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ABSTRACT 

Driven by the advancement of smart electrical grid technologies, automated home energy 

management systems are being increasingly and extensively studied, developed, and widely 

accepted. A system like this is indispensable for and symbolic of a smart home. Mixed integer 

linear programming (MILP) together with dynamic electricity tariff and smart home appliances 

is a common way to developing energy management systems capable of automatically 

scheduling appliance operation and greatly saving monetary cost. This study transformed an 

existing plain MILP model to a goal programming model with priority to better address the 

conflict among each single appliance cost saving objective and user time preference objective. 

Constraints regarding the delays between pairs of closely related appliances are either extended 

or newly introduced. Numerical experiments on five appliances under different situations justify 

the validness of the proposed framework. Besides, the influences of key parameters on model 

performance are also investigated. 
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1. INTRODUCTION 

1.1. Smart Grid 

The grid, or in other words, the electric grid, is a network composed of transmission 

lines, substations, transformers and more that deliver electricity from the power plant to 

commercial or residential customers. The current electric grids in use today in all developed 

countries were designed or built more than 50 years ago (Gelazanskas and Gamage, 2014); for 

example, the U.S. electric grids were built in 1890s (U.S. Department of Energy, 2014). Smart 

grid technologies are increasingly employed to improve and upgrade the old grid to increase its 

availability, reliability, efficiency, security, and resilience, and thus to automate and more 

effectively manage the increasing complexity and needs of electricity. Smart grid benefits from 

the integration of advanced sensing, information, and communication technologies, having the 

ability to do real-time optimal and adaptive coordination of information from generation supply 

resources, demand resources, and distributed energy resources. One of the interesting and 

essential features of the smart grid is its capability of two-way communication between the 

utility and its customers (El-Hawary, 2014) via smart meters, which means the smart grid is 

useful to the utility, but allows consumers to make choices about their energy use. The smart 

meter provides information and tools that customers can use to increase their energy efficiency. 

Smart metering infrastructure is necessary to enable two-way communication between the smart 

grid utility and the consumer. It includes meters that measure and record electricity usage at a 

minimum of hourly intervals and provide data to both the utility and the utility customer at least 

once daily. A smart meter can therefore dynamically interact with the smart grid system and to 

enable automation of home energy management (Zipperer et al., 2013). An example of the smart 

meter is illustrated in Figure 1.1.  
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Figure 1.1. A smart meter. Photo sourced from National Renewable Energy Laboratory (NREL) 
database, PIX 21394, http://www.osti.gov/bridge. 

 
Demand side management within smart grid is receiving more recent attention because 

both the supply side (utility) and the demand side (consumer) can benefit from customer 

engagement. Demand side management is realized through a demand response program, which is 

an electricity tariff or a program that motivates end-users to decrease or shift their power 

consumption at times of  load peak (for which utilities charge higher power rates) or when grid 

reliability is jeopardized (U.S. Department of Energy, 2015). Reduced peak demand lowers costs 

for utilities and ultimately lowers power costs for consumers. Small shifts in peak demand can 

result in substantial savings for both sides (Spees and Lave, 2008). It was estimated that more 

than 5% of total peak US national demand can be reduced under existing demand response 

programs in which customer participation is involved (Cappers et al., 2009). Another study 

showed that even a 5% reduction in US demand during the top 1% of the hours of the years 

would yield a present value of $35 billion in benefits (Faruqui and Sergici, 2010).  

 



3 
 

1.2. Energy Consumption Facts 

According to the U.S. Energy Information Administration (2015), the U.S. residential 

sector used 36% share of the total U.S. electricity in 2013 and accounts for a larger share of peak 

demand. 

In 2013, U.S. electric utilities had 51,924,502 advanced (smart) metering infrastructure 

(AMI) installations. About 89% were residential customer installations (U.S. Energy Information 

Administration, 2014b) 

An investigation of energy use in North Dakota in February 2013 indicated that 49% of 

North Dakota households with families having annual income less than $50,000, spent an 

estimated average of 19% of their after-tax income on energy (ACCCE, 2013). Involving 

average residential users in smart grid energy management might decrease their energy expenses 

while reducing peak demand. 

Increasingly, smart home appliances are being used by families that consume a large 

share of the total household energy consumption from utilities. According to the U.S. Energy 

Information Administration (2014a), within an average U.S. resident family, the energy 

consumed by appliances (including lighting, but excluding water heating, space heating and air 

conditioning) represented approximately 63% of the total home electricity consumption in 2012. 

A survey (U.S. Energy Information Administration, 2013) recently indicated that rapidly 

increased electricity use due to ever-growing numbers of household devices powered by 

electricity have a disproportionate effect on the amount of total primary energy needed to meet 

residential electricity demand. 
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1.3. Dynamic Pricing 

Electricity tariffs are price incentive programs that encourage consumers to change their 

energy usage to avoid the load peak period by using less electricity during load peak or shift the 

electricity loads to off-peak periods through scheduling of appliance use. The tariff is usually an 

hourly-based dynamic pricing program with peak load hour price carrying the greatest cost. 

Figure 1.2 illustrates a typical 24-hour tariff, which shows the contrast between the lowest price 

and the highest price within the same day. The 24-hour ahead hourly electricity tariff data of 

November 3. 2013, for Long Island of New York State used in this paper was taken from NYISO 

(New York Independent System Operator) (www.nyiso.com). The highest price (57.86 

USD/MWh) was 2.56 times the lowest cost (22.57 USD/MWh). A tariff can be real-time pricing 

or day-ahead market pricing. In case of real-time pricing, the next day’s hourly costs have to be 

predicted as a reference in order for consumers to optimize the use of household appliances.  
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Figure 1.2.  Hourly pricing data of one day, November 3, 2013, Long Island, NY. (NYISO) 

1.4. Smart Home Appliances Scheduling Overview 

Dynamic electricity costs are driving consumers to take advantage of more economical 

energy management by scheduling home appliances at times of lowest daily cost. However, most 

residential energy consumers have been accustomed to fixed-rate electricity and are not willing 

or able to conduct appliance scheduling, because of the time and mathematical calculations 

required. Time restrictions, knowledge of utility rate dynamics and math skills are impediments 

to average household users to correctly respond to dynamic energy costs (Mohsenian-Rad and 

Leon-Garcia, 2010). Easy to use home appliance automation systems and energy decision 

support systems are highly desirable and they may be the keys to greater residential energy 

consumer use of more efficient energy scheduling. 
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A smart appliance is an appliance that can communicate directly with the utility operator 

for efficient use of electricity over an internet connection. Web-enabled smart appliances under 

the expanded addressing space of Internet Protocol version 6 (IPv6) are becoming common, and 

older appliances can be IP control enabled through devices such as smart power bars. Many 

recently produced smart appliances allow users to view their operation status and control the 

operations through a smartphone or tablet. With the application of mathematical programming, 

multiple appliances can be optimally controlled or scheduled simultaneously. Mathematical 

programming for smart appliance operation is developed to minimize or maximize an objective 

or multiple objectives subjected to a group of constraints.  

Smart appliances and mathematical programming have the potential to optimize 

appliance scheduling automatically. The schedule developed using smart appliances with 

scheduling programming can be used by the household users or the appliances themselves.  With 

the rapid development of smart grid, smart home and smart appliances, programming to increase 

energy efficiency of residential appliances has attracted the attention of more researchers. 

Solutions to this optimal appliance scheduling problem based on mixed integer linear 

programming (MILP) represents a major research direction for many of these researches. The 

programming protocol of MILP is a widely used subset of mathematical programming in which 

the objective function is a linear function of decision variables which can be integer or non-

integer. Each constraint is formed from a linear combination of the decision variables (Smith and 

Taskin, 2007). Published research involves single home or multiple homes, may involve 

renewable energy or not, may involve single-goal or multiple goals, may involve deterministic 

linear programming or probability programming, may involve using external solvers or applying 

customized heuristic algorithms.  A detailed literature review can be found in the next chapter. 
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1.5. Methodology Used in and Contributions of This Study 

The object of this study is to provide an improved programming basis for scheduling 

smart home appliances using MILP, based on previous work (Sou et al., 2011: Bu and Nygard, 

2014) but which incorporates fuzzy goal programming technique (Ignizio and Romero, 2003) 

and introduces new practical constraints.  

Compared to our previous work, this study is more comprehensive and versatile in that it 

includes a more complete literature review, modifies and generalizes formulas for the new 

introduced constraints restricting the delay between two closely related or repeatedly used 

electric appliances, simplifies the worst deviation level constraints, and validates the model with 

more appliances and more details.  

The contributions of this study are the following:  

a. The proposed new model supports priority distinctions for different appliances;  

b. rigid time preference constraints are transformed into soft ones and included in the 

fuzzy goal programming framework with priorities;  

c. two types of devising constraints are introduced that are capable of more practically 

modeling the relationship of processing delay between closely related or repeatedly 

used appliances.  

1.6. Thesis Organization 

The literature review is given in the second chapter, where the research question 

statement of this study is also included. The proposed model’s theory and formulation are 

presented in Chapter 3. Numerical experiment setup is given in Chapter 4. Experimental results 

and discussion are conducted in Chapter 5. Conclusions are drawn in the final chapter.  
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 2. BACKGROUND AND LITERATURE REVIEW  

2.1. Overview 

2.1.1. Common Optimization Elements 

Smart home appliances scheduling is a mathematical optimization problem, and thus 

shares many common elements such as objective(s), constraints, mathematical programing type, 

software or algorithm used to find solutions, global optimal solution or local optimal solution,  

with many other mathematical optimization problems.  

The objective is one of the most important elements that measures the cost or the benefit 

of the solution. It involves the questions of: is it a single-objective or multiple-objective problem, 

are these objectives correlated or irrelevant or conflicting with each other, what these objectives 

are, and how these objectives are integrated to address the general purpose. For multiple-

objective problem, objectives are conflict more or less with each other, therefore, creating a 

general objective by assigning a weight or coefficient to each single objective is an effective 

practice that is commonly employed by programmers. Another way of dealing with multiple and 

conflicted objectives is using goal programming. Reducing or minimizing economic cost of 

electricity use by all appliances is the indispensable objective, because it is the primary incentive 

for residential energy users to more easily respond to dynamic pricing. Additional objectives will 

be discussed later in this chapter.  

Constraints are a series of equalities or inequalities which are necessary for restricting 

solutions to a feasible domain. For example, total electricity used by all appliances during a 

given period cannot exceed the allowed peak value, each appliance has its own electric 

specification, some appliances are closely related to each other in terms of the interval or time 

delay, and every user has his own appliance use preferences.  
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An optimization problem can formulated or deduced to a certain type of mathematical 

programming such as linear programming, nonlinear programming, deterministic programming, 

stochastic programming, integer programming (include mixed integer linear programming and 

binary integer linear programming) or continuous programming. In the case of a linear 

programming, all the constraints and the objective function are linear. Unlike deterministic 

programming, stochastic programming involves uncertainty in some parameters. Integer 

programming is characterized by some or all of its variables are restricted to be integers, while 

continuous programming variables are continuous in specified ranges. 

Mathematical programming can be solved using different algorithms and/or software. For 

integer linear programming, exact algorithms such as cutting plane methods, branch and bound, 

branch and cut, and branch and price are widely used (Lima and Grossmann, 2011). Heuristic 

algorithms (Fong et al., 2009; Ha et al., 2006; Giorgio, 2012; Chavali et al., 2014; Ogwumike et 

al., 2015) were developed to solve certain problems. Heuristic algorithms prove more efficient in 

some large-scale problems, but each designed algorithm can only be effectively applied to 

limited types of problem and the solution may not be globally optimal. IBM ILOG CPLEX 

(IBM, 2013) is one of the most famous integer linear programming formulation commercial 

solvers or optimizers that exploits both exact algorithms such as branch and cut algorithm and 

heuristic methods. The programs AMPL, MATLAB, and SAS are effective programming tools 

to solve mathematical optimization problems, too. The CPLEX program provides Application 

Program Interfaces or Application Programming Interfaces (APIs) to C++, Java, and MATLAB. 

A free toolbox called YALMIP for modelling and optimization within the program MATLAB 

has become popular as a support for most mainstream optimizer and enable rapid algorithm 
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development (Löfberg, 2004). Use of a combination of MATLAB, YALMIP, and CPLEX MILP 

Solver can expedite the verification of the ideas associated with mathematical programming. 

2.1.2. Special Optimization Elements 

Optimal smart home appliance scheduling can be made either for a single home or for a 

neighborhood with multiple homes. Where multiple homes are considered, trade-offs of 

electricity use by appliances within each home and among all homes have to be included in the 

calculations.. 

User preferences for appliance use is another concern. Are the preferences imposed for 

time convenience or for temperature comfort if thermal or air-conditioning devices are used? 

How these preferences are measured and modeled? Are the preferences included in the objective 

function or listed as constraints? Are the preference constraints rigid (broken is absolutely 

prohibited) or soft (more flexible)? Is the priority of different appliances considered and how is it 

modeled? 

Type of dynamic pricing referred to in the existing literatures also varies. Is the price 

tariff day-ahead, real time, or based on prediction? What is the price tariff time interval between 

price changing?  Hourly-based tariff is most considered in the literature, but, other options 

include 15-minute-based tariff and peak-off-peak-based tariff that use flat rate during off-peak 

time and much higher prices during peak time.   

The type and number of appliances involved are the real objects in the optimization and 

their types are so diverse that mathematical formulation and solution are substantially influenced 

by their consideration and properties. Thermal appliances are often scheduled and optimized 

separately. Other appliances can be divided into several categories (Lee and Lee, 2011) based on 

whether they are elastic, interruptible, and with or without storage. Elastic means the appliance’s 
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energy consumption can be flexibly adjusted at each sub-interval; interruptible means the 

appliance can be intermittently turned on and off without any performance degradation; and with 

storage means the appliance’s performance only relies on the total energy consumption, while 

without storage means the appliance’s performance depends only on the current energy 

consumption level in the current sub-interval. Air conditioners, heaters, and light bulbs with 

controllable brightness are examples of appliances with elastic energy consumption without 

storage. Battery chargers with controllable charging rates can be classified as appliances with 

elastic energy consumption with storage. Battery chargers without controllable charging rates are 

considered as appliances with non-elastic and interruptible energy consumption. Light bulbs 

without controllable brightness and televisions are appliances with non-elastic and non-

interruptible energy consumption. Some appliances are not absolutely interruptible, but rather are 

interruptible only between its energy phases, such as a clothes washing machine that can be 

interrupted between its first rinse and second rinse cycles. Each energy phase is treated as 

uninterruptible. Not all existing research in the literature used the concept of energy phase. Most 

of the research studies considered an appliance working as a single or uniform process. A more 

general criterion for appliances classification is whether the load is shiftable or not. An appliance 

is classified as shiftable or deferrable if some or all of its energy phases’ energy consumption can 

be shifted from a time period to another period. A special electrical load is the plug-in hybrid 

electric vehicles (PHEVs) that are becoming more popular and therefore are receiving more 

attention from home appliances scheduling researchers. A PHEV consumes so much electricity 

that including it in the optimization can greatly reduce the end user economic cost as well as the 

overall peak load. Recharging PHEVs are shiftable electric loads.  



12 
 

A common technique applied to home appliance scheduling is using time slots. A 

planning time horizon is usually divided into multiple uniform time slots, for example 5 minutes 

or 10 minutes or 1 hour. The smaller the time slot is, the less the cost will be, and the more 

computational complexity the problem will involve. The optimal solution will determine what 

appliances are going to run at what power level during each time slot. Distributed energy 

resources such as storage and those based on advanced renewable technologies are being 

integrated into optimization programs in the most recent literature.  

2.2. Categorical Literature Review 

2.2.1. Objective Type Review 

2.2.1.1. Single-objective 

Usually, if the model has a single-objective, then the objective must be the total economic 

cost of electricity consumption during a fixed study period. Xiong et al. (2011) proposed a 

simple home appliance scheduling model where the only constraint was the total power demand. 

Another simple home appliance MILP scheduling model that relied only on the peak hour load 

constraints was reported to have the capability to save electricity cost up to 35% (Yu et al., 

2013).  Sou et al. (2011) proposed a single-objective MILP formulation for the home appliance 

scheduling problem where the length of time slot is 5 minutes and the electricity price tariff is 

one-day ahead. Three shiftable appliances, dishwasher, washing machine, and dryer, were 

numerically evaluated with the proposed method based on IBM ILOG CPLEX solver and 

Yalmip MATLAB interface. Ogwumike et al. (2015) proposed a similar model as that of Sou et 

al. (2011), but solved it using a heuristic greedy algorithm. Giorgio (2012) developed a similar 

single-objective MILP formulation as that proposed by Sou et al. (2011), but included two more 

energy sources in addition to the utility power grid: domestic renewable energy and batteries. 
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The polishing technique and a heuristic greedy searching strategy were used to find the optimal 

solution. Tushar et al. (2014) also included renewable energy sources in their MILP model to 

jointly minimize the total cost of appliances and electrical vehicles. Du and Lu (2011) presented 

a commitment algorithm for optimally scheduling thermostatically controlled household loads. 

Only one appliance, an electrical water heater, was involved in this single-objective optimization 

study based on dynamic electricity price and consumption predictions. Lee and Lee (2011) 

divided appliances into 4 classes and developed a separate characterization model for each class 

so that the total electricity cost of appliances was minimized. Lee et al. (2011) classified the 

operations of household appliances into preemptive and non-preemptive operations when setting 

up constraints. The scheduling of preemptive operations is based on the schedule of non-

preemptive operations. Liu et al. (2012) proposed a single-objective real-time household loads 

scheduling algorithm based on the classification of appliances into three energy consumption 

categories and the prediction of renewable source availability to maximize the benefits of 

renewable sources for consumers. Instead of using linear programming, Carli and Dotoli (2014) 

developed a mixed integer quadratic programming model for minimizing single-home total 

electricity cost.  

In a multi-home appliances scheduling study where the objective was to minimize the 

total electricity cost of all neighbor homes (Bakr and Cranefield, 2013), shiftable loads including 

PHEVs were scheduled. The time slot length was one hour and only three electric costs were 

considered: off-peak, mid-peak, and on-peak. Another single-objective and multiple-home 

appliances scheduling study using MILP involved the use of wind generation and electrical 

storage (zhang et al., 2011). Barbato et al. (2011) proposed a single-home appliance scheduling 

model and a multi-home scheduling model, both of which were single-objective type.  A 
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dynamic-programming-based game theoretic algorithm instead of integer linear programming 

was developed to schedule multi-home appliances and estimated that the users would save an 

average of 29% monetary cost from its use (Liu et al., 2014). 

2.2.1.2. Multiple-objective 

Numerous studies that address multiple-objective smart home appliance scheduling are 

available. One of the common strategies for converting multiple objectives to a single general 

objective is to combine them to a single objective using the weighted sum method. 

Environmental cost minimization is receiving more attention in recent years. Inspired by 

the model developed by Sou et al. (2011), the CO2-footprint cost was included into the objective 

function by giving it a weight for environmental concerns (Wu, 2012; Sou et al., 2013; Paridari 

et al., 2014). A dynamic programming strategy was proposed by Sou et al. (2014a; 2014b) to 

solve the MILP problem addressed in the study of Sou et al. (2013) where both the energy cost 

and the CO2-footprint cost are optimized. 

Total appliances shift time or user waiting time minimization is another widely-used 

objective. Bapat et al. (2011) developed a household appliance scheduling system called “Yupik” 

that takes both the energy costs and self-defined time-related inconvenience costs as the 

objectives. Day-ahead hourly prices were used in this system, where three devices (TV, music 

system, and power strip) were involved using a one hour time slot. An advantage of this system 

is that it can generate multiple schedules simultaneously with costs close to optimal so that a user 

can select the option most suitable. An appliance load scheduling model was reported to 

optimize the trade-off between minimizing electricity costs and minimizing the waiting time for 

each appliance in a household (Mohsenian-Rad and Leon-Garcia, 2010). The model predicted 

real-time electricity prices and included a PHEV as one of the loads. Yi et al. (2013) developed a 
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real-time opportunistic scheduling model for home appliance load management based on the 

theory of optimal stopping rules in order to minimize both the total electricity cost and total user 

waiting time. Lin and Tsai (2015) applied a genetic algorithm to solve the home appliance 

scheduling problem minimizing both total electricity cost and total appliances shift time. In the 

multi-home appliance scheduling study made by Chavali et al. (2014), besides the minimization 

of monetary cost of energy consumption, optimization of optimal start time of each appliance 

was a sub-objective and a greedy iterative algorithm was used to find a sub-optimal solution. In 

another multi-home appliance scheduling study (Liu et al., 2014) where a distributed algorithm 

was used to find the optimal solution, the general objective was a weighted sum up of three sub-

objectives:  total energy cost, total appliances shift time, and total power gap. 

Climate comfort maximization is one of the most common objectives in thermal 

appliance scheduling. A MILP model for home appliances scheduling that integrated climate 

comfort factor into the objective function due to the inclusion of air conditioner was proposed 

(Agnetis et al., 2011). Battery and renewable energy resource were also included in this model. 

The model did not further divid each appliance operation into more detailed phase stages, 

meaning that each appliance must run continuously until its cycle was completed. Lu and Du 

(2011) in their thermal appliances scheduling formulation also tried to maximize users’ 

temperature comfort while minimizing cost based on dynamic electricity price and user preferred 

comfort settings.  

Minimization of peak-to-average ratio in terms of total energy use in each unit time 

period can reduce peak load and balance the electricity use, and thus is also used extensively as 

an objective. Caron and Kesidis (2010) proposed a dynamic pricing scheme incentivizing 

consumers to achieve an aggregate load profile suitable for utilities. Based on the degree of 
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information sharing, distributed scheduling algorithms were designed to reduce the total cost and 

peak-to-average ratio, and improve the overall load profile of the system. Peak-to-average ratio 

as an objective was also considered in other studies (Mohsenian-Rad et al., 2010; Chaouch and 

Ben.Hadj.Slama 2014; Zhou and Li, 2014).  

Other types of sub-objectives may also be considered in the general objective. Significant 

energy savings were reported by a multiple-home appliance MILP scheduling study (Zhang et 

al., 2013) involving the use of electricity generated by wind turbine and minimization of total 

electricity cost and related equipment’ operation and maintenance cost (e.g., electrical storage 

maintenance cost). Real-time half-hourly time slot grid electricity prices were used and peak 

demand costs were included. Yang et al. (2015) defined a user dissatisfaction cost formula and 

included minimization of dissatisfaction as a sub-objective of the general objective by giving it a 

weight when scheduling home appliance operation and battery charging. The dissatisfaction cost 

is essentially a reflection of total deviation from target energy consumption during a time slot. A 

third sub-objective in this study was the minimization of battery loss. A mixed integer nonlinear 

formula was developed and the solution used a distributed mixed optimization approach. 

Attaching a weight to each sub-objective is the most popular and simplest way to handle 

multiple conflict objectives optimization. Another theoretically improved method is to utilize 

goal programming. Dehnad and Shakouri (2013) applied goal programming theory to solve two 

conflicting goals, minimizing electricity cost and reducing the load peak (similar to minimizing 

peak-to-average ratio), in a single-home appliance scheduling. Unfortunately, the authors only 

referred to goal programming as their solution, but did not provide any details of how it was 

used, not even a description of the type of goal programming or formula they employed. Our 

previous research work on smart home appliances adaptive scheduling framework (Bu and 
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Nygard, 2014) was also featured in this publication, with integrated goal programming 

methodology that helps handle the optimization of multiple-and-conflicting-objective, one of 

which is the self-defined user preference time cost. Our previous work made the initial and rough 

trial of employing goal programming in smart home appliance scheduling problem and was 

briefly tested with three same home appliances as those used by Sou et al. (2011). 

2.2.2. Non-deterministic Mathematical Programming Review 

Techniques based on Markov model and process were found to be widely used to deal 

with uncertainties in various situations. Using Markov chain and reinforcement learning 

techniques to model both energy prices and residential device usage, O’Neill et al. (2010) 

proposed an energy management system called CAES for residential demand response 

applications to reduce residential energy costs and smooth energy usage. Chang et al. (2013) 

developed a home appliance energy management algorithm that can handle end users’ random 

behavior in making requests to use an appliance based on Markov decision process theory. In 

another stochastic home appliance scheduling study, uncertainty of distributed wind power 

generation was dealt with the Markov Chain Monte Carlo method, and both shiftable and 

unshiftable appliances were scheduled (Chen et al., 2013).  

Many other techniques have also been used by research programmers. To handle the load 

uncertainty in developing a real-time residential load scheduling model, a series of energy phase 

concepts, including sleep, awake, active, finished, inactive were introduced (Samadi et al., 2013). 

These energy phases are different from the commonly considered functional energy phases. 

Chen et al. (2013) developed a stochastic home appliance scheduling model that considered 

uncertainties in household appliance operation time and intermittent renewable generation. The 

technique first used linear programming to efficiently compute a deterministic scheduling 
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solution without considering uncertainties, and then combine the stochastic parameters in the 

model. Similar to Chen et al. (2013), Adika and Wang (2014) designed a time-of-use probability 

profile for each home appliance and incorporated them into the appliance scheduling system with 

renewable energy sources considered. Jacomino and Le (2012) classified the uncertainty 

parameters as either external (such as a weather forecast) or internal (such as random use of an 

appliance) and set up a stochastic-based robust linear programming formulation for home electric 

load scheduling. Vivekananthan et al. (2015) took into consideration uncertainties in real-time 

pricing and residential appliance power consumption pattern during appliances scheduling. To 

handle the uncertainties of the electricity price, outdoor temperature, and other factors, a 

conditional value-at-risk strategy was applied (Wu et al., 2014).  A worst-case-uncertainty 

approach was adopted to study the impact of load demands uncertainties in a multiple-home load 

management system (Kim et al., 2013). To minimize the expected energy payment of the user 

with respect to demand uncertainties in house load management, an approximate dynamic 

programming approach was developed (Samadi et al., 2013). 

2.2.3. User Preferences Review 

There are two ways user preferences can be incorporated into a mathematical formulation 

model. The most common method is to model them as constraints, and the other is to model 

them as one of the objectives that minimizes violation cost.  

Time-related user preference is one the most common preference types seen in smart 

home appliances scheduling formulation. Users may prefer to use or prohibit from use some 

appliances in some fixed time periods during a day. In the models proposed by Sou et al. (2011), 

Wu (2012), and Giorgio (2012), user time preferences can be found in the constraints, while in 

the model proposed by Bapat et al. (2011), time-related user preferences were modeled as 
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inconvenience costs and used as one of the minimizing objectives. The inconvenience costs were 

calculated based on a user’s characteristic energy use patterns. A user cannot specify the 

preferred usage profile for a particular day. Instead, the system-generated schedule is considered 

which uses previously used and fixed use patterns considered when the scheduling program was 

formulated. Saha (2013) categorized users based on how sensitive they were to the price of the 

electricity. Each group of users were then assigned a specific user time preference. Three types 

of constraints: power, appliance operation time, and user time preferences were then established 

to define the feasible solutions. Temperature-related user preferences were often modeled as 

objective function (Agnetis et al., 2011; Lu and Du, 2011; Jacomino and Le, 2012). Agnetis et al. 

(2013) incorporated both thermal comfort and user time preferences into the objective function.  

2.3. Summary and Conclusion 

Automating the scheduling of smart home appliance benefits both the end users and the 

utility companies, and therefore is receiving increasing attention from industry and academia. 

Because of the complexity and inconsistency of appliance characteristic and type classification, 

uncertainties of user behaviors and real-time electricity prices, possible inclusion of renewable 

energy sources, having to consider trade-off between single home and neighborhood, and design 

of effective and efficient algorithm for practical use by residential electricity users, most of the 

current published research is focused on theoretical modelling, with use of numerical 

experiments or simulation tests. Researchers have used sophisticated advanced and novel 

programming methods in appliance scheduling; however, the science is till in development. For 

example, priorities of different appliances are often not considered, the relationships between or 

among closely related appliances have not been included in constraints, and the user preferences 

were usually addressed in rigid and unrealistic ways. 
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3. MATHEMATICAL FORMULATION 

3.1. Mixed Integer Linear Programming 

Mixed integer linear programming is a widely used subset of mathematical optimization 

method. In a MILP problem, the objective function is a linear function of the decision variables, 

some of which must be restricted to integer (discrete values). Also, each constraint requires that a 

linear combination of the decision variables is equal to, or more than, or less than, or no more 

than, or no less than a scalar value. No nonlinear constraints are included in MILP. Detailed 

introduction to MILP can be found in Castillo (2002) and Smith and Taskin (2007). The 

following is a typical mathematical formulation of MILP: 

                                                              Minimize:      𝑐𝑐𝑇𝑇𝑥𝑥 

                                                              Subject to:     𝐴𝐴 ∙ 𝑥𝑥 ≤ 𝑏𝑏  

                                                                        𝐴𝐴𝐴𝐴𝐴𝐴 ∙ 𝑥𝑥 = 𝑏𝑏𝐴𝐴𝐴𝐴    

                                                                        𝑙𝑙𝑏𝑏 ≤ 𝑥𝑥 ≤ 𝑢𝑢𝑏𝑏 

                        𝑥𝑥𝑖𝑖 ∈ ℤ,∀𝑖𝑖 ∈ 𝐼𝐼                                          (3.1) 

In Equation 3.1, 𝑐𝑐 is a column vector of constants, 𝑥𝑥 is the column vector of decision variables, 𝐴𝐴 

and 𝐴𝐴𝐴𝐴𝐴𝐴 are constraint matrices, and 𝑏𝑏, 𝑏𝑏𝐴𝐴𝐴𝐴, 𝑙𝑙𝑏𝑏,𝑢𝑢𝑏𝑏 are vectors of constraint bound. The last 

constraints are integrality constraints ensuring some or all decision variables must take integer 

values, and 𝐼𝐼 is a collection of indices whose corresponding decision variables must be integer. 

In this study, all the integer decision variables are restricted to 0 or 1, and they are called binary 

variable. Other forms of MILP can be transformed to this standard form (3.1). The MILP 

problems can be solved using total unimodularity, or exact algorithms such as cutting plane 

methods and branch and bound methods, or various heuristic algorithms.  Representative 

commercial solvers for MILP include Matlab optimization tool box, SAS/OR, CPLEX, Gurobi, 
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Lingo, and SNOPT. Common open-source solvers include GLPK, LP_Solve, CBC (Wikipedia, 

2015).  

3.2. Goal Programming and Fuzzy Goal Programming 

3.2.1. Goal Programming 

A mathematical optimization problem can include multiple objectives, called sub-

objectives, which are usually conflicting which means that full optimization of a single one will 

degrade the performance of others. A balance must be found between or among these sub-

objectives. In practice, reducing the multiple-objective problem to a single-objective problem is 

the common method, which can be implemented by two classic strategies. One strategy is to 

optimize one objective and transform other objectives into constraints. The alternate strategy is 

to optimize the general objective formulation using a weighted sum of each objective. There are 

two disadvantages of the first strategy (Oliveira et al., 2003): first, representing the objectives by 

means of constraints often lead to infeasibility of the solution particularly in large optimization 

problems, making it very hard to find the constraints that cause the infeasibility; second, it is 

difficult or subjective to make a decision on which objective among multiple objectives should 

be selected as the single objective. The second strategy also has shortcomings: it attempts to 

achieve an absolute or ideal optimal solution rather than a practical optimal solution; each 

objective value range can be significantly different from others and thus make the general 

weighted-sum-objective unreliable.  

Most real-world decision problems are more data-massive and complex than those 

encountered in the classroom and require special models and approaches than conventional 

models that idealistically and unrealistically make presumption on the objective and constraints.  

Goal programming was introduced by Charnes and Cooper (1961; 1977) as a more powerful and 
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effective way of handling multiple and conflicting objectives in an optimization problem. It 

performs better than conventional linear programming models in handling relatively large 

numbers of variables, constraints and objectives (Tamiz et al., 1998). The two major differences 

of goal programming from conventional linear programming models are the incorporation of 

flexibility into the constraint functions to replace rigid constraints, and the satisficing principle 

that seeks a more balanced, implementable, and practical solution rather than an absolute optimal 

one (Ignizio and Romero, 2003). Satisficing principle in goal programming evaluates the 

goodness of any solution not by objective function, but by an achievement function, which 

defines the degree of nonachievement of the original goals. Forms of the nonachievement 

function determine the sub-types of goal programming. There are numerous forms of goal 

programming, of which the three most common forms are Archimedean (also known as 

weighted) goal programming, non-Archimedean (also known as Lexicographic) goal 

programming, and Chebyshev (also known as fuzzy) goal programming.  

3.2.2. Fuzzy Goal Programming 

Introduced by Flavell (1976), fuzzy goal programming seeks to minimize the normalized 

maximum unwanted deviation from any single optimized goal value. This applies the Chebyshev 

distance metric that emphasizes justice and balance rather than brutal and extreme optimization.  

Normalization is necessary in order to overcome the problem of incommensurability due to the 

fact that different goals are usually measured in different units (Tamiz, 1998). Based on the 

degree of importance of each goal, priorities can be added to these deviations to reflect different 

penalties applied to different failures to meet the optimal goals (Hu et al., 2007). A new general 

goal based on the weighted sum of the maximum unwanted deviations can therefore be formed, 

and transformed to a standard linear programming form, and finally solved. A better 
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understanding of fuzzy goal programming can be achieved through the detailed mathematical 

formulation for smart home appliances scheduling given in the next section. 

3.3. Mathematical Formulation for Smart Home Appliances Scheduling 

3.3.1. General Description 

As previously explained in Chapter 1, the mathematical programming we propose for 

smart home appliances scheduling is an expansion and improvement of that conducted by Sou et 

al. (2011) through introduction of soft user time preference constraints and transformation of 

existing framework to a fuzzy goal programming framework with priority.  In addition, novel 

constraints are developed to make the solution more relevant to real situations. Previous goal 

programming research in appliance scheduling (Dehnad and Shakouri, 2013) lacked any detail 

regarding the form of goal programming used and how it was used. Also, in their study, user 

time preferences were modeled as ordinary constraints rather than incorporated into the goal 

programming framework.  

 3.3.2. Assumptions and Parameters 

Only time-shiftable or deferrable appliances (clothes washing machine, dishwasher, etc.) 

in a single-home are considered in our research. Time-slot-based mathematical formulation 

instead of energy-phase-based mathematical formulation are developed for modelling the smart 

home appliance scheduling problem as the former was a more refined optimization and 

experimentally shown to have greater ability to save energy bill cost (Wu, 2012). A time slot is a 

short time period (for example, 5 minutes) obtained by uniformly discretizing an appliances 

execution cycle. An energy phase is used to denote an uninterruptible sub-process of the whole 

operation process of an appliance. Energy phases are appliance-specific and each appliance has a 

single or multiple energy phases that must be operated in sequence with each using a pre-
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specified amount of electric energy. For example, a dishwasher may include energy phases such 

as pre-wash, wash, first rinse, drain, second rinse, and drain & dry, and they are operated in 

sequence, for instance, wash will not begin until pre-wash is done. 

The appliances execution time cycle used in our MILP fuzzy goal programming 

formulation is exactly one day (24 hours). Suppose each hour is uniformly discretized into ℎ 

time slots, then the number of total time slots of a day is 

𝑚𝑚 = 24 × ℎ                                                            (3.2)   

Denote 𝑁𝑁 as the number of appliances involved in the formulation, and denote 𝑛𝑛𝑖𝑖 for 𝑖𝑖 =

1,2, … ,𝑁𝑁 as the number of uninterruptible energy phases for each appliance. 

The technical specifications of appliances defined by the manufacturers of appliances 

must meet. One typical type of technical specifications or manufacturer-defined constraints are 

upper and lower limits of the instantaneous power consumed, which are equivalent to  upper and 

lower limits of the energy consumed during a time slot. The upper and lower instantaneous 

power are the maximum operating power and idle power, respectively. Another technical 

specification is related to the nominal operating time for a specific energy phase.  

Additional constraints must be used to ensure the sequential operations of some 

appliances, the delay between two energy phases of a same appliance, the delay between two 

closely related appliances, and the total energy consumed within a certain period not exceeding 

the peak energy allowed, etc.  

The ultimate goal of this study is to search for the best combination of energy profiles 

that balances the objective of saving the end consumer’s energy cost and satisfying the 

consumer’s appliance using time preferences. Here an energy profile refers to the time-

dependent energy assignment to an energy phase of an appliance during the execution period. So 
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a final solution specifies how much energy should be assigned during each different time slot for 

each different appliance. 

Parameters 𝜆𝜆𝑔𝑔(0 < 𝜆𝜆𝑔𝑔 < 1,𝑔𝑔 = 1,2, … ,𝑁𝑁 + 1), satisfying 

∑ 𝜆𝜆𝑔𝑔 = 1𝑁𝑁+1
𝑔𝑔=1                                                            (3.3) 

are introduced to indicate the priorities assigned to each single deviation goal in the fuzzy goal 

programming. Here 𝜆𝜆𝑔𝑔(𝑔𝑔 = 1,2, … ,𝑁𝑁) is for the deviation goals related to each corresponding 

appliance energy cost, and 𝜆𝜆𝑁𝑁+1 is the priority for the user time preference penalty deviation 

goal. 𝜆𝜆𝑔𝑔(0 < 𝜆𝜆𝑔𝑔 < 1,𝑔𝑔 = 1,2, … ,𝑁𝑁 + 1) is specified by the user according to his preference or 

priority feeling for different appliances. 

𝑇𝑇𝑖𝑖𝑖𝑖 (𝑖𝑖 = 1,2, … ,𝑁𝑁, 𝑗𝑗 = 1,2, … ,𝑛𝑛𝑖𝑖) is introduced to represent the nominal processing time 

for energy phase 𝑗𝑗 in appliance 𝑖𝑖 in minutes, 𝛾𝛾 and 𝛾𝛾 (0.5 < 𝛾𝛾 < 1 <  𝛾𝛾 < 1.5) are the lower and 

upper processing time limits factor for energy phase 𝑗𝑗 in appliance 𝑖𝑖. To denote the lower and 

upper limits of power (not energy) assignment, respectively, to the corresponding energy phase 

in each time slot, 𝑃𝑃𝑖𝑖𝑖𝑖𝑘𝑘  and 𝑃𝑃𝑖𝑖𝑖𝑖
𝑘𝑘

 are introduced. The delay between two energy phases of an 

appliance is restricted by 𝐷𝐷𝑖𝑖𝑖𝑖 and 𝐷𝐷𝑖𝑖𝑖𝑖, the appliance technical specifications defining the lower 

and upper delay time, respectively, in minutes. 𝐸𝐸𝑖𝑖𝑖𝑖 is used to denote the total energy an energy 

phase should use according to the technical specification.  

3.3.3. Decision Variables 

Continuous decision variables 𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘  (𝑘𝑘 = 1,2, … ,𝑚𝑚; 𝑖𝑖 = 1,2, … ,𝑁𝑁; 𝑗𝑗 = 1,2, . . , 𝑛𝑛𝑖𝑖) are 

introduced to indicate the energy assigned to energy phase 𝑗𝑗 of appliance 𝑖𝑖 during the whole 

period of time slot 𝑘𝑘. The unit of 𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘  used in this study is kWh. 
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To indicate during time slot k whether a particular energy phase 𝑗𝑗 of appliance 𝑖𝑖 is being 

processed, a series of binary decision variables 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘 ∈ {0,1} are introduced, with 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘 = 1 

indicating energy phase being processed and otherwise not being processed.  

Binary variables 𝑠𝑠𝑖𝑖𝑖𝑖𝑘𝑘 ∈ {0,1} are introduced to indicate whether the processing of a 

particular energy phase is already finished by a particular time slot. If and only if 𝑠𝑠𝑖𝑖𝑖𝑖𝑘𝑘 = 1, energy 

phase j of appliance 𝑖𝑖 is done by time slot 𝑘𝑘. For example, assume 𝑘𝑘0 is the first time slot after 

the last energy phase of appliance 𝑖𝑖 is finished, or in other words, 𝑘𝑘0 − 1 is the last time slot that 

the last energy phase of appliance 𝑖𝑖 is being processed, then 𝑠𝑠𝑖𝑖𝑖𝑖𝑙𝑙 = 1 is true for any 𝑙𝑙 ≥ 𝑘𝑘0. For all 

other time slots, this binary variable is 0. 

To indicate whether appliance 𝑖𝑖 is making a transition between energy phase 𝑗𝑗 − 1 to 𝑗𝑗 at 

time slot 𝑘𝑘, binary variables 𝑡𝑡𝑖𝑖𝑖𝑖 
𝑘𝑘 (𝑗𝑗 = 2, … ,𝑛𝑛𝑖𝑖) are introduced. 𝑡𝑡𝑖𝑖𝑖𝑖 

𝑘𝑘 = 1 if and only if during time 

slot 𝑘𝑘, the appliance 𝑖𝑖 has finished energy phase 𝑗𝑗 − 1 in some earlier time slot, but the energy 

phase 𝑗𝑗 has not started yet. These variables are useful for restricting the delay between energy 

phases of an appliance.  

For the purpose of fuzzy goal programming formulation, parameters 𝛿𝛿𝑔𝑔(𝛿𝛿𝑔𝑔 > 0,𝑔𝑔 =

1,2, … ,𝑁𝑁 + 1) are introduced to denote the normalized maximum unwanted deviation from the 

optimized value of each single objective function. Specifically, 𝛿𝛿𝑔𝑔(𝑔𝑔 = 1,2, … ,𝑁𝑁) are for the 

corresponding appliances, and 𝛿𝛿𝑁𝑁+1 is for the user time preference. The final or general objective 

is to find solutions that minimize the weighted sum of these maximum deviation.   

The introduction of objective functions and constraints in the next section will enable the 

understanding of the meaning of these decision variables as well as those parameters introduced 

in section 3.3.2 clearer.  
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3.3.4. Constraints 

All constraints are generally divided into four categories. The first category includes 

those that are directly related to goal programming, specifically speaking, those involved with 

the normalized maximum unwanted deviation from the optimized value of each single objective 

function; the second category includes those that are used to directly restrict appliances but do 

not directly involve any energy phase; the third category includes those that are used to directly 

restrict each appliance’ energy phase; the last category covers those that are used to define the 

range of each basic decision variable. 

3.3.4.1. Constraints directly related to fuzzy goal programming 

Since these constraints involve the single objective functions from which the unwanted 

deviations can be deducted, each single objective function has to be constructed first. Basically, 

there are two types of single objective function: the objective function for a specific single 

appliance energy monetary cost, and the objective function for user time preference violation 

penalty. The second type of objective function is used in order to substitute soft user time 

preference constraints for rigid user time preference constraints. Sou et al. (2011) used the rigid 

constraints to ensure that not even one minute is allowed be used during the prohibited time. 

Instead of strictly prohibiting an appliance from being used during the non-preferred time 

through rigid constraints, a violation penalty is imposed and corresponding cost is calculated if 

the non-preferred time is used by the appliance. The more non-preferred time an appliance uses, 

the greater the penalty cost will be. 

A single appliance energy monetary cost objective function is denoted by  𝑍𝑍𝑖𝑖(𝑖𝑖 =

1,2, … ,𝑁𝑁) and reflects the total electricity cost for appliance 𝑖𝑖 during the entire execution period, 

and is given below: 
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∑ ∑ 𝑐𝑐𝑘𝑘𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘
𝑛𝑛𝑖𝑖
𝑖𝑖=1

𝑚𝑚
𝑘𝑘=1                                                           (3.4) 

where 𝑐𝑐𝑘𝑘 denote the electricity tariff for time slot 𝑘𝑘.  

To construct the objective function for user time preference violation penalty, we 

consider a simple user time preference situation in which a whole day (a whole execution period) 

is divided into two parts: one that appliances can be and are preferred to run during which and 

the other one cannot or non-preferred. Let 𝑇𝑇𝑃𝑃𝑖𝑖𝑘𝑘 ∈ {0,1} denote the user time preference interval, 

and 𝑇𝑇𝑃𝑃𝑖𝑖𝑘𝑘 = 0 if and only if none of the energy phase of appliance 𝑖𝑖 can be run during time slot 𝑘𝑘. 

Assume 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 , 𝑘𝑘𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖 , and 𝑘𝑘𝑒𝑒𝑛𝑛𝑚𝑚𝑖𝑖  is the first, middle, and the last slot number of the whole user 

prohibited time period (which is continuous) for appliance 𝑖𝑖, respectively, then the penalty for 

using prohibited time is defined as 

∑ ∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘 𝛼𝛼
−�𝑘𝑘−𝑘𝑘𝑚𝑚𝑖𝑖𝑚𝑚

𝑖𝑖 �𝑘𝑘𝑒𝑒𝑒𝑒𝑚𝑚
𝑖𝑖

𝑘𝑘=𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖

𝑛𝑛𝑖𝑖
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1                                              (3.5) 

where 𝛼𝛼 > 1 is a constant and called base parameter, and  

𝑘𝑘𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖 = �(𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 + 𝑘𝑘𝑒𝑒𝑛𝑛𝑚𝑚𝑖𝑖 ) 2⁄ �                                                 (3.6) 

is the round integer of (𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 + 𝑘𝑘𝑒𝑒𝑛𝑛𝑚𝑚𝑖𝑖 ) 2⁄ . Formula (3.5) is the objective function for violation 

penalty of user time preference and is denoted as 𝑍𝑍𝑁𝑁+1. Note that this function is a weighted 

penalty in that the closer to the middle of the prohibited time zone, the higher penalty that 

results.  

With all single objective functions have been defined, now it is able to develop the 

constraints that are directly related to fuzzy goal programming. Simply put, these constraints are 

to demand that the normalized deviation of each single objective from its best objective value 

should no worse than the worst deviation level for the corresponding single objective. The worst 

deviation level will eventually be minimized.  
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Let 𝑈𝑈𝑖𝑖 and 𝐿𝐿𝑖𝑖 be the best possible and worst possible values, respectively, for the 𝑘𝑘𝑠𝑠ℎ 

single objective, then we have the following constraints: 

(𝑈𝑈𝑖𝑖 − 𝑍𝑍𝑖𝑖) (𝑈𝑈𝑖𝑖 − 𝐿𝐿𝑖𝑖) ≤ 𝛿𝛿𝑖𝑖, 𝑖𝑖 = 1,2, … ,𝑁𝑁 + 1⁄                                    (3.7) 

𝛿𝛿𝑖𝑖 ≥ 0 ∈ ℝ, 𝑖𝑖 = 1,2, … ,𝑁𝑁 + 1                                              (3.8)                                                     

Each 𝛿𝛿𝑖𝑖(𝑖𝑖 = 1,2, … ,𝑁𝑁 + 1) represents the worst deviation level for the 𝑘𝑘𝑠𝑠ℎ objective. Each 𝑈𝑈𝑖𝑖 

and 𝐿𝐿𝑖𝑖 are obtained by optimizing (minimizing) corresponding 𝑍𝑍𝑖𝑖  and −𝑍𝑍𝑖𝑖 alone, respectively, 

without regard to other objectives and under all necessary constraints including the hard user 

time preference constraints. The expression (𝑈𝑈𝑖𝑖 − 𝐿𝐿𝑖𝑖) in constraint (3.7) helps normalize the 

objective deviation level and thus adjust different levels to similar fluctuation range. With the 

normalized deviation levels, applying desired priorities to different objectives will become 

easier.  

3.3.4.2. Constraints directly related to appliances 

3.3.4.2.1. Sequential operation between appliances 

Sequential operation between appliances means that a specific appliance must not start 

operation until an associated appliance has finished all its tasks. A typical example is the dryer 

can start only after the washing machine is done, and another example is in the case of the only 

dishwasher in a home is going to be used twice or more times a day, each time the dishwasher is 

treated as a different appliance, and thus sequential operation requirement must be satisfied. 

Suppose the appliance 𝚤𝚤̃ must be finished before the appliance 𝑖𝑖 starts, then the following 

constraint restricting the relationship between the last energy phase of the appliance 𝚤𝚤̃  and the 

first energy phase of appliance 𝑖𝑖  must be satisfied: 

𝑠𝑠�̃�𝚤𝑛𝑛�̃�𝚤
𝑘𝑘 ≥ 𝑥𝑥𝑖𝑖1𝑘𝑘 ,∀𝑘𝑘                                                            (3.9) 
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Equation (3.9) allows the start of an appliance immediately after another is done and is 

the one adopted by Sou et al. (2001). For two appliances that are not closely related, this will 

work well in reality, but for appliances such as the washing machine and the dryer that are 

closely related, Equation (3.9) is not enough because time is needed to transfer clothes from the 

washing machine to the dryer. Another example is when the same appliance such as the 

dishwasher is used twice a day, the immediate sequential processing restriction will not give the 

user any time to remove washed dishes from the dishwasher and load dirty dishes into be unit. A 

more practical sequential processing constraint for these appliances should therefore be 

developed. Assuming that no less than 𝑣𝑣 time slots between two sequentially processed 

appliances are required, then we have the following constraint: 

∑ 𝑠𝑠�̃�𝚤𝑛𝑛�̃�𝚤
𝑖𝑖𝑘𝑘

𝑖𝑖=𝑘𝑘−𝑣𝑣 ≥ ∑ 𝑥𝑥𝑖𝑖1𝑙𝑙𝑘𝑘+𝑣𝑣
𝑙𝑙=𝑘𝑘 , ∀𝑖𝑖,∀𝑘𝑘 = 2,3, … ,𝑚𝑚− 1                             (3.10) 

This constraint is an extension of Equation (3.9). 

If 𝑣𝑣 = 0, then Equation (3.10) is equivalent to Equation (3.9). In our study, we will use 

the case of 𝑣𝑣 = 1 which results in the following equation based on Equation (3.10):  

𝑠𝑠�̃�𝚤𝑛𝑛�̃�𝚤
𝑘𝑘−1 + 𝑠𝑠�̃�𝚤𝑛𝑛�̃�𝚤

𝑘𝑘 ≥ 𝑥𝑥𝑖𝑖1𝑘𝑘 + 𝑥𝑥𝑖𝑖1𝑘𝑘+1,∀𝑖𝑖,∀𝑘𝑘 = 2,3, … ,𝑚𝑚                                     (3.11) 

In conclusion, when two appliances are closely related, Equation (3.11) should be imposed, 

otherwise Equation (3.9) will be applied.  

3.3.4.2.2. Between-appliance delay 

In practice, two closely related appliances should follow not only the sequential 

processing restriction, but also the no-very-large-delay-in-between restriction. For example, the 

delay between the running of washing machine and that of the dryer should not be very large in 

real life.  Assume the appliance 𝑖𝑖 must start working within 𝑢𝑢 ≥ 1 time slots after the appliance 𝚤𝚤̃ 

is done, then all the following (𝑚𝑚− 𝑢𝑢) constraints hold: 
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𝑠𝑠�̃�𝚤𝑛𝑛�̃�𝚤
𝑘𝑘 − 𝑠𝑠�̃�𝚤𝑛𝑛�̃�𝚤

𝑘𝑘−1 ≤ ∑ 𝑥𝑥𝑖𝑖1𝑙𝑙𝑘𝑘+𝑢𝑢−1
𝑙𝑙=𝑘𝑘 , 𝑘𝑘 = 2,3, … ,𝑚𝑚 + 1 − 𝑢𝑢                            (3.12) 

To prove the correctness of these constraints. Assume 𝑘𝑘0 is the first time slot after the last 

energy phase of appliance 𝚤𝚤̃ is finished, then 𝑘𝑘0 − 1 is the last slot when the last energy phase of 

appliance 𝚤𝚤̃ is being processed. When 𝑘𝑘 = 𝑘𝑘0, we have 𝑠𝑠�̃�𝚤𝑛𝑛�̃�𝚤
𝑘𝑘 = 1, 𝑠𝑠�̃�𝚤𝑛𝑛�̃�𝚤

𝑘𝑘−1 = 0, in this case, the 

appliance 𝑖𝑖 must start at a time slot within the range of 𝑘𝑘 to 𝑘𝑘 + 𝑢𝑢 − 1, indicating that Equation 

(3.12) is correct in this case. When 𝑘𝑘 < 𝑘𝑘0, we have 𝑠𝑠�̃�𝚤𝑛𝑛�̃�𝚤
𝑘𝑘 = 0, 𝑠𝑠�̃�𝚤𝑛𝑛�̃�𝚤

𝑘𝑘−1 = 0, in this case, each 

𝑥𝑥𝑖𝑖1𝑙𝑙 (𝑘𝑘 ≤ 𝑙𝑙 ≤ 𝑘𝑘 + 𝑢𝑢 − 1) must be 0 due to the sequential processing restriction, so Equation (3.12) 

holds. When 𝑘𝑘 > 𝑘𝑘0, we have 𝑠𝑠�̃�𝚤𝑛𝑛�̃�𝚤
𝑘𝑘 = 1, 𝑠𝑠�̃�𝚤𝑛𝑛�̃�𝚤

𝑘𝑘−1 = 1, in this case, because of the uninterruptible 

restrictions imposed on an energy phase (which will be presented later in this chapter), an 

𝑥𝑥𝑖𝑖1𝑙𝑙 (𝑘𝑘 ≤ 𝑙𝑙 ≤ 𝑘𝑘 + 𝑢𝑢 − 1) can be 0 or 1 depending on whether the first energy phase of the 

appliance 𝑖𝑖 starting in the first case, where 𝑘𝑘 = 𝑘𝑘0, is done or not. In this case, Equation (3.12) 

holds too. So theoretically Equation (3.12) is valid and hence can ensure the delay between two 

closely related appliances not be too large.  

In this study, the case of 𝑢𝑢 = 3 is explored, and the corresponding constraints can be 

obtained based on Equation (3.12): 

𝑠𝑠�̃�𝚤𝑛𝑛�̃�𝚤
𝑘𝑘 − 𝑠𝑠�̃�𝚤𝑛𝑛�̃�𝚤

𝑘𝑘−1 ≤ 𝑥𝑥𝑖𝑖1𝑘𝑘  + 𝑥𝑥𝑖𝑖1𝑘𝑘+1 + 𝑥𝑥𝑖𝑖1𝑘𝑘+2,∀𝑘𝑘 = 2,3, … ,𝑚𝑚 − 2                         (3.13) 

3.3.4.3. Constraints directly related to energy phases 

3.3.4.3.1. Sequential processing between energy phases 

Sequential processing between energy phases applies only to a same appliance and means 

that only after its preceding phase has finished can an energy phase starts. The following 

constraints guarantee this requirement: 

𝑠𝑠𝑖𝑖(𝑖𝑖−1)
𝑘𝑘 ≥ 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘 ,∀𝑖𝑖, 𝑘𝑘,∀𝑗𝑗 = 2,3, … ,𝑛𝑛𝑖𝑖                                      (3.14) 
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3.3.4.3.2. Between-phase delay 

The delay between two energy phases of an appliance is restricted to a specific range. 

Suppose 𝐷𝐷𝑖𝑖𝑖𝑖 and 𝐷𝐷𝑖𝑖𝑖𝑖 are the appliance technical specifications defining the lower and upper 

delay, respectively, in minutes, then the following constraints must be satisfied:  

            �𝐷𝐷𝑖𝑖𝑖𝑖
60
ℎ� ≤ ∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑘𝑘𝑚𝑚

𝑘𝑘=1 ≤ �𝐷𝐷𝑖𝑖𝑖𝑖
60
ℎ� ,∀𝑖𝑖,∀𝑗𝑗 = 2,3, … ,𝑛𝑛𝑖𝑖                           (3.15) 

Here ℎ is the number of time slot in one hour, and 𝑡𝑡𝑖𝑖𝑖𝑖 
𝑘𝑘 is the binary variable satisfying  𝑡𝑡𝑖𝑖𝑖𝑖 

𝑘𝑘 = 1 if 

and only if during any time slot 𝑘𝑘, the appliance 𝑖𝑖 has finished energy phase 𝑗𝑗 − 1 in some earlier 

time slot, but the energy phase 𝑗𝑗 has not started yet. The above-constraints restrict the total 

number of transition time slots between two phases.  

Transition binary variable 𝑡𝑡𝑖𝑖𝑖𝑖 
𝑘𝑘 is not isolated from other decision variables and must meet 

the following requirement: 

𝑡𝑡𝑖𝑖𝑖𝑖 
𝑘𝑘 = 𝑠𝑠𝑖𝑖(𝑖𝑖−1)

𝑘𝑘 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘 − 𝑠𝑠𝑖𝑖𝑖𝑖𝑘𝑘 ,∀𝑖𝑖,𝑘𝑘,∀𝑗𝑗 = 2,3, … ,𝑛𝑛𝑖𝑖                               (3.16) 

To prove the validity of Equation (3.16), all possible situation have to be considered. In 

fact, there are only four possible combinations of variables 𝑡𝑡𝑖𝑖𝑖𝑖𝑘𝑘 , 𝑠𝑠𝑖𝑖(𝑖𝑖−1)
𝑘𝑘 , 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘 , and 𝑠𝑠𝑖𝑖𝑖𝑖𝑘𝑘 . When 𝑡𝑡𝑖𝑖𝑖𝑖 

𝑘𝑘 =

1, we have 𝑠𝑠𝑖𝑖(𝑖𝑖−1)
𝑘𝑘 =1, 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘 = 0, and 𝑠𝑠𝑖𝑖𝑖𝑖𝑘𝑘 = 0; When 𝑡𝑡𝑖𝑖𝑖𝑖 

𝑘𝑘 = 0, and 𝑠𝑠𝑖𝑖(𝑖𝑖−1)
𝑘𝑘 =0, we have 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘 = 0, and 

𝑠𝑠𝑖𝑖𝑖𝑖𝑘𝑘 = 0; When 𝑡𝑡𝑖𝑖𝑖𝑖 
𝑘𝑘 = 0, 𝑠𝑠𝑖𝑖(𝑖𝑖−1)

𝑘𝑘 =1, and 𝑠𝑠𝑖𝑖𝑖𝑖𝑘𝑘 = 0, we have 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘 = 1; When 𝑡𝑡𝑖𝑖𝑖𝑖 
𝑘𝑘 = 0, 𝑠𝑠𝑖𝑖(𝑖𝑖−1)

𝑘𝑘 =1, and 

𝑠𝑠𝑖𝑖𝑖𝑖𝑘𝑘 = 1, we have 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘 = 0. The above discussions indicate that in all cases, equation (3.16) is 

valid.  

3.3.4.3.3. Uninterruptible operation of an energy phase 

Each energy phase of an appliance is characteristic of uninterruptible operation, meaning 

that once it starts it must continuously run until the finish. This requirement ensures the integrity 

and continuity of an energy phase. The following constraints are established for this purpose: 
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𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘 ≤ 1 − 𝑠𝑠𝑖𝑖𝑖𝑖𝑘𝑘 ,∀𝑖𝑖, 𝑗𝑗,𝑘𝑘                                                  (3.17) 

𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘−1 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘 ≤ 𝑠𝑠𝑖𝑖𝑖𝑖𝑘𝑘 ,∀𝑖𝑖, 𝑗𝑗,∀𝑘𝑘 = 2,3, … ,𝑚𝑚                                  (3.18) 

𝑠𝑠𝑖𝑖𝑖𝑖𝑘𝑘−1 ≤ 𝑠𝑠𝑖𝑖𝑖𝑖𝑘𝑘 ,∀𝑖𝑖, 𝑗𝑗,∀𝑘𝑘 = 2,3, … ,𝑚𝑚                                     (3.19) 

Equation (3.17) ensures that during any time slot, a phase cannot be processed and 

finished simultaneously; Equation (3.18) ensures that in any time slot, once transition of an 

energy phase from being-processed to not-being-processed happens, this energy phase is 

supposed to have finished; Equation (3.19) ensures that if an energy phase has finished in a time 

slot, then in all time slots thereafter this energy phase is seen to be done.  

3.3.4.3.4. Energy phase process time limits 

Each energy phase 𝑗𝑗 in appliance 𝑖𝑖 has its nominal processing time 𝑇𝑇𝑖𝑖𝑖𝑖 (in minutes) 

specified by the manufacturer, and in reality this processing time is allowed to have fluctuations 

to some extent. Let 𝛾𝛾 and 𝛾𝛾 (0.5 < 𝛾𝛾  ≤ 1 ≤ 𝛾𝛾 < 1.5) be the lower and upper processing time 

limits constant factor for energy phase 𝑗𝑗 in appliance 𝑖𝑖, then we have the following constraint: 

�𝑇𝑇𝑖𝑖𝑖𝑖ℎ
60

𝛾𝛾� ≤ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘𝑚𝑚
𝑘𝑘=1 ≤ �𝑇𝑇𝑖𝑖𝑖𝑖ℎ

60
𝛾𝛾� ,∀𝑖𝑖, 𝑗𝑗                                       (3.20) 

where ⌈ ⌉ and ⌊ ⌋ are ceiling and floor functions, respectively. 

3.3.4.3.5 Technical specifications on energy phase energy assignment 

Each energy phase uses a fixed amount of energy 𝐸𝐸𝑖𝑖𝑖𝑖 specified by the manufacturer: 

∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘𝑚𝑚
𝑘𝑘=1 = 𝐸𝐸𝑖𝑖𝑖𝑖 ,∀𝑖𝑖, 𝑗𝑗                                                     (3.21) 

Besides, the energy assignment in any time slot for each energy phase of each appliance 

should satisfy the following constraint: 

𝑃𝑃𝑖𝑖𝑖𝑖
𝑘𝑘

ℎ
𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘 ≤ 𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘 ≤

𝑃𝑃𝑖𝑖𝑖𝑖
𝑘𝑘

ℎ
𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘 ,∀𝑖𝑖, 𝑗𝑗,𝑘𝑘                                            (3.22) 
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where 𝑃𝑃𝑖𝑖𝑖𝑖𝑘𝑘  and 𝑃𝑃𝑖𝑖𝑖𝑖
𝑘𝑘

 are the lower and upper limits of power (not energy) assignment in unit kW, 

respectively, to the corresponding energy phase. These limits are also specified by the appliance 

manufacturer.  

3.3.4.3.6. Power safety requirement 

To ensure power safety, the total energy assigned during any time slot for all appliances 

and all energy phases is not allowed to exceed the peak signal, or in other words, the total slot 

energy upper bound: 

∑ ∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘
𝑛𝑛𝑖𝑖
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 ≤ 𝑃𝑃𝐸𝐸𝐴𝐴𝑃𝑃𝑘𝑘 ,∀k                                            (3.23) 

In most cases, 𝑃𝑃𝐸𝐸𝐴𝐴𝑃𝑃𝑘𝑘 is constant for all time slots, and in this study a constant peak 

value for every time slot will be adopted. 

3.3.4.4. Constraints used to restrict basic decision variables 

𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘 ≥ 0 ∈ ℝ,∀𝑖𝑖, 𝑗𝑗,𝑘𝑘                                                     (3.24) 

𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘 ∈ {0,1},∀𝑖𝑖, 𝑗𝑗,𝑘𝑘                                                      (3.25) 

𝑠𝑠𝑖𝑖𝑖𝑖𝑘𝑘 ∈ {0,1},∀𝑖𝑖, 𝑗𝑗,𝑘𝑘                                                      (3.26) 

𝑡𝑡𝑖𝑖𝑖𝑖𝑘𝑘 ∈ {0,1},∀𝑖𝑖,𝑘𝑘 ∀𝑗𝑗 = 2, … ,𝑛𝑛𝑖𝑖                                             (3.27) 

3.3.5. Cost Function 

The final total cost function representing the weighted sum of the maximum unwanted 

deviation from each corresponding single goal is given below: 

∑ 𝜆𝜆𝑖𝑖𝛿𝛿𝑖𝑖𝑁𝑁+1
𝑖𝑖=1                                                             (3.28) 
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3.3.6. General Formulation for the Proposed Framework 

The general formulation of the proposed framework is summarized as follows:  

                                minimize
𝑝𝑝,𝑥𝑥,𝑠𝑠,𝑠𝑠,𝛿𝛿

    Cost function (3.28) 

                                subject to     Constraints of (3.7), (3.8), either (3.9) or (3.11) 

depending on associated appliances type, and (3.13) 

- (3.27) 

(3.29) 

This is a MILP formulation transformed from the fuzzy goal programming formulation, 

and it can be solved using either classical search methods or heuristic algorithms. 

3.3.7. General Formulation for Optimizing Single Objectives 

Since in solving problem described in Equation (3.29), both the minimum and maximum 

values of each single objective 𝑍𝑍𝑖𝑖 (𝑖𝑖 = 1,2, … ,𝑁𝑁,𝑁𝑁 + 1) given in Equation (3.4) and (3.5) must 

be acquired first, the following optimization problem should be solved ahead of solving of 

problem (3.29). 

                                minimize
𝑝𝑝,𝑥𝑥,𝑠𝑠,𝑠𝑠

    Each 𝑍𝑍𝑖𝑖 and each −𝑍𝑍𝑖𝑖 (𝑖𝑖 = 1,2, … ,𝑁𝑁,𝑁𝑁 + 1) 

                                subject to     Constraints of either (3.9) or (3.11) depending on 

associated appliances type,  and (3.13) - (3.27)                                                     

(3.30) 

3.3.8. General Optimization Process 

The overall process for achieving an optimized smart home appliances operation 

schedule is as follows: 
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(1)  Determine or specify the values of all necessary parameters including electricity 

tariff,  number of time slots in one hour, appliance type and technical specifications, 

and priority for each single objective that involved in the optimization;  

(2) Solve each optimization problem described in Equation (3.30) to obtain the best and 

worst objective values of each single objective; 

(3) Based on step (1) and step (2) solve problem (3.29) to obtain the value of each 

𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘  (∀𝑖𝑖, 𝑗𝑗,𝑘𝑘), which determines how much energy should be assigned to a specific 

energy phase of a specific appliance during a specific time slot; 

(4) Repeat the previous three steps if using different parameter values. 
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4. NUMERICAL EXPERIMENTS SETUP 

4.1. Platform and Algorithm 

Numerical or simulation experiments instead of practical experiments were carried out in 

this study to validate the effectiveness of the proposed smart home appliance scheduling 

optimization framework. All experiments were conducted on a desktop computer with an IntelR 

CoreTM 3.40GHz CPU and 16GB RAM. The optimization problem was solved using MATLAB 

(The Mathworks, Inc., 2012) interface of YALMIP (Löfberg, 2004) and IBM ILOG CPLEX 12.5 

solver for MILP (IBM, 2013).  

YALMIP, implemented as a free toolbox for MATLAB, provides the extremely easy-to-

use modelling language supports for a large number of optimization classes by implementing 

numerous modeling tricks and keeping it consistent with the standard MATLAB syntax 

(Löfberg, 2012), making it possible for users to focus mainly on the language and the higher 

level algorithms and hence can test ideas and develop programs rapidly.  Basically, YALMIP 

relies on external solvers such as CPLEX solvers for the actual computations.  

A new algorithm called “Dynamic Search” was implemented by CPLEX MILP Solver 

that basically uses a branch and cut algorithm to find the optimal solution (Lima and Grossmann, 

2011). Branch and cut algorithm is a modification of branch and bound algorithm by 

incorporating the technique of cutting planes to solve a series of relaxed linear programming sub-

problems more effectively, and it can be used in conjunction with heuristics to speed up the 

feasible solutions searching process (Mitchell, 2000). CPLEX Mixed Integer Optimizer did use 

heuristics and a sophisticated mixed integer preprocessing system to help find initial good 

solutions. It guarantees the ability to solve large and difficult integer problems quickly and 

efficiently. Currently, the Dynamic Search algorithm is still treated as proprietary and there is no 
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way of looking into its details. But two things for sure about it are branch-and-cut-based and 

heuristics-employed. With the CPLEX Mixed Integer Optimizer C++ or Java API, user can also 

develop relevant executable applications that can solve MILP problems faster. 

4.2. Fixed Parameter Values 

Some of the parameters involved in this study will be fixed at a corresponding level or 

value in various optimization modeling situations. These parameters include one-day-ahead 

hourly electricity tariff, smart home appliances and their technical specifications, user time 

preferences, relationships between appliances, and the base parameter appearing in the definition 

of the penalty for using prohibited time period (see Equation (3.5) for detail). 

The 24-hour ahead hourly electricity tariff (parameter 𝑐𝑐) data was provided by New York 

Independent System Operator (NYISO, 2013). These predicted pricing data, starting from 

midnight to next midnight, describes the general daily electricity fluctuation trend of Nov. 3rd, 

2013, for Island of New York State, United States.  Figure 1.2 already illustrates this trend, and 

the specific data are given in Table 4.1.  

Five controllable and time-shiftable smart home appliances, including a dishwasher (No. 

1), a washing machine, a dryer, another dishwasher (No. 2), and an electric oven, are involved in 

this study. Note that in this study the same dishwasher is used twice a day, and the first time its 

identity is No. 1 and the second time No. 2. The technical specifications of the dishwasher, the 

washing machine, and the dryer are exactly the same as those used by Sou et al. (2011), and the 

specification of the electric oven is provided by http://users.tpg.com.au/users/robkemp/Power/ 

ConsumptionTables.htm, and is running using an average power of 2400W at temperature 180℃. 

Table 4.2 through Table 4.5 list the detailed information about the technical specification of 

these appliances. 
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Table 4.1 One-day 24-hour ahead hourly electricity tariff data 

Time 0am-1am 1am-2am 2am-3am 3am-4am 4am-5am 5am-6am 
Price 

(USD†/MWh‡) 32.19 27.63 26.51 24.60 26.41 22.57 

Time 6am-7am 7am-8am 8am-9am 9am-
10am 

10am-
11am 

11am-
12pm 

Price 
(USD/MWh) 27.21 28.60 31.45 35.64 36.35 36.86 

Time 12pm-
1pm 1pm-2pm 2pm-3pm 3pm-4pm 4pm-5pm 5pm-6pm 

Price 
(USD/MWh) 36.87 36.21 34.82 35.17 41.37 57.86 

Time 6pm-7pm 7pm-8pm 8pm-9pm 9pm-
10pm 

10pm-
11pm 

11pm-
0am 

Price 
(USD/MWh) 54.65 55.44 50.31 45.73 39.02 35.67 

†USD is US dollar 
‡MWh is Megawatt hour 
 
Table 4.2. Dishwasher technical specifications 

Energy phase 
Energy required 

(Wh†) 
Min power 

(W‡) 
Max power 

(W) 
Nominal operation time 

(minute) 

pre-wash 16.0 6.47 140.0 14.9 

Wash 751.2 140.26 2117.8 32.1 

1st rinse 17.3 10.28 132.4 10.1 

Drain 1.6 2.26 136.2 4.3 

2nd rinse 572.3 187.30 2143.0 18.3 

Drain & dry 1.7 0.20 2.3 52.4 

†Wh is Watt hour 
‡W is Watt 
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Table 4.3. Washing machine technical specifications 

Energy phase Energy required 
(Wh†) 

Min power 
(W‡) 

Max power 
(W) 

Nominal operation time 
(minute) 

movement 118.0 27.231 2100 26.0 

pre-heating 5.5 5.000 300 6.6 

Heating 2054.9 206.523 2200 59.7 

Maintenance 36.6 11.035 200 19.9 

Cooling 18.0 10.800 500 10.0 

1st rinse 18.0 10.385 700 10.4 

2nd rinse 17.0 9.903 700 10.3 

3rd rinse 78.0 23.636 1170 19.8 

†Wh is Watt hour 
‡W is Watt 

Table 4.4. Dryer technical specifications 

Energy 
phase 

Energy required 
(Wh†) 

Min power 
(W‡) 

Max power 
(W) 

Nominal operation time 
(minute) 

Drying 2426.3 120.51 1454 120.8 

†Wh is Watt hours 
‡W is Watts 
 

Table 4.5. Electric oven technical specifications  

Energy 
phase 

Energy required 
(Wh†) 

Min power 
(W‡) 

Max power 
(W) 

Nominal operation time 
(minute) 

Warm up 800 1000 2700 20 

Baking 200 50 600 40 

†Wh is Watt hours 
‡W is Watts 
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The energy phase energy requirements 𝐸𝐸𝑖𝑖𝑖𝑖 are listed in the “Energy required” column in 

these technical specification tables; 𝑃𝑃𝑖𝑖𝑖𝑖𝑘𝑘  and 𝑃𝑃𝑖𝑖𝑖𝑖
𝑘𝑘

, the lower and upper limits. Respectively, of 

power assignment for an energy phase of an appliance in one time slot, are listed in the “Min 

power” and “Max power” columns, respectively, in these tables; each column “Nominal 

operation time” in these tables corresponds to parameter 𝑇𝑇𝑖𝑖𝑖𝑖. 

The dishwasher, washing machine, dryer, and electric oven have 6, 8, 1, and 2 energy 

phases, respectively. The between-energy-phase-delay parameters 𝐷𝐷𝑖𝑖𝑖𝑖 for all cases is assumed to 

be 0, and 𝐷𝐷𝑖𝑖𝑖𝑖 for the dishwasher, washing machine, dryer, and electric oven are set to 5, 10, 0, 

and 3 minutes, respectively. The lower and upper energy phase processing time limit factors 𝛾𝛾 

and 𝛾𝛾  for all phases are set to 0.8 and 1.2, respectively. The parameter 𝛼𝛼, which is the  penalty 

term for using user prohibited time, was set to 1.1.   

The dishwasher No. 1 is supposed to be used in the day between 7am-6pm and the 

dishwasher No. 2 to be used in the evening between 8pm to midnight. This condition 

automatically ensures that dishwasher No. 2 will have to start working until after dishwasher No. 

1 has finished working for at least one time slot. The washing machine, the dryer, and the electric 

oven, are not supposed to be running during midnight to 6 o’clock in the morning. Due to the 

fact that the allowed working time for the washing machine and the dryer is overlapped and that 

these two appliances are closely related pairs, the dryer can only start working after the washing 

machine has finished for at least one time slot, and at the same time, the delay between them 

should be no more than 3 time slots.  

4.3. Variable Parameter Values 

Time slot length, peak signal for a specific length of time slot, and priorities assigned to 

single objectives are variable. 
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Three different time slot lengths, 20 minutes, 10 minutes, and 5 minutes, corresponding 

to the number of time slots (parameter ℎ) of 3, 6, and 12 per hour, respectively, were investigated 

in this study. The total number of decision variables needed to be optimized for each length of 

time slot are 6264, 12528, and 25056, respectively. The corresponding peak signal (parameter 

𝑃𝑃𝐸𝐸𝐴𝐴𝑃𝑃) for each time slot length is 22000 Wh, 11000 Wh, and 5500 Wh, respectively. In the 

study conducted by Sou et al. (2011), an unreasonable fixed peak signal of 5500 Wh for all 

different tested time slot length was adopted.  

Five representative priority combinations presented in Table 4.6 were investigated in this 

study. P1 has much higher user time preference (UTP) priority than that of any other priority 

combination; Both P1 and P2 have equal priority for each single appliance with each appliance 

priority in P2 being higher than that in P1; P3 assigns higher priorities to the dishwashers; P4 

assigns higher priorities to the washing machine and the dryer; P5 assigns higher priority to the 

electric oven. Same priorities are assigned to the two dishwashers as they are actually one, and 

same priorities are also assigned to the washing machine and the dryer as they are closely related 

appliances. In reality, all the priority choices are made by the users and completely up to them 

with regard to their preferences. In the case of the user preferring strict appliances working time 

restrictions, the priority for UTP can be set to 1 and hence all others set to 0; In the case of the 

user being totally insensible to appliances working time, UTP priority can be set to 0 and hence 

all other priorities sums to 1; in the case of the user is not going to use a specific appliance the 

next day, simply set the priority for that appliance to 0. 
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Table 4.6. List of priority combinations 

Priority choice P1 P2 P3 P4 P5 

Dishwasher (No. 1) 0.06 0.16 0.3 0.07 0.07 

Washing machine 0.06 0.16 0.07 0.3 0.07 

Dryer 0.06 0.16 0.07 0.3 0.07 

Dishwasher (No. 2) 0.06 0.16 0.3 0.07 0.07 

Electric oven 0.06 0.16 0.06 0.06 0.52 

UTP 0.7 0.2 0.2 0.2 0.2 
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5. EXPERIMENTAL RESULTS AND DISCUSSION 

5.1. Computational Strategy and General Objective Value 

5.1.1. Influence of Computational Strategy 

When using CPLEX MILP Solver to search for optimal solutions for scheduling problem, 

at least two computational strategies are available: one is using the default optimal solution 

terminating condition and the other is using the first feasible solution terminating condition to 

prematurely terminate the optimization process. The first strategy is actually based on the idea 

that searching for better and feasible solution using the first feasible solution as the start. 

Theoretically, considerable time saving is expected to occur when using the second strategy 

(Denoted as S2) instead of the first strategy (Denoted as S1). Table 5.1 summarizes the 

computation time in seconds for all possible combinations of time slot length and priority choice.  

Table 5.1. Computation time (unit: s) 

Time 
slot 

length 
(minute) 

20 10 5 

Strategy S1 S2 RETC (%) S1 S2 RETC (%) S1 S2 RETC (%) 

P1 5.76 3.61 60 249.26 64.94 284 7828.95 1985.23 294 

P2 5.97 4.03 48 351.45 99.38 254 8546.69 2112.54 305 

P3 5.55 3.41 63 222.36 57.26 288 7115.57 1668.27 327 

P4 6.02 3.78 60 330.08 91.52 261 8092.31 2025.34 300 

P5 5.72 3.57 60 245.66 62.65 292 8488.33 1969.91 331 

Average 5.80 3.68 58 279.76 75.15 272 8014.37 1952.26 311 

 

The relative extra time cost (RETC) of S1 compared to S2 in percent in each case is also 

presented in this table. RETC is calculated as follows: 

RETC = (S1-S2) / S2 × 100                                              (5.1) 
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From the averaged RETC values for all priorities listed in the last row of Table 5.1, we 

can see that using strategy S1 will have to consume 58%, 272%, and 311% times more time than 

using strategy S2 for the time slot length of 20 minutes, 10 minutes, and 5 minutes. This does 

indicate that significant time can be saved if S2 is adopted. 

While being highly superior in computation time saving to S1, S2 does not evidently 

degrade the final optimization results, as demonstrated by Table 5.2, a comparison of the 

optimized general objective results between using different computational strategies.  Here the 

general objective refers to the one defined by Equation (3.28). And the ROE, relative objective 

error (in percent) is defined as follows: 

ROE= (S2-S1) / S1 × 100                                                (5.2) 

Table 5.2. Optimized general objective results 

Time 
slot 

length 
(minute) 

20 10 5 

Strategy S1 S2 ROE (%) S1 S2 ROE (%) S1 S2 ROE (%) 

P1 0.0806 0.0824 2.23 0.0740 0.0765 3.36 0.0427 0.0446 4.55 

P2 0.1087 0.1108 1.95 0.0736 0.0756 2.68 0.0490 0.0501 2.16 

P3 0.0934 0.0973 4.15 0.0643 0.0652 1.46 0.0387 0.0401 3.67 

P4 0.1167 0.1207 3.47 0.0947 0.0979 3.39 0.0705 0.0735 4.28 

P5 0.0687 0.0705 2.66 0.0528 0.0549 3.94 0.0273 0.0280 2.49 

Average 0.0936 0.0963 2.89 0.0719 0.0740 2.97 0.0457 0.0473 3.43 

 

It can be seen from Table 5.2 that all ROEs are less than 5%, and the average ROE for 

time slot length of 20 minutes, 10 minutes, and 5 minutes are 2.89%, 2.97%, and 3.43%, 

respectively. The very small relative errors and the much less computational time of S2 

compared to S1 confirm us to adopt S2 in this study to perform the optimization in all cases.  
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5.1.2. Influence of Time Slot Length and Priority Choice 

Another result from Table 5.1 is that time slot length influences computational time. 

Regarding S2, the time cost of 10-minute slot length is about 20 times that of 20-minute slot, and 

the time cost of 5-minute slot length is approximately 26 times that of 10-minute slot length. 

This is because the smaller time slot length includes more parameters, decision variables, and 

constraints. Smaller time slot length also means consideration of more flexible arrangement of 

appliance operation, and as a result, better optimal results. Results from Table 5.2 show that the 

optimized general objective values of time slot length of 20-minute, 10-minute, and 5-minute are 

0.0963, 0.0740, and 0.047, respectively. Significant decreasing (or better value) trend was 

observed from these results. No obvious influence from priority choice can be found for either 

computational time or the optimized general objective value.  

5.2. Influence of Time Slot Length on Electricity Cost 

In all cases, be it individual appliance electricity cost or total electricity cost, time slot 

length has a positive influence on electricity cost. The smaller the time slot length, the less the 

cost realized, as indicated by the total electricity cost summarized in Table 5.3. In Table 5.3, 

since each individual cost value from P2 to P5 under a specific time slot length is very similar, 

the last column of this table summarizes the average of all values from P2 to P5 within the same 

row. Also in Table 5.3, the resulted average values (0.2242, 0.2173, and 0.2148) in the last 

column are quite similar to each other, while the cost values (0.2681, 0.2577, and 0.2241) for 

different time slot under priority choice P1 are significantly different, indicating that time slot 

length has stronger influence on the total electricity cost when the UTP priority is relatively low. 

When UTP priority is relatively low, the appliances’ priorities will be relatively high, meaning 

more cost-effective time slots will be available for appliances operation and hence better optimal 
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results will be obtained. These better results, under a certain range of time slot length and a 

certain relatively low UTP priority, can be very similar to each other when in these situations the 

UTP priority dominates the optimization. 

Time slot length impacts computational time, so when a smaller UTP priority is 

specified, a larger time slot length can be chosen in optimal solution search for the purpose of 

time saving because there will be no significant difference when using a smaller time slot length 

in this case.  

Table 5.3. Total electricity cost 

time slot 
length (minute) P1 P2 P3 P4 P5 average of  

P2 to P5 

20 0.2681 0.2281 0.2232 0.2177 0.2279 0.2242 

10 0.2577 0.2157 0.2185 0.2166 0.2185 0.2173 

5 0.2241 0.2145 0.2155 0.2142 0.2150 0.2148 

average 0.2500 0.2194 0.2190 0.2162 0.2205 0.2188 
 

5.3. Influence of Priority on Electricity Cost and on User Time Preference Violation 

5.3.1. Influence of Priority on Electricity Cost 

Discussion of the influence of priority on electricity cost is partially based on Table 5.3, 

from which it can be seen that UTP priority has much greater influence than does any other 

priority on total electricity cost. Higher UTP priority better satisfies the users need, but it will 

also lead to higher total electricity cost.  

To investigate the influence of each priority on individual appliance’s electricity cost, 

Table 5.4, a summary of the grouped appliances total electricity cost in each case, has to be 

explored. By grouped alliances total electricity cost, we mean some appliances are grouped and 

studied together because of their close relationship and equal priorities. The electricity costs of 
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the same dishwasher that has been used twice are summed up together, the washing machine and 

the dryer is grouped together, and the electric oven is the third group. 

Table 5.4. Summary of appliances group electricity cost 

time slot length (minute) 
and 

appliance group 
P1 P2 P3 P4 P5 

20 

DW† 0.0817 0.0741 0.0684 0.0740 0.0740 

WMD‡ 0.1592 0.1313 0.1313 0.1201 0.1313 

EO§ 0.0272 0.0226 0.0235 0.0235 0.0226 

10 

DW 0.0860 0.0661 0.0660 0.0660 0.0669 

WMD 0.1482 0.1271 0.1290 0.1271 0.1289 

EO 0.0235 0.0226 0.0235 0.0235 0.0226 

5 

DW 0.0653 0.0649 0.0653 0.0644 0.0644 

WMD 0.1353 0.1271 0.1276 0.1272 0.1281 

EO 0.0235 0.0226 0.0226 0.0226 0.0226 
†DW is the group of dishwasher used twice a day 
‡WMD is the group of the washing machine and the dryer 
§EO is the group of the electric oven. 

For the dishwashers group, in the case of 20-minute and 10-minute time slot, the 

electricity cost using priority choice P3 is the minimum one among all DW costs within the 

corresponding time slot length restriction. The minimum values are highlighted with bold font. 

Both dishwashers have the highest priorities among all priority choices. So it is reasonable that 

with higher priority this group is assigned better operation time to save money. An exception 

occurs in the DW group in the case of 5-minute time slot length. Three reasons are possibly 

responsible for this: the optimization process is based on the first feasible solution and not the 

absolute optimal solution; when the time slot length is small enough, its influence will dominate 

other influences; unknown interactive effects of other factors.  
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The same conclusion can be drawn from the WMD group. As for the EO group, best 

values always appear under priority choice P5, which has the highest priority for this group. The 

advantage of higher priority for EO also becomes obscure when the time slot length decreases, 

meaning that again smaller time slot length is playing a greater role in final optimal results. This 

is demonstrated by the last row of Table 5.4, in which the EO cost values of all but the case of P1 

are the same.  

5.3.2. Influence of Priority on User Time Preference Violation 

The overall total energy assignment illustrations are listed in Figure 5.1 through Figure 

5.5, with each one representing a different priority choice and illustrating the optimal total 

energy assignment for all appliances in each time slot for the case of 10-minunte time slot length. 

In Figure 5.1 where the priority choice P1 was applied, since the UTP has the highest priority 

(0.7), less than one hour time period was violated from the UTP. Violations occurred because 

even though the UTP priority, it is still less than one, meaning a slight time violation is allowed. 

Figure 5.2 through Figure 5.5 display different results from Figure 5.1 in terms of major energy 

assignment time periods. Figure 5.2 through Figure 5.5 share the same feature: they are all based 

on the same UTC priority value 0.2. Lower UTC priority leaves higher appliances priorities, 

enabling them to take advantage of and occupy more cheap time slots.   
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Figure 5.1. 10-minute-slot total energy assignment with priority choice P1 

 

 

Figure 5.2. 10-minute-slot total energy assignment with priority choice P2 
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Figure 5.3. 10-minute-slot total energy assignment with priority choice P3 

 

 

Figure 5.4. 10-minute-slot total energy assignment with priority choice P4 

 

 

 



52 
 

 

Figure 5.5. 10-minute-slot total energy assignment with priority choice P5 

To examine of the influence of priority choice on time violation of UTP by making 

comparisons of the total energy assignment for each same appliance between lower and higher 

appliance priority. Figure 5.6 through Figure 5.10 illustrate the 10-minute time slot comparison 

differences for each appliance. Each comparison is made by using the priority choice in which 

the corresponding appliance has the highest priority to compare with the priority choice P1 who 

has the highest UTP priority and very low appliance priorities. These figures reveal that, except 

for the dryer (in Figure 5.9), a more severe UTP violation occurred for each appliance with 

higher priority than with lower priority. In some cases, very severe violations occurred, and the 

two dishwashers are representative examples. How to balance the energy cost saving and degree 

of the user time comfort is completely up to the user.  
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Figure 5.6. Comparison of 10-minute-slot total energy assignment for the dishwasher No. 1 
between priority choices P1 and P3 
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Figure 5.7. Comparison of 10-minute-slot total energy assignment for the dishwasher No. 2 
between priority choices P1 and P3 
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Figure 5.8. Comparison of 10-minute-slot total energy assignment for the washing machine 
between priority choices P1 and P4 
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Figure 5.9. Comparison of 10-minute-slot total energy assignment for the dryer between priority 
choices P1 and P4 
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Figure 5.10. Comparison of 10-minute-slot total energy assignment for the electric oven between 
priority choices P1 and P5 
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5.4. Comparative Study 

5.4.1. Relative Energy Cost Save 

By maximizing the total energy cost of the plain MILP problem, the worst case total 

energy cost for each time slot length can be obtained, as shown in the second column of Table 

5.5.  A quick comparison between these worst values and those best values displayed in Table 

5.3 indicates that a large percent of energy costs can be saved if using optimal scheduling 

method. The relative extra total electricity cost (RETEC) of the worst case compared to the 

corresponding best case in percent can be calculated as follows: 

RETEC = (worst - best) /best × 100                                          (5.3) 

The RETEC of P1 and the RETEC of the average of P2 to P5 are presented in the last two 

columns of Table 5.5, from which we can see that on average the worst case will cost the user 

72% and 97% more money than will the best case.  

Table 5.5. Relative extra total electricity cost 

time slot 
length (minute)  worst case total 

energy cost 
RETEC (%)  

of P1 

RETEC (%) of the 
average of 
P2 to P5 

20  0.4156 55 85 

10  0.4400 71 102 

5  0.4371 95 103 

average  0.4309 72 97 
 

5.4.2. Comparison with Similar Studies 

The most similar study to this work was conducted by Sou et al. (2011), who used simple 

MILP with no fuzzy goal programming, did not use between-closely-related-appliance time slot 

number restrictions, and did not use a priority strategy. In addition, Sou et al. (2011) imposed 

rigid UTP on the appliance scheduling problem. Using exactly their proposed method to 
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optimally scheduling the five appliances used in this study, the total electricity cost results for 

20-minute, 10-minute, and 5-minute time slot length are 0.2824, 0.2720, and 0.2627, 

respectively. Compared to the corresponding values listed in Table 5.3 that are achieved using 

our proposed method, the method of Sou et al. (2011) results in greater electricity cost and are 

less realistic. The optimal results obtained using our method with priority choice P1 for 20-

minute, 10-minute, and 5-minute time slot length are 0.2681, 0.2577, and 0.2241, respectively, 

which are less than the corresponding values using the Sou et al. (2011) methods. The 

differences between these methods is even greater when comparison is made with lower UTP 

priorities. There are two reasons for this: one is our method uses soft UTP instead of rigid UTP, 

and the other is the energy cost optimization is performed indirectly using fuzzy goal 

programming instead of directly using plain MILP. 

Since our proposed method using fuzzy goal programming model involves more decision 

variables and constraints than does a plain MILP, the computation time is 13% more on average 

than that using Sou et al. (2011). The proposed model is designated to schedule appliance one 

day ahead, so the influence of the extra time cost will be marginal. 

The study made by Saha (2013) employed semi-soft UTP constraints, however, the UTC 

constraint under each discrete sensitivity level was still rigid. Moreover, each appliance was 

treated as a unity that cannot be divided into different energy phases, and the number of 

constraints was very small, making the solution too ideal to be practically adopted.  

One model employing goal programming technology for smart home appliance 

scheduling was made by Dehnad and Shakouri (2013). Our model is quite different from theirs in 

that they were trying to balance the objective of minimizing total electricity cost and the 

objective of minimizing peak-to-average ratio, while ours focuses on solving the conflict among 
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each single appliance energy cost and user time preference violation penalty cost. Their study did 

not consider the energy phase concept and corresponding constraints. 
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6. CONCLUSION AND SUGGESTION FOR FUTURE WORK 

The proposed fuzzy goal programming model for adaptive scheduling of smart home 

appliances based on the expansion and modification of an existing work (Sou et al., 2011) and 

improvement of our previous work (Bu and Nygard, 2014) has been thoroughly proven and 

validated, both theoretically and using simulation experiments. Our approach to residential 

energy scheduling is a more reasonable, realistic, flexible, and should realize greater energy cost 

savings due to the employment of fuzzy goal programming technique, using of soft user time 

preference, extension of the sequential processing constraint, introducing of new constraints that 

restrict the delay between two closely related appliances.   

Instead of using the CPLEX MILP Solver default parameter settings to find the absolute 

optimal solution, the first feasible solution strategy was adopted as it can dramatically save 

implementation time and at the same time does not evidently degrade the final results or 

performance. We found that time slot length has a visible impact on total energy cost savings 

when the priority for UTP is high. For a better tradeoff between computational time and 

performance, an unreasonably small time slot length should be avoided in the application of this 

program. In addition, relatively high UTP priority should be used in the optimization practices to 

avoid the occurrence of the too-much-time violation. For other appliances priorities, users can 

freely make their own choices.  

The MILP problem is known to be NP-hard (Smith and Taskin, 2007), meaning it is at 

least as hard as any NP (nondeterministic polynomial time) problem (Bovet and Crescenzi, 1994; 

Weisstein, 2015). Although IBM CPLEX MILP Solver employs advanced searching techniques, 

it is designed to fit the general and common requirements of all MILP problems and thus cannot 

guarantee the best implementation time for MILP problems belonging to a specific field or type. 
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Moreover, this solver has been shown to have a bottleneck in terms of algorithm space 

complexity (Sou et al., 2011) and thus cannot handle situations in which a large quantity of 

appliances is involved. To this end, developing custom heuristic algorithms to enable the real-

time use of the proposed scheduling framework becomes necessary. 

With the increasing demand of the public and governments for improved environmentally 

friendly practices, reducing CO2 footprint should be considered as a single objective and 

included in the fuzzy goal programming framework. Finally, to make the proposed model even 

more realistic, more other common home appliances and reusable energy sources should be 

involved in the model by help of probability constrained techniques to deal with uncertainties.  
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