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ABSTRACT

Frequent graph mining has received considerable attention from researchers. Existing al-

gorithms for frequent subgraph mining do not scale for large networks, and take hours to finish.

Mining multiple gene coexpressions networks allows for identifying context-specific modules. Fre-

quent subnetworks represent essential biological modules.

In this thesis, we propose two algorithms for mining frequent subgraphs. In the first al-

gorithm, we propose a parallel algorithm for mining maximal frequent subgraphs from gene co-

expression networks. Despite the algorithm’s parallelization, it takes much time and it does not

allow relaxation. This inspired us to develop a second algorithm that solves those problems. In

the second algorithm, we propose a greedy approach for mining approximate frequent subgraphs.

Experiments on real tissue-specific RNA-seq expression networks and synthetic data demonstrate

the effectiveness of the proposed algorithms. Moreover, biological enrichment analysis shows that

the reported patterns are biologically relevant and enriched with known biological processes and

KEGG pathways.
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1. INTRODUCTION

Advances in data collection and generation have led to enormous datasets being collected

in various scientific domains, such as biological networks, transportation networks, and social net-

works.. Due to rapid data growth and integration in biological areas, new technologies are making

it easier and cheaper to perform experiments that generate tremendous quantities of data for bio-

logical and medical related studies [9]. Moreover, Social Networks became so popular which serve

as rich sources of data where billions of instant messages are exchanged every day, millions of users

exist, and billions links exist among them [3]. The abundance of social networks raises the need for

new techniques to store and analyze this data. This has attracted the researchers’ attention to find

ways to extract the relationships among entities and to use data mining techniques and methods

to discover useful and meaningful information out of this data.

Graphs have emerged as natural data structures to model the interactions in complex sys-

tems, e.g., social networks, chemical compounds, protein 3D structure, biological pathways, coex-

pression networks, and protein-protein interaction networks. An example illustrating how graphs

model interactions in biological systems is protein-protein interaction (PPI) network. In PPIs, a

protein is represented by a vertex (node) and the interaction between various proteins are repre-

sented by the links (edges) between the vertices. Another example is social networks, like Twitter,

which can be easily modeled by a graph; a vertex represent a profile and an edge between ver-

tices represent a friendship connection or a relation. Analysis of the data, after it is modeled into

graphs using data mining techniques, makes a positive impact on marketing when working on social

networks.

Frequent pattern mining (FPM) has been studied extensively to solve hard problems. FPM

is a fundamental data mining technique along with association rules, clustering, classification,

etc. Several approaches have been proposed for the discovery of frequent subgraphs and motifs in

networks. Researchers work on finding the patterns that appear frequently in these datasets. Such

patterns include frequent itemsets, frequent sequences, frequent dense subgraphs, and maximal

frequent subgraph patterns. Thus far, most of the existing methods have focused on the analysis

of individual biological networks. However, a single network is insufficient to find patterns with
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multiple signals. This urged the scientists to develop methods that support the integrative analysis

of multiple biological networks [33].

Clustering is the most commonly used technique of data mining [26]. The task of graphs

clustering is done based on their structural similarity. Since several techniques have been proposed

to discover frequent patterns in large datasets, researchers took advantage of those techniques for

clustering graphs based on the occurrence of patterns in these graphs.

In recent years, graph classification have received a lot of researchers’ attraction due to its

application in wide range fields. For example, in chemistry, chemical compounds can be repre-

sented as graphs and graph classification techniques can be applied to predict the toxicity of these

compounds [38]. Coexpression networks classification involves a dataset of multiple graphs labeled

with a class label, e.g., tissue-specific gene coexpression networks, and to predict the tissue that

the network belongs to.

Graph mining techniques are often used in systems like Amazon and Netflix which take

advantage of the interactions in social networks to improve personalized advertising as well as

making suggestions based on the tastes and preferences of your friends. In bioinformatics, network

analysis has made a huge impact on health care. In System Biology, research has shown that

discovering the unknown complexes in proteins networks by observing the interactions is important.

1.1. Contribution

Our first contribution in this thesis is a multi-threaded implementation of an efficient al-

gorithm for detecting frequent subgraphs in biological networks [28]. On large graph such as gene

coexpression networks that have millions of coexpression links, the Mule algorithm [28] takes hours

to days depending on the minimum support threshold. With the availability of multi-core proces-

sors for personal machines, it is important to design parallel implementation of frequent subgraph

mining algorithms. Our proposed parallel implementation has been published:

E. E. Radie and S. Salem, “A parallel algorithm for mining maximal frequent subgraphs,” 2017

IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Kansas City, MO,

USA, 2017, pp. 1965-1971.

Our second contribution in this thesis is an algorithm for mining quasi frequent coexpres-

sion subnetworks. The first algorithm takes much time even after it is being parallelized and it

also allows no relaxation while mining the subgraphs. These reasons have encouraged us to think

2



of an algorithm to overcome the first algorithm’s challenges. Our proposed algorithm has been

published:

E. E. Radie and S. Salem, “Mining quasi frequent coexpression subnetworks,” 2017 IEEE Interna-

tional Conference on Bioinformatics and Biomedicine (BIBM), Kansas City, MO, USA, 2017, pp.

1736-1740.

1.2. Thesis Overview

For the remainder of this thesis, we begin by presenting important topics that are related

to our work in Section 2. In Section 3, we introduce our first proposed algorithm including the

problem description, the methodology, and the experiments. In Section 4, we introduce our second

proposed algorithm beginning by problem description along with defining important terms, then

we move to the details of the proposed algorithm, followed by showing the performed experiments

and results. Finally, in Section 5, outlines the conclusion and future work for further improvements

on our proposed methods.
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2. RELATED WORK

Mining frequent patterns is the task of discovering the repetitive substructures in the

database. Usually, scholars are interested in frequent substructures that appear in transactions

of the database. This technique is widely used as it is one of the basic problems in data mining.

Generally, frequent pattern mining comes in different flavors, including: itemset mining, sequence

mining, graph pattern mining, and pattern and rule assessment.

In this section, we present the related work with a brief background about important topics

in two categories of frequent pattern mining approaches: 1. Itemset Mining - discovering frequent

subsets in a set of items. 2. Graph Mining - finding frequent subgraphs in a dataset of graphs.

Moreover, we present a brief background about topics that overlap with frequent pattern mining

such as: clustering, and classification techniques.

2.1. Itemset Mining

The first problem that inspired scientists to start the field of frequent pattern mining was

the need to mine frequent itemsets and associations between the items. When talking about

this problem, usually the prototypical application is market basket analysis, i.e., to analyze the

customers shopping carts, also called market baskets, to find which sets of items are frequently

bought together at the market.

Let I be the set of all elements called items, I = {x1, x2, ..., xm}. An itemset X of size k is

called k-itemset, where X ⊆ I. Let T = {t1, t2, ..., tn} be another set of elements called transaction

identifiers or tids. A transaction is a tuple T = (t,X), where t ∈ T . A transactions database

is a set of transactions [13]. The support of an itemset X in a dataset D, denoted sup(X,D), is

the number of transactions in D that contain the itemset X. An itemset X is called frequent in

D if sup(X,D) ≥ minsup, where minsup is a user-specified minimum support threshold. Figure

2.1 shows an example of a transactions database with five transactions and five unique items. In

the example, after finding all the itemsets, there were no itemsets that appear in whole number of

transactions. We used the minimum support threshold, 3, and found eight frequent itemsets.

4
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Frequent itemsets with minsup >= 3

Frequent Itemset Mining

Figure 2.1. Example of a frequent itemset mining

2.1.1. General Itemset Mining Algorithms

One of the earliest efficient techniques to find association rules between large itemsets is

the Apriori algorithm proposed by Agrawal and Srikant [1]. The algorithm presents a technique

to discover all association rules from transaction data and to find all sets of items (itemsets) that

have transaction support above minimum support. The Apriori algorithm is classified as breadth-

first enumeration method as it employs a level-wise exploration of the itemset search space. As

no superset of an infrequent itemset can be frequent, it prunes all supersets of any infrequent

candidate.

The general idea of Apriori is to generate candidate patterns of length k+1 by finding the

intersection between two patterns of length k, using the breadth-first enumeration tree structure.

The two combined patterns share k − 1 subpatterns.

After applying Apriori algorithm on the example in Figure 2.1 using minsup = 3, Figure

2.2 shows the itemset search space for the Apriori algorithm. Each node contains an itemset along

with its support, e.g., AB(2) indicates that support of AB is 2. Two itemsets are connected if

one is a prefix and immediate subset of the other. Apriori enumerates the candidate patterns in a

level-wise manner, which proves the power of pruning in the search space. For example, once we

determine that item D is infrequent, we can prune any itemset that has D as a prefix, i.e., the

entire subtree under D can be pruned. Also, the extension {BCD} from {BC} can be pruned,

since {CD} is infrequent.
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ABCDE
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Level 2

Level 3

Level 4

Level 5

Figure 2.2. Apriori Enumeration tree of Figure 2.1(a). Shaded nodes indicate infrequent itemsets,
Solid lines indicate frequent, whereas dashed nodes and lines indicate all of the pruned nodes and
branches.

After the Apriori algorithm, many researchers proposed approaches to improve the efficiency

and performance. Zaki et al. [46] proposed the Eclat algorithm. The algorithm is a depth-first-

based algorithm that leverages the tidsets directly for support the computation. It employs a

vertical representation of the binary database D and it requires to go over the database only once

for enumerating all the association rules. The basic idea of the Eclat algorithm is that the support

of a candidate itemset can be computed by intersecting the tidsets of suitably chosen subsets [45].

Figure 2.3(a) shows the vertical representation of the example in Figure 2.1. Also it illustrates the

Eclat algorithm application on the same example. With minsup = 3, the initial prefix equivalence

class will not contain the subset D since sup(D) = 2. The next step is that Eclat intersects t(A)

with each of t(B), t(C), and t(E) to obtain the tidsets for {AB,AC,AD and AE} but all these

will be pruned as they are infrequent (marked gray). For node B, Eclat intersects t(B) with each

of t(C), t(E) and it keeps them both as they both are frequent, and so on.

Frequent itemsets mining result in an enormous number of frequent itemsets that are highly

overlapping. The use of condensed representations will reduce the size of the output without any

information loss and the computational demands.

Maximal frequent itemset let F denote the set of all frequent itemsets. A frequent

itemset X ∈ F is called maximal if it has no frequent supersets. Let M be the set of all maximal

6
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Figure 2.3. Eclat Enumeration tree of Figure 2.1(a)

frequent itemsets, the set M is a condensed representation of the set of all frequent itemset F .

Also, it can make it easier to analyze the mined patterns. Gouda and Zaki proposed the GenMax

algorithm [15], a backtrack search based algorithm for mining maximal frequent itemsets. The set

of maximal frequent itemsets of the example in Figure 2.1 is M = {A,BCE}.

2.2. Graph Mining

In the recent years, many algorithms have been proposed to discover the frequent subgraphs

and motifs in networks. This is due to the generation of vast amount of data every single day and

it became available to be processed to find the relationships between those subgraphs as well as the

differences. Social networks, biomolecular interaction networks, and transportation networks are

examples of graph datasets. Researchers developed efficient algorithms for counting the frequent

small subgraphs in a graph which has millions of nodes and thousands of millions of edges. To

develop an algorithm that finds all subgraphs in a graph dataset is computationally expensive.

In this section, we present several graph mining problems related to our work. The algo-

rithms made for these problems are different based on the type of input data.

2.2.1. Frequent Subgraph Mining

Frequent subgraph mining is the process of finding frequent subgraphs given a graph dataset.

A dataset can be one large single graph or a set of multiple graphs. Since different data types

like text, images, videos, or data like genes coexpressions or chemical compounds can be easily

represented as graphs, frequent subgraph mining became a very popular research problem [22].

7



Like the minimum support threshold in itemset mining, a subgraph is called frequent if it appears

in a number of graphs that is greater than or equal to a user defined support threshold.

Cook and Holder were one of the first researchers who proposed algorithms in detecting

substructures in graph data as a part of their system SUBDUE [10]. SUBDUE finds substructures

that compress the original data and represents structural concepts in the data. It also can produce

a hierarchical description of the structural regularities in the data.

Inokuchi et al. [21] proposed the AGM algorithm for mining all frequent induced subgraphs

by following a breadth-first approach that grows the subgraphs by adding one vertex at a time. The

algorithm proposed an efficient method to mine the association rules among the frequent subgraphs

in a graph dataset. For the algorithm to work, a graph transaction is represented by an adjacency

matrix. Also, they used an extended algorithm of the basket analysis to mine the frequent patterns

that is appearing in the matrices.

Kuramochi and Karypis [31] proposed the FSG algorithm for mining all frequent connected

subgraphs by following a pattern growth level-by-level approach that extends subgraphs by adding

an edge. The FSG algorithm proposed optimizations for candidate generation and frequency count-

ing and introduced effecient canonical labeling.

a b

c d

a b

c d

a

c d

a b a

c c d

a b

c

a

c d

(a)

(b)

a b

c d

G
1

G
3

G
2

maximal

Figure 2.4. Example of frequent subgraph mining using minimum support = 2

AGM and FSG, Apriori-based algorithms, have two challenges: (i) candidate generation:

to generate (n+1) substructure candidates from frequent n-subgraphs is computational costly; and
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(ii) to prune false positive. Yan and Han [44] proposed the gSpan algorithm that follows a depth-

first pattern growth approach, to overcome the obstacles in AGM and FSG, and they succeeded

to reduce the significant cost of challenges in frequent subgraph mining that used to exist in both

algorithms.

Nijssen and Kok [34] proposed the Gaston tool that mines frequent subgraphs starting from

patterns with simpler complexity, i.e., sequences, and trees. These algorithms are computationally

extensive due to the graph and subgraph isomorphism checking [12], and take hours and even days

on large datasets with low minimum support threshold. These algorithms were proposed for general

labeled graphs that allow the same node/edge label to appear for multiple vertices/edges in the

same graph.

In bioinformatics, some networks such as protein-protein interaction networks and gene

coexpression networks have unique node labels. More efficient algorithms have been proposed for

the analysis of graphs with unique labels. The Mule algorithm [28, 29] proposed novel enumera-

tion approaches for all maximal and closed frequent subgraphs, respectively. The Mule algorithm

proposed an efficient enumeration tree in which each frequent subgraph appears exactly once, thus

eliminating the need for duplicate checking. The algorithm is a depth-first search that allows for

deciding whether a subgraph is maximally frequent.

Algorithms for mining closed and maximal frequent subgraphs are very important compared

to algorithms that find all the frequent subgraphs in a dataset. This is due to the reason that the

reduction in the size of the output will not cause any information loss, which also makes it easier

to analyze the mined patterns. Moreover, it reduces the computational demands.

Table 2.1. Comparison between frequent, close, and maximal patterns

minsup Frequent Closed Maximal

18 1,776,157 14,083 9,038

19 599,798 9,862 6,463

20 214,119 7,055 4,701

21 93,736 5,157 3,570

22 44,134 3,829 2,711
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Table 2.1 shows the huge difference in number of frequent patterns compared to the number

of closed patterns and number of maximal. We performed the experiment on a dataset [36] that has

35 coexpression networks inferred from 35 tissues. For example, in the table, for using minimum

support = 18 there will be more than a million and a half reported frequent patterns, while this

number massively decreases to nearly 14 thousand closed frequent patterns and 9 thousand maximal

frequent patterns.

Theoretically, frequent pattern mining in graph data are more difficult than frequent pattern

mining in any other structured data, i.e., itemset mining, sequence mining, as well as tree mining.

2.2.2. Quasi Frequent Subgraph Mining

The definition of quasi frequent subgraph does not mean each edge of the subgraph should

appear in a restricted number of graphs as in regular frequent subgraphs. It requires each edge of

subgraph to appear in at least t of the supporting graphs, i.e., an edge can still appear in a smaller

number of graphs and yet be part of a quasi frequent subgraph. Figure 2.5(b) shows an example

of quasi frequent subgraph where the subgraph {a− b, a− d, a − e, b − c} has been extended with

two edges that are frequent in 2 out of the 3 graphs in which the seed subgraph is frequent. The

edge occurrence matrix in Figure 2.5(c) shows how the edges are added respectively to form the

subgraph.
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Figure 2.5. Examples of the two-step approach for mining a representative set of quasi frequent
subgraphs (a) Graph dataset with five graphs. (b) Extension of seed {a-b, a-d, a-e, b-c} with two
edges. (c) Edge occurrence matrix of subgraph in (b)

10



Researchers proposed methods that have mined frequent pattern from the edge occurrence

in the graphs and then partitioned these pattern into connected subnetworks. Huang et al. [18]

employed simulated annealing to mine semi-frequent edgesets that frequently appear in the coex-

pression networks. The result was edgesets that are not entirely connected, then they extracted all

the quasi frequent subgraphs that are highly connected.

2.2.3. Clustering Approaches for Mining Graphs

Researchers studied the building principles of biological networks in attempt to potentially

revolutionize the view of biology and disease pathologies [4]. The popular clustering approach

usually extracts densely connected modules from biological networks, which are often biologically

related and meaningful, e.g. a dense PPI subnetwork may correspond to a protein complex [43].

Researchers like in [32, 16] used to build summary graph from the coexpression graphs by

the coexpression links that appear in at least a minimum number of coexpression networks, where

the support threshold is user-specified. Figure 2.6 shows the summarization process. Figure 2.6(a)

shows a dataset of multiple coexpression graphs, while in (b) the summary matrix of the dataset.

In Figure 2.6(c), the summary graph contains the edges that appears in at least 3 graphs.
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Figure 2.6. Extracting dense subnetworks from summary graph

2.3. Clustering and Subspace Clustering

Clustering is the approach of finding groups of similar objects within dataset while keeping

the noise away or in different groups. Algorithms for these approaches always had the challenge
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that the data being high-dimensional because many of the dimensions are often irrelevant. The

irrelevant dimensions might hide clusters in noisy data which confuse the clustering algorithms.

The challenge of dealing with multi-dimensional data is known as the curse of dimensional-

ity. Unlike the the traditional approaches, subspace clustering algorithms focus the search process

for the relevant dimensions which make it tolerant to find clusters that exist in multiple or over-

lapping subspaces. Figure 2.7 present an illustration of subspaces overlapping. For example, a

group of people who have 70 ≤ Salary ≤ 95 and 22 ≤ Age ≤ 40, and another group who have

40 ≤ Salary ≤ 85 and 35 ≤ Age ≤ 50 are overlapped, i.e., they both contain the same people who

get salary in the range 70 and 75 and their age between 35 and 40.
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Figure 2.7. Example of subspace clusters.

Subspace clustering is often described as an extension of the traditional clustering, which

seeks to find clusters in different subspaces within a dataset [35].

Subspace clustering comes in two flavors based on the search strategy. Top-down algorithms

that find initial clustering in high dimensional data and then improve the result by evaluating the

subspaces of each other iteratively. Bottom-up algorithms that form clusters by combining dense

areas in low dimensional spaces.

Zait et al. [47] offered a comprehensive study of clustering algorithms. They proposed

a methodology for comparing clustering methods based on two metrics. The most significant

metrics to be used are: the quality of the clustering result, and the performance of the execution

of each algorithm. Morever, subspace clustering has been reviewed in recent book by Berhkin
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[5]. This survey focuses on clustering algorithms from data mining perspective. Kriegel et al.

[30] discussed the problems motivating subspace clustering and presented a handful number of

exemplary algorithmic solutions. They also sketched different definitions and usages of subspaces

for clustering.

2.4. Classification

Classification refers to the technique of predicting a class label for a given unlabeled data

instance. Generally, there is a labeled dataset and the objective is to predict the label of each

unlabeled instance by using information from the labeled dataset. Figure 2.8 shows an illustraion

of the classification task in general. Many approaches and techniques have been proposed classify

data, including K-Nearest Neighbor, Decision Trees, Naive Bayes, and Support Vector Machines

(SVM).

Tid Attribute 1 Attribute 2 Attribute 3 Calss

1 No Medium 78K No

2 Yes Large 63K Yes

3 No Medium 117K Yes

4 No Medium 47K No

5 No Medium 55K No

6 Yes Small 61K No

7 No Medium 119K No

8 Yes Large 94K Yes

9 No Small 95K No

10 Yes Medium 89K No

Tid Attribute 1 Attribute 2 Attribute 3 Calss

1 Yes Small 42K ?

2 No Large 87K ?

3 Yes Medium 102K ?

4 Yes Large 48K ?

5 No Medium 66K ?

6 No Large 87K ?

Model 

Learn

Model 

Apply

Model  

Learning

Algorithm

Training set

Testing set

Induction

Deductio
n

Figure 2.8. Classification task illustration
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2.4.1. k-Nearest Neighbor

Perhaps the most straightforward classifier in machine learning techniques and algorithms

is the Nearest Neighbour Classifier [11]. In a K-Nearest Neighbor classifier, the classification is

achieved by identifying the class labels of its closest k neighbors, where k is the number of neighbors,

then it will predict class label of the data instance as the label of the majority of the neighbors

(majority vote).

?

Figure 2.9. Example of K-NN classification with k = 3

Two metrics should be determined before running the algorithm: the value of k, and the

type of distance used. The large value of k, the less classification accuracy due to taking into

consideration far neighbors which affect the majority vote value. On the other hand, choosing

small value of k can also reduce the accuracy when there are some noisy data instances close to

the targeted data instance. For the second metric, depending on the type of the dataset, we can

choose which distance method to use, e.g., the Euclidean distance, the Manhattan distance, or any

other method from Minkowski distance methods.

Figure 2.9 shows an example of K-NN classifier that uses k = 3. The closest three shapes

are two stars and a polygon. Since the majority of the three neighbors are stars, then the shape

will be labeled as a star.

One of the challenges of K-NN classifier is the calculation of distances for point, i.e., the

K-NN classifier does not build a model one time and use that model for every data instance. It

builds a model for every instance separately, that why it is called LazyLearning classifier.
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2.4.2. Decision Trees

Decision trees classify instances by sorting them based on feature values. Decision Trees

classifier uses a tree structure learning to classify data instances. The leaves in a decision tree

represent class labels and branches represent conjunctions of features that lead to the class labels

[42]. The root is chosen so its feature split the tree the best. Finding a way to choose the root that

best divide the data instances is proposed in many researchers’ work, such as gini index [6], and

information gain [19].

β > 91

γ

α > 62.5

High

risk

Low

risk

High

risk

Low

risk

Yes

NoYes

Yes

No

No

a)  Training model

Risk?

54 98 Yes Low

85 90 No High

72 105 Yes High

b)  Test data

Figure 2.10. Example of decision tree classification

A big advantage for decision trees is that the classifier generated is highly interpretable.

Figure 2.10 presents medical example where patients are classified into one of two classes: high risk

or low risk. High risk patients would not survive at least 30 days based on the initial 24-hour data.

Figure 2.10(a) shows a training model based on measurements taken from 19 patients during the

first 24 hours. The attributes are: 1. Age (α). 2. The minimum systolic blood pressure over the

initial 24 hours period (β). 3. Sinus tachycardia presence (γ). The model is applied on the test

data shown in Figure 2.10(b) and predicted the class label with high precision.
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3. A PARALLEL ALGORITHM FOR MINING MAXIMAL

FREQUENT SUBGRAPHS1

3.1. Introduction

Several approaches have been proposed for the discovery of frequent subgraphs and motifs

in network. This interest has been motivated by the vast amount of graph data that has been

collected in a diverse set of domains, including social networks, biomolecular interaction networks,

and transportation networks.

Frequent pattern mining has been proposed by Agrawal et al. [1] who introduced an Apriori-

based algorithm to discover all association rules. Several algorithms for frequent graph mining

have adopted the Apriori principle. Inokuchi et al. [21] proposed the AGM algorithm for mining

all frequent induced subgraphs by following a breadth-first approach that grows the subgraphs by

adding one vertex at a time. Kuramochi and Karypis [31] proposed the FSG algorithm for mining

all frequent connected subgraphs by following a pattern growth level-by-level approach that extends

subgraphs by adding an edge. The FSG algorithm proposed optimizations for candidate generation

and frequency counting and introduced effecient canonical labeling. Yan and Han [44] proposed

the gSpan algorithm that follows a depth-first pattern growth approach. These algorithms were

proposed for general labeled graphs that allow the same node/edge label to appear for multiple

vertices/edges in the same graph. Nijssen and Kok [34] proposed the Gaston tool that mines

frequent subgraphs starting from patterns with simpler complexity, i.e., sequences, and trees. These

algorithms are computationally extensive due to the graph and subgraph isomorphism checking,

and take hours and even days on large datasets with a low minimum support threshold.

In bioinformatics, some networks such as protein-protein interaction networks and gene

coexpression networks have unique node labels. More efficient algorithms have been proposed for

the analysis of graphs with unique labels. The Mule algorithm [28, 29] proposed novel enumera-

1The material in this chapter was co-authored by Saeed Salem and College of Engineering and Architecture. Eihab
El Radie had primary responsibility for collecting samples in the field and for interviewing users of the test system.
Eihab El Radie was the primary developer of the conclusions that are advanced here. Eihab El Radie also drafted
and revised all versions of this chapter. Saeed Salem served as proofreader and checked the math in the statistical
analysis conducted by Eihab El Radie.
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tion approaches for all maximal and closed frequent subgraphs, respectively. The Mule algorithm

proposed an efficient enumeration tree in which each frequent subgraph appears exactly once, thus

eliminating the need for duplicate checking. The algorithm is a depth first search that allows for

deciding whether a subgraph is maximally frequent.

On large graph such as gene coexpression networks that have millions of coexpression links,

the Mule algorithm takes takes hours to days depending on the minimum support threshold. With

the availability of multi-core processors for personal machines, it is important to design parallel

implementation of frequent subgraph mining algorithms. In this paper, we propose a multi-threaded

implementation of the Mule algorithm [28].

In the next section, we discuss the problem description and define important terms. In

Section 3, we present the multithreaded algorithm and discuss it in detail. Finally, in Section 4, we

present the experiments we conducted on real gene co-expressions networks with biological analysis

as well as the experiments performed on synthetic data.

3.2. Problem Description

We first introduce some notations and terms that are used throughout the chapter.

Let G = {G1, G2, · · · , Gn} denote a set of n undirected graphs, where an undirected graph

Gi = (V,Ei) is a tuple where V = {v1, v1, · · · , vk} is the set of vertices, and E ⊆ V × V is the set

of edges.

Subgraph A graph Gs = (Vs, Es) is a subgraph of G = (V,E), denoted as Gs ⊆ G, if and only if

Vs ⊆ V and Es ⊆ E.

Frequent Subgraph Given a set of graphs G and user-specified support threshold Smin, a graph Gs

is called frequent if it is a subgraph of at least Smin graphs. Let sup(G, Gs) = {Gi|Gs ⊆ Gi and Gi ∈

G} denote the supporting graphs of Gs. A subgraph Gs is frequent if |sup(G, Gs)| ≥ Smin.

Maximal Frequent Subgraph let F denote the set of all frequent subgraphs. A frequent sub-

graph X ∈ F is called maximal if it has no frequent supersets. Let M be the set of all maximal

frequent subgraphs, given as

M = {X | X ∈ F and ∄Y ⊃ X and Y ∈ F}
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We mine for maximal frequent subgraphs as connectivity is an important feature that captures the

relationship between the vertices and allows for eliminating mining disconnected combinations.
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Figure 3.1. Example of frequent graph mining. (a) Graph dataset. (b) Frequent subgraphs of (a)
with Smin = 3

Example Figure 3.1(a) shows a graph dataset with four graphs. For minimum support

of 3, Smin = 3, there are ten frequent subgraphs, shown in Figure 3.1(b). In the third row, the

subgraph with three edges {(a, b), (a, c), (b, c)} is a frequent subgraph as it appears in G1, G2, and

G3. The set of all maximal frequent subgraphs M contains only one pattern that has four edges

{a−b, a−c, b−c, c−d} (enclosed in dashed circle). All the other frequent subgraphs are subgraphs

of this maximal subgraph.

3.3. Algorithm

In this section we discuss a parallel approach, for mining maximal frequent subgraphs. The

algorithm begins by constructing an enumeration tree where each edge in the tree is a frequent

subgraph. Figure 3.2(a) shows a sample input graph and (b) shows its enumeration tree. After

populating level one, a frequent subgraph is extended by adding one frequent edge from the neigh-

boring candidate edges of the subgraph. The figure also shows all the frequent subgraphs, including

the set of maximal frequent subgraphs which are in rectangular boxes and patterns that are not

frequent are marked with crosses.
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Figure 3.2. Maximal frequent subgraph mining works in parallel. (a) The input graphs database.
(b) The resulting enumeration tree of maximal frequent subgraphs. Maximal patterns in boxes

The proposed algorithm utilizes a depth-first search enumeration technique based on back-

tracking [14] to mine maximal frequent subgraphs. This technique guarantees a unique child parent

relationship, thus eliminating the need to check whether a subgraph has been visited before. This

is a great improvement over the baseline technique where the repeated checking in an exponentially

growing list of subgraphs consumes a tremendous amount of time.

We are interested in connected subgraphs, so we are only considering the connected sub-

graph. While extending a search node, we only add edges that are connected to the current

subgraph. To ensure that we do not visit the same frequent subgraph again we maintain lists of

visited and candidate edges.

The pseudocode for the proposed multithreading approach is shown in Algorithm 1. It

takes as input: graph dataset, G, a minimum support threshold, minSup, and a number of threads,

threadCount. The algorithm begins by spawning the threads and each thread has his local set of

maximal frequent patterns, Mt.id.

Each thread takes one of the unexplored frequent edges as a subgraph from level one (line

8). For each subgraph, we maintain a set of candidate edges, Ck, which contains the set of edges

that can extend the current subgraph. Also we maintain a set of visited edges, D, that contains all

the edges that have been visited in the current tree branch that is rooted at the current frequent
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Algorithm 1 Pseudo-code for a parallel (Multithreaded) algorithm for Maximal Frequent Sub-
graph Detection
Input:

G: Graph dataset
minSup: Minimum support of seeds
threadCount: User-specified number of threads
Output:

M: Set of maximal frequent subgraphs
M = {M1,M2, ...,Mk}

1: L1: Frequent edges in G
2: threads[] = spawn threads(threadCount)
3: start all threads(threads[], ThreadStart)
4: join all threads(threads[])
5: function ThreadStart

6: while there are unexplored frequent edges in L1 do

7: Ensuring mutual exclusion, choose ek
8: Gk ← {ek}
9: Ck ← {ej ∈ Neighbors(ek) | ej > ek}
10: D ← {e1, e2, ..., ek}
11: execute thread(MuleExtension(Mt.id, Gk, Ck, D))
12: end while

13: end function

14: function MuleExtension(Mt.id, Gk, Ck, D)
// Ck: the Set of candidate edges of Gk

//D: the set of previously visited edges
15: isMaximal← true

16: for all edges ei ∈ Ck do

17: D ← D ∪ {ei}
18: Gk+1 ← Gk ∪ {ei}
19: if Gk+1 is frequent then
20: isMaximal← false

21: Ck+1 ← (Ck ∪Neighbors(ei)) \D
22: MuleExtension(Mt.id, Gk+1, Ck+1, D)
23: end if

24: end for

25: if isMaximal then

26: if Gk has no superset in Mt.id then

27: Mt.id ←Mt.id ∪Gk

28: end if

29: end if

30: end function

Exclude redundancies while grouping the sets in M in one SetM

edge at level one. For each frequent subgraph, we extend the subgraph with one of candidate

edges (line 17). We update the set of visited edges (line 18) and if the new subgraph is frequent

we update the list of candidate edges for the new subgraph and recursively call MuleExtension.

While extending the current subgraph with an edge, ei, the new set of candidates will be the set

of candidate edges of the current subgraph and the set of neighbors of the new added edge, minus

the previously visited edges (line 22).
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If the current subgraph cannot be extended with any of the edges in the candidate set,

the subgraph is potentially maximal, and we check that there is no supergraph in the local set of

maximal frequent patterns, Mt.id, (lines 26-30).

We keep a local list of maximal frequent patterns to avoid maintaining a shared list of all

maximal frequent patterns. This eliminates the need to ensure mutual exclusion to the global list.

However, these local maximal frequent patterns lists might have redundancy. Therefore, after all

the threads are done their work, we merge the lists and remove any pattern that is not maximal.

Example In Figure 3.2(a) we have five graphs. Figure 3.2(b) shows the enumeration tree

for mining subgraphs that appear in at least three graphs. Each thread will handle invoking the

procedure, MuleExtension, for every edge in L1 = {a− b, a− c, a− d, b− c, c− d, d− e} since these

are the only frequent edges in the collection of input graphs. For instance, Neighbors(a − c) =

{a− b, a− d, b− c, c− d} and the set of candidate edges, Ck is {a− d, b− c, c− d} and D contains

{a− b, a− c}. When extending edge a− d, Neighbors(a− d) = {a− b, a− c, c− d, d − e} and the

set of candidate edges, Ck is {c− d, d− e} and D contains {a− b, a− c, a− d}.

3.4. Experimental Results

In this section, we conduct experiments to evaluate the performance of the proposed algo-

rithm. The algorithm is implemented in C++ and experiments were conducted on a system with

an Intel Xeon (3.1GHz) processor, 16 cores, 16 GB RAM and Ubuntu operating system.

3.4.1. Datasets

Experiments are conducted on two different datasets with varying parameters. We have

used real coexpression networks, and synthetic data for runtime comparison purposes.

1. Synthetic data

To investigate how different dataset characteristics impact the performance and speedup of

the algorithm, we generated synthetic datasets with different parameters.

Generation tool: We implemented our own data generator for synthetic datasets, which

generate synthetic datasets as follows. The data generator creates n graphs {G1, G2, ..., Gn} which

has the set of vertices U such that for each graph {Gi}
n

i=1
, V (Gi) = U and E(Gi) = ∅. The

next step is, given the number of maximal frequent patterns, M, and the user-specified parameter,

PatternSize, the data generator randomly generates M maximal frequent patterns and embed

each one into a set of minSup randomly selected graphs.
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In the experiment reported in this section, the values of the parameters were as follows:

1. The first sets of datasets used are PatternSize = 23 edges (10 nodes) and M from

{10, 20, 30, 40, 50}.

2. The second sets of datasets used are of the combinations of PatternSize = {16, 18, 19, 21, 23}

and M = 100.

2. GTEx

We use the GTEx tissue-specific RNA-seq expression data generated for more than thirty

distinct human tissues [27]. The goal in this dataset is to learn tissue-specific gene regulatory

networks for 35 human tissues using the tissue-specific gene expression data, where two genes are

linked if their expression levels are correlated. This dataset is inferred from 35 tissues, 10, 000

genes, and 5 million edges. When we prune edges that appear in a small number of networks, the

number of edges decrease dramatically. There are 771, 676 and 330, 101 edges that appear in at

least 3 and 5 networks, respectively. For the final dataset, we pruned infrequent edges that appear

in less than 10 networks, leaving 55, 458 frequent edges.

3.4.2. Runtime

In this section, we compare the runtime of our algorithm with varying number of threads.

Figure 3.3 and Figure 3.4 show the speedup on the first synthetic datasets. The speedup for 16

threads ranged from 10 to 14. For 32 threads, the speedup was 20 when the number of embedded

patterns was 50.

For the second synthetic dataset where we varied the size of embedded pattern, the running

time speedup is show in Figure 3.4. For instance, the execution of single thread takes approximately

5 hours for finding the maximal patterns with PatternSize = 23, while the parallel execution of

the same experiment with 32 threads takes roughly 14 minutes, speedup of more than 21.

A very important aspect is that the running time for the algorithm depends on the depth

of the search branches of the enumeration tree. Since the embedded patterns were of the same size,

load balancing was fair among the threads on the synthetic datasets.

For GTEx dataset, the speedup changes significantly as the number of threads increase.

In Figure 3.5 we noticed that the speedup increases when we use lower Smin constantly while
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increasing number of threads as long as the number of threads is not much larger than the number

of cores in the CPU.

For example, for finding the maximal patterns with Smin = 17, the execution of the al-

gorithm using single thread takes approximately 51 minutes, but the parallel execution using the

same characteristics but with 16 threads takes roughly 3 minutes. For higher support (Smin = 19),

the algorithm takes less than 1 minute and the speedup is not high since most of the time is spent

in reading the dataset. Our experiments with low minimum support, Smin ≤ 16, took more than

5 days with single thread execution and hence we were not able to determine results for lower

support.
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Figure 3.6. Real data: Speedup after fixing slow worker problem

One of the problems which we faced using multithreading on the GTEx dataset was the

slow worker problem where one thread handling large branch in the enumeration tree takes too

long, while all the other threads have finished their tasks, which increase the overall runtime. We

fixed this problem by checking if any thread is idle, we give part of the branch the thread is working

on to another idle thread. Therefore, no idle threads were present while others are working at the

same time. Fixing the slow workers improved the speedup of the algorithm as shown in Figure 3.5

and Figure 3.6.
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3.4.3. Biological Analysis

To assess the biological significance of the reported patterns, we performed an enrichment

analysis of these gene sets. In annotation databases, genes are annotated with multiple terms and

the same term can annotate many genes. If at least one biological annotation is overrepresented in

the reported subgraph’s genes, the subgraph is marked as enriched.

Over-representation analysis For a given annotation term, let N be the the number of

the genes in the database, K denote the number of genes in the database that are annotated, let

n be the number of genes in the subgraphs, and k is the number of genes of the subgraph with the

annotation.

The probability of getting k or more annotated genes if we randomly sample n genes can

be calculated by the cumulative hypergeometric distribution as following:

P (X ≥ k) = 1−
k−1
∑

i=1

(

K

i

)(

N−K

n−i

)

(

N

n

)

We performed biological enrichment analysis of the reported patterns for the GTEx dataset

to assess the biological significance. We checked for enrichemnt (over-representation) of Gene On-

tology (GO) biological process terms [2], KEGG (Kyoto Encyclopedia of Genes and Genomes)

pathways [23, 25, 24], and Gene-Disease association (DisGeNET) [37]. We used the DAVID func-

tional annotation tool for biological enrichment [17] .

Table 3.1. Enrichment analysis of maximal frequent subgraphs reported by the first algorithm.

Smin N N Density GO% KEGG% DisGeNET%

17 6598 12.03 0.24 91.7 31.4 53.9
18 4116 10.95 0.25 92 27.7 55.9
19 2580 9.99 0.27 92 25.4 57.2
20 1701 9.01 0.29 91.8 27.3 58.6

Table 3.1 presents the topological properties and the enrichment percentage for varying

minimum support. Topological properties of the reported patterns show that as we decrease Smin,

the number of patterns and the average size of the patterns increase while the average density

decrease.

Table 3.1 shows that the GO biological processes enrichment is above 91% in all con-

ducted experiments, which indicates that the reported patterns are biologically relevant. In all

the experiments, over 53% of all the reported patterns are enriched with Gene-Disease association
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(DisGeNET), which indicated a strong association between the reported patterns and diseases.

Moreover, the percentages of enriched patterns with KEGG pathways are shown in Table 3.1.

Table 3.2. Most enriched GO, DO Terms, and KEGG Pathways in the reported patterns of the
first algorithm.

Top 5 GO, DO biological process terms

GO:0006614 SRP-dependent cotranslational protein targeting to membrane
GO:0000184 nuclear-transcribed mRNA catabolic process, nonsense-mediated decay
GO:0044033 multi-organism metabolic process
GO:0042254 ribosome biogenesis
GO:0006613 cotranslational protein targeting to membrane

Top 5 KEGG Pathways

hsa03030 DNA replication
hsa04931 Insulin resistance
hsa05033 Nicotine addiction
hsa00120 Primary bile acid biosynthesis
hsa05032 Morphine addiction

Top 5 Diseases

DOID:4556 Lung large cell carcinoma
DOID:446 Hyperaldosteronism
DOID:5577 Gastrinoma
DOID:12678 Hypercalcemia
DOID:3852 Peutz-Jeghers syndrome

Some GO biological processes, KEGG pathways, and Disease Ontology terms are enriched

in the genes of more than one pattern. Table 3.2 shows the top 5 GO biological processes, KEGG

pathways, as well as top 5 diseases that were enriched in the most in the reported patterns.

Figure 3.7 and Figure 3.9 show two examples of two reported patterns that are enriched

with GO terms and KEGG pathways. The subgraph in Figure 3.7 appears in 17 out of the 35

graphs in the dataset of real coexpression networks, while the subgraph in Figure 3.9 appears in

18. The edge-occurrence heatmaps of the two reported patterns are shown in Figure 3.8 and Figure

3.10.
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Figure 3.7. Example 1: maximal frequent subgraph. Smin = 18.
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Figure 3.9. Example 2: maximal frequent subgraph. Smin = 18.
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4. MINING QUASI FREQUENT COEXPRESSION

SUBNETWORKS2

4.1. Introduction

Recently, research has focused on integrating multiple gene expression datasets for identi-

fying functional modules. Genes that show correlated expression profiles in multiple experiments

have been proposed for module discovery and functional annotation [32, 16]. Integrative analysis of

multiple omic datasets (e.g., interaction networks and gene expression) has the potential to eluci-

date the intricate interactions involved in biological processes, and has been employed for functional

annotation [32], active module discovery [20], and biomarker discovery [8]. Efficient algorithms for

discovering interesting patterns from coexpression networks have been proposed.

One of the early work for integrating multiple gene expression datasets was proposed in Lee

et al. [32]. The approach extracts clusters from a summary network formed by the coexpression

links that appear in at least a minimum number of coexpression networks. Lee et al. applied their

approach on mRNA coexpression based on 60 large human data sets containing a total of 3924

microarraysm. In this work, they proved that the confirmed positive correlations between genes in

the dataset were much more common than confirmed negative correlations. However, this approach

suffers from false positive modules that appear highly connected in the summary network and not

connected in the individual coexpression networks. To solve the problem of false positive modules,

Hu et al. [16] proposed an approach to further partition the clusters extracted from the summary

graph by employing the edge-occurrence similarity. However, false positive modules can still exist

if the similarity threshold is not well chosen.

Other methods have mined frequent pattern from the edge occurrence in the graphs and

then partitioned these pattern into connected subnetworks. Huang et al. [18] employed simulated

2The material in this chapter was co-authored by Saeed Salem and College of Engineering and Architecture. Eihab

El Radie had primary responsibility for collecting samples in the field and for interviewing users of the test system.

Eihab El Radie was the primary developer of the conclusions that are advanced here. Eihab El Radie also drafted

and revised all versions of this chapter. Saeed Salem served as proofreader and checked the math in the statistical

analysis conducted by Eihab El Radie.
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annealing to mine semi-frequent edgesets that frequently appear in the coexpression networks.

These edgesets are not necessarily connected and thus a second phase is to partition these edgesets

to highly connected subnetworks. Salem and Ozcaglar [40] proposed an approach that mines

maximal frequent edgesets, complete biclusters, and extracts highly-connected subgraphs (k-cliques

and percolated k-cliques) from the induced subgraph for each edgeset.

Graph clustering approaches have been proposed for integrating multiple coexpression net-

works. Salem and Ozcaglar [41] proposed an approach that combines the summary graph infor-

mation with edge recurrence. The approach combines both edge similarity in the summary graph

with the edge similarity based on the common occurrence of the two edges in the individual graphs.

Modules are then extracted from the combined edge-edge similarity graphs. An extension of [41]

was proposed in Salem [39] where edge-edge topological similarities for each of the coexpression

networks are combined in a summary graph from which modules are extracted.

In this work, we propose an algorithm that mines subgraphs that quasi ‘appear’ in at least

a number of graphs. In the rest of the paper, the organization is done as follows. In Sections 2 and

3, we discuss the problem and we present our algorithm, respectively. Furthermore, in Section 4,

we present experimental results on real gene coexpression networks.

4.2. Proposed Approach

We first introduce some notations and terms that are used throughout the thesis. Let

D = {Gi}
n
i=1

denotes a dataset of n undirected graphs, where for each graph Gi = (V,E), V =

{v1, ..., vk} is the set of vertices, and E ⊆ V × V is the set of edges. A graph Gs = (Vs, Es) is a

subgraph of G = (V,E), denoted as Gs ⊆ G, if and only if Vs ⊆ V and Es ⊆ E.

Frequent Subgraph Given a minimum support threshold Smin, a graph Gs is called a

frequent subgraph in D if it is a subgraph of at least Smin graphs in D. Let sup(D,Gs) = {Gi|Gs ⊆

Gi and Gi ∈ D} denote the supporting graphs of Gs. A subgraph Gs is a frequent subgraph if

|sup(D,Gs)| ≥ Smin.

Mining for frequent subgraphs requires all the edges of the subgraph to be present in each

of the supporting graphs. Some of the edges might be missing due to noise in data generation,

thus leading to missing some important patterns. We propose to allow some missing edges while

counting the support of a subgraph. A subgraph Gs has t−appearance in a graph if t × |E(Gs)|
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edges are present in the graph. The same subgraph can multiple t-appearance in different graphs

in the dataset.

Quasi Frequent Subgraph Given a minimum support threshold Smin, and density thresh-

old, t, a graph Gs = (Vs, Es) is called a quasi frequent subgraph in D if the subgraph has

t−appearance in at least Smin graphs in D.

Let t-sup(D,Gs) = {Gi| |E(Gs)∩E(Gi)| ≥ t×E(Gi) and Gi ∈ D}, denote the set of graphs

in which the subgraph has a t-appearance. A subgraph is quasi frequent if t-sup(D,Gs) >= Smin.

The definition of quasi subgraph does not impose restrictions on the number of graphs in

which each edge of the subgraph should appear. An edge can still appear in a small number of

graphs and yet be part of a quasi frequent subgraph. We further require that each edge of subgraph

appear in at least t of the supporting graphs.

4.3. Algorithm

We introduce a two-step approach for mining a representative set of quasi frequent sub-

graphs.
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Figure 4.1. (a) Graph dataset with six graphs. (b) Extension of seed {(a,b),(a,d),(b,d)} with
three edges; (c) Extension of seed {(a,b),(b,d),(d,e)} with two edges. Parameters used: Smin = 3
and t = 0.7

Seed Generation Given a graph dataset, D, minimum support, Smin and size of seed

subgraph, seedSize, we employ the MULE algorithm for mining all frequent subgraphs with size

equals seedSize edges. The algorithm enumerates frequent subgraphs without redundancy check-
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ing. When the size of the subgraph equals seedSize, the algorithm calls the seed extension pro-

cedure. The seed generation is shown in Algorithm 2. The algorithm builds an enumeration tree

by starting from each frequent edge (subgraph) and it expends the subgraph by trying to add one

of its neighboring edges. If the newly formed subgraph (line 7) is frequent, then the procedure is

recursively called with the new subgraph as the starting pattern (line 10). Two sets, Vs and Ck are

maintained to avoid visiting the same subgraph patterns multiple times.

Figure 4.1 (a) shows a graph dataset with six graphs, with minimum support equals 3, (b)

and (c) show examples of two seeds, {(a, b), (a, d), (b, d)} and {(a, b), (b, d), (d, e)} (shown with solid

lines). Each of these seeds appear in four graphs.

Seed Extension The greedy pattern growth extends each seed, Gsi, with the neighboring

edge that maximizes the number of occurrences in the set of supporting graphs of the original seed.

For each seed, we have the associated supporting subgraphs in which the seed completely appear,

i.e., sup(D,Gsi). To ensure that the newly formed subgraph is a quasi frequent, we require each of

the supporting graphs of the original seed to have at least t of the edges of the subgraph. Moreover,

we require the newly added edge to appear in at least t the supporting graphs of the original seed. If

the current subgraph cannot be extended with a valid edge, then the current subgraph is a maximal

quasi frequent subgraph. Note that a seed subgraph is a quasi frequent subgraph.

Example Figure 4.1 (b) and (c) show two seeds that have been extended. Each of these

seeds have four supporting graphs. For the seed in (b), we repeatedly add add the following edges:

{(c, d), (a, c), (b, c)}. Each of the four original graphs have at least 0.7 of the edges in the subgraph.

Moreover, each added edge appears in three of the supporting graphs. After adding these three

edges, no more edges can be added without violating the conditions. Therefore, the subgraph

formed in (b) is a maximal subgraph. Figure 4.1 (c) shows the extension of the seed with only two

edges.

4.4. Experimental Results

In this section, we conducted experiments on real coexpression networks to evaluate the

performance of the proposed algorithm. The algorithm is implemented in C++ and we ran the

experiments on a system with an Intel Xeon (3.1GHz) processor, 8 GB RAM and Ubuntu operating

system.
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Algorithm 2 Pseudo-code for Seed Generation and Greedy Pattern Growth
Input:

D: Graph dataset
seedSize: seed size
minSup: minimum support of seeds
t: user-specified threshold of the relaxation
Output:

F : Set of reported subgraphs
Call MineFreqGraphsfor each frequent edge

//Ck: the set of candidate edges of Gk

//Vs: the set of previously visited edges

1: function MineFreqGraphs(F ,Gk, Ck, Vs)
2: if | Gk |== seedSize then

3: GreedyPatternGrowth(F,Gk)
4: end if

5: for all edges ei ∈ Ck do

6: Vs ← Vs ∪ {ei}
7: Gk+1 ← Gk ∪ {ei}
8: if Gk+1 is frequent then
9: Ck+1 ← (Ck ∪Neighbors(ei)) \ Vs

10: MineFreqGraphs(F ,Gk+1, Ck+1, Vs)
11: return
12: end if

13: end for

14: end function

15: function GreedyPatternGrowth(F , Gk)
16: eidx = −1
17: maxDensity = −1
18: Extend = false

19: for all edges ei ∈ Neighbors(Gk) do
20: Gk+1 ← Gk ∪ {ei}
21: //Check if the added edge meets the conditions.
22: currentDensity = calculateDensity(Gk+1)
23: if currentDensity > maxDensity then

24: Extend = true

25: eidx = ei
26: maxDensity = currentDensity

27: end if

28: end for

29: Gk+1 ← Gk ∪ {eidx}
30: if Extend == true then

31: GreedyPatternGrowth(F , Gk+1)
32: else

33: F ← F ∪Gk

34: end if

35: end function

4.4.1. Dataset

We use the GTEx tissue-specific RNA-seq expression data generated for 35 distinct hu-

man tissues [27]. This dataset is inferred from 35 gene expression dataset and has over 5 million

coexpression links between 10, 000 genes.
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4.4.2. Topological Analysis

We analyzed the subgraphs reported by our algorithm on the GTEx dataset. Table 4.1

presents the topological properties of the reported patterns for varying minimum support, Smin

and density t, thresholds, while maintaining the value to be seedSize = 3. Table 4.1 shows that

most of the patterns are quite dense with density more than 0.4. As the density, t, is decreased

to allow for more edges to be added to the seed, we get larger patterns as evident in the average

size of the reported pattern. However, we get also less number of patterns as some patterns will be

included in other maximal patterns and we remove redundancy from the final reported patterns.

The algorithm is extremely fast even for support as low as 12. This is important considering

that mining all frequent subgraphs takes hours to finish. We ran the MULE algorithm [28] on the

same minimum support and it took more than 160 hours without getting the results.

Table 4.1. Topological analysis of the patterns reported by the second algorithm

Smin t N N Density Runtime(sec)

0.7 21, 934 5.44 0.43 85
12 0.8 25, 866 4.05 0.46 69

0.9 29, 008 3.6 0.47 65

0.7 13, 439 4.54 0.45 28
13 0.8 15, 626 3.86 0.46 25

0.9 18, 121 3.49 0.48 24

0.7 7, 623 5.42 0.43 14
14 0.8 9, 108 4.24 0.46 13

0.9 11, 340 3.54 0.48 11

0.7 4, 690 5.96 0.42 6
15 0.8 5, 569 4.28 0.45 6

0.9 7, 167 3.59 0.48 5

0.7 2, 832 5.78 0.42 4
16 0.8 3, 563 4.31 0.45 3

0.9 4, 445 3.72 0.47 3

0.7 2, 144 5.39 0.43 2
17 0.8 2, 423 4.44 0.45 2

0.9 2, 942 3.83 0.47 1

0.7 1, 276 13.8 0.38 2
18 0.8 1, 539 4.75 0.43 1

0.9 1, 921 4.03 0.45 1

0.7 1, 020 5.3 0.42 1
19 0.8 1, 213 4.58 0.44 1

0.9 1, 392 4 0.46 1

0.7 698 5.75 0.41 1
20 0.8 842 4.82 0.42 <1

0.9 962 4.14 0.45 <1
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4.4.3. Biological Analysis

Similar to section 3.4.3, we performed biological enrichment analysis of the reported pat-

terns for the GTEx dataset to assess the biological significance. We checked for enrichemnt (over-

representation) of Gene Ontology (GO) biological process terms [2], KEGG (Kyoto Encyclopedia

of Genes and Genomes) pathways [23, 25, 24], and Gene-Disease association (DisGeNET) [37]. We

used the DAVID functional annotation tool for biological enrichment [17]. If a biological annotation

is overrepresented in the reported subgraph’s genes, the subgraph is marked as enriched.

To assess whether the coexpression subnetworks are enriched with physical protein-protein

interactions (PPIs), we analyzed the enrichment of PPIs in the reported subnetworks. If PPIs are

significantly overrepresented (p − value <= 0.01) in the reported subnetworks, we consider the

subnetwork as enriched.

We used the BIOGRID protein-protein interaction network (version 3.4.152) that has 287, 970

interactions [7]. Almost 25% of the reported patterns are enriched with PPIs. The percentage could

be higher given that current experimental high-throughput technologies have a high rate of missing

interactions [48].

Table 4.2. Enrichment analysis of the reported patterns by the second algorithm with different
ontology databases

Smin t N PPI% GO% KEGG% DisGeNET%

0.7 2832 21 75.8 62.8 52.1
16 0.8 3563 25 76.7 62.4 52.8

0.9 4445 24 76.1 58.9 50.2

0.7 2144 30 79.4 66.9 54
17 0.8 2423 31 81.4 67.2 53.6

0.9 2942 27 78.7 63.5 50.8

0.7 1276 24 80.5 64.3 57.2
18 0.8 1539 29 82.6 67.1 50.6

0.9 1921 27 81.3 63.9 51

0.7 1020 32 83 71.8 54.2
19 0.8 1213 32 84.3 69.7 53.4

0.9 1392 28 82.6 66.9 52.1

0.7 698 27 84.7 71.2 53.7
20 0.8 842 30 85.2 70.4 53.4

0.9 962 27 85.7 66.7 52.5

Table 4.2 provides the enrichment percentage of the reported patterns for varying minimum

support and density thresholds using different ontology databases. The GO biological processes

enrichment in above 75% in all the cases and increases as we increase the minimum support. This

indicates that more frequent patterns are more likely to be biologically relevant. In all experiments,

over 50% of all the reported patterns are enriched with Gene-Disease association (DisGeNET),
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which indicated a strong association between the reported patterns and diseases. Moreover, the

table shows the percentages of enriched patterns with protein-protein interactions patterns, KEGG

pathways.

Table 4.3. Examples of PPI enrichment of 10 reported patterns by the second algorithm

Pattern Pattern Size Obs. PPI p-value

ptrn1 130 88 1.64E-219
ptrn2 95 73 1.99E-189
ptrn3 91 63 1.26E-158
ptrn4 87 61 3.29E-154
ptrn5 89 61 3.40E-153
ptrn6 59 49 6.81E-131
ptrn7 60 49 3.71E-130
ptrn8 60 49 3.71E-130
ptrn9 61 49 1.88E-129
ptrn10 59 48 2.28E-127

Table 4.3 lists examples of 10 patterns that are enriched with PPIs. For example, ptrn1

has 130 edges, of which 88 are true PPIs.

Moreover, some Disease Ontology terms are enriched in the genes of more than one pattern.

Table 4.4 shows the top 10 diseases that were enriched the most in the reported patterns.

Table 4.4. Top 10 diseases enriched in the reported patterns by the second algorithm.
Top 10 Diseases

DOID:12449 aplastic anemia
DOID:11335 sarcoidosis
DOID:2916 hypersensitivity reaction type IV disease
DOID:16 integumentary system disease
DOID:2730 epidermolysis bullosa
DOID:2731 vesiculobullous skin disease
DOID:0060036 intrinsic cardiomyopathy
DOID:4960 bone marrow cancer
DOID:2355 anemia
DOID:13378 Kawasaki disease

Figure 4.2 and Figure 4.4 shows two reported patterns that are enriched with GO, DO

terms, and PPIs. The edge-occurrence heatmaps of the two reported patterns are shown in Figure

4.3 and Figure 4.3. The parameters used in these examples are Smin = 3 and t = 0.7.

36



e14

e8

e6

e4

e3

e2

e20

e19

e13

e11

e1

e15 e17

e10

e5

e16

e12

e18

e9

e7

6

18

3

9
8

2

12
5

16 4
14

13
11

15

17

10

1

7

Figure 4.2. Example 1: maximal quasi frequent subgraph. Smin = 16 and t = 0.7
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Figure 4.3. Edge-occurrence heatmap of Example 1.
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Figure 4.4. Example 2: maximal quasi frequent subgraph reported by the second algorithm.
Smin = 16 and t = 0.7
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Figure 4.5. Edge-occurrence heatmap of Example 2.
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5. CONCLUSION AND FUTURE WORK

In this thesis, we proposed algorithms for mining frequent subgraphs. In the first algorithm,

we proposed a multithreaded algorithm for mining maximal frequent subgraphs from large graph

datasets. We have demonstrated the effectiveness of the parallel implementation on synthetic and

real datasets. On a real dataset where we have different frequent pattern sizes, threads that work

on deeper branches take much longer to complete. Fixing the slow worker problem improves the

speedup. Even though the first algorithm is relatively efficient, it took much time when using

small support values and it does not allow relaxation while mining the subgraphs. To overcome

those challenges we developed a second algorithm. In the second algorithm, we proposed a greedy

approach for mining quasi frequent subgraphs. Experiments on synthetic data as well as real

biological networks are done and we showed the effectiveness and efficiency the algorithms achieve

and the big improvement in performance. Biological enrichment analysis of the reported patterns

show that the patterns are biologically relevant and enriched with known biological processes and

disease terms.

Future work can address improving the algorithms to produce frequent patterns with min-

imal overlapping among each other. In the two algorithms, the reported frequent patterns do not

change dramatically over time. Therefore, the tree structure will likely help producing considerable

overlap. By discovering a method to reduce the overlapping among the produced patterns, we will

make a biological impact by reporting only the most important patterns.
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