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ABSTRACT 

Glowworm Swarm Optimization (GSO) is one of the optimization techniques, which 

need to be parallelized in order to evaluate large problems with high-dimensional function 

spaces. There are various issues involved in the parallelization of any algorithm such as efficient 

communication among nodes in a cluster, load balancing, automatic node failure recovery, and 

scalability of nodes at runtime. In this paper, we have implemented the GSO algorithm with the 

Apache Spark framework. The Spark framework is designed in such a way that one does not 

need to deal with any parallelization details except the logic of the algorithm itself. For the 

experimentation, two multimodal benchmark functions were used to evaluate the Spark-GSO 

algorithm with various sizes of dimensionality. We evaluate the optimization results of the two 

evaluation functions as well as we will compare the Spark results with the ones obtained using a 

previously implemented MapReduce-based GSO algorithm. 
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1. INTRODUCTION 

Based on a specific performance criterion, the process of finding an optimum solution 

from available candidate solution is called optimization. Swarm intelligence and evolutionary 

computation are some of the techniques, which can be used for optimization purposes. Natural 

swarms’ behavior such as Ant colonies, flocks of birds and growth of bacteria provides an 

inspiration to develop an optimization technique called swarm intelligence (Engelbrecht, 2007). 

Interactions among swarm members such as exchanging information to achieve the solution, e.g., 

to locate food source, is the core concept in swarm intelligence. 

Particle Swarm Optimization (PSO) is one of the swarm intelligence methodologies. The 

concept of finding food sources based on the birds’ current movement, the flocks’ best food 

source ever found, and an individual bird in the flock experiencing the best food source is an 

influence was the inspiration of the development of PSO. Based on the actions of ants performed 

during the process to find the shortest path to a food source by secreting pheromone on various 

paths, an algorithm called Ant Colony Optimization (ACO) was developed (Stützle, 2009). The 

process of using local and global searching honeybees to build honeybee colonies is seen in the 

Bee Colony Optimization (Wong, Low, & Chong, 2008) algorithm. 

Inspired by the characteristics shown by glowworms, Krishnanand and Ghose have 

developed an algorithm called Glowworm Swarm Optimization (GSO) (Krishnanand & Ghose, 

2009a). To achieve goals like attracting a mate during the breeding season, glowworms govern 

the emission of light. Applications such as hazard sensing in ubiquitous environments 

(Krishnanand & Ghose, 2008), robotics and portable sensor networks (Krishnanand & Ghose, 

2005) and data clustering (Aljarah & Ludwig, 2013b) can make use of the GSO algorithm due to 
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its simplicity and small number of parameters that are actually required for tuning (Krishnanand 

& Ghose, 2009a) (Krishnanand & Ghose, 2008) (Krishnanand & Ghose, 2005).  

A function to find several local maxima (peaks) with equal or different objective values is 

called a Multimodal function (Barrera & Coello, 2009). Multimodal function optimization 

consists of finding all local maxima (peak) with some constraints. The running time of the 

algorithm is significantly increased when the peaks count is increased for higher dimensional 

spaces to reach optimum targets. The individual count is also increased to find all the peaks in 

the search space, and also the task needs to be divided into several groups to carry out the 

optimization process. A parallelized solution is required to achieve all these goals in a limited 

amount of time. 

Communication inefficiency over computer network, improper load-balancing to mitigate 

latency issues and node failures are the factors which make it difficult to scale the parallelized 

algorithm to several nodes in a cluster. Hence, scalability of data and nodes is a key factor to 

increase the computational load, while high quality results are being maintained.  

Our proposed model is inspired by the MR-GSO algorithm (Aljarah & Ludwig, 2013a) 

and is developed in Apache Spark. Apache Spark executes an algorithm way faster than with 

MapReduce due to in-memory computing (Apache SparkTM, 2017) (Meng et al., 2016). 

Algorithms in Apache Spark are easy to develop without any prior knowledge to the concepts of 

parallelization programming. Also, Apache Spark applications can be developed in various 

programming languages including Java, Python, Scala and R. Apache Spark can handle large 

sets of data and scale well by increasing the number of nodes at runtime. 

The Spark development is initiated by the UC Berkeley RAD lab that started as a 

research project in 2009. The main goal behind the development is to provide iterative in-
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memory computing support for MapReduce. Companies like Yahoo, Databricks and Intel are 

major contributors to the Spark development (Matei Zaharia, Holden Karau, Andy Konwinski, 

2015). Spark is used in challenging use cases in data intensive operative companies like 

Facebook (Apache Spark @Scale, 2017). 

A Spark application in general is mainly operated by a driver program that controls 

parallel operations on a cluster. A Resilient Distributed Dataset (RDD) is the main abstraction 

provided by Spark which is a collection of elements, which can be partitioned and distributed 

over a cluster of nodes for parallel processing. RDD can be created using a file on the Hadoop 

file system or from a java collection in a driver class. RDD provides reusability through caching 

capabilities and node failure recovery. Spark also provides shared variables such as broadcast 

variables and accumulators. Broadcast variables are cached in all nodes’ memory at the start of a 

task while accumulators can be used as counters.  

In this paper, a parallel GSO algorithm is proposed using Apache Spark. The following 

key contributions have been presented using parallel glowworm swarm optimization on Spark 

(Spark-GSO): 

Apache Spark concepts have been successfully applied to Glowworm Swarm 

Optimization to enable parallelization.  

Higher dimensional multimodal functions have been evaluated in Spark-GSO and 

compared with the MR-GSO algorithm. 

The following sections in this paper are organized as follows: Background and Related 

work in the areas of parallel computing, MapReduce and parallel optimization algorithms are 

presented in Section 2. GSO, MR-GSO and the proposed Spark-GSO algorithm are presented in 

Section 3. The experiments with results are provided in Section 4 followed by conclusions. 
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2. BACKGROUND 

Despite the fact that Genetic algorithms (optimization algorithm) can be used to solve 

difficult problems, they demand a lot of computational power and memory thus increasing the 

demand for compuation in order to solve large-scale problems (Venter & Sobieszczanski-

Sobieski, 2006) (Ismail, 2004). To achieve a speedup against the execution of genetic algorithms 

in a single processor, parallel algorithms utilize multiple processing nodes (Grama, 2003). To 

address various challenges in implementing optimization algorithms, several algorithms have 

been proposed.  

Message Passing Interface (MPI) methodology has been extensively used for various 

algorithms for parallel computing (Snir, 1998). A master slave paradigm on a Beowulf Linux 

Cluster using the MPI library has been proposed by Ismail et. al in 2004 (Ismail, 2004). A 

parallel PSO algorithm based on MPI has been introduced by Venter and Sobieszczanski-

Sobieski in 2005 (Venter & Sobieszczanski-Sobieski, 2006). As MPI has a large function set, it 

makes programming MPI complex (Snir, 1998), while algorithms using MapReduce are easy to 

design and develop (Dean & Ghemawat, 2004), although finer granular level parallel processes 

can be reused in MPI. MapReduce uses a distributed file system such as HDFS (Hadoop 

Distributed File System) to achieve faster file access while the message-passing model is used 

for communication in MPI. When a node fails in MPI, the processes are terminated whereas 

fault-tolerance of nodes is automatically achieved using MapReduce. 

McNabb et al. in 2007 (McNabb, Monson, & Seppi, 2007) have created a model called 

MRPSO and implemented PSO on MapReduce. Radial basis benchmark functions have been 

used to verify and validate the efficiency of execution of data-intensive optimizion functions in 

MapReduce.  
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In 2008, Jin et al. (Jin, Vecchiola, & Buyya, 2008) have successfully implemented 

genetic algorithms with MapReduce. They provided proof that a genetic algorithm can be 

parallelized using MapReduce. Later, it has been proved that designing and implementing an ant 

colony optimization (ACO) algorithm can be done using the MapReduce framework (B. Wu, 

Wu, & Yang, 2012). Later ACO has been implemented in different optimization problems such 

as 0-1 knapsack problem, Travelling Salesman Problem (TSP) (B. Wu et al., 2012) to prove that 

greater problems can be solved using MapReduce. A MapReduce version of ACO applied to the 

Max-Min problem has been used (Tan, He, & Shi, 2012), which resulted in better results when 

compared to the sequential Max-Min ACO problem.  

A differential evolution algorithm has been implemented in MapReduce (Zhou & Chi, 

2010) to improve scalability. The population is divided into several partitions, and the sub-

population is updated by a task in each partition. This improvement resulted in faster 

computation time when compared to the traditional version. 

Most of the MapReduce implementations above are all used to optimize single objective 

functions. In (Aljarah & Ludwig, 2013a), GSO deals with multimodal functions that have been 

implemented in MapReduce. This algorithm (MR-GSO) can be extended to higher dimensions 

(Aljarah & Ludwig, 2016) achieving scalability and efficiency.  

Although Apache Spark is not as efficient as MPI, it reduces the gap in performance in 

terms of speed and scalability when compared with MapReduce (Big Data Analytics, 2015). 

Apache Spark on Hadoop provides various additional features such as failure and data 

replication management, runtime addition of new nodes, and also provides tools for easy 

implementation. At times, these features make Apache Spark more preferable over the MPI 

methodology. 
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Performance on moderately sized datasets is substantially slower because of scheduling 

the overhead and no support for iterative computation in MapReduce, while excellent results are 

shown for scalability and performance using MLLIB libraries provided by Apache Spark (Meng 

et al., 2016) (Gopalani & Arora, 2015). MLLIB in Spark provides off-the-shelf algorithms for 

classification, regression, recommendation, clustering, etc. in conjunction with the use of 

streaming services for real-time analysis which MapReduce does not provide (MLlib, 2017) 

(Spark Streaming, 2017) (Miryala, 2017).  

Paduraru, et al. (Paduraru, Melemciuc, & Stefanescu, 2017) implemented a genetic 

algorithm for a test function to evaluate the parallelization features capabilities. The PSO 

algorithm is implemented with a huge amount of data (greater than 3 * 107 data-points have been 

executed and evaluated) which resulted in a better performance than the traditional approaches 

(K. Wu, Zhu, Li, & Han, 2017).  

In this paper, we have taken the MR-GSO algorithm and implemented it on Apache 

Spark as Spark-GSO to improve the efficiency of GSO. This is done by investigating and 

comparing the optimization process, runtimes and speedup for both MR-GSO and Spark-GSO. 
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3. GLOWWORM SWARM OPTIMIZATION 

Krishnanand and Ghose (Krishnanand & Ghose, 2005) have introduced a new swarm 

intelligence method called Glowworm Swarm Optimization (GSO) in 2005. Initially, the 

algorithm randomly places N glowworms in the workspace. Xi(t) is the position at time t in the 

function search space, Li(t) is the Luciferin level and rdi(t) is a local decision range for a 

glowworm i. Based on the objective function J, an objective value of an individual’s position is 

defined, which is associated with a luciferin level. 

A glowworm closer to the peak has a higher objective function value holding a higher 

luciferin level (emits more light) than the others. If a glowworm has a higher luciferin value than 

the neighboring glowworms within the local decision range, then they try to attract the other 

glowworms towards it. The glowworms with a lower luciferin value and within its local range 

move towards a glowworm with a high luciferin value. This is a continuous process and requires 

several iterations to complete the process of movement towards several peaks in the given search 

space. 

The GSO algorithm can be broadly divided into four stages:  

Initially, all the required variables for the optimization are declared and initialized. Then, 

the algorithm randomly deploys N glowworms in the given workspace. L0 (constant) is used to 

initialize the luciferin level for all glowworms. Finally, in the first stage, r0 is used to initialize 

both rd (local decision range) and rs (radial sensor range). 

The second stage deals with updating the luciferin levels. In this stage, the objective 

function is evaluated using the glowworm position (Xi). For all swarm glowworms, the luciferin 

levels are updated using the objective function values. The equation to update the luciferin level 

is based on:  
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 𝐿𝑖(𝑡)  =  (1 − 𝜌)𝐿𝑖(𝑡 − 1)  +  𝛾𝐽(𝑋𝑖(𝑡)) (1) 

For a glowworm i, Li(t-1) and Li(t) are previous and updated luciferin levels, 

respectively, the luciferin decay constant is    ∈ (0,1), luciferin enhancement fraction is , 

and for iteration t and the current glowworm position, the objective function is represented as 

J(Xi(t)). 

The third stage defines the glowworm movement in the search space. For each 

glowworm i, based on Li and Lj (luciferin level of another glowworm) and rd (local decision 

range), the glowworms neighbor group Ni(t) is extracted using: 

 𝐽 ∈ 𝑁𝑖(𝑡) 𝑖𝑓𝑓 𝑑𝑖𝑗  <  𝑟𝑑𝑖(𝑡) 𝑎𝑛𝑑 𝐿𝑗(𝑡)  >  𝐿𝑖(𝑡) (2) 

where the neighbor group is represented as Ni(t), one of the glowworms other than i is 

glowworm j, the Euclidean distance between the ith and the jth glowworm is dij, the local decision 

range for glowworm i is rdi(t), and the luciferin levels for the jth and ith glowworm are Lj(t) and 

Li(t), respectively. 

The best neighbor is identified from the existing neighbor group by applying the roulette 

wheel method on the probability-based values. By applying the roulette wheel selection method, 

only higher probability glowworms in the neighbor group have a good chance to be chosen as the 

best neighbor. The probability calculation is done by: 

 
𝑃𝑟𝑜𝑏𝑖𝑗 =  

𝐿𝑗(𝑡)  −  𝐿𝑖(𝑡)

∑ 𝐿𝑘(𝑡) − 𝐿𝑖(𝑡)𝑘∈𝑁𝑖(𝑡) )
 (3) 

where for glowworm i, a neighbor from neighbor group Ni(t) is represented as j. The 

glowworm i does not update its location if the denominator in the equation becomes zero (case 

where no neighbors are found). 
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At the end of third stage, based on the selected neighbor position, the position of the 

current glowworm is updated which is the following: 

 
𝑋𝑖(𝑡)  =  𝑋𝑖(𝑡 − 1)  +  𝑠

𝑋𝑗(𝑡)  −  𝑋𝑖(𝑡)

𝛿𝑖𝑗
 (4) 

Here, the new and old positions for glowworm i is represented as Xi(t) and Xi(t-1), 

respectively, the step size constant is s, and the distance between the ith and the jth glowworm is 

ij. 

The final stage deals with updating the local decision range. This adds flexibility while 

formulating a neighbor group in the successive iterations. To update rdi, the following equation 

is used: 

 𝑟𝑑𝑖(𝑡)  =  𝑚𝑖𝑛 {𝑟𝑠, 𝑚𝑎𝑥[0, 𝑟𝑑𝑖(𝑡 −  1)  +  𝛽(𝑛𝑡 − |𝑁𝑖(𝑡 −  1)|)]} (5) 

Here for glowworm i, the new and previous local decision range are represented as rdi(t) 

and rdi(t-1), respectively, the radial sensor range constant as rs, model constant as , constant to 

govern neighbor count as nt, and the number of neighbors as Ni(t). 
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4. PROPOSED SPARK GSO ALGORITHM (SPARK-GSO) 

Initially, a swarm of glowworms of a specific size is created. In the swarm, each 

glowworm is associated with a random positional vector (Xi) in the given search space and is 

generated using uniform randomization. For each Xi vector, the objective function J is 

calculated. Using Equation (1), the luciferin level (Li) is evaluated for each glowworm with the 

provided default luciferin value L0, J(Xi), and other constants. The initial local decision range, r0, 

is used as a local decision range rd for the first iteration. Once the entire swarm is initialized with 

the updated information, the glowworms are added to a list. This list is used, broadcasted, and 

updated during every iteration of the algorithm. 

In the next phase of Spark-GSO, the iterative process of RDD operations is performed. 

Each iteration (RDD action) updates the glowworm swarm and the updated swarm is used as the 

input for the next iteration for processing.  

Before the transformations are applied, the entire swarm is sent to each task using a 

broadcast variable, a feature provided by Spark is to send and cache an object on each node 

before starting the tasks. The broadcast variable is initialized and broadcasted as a list of 

glowworms for the processing in the mappers. The GSO constants such as    s, rs, nt which 

are used in the process of movement of the glowworm swarms are retrieved. 

There are two mapper transformations used in the architecture. The first transformation is 

used to find the best neighbor from all the glowworms in the swarm. To find the neighbors, an 

O(n2) algorithm is used. The algorithm involves calculating the Euclidian distance and the 

luciferin level comparisons between the given glowworm and all the other glowworms in the 

search space to locate a neighbor group as given in the Equation 2. Once the neighbor group is 

found, Equation 3 is used to find the best neighbor in that group. A technique called roulette 
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wheel selection method is used to find the best neighbor. At the end of the first transformation, 

the best neighbor is attached to the original glowworm. Finally, the glowworm with an attached 

neighbor glowworm is emitted (returned) for further processing in the second transformation. 

The first transformation algorithm is outlined in Algorithm 1.  

The second transformation picks up the glowworm swarm with each glowworm attached 

with a best neighbor glowworm. This transformation mapper is used to update the luciferin level 

Li for each glowworm by evaluating the objective function for the new glowworm position. In 

this phase, the glowworm and its best neighbor position (Xj) is extracted at the start. Using 

Equation 4, the next step is to update the glowworm positional vector. Then, the objective 

function is evaluated for the new positional vector for the luciferin level calculation using 

Equation 1. In the last step before emitting the new glowworm, rdi is calculated using Equation 

5. Finally, the glowworm with the updated information is emitted. The second transformation 

algorithm is outlined in Algorithm 2. 

Then, an Apache Spark action Collect is implemented in the driver class. As Spark 

transformations are “lazy”, no transformation is applied until the action is implemented. The 

collect supplies the actual updated glowworm swarm to the driver program. At the end of each 

iteration, the updated glowworm swarm is collected and broadcasted for the next iteration 

processing. Also, this updated glowworm is used for RDD operations in the next iteration. 

 

Algorithm 1: Transformation Mapper1  Algorithm 2: Transformation Mapper2 

function Call(Glowworm) 

read (BroadcastSwarm)  

//Copy the broadcasted swarm into a 

local variable 

 function Call(Glowworm) 

if(neighborSize != 0) 

extractNeighbor(Glowworm) 
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For each glowworm in BroadcastSwarm 

do  

Xj=extractPosition(glowworm) 

Lj=extractluciferin(glowworm) 

EDist=returnEDistance(Xi,Xj ) 

if (EDist <rdi and Lj >Li) then 

NeighborsGroup:add(j) 

end if 

end for 

if (NeighborsGroup:size() >0) then 

for each glowworm j in NeighborsGroup 

do 

//calculate the probabilities from 

the NeighborsGroup using Equation (2) 

prob[j]=calculateProbability(i,j) 

end for 

end if 

nj=selectBestNeighbor(prob) //using 

roulette wheel selection 

Glowworm.setNeighborSize(Neighbors

Group.size()) 

Glowworm.addNeighbor(nj) 

Emit (Glowworm) 

end function 

//Extract the neighbor glowworm information 

from the attached glowworm  

else 

//Extract the information from the current 

glowworm 

glowwormi=NULL 

extractInfo(Xi,Ji,Li,rdi) 

fill(glowwormi,Xi,Jxi,Li,rdi) 

end if 

//calculate the new position for glowworm i 

using Equation (4) 

newX=calculateNewX(Xi,Xj ) 

//update luciferin level for glowworm i 

using objective function formula J 

newJx=calculateNewJx(newX) 

//update luciferin level for glowworm i 

using Equation (1) 

newL=calculateNewX(Li,newJx) 

//calculate the new rd for glowworm i 

using Equation (5) 

newrd=calculateNewrd(rdi,nbSize) 

glowwormi.update(newX,newJx,newL,newrd) 

Emit(glowwormi) 

end function 
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5. EXPERIMENT AND RESULTS 

In this section, we provide the details about the computing environment and the 

benchmark functions used for the experiments as well as give a brief description of the MR-GSO 

algorithm. We also discuss the optimization quality, running time of the measurements for the 

MR-GSO and Spark-GSO algorithms.  

5.1. Environment 

We executed the MR-GSO and Spark-GSO algorithms on the Wrangler Hadoop cluster 

hosted by the Texas Advanced Computing Center (TACC). Each node of the Wrangler cluster 

has 24 cores (Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz), and 128 GB of memory. The 

Hadoop environment, which we have used is Hadoop 2.6.0-cdh5.7.1 to run the MR-GSO 

algorithm, while Apache Spark version 2.1.0 is used to execute the Spark-GSO algorithm. 

5.2. Benchmark Functions 

We have used two multimodal benchmark functions to evaluate the MR-GSO and Spark-

GSO algorithms. The description of the benchmark functions is as follows (Li, Engelbrecht, & 

Epitropakis, 2013) (Liang, Qu, Suganthan, & Chen, 2014):  

F1: A highly multimodal function called Equal-peaks-B, which can be spanned into an 

m-dimensional search space is chosen as Function F1. The Equal-peaks-B function has equal 

function values at all local maxima. When Xi, i= 1,….,m, is considered as a multidimensional 

vector, the function search space used is  (− ≤ Xi ≤ ). The function has 2m peaks and the 

definition is: 

 
𝐹1(𝑋𝑖)  =  ∑ [𝑠𝑖𝑛2(𝑋𝑖)]

𝑚

𝑖=1
 (6) 

F2: The Rastrigin function is a highly multimodal function, which is generally used for 

optimization algorithms as a performance test problem. The minima and maxima of locations are 
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regularly distributed in this function. Due to its large number of local minima and large search 

space, this function has difficulty in achieving the solution. When Xi, i= 1,….,m, is considered as 

a multidimensional vector, the function search space used is (-1≤Xi ≤1). The function has 2m 

peaks with the following definition: 

 
𝐹2(𝑋𝑖)  =  10𝑚 +  ∑ [𝑋𝑖

2  −  10𝑐𝑜𝑠 (2𝜋𝑋𝑖)]
𝑚

𝑖=1
 (7) 

5.3. Evaluation Measures 

The Peaks Capture Rate (PCR) and the average minimum distance from each glowworm 

to the peak locations (Davg) are used to determine the optimization quality (Krishnanand & 

Ghose, 2009b). If the distance of three nearest glowworms to a peak is less than or equal to , 

then we say that the peak is captured. As recommended by Krishnanand et al. (Krishnanand & 

Ghose, 2009b), = is used in our experiments.  

The Peak Capture Rate (PCR) is calculated using: 

 
PCR =  

Number of Peaks Captured

Number of All Peaks
× 100% (8) 

The average minimum distance, Davg, to the peak locations is calculated using: 

 
𝐷𝑎𝑣𝑔  =  

1

𝑁
 ×  ∑ 𝑚𝑖𝑛{𝛿𝑖1. . . 𝛿𝑖𝑄}

𝑁

𝑖=1
 (9) 

where the number of glowworms in the swarm is N, the Euclidian distance between 

glowworm i and peak j is represented as ij, and the number of available peak locations is 

represented as Q. 

When high PCR and low Davg values are achieved, it is considered as the best result. For 

example, if the result achieved has a low PCR, it means the glowworms are gathered at a few 

peaks only ignoring the rest of the peaks, which is not a good solution. While when PCR is close 
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to 100%, it means that the glowworms are actually gathered at all the peaks available, and a low 

Davg means the glowworms are actually gathered very close to the peaks, which is an optimal 

solution. 

The experiments which we executed uses the default GSO settings as specified in 

(Krishnanand & Ghose, 2009b). We used  (luciferin decay constant) = 0.4,  (luciferin 

enhancement constant) = 0.6,  (constant parameter) = 0.08, nt (number of neighbors limit) = 5, 

L0 (Luciferin rate) = 5.0, s (step size) = 0.03. The rd (local decision range) and rs (radial sensor 

range) values are adjusted depending on the function chosen. In our executions, rd is constant 

throughout the optimization process such that rs = rd = r0.  

5.4. MR-GSO Algorithm 

The MR-GSO algorithm is implemented based on the work published by Aljarah and 

Ludwig (Aljarah & Ludwig, 2016). The implementation of Spark-GSO is similar to MR-GSO 

except with some modifications to make use of features available in Spark. In MR-GSO, the 

glowworms in the swarm are initially written to the distributed file system with the <Key, 

Value> structure. The key-value structure is described in Figure 1.  

 

Figure 1. Representation of Glowworm in MR-GSO Algorithm. 

 

Here, during each iteration a MapReduce job is executed which produces the updated 

swarm, which is used for the next iteration. The mapper is used for finding the neighbor group 

and the best neighbor from the workspace. The mapper emits the current glowworm and the best 

neighbor glowworm as <Key, List of Values> at the end. Once the reducer is started, the emitted 

<Key, List of Values> pairs from the mapper is consumed and the update of the Luciferin level 
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is carried out. The Glowworm positional vector is also updated in the reducer and a newly 

updated glowworm is emitted at the end. More details can be found in (Aljarah & Ludwig, 

2016). 
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6. RESULTS 

To evaluate and compare both MR-GSO and Spark-GSO algorithms, various experiments 

have been conducted measuring PCR, Davg, running time and speedup for both the Equal-peaks-

B and the Rastrigin benchmark. 

The optimization quality for the Spark-GSO algorithm for the F1 function with 2 

dimensions is shown in Figure 2. For each swarm size varying from 10,000 to 60,000, PCR and 

Davg for every iteration have been evaluated and presented. Although we can see that the 

minimum distance is reduced at each iteration, we cannot see any significant improvement in 

Davg when the swarm size is increased. Also, for the 2-dimensional glowworms swarm, we 

cannot see a significant improvement in PCR when the swarm size is increased as the PCR 

converges to 100% at the lowest swarm (10,000) size (Figure 2(b)).  

 

 

Figure 2. Spark-GSO: Equal-peaks-B (F1) 2-dimensional optimization process, iterations=200, 

r0=2.0 (a) Average Minimum Distance. (b) Peaks Capture Rate. 
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Figure 3 represents the optimization quality for the MR-GSO algorithm for the F1 

function with 2 dimensions. Similar to Spark-GSO, the PCR converges at the second iteration for 

a swarm size of 10,000 and Davg significantly reduces at each iteration until the first 60 iterations, 

and shows a slow reduction after that. There is no visible difference between Spark-GSO and 

MR-GSO for Davg in Figures 1(a) and 2(a). 

 

 

Figure 3. MR-GSO: Equal-peaks-B (F1) 2-dimensional optimization process, iterations=200, 

r0=2.0 (a) Average Minimum Distance. (b) Peaks Capture Rate. 

 

The optimization quality for the Spark-GSO algorithm for the F1 function with 4 

dimensions is shown in Figure 4. Here, we can see that the average minimum distance is almost 

equal for all swarm sizes and low values are achieved over time (iterations). However, the PCR 

values convergence rate to 100% varies for each glowworm swarm size. From Figure 3(b), we 

can see that the PCR converges to 100% at the 42nd iteration for a swarm of 10,000 glowworms, 

while the PCR converges to 100% at the 25th iteration for a swarm of 60,000 glowworms.  
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Figure 4. Spark-GSO: Equal-peaks-B (F1) 4-dimensional optimization process, iterations=200, 

r0=2.0 (a) Average Minimum Distance. (b) Peaks Capture Rate. 

 

Figure 5 represents the optimization results for the MR-GSO algorithm for the F1 

function with 4 dimensions. From Figure 5(b), it shows that the difference in achieving a low 

Davg is almost similar to the Spark-GSO execution. PCR converges to 100% at the 47th iteration 

using MR-GSO (Figure 5(b)) while it is achieved at the 42nd iteration for Spark-GSO (Figure 

4(b)), which is a minute difference.  
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Figure 5. MR-GSO: Equal-peaks-B (F1) 4-dimensional optimization process, iterations=200, 

r0=2.0 (a) Average Minimum Distance. (b) Peaks Capture Rate. 

 

Figure 6 and Figure 7 represent the optimization quality for the F1 function with 6 

dimensions for the Spark-GSO and MR-GSO algorithm, respectively. In both, Spark-GSO and 

MR-GSO, the average minimum distance is better for the swarm size with 60,000 glowworms 

than the smaller swarm sizes. For both algorithms, the PCR does not converge to 100% when the 

swarm size is 10,000. For the rest of the swarm sizes, the PCR converges to 100% for 6 

dimensions. The Spark-GSO algorithm captured 98.4% of the peaks, while MR-GSO captured 

95.3% of peaks in the search space. 
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Figure 6. Spark-GSO: Equal-peaks-B (F1) 6-dimensional optimization process, iterations=200, 

r0=2.0 (a) Average Minimum Distance. (b) Peaks Capture Rate. 
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Figure 7. MR-GSO: Equal-peaks-B (F1) 6-dimensional optimization process, iterations=200, 

r0=2.0 (a) Average Minimum Distance. (b) Peaks Capture Rate. 

 

Figure 8 and Figure 9 represent the optimization quality for the F1 function with 8 

dimensions for Spark-GSO and MR-GSO, respectively. In both, Spark-GSO and MR-GSO, the 

average minimum distance is better for the swarm size with 60,000 glowworms than the smaller 

swarm sizes, and for a 10,000 sized swarm the Davg is considerably larger. For both algorithms, 

the PCR does not converge to 100% irrespective of the swarm size. Spark-GSO and MR-GSO 

captured only around 5% peaks for swarm of 10,000 glowworms after 200 iterations, while for a 

swarm of 60,000 glowworms only around 70% peaks are captured. 
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Figure 8. Spark-GSO: Equal-peaks-B (F1) 8-dimensional optimization process, iterations=200, 

r0=2.0 (a) Average Minimum Distance. (b) Peaks Capture Rate. 
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Figure 9. MR-GSO: Equal-peaks-B (F1) 8-dimensional optimization process, iterations=200, 

r0=2.0 (a) Average Minimum Distance. (b) Peaks Capture Rate. 

 

For the Rastrigin (F2) function with 2, 4, 6 and 8-dimensions, the optimization quality 

results for both Spark-GSO and MR-GSO are represented in Figures 10 to 17. For the 2-

dimensional glowworms swarm of various sizes, 100% of the peaks are captured at the 1st 

iteration for both Spark-GSO and MR-GSO (Figure 10(b), Figure 11(b)). Spark-GSO achieved 

100% PCR at the 10th iteration for 10,000 glowworms with 4 dimensions, while MR-GSO 

achieved the same at the 13th iteration. The same has been achieved at the 7th iteration for 60,000 

glowworms for both algorithms (Figure 12(b), Figure 13(b)). For the 6 dimensions, the 

maximum peaks capture rate is 98.4% after 200 iterations with a swarm of 10,000 for Spark-

GSO and MR-GSO, while for 60,000 glowworms it is achieved at around the 22nd iteration 

(Figures 14(b) and 15(b)). For both Spark-GSO and MR-GSO with 8-dimensions, not even a 
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single peak is captured for a glowworms swarm of 10,000. But when using 60,000 glowworms, 

85.9% of the peaks are captured for the Spark-GSO algorithm while only 63.2% of the peaks are 

captured when the MR-GSO algorithm is executed (Figures 16(b) and 17(b)). 

 

 

Figure 10. Spark-GSO: Rastrigin (F2) 2-dimensional optimization process, iterations=200, 

r0=0.5 (a) Average Minimum Distance. (b) Peaks Capture Rate. 
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Figure 11. MR-GSO: Rastrigin (F2) 2-dimensional optimization process, iterations=200, r0=0.5 

(a) Average Minimum Distance. (b) Peaks Capture Rate. 
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Figure 12. Spark-GSO: Rastrigin (F2) 4-dimensional optimization process, iterations=200, 

r0=0.5 (a) Average Minimum Distance. (b) Peaks Capture Rate. 
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Figure 13. MR-GSO: Rastrigin (F2) 4-dimensional optimization process, iterations=200, r0=0.5 

(a) Average Minimum Distance. (b) Peaks Capture Rate. 
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Figure 14. Spark-GSO: Rastrigin (F2) 6-dimensional optimization process, iterations=200, 

r0=0.5 (a) Average Minimum Distance. (b) Peaks Capture Rate. 
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Figure 15. MR-GSO: Rastrigin (F2) 6-dimensional optimization process, iterations=200, r0=0.5 

(a) Average Minimum Distance. (b) Peaks Capture Rate. 
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Figure 16. Spark-GSO: Rastrigin (F2) 8-dimensional optimization process, iterations=200, 

r0=0.5 (a) Average Minimum Distance. (b) Peaks Capture Rate. 
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Figure 17. MR-GSO: Rastrigin (F2) 8-dimensional optimization process, iterations=200, r0=0.5 

(a) Average Minimum Distance. (b) Peaks Capture Rate. 

 

We have executed both Spark-GSO and MR-GSO on a 2, 4, 8, 16 and 32 node cluster to 

compare the running times and speedup results. Figure 18 and Figure 19 represents the running 

times and speedup results of Spark-GSO and MR-GSO on various number of nodes in a cluster. 

As we increase the number of nodes the running times decrease for both Spark-GSO and MR-

GSO. Also, we can observe that the running times actually increase when the swarm size 

increases. Finally, we can conclude that the running times of the Spark-GSO algorithm are less 

than the ones of the MR-GSO algorithm.  

The speedup results for both Spark-GSO and MR-GSO for various swarm sizes executed 

on various nodes are represented in Figures 19(a), 19(b) and 19(c). As we can see, the speedup of 

the MR-GSO algorithm is closer to the linear speedup only when 2, 4 and 8 nodes are used when 
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compared to the Spark-GSO algorithms speedup for 100,000 glowworms swarm. The speedup 

diverges after 8 nodes. For 200,000 glowworms, the speedup for both Spark-GSO and MR-GSO 

is comparatively closer to the linear speedup until 16 nodes than when N=100,000. When 

300,000 glowworms are used, MR-GSO is very close to the linear speedup until 16 nodes and 

diverges a little after that. But for Spark-GSO, we can see that the divergence is larger than that 

of the MR-GSO for N=300,000. 
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Figure 18. Equal-peaks-B function running time for 4-dimensional glowworms. (a) Running 

Time N=100,000. (b) Running Time N=200,000. (c) Running Time N=300,000. 
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Figure 19. Equal-peaks-B function speedup results for 4-dimensional glowworms. (a) Speedup 

with N=100,000 (b) Speedup with N=100,000 (c) Speedup with N=100,000. 
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7. CONCLUSION 

Many different parallelization frameworks have been introduced in the past. Spark is one 

such framework that is designed in a way that allows for easy implementation. In order to 

parallelize an algorithm using the Spark framework one does not need to deal with any 

parallelization details besides the logic of the algorithm itself.  

In previous research work, the Glowworm Swarm Optimization (GSO) algorithm was 

parallelized using MapReduce (MR-GSO). In this paper, we have parallelized the GSO 

algorithm using Apache Spark (Spark-GSO) applied to multimodal function optimization. 

Apache Spark eliminates the read and writing operations of intermediate files onto a hard disk, 

which MapReduce uses. Furthermore, Spark-GSO parallelizes the algorithm using two 

transformations and a single action. 

For the experimentation, two multimodal benchmark functions were used to evaluate the 

Spark-GSO algorithm with various sizes of dimensionality (2 to 8) as well as various swarm 

sizes (10,000 to 60,000). Furthermore, we compared the Spark-GSO results with the ones 

obtained using the MapReduce-based GSO algorithm. The optimization results, running times, 

and the speedup were evaluated and compared with the MR-GSO results. The results can be 

summarized as follows. There is a difference in the convergence of the optimization results 

comparing the Spark and MapReduce implementations. Spark-GSO converges to the solution in 

general a little bit faster than MR-GSO, which is especially noticeable for larger dimensions. For 

both benchmark functions, the optimization results are very similar for 2 and 4 dimensions, but 

then show for the higher dimensions (6 and 8); most significant for 8 dimensions. In terms of the 

running time of Spark-GSO and MR-GSO using up to 32 compute nodes, Spark-GSO is 
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expectantly faster than MR-GSO for all swarm sizes tested. The speedup obtained however is 

better for MR-GSO than Spark-GSO. 

As for future work, the basic RDD operations have been used and implemented to 

complete the algorithm, however in future we can use the concepts like Data-Frames in Spark to 

achieve even faster run-times. Furthermore, experiments with even larger dimensionality and 

population sizes will be conducted. 
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