
IN MEMORY COMPUTATION OF GLOWWORM SWARM OPTIMIZATION APPLIED TO

MULTIMODAL FUNCTIONS USING APACHE SPARK.

A Thesis

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Goutham Miryala

In Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Major Department:

Computer Science

April 2018

Fargo, North Dakota

North Dakota State University

Graduate School

Title
 IN MEMORY COMPUTATION OF GLOWWORM SWARM

OPTIMIZATION APPLIED TO MULTIMODAL FUNCTIONS USING

APACHE SPARK

 By

Goutham Miryala

 The Supervisory Committee certifies that this disquisition complies with North Dakota

State University’s regulations and meets the accepted standards for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

Dr. Simone Ludwig

 Chair

Dr. Saeed Salem

Dr. Maria Alfonseca Cubero

 Approved:

 June 6, 2018 Dr. Kendall E Nygard

 Date Department Chair

iii

ABSTRACT

Glowworm Swarm Optimization (GSO) is one of the optimization techniques, which

need to be parallelized in order to evaluate large problems with high-dimensional function

spaces. There are various issues involved in the parallelization of any algorithm such as efficient

communication among nodes in a cluster, load balancing, automatic node failure recovery, and

scalability of nodes at runtime. In this paper, we have implemented the GSO algorithm with the

Apache Spark framework. The Spark framework is designed in such a way that one does not

need to deal with any parallelization details except the logic of the algorithm itself. For the

experimentation, two multimodal benchmark functions were used to evaluate the Spark-GSO

algorithm with various sizes of dimensionality. We evaluate the optimization results of the two

evaluation functions as well as we will compare the Spark results with the ones obtained using a

previously implemented MapReduce-based GSO algorithm.

iv

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to my advisor Dr. Simone Ludwig for her

continued support throughout this thesis. I appreciate her time, assistance and continuous

guidance. I would also like to thank Dr. Saeed Salem, and Dr. Maria Alfonseca Cubero for being

a part of my graduate supervisory committee. Special thanks to the faculty and staff of the

Computer Science Department for their unconditional support throughout my master’s program.

Finally, I am grateful to my parents who are the reason for all my achievements and have

supported and motivated me throughout my life.

v

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

LIST OF FIGURES ... vi

LIST OF ABBREVIATIONS .. viii

1. INTRODUCTION .. 1

2. BACKGROUND .. 4

3. GLOWWORM SWARM OPTIMIZATION .. 7

4. PROPOSED SPARK GSO ALGORITHM (SPARK-GSO) .. 10

5. EXPERIMENT AND RESULTS ... 13

5.1. Environment ... 13

5.2. Benchmark Functions ... 13

5.3. Evaluation Measures .. 14

5.4. MR-GSO Algorithm ... 15

6. RESULTS ... 17

7. CONCLUSION ... 36

REFERENCES ... 38

vi

LIST OF FIGURES

Figure Page

1. Representation of Glowworm in MR-GSO Algorithm. .. 15

2. Spark-GSO: Equal-peaks-B (F1) 2-dimensional optimization process,

iterations=200, r0=2.0 (a) Average Minimum Distance. (b) Peaks Capture Rate. 17

3. MR-GSO: Equal-peaks-B (F1) 2-dimensional optimization process,

iterations=200, r0=2.0 (a) Average Minimum Distance. (b) Peaks Capture Rate. 18

4. Spark-GSO: Equal-peaks-B (F1) 4-dimensional optimization process,

iterations=200, r0=2.0 (a) Average Minimum Distance. (b) Peaks Capture Rate. 19

5. MR-GSO: Equal-peaks-B (F1) 4-dimensional optimization process,

iterations=200, r0=2.0 (a) Average Minimum Distance. (b) Peaks Capture Rate. 20

6. Spark-GSO: Equal-peaks-B (F1) 6-dimensional optimization process,

iterations=200, r0=2.0 (a) Average Minimum Distance. (b) Peaks Capture Rate. 21

7. MR-GSO: Equal-peaks-B (F1) 6-dimensional optimization process,

iterations=200, r0=2.0 (a) Average Minimum Distance. (b) Peaks Capture Rate. 22

8. Spark-GSO: Equal-peaks-B (F1) 8-dimensional optimization process,

iterations=200, r0=2.0 (a) Average Minimum Distance. (b) Peaks Capture Rate. 23

9. MR-GSO: Equal-peaks-B (F1) 8-dimensional optimization process,

iterations=200, r0=2.0 (a) Average Minimum Distance. (b) Peaks Capture Rate. 24

10. Spark-GSO: Rastrigin (F2) 2-dimensional optimization process, iterations=200,

r0=0.5 (a) Average Minimum Distance. (b) Peaks Capture Rate. 25

11. MR-GSO: Rastrigin (F2) 2-dimensional optimization process, iterations=200,

r0=0.5 (a) Average Minimum Distance. (b) Peaks Capture Rate. 26

12. Spark-GSO: Rastrigin (F2) 4-dimensional optimization process, iterations=200,

r0=0.5 (a) Average Minimum Distance. (b) Peaks Capture Rate. 27

13. MR-GSO: Rastrigin (F2) 4-dimensional optimization process, iterations=200,

r0=0.5 (a) Average Minimum Distance. (b) Peaks Capture Rate. 28

14. Spark-GSO: Rastrigin (F2) 6-dimensional optimization process, iterations=200,

r0=0.5 (a) Average Minimum Distance. (b) Peaks Capture Rate. 29

15. MR-GSO: Rastrigin (F2) 6-dimensional optimization process, iterations=200,

r0=0.5 (a) Average Minimum Distance. (b) Peaks Capture Rate. 30

vii

16. Spark-GSO: Rastrigin (F2) 8-dimensional optimization process, iterations=200,

r0=0.5 (a) Average Minimum Distance. (b) Peaks Capture Rate. 31

17. MR-GSO: Rastrigin (F2) 8-dimensional optimization process, iterations=200,

r0=0.5 (a) Average Minimum Distance. (b) Peaks Capture Rate. 32

18. Equal-peaks-B function running time for 4-dimensional glowworms. (a) Running

Time N=100,000. (b) Running Time N=200,000. (c) Running Time N=300,000. 34

19. Equal-peaks-B function speedup results for 4-dimensional glowworms. (a)

Speedup with N=100,000 (b) Speedup with N=100,000 (c) Speedup with

N=100,000. ... 35

viii

LIST OF ABBREVIATIONS

GSO..Glowworm Swarm Optimization.

MR-GSO ..MapReduce Glowworm Swarm Optimization

RDD ...Resilient Distributed Dataset

1

1. INTRODUCTION

Based on a specific performance criterion, the process of finding an optimum solution

from available candidate solution is called optimization. Swarm intelligence and evolutionary

computation are some of the techniques, which can be used for optimization purposes. Natural

swarms’ behavior such as Ant colonies, flocks of birds and growth of bacteria provides an

inspiration to develop an optimization technique called swarm intelligence (Engelbrecht, 2007).

Interactions among swarm members such as exchanging information to achieve the solution, e.g.,

to locate food source, is the core concept in swarm intelligence.

Particle Swarm Optimization (PSO) is one of the swarm intelligence methodologies. The

concept of finding food sources based on the birds’ current movement, the flocks’ best food

source ever found, and an individual bird in the flock experiencing the best food source is an

influence was the inspiration of the development of PSO. Based on the actions of ants performed

during the process to find the shortest path to a food source by secreting pheromone on various

paths, an algorithm called Ant Colony Optimization (ACO) was developed (Stützle, 2009). The

process of using local and global searching honeybees to build honeybee colonies is seen in the

Bee Colony Optimization (Wong, Low, & Chong, 2008) algorithm.

Inspired by the characteristics shown by glowworms, Krishnanand and Ghose have

developed an algorithm called Glowworm Swarm Optimization (GSO) (Krishnanand & Ghose,

2009a). To achieve goals like attracting a mate during the breeding season, glowworms govern

the emission of light. Applications such as hazard sensing in ubiquitous environments

(Krishnanand & Ghose, 2008), robotics and portable sensor networks (Krishnanand & Ghose,

2005) and data clustering (Aljarah & Ludwig, 2013b) can make use of the GSO algorithm due to

2

its simplicity and small number of parameters that are actually required for tuning (Krishnanand

& Ghose, 2009a) (Krishnanand & Ghose, 2008) (Krishnanand & Ghose, 2005).

A function to find several local maxima (peaks) with equal or different objective values is

called a Multimodal function (Barrera & Coello, 2009). Multimodal function optimization

consists of finding all local maxima (peak) with some constraints. The running time of the

algorithm is significantly increased when the peaks count is increased for higher dimensional

spaces to reach optimum targets. The individual count is also increased to find all the peaks in

the search space, and also the task needs to be divided into several groups to carry out the

optimization process. A parallelized solution is required to achieve all these goals in a limited

amount of time.

Communication inefficiency over computer network, improper load-balancing to mitigate

latency issues and node failures are the factors which make it difficult to scale the parallelized

algorithm to several nodes in a cluster. Hence, scalability of data and nodes is a key factor to

increase the computational load, while high quality results are being maintained.

Our proposed model is inspired by the MR-GSO algorithm (Aljarah & Ludwig, 2013a)

and is developed in Apache Spark. Apache Spark executes an algorithm way faster than with

MapReduce due to in-memory computing (Apache SparkTM, 2017) (Meng et al., 2016).

Algorithms in Apache Spark are easy to develop without any prior knowledge to the concepts of

parallelization programming. Also, Apache Spark applications can be developed in various

programming languages including Java, Python, Scala and R. Apache Spark can handle large

sets of data and scale well by increasing the number of nodes at runtime.

The Spark development is initiated by the UC Berkeley RAD lab that started as a

research project in 2009. The main goal behind the development is to provide iterative in-

3

memory computing support for MapReduce. Companies like Yahoo, Databricks and Intel are

major contributors to the Spark development (Matei Zaharia, Holden Karau, Andy Konwinski,

2015). Spark is used in challenging use cases in data intensive operative companies like

Facebook (Apache Spark @Scale, 2017).

A Spark application in general is mainly operated by a driver program that controls

parallel operations on a cluster. A Resilient Distributed Dataset (RDD) is the main abstraction

provided by Spark which is a collection of elements, which can be partitioned and distributed

over a cluster of nodes for parallel processing. RDD can be created using a file on the Hadoop

file system or from a java collection in a driver class. RDD provides reusability through caching

capabilities and node failure recovery. Spark also provides shared variables such as broadcast

variables and accumulators. Broadcast variables are cached in all nodes’ memory at the start of a

task while accumulators can be used as counters.

In this paper, a parallel GSO algorithm is proposed using Apache Spark. The following

key contributions have been presented using parallel glowworm swarm optimization on Spark

(Spark-GSO):

Apache Spark concepts have been successfully applied to Glowworm Swarm

Optimization to enable parallelization.

Higher dimensional multimodal functions have been evaluated in Spark-GSO and

compared with the MR-GSO algorithm.

The following sections in this paper are organized as follows: Background and Related

work in the areas of parallel computing, MapReduce and parallel optimization algorithms are

presented in Section 2. GSO, MR-GSO and the proposed Spark-GSO algorithm are presented in

Section 3. The experiments with results are provided in Section 4 followed by conclusions.

4

2. BACKGROUND

Despite the fact that Genetic algorithms (optimization algorithm) can be used to solve

difficult problems, they demand a lot of computational power and memory thus increasing the

demand for compuation in order to solve large-scale problems (Venter & Sobieszczanski-

Sobieski, 2006) (Ismail, 2004). To achieve a speedup against the execution of genetic algorithms

in a single processor, parallel algorithms utilize multiple processing nodes (Grama, 2003). To

address various challenges in implementing optimization algorithms, several algorithms have

been proposed.

Message Passing Interface (MPI) methodology has been extensively used for various

algorithms for parallel computing (Snir, 1998). A master slave paradigm on a Beowulf Linux

Cluster using the MPI library has been proposed by Ismail et. al in 2004 (Ismail, 2004). A

parallel PSO algorithm based on MPI has been introduced by Venter and Sobieszczanski-

Sobieski in 2005 (Venter & Sobieszczanski-Sobieski, 2006). As MPI has a large function set, it

makes programming MPI complex (Snir, 1998), while algorithms using MapReduce are easy to

design and develop (Dean & Ghemawat, 2004), although finer granular level parallel processes

can be reused in MPI. MapReduce uses a distributed file system such as HDFS (Hadoop

Distributed File System) to achieve faster file access while the message-passing model is used

for communication in MPI. When a node fails in MPI, the processes are terminated whereas

fault-tolerance of nodes is automatically achieved using MapReduce.

McNabb et al. in 2007 (McNabb, Monson, & Seppi, 2007) have created a model called

MRPSO and implemented PSO on MapReduce. Radial basis benchmark functions have been

used to verify and validate the efficiency of execution of data-intensive optimizion functions in

MapReduce.

5

In 2008, Jin et al. (Jin, Vecchiola, & Buyya, 2008) have successfully implemented

genetic algorithms with MapReduce. They provided proof that a genetic algorithm can be

parallelized using MapReduce. Later, it has been proved that designing and implementing an ant

colony optimization (ACO) algorithm can be done using the MapReduce framework (B. Wu,

Wu, & Yang, 2012). Later ACO has been implemented in different optimization problems such

as 0-1 knapsack problem, Travelling Salesman Problem (TSP) (B. Wu et al., 2012) to prove that

greater problems can be solved using MapReduce. A MapReduce version of ACO applied to the

Max-Min problem has been used (Tan, He, & Shi, 2012), which resulted in better results when

compared to the sequential Max-Min ACO problem.

A differential evolution algorithm has been implemented in MapReduce (Zhou & Chi,

2010) to improve scalability. The population is divided into several partitions, and the sub-

population is updated by a task in each partition. This improvement resulted in faster

computation time when compared to the traditional version.

Most of the MapReduce implementations above are all used to optimize single objective

functions. In (Aljarah & Ludwig, 2013a), GSO deals with multimodal functions that have been

implemented in MapReduce. This algorithm (MR-GSO) can be extended to higher dimensions

(Aljarah & Ludwig, 2016) achieving scalability and efficiency.

Although Apache Spark is not as efficient as MPI, it reduces the gap in performance in

terms of speed and scalability when compared with MapReduce (Big Data Analytics, 2015).

Apache Spark on Hadoop provides various additional features such as failure and data

replication management, runtime addition of new nodes, and also provides tools for easy

implementation. At times, these features make Apache Spark more preferable over the MPI

methodology.

6

Performance on moderately sized datasets is substantially slower because of scheduling

the overhead and no support for iterative computation in MapReduce, while excellent results are

shown for scalability and performance using MLLIB libraries provided by Apache Spark (Meng

et al., 2016) (Gopalani & Arora, 2015). MLLIB in Spark provides off-the-shelf algorithms for

classification, regression, recommendation, clustering, etc. in conjunction with the use of

streaming services for real-time analysis which MapReduce does not provide (MLlib, 2017)

(Spark Streaming, 2017) (Miryala, 2017).

Paduraru, et al. (Paduraru, Melemciuc, & Stefanescu, 2017) implemented a genetic

algorithm for a test function to evaluate the parallelization features capabilities. The PSO

algorithm is implemented with a huge amount of data (greater than 3 * 107 data-points have been

executed and evaluated) which resulted in a better performance than the traditional approaches

(K. Wu, Zhu, Li, & Han, 2017).

In this paper, we have taken the MR-GSO algorithm and implemented it on Apache

Spark as Spark-GSO to improve the efficiency of GSO. This is done by investigating and

comparing the optimization process, runtimes and speedup for both MR-GSO and Spark-GSO.

7

3. GLOWWORM SWARM OPTIMIZATION

Krishnanand and Ghose (Krishnanand & Ghose, 2005) have introduced a new swarm

intelligence method called Glowworm Swarm Optimization (GSO) in 2005. Initially, the

algorithm randomly places N glowworms in the workspace. Xi(t) is the position at time t in the

function search space, Li(t) is the Luciferin level and rdi(t) is a local decision range for a

glowworm i. Based on the objective function J, an objective value of an individual’s position is

defined, which is associated with a luciferin level.

A glowworm closer to the peak has a higher objective function value holding a higher

luciferin level (emits more light) than the others. If a glowworm has a higher luciferin value than

the neighboring glowworms within the local decision range, then they try to attract the other

glowworms towards it. The glowworms with a lower luciferin value and within its local range

move towards a glowworm with a high luciferin value. This is a continuous process and requires

several iterations to complete the process of movement towards several peaks in the given search

space.

The GSO algorithm can be broadly divided into four stages:

Initially, all the required variables for the optimization are declared and initialized. Then,

the algorithm randomly deploys N glowworms in the given workspace. L0 (constant) is used to

initialize the luciferin level for all glowworms. Finally, in the first stage, r0 is used to initialize

both rd (local decision range) and rs (radial sensor range).

The second stage deals with updating the luciferin levels. In this stage, the objective

function is evaluated using the glowworm position (Xi). For all swarm glowworms, the luciferin

levels are updated using the objective function values. The equation to update the luciferin level

is based on:

8

 𝐿𝑖(𝑡) = (1 − 𝜌)𝐿𝑖(𝑡 − 1) + 𝛾𝐽(𝑋𝑖(𝑡)) (1)

For a glowworm i, Li(t-1) and Li(t) are previous and updated luciferin levels,

respectively, the luciferin decay constant is ∈ (0,1), luciferin enhancement fraction is ,

and for iteration t and the current glowworm position, the objective function is represented as

J(Xi(t)).

The third stage defines the glowworm movement in the search space. For each

glowworm i, based on Li and Lj (luciferin level of another glowworm) and rd (local decision

range), the glowworms neighbor group Ni(t) is extracted using:

 𝐽 ∈ 𝑁𝑖(𝑡) 𝑖𝑓𝑓 𝑑𝑖𝑗 < 𝑟𝑑𝑖(𝑡) 𝑎𝑛𝑑 𝐿𝑗(𝑡) > 𝐿𝑖(𝑡) (2)

where the neighbor group is represented as Ni(t), one of the glowworms other than i is

glowworm j, the Euclidean distance between the ith and the jth glowworm is dij, the local decision

range for glowworm i is rdi(t), and the luciferin levels for the jth and ith glowworm are Lj(t) and

Li(t), respectively.

The best neighbor is identified from the existing neighbor group by applying the roulette

wheel method on the probability-based values. By applying the roulette wheel selection method,

only higher probability glowworms in the neighbor group have a good chance to be chosen as the

best neighbor. The probability calculation is done by:

𝑃𝑟𝑜𝑏𝑖𝑗 =

𝐿𝑗(𝑡) − 𝐿𝑖(𝑡)

∑ 𝐿𝑘(𝑡) − 𝐿𝑖(𝑡)𝑘∈𝑁𝑖(𝑡))
 (3)

where for glowworm i, a neighbor from neighbor group Ni(t) is represented as j. The

glowworm i does not update its location if the denominator in the equation becomes zero (case

where no neighbors are found).

9

At the end of third stage, based on the selected neighbor position, the position of the

current glowworm is updated which is the following:

𝑋𝑖(𝑡) = 𝑋𝑖(𝑡 − 1) + 𝑠

𝑋𝑗(𝑡) − 𝑋𝑖(𝑡)

𝛿𝑖𝑗
 (4)

Here, the new and old positions for glowworm i is represented as Xi(t) and Xi(t-1),

respectively, the step size constant is s, and the distance between the ith and the jth glowworm is

ij.

The final stage deals with updating the local decision range. This adds flexibility while

formulating a neighbor group in the successive iterations. To update rdi, the following equation

is used:

 𝑟𝑑𝑖(𝑡) = 𝑚𝑖𝑛 {𝑟𝑠, 𝑚𝑎𝑥[0, 𝑟𝑑𝑖(𝑡 − 1) + 𝛽(𝑛𝑡 − |𝑁𝑖(𝑡 − 1)|)]} (5)

Here for glowworm i, the new and previous local decision range are represented as rdi(t)

and rdi(t-1), respectively, the radial sensor range constant as rs, model constant as , constant to

govern neighbor count as nt, and the number of neighbors as Ni(t).

10

4. PROPOSED SPARK GSO ALGORITHM (SPARK-GSO)

Initially, a swarm of glowworms of a specific size is created. In the swarm, each

glowworm is associated with a random positional vector (Xi) in the given search space and is

generated using uniform randomization. For each Xi vector, the objective function J is

calculated. Using Equation (1), the luciferin level (Li) is evaluated for each glowworm with the

provided default luciferin value L0, J(Xi), and other constants. The initial local decision range, r0,

is used as a local decision range rd for the first iteration. Once the entire swarm is initialized with

the updated information, the glowworms are added to a list. This list is used, broadcasted, and

updated during every iteration of the algorithm.

In the next phase of Spark-GSO, the iterative process of RDD operations is performed.

Each iteration (RDD action) updates the glowworm swarm and the updated swarm is used as the

input for the next iteration for processing.

Before the transformations are applied, the entire swarm is sent to each task using a

broadcast variable, a feature provided by Spark is to send and cache an object on each node

before starting the tasks. The broadcast variable is initialized and broadcasted as a list of

glowworms for the processing in the mappers. The GSO constants such as s, rs, nt which

are used in the process of movement of the glowworm swarms are retrieved.

There are two mapper transformations used in the architecture. The first transformation is

used to find the best neighbor from all the glowworms in the swarm. To find the neighbors, an

O(n2) algorithm is used. The algorithm involves calculating the Euclidian distance and the

luciferin level comparisons between the given glowworm and all the other glowworms in the

search space to locate a neighbor group as given in the Equation 2. Once the neighbor group is

found, Equation 3 is used to find the best neighbor in that group. A technique called roulette

11

wheel selection method is used to find the best neighbor. At the end of the first transformation,

the best neighbor is attached to the original glowworm. Finally, the glowworm with an attached

neighbor glowworm is emitted (returned) for further processing in the second transformation.

The first transformation algorithm is outlined in Algorithm 1.

The second transformation picks up the glowworm swarm with each glowworm attached

with a best neighbor glowworm. This transformation mapper is used to update the luciferin level

Li for each glowworm by evaluating the objective function for the new glowworm position. In

this phase, the glowworm and its best neighbor position (Xj) is extracted at the start. Using

Equation 4, the next step is to update the glowworm positional vector. Then, the objective

function is evaluated for the new positional vector for the luciferin level calculation using

Equation 1. In the last step before emitting the new glowworm, rdi is calculated using Equation

5. Finally, the glowworm with the updated information is emitted. The second transformation

algorithm is outlined in Algorithm 2.

Then, an Apache Spark action Collect is implemented in the driver class. As Spark

transformations are “lazy”, no transformation is applied until the action is implemented. The

collect supplies the actual updated glowworm swarm to the driver program. At the end of each

iteration, the updated glowworm swarm is collected and broadcasted for the next iteration

processing. Also, this updated glowworm is used for RDD operations in the next iteration.

Algorithm 1: Transformation Mapper1 Algorithm 2: Transformation Mapper2

function Call(Glowworm)

read (BroadcastSwarm)

//Copy the broadcasted swarm into a

local variable

 function Call(Glowworm)

if(neighborSize != 0)

extractNeighbor(Glowworm)

12

For each glowworm in BroadcastSwarm

do

Xj=extractPosition(glowworm)

Lj=extractluciferin(glowworm)

EDist=returnEDistance(Xi,Xj)

if (EDist <rdi and Lj >Li) then

NeighborsGroup:add(j)

end if

end for

if (NeighborsGroup:size() >0) then

for each glowworm j in NeighborsGroup

do

//calculate the probabilities from

the NeighborsGroup using Equation (2)

prob[j]=calculateProbability(i,j)

end for

end if

nj=selectBestNeighbor(prob) //using

roulette wheel selection

Glowworm.setNeighborSize(Neighbors

Group.size())

Glowworm.addNeighbor(nj)

Emit (Glowworm)

end function

//Extract the neighbor glowworm information

from the attached glowworm

else

//Extract the information from the current

glowworm

glowwormi=NULL

extractInfo(Xi,Ji,Li,rdi)

fill(glowwormi,Xi,Jxi,Li,rdi)

end if

//calculate the new position for glowworm i

using Equation (4)

newX=calculateNewX(Xi,Xj)

//update luciferin level for glowworm i

using objective function formula J

newJx=calculateNewJx(newX)

//update luciferin level for glowworm i

using Equation (1)

newL=calculateNewX(Li,newJx)

//calculate the new rd for glowworm i

using Equation (5)

newrd=calculateNewrd(rdi,nbSize)

glowwormi.update(newX,newJx,newL,newrd)

Emit(glowwormi)

end function

13

5. EXPERIMENT AND RESULTS

In this section, we provide the details about the computing environment and the

benchmark functions used for the experiments as well as give a brief description of the MR-GSO

algorithm. We also discuss the optimization quality, running time of the measurements for the

MR-GSO and Spark-GSO algorithms.

5.1. Environment

We executed the MR-GSO and Spark-GSO algorithms on the Wrangler Hadoop cluster

hosted by the Texas Advanced Computing Center (TACC). Each node of the Wrangler cluster

has 24 cores (Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz), and 128 GB of memory. The

Hadoop environment, which we have used is Hadoop 2.6.0-cdh5.7.1 to run the MR-GSO

algorithm, while Apache Spark version 2.1.0 is used to execute the Spark-GSO algorithm.

5.2. Benchmark Functions

We have used two multimodal benchmark functions to evaluate the MR-GSO and Spark-

GSO algorithms. The description of the benchmark functions is as follows (Li, Engelbrecht, &

Epitropakis, 2013) (Liang, Qu, Suganthan, & Chen, 2014):

F1: A highly multimodal function called Equal-peaks-B, which can be spanned into an

m-dimensional search space is chosen as Function F1. The Equal-peaks-B function has equal

function values at all local maxima. When Xi, i= 1,….,m, is considered as a multidimensional

vector, the function search space used is (− ≤ Xi ≤). The function has 2m peaks and the

definition is:

𝐹1(𝑋𝑖) = ∑ [𝑠𝑖𝑛2(𝑋𝑖)]

𝑚

𝑖=1
 (6)

F2: The Rastrigin function is a highly multimodal function, which is generally used for

optimization algorithms as a performance test problem. The minima and maxima of locations are

14

regularly distributed in this function. Due to its large number of local minima and large search

space, this function has difficulty in achieving the solution. When Xi, i= 1,….,m, is considered as

a multidimensional vector, the function search space used is (-1≤Xi ≤1). The function has 2m

peaks with the following definition:

𝐹2(𝑋𝑖) = 10𝑚 + ∑ [𝑋𝑖

2 − 10𝑐𝑜𝑠 (2𝜋𝑋𝑖)]
𝑚

𝑖=1
 (7)

5.3. Evaluation Measures

The Peaks Capture Rate (PCR) and the average minimum distance from each glowworm

to the peak locations (Davg) are used to determine the optimization quality (Krishnanand &

Ghose, 2009b). If the distance of three nearest glowworms to a peak is less than or equal to ,

then we say that the peak is captured. As recommended by Krishnanand et al. (Krishnanand &

Ghose, 2009b), = is used in our experiments.

The Peak Capture Rate (PCR) is calculated using:

PCR =

Number of Peaks Captured

Number of All Peaks
× 100% (8)

The average minimum distance, Davg, to the peak locations is calculated using:

𝐷𝑎𝑣𝑔 =

1

𝑁
 × ∑ 𝑚𝑖𝑛{𝛿𝑖1. . . 𝛿𝑖𝑄}

𝑁

𝑖=1
 (9)

where the number of glowworms in the swarm is N, the Euclidian distance between

glowworm i and peak j is represented as ij, and the number of available peak locations is

represented as Q.

When high PCR and low Davg values are achieved, it is considered as the best result. For

example, if the result achieved has a low PCR, it means the glowworms are gathered at a few

peaks only ignoring the rest of the peaks, which is not a good solution. While when PCR is close

15

to 100%, it means that the glowworms are actually gathered at all the peaks available, and a low

Davg means the glowworms are actually gathered very close to the peaks, which is an optimal

solution.

The experiments which we executed uses the default GSO settings as specified in

(Krishnanand & Ghose, 2009b). We used (luciferin decay constant) = 0.4, (luciferin

enhancement constant) = 0.6, (constant parameter) = 0.08, nt (number of neighbors limit) = 5,

L0 (Luciferin rate) = 5.0, s (step size) = 0.03. The rd (local decision range) and rs (radial sensor

range) values are adjusted depending on the function chosen. In our executions, rd is constant

throughout the optimization process such that rs = rd = r0.

5.4. MR-GSO Algorithm

The MR-GSO algorithm is implemented based on the work published by Aljarah and

Ludwig (Aljarah & Ludwig, 2016). The implementation of Spark-GSO is similar to MR-GSO

except with some modifications to make use of features available in Spark. In MR-GSO, the

glowworms in the swarm are initially written to the distributed file system with the <Key,

Value> structure. The key-value structure is described in Figure 1.

Figure 1. Representation of Glowworm in MR-GSO Algorithm.

Here, during each iteration a MapReduce job is executed which produces the updated

swarm, which is used for the next iteration. The mapper is used for finding the neighbor group

and the best neighbor from the workspace. The mapper emits the current glowworm and the best

neighbor glowworm as <Key, List of Values> at the end. Once the reducer is started, the emitted

<Key, List of Values> pairs from the mapper is consumed and the update of the Luciferin level

16

is carried out. The Glowworm positional vector is also updated in the reducer and a newly

updated glowworm is emitted at the end. More details can be found in (Aljarah & Ludwig,

2016).

17

6. RESULTS

To evaluate and compare both MR-GSO and Spark-GSO algorithms, various experiments

have been conducted measuring PCR, Davg, running time and speedup for both the Equal-peaks-

B and the Rastrigin benchmark.

The optimization quality for the Spark-GSO algorithm for the F1 function with 2

dimensions is shown in Figure 2. For each swarm size varying from 10,000 to 60,000, PCR and

Davg for every iteration have been evaluated and presented. Although we can see that the

minimum distance is reduced at each iteration, we cannot see any significant improvement in

Davg when the swarm size is increased. Also, for the 2-dimensional glowworms swarm, we

cannot see a significant improvement in PCR when the swarm size is increased as the PCR

converges to 100% at the lowest swarm (10,000) size (Figure 2(b)).

Figure 2. Spark-GSO: Equal-peaks-B (F1) 2-dimensional optimization process, iterations=200,

r0=2.0 (a) Average Minimum Distance. (b) Peaks Capture Rate.

18

Figure 3 represents the optimization quality for the MR-GSO algorithm for the F1

function with 2 dimensions. Similar to Spark-GSO, the PCR converges at the second iteration for

a swarm size of 10,000 and Davg significantly reduces at each iteration until the first 60 iterations,

and shows a slow reduction after that. There is no visible difference between Spark-GSO and

MR-GSO for Davg in Figures 1(a) and 2(a).

Figure 3. MR-GSO: Equal-peaks-B (F1) 2-dimensional optimization process, iterations=200,

r0=2.0 (a) Average Minimum Distance. (b) Peaks Capture Rate.

The optimization quality for the Spark-GSO algorithm for the F1 function with 4

dimensions is shown in Figure 4. Here, we can see that the average minimum distance is almost

equal for all swarm sizes and low values are achieved over time (iterations). However, the PCR

values convergence rate to 100% varies for each glowworm swarm size. From Figure 3(b), we

can see that the PCR converges to 100% at the 42nd iteration for a swarm of 10,000 glowworms,

while the PCR converges to 100% at the 25th iteration for a swarm of 60,000 glowworms.

19

Figure 4. Spark-GSO: Equal-peaks-B (F1) 4-dimensional optimization process, iterations=200,

r0=2.0 (a) Average Minimum Distance. (b) Peaks Capture Rate.

Figure 5 represents the optimization results for the MR-GSO algorithm for the F1

function with 4 dimensions. From Figure 5(b), it shows that the difference in achieving a low

Davg is almost similar to the Spark-GSO execution. PCR converges to 100% at the 47th iteration

using MR-GSO (Figure 5(b)) while it is achieved at the 42nd iteration for Spark-GSO (Figure

4(b)), which is a minute difference.

20

Figure 5. MR-GSO: Equal-peaks-B (F1) 4-dimensional optimization process, iterations=200,

r0=2.0 (a) Average Minimum Distance. (b) Peaks Capture Rate.

Figure 6 and Figure 7 represent the optimization quality for the F1 function with 6

dimensions for the Spark-GSO and MR-GSO algorithm, respectively. In both, Spark-GSO and

MR-GSO, the average minimum distance is better for the swarm size with 60,000 glowworms

than the smaller swarm sizes. For both algorithms, the PCR does not converge to 100% when the

swarm size is 10,000. For the rest of the swarm sizes, the PCR converges to 100% for 6

dimensions. The Spark-GSO algorithm captured 98.4% of the peaks, while MR-GSO captured

95.3% of peaks in the search space.

21

Figure 6. Spark-GSO: Equal-peaks-B (F1) 6-dimensional optimization process, iterations=200,

r0=2.0 (a) Average Minimum Distance. (b) Peaks Capture Rate.

22

Figure 7. MR-GSO: Equal-peaks-B (F1) 6-dimensional optimization process, iterations=200,

r0=2.0 (a) Average Minimum Distance. (b) Peaks Capture Rate.

Figure 8 and Figure 9 represent the optimization quality for the F1 function with 8

dimensions for Spark-GSO and MR-GSO, respectively. In both, Spark-GSO and MR-GSO, the

average minimum distance is better for the swarm size with 60,000 glowworms than the smaller

swarm sizes, and for a 10,000 sized swarm the Davg is considerably larger. For both algorithms,

the PCR does not converge to 100% irrespective of the swarm size. Spark-GSO and MR-GSO

captured only around 5% peaks for swarm of 10,000 glowworms after 200 iterations, while for a

swarm of 60,000 glowworms only around 70% peaks are captured.

23

Figure 8. Spark-GSO: Equal-peaks-B (F1) 8-dimensional optimization process, iterations=200,

r0=2.0 (a) Average Minimum Distance. (b) Peaks Capture Rate.

24

Figure 9. MR-GSO: Equal-peaks-B (F1) 8-dimensional optimization process, iterations=200,

r0=2.0 (a) Average Minimum Distance. (b) Peaks Capture Rate.

For the Rastrigin (F2) function with 2, 4, 6 and 8-dimensions, the optimization quality

results for both Spark-GSO and MR-GSO are represented in Figures 10 to 17. For the 2-

dimensional glowworms swarm of various sizes, 100% of the peaks are captured at the 1st

iteration for both Spark-GSO and MR-GSO (Figure 10(b), Figure 11(b)). Spark-GSO achieved

100% PCR at the 10th iteration for 10,000 glowworms with 4 dimensions, while MR-GSO

achieved the same at the 13th iteration. The same has been achieved at the 7th iteration for 60,000

glowworms for both algorithms (Figure 12(b), Figure 13(b)). For the 6 dimensions, the

maximum peaks capture rate is 98.4% after 200 iterations with a swarm of 10,000 for Spark-

GSO and MR-GSO, while for 60,000 glowworms it is achieved at around the 22nd iteration

(Figures 14(b) and 15(b)). For both Spark-GSO and MR-GSO with 8-dimensions, not even a

25

single peak is captured for a glowworms swarm of 10,000. But when using 60,000 glowworms,

85.9% of the peaks are captured for the Spark-GSO algorithm while only 63.2% of the peaks are

captured when the MR-GSO algorithm is executed (Figures 16(b) and 17(b)).

Figure 10. Spark-GSO: Rastrigin (F2) 2-dimensional optimization process, iterations=200,

r0=0.5 (a) Average Minimum Distance. (b) Peaks Capture Rate.

26

Figure 11. MR-GSO: Rastrigin (F2) 2-dimensional optimization process, iterations=200, r0=0.5

(a) Average Minimum Distance. (b) Peaks Capture Rate.

27

Figure 12. Spark-GSO: Rastrigin (F2) 4-dimensional optimization process, iterations=200,

r0=0.5 (a) Average Minimum Distance. (b) Peaks Capture Rate.

28

Figure 13. MR-GSO: Rastrigin (F2) 4-dimensional optimization process, iterations=200, r0=0.5

(a) Average Minimum Distance. (b) Peaks Capture Rate.

29

Figure 14. Spark-GSO: Rastrigin (F2) 6-dimensional optimization process, iterations=200,

r0=0.5 (a) Average Minimum Distance. (b) Peaks Capture Rate.

30

Figure 15. MR-GSO: Rastrigin (F2) 6-dimensional optimization process, iterations=200, r0=0.5

(a) Average Minimum Distance. (b) Peaks Capture Rate.

31

Figure 16. Spark-GSO: Rastrigin (F2) 8-dimensional optimization process, iterations=200,

r0=0.5 (a) Average Minimum Distance. (b) Peaks Capture Rate.

32

Figure 17. MR-GSO: Rastrigin (F2) 8-dimensional optimization process, iterations=200, r0=0.5

(a) Average Minimum Distance. (b) Peaks Capture Rate.

We have executed both Spark-GSO and MR-GSO on a 2, 4, 8, 16 and 32 node cluster to

compare the running times and speedup results. Figure 18 and Figure 19 represents the running

times and speedup results of Spark-GSO and MR-GSO on various number of nodes in a cluster.

As we increase the number of nodes the running times decrease for both Spark-GSO and MR-

GSO. Also, we can observe that the running times actually increase when the swarm size

increases. Finally, we can conclude that the running times of the Spark-GSO algorithm are less

than the ones of the MR-GSO algorithm.

The speedup results for both Spark-GSO and MR-GSO for various swarm sizes executed

on various nodes are represented in Figures 19(a), 19(b) and 19(c). As we can see, the speedup of

the MR-GSO algorithm is closer to the linear speedup only when 2, 4 and 8 nodes are used when

33

compared to the Spark-GSO algorithms speedup for 100,000 glowworms swarm. The speedup

diverges after 8 nodes. For 200,000 glowworms, the speedup for both Spark-GSO and MR-GSO

is comparatively closer to the linear speedup until 16 nodes than when N=100,000. When

300,000 glowworms are used, MR-GSO is very close to the linear speedup until 16 nodes and

diverges a little after that. But for Spark-GSO, we can see that the divergence is larger than that

of the MR-GSO for N=300,000.

34

Figure 18. Equal-peaks-B function running time for 4-dimensional glowworms. (a) Running

Time N=100,000. (b) Running Time N=200,000. (c) Running Time N=300,000.

35

Figure 19. Equal-peaks-B function speedup results for 4-dimensional glowworms. (a) Speedup

with N=100,000 (b) Speedup with N=100,000 (c) Speedup with N=100,000.

36

7. CONCLUSION

Many different parallelization frameworks have been introduced in the past. Spark is one

such framework that is designed in a way that allows for easy implementation. In order to

parallelize an algorithm using the Spark framework one does not need to deal with any

parallelization details besides the logic of the algorithm itself.

In previous research work, the Glowworm Swarm Optimization (GSO) algorithm was

parallelized using MapReduce (MR-GSO). In this paper, we have parallelized the GSO

algorithm using Apache Spark (Spark-GSO) applied to multimodal function optimization.

Apache Spark eliminates the read and writing operations of intermediate files onto a hard disk,

which MapReduce uses. Furthermore, Spark-GSO parallelizes the algorithm using two

transformations and a single action.

For the experimentation, two multimodal benchmark functions were used to evaluate the

Spark-GSO algorithm with various sizes of dimensionality (2 to 8) as well as various swarm

sizes (10,000 to 60,000). Furthermore, we compared the Spark-GSO results with the ones

obtained using the MapReduce-based GSO algorithm. The optimization results, running times,

and the speedup were evaluated and compared with the MR-GSO results. The results can be

summarized as follows. There is a difference in the convergence of the optimization results

comparing the Spark and MapReduce implementations. Spark-GSO converges to the solution in

general a little bit faster than MR-GSO, which is especially noticeable for larger dimensions. For

both benchmark functions, the optimization results are very similar for 2 and 4 dimensions, but

then show for the higher dimensions (6 and 8); most significant for 8 dimensions. In terms of the

running time of Spark-GSO and MR-GSO using up to 32 compute nodes, Spark-GSO is

37

expectantly faster than MR-GSO for all swarm sizes tested. The speedup obtained however is

better for MR-GSO than Spark-GSO.

As for future work, the basic RDD operations have been used and implemented to

complete the algorithm, however in future we can use the concepts like Data-Frames in Spark to

achieve even faster run-times. Furthermore, experiments with even larger dimensionality and

population sizes will be conducted.

38

REFERENCES

Aljarah, I., & Ludwig, S. A. (2013a). A MapReduce based glowworm swarm optimization

approach for multimodal functions. In 2013 IEEE Symposium on Swarm Intelligence

(SIS) (pp. 22–31). IEEE. https://doi.org/10.1109/SIS.2013.6615155

Aljarah, I., & Ludwig, S. A. (2013b). A new clustering approach based on Glowworm Swarm

Optimization. In 2013 IEEE Congress on Evolutionary Computation (pp. 2642–2649).

IEEE. https://doi.org/10.1109/CEC.2013.6557888

Aljarah, I., & Ludwig, S. A. (2016). A Scalable MapReduce-enabled Glowworm Swarm

Optimization Approach for High Dimensional Multimodal Functions. International

Journal of Swarm Intelligence Research, 7(1), 32–54.

https://doi.org/10.4018/IJSIR.2016010102

Apache Spark @Scale (2017) Apache Spark @Scale: A 60 TB+ production use case from

Facebook - The Databricks Blog. Retrieved November 17, 2017, from

https://databricks.com/blog/2016/08/31/apache-spark-scale-a-60-tb-production-use-

case.html

Apache SparkTM (2017) Apache SparkTM - Lightning-Fast Cluster Computing. Retrieved

November 17, 2017, from https://spark.apache.org/

Barrera, J., & Coello, C. A. C. (2009). A Review of Particle Swarm Optimization Methods Used

for Multimodal Optimization (pp. 9–37). Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-04225-6_2

Big Data Analytics in the Cloud (2015). Big Data Analytics in the Cloud: Spark on Hadoop vs

MPI/OpenMP on Beowulf. Procedia Computer Science, 53, 121–130.

https://doi.org/10.1016/J.PROCS.2015.07.286

39

Dean, J., & Ghemawat, S. (2004). MapReduce: simplified data processing on large clusters.

Proceedings of the 6th Conference on Symposium on Opearting Systems Design &

Implementation - Volume 6. USENIX Association. Retrieved from

http://dl.acm.org/citation.cfm?id=1251264

Engelbrecht, A. P. (2007). Computational intelligence : an introduction. John Wiley & Sons.

Gopalani, S., & Arora, R. (2015). Comparing Apache Spark and Map Reduce with Performance

Analysis using K-Means. International Journal of Computer Applications, 113(1), 975–

8887. Retrieved from

http://search.proquest.com.ezproxy.lib.ndsu.nodak.edu/docview/1672910329/F5DCA632

58EC495DPQ/1?accountid=6766

Grama, A. (2003). Introduction to parallel computing. Addison-Wesley.

Ismail, M. A. (2004). Parallel genetic algorithms (PGAs): master slave paradigm approach using

MPI. In E-Tech 2004 (pp. 83–87). IEEE. https://doi.org/10.1109/ETECH.2004.1353848

Jin, C., Vecchiola, C., & Buyya, R. (2008). MRPGA: An Extension of MapReduce for

Parallelizing Genetic Algorithms. In 2008 IEEE Fourth International Conference on

eScience (pp. 214–221). IEEE. https://doi.org/10.1109/eScience.2008.78

Krishnanand, K. N., & Ghose, D. (2005). Detection of multiple source locations using a

glowworm metaphor with applications to collective robotics. In Proceedings 2005 IEEE

Swarm Intelligence Symposium, 2005. SIS 2005. (pp. 84–91). IEEE.

https://doi.org/10.1109/SIS.2005.1501606

Krishnanand, K. N., & Ghose, D. (2008). Glowworm Swarm Optimization Algorithm for Hazard

Sensing in Ubiquitous Environments Using Heterogeneous Agent Swarms. In Soft

40

Computing Applications in Industry (pp. 165–187). Berlin, Heidelberg: Springer Berlin

Heidelberg. https://doi.org/10.1007/978-3-540-77465-5_9

Krishnanand, K. N., & Ghose, D. (2009a). Glowworm swarm optimisation: a new method for

optimising multi-modal functions. International Journal of Computational Intelligence

Studies, 1(1), 93. https://doi.org/10.1504/IJCISTUDIES.2009.025340

Krishnanand, K. N., & Ghose, D. (2009b). Glowworm swarm optimization for simultaneous

capture of multiple local optima of multimodal functions. Swarm Intelligence, 3(2), 87–

124. https://doi.org/10.1007/s11721-008-0021-5

Li, X., Engelbrecht, A., & Epitropakis, M. G. (2013). Benchmark Functions for CEC’2013

Special Session and Competition on Niching Methods for Multimodal Function

Optimization. Retrieved from

http://www.epitropakis.co.uk/sites/default/files/pubs/cec2013-niching-benchmark-tech-

report.pdf

Liang, J. J., Qu, B. Y., Suganthan, P. N., & Chen, Q. (2014). Problem Definitions and Evaluation

Criteria for the CEC 2015 Competition on Learning-based Real-Parameter Single

Objective Optimization CEC 2015 Competition on Learning-based Real-Parameter

Single Objective Optimization. Retrieved from

https://pdfs.semanticscholar.org/9693/b1296203d421d9054d408e226f2e4d5ac15d.pdf

Matei Zaharia, Holden Karau, Andy Konwinski, P. W. (2015). Learning Spark. O’Reilly Media.

Retrieved from http://shop.oreilly.com/product/0636920028512.do

McNabb, A. W., Monson, C. K., & Seppi, K. D. (2007). Parallel PSO using MapReduce. In 2007

IEEE Congress on Evolutionary Computation (pp. 7–14). IEEE.

https://doi.org/10.1109/CEC.2007.4424448

41

Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D., … Talwalkar, A.

(2016). MLlib: Machine Learning in Apache Spark. Journal of Machine Learning

Research, 17, 1–7. Retrieved from http://www.jmlr.org/papers/volume17/15-237/15-

237.pdf

Miryala, G. (2017). Journal of Global Research in Computer Science[[Elektronische

Ressource]] JGRCS. Journal of Global Research in Computer Science(UGC Approved

Journal) (Vol. 8). [s.n.]. Retrieved from

http://www.jgrcs.info/index.php/jgrcs/article/view/1015

MLlib - Apache Spark. (2017). Retrieved November 16, 2017, from

https://spark.apache.org/mllib/

Paduraru, C., Melemciuc, M.-C., & Stefanescu, A. (2017). A distributed implementation using

apache spark of a genetic algorithm applied to test data generation. In Proceedings of the

Genetic and Evolutionary Computation Conference Companion on - GECCO ’17 (pp.

1857–1863). New York, New York, USA: ACM Press.

https://doi.org/10.1145/3067695.3084219

Snir, M. (1998). MPI--the complete reference. MIT Press. Retrieved from

https://mitpress.mit.edu/books/mpi-complete-reference-0

Spark Streaming - Apache Spark. (2017). Retrieved November 16, 2017, from

https://spark.apache.org/streaming/

Stützle, T. (2009). Ant Colony Optimization: Evolutionary Multi-Criterion Optimization (pp. 2–

2). https://doi.org/10.1007/978-3-642-01020-0_2

Tan, Q., He, Q., & Shi, Z. (2012). Parallel Max-Min Ant System Using MapReduce (pp. 182–

189). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30976-2_22

42

Venter, G., & Sobieszczanski-Sobieski, J. (2006). Parallel Particle Swarm Optimization

Algorithm Accelerated by Asynchronous Evaluations. Journal of Aerospace Computing,

Information, and Communication, 3(3), 123–137. https://doi.org/10.2514/1.17873

Wong, L.-P., Low, M. Y. H., & Chong, C. S. (2008). A Bee Colony Optimization Algorithm for

Traveling Salesman Problem. In 2008 Second Asia International Conference on

Modelling & Simulation (AMS) (pp. 818–823). IEEE.

https://doi.org/10.1109/AMS.2008.27

Wu, B., Wu, G., & Yang, M. (2012). A MapReduce based Ant Colony Optimization approach to

combinatorial optimization problems. In 2012 8th International Conference on Natural

Computation (pp. 728–732). IEEE. https://doi.org/10.1109/ICNC.2012.6234645

Wu, K., Zhu, Y., Li, Q., & Han, G. (2017). Algorithm and Implementation of Distributed ESN

Using Spark Framework and Parallel PSO. Applied Sciences, 7(4), 353.

https://doi.org/10.3390/app7040353

Zhou, C., & Chi. (2010). Fast parallelization of differential evolution algorithm using

MapReduce. In Proceedings of the 12th annual conference on Genetic and evolutionary

computation - GECCO ’10 (p. 1113). New York, New York, USA: ACM Press.

https://doi.org/10.1145/1830483.1830689

