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ABSTRACT 

Given LiDAR maps, we focus on identifying anthropologically relevant ditches 

automatically on the map. Archeologists can identify these features visually at the site, but 

approaches based on remotely sensed data would be preferable. This paper proposes an 

algorithm that uses window-based technique to read the characteristics of each region from 

maps, whose ditches are already identified, regressively, and then builds histograms to represent 

the different characters of each region. A classification model is then built based on the 

histograms and used to predict future data. The goal is to produce a large training data set using 

window-based technology and use it to classify future data. We demonstrated our algorithm 

successfully identifies target regions efficiently on real LiDAR maps. 
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1. INTRODUCTION  

Data mining allows users to classify, group, or identify patterns in data. Data mining 

technologies have been used by business companies for years to analyze market reports and find 

the patterns of the customers. Together with remote sensing technologies, new opportunities are 

emerging rapidly. Light detection and ranging (LiDAR) is a technology that uses the time taken 

for a pulse of light to reach the target and return to measure the distance between the device and 

target. LiDAR constitutes a very important innovation for data collection and interpretation in 

archaeology [OPI13]. Airborne LiDAR devices are installed on aircraft and use a laser beam that 

will scan from side to side as the aircraft flies over the area. Such devices measure between 20 to 

100 thousand points per second to build an accurate, high-resolution model of the ground and the 

features upon it [CRU06]. The development of LiDAR technologies helps researching historical 

sites and allows archeologists, civil engineers and historians to study and understand how people 

lived their daily lives centuries ago. Even when LiDAR data are available, visual inspection can 

be inconclusive and complicated by the massive size of the area. Specialized automated 

techniques exist for recognizing specific archeological artifacts, but they do not generalize to 

other features. 

We examine the possibility of using a data-mining approach, based on window 

histograms to help identifying the ditches. In this research, we extract information from windows 

based on previous data sets for which ditches are already identified and build machine learning 

models to classify future data sets. This research builds models based on several training datasets 

and tests them on different datasets. Besides helping archeologists to find sites, it also provides a 

potential relationship between archeological sites and archeological characteristics. In this paper, 

we use the J48 classification tree algorithm in Weka to do the classification.  
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In principle, the approach could be directly applied to other types of archeological 

features. If we used a dataset as training set in which mounds have been identified, the algorithm 

would still work in principle. However, we did not test the generalizability.  

1.1. Problem Statement 

The problem of this research is to successfully identify the relationship between 

archeological characteristics and the target features. We are using three characteristics: slope, 

aspect, and curvature to build models and find features. Our approach is to divide datasets into 

windows with fixed size and extract these attributes from each window for classification. We 

assume there is a relationship between the three characteristics and the feature we need to 

identify, and let the program to find the relationships, build a decision tree model based on it, and 

test the model. 

There is some existing research with a focus on similar problems. Oner Ulvi Celepcikay 

and Christoph F. Eick proposed a framework to discover interesting geological areas [CEL09]. 

George Vosselman designed a computational approach to distinguish building and vegetation 

areas in raw laser data [VOS00]. However, both of these approaches are based on specific 

assumptions resulting in limitations on the data for which they can be used. 

In our research, we use data mining techniques based on window histograms to classify 

the datasets. Matthew Radermacher from Geoscience Department, NDSU preprocessed the data 

we used from the LiDAR digital elevation model source. Then we apply sliding window 

extraction to the whole map to divide the data. Each piece of data contains all the information of 

a window. Figure 1 shows how we slide the window. Based on the data inside each window 

three histograms were made. Each histogram is based on a single attribute inside the window. 

For example, a window is represented in Figure 2. The two grey lines are the edges of a ditch. 
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Black arrows are used to represent what the aspect values might look like. In Figure 3, an aspect 

histogram of this window is represented. The edges effects the values of the 3rd and 6th columns a 

lot so a pattern appears in the histogram. Finally we put the preprocessed histograms into Weka 

to use decision tree for classification.  

 

Figure 1. Slide windows 

 

 

Figure 2. Window with a ditch 
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Figure 3. Aspect histogram based on the window 

Unlike the existing researches, we do not make assumptions on how the relationship 

should be for the algorithm. The algorithm is responsible to find the relationships between target 

features and extracted archeological attributes. The algorithm will generate models based on the 

relationships and use the model for classification. Therefore, our algorithm is more adaptive than 

the existing ones. If successful, we can use the same algorithm to find ditches, mounds, and other 

features with minimal changes. 
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2. RELATED WORK 

There are several researches that are related with our work, such as filtering raw laser 

data [VOS00], and produce a framework to discover interesting regions [CEL09]. In 2009, Oner 

Ulvi Celepcikay and Christoph F. Erick published a paper to provide a region regression 

framework to discover interesting geological regions. In this paper, they proposed a regional 

regression framework that employs representative-based clustering to discover interesting 

regions and their associated regional regression functions, without using any predefined 

boundaries. They also developed two fitness functions: an R-squared-based fitness function and 

an AIC-based fitness function that are used to guide the search for regions with strong regional 

linear relationships between the response variable and the independent variables. 

In 2000, George Vosselman from Delft University of Technology published a paper to 

filter raw laser data. This research is to distinguish buildings and vegetation captured in the 

image based on slope [VOS00]. However, he used a mathematical approach to build the 

classification model instead of a data mining approach. Therefore, the model is developed to 

solve a single task. 

In 1986, John Canny published a paper to propose a research which produce an edge 

detector to identify edges with higher accuracy in an image. In the paper, they defined detection 

and localization criteria for a class of edges, and present mathematical forms for these criteria as 

functionals on the operator impulse response. Then they add a third criterion to ensure the 

detector response only once to a single edge. The criterion was used in numerical optimization to 

derive detectors for several common image features, including step edges. At last, they derived a 

single operator shape which is optimal at any scale with the uncertainty principle between 
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detection and localization performances that was found when specializing the analysis to step 

edges. This research is based on 2D pictures only. 
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3. GEOSCIENCE AND ANTHROPOLOGY CONCEPTS 

To find ditches, we decided to use aspect, slope, and curvature. Slope is a value that 

describes both the direction and the steepness of a line. It is often presented using the letter m. In 

a right handed coordinate system, if the line is increasing from left to right, m is positive, if the 

line is decreasing from left to right, m is negative. The slope can be calculated using the 

following equation: 𝑚 =
∆𝑦

∆𝑥
.  However, in geoscience area, slope is always greater or equal to 0, 

which equals to the absolute value of m. Aspect is the direction that the slope is facing. It ranges 

from 0 to 360. Curvature is the amount by which the ditch deviates from being flat or straight. 

The curvature of a circle with radius R will be large if R is small and small if R is large. Thus the 

curvature can be defined to be the reciprocal of the radius. Feature means if a specific pixel is 

part of the target area, whether it is a ditch, a mound, or anything else needs to be classified. 
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4. DATA MINING CONCEPTS 

Data mining models are often used in other systems to accomplish certain purposes, 

including market research, risk management, and image processing. Here are some terms that are 

used in data mining area and in this paper: 

Attributes: For representing the cleaning, transforming, and aggregating of attributes used 

as input in the models. 

Interfaces and APIs: For linking data mining components with other languages and 

systems. 

Models: For representing data mining and statistical data and output results. 

Process: For producing, deploying, and using the models [GRO02]. 

In this research, we choose Weka to provide data mining support and Java to program the 

algorithm. Java is used in reading the input, preprocess the data, and output the results. We 

choose Java because it’s one of the most adaptive languages. It can be used on Windows, Mac, 

and Linux systems. Weka is not only one of the most powerful data mining tools, but also 

provides an open-source API for Java. 

4.1. Classification 

In this research, classification is used to find the ditches.  It is an important data mining 

function with broad application that can be used to classify the various kinds of data according to 

the features of item with respect to the predefined set of classes [PAT13]. A classification 

process begins with a data set in which the categories are already identified. The classification 

algorithm will then find the relationships between the attributes and the target. Different 

classification algorithms use different techniques to find these relationships. A classification 

model will then be built based on the relationships that are found by the algorithm. After 
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building the model, different data sets in which the target values are unknown will be input into 

the model. The model will then categorize the items in each data set into different categories.  

A classification algorithm can be tested by comparing the predicted target values to 

identified target values in a data set. For testing the algorithm, historical data sets can be divided 

into two groups. Training data sets that are used for building the model and testing data sets that 

are used for testing the model. 

The result of a finished classification process is represented in the form of a 2×2 table 

represented in Table 1. Each cell contains an integer greater or equal to zero. 

Table 1. Result of classification 

True Positive value False Negative value 

False Positive value True Negative value 

 

Meanings of the values: 

a. True Positive value (TP): the number of instances that are correctly classified as positive. 

b. False Negative value (FN): the number of instances that are wrongly classified as 

negative. 

c. False Positive value (FP): the number of instances that are wrongly classified as positive. 

d. True Negative value (TN): the number of instances that are correctly classified as 

negative. 

The following equations are derived from Table 1:  

a. 
𝑇𝑃

𝑇𝑃+𝐹𝑁
(Recall): the fraction of relevant instances that are retrieved by the model. 

b. 
𝑇𝑃

𝑇𝑃+𝐹𝑃
(Precision): the fraction of retrieved instances by the model that are relevant. 
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4.2. Preprocessing 

Before putting datasets into Weka to process, they have to be preprocessed into a 

particular form to satisfy Weka’s requirements. Weka can only read an ARFF (Attribute-

Relation File Format) file which is an ASCII text file that describes a list of instances sharing a 

set of attributes. It is consisted of two distinct sections: a Header section and a Data section. The 

Header section contains a name of the relation, a list of the attributes, and their types. The Data 

section contains values of the corresponding attributes. An example Header section is shown in 

Figure 4 and an example Data section is shown in Figure 5. Note that in this example, the target 

region defined in the Header section as: @ATTRIBUTE class. It contains three different values: 

Iris-setosa, Iris-versicolor, and Iris-virginica. The lines starting with % are comments. 

 

Figure 4. Header section 
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Figure 5. Data section 

4.3. Weka 

Weka, or Waikato Environment for Knowledge Analysis, is an open-source free software 

that holds a collection of machine learning algorithms for data mining. It was developed by 

University of Waikato, New Zealand. The algorithms inside it can be used directly through the 

software or being called using APIs with Java code. Weka contains different algorithms for 

classification, regression, or clustering. It can also visualize the results or the generated classifier 

while being accessed through the graphical user interface. 

Figure 6 shows the graphical user interface of Weka. On the top left corner there’s a list 

of buttons to choose which file needs to be read. After the reading is finished successfully, users 

can choose their purpose by selecting a tab on the top. The bird on the bottom right corner 

indicates if the program is doing data mining or not. After the process is finished, results will be 

displayed in the white textbox above the bird. 
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Figure 6. GUI of Weka 

4.4. J48 decision tree 

A J48 decision tree is an algorithm for producing a binary tree model to classify data sets. 

It is also called C4.5 decision tree outside Weka. It is a univariate decision tree, which means 

each internal node is constructed based on one of the many attributes. The whole model has a 

root node, several leaf nodes, several internal nodes, and branches that connect between higher 

level nodes and lower level nodes. Each internal node represents a decision based on the feature 

it contains and each leaf node represents an outcome. After the model is built, each tuple in the 

data set that needs to be classified will be applied to it. Each tuple starts from the root node, goes 

downward into internal nodes, and finally ends up inside one of the leaf nodes. The result will be 
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the outcome of the leaf node it ends up in. J48 decision tree is considered as one of the most 

useful approaches in classification problems [PAT13]. It can provide several advantages over 

other decision trees: 

1. J48 decision tree can handle both continuous and discrete attributes. In order to handle 

continuous attributes, it creates a threshold and then splits the list into those whose attribute 

values are above the threshold and those that are less or equal to it. 

2. J48 decision tree allows attribute values to be marked as “?” for missing. Missing attribute 

values are simply not used in gain and entropy calculations. 

3. J48 goes back through the tree once it has been created and attempts to remove branches that 

do not help by replacing them with leaf nodes [SIN14]. 

Figure 7 shows a part of a J48 decision tree. The root node is the leftmost node which 

starts at curve_positive attribute. If the value of this attribute is greater than 37, it will go to the 

next node on the right and continue. If the value is smaller or equal to 37, it will go straight down 

until it meets the node with the decision: curve_positive <= 37. It will then go to the next right 

node and continue. 
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Figure 7. Part of J48 decision tree 
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5. ALGORITHMS 

5.1. J48 decision tree 

The reason first reason for using J48 decision tree is that we are using multiple 

independent variables to predict the target value. Secondly, there are relationships among the 

independent variables, some of the variables may need to be checked more than once depending 

on the state of other variables. For example, a window will be classified as containing ditch 

(true) if more than 100 pixels inside it have the aspect value between 45 and 90 degrees and less 

than 80 pixels have the curve value that is significantly negative, or it contains less than 70 pixels 

with significantly negative curve value and more than 50 pixels with aspect value between 0 and 

45 degrees. In this example, the variable of significantly negative is checked twice to get the 

correct results. Taking away any decisions in the above example will give a different result. 

In order to classify the data, four text files will be extracted from each map. Each file 

contains one of the data described in Chapter 3. Every file has five columns. The first column is 

the ID of the rows. The second column is the rounded value of the data, which is an integer. The 

third column is the x coordinate of the pixel. The forth column is the y coordinate of the pixel. 

The fifth column is the exact value of the data. Only last three columns are used in this paper. 

These text files will be used as input files for the algorithm to convert into a single file that can 

be processed by Weka. Part of an aspect file derived from a map is presented in Figure 8. 
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Figure 8. Part of an aspect file 

In this research, a window-based technique is used to integrate the text files. Since all text 

files are extracted from a rectangle shaped map, a rectangle shaped window is used. The window 

starts at the top left corner of the map and moves exactly one pixel from left to right covering the 

same set of rows. After it reaches the rightmost position, the window moves down a row and 

starts from the leftmost column again. Each time the window moves, the data inside it will be 

integrated and stored into a single data set.  

5.2. Window 

Sliding window technique is the backbone of this algorithm. It is used for dividing the 

data of a whole map into small pieces to produce histograms for classification. First of all, a 

whole map will be divided into several windows, each containing a fixed number of pixels. The 

window size will not change during model building and testing phases. For a window with 15 
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rows and 10 columns, the total number of pixels inside each window will always be 150 and it 

can’t be changed during the process. The reason behind this is that if the size can be changed for 

each window, the values inside the columns of the histograms will also be changed. Changing 

the values would have a heavy influence on the J48 decision tree because the tree itself uses the 

values to classify the target features as shown in Figure 5. This also means the window size of 

testing data sets has to be the same as the window size of training data sets. The first window 

will be created at the top left corner of the map, which means the coordinate of the top left corner 

of the window is the same as the top left corner of the map. The algorithm will then record all the 

data inside this window. After the recording process, the window will be moved by exactly one 

pixel to the right, covering the same set of rows. Another recording process will then begin. 

When the right side of the window touches the right edge of the map, the last recording process 

of this row will begin. After the recording finishes, the window will move down a row and to the 

leftmost edge of the map. This loop will continue until the window reaches the bottom right 

corner of the map. At this time, all the data inside every possible window with the fixed window 

size inside the map is recorded. During this research, we created a customized variable type 

called pixel as the base. 

Pseudo code to define customized variable type: pixel 

Type Pixel 

Dim aspect As BIGDECIMAL 

Dim slope As BIGDECIMAL 

Dim curve As BIGDECIMAL 

Dim feature As INTEGER 

End Pixel  
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Pseudo code to read text files 

ReadFile 

Dim pixels As Pixel[][] 

Dim filepath As STRING 

Dim inputfile As FILE 

Dim column As INTEGER 

Dim row As INTEGER 

Dim x As INTEGER 

Dim y As INTERGER 

Dim max_x As BIGDECIMAL 

Dim max_y As BIGDECIMAL 

Dim min_x As BIGDECIMAL 

Dim min_y As BIGDECIMAL 

filepath ← “input file path” 

inputfile ← new File(filepath) 

max_x ← inputFile.return(max x coordinate) 

max_y ← inputFile.return(max y coordinate) 

min_x ← inputFile.return(min x coordinate) 

min_y ← inputFile.return(min y coordinate) 

column ← max_x-min_x 

row ← max_y-min_y 

pixels.length ← row 

pixels[].length ← column 
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for each line in inputFile do 

 x ← line.return(x)-min_x 

 y ← line.return(y)-min_y 

 pixels[y][x].setaspect(line.returnaspect()) 

 pixels[y][x].setcurve(line.returncurve()) 

 pixels[y][x].setslope(line.returnslope()) 

 pixels[y][x].setfeature(line.returnfeature()) 

end for 

This moving window technique results in overlap between window areas. Considering 

overlapping windows is important because a ditch can be in any shape and occur anywhere 

inside a map, if the overlapping is avoided, it is possible to ignore critical conditions that can 

efficiently classify the ditch. For example, in Figure 9, black lines surround the target ditch, and 

blue lines and the lines mark the six windows produced by different algorithms. As it is shown, 

all the windows contains part of the target ditch. However, if the algorithm is a non-overlapping 

one, it might produce the four windows marked by blue lines. After separating them in Figure 

10, the ditch parts can hardly be identified except the bottom left one. If we are using an 

overlapping approach, we can produce every windows including the two marked with red lines. 

In Figure 11, the parts inside red windows are more likely to be identified as ditches. Therefore, 

using overlapping approach to avoid this loss of information.  
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Figure 9. Ditch example 

 

Figure 10. Separated blue windows 

 

 

Figure 11. Separated red windows 
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5.3. Histogram 

One histogram will be produced for each of the three attributes inside each window. For 

the values of aspect, it is reasonable to divide the ranges inside the histogram equally based on 

the range of aspect values. In the first approach, the aspect histogram has 6 columns, each 

column covers 60 degrees: 0 to 60, 60 to 120, 120 to 180, 180 to 240, 240 to 300, and 300 to 

360. For slope, first all the slope data in the whole map will be sorted. Then the data will be 

divided into six parts will equal number of elements. For example, an ordered array like: 0, 1, 3, 

6, 8, 15, 25, 30, 31, 35, 50, 100 will be divided into the following parts: 0 to 1, 3 to 6, 8 to 15, 25 

to 30, 31 to 35, and 50 to 100. For curvature, the histogram has five parts: significantly negative, 

negative, around zero, positive, and significantly positive. Significantly negative covers the 

range less than -20, negative covers the range from -20 to -5, around zero covers the range from-

5 to 5, positive covers the range from 5 to 20, and significantly positive covers the range greater 

than 20.  

The value of each attribute of each pixel inside a window will be distributed into the 

histogram column corresponding to the attribute. For example, if a pixel has the following 

attributes: 

1. Aspect: 100 

2. Slope: 10 

3. Curvature: 3 

It will add one to the current value of the second column of the aspect histogram, and the 

third column of the curvature histogram in the windows this pixel belongs to. For slope 

histogram, the column that needs to be changed varies based on the results of calculation. In 

Figure 12, 13, and 14, histograms based on aspect, slope and curvature are shown. 
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Pseudo code to define customized variable type: Histogram 

Type Histogram 

Dim aspect As INTEGER[8] 

Dim slope As INTEGER[6] 

Dim curve As INTEGER[5] 

Dim feature As BOOLEAN 

End Histogram  

The function takes only one input argument, which is a pixel type two-dimensional array, 

and output a histogram type variable. Pseudo code to generate histogram 

Generate Histogram 

Generate_Histogram(Pixel[][] source) 

Dim slopes As BIGDECIMAL[] 

Dim results As BIGDECIMAL[] 

Dim h As Histogram[] 

Dim i As INTEGER 

i ← 0 

for Pixel p in source 

 slopes[i] ←p.getslope() 

 i ← i+1 

end for 

results ← Normalize(slopes) 

for Pixel p in source 

 i ← calculate_index(p.get_x(),p.get_y()) 
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 h[i].set_aspect(p.get_aspect()) 

 h[i].set_curve(p.get_curve()) 

 h[i].set_slope(p.get_slope(), results) 

 h[i].set_feature(p.get_feature) 

end for 

The set functions are responsible to do some basic calculations, such as calculate values 

in curvature histogram and slope histogram. However, the normalization process will be 

completed in another function. Pseudo code of a list of set functions in Histogram 

set_slope(BIGDECIMAL source, BIGDECIMAL normalized_value) 

Dim k As INTEGER 

for INTEGER i from 0 to normalized_value.length 

 k ← i 

 if source <= normalized_value[i] 

  break from loop 

 end if 

end for 

slope[k] ← slope[k]+1 

set_curve(BIGDECIMAL source) 

if -5<i<5 

 curve[0] ← curve[0]+1 

end if 

if -20<=i<=-5 

 curve[1] ← curve[1]+1 
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end if 

if i<=20 

 curve[2] ← curve[2]+1 

end if 

if 5<=i<=20 

 curve[3] ← curve[3]+1 

end if 

if 20<i 

 curve[4] ← curve[4]+1 

end if 

set_feature(INTEGER source) 

if(source!=0) 

 feature ← true 

set_aspect(BIGDECIMAL source) 

Dim i As BIGDECIMAL ← 45 

Dim temp As BIGDECIMAL ← source.divide(i, 1, BigDecimal.ROUND_CEILING) 

int k ← 0 

if temp.remainder(1)=0 and temp!=0 

 k ← temp-1 

else 

 k ← temp.ROUND_FLOOR 

end if 

aspect[k] ← aspect[k]+1 
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Normalize function for slope data is responsible for only sort the values and divide it into 

6 parts with equal number of elements. It will return an array which is consist of the last element 

in each part. Pseudo code to normalize slope 

Normalize function for slope 

BIGDECIMAL[] Normalize_Slope(BIGDECIMAL slope[]) 

Dim results[] As BIGDECIMAL[6] 

Dim field As INTEGER 

Dim sorted_slope As BIGDECIMAL[] 

sorted_slope ← sort(slope) 

field ← sorted_slope.length/6 

for INTEGER i from 1 to 6 

 results[i-1] ← sorted_slope[field*i] 

end for 

return results[]  
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Figure 12. The aspect histogram 

 

 

Figure 13. The slope histogram 

 

 

Figure 14. The curvature histogram 
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The initial design did not have a high enough accuracy so we improved the resolution of 

aspect values. So instead of using a six column histogram for aspects, an eight column one is 

used. Each covers 45 degree. However, a ditch can face any direction. A model built based on a 

ditch facing northeast will not catch the critical information for a dataset whose ditch faces 

northwest. The reason is that without normalizing aspect values, the pattern in the model will be 

totally different with the pattern in the testing data set. To minimize this affect, two histograms 

are prepared. Both of them have eight columns. One of them starts from 0 degree. The other one 

starts from 22.5 degree and covers the region from 337.5 to 360 plus 0 to 22.5 degree for the last 

column. After recording them, the minimal values of both histograms will be found and 

compared. Then the one with the smallest minimal value will be used for further processing. 

After identifying the histogram that will be using, the algorithm will then shift the columns to let 

the first column be the column with the minimal value. The steps are shown in the following 

pictures: 
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1. Get both aspect histograms:  

 

Figure 15. First aspect histogram 

 

 

Figure 16. Second aspect histogram 

2. Find the minimal value of both histograms. In this case the histogram starts from 0 degree 

has the smallest minimum on its second column: 0. 

3. Shift the columns of the histogram. Keep the original order. 

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8

Aspect starts from 0

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8

Aspect starts from 22.5



29 

 

Figure 17. Final aspect histogram 

Pseudo code to apply double aspect histograms approach: 

In order to make two histograms based on aspect, we need to change the set_aspect 

method in the previous pseudo code to store the exact values of the pixels inside a window 

instead of storing a histogram. Change set_aspect function to: 

set_aspect(INTEGER[] source) 

aspect ← source 

Then we need to add additional functions to produce a histogram with the aspect values which 

contains 16 columns, each covers 22.5 degree. The pseudo code for this process is: 

set_tempaspect(BIGDECIMAL source) 

Dim i As BIGDECIMAL ← 22.5 

Dim temp As BIGDECIMAL ← source.divide(i, 1, BigDecimal.ROUND_CEILING) 

int k ← 0 

if temp.remainder(1)=0 and temp!=0 

 k ← temp-1 
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else 

 k ← temp.ROUND_FLOOR 

end if 

Based on the 16-column histogram, we can produce two 8-column histograms. For 

example, A is the 16-column histogram, B and C are two 8-column histograms. A[n], B[n], and 

C[n] represent the values in the n+1th column in histogram A, B, and C.  

To produce B, we use the following equation: 𝐵[𝑛] = {
𝐴[15] + 𝐴[0], 𝑛 =0

𝐴[2𝑛 − 1] + 𝐴[2𝑛], 0 < 𝑛 < 8 
. 

To produce C, the equation will be: 𝐶[𝑛] = 𝐴[2𝑛] + 𝐴[2𝑛 + 1], 0 ≤ 𝑛 < 8. 

Double aspect histogram approach: 

Refine aspect 

Histogram[] refine_aspect(Histogram[] source) 

Dim aspect As INTEGER[8] 

for INTEGER i from 0 to source.length 

 aspect ← choose_aspect(source[i]) 

 source[i].set_aspect(aspect) 

end for 

return source 

INTEGER[] choose_aspect(Histogram source) 

Dim result As INTEGER[8] 

Dim temp As INTEGER[] 

Dim tempasp1 As INTEGER[8] 

Dim temasp2 As INTEGER[8] 

Dim normalizedtemp1 As INTEGER[8] 
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Dim normalizedtemp2 As INTEGER[8] 

Dim a As INTEGER 

Dim b As INTEGER 

Dim c As INTEGER 

a ← 15 

b ← 0 

c ← 1 

temp ← source.get_tempaspect() 

for INTEGER j from 0 to tempasp1.length 

 if j>=1 

  a ← j*2-1 

  b ← j*2 

  c ← j*2+1 

 end if 

 tempasp1[j] ← source[a]+source[b] 

 tempasp2[j] ← source[b]+source[c] 

end for 

normalizedtemp1 ← normalize(tempasp1) 

normalizedtemp2 ← normalize(tempasp2) 

if normalizedtemp1[0] < normalizedtemp2[0] 

 result ← normalizedtemp1 

else 

 result ← normalizedtemp2 
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end if 

return result 

The normalize method in the above pseudo code will shift the columns in histogram X so 

that X[0] will have the minimum value among all the columns in X. But it will not change the 

order of the columns in X. 

5.4. Target value 

There are always multiple pixels inside a window, some of them may be part of the ditch, 

others may not. A window may be considered as part of the ditch if any pixel is part of a ditch. 

But this causes a lot of false positives because a lot of information that might not define a ditch 

might be considered as critical information. A lot of windows that contain only one pixel belongs 

to a ditch are treated equally important as the windows fully belong to a ditch. So the algorithm 

was changed to that only the center pixel inside a window is used to define if the whole window 

belongs to a ditch. Therefore, it ensures that a window will contain more pixels that belongs to a 

ditch to be identified as a target. The number of true positive decreases inevitably by restrict the 

conditions. But the decrease rate of false positives is much higher than true positives.  

5.5. Write the file 

The data has to be in a specific form in order to put it into Weka and analyze. Before 

putting the information into Weka, histograms of all windows inside a map must be written into 

an ARFF file. In an ARFF file, the structure and types of data contained are defined in the first 

part. The data starts after the mark @Data. Each row represents a set of histograms of a window. 

In this research, the first eight columns contain the value of aspect histogram. The following five 

columns contain the value of curvature histogram. Then there are six columns contain the value 

of slope histogram. The last column contains the target value of the window. For all the 
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unpredicted or testing data sets, the target value of every row is set to false. For training data 

sets, the target values are written as being processed in the previous section. Figure 18 shows a 

screenshot of a training data set. 
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Figure 18. A screenshot of a training dataset 
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5.6. Calculate the result 

After we have both the training and testing data sets, it is time to put them into Weka to 

calculate the results. Since Java is the language being used, we automated the process by using 

Weka-Java API. The Java algorithm calls the functions from the API and uses the data sets as 

input. After getting the results, it will write the coordinates of the center points of the Windows 

that are being classified as containing part of the ditch.  
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6. EXPERIMENTS AND RESULTS 

We did the experiments on 6 data sets and get the result in the table below. 

Table 2. Results of experiments 

Site Recall Precision Weighted 

Average Recall 

Weighted 

Average 

Precision 

Biesterfieldt 24.6% 4.9% 91.8% 97.4% 

LaRMount 2.9% 1.7% 96.0% 97.0% 

Nelson 4.1% 0.7% 92.1% 97.5% 

Peterson 2.0% 2.6% 95.6% 95.1% 

Shea 5.0% 23.1% 97.1% 95.6% 

Sprunk 6.9% 3.2% 97.5% 98.4% 

 

Weighted average recall for each data set is calculated using the following equation:  

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑐𝑎𝑙𝑙

= [
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
∗ (𝑇𝑃 + 𝐹𝑃) +

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
∗ (𝑇𝑁 + 𝐹𝑁)] /(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁) 

Weighted average precision for each data set is calculated using the following equation: 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

= [
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
∗ (𝑇𝑃 + 𝐹𝑃) +

𝑇𝑁

𝑇𝑁 + 𝐹𝑁
∗ (𝑇𝑃 + 𝐹𝑃)] /(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁) 

From the results we can see that weighted average precision and recall are both above 

90% for all the testing data sets. That means above 90% of all instances are correctly classified. 

However, recall and precision are much lower comparing to weighted average recall and 

precision. This indicates that in every data set, the area that isn’t part of a ditch is much larger 

than the area that is part of a ditch. 
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Among all the data sets, Biesterfieldt has above average recall and Shea has above 

average precision. For Biesterfieldt data set, we have a higher recall but a low precision, which 

means the instances that are classified as positive cover 24.6% of the target field but 95.1% of 

the instances belongs to the area that is not a target field. For Shea data set, we have a 5.0% 

recall and 23.1% precision, which means the instances that are classified as positive only covers 

5.0% of the target field but only 76.9% belongs to the area that is not a target field.  

 

Figure 19. Shea site image with result 
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Figure 20. Biesterfeldt site image with result 

 

 

Figure 21. Peterson site image with result 



39 

 

Figure 22. Nelson site image with result 

As shown in the figures below, 5 of the 6 trees start from normalized slope data, continue 

to curvature data and finally the aspect data. Based on this pattern, slope has the most significant 

influence on identifying the ditches, curvature has less influence, and aspect data has the least 

influence. The pattern is different from what we expect but since building models are fully 

automated by Weka and we don’t have full control on the process, it is difficult for us to change 

the model into expected pattern and classify the data. In the Appendix, a full decision tree model 

for classifying Shea site data is included. We include this tree because the site has the best result 

to identify the ditch area. 



40 

 

Figure 23. Biesterfieldt tree 

 

 

Figure 24. LaRMounds tree 
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Figure 25. Nelson tree 

 

 

Figure 26. Peterson tree 
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Figure 27. Shea tree 

 

 

Figure 28. Sprunk tree 
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7. CONCLUSION 

Although this research didn’t get the results we expected, it is still useful for future 

works. The algorithm for preprocessing can still be studied and refined to get more accurate 

results. The training data sets can be changed to manually-made ones to build a more accurate 

and stable model. 

For future researches, we have the following suggestions: 

1. Add or delete some attributes that are used in this research. 

2. Change the values used to divide the attributes for classification. 

3. Make the window size changes dynamically to adapt different situations. 

4. Use manually made training data sets to build better models. 

By implementing the suggestions above, it is possible to improve the results and get an 

algorithm that has the ability to adapt different situations with minimal changes with high 

accuracy. 
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