0 0 0 0 73 

18 56 126 127 86 73 

19 6 173 84 78 17 

20 0 0 0 0 90 

21 35 123 75 14 217 

22 0 0 3 3 450 

23 4 64 16 1 5 

 

Table F.29 Reference demand of FP at plants (
FP

,i vD ) in t 

FP Grade PLANT1 PLANT2 PLANT3 PLANT4 PLANT5 

1 285,000 0 0 80,000 0 

2 266,400 245,400 0 25,000 83,000 

3 0 0 0 0 0 

4 0 0 0 0 0 

5 0 0 0 0 0 

6 0 0 0 0 0 

7 0 15,000 0 13,000 0 

8 0 0 0 200 0 

9 0 2,000 0 167,000 0 

10 0 351,000 0 0 0 

11 0 65,000 0 0 15,000 

12 0 0 0 3,114 0 

13 0 52,000 0 0 0 

14 0 190,000 0 153,000 25,000 

15 0 0 0 110,000 0 

16 0 0 0 370,000 10,000 

17 0 0 70,000 0 0 
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18 2,500 125,000 0 7,000 59,000 

19 0 500 0 150,000 40,000 

20 0 0 80,000 0 0 

21 0 4,000 0 216,000 0 

22 0 0 331,600 0 0 

23 0 150 0 7500 0 

 

 

Table F.30 Reference demand of FP at regional warehouse (
FP

,j vD ) in t 

FP Grade RW1 RW2 RW3 RW4 RW5 

1 10,000 1,000 490,000 0 0 

2 250,000 420,000 270,000 450,000 800 

3 0 0 0 0 0 

4 0 0 0 0 0 

5 0 0 0 0 0 

6 0 0 0 0 0 

7 3,000 35,000 30,000 9,000 15,000 

8 300 0 0 0 0 

9 25,000 130,000 65,000 40,000 0 

10 38,000 225,000 300,000 75,000 87,000 

11 120,000 25,000 180,000 3,000 15,000 

12 2,000 20,000 9,000 0 0 

13 25,000 75,000 10,000 5,000 13,000 

14 250,000 400,000 350,000 170,000 23,000 

15 0 0 0 0 0 

16 0 8,000 0 0 16,000 

17 0 0 0 0 0 

18 50,000 65,000 100,000 30,000 8,000 

19 6,000 55,000 70,000 20,000 0 

20 0 0 0 0 6,000 

21 30,000 110,000 70,000 10,000 3,000 

22 0 0 60,000 1,000 100,000 

23 2,000 60,000 15,000 600 0 

 

 

Table F.31 Target inventory day supply of FP at the plants (
FP

,i vR ) 

FP GRADE PLANT1 PLANT2 PLANT3 PLANT4 PLANT5 

Grade-1 35.00 35.00 35.00 35.00 35.00 

Grade-2 35.00 35.00 35.00 35.00 35.00 

Grade-3 35.00 35.00 35.00 35.00 35.00 

Grade-4 35.00 35.00 35.00 35.00 35.00 

Grade-5 35.00 35.00 35.00 35.00 35.00 

Grade-6 35.00 35.00 35.00 35.00 35.00 

Grade-7 35.00 35.00 35.00 35.00 35.00 

Grade-8 35.00 35.00 35.00 35.00 35.00 

Grade-9 35.00 35.00 35.00 35.00 35.00 

Grade-10 35.00 35.00 35.00 35.00 35.00 

Grade-11 35.00 35.00 35.00 35.00 35.00 

Grade-12 35.00 35.00 35.00 35.00 35.00 
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Grade-13 35.00 35.00 35.00 35.00 35.00 

Grade-14 35.00 35.00 35.00 35.00 35.00 

Grade-15 35.00 35.00 35.00 35.00 35.00 

Grade-16 35.00 35.00 35.00 35.00 35.00 

Grade-17 35.00 35.00 35.00 35.00 35.00 

Grade-18 35.00 35.00 35.00 35.00 35.00 

Grade-19 35.00 35.00 35.00 35.00 35.00 

Grade-20 35.00 35.00 35.00 35.00 35.00 

Grade-21 35.00 35.00 35.00 35.00 35.00 

Grade-22 35.00 35.00 35.00 35.00 35.00 

Grade-23 35.00 35.00 35.00 35.00 35.00 

 

 

Table F.32 Target inventory day supply of FP at the regional warehouses (
FP

,j vR ) 

FP GRADE RW1 RW2 RW3 RW4 RW5 

Grade-1 35.00 35.00 35.00 35.00 35.00 

Grade-2 35.00 35.00 35.00 35.00 35.00 

Grade-3 35.00 35.00 35.00 35.00 35.00 

Grade-4 35.00 35.00 35.00 35.00 35.00 

Grade-5 35.00 35.00 35.00 35.00 35.00 

Grade-6 35.00 35.00 35.00 35.00 35.00 

Grade-7 35.00 35.00 35.00 35.00 35.00 

Grade-8 35.00 35.00 35.00 35.00 35.00 

Grade-9 35.00 35.00 35.00 35.00 35.00 

Grade-10 35.00 35.00 35.00 35.00 35.00 

Grade-11 35.00 35.00 35.00 35.00 35.00 

Grade-12 35.00 35.00 35.00 35.00 35.00 

Grade-13 35.00 35.00 35.00 35.00 35.00 

Grade-14 35.00 35.00 35.00 35.00 35.00 

Grade-15 35.00 35.00 35.00 35.00 35.00 

Grade-16 35.00 35.00 35.00 35.00 35.00 

Grade-17 35.00 35.00 35.00 35.00 35.00 

Grade-18 35.00 35.00 35.00 35.00 35.00 

Grade-19 35.00 35.00 35.00 35.00 35.00 

Grade-20 35.00 35.00 35.00 35.00 35.00 

Grade-21 35.00 35.00 35.00 35.00 35.00 

Grade-22 35.00 35.00 35.00 35.00 35.00 

Grade-23 35.00 35.00 35.00 35.00 35.00 

 

 

Table F.33 Target inventory of PRM at the plants (
PRM,P

,i uR ) in t 

PRM 

NAME 
PLANT1 PLANT2 PLANT3 PLANT4 PLANT5 

PRM-1 0 0 0 0 0 

PRM-2 0 0 0 0 0 

PRM-3 0 0 0 0 0 

PRM-4 0 0 0 0 0 

PRM-5 0 0 0 0 0 

PRM-6 0 0 0 0 0 

PRM-7 0 0 0 0 0 

PRM-8 0 0 0 0 80,000 
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PRM-9 0 0 0 0 120,000 

PRM-10 0 0 0 0 0 

PRM-11 0 0 0 0 0 

PRM-12 0 0 0 0 0 

PRM-13 120,000 0 0 80,000 40,000 

PRM-14 0 0 0 0 0 

PRM-15 0 0 0 0 0 

PRM-16 0 0 0 0 0 

PRM-17 0 0 0 0 0 

PRM-18 0 0 0 0 0 

PRM-19 0 0 0 0 0 

PRM-20 0 0 0 0 0 

PRM-21 0 0 0 0 0 

PRM-22 80,000 16,000 16,000 240,000 80,000 

PRM-23 0 0 0 0 0 

PRM-24 0 0 0 0 0 

PRM-25 0 40,000 8,000 112,000 0 

PRM-26 0 0 0 0 0 

PRM-27 0 0 16,000 0 0 

PRM-28 0 0 0 0 0 

PRM-29 0 0 0 0 0 

PRM-30 0 0 0 0 0 

PRM-31 0 0 0 0 0 

PRM-32 0 16,000 32,000 0 0 

PRM-33 0 0 0 0 0 

PRM-34 0 0 0 0 0 

PRM-35 0 0 40,000 0 0 

PRM-36 0 0 0 0 0 

PRM-37 64,000 160,000 0 40,000 0 

PRM-38 0 0 0 0 0 

PRM-39 0 0 0 0 0 

PRM-40 0 0 0 0 0 

PRM-41 0 0 0 0 0 

PRM-42 0 0 0 0 0 

PRM-43 0 0 0 0 0 

PRM-44 0 0 0 0 0 

PRM-45 0 80,000 0 0 0 

PRM-46 0 0 0 0 0 

PRM-47 0 80,000 0 0 0 

PRM-48 0 0 0 0 0 

PRM-49 0 0 0 0 0 

PRM-50 0 0 0 0 0 

PRM-51 0 0 0 0 0 

PRM-52 0 0 0 0 0 

PRM-53 0 0 0 0 0 

PRM-54 0 0 0 0 0 

PRM-55 0 0 0 0 0 
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Table F.34 Target inventory of PRM at the PRM warehouse ( PRM,W

uR ) in t 

PRM NAME 
PRM 

Warehouse 

PRM-1 0 

PRM-2 0 

PRM-3 0 

PRM-4 0 

PRM-5 0 

PRM-6 0 

PRM-7 0 

PRM-8 0 

PRM-9 0 

PRM-10 0 

PRM-11 0 

PRM-12 0 

PRM-13 0 

PRM-14 0 

PRM-15 0 

PRM-16 0 

PRM-17 0 

PRM-18 0 

PRM-19 0 

PRM-20 0 

PRM-21 0 

PRM-22 0 

PRM-23 0 

PRM-24 0 

PRM-25 0 

PRM-26 0 

PRM-27 0 

PRM-28 0 

PRM-29 0 

PRM-30 0 

PRM-31 0 

PRM-32 0 

PRM-33 0 

PRM-34 0 

PRM-35 0 

PRM-36 0 

PRM-37 0 

PRM-38 0 

PRM-39 0 

PRM-40 0 

PRM-41 0 

PRM-42 0 

PRM-43 0 

PRM-44 0 

PRM-45 0 

PRM-46 0 

PRM-47 0 

PRM-48 0 

PRM-49 0 

PRM-50 0 
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PRM-51 0 

PRM-52 0 

PRM-53 0 

PRM-54 0 

PRM-55 0 

 

Table F.35 PRM availability ( PRM

uM ) in t 

PRM NAME 
PRM 

Availability 

PRM-1 0 

PRM-2 50,000 

PRM-3 0 

PRM-4 0 

PRM-5 0 

PRM-6 30,000 

PRM-7 0 

PRM-8 600,000 

PRM-9 400,000 

PRM-10 60,000 

PRM-11 0 

PRM-12 0 

PRM-13 1,000,000 

PRM-14 0 

PRM-15 0 

PRM-16 0 

PRM-17 0 

PRM-18 0 

PRM-19 0 

PRM-20 150,000 

PRM-21 350,000 

PRM-22 2,500,000 

PRM-23 0 

PRM-24 0 

PRM-25 1,000,000 

PRM-26 650,000 

PRM-27 520,000 

PRM-28 0 

PRM-29 0 

PRM-30 0 

PRM-31 0 

PRM-32 1,000,000 

PRM-33 0 

PRM-34 0 

PRM-35 250,000 

PRM-36 0 

PRM-37 1,400,000 

PRM-38 0 

PRM-39 0 

PRM-40 0 

PRM-41 0 

PRM-42 390,000 

PRM-43 0 
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PRM-44 0 

PRM-45 2,500,000 

PRM-46 0 

PRM-47 625,000 

PRM-48 0 

PRM-49 0 

PRM-50 0 

PRM-51 0 

PRM-52 0 

PRM-53 0 

PRM-54 0 

PRM-55 0 
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Appendix G 

Dantzig-Wolfe Subproblems for Formulation (AARS_IN) 

Here, the Dantzig-Wolfe decomposition formulations for the results obtained in Chapter 5 are 

shown for the industrial case study problem. The formulations for the DWD1 algorithm are first 

described.  Capacity as an integer variable is represented by
int

iz and the set  1,...,h

hG N G 

is introduced to denote the columns generated for the restricted master problem (this is consistent 

to  1,...,k

kJ N J   used in Chapter 5).  

 

G.1 Subproblems for DWD1 

The phase 1 feasibility problem is shown below 

Problem (FP1) 

,min i s

i I s S

AV
 

                                                                                                        (G.1)      

subject to                                                      

  
( )

, 1, ,
h

h

s g

g G

s S


                                                                                                  (G.2) 
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, 1, ,
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h

s g

g G

s S


 
     
 
                                                                                         (G.3)   
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, ,I s S 

     (G.4)       

int max500 , ,i iz Z i I                                                                                                 (G.5)    

 0int : 0 , ,xn

i i iz z Z z i I                                                                                         (G.6)   
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( )

, 0, , ,h h

s g s S g G                                                                                                 (G.7) 

where 
,i sAV is the artificial slack variable required for the phase 1 problem. Through solving the 

restricted master problem, Lagrange multipliers can be obtained. 
( )

,

h

i s (consistent to 
k

  used in 

Chapter 5) is obtained from constraint (G.4) and using these multipliers, the related phase 1 

subproblems can be formulated and solved for s S   
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2 3

, , , , , , , ,RC  = , ,fr du I PRM RM RM waste
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

 



 

 
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  
      

  
 

  
      
  

 
  
 
 

 

 

 

, , , / 365, , ,

u NU

FP FP FP

j v j v j vX D R j J v V



    


       (G.23) 

     

   

   
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, , , , , , , , , ,

1
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, , , , , , , , ,
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T
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u U u U
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u U u U

i u s u w i u s i w
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M q Q

q Q

q Q





 



 

 

 

  
         

 

        
 

   



 

 

 

0,

, ,

nu NU

i I w W






 






 


         (G.24)              
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 
 

 

   

   
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, , ,

1

, , PRM,c imp

, , ,

1
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i u s u i u s i
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E

M
Q

E Q

E Q





 





 

 

   
  

   
    
 


        

  

   



 





 

 

0, ,
nu NU

i I




  







                    (G.25) 

 

   

   

1 , ,

, , , , , , ,

1

, , , ,

, , , , , , , , ,

, ,
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PRM P PRM W

s nu s nu i u s nu u s nu

i I PRM

u

nu NU PRM P PRM W PRM P PRM W

i u s nu u s nu s nu i u s u s

i I i I

M

M u U



  







 

  
      

    
 
        
  




 

     (G.26)   

 

   

 

 
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, , , , , , ,

1

, , , ,

, , , , , ,

, ,

, , ,
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T
PRM W PRM WP

s nu s nu u s nu i u s nu

i I

PRM W PRM W PRM W PRM WP

u u u s nu i u s nu s nu

nu NU i I

PRM W PRM WP

u s i u s

i I

M

X R u U





 





 



  
        

  
 
          
  
 
  
 
 



 



(G.27) 

 

   

 

1 , , ,

, , , , , , , , , , ,
1

, , , , , ,

, , , , , , , , , , , , , , , , ,

, ,

, , , , ,

T
PRM c PRM P PRM WP

s nu s nu i u s nu i u s nu i u s nu

PRM c PRM P PRM WP PRM c PRM P PRM WPnu NU
i u s nu i u s nu i u s nu s nu i u s nu i u s i u s

PRM P PRM P

i u i u

M

X R i I u U



   





      
 
 
       
 

   


            (G.28)       
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 

 

1 , , min

, , , , , , , , , , , ,

( , ) ( , )
1

, , min

, , , , , , , , , , ,

( , ) ( , )

, ,

, , , , , ,
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FP PD FP WD
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i k j k

FP PD FP WD
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i k j k

FP PD FP WD

i k v s j k v s

M D

D

 

 

 



 

 

  
         
  


 
       
 

 




 

  0,

, ,

nu NU

k K v V














 


 


  (G.29) 

   1 FP,PD FP,PD FP,PD

, , , , , , , , , , , , , ,
1

0,

, , ,

T

s nu s nu i k v s nu i k v s nu s nu i k v s

nu NU

M

i I k K v V

  



         
 

  


       (G.30)                  

   1 FP,PW FP,PW FP,PW

, , , , , , , , , , , , , ,
1

0,
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T

s nu s nu i j v s nu i j v s nu s nu i j v s

nu NU

M

i I j J v V

  



         
 

  


        (G.31)                                           

   1 FP,WD FP,WD FP,WD
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1
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T

s nu s nu j k v s nu j k v s nu s nu j k v s

nu NU

M

j J k K v V

  



         
 

  


      (G.32)                                            

   1 PRM,c PRM,c PRM,c

, , , , , , , , , , ,
1
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T

s nu s nu i u s nu i u s nu s nu i u s

nu NU

M

i I u U

  


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 

 


             (G.33)                            

   1 PRM,P PRM,P PRM,P
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1
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T
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nu NU

M

i I u U

  



         
 

 


            (G.34)                    
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1
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T

s nu s nu u s nu u s nu s nu u s

nu NU

M u U  



          
 

                 (G.35)                 

   1 PRM,WP PRM,WP PRM,WP
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1
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T
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M

i I u U

  



         
 

 


        (G.36)                                     
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T
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nu NU

M

i I k K v V

  



         
 

  


         (G.37)                                          

Here, ,RCi s refers to the remaining cost terms that are not explicitly calculated in the restricted 

master problem. Proceeding to the phase 2 problem, the restricted master problem formulation is 



 

158 

 

  

Problem (RMP1) 

 

 
 

       
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h
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c

r

C C r




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

 



 

    
   

       
          

  
           

   
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




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( , )

var , ( ) ( )

, , , ,

( , )

Pr 1
h

i v nu NU S

PI inc FP p h h
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 

  

  
         

   

  

  

     (G.38) 

subject to 
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, 1, ,
h

h

s g

g G

s S


                                                                                                         (G.39) 
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h

h

s g

g G

s S


 
     
 
                                                                                                (G.40) 
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1
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M
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
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 

  
        
  

 
 

     
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 

  

 

, ,I s S       (G.41) 

int max500 , ,i iz Z i I                                                                                                     (G.42) 

 0int : 0 , ,xn

i i iz z Z z i I                                                                                            (G.43)   

( )

, 0, , .h h

s g s S g G                                                                                                    (G.44) 

The Lagrange multipliers are again obtained through solving the restricted master problem. 
( )

,

h

i s

is obtained from constraint (G.41) (consistent to 
k

  used in Chapter 5), 
( )h

s


from (G.39), and 
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( )h

s


from (G.40). The multipliers are required for the pricing problems and for the convergence 

criteria. The objective function for the phase 2 pricing problems is shown below and the 

constraints are the same as those in the phase 1 subproblems. The problem is solved for s S   

 

Problem (PP1s) 

    
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Pr 1

Obj

Pr 1

s

PI inc
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   
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 
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 


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 

 



  (G.45) 

subject to, 

constraints (G.9)-(G.37). 

 

G.2 Subproblems for DWD2 

 

The DWD1 procedure provides a feasible sub-optimal solution that can be used as the initial 

extreme points for the DWD2 procedure. This means that the phase 1 problem for DWD2 is not 

required. The phase 2 restricted master problem is 
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Problem (RMP2) 

 

     

      
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


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  
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  
        

   



  

 

  (G.46) 

subject to 

 int ( ) ( )

, , ,500 0, , ,
h

h h

i i s g s g

g G

z z i I s S


                                                            (G.47) 

 int ( ) ( )

, , ,500 0, , ,
h

h h

i i s g s g

g G

z z i I s S


                                                           (G.48) 

( )

, 1, ,
h

h

s g

g G

s S


                                                                                                     (G.49) 

( )

, 1, ,
h

h

s g

g G

s S


 
     
 
                                                                                             (G.50) 

 0int : 0 , ,xn

i i iz z Z z i I                                                                                          (G.51)   

( )

, 0, , .h h

s g s S g G                                                                                                    (G.52) 

 

 

The Lagrange multipliers are obtained through solving the restricted master problem. 
 
,

h

i s


is 

obtained from constraint (G.47), 
 
,

h

i s


is obtained from (G.48) (these are consistent to 
k

  used in 

Chapter 5),
( )h

s


from (G.49), and 
( )h

s


from (G.50). The phase 2 pricing problems are shown 

below and solved for s S   
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Problem (PP2s) 

           
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r

 

 
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

 



       
  

      
 




                                      (G.53) 

subject to 

(G.9, G.11, G.12, G.14-G.37),  

2 3

, , , , , , , , ,RC  = , ,fr du I PRM RM RM waste OPVC

i s i s i s i s i s i s i s i s i sc c c c c c c c i I                                   (G.54) 
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                                              (G.55)                                             
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