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ABSTRACT 

With the rise in demand for electric vehicles increasing, the need for high efficiency 

electrification systems is in high demand. One challenge is keeping full output power to the 

electric drives as the vehicle battery drops. This thesis presents a GaN based three-phase semi-

quasi-z-source boost inverter that can produce twice the output voltage of a traditional inverter 

without the need for a boost converter stage. This single stage approach is great when the AC 

output voltage is relatively low. A second approach presented in this paper is a novel GaN based 

composite boost converter topology which is made up of a very efficient unregulated converter 

topology with an integrated partial power voltage regulation stage. This approach offers the 

benefits of very high efficiency from the unregulated converter stage and the regulated output 

voltage with the voltage regulation stage. This design can offer an estimated efficiency up to 

98.6%. 
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1. INTRODUCTION 

The heart of modern electric vehicles is a voltage source in the form of a battery pack and 

an inverter to power the motor drives in the drivetrain. This sounds simple from an overview, 

however once you start peeling back the layers of the design you can see some problems with 

standard topologies. One main challenge is that as the vehicle is driven, the battery pack loses 

voltage. To maintain full power output of the inverter, a boost converter needs to be added and 

placed between the battery pack and the inverter so the inverter can receive rated voltage while 

the battery voltage drops. Standard boost converters pose many problems. These problems range 

from lower power density, low efficiency, and very high switching device current and voltage 

stress. There are two main solutions to replace the less desired traditional boost converter. 

The first way is to implement a boost inverter. A boost inverter is an inverter that can 

generate a higher output voltage than a traditional three-phase inverter with the same input 

voltage. This approach can eliminate the need for a boost converter while still keeping the same 

output voltage level and it also reduces the number of switching devices needed in the system. 

The semi-quasi-z-source inverter presented in Chapter 2 is the boost inverter topology that has 

been developed to solve this problem. The topology also solves some other problems that are 

presented with the use of a traditional three-phase inverter.  

One of the main problems with traditional three-phase inverters is that the output voltage 

is directly a PWM voltage. This large dv/dt event is very hard on the windings of an electric 

motor. This hard switching causes the windings to break down and motor bearing to start 

wearing out prematurely due to bearing currents. The traditional way to mitigate this issue is to 

add filtering to the output of the inverter to create a sinusoidal output voltage. This works, but 

the passive component size becomes very large because the switching frequency of most Si 
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based inverters for motor drive applications is 4-20 kHz [5], [6]. A second problem is that if the 

inverter source and the load cannot share the same ground, there is the problem of leakage 

currents in the system that needs to be handled. This adds complexity and cost to the system [7].  

The proposed inverter topology that is featured in Chapter 2, the semi-quasi-z- source 

inverter, handles all of these problems very well. The inverter can generate sinusoidal output 

voltage thanks to the inherit filtering in the inverter topology. The inverter can also utilize GaN 

switching devices so the switching frequency can be greatly increased which greatly reduces the 

passive component size. As mentioned above, this topology generates a high conversion ratio so 

lower input voltages are required for many applications which can eliminate the need for a boost 

converter. Also, the load and inverter input grounds can be shared to common mode and leakage 

current issues are eliminated. The design of a GaN based three-phase semi-quasi-z-source 

inverter prototype is featured in Chapter 3. 

A second way to eliminate the traditional boost converter is to develop a more efficient 

way to boost up the voltage from the battery pack to the DC link of the inverter. As mentioned 

above, the traditional boost converter suffers from low efficiency and very high switch voltage 

and current stresses when the converter is operating at high conversion ratios. To overcome these 

problems, topologies like in [9]-[13] have been developed. These new topologies offer very high 

efficiency system efficiencies with lower switch voltage and current stresses than the traditional 

boost inverter. These topologies use multiple converter topologies combined in one overall 

system to form a “composite” converter that utilizes a non-regulated DC Transformer stage 

(DCX) and a regulated stage to achieve output voltage regulation which is very important for 

motor drive applications when the DC-link voltage is critical motor control. The topologies 

mentioned above mainly consist of a full-bridge converter with a boost converter [11], [12] or a 
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buck converter [9], [10] in series with the output but share the same input voltage. The full-

bridge converter acts as the DCX stage while the other converters offer the voltage regulation. 

The system efficiency is high because the DCX stage is processing most of the overall power 

while the less efficient buck or boost converter processes a small amount of power to keep the 

output voltage regulated. The proposed composite modular boost converter topology that is 

featured in Chapter 4 also combines a DCX stage and a regulation stage. However, the proposed 

topology utilizes a modular, transformer-less resonant converter topology that offers even lower 

switch voltage and current stress than the topologies mentioned above. The design of a GaN 

based 4 kW prototype is discussed in Chapter 5. 
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2. THREE-PHASE SEMI-QUASI-Z-SOURCE INVERTER ANALYSIS AND 

OPERATION 

2.1. Inverter Operation 

The semi-quasi-z-source inverter is derived from the z- source inverter [1],[2]. In a z-

source inverter, the LC network is on the DC link input side of the inverter. However, in the 

semi-quasi-z-source inverter, the LC network components are on the AC output side of the 

inverter. Because the components are on the AC side, the component size can be reduced 

because the passive components can take advantage of the high switching frequencies in the 

switch network. The three-phase inverter topology can be seen in Figure 2.1.  

Figure 2.1. Three-Phase Semi-Quasi-Z-Source Inverter Topology 

 

However, for operation analysis, the inverter can simply be broken down to a single-

phase inverter for explanation [2],[3]. Then three single-phase inverters can be built up together 

to generate the three-phase inverter [8]. The single-phase inverter can be seen in Figure 2.2.  

Motor
Vdc

S2 S4 S6

L1 L3 L5

C1 C3 C5
CIn L2 L4 L6

S1 S3 S5

C2 C4 C6
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Figure 2.2. Single-Phase Semi-Quasi-Z-Source Inverter Topology 

 

 The inverter operates the two switching devices in a complementary manner, so the 

inverter has two switching states. The first switching state is when S1 is on and the second 

switching state is when S2 is on. The first switching state can be seen in Figure 2.3. When S1 is 

on, the input voltage and capacitor C1 charge inductors L1 and L2. When L1 and L2 are being 

charged the current increases and the voltage across the inductors increase. 

Figure 2.3. Current Loops when S1 is On 
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The second switching state can be seen in Figure 2.4. When S2 is on, the inductors 

become the source and their current decreases and capacitor C1 keeps the voltage clamped while 

the voltage across L1 changes during each switching cycle.  

Figure 2.4. Current Loops when S2 is On 

 

The inverter has a sinusoidal output voltage that is shown as (Eq. 2.1). From (Eq. 2.1) it 

can be seen that the single-phase inverter can generate both positive and negative output voltage. 

This feature is what allows three single-phase semi-quasi-z-source inverters to be combined to 

form a three-phase inverter. The modulation index can be defined as (Eq. 2.2) and the 

relationship between the input and output voltage can be shown by (Eq. 2.3). By substitution of 

(Eq. 2.1) and (Eq. 2.2) into (Eq. 2.3) we can derive the duty cycle equation for S1 (Eq. 2.4). The 

duty cycle equation for S2 is 1–D also shown as D’ or (Eq. 2.5). The equations for the voltage on 

C1 and C2 are shown in (Eq. 2.6) and (Eq. 2.7), respectively. The equations for the current 

through L1 and L2 can be defined by (Eq. 2.8) and (Eq. 2.9), respectively. 

 VO=Vsin(ωt) (Eq. 2.1) 

 𝑀 =
V

VIn
 (Eq. 2.2) 

inV 1S

2S

R1LI

2LI

1CV

2CV oV

oI
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VO

VIn
=

1-2D

1-D
 (Eq. 2.3) 

 𝐷 =
1-Msin(ωt)

2-Msin(ωt)
 (Eq. 2.4) 

 D'=
1

2-Msin(ωt)
 (Eq. 2.5) 

 VC1=
DVIn

1-D
 (Eq. 2.6) 

 VC2=VO (Eq. 2.7) 

 IL1=
DIO

1-D
 (Eq. 2.8) 

 IL2=-IO (Eq. 2.9) 

 The modulation scheme for the single-phase and three-phase semi-quasi-z-source 

inverters will be presented in the next section. 

2.2. Inverter Modulation 

2.2.1. Modified Single-Phase SPWM 

The modulation strategy of the semi-quasi-z-source inverter is similar to the standard 

SPWM modulation schemes that are used for traditional inverter topologies. However, the 

reference signal has been modified as shown in (Eq. 2.4) and (Eq. 2.5). While standard 

modulation schemes are based on the modulation function for D. In this case, the modulation 

reference signal will be the function for D’. This allows for less processing power to be used to 

generate the gate signals. The modified modulation scheme for the single-phase semi-quasi-z-

source inverter is shown in Figure 2.5. The modulation index of the reference signal is 1. The 

duty cycle of the complementary, D, switch function shown in (Eq. 2.4) is shown in Figure 2.6. 
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Figure 2.5. Modified SPWM Modulation for Single-Phase Semi-Quasi-Z-Source Inverter 

Figure 2.6. Duty Cycle of S1 (Eq. 2.4) Over One Fundamental Period 
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2.2.2. Modified Three-Phase SPWM 

As mentioned above, a three-phase inverter can be made by using three single-phase 

semi-quasi-z-source inverters. This is because each single-phase inverter can generate both 

positive and negative voltages. This is shown by the output voltage of a single-phase inverter in 

(Eq. 2.1). When a three-phase inverter is formed, the line-to-line output voltage is shown in (Eq. 

2.10). The line-to-neutral voltage still follows (Eq. 2.1) 

 VO=√3Vsin(ωt) (Eq. 2.10) 

Generating the PWM signals is very simple. The same reference signal function as shown 

in (Eq. 2.5) is used, however two more signals are added and shifted so the three signals are 120 

degrees apart. This modulation scheme is very similar to SPWM for traditional three-phase 

inverters. We are just modifying the reference sinusoidal signal to the modified signal required 

for the inverter. The three-phase SPWM modulation is shown in Figure 2.7. 

Figure 2.7. Three-Phase Modified SPWM Modulation 
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2.2.3. Modified Three-Phase SPWM with THI 

Because this inverter is being used for a motor drive application, third harmonic injection 

can be used to generate a higher output voltage while keeping the input voltage unchanged. 

Because third order sinusoidal harmonics are common in all three reference signals, they can add 

to the reference signal to allow the modulation index to be increased from 1 to 1.1547. This 

increases the output voltage of the inverter. Now, harmonics are generally not a desired thing to 

be added to the output voltage of an inverter. However, since the inverter is driving an electric 

motor, the third harmonics are common in all three phases which are feeding the stator windings 

of the motor. The third order harmonics that are injected is a common mode signal within the 

motor windings. Because it is common with each phase voltage the motor windings don’t even 

see it as it is canceled out between the phases. So the motor only sees the pure sinusoidal 

fundamental signal that can be extracted using Fourier expansion. The sinusoidal third harmonic 

signal that is added to the sinusoidal reference signal is shown in (Eq. 2.11). It is also shown in 

Figure 2.8. The resultant reference modulation signal, excluding the phase angle of the signal is 

shown in (Eq. 2.12). The SPWM modulation strategy with THI based from (Eq. 2.12) is shown 

in Figure 2.9.  

 Third_Harmonic=
1

6
sin(3ωt) (Eq. 2.11) 

 DWith_Third_Harmonic=
1

2-M(sin(ωt)+
1

6
sin(3ωt))

 (Eq. 2.12) 
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Figure 2.8. Sinusoidal Third Harmonic Signal  

Figure 2.9. Three-Phase Modified SPWM Modulation with THI 
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 To build off of the sinusoidal third harmonic injection mentioned above. This idea can be 

extended to inject all odd triplen order harmonics. This is achieved by using a triangular signal 

rather than the third harmonic sinusoidal signal used above. The triangular signal contains all 

odd triplen order harmonics. It is implemented the same way as the third harmonic injection, but 

the third harmonic signal in (Eq. 2.12) is replaced with the triangle signal shown in Figure 2.10. 

The triangle signal has an amplitude of 0.25 and a frequency three times higher than the 

fundamental frequency. The SPWM modulation strategy with all triplen injection is shown in 

Figure 2.11.  

 

Figure 2.10. Triangular Third Harmonic Injection Signal 
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Figure 2.11. Three-Phase Modified SPWM Modulation with All Triplen Injection 

 

Both the third harmonic injection and the all triplen injection offer the same output 

voltage of the inverter as the modulation index range of each can both increased to 1.1547.  

2.3. Conversion Ratio Comparison 

As mentioned earlier in the chapter, the semi-quasi-z-source inverter has a high 

conversion ratio which is two times higher than a traditional three-phase inverter. This allows the 

inverter to produce the same output voltage with half of the input voltage. The voltage 

conversion ratio comparisons between these inverters can be seen in Table 2.1. Figure 2.12 

features a graph that shows input voltage versus output voltage of the semi-quasi-z-source 

inverter and a traditional inverter with SPWM and SPWM with THI modulation schemes.  
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Table 2.1. Conversion Ratio Comparison 

 

 

 

 

 

 

 

Figure 2.12. Inverter Input Voltage vs. Line-to-Line RMS Output Voltage 

 

As shown above, the semi-quasi-z-source topology has a higher conversion ratio than the 

traditional inverter topology. In order for the traditional inverter to produce the same output 

Inverter Topology Modulation Scheme 
Conversion 

Ratio 

Semi-Quasi-Z-Source Modified SPWM 1.225 

Semi-Quasi-Z-Source 
Modified SPWM 

w/THI 
1.414 

Traditional SPWM 0.612 

Traditional SPWM w/THI 0.707 
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voltage as the semi-quasi-z-source inverter, a boost converter needs to be added to the input of 

the traditional inverter to increase the DC link voltage. The boost converter would need to double 

the DC link voltage of the traditional inverter. Based on the duty cycle equation of a boost 

converter (Eq. 2.13) the duty cycle of the boost converter needs to be 0.5 in order to allow the 

traditional inverter to match the output of the three-phase semi-quasi-z-source inverter. Device 

stress analysis and comparison between the three-phase semi-quasi-z-source inverter and the 

traditional three-phase inverter with a boost converter input is discussed in the next section. The 

topology of a traditional three-phase inverter with a boost converter is shown below in Figure 

2.13. 

 
VO

VIn
=

1

1-D
 (Eq. 2.13) 

 

Figure 2.13. Traditional Three-Phase Inverter with Boost Converter 

 

2.4. Device Stress Analysis and Comparison 

2.4.1. Three-Phase Semi-Quasi-Z-Source Inverter Device Stress Analysis 

The switch voltage stress for the semi-quasi-z-source inverter can be shown by (Eq. 

2.14). The switch current stress can be depicted by (Eq. 2.15). Unlike [4], this paper isn’t too 

concerned with the peak current stress. The RMS current stress was derived for the switches for 
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the semi-quasi-z-source topology. The RMS current is the focus, because peak currents for a 

very brief amount of time won’t cause damage to the switch if properly designed. The RMS 

current stress is what will determine the current rating of the switching device. Proper PCB 

design and cooling will handle the current peak current and maintain proper operating 

temperature of the switching device. The peak voltage is important because an overvoltage can 

damage the switching device. The derived RMS current stress equation for S1 and S2 is detailed 

by (Eq. 2.16) and (Eq. 2.17), respectively. These derived functions can be used to calculate the 

switch current stress without the need for complex simulation software. The function shown in 

(Eq. 2.18) calculates the absolute value of the current for (Eq. 2.16) and (Eq. 2.17). The duty 

cycle equations for the RMS current stress functions for S1 and S2 are detailed by (Eq. 2.19) and 

(Eq. 2.20), respectively. A Boolean function (Eq. 2.21) is multiplied with (Eq. 2.18) when (Eq. 

2.19) and (Eq. 2.20) are greater than zero. This is to scale the current function pulse width 

according to the value of the duty cycle during that switching event. The number of switching 

periods per fundamental period is calculated by (Eq. 2.22). The capacitor ripple voltage on C1 

and the inductor ripple current in L1 are shown in (Eq. 2.23) and (Eq. 2.24), respectively. 

 VS=
MVIn

1-D
 (Eq. 2.14) 

 IS= (-2 sin(ωt) +M(sin(ωt))
2
) I (Eq. 2.15) 

 IS1_RMS= ∑ u[DS1(n)]N
n=1 K (Eq. 2.16) 

 IS2_RMS= ∑ u[DS2(n)]N
n=1 K (Eq. 2.17) 

 K=√((-2 sin(ωt) +M(sin(ωt))
2
) I)

2

  (Eq. 2.18) 

 DS1(n)=
1-Msin(

2πn

N
)

2-Msin(
2πn

N
)

; n=1…N  (Eq. 2.19) 
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 DS2(n)=
1

2-Msin(
2πn

N
)

; n=1…N (Eq. 2.20) 

 𝑢[DS#(n)]= {
1,        TS(n)≤TSDS#(n) 
0,                   Otherwise 

 (Eq. 2.21) 

 𝑁 =
fswitching

ffundamental
 (Eq. 2.22) 

 ∆VC1=
IS

fswitching(2-Msin(ωt))C1
 (Eq. 2.23) 

  

 ∆IL1=
VIn(1-Msin(ωt))

fswitching(2-Msin(ωt))L1
 (Eq. 2.24) 

 

The RMS switch current stress was calculated using MATLAB by using the derived 

equations above. The calculation was based on a 10 kW inverter with a 200 V input voltage and 

a power factor of 1, and modulation index of 1. The resultant plots of the switch current stress of 

switch S1 and switch S2 are shown in Figure 2.14 and Figure 2.15, respectively.  

Figure 2.14. Three-Phase Semi-Quasi-Z-Source Inverter S1 Current Stress using MATLAB 
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Figure 2.15. Three-Phase Semi-Quasi-Z-Source Inverter S2 Current Stress using MATLAB 

 

2.4.2. Traditional Three-Phase Inverter with Boost Converter Device Stress Analysis 

The switch voltage stress for a traditional inverter with a boost converter can be shown 

by (Eq. 2.25). The switch current stress for the inverter switches and the boost converter switches 

are shown by (Eq. 2.26) and (Eq. 2.27), respectively. Like the analysis in the previous section, 

the RMS current stress of the switching devices are what are important for the inverter design. 

The RMS current stress on the inverter switches is found with (Eq. 2.28) and the RMS current 

stress on the boost converter switch is (Eq. 2.29). The function shown in (Eq. 2.30) calculates the 

absolute value of the current for (Eq. 2.28) and (Eq. 2.29). The duty cycle equations for the RMS 

current stress functions for the inverter switches and the boost converter switches are (Eq. 2.31) 

and (Eq. 2.32), respectively. The function (Eq. 2.21) is also used in (Eq. 2.28) and (Eq. 2.29) to 

form the switching pulse widths. 

 VTraditional_Inverter_S=VBoost_Out (Eq. 2.25) 

 ITraditional_Inverter_S=sin(wt)ITraditional_Inverter_O (Eq. 2.26) 

 IBoost_S=
PIn

VIn
 (Eq. 2.27) 

 IS_Trad_RMS= ∑ u[DS_Trad(n)]N
n=1 KTrad (Eq. 2.28) 
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 IS1_Boost_RMS= ∑ u[DS1_Boost(n)]N
n=1 √IBoost_S

2 (Eq. 2.29) 

 KTrad=√(Msin(wt)ITraditional_Inverter_O)2 (Eq. 2.30) 

 DS_Trad(n)=Msin (
2πn

N
) ;n=1…N (Eq. 2.31) 

 DS1_Trad(n)=Msin (
2πn

N
) ;n=1…N (Eq. 2.32) 

The RMS switch current stress was calculated using MATLAB by using the derived 

equations above. The calculation was based on a 10 kW inverter with a 200 V input voltage and 

a power factor of 1, modulation index of 1, and boost converter duty cycle of 0.5. The resultant 

plots of the switch current stress of the inverter switches and boost converter switches are shown 

in Figure 2.16 and Figure 2.17, respectively.  

Figure 2.16. Traditional Three-Phase Inverter Switch Current Stress using MATLAB 
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Figure 2.17. Boost Converter Switch Current Stress using MATLAB 

 

2.4.3. Device Stress Comparison 

Voltage and current stress comparisons between the semi-quasi-z-source and the 

traditional inverter with a boost converter input will be analyzed in this section. A 10 kW 

inverter example will be compared in Table 2.2 and Table 2.3. These values were selected so 

each inverter has the same input and output voltage. The switch voltage stress results are shown 

in Table 2. The voltage stress is higher on the semi-quasi-z-source and the RMS current stress is 

higher than the traditional inverter with a boost converter. The RMS current stress results are 

shown in Table 3. The semi-quasi-z-source topology has a higher current stress than the 

traditional inverter switches, but the current stress on the boost converter switch lies between the 

two values of the semi-quasi-z-source inverter. Although the semi-quasi-z-source topology has a 

higher switch voltage and current stress, it has less switching devices. The boost converter adds 

switching devices to the system. There are at least two more switches required, but in reality it is 

more than two because switches will need to be put in parallel to handle the current in the boost 

converter. Also, the semi-quasi-z-source converter doesn’t need the very large boost converter 

inductor. The magnetic components of the semi-quasi-z-source are shifted to the higher voltage 

output side so the current rating and inductance of the devices is lower than that of the boost 
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converter input. Getting a large enough inductor to handle the current stress and current ripple 

requirements will put a damper on the system in regards to cost and power density. The semi- 

quasi-z-source takes advantage of high switching frequencies to reduce passive component size 

and there is a minimized number of switching devices. A GaN device is a great option for this 

topology because of the switching frequency capability and the low number of switching devices 

needed. This results in a cheaper and more power dense system than that of a traditional inverter 

with a boost converter input. 

Table 2.2. Voltage Stress Comparison 

Inverter 

Parameters 

Inverter 

Topology 

Input Voltage 

Stress Ratio (VS/Vin) 

Switch Voltage 

Stress 

Output Voltage 

Stress Ratio (VS/Vo) 

Vin= 200 V 

Vo= 245 Vll 

M=1 

Semi-

Quasi-Z-

Source 

3 600 V 2.45 

Vin= 200 V 

Vo= 245 Vll 

M=1, D=0.5 

Traditional 

with Boost 

Converter 

2 400 V 1.63 

 

Table 2.3. Current Stress Comparison 

Inverter 

Parameters 

Inverter Topology and 

Switching Component 

RMS Current Stress 

Ratio (IS#_RMS/IO_RMS) 

RMS Switch 

Current Stress 

Io_rms= 

23.56 A 

Semi-Quasi-Z-Source S1 1.6586 39.09 A 

Semi-Quasi-Z-Source S2 1.4145 33.33 A 

Traditional Inverter S1 0.7072 16.66 A 

Boost Converter S1 1.5002 35.35 A 
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2.5. Simulation Results 

The simulation results are for a 10 kW system with an input voltage of 200 V. The 

modulation index was set to 1. The capacitor voltage ripple calculations were based on 5% 

voltage ripple and the inductor current ripple calculation were based on a 30% current ripple. 

From (Eq. 2.23), the capacitor values used in the simulation are 11.1 μF and from (Eq. 2.24) the 

inductor values used are 66.7 μH. A resistive load of 6 Ohms is used to showcase the sinusoidal 

output voltage of the semi-quasi-z-source inverter topology. The simulation used the topology 

featured in Figure 2.1 and used the modified SPWM modulation method showcased in the 

previous section. Figure 2.18 is the line-to-line output voltage and Figure. 2.19 is the phase 

current. Figure 2.20 and Figure 2.21 show the switch voltage and current stress for S1. Figure 

2.22 and Figure 2.23 show the switch voltage and current stress for S1. Figure 2.24 shows the 

voltage stress on C1 and Figure 2.25 the current stress on L1. By comparing the simulation results 

with the calculated switch current using MATLAB, it is shown that the results are the same. 

Figure 2.18. Three-Phase Semi-Quasi-Z-Source Line-to-Line Output Voltage 
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Figure 2.19. Three-Phase Semi-Quasi-Z-Source Line-to-Line Output Current 

 

 

 

Figure 2.20. Three-Phase Semi-Quasi-Z-Source S1 Voltage and Current: One Fundamental Cycle 
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Figure 2.21. Three-Phase Semi-Quasi-Z-Source S1 Voltage and Current: Three Switching Cycles 

 

 

 

 

 

 

Figure 2.22. Three-Phase Semi-Quasi-Z-Source S2 Voltage and Current: One Fundamental Cycle 
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Figure 2.23. Three-Phase Semi-Quasi-Z-Source S2 Voltage and Current: Three Switching Cycles 

 

 

 

 

Figure 2.24. C1 Voltage: Two Fundamental Cycles 
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Figure 2.25. L1 Current: Two Fundamental Cycles 
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3. THREE-PHASE SEMI-QUASI-Z-SOURCE INVERTER PROTOTYPE DESIGN 

3.1. 2.5 kW Three-Phase Semi-Quasi-Z-Source Prototype Design 

A 2.5 kW prototype was developed following the topology that is featured in Figure 2.1. 

The design was based around a 130 V input utilizing third harmonic injection. The expected 

output voltage is 183 Vrms so the prototype has an output current of 8 Arms. With this input 

voltage using THI, the voltage stress on each switch is 450 V, so 650 V is required to handle the 

voltage. Based on the current stress analysis shown above, the current stress of S1, S3, and S5 is 

20 Arms. Based on this, a minimum of a 60 A device is required. The GaN Systems device that 

was selected was the GS66516T. Because a GaN device was selected, the switching frequency is 

100 kHz. The clamping capacitors C1, C3, and C5 were calculated based on a 10% voltage ripple, 

so 2.469 µF is needed. The inductors L1, L3, and L5 were calculated based on 200% current 

ripple, so the inductor value is 19.5 µH. Capacitors C2, C4, and C6 were set to 4.64 µF and 

inductors L2, L4 and L6 were set to 24 µH. This gives an output LC filter value of approximately 

15 kHz. The inverter PWM signals are controlled by a Simulink program and a dSPACE DSP 

card with a dSPACE DS1104 breakout box to interface with the prototype board. This will be 

discussed more in the following sections. 

3.2. Switch Isolation and Gate Drive Schematic 

Each switching device has its own isolation stage and gate driver circuit. The isolation 

stage provides isolation between the low voltage PWM signals from the dSPACE breakout box 

and the high voltage output of the inverter. This isolation is for safety and it also adds noise 

immunity thanks to the optocoupler of the digital isolator. The isolation stage consists of a digital 

isolator and an isolated power supply. The digital isolator provides an isolated PWM signal for 

the gate driver. The isolated power supply provides isolated power so the high voltage side of the 
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inverter. This power supply powers the isolated side of the digital isolator and the gate driver and 

the 6 V gate drive linear regulator. The isolation stage and power supply schematic for one 

switch is shown in Figure 3.1. The gate drive circuit and GaN Systems switch is shown in Figure 

3.2.  

Figure 3.1. Isolation Stage and Power Supplies for One GaN Switch 

 

 

Figure 3.2. Gate Driver Cirtuit for one GaN Switch 

 

3.3. PCB Design 

The PCB design is based around a 4-layer stack-up with 2 oz. copper on each layer. The 

board material selected was standard FR-4. The board layout was optimized so the gate signal 

stray inductance loop for each switch was minimized. The main power loops were optimized to 

maximize the available space on the board so the highest power density could be achieved. 
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Figure 3.3 shows the PCB design with all 4 layers turned on. The bare PCB top side and bottom 

side is featured in Figure 3.4 and Figure 3.5, respectively. 

Figure 3.3. Inverter PCB Layout with All Layers Turned On 

 

 Figure 3.4. Bare PCB Top Side 
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Figure 3.5. Bare PCB Bottom Side 

 

The board was assembled by hand and verified along the way to ensure the design was 

working and no components were damaged or misplaced during assembly. The fully assembled 

board is shown in Figure 3.6. 

Figure 3.6. Fully Assembled Prototype 
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3.4. Control Setup 

As mentioned above, a dSPACE DSP card and a Simulink model are the heart of the 

control for the three-phase semi-quasi-z-source inverter. Simulink allows for the creation of a 

model very quickly and is graphical so algorithms are easier to follow during development than 

standard text based coding. The control model for the inverter is shown in Figure 3.7.  

 

Figure 3.7. Simulink Control Model 
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The switching frequency was set to 100 kHz with a 60 Hz fundamental frequency output. 

The deadtime for the complementary switches is set to 200 ns. The nice thing about working 

with a Simulink model is all of the control parameters can be changed on the fly in real time so 

the control can be fine-tuned very quickly which aides in testing the prototype. The signals from 

the dSPACE DSP card are sent to a dSPACE DS1104 breakout box where a connector is 

attached to the breakout box and 6 shielded cables containing the 6 PWM gate signals for each 

switch are sent to the prototype board. The DS1104 breakout box and signal cables to the 

prototype is shown in Figure 3.8. 

 

Figure 3.8. dSPACE PWM Breakout and Connections 

 

3.5. Experimental Results 

The inverter was first tested with a very light load with 70 ohms of resistance across each 

phase leg to verify the functionality before the power is increased. The input voltage was 

increased slowly from 0 V to gain confidence in the prototype before the full 130 V of rated 

input voltage was applied. The input voltage was increased up to around 40 V when a lot of 

noise was detected on the gates of the switches. This noise was causing erratic signals and shoot 

through which was pulling the input voltage down as the shoot through events would occur. Due 
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to the large amounts of shielding and careful design to condition the PWM signals getting to the 

board, it was determined that the signals being sent to the board were not the source of the gate 

signal corruption. The gate turn-on and turn-off resistances were originally 10 ohms and 1 ohm 

respectively. Both resistors were increased to a value of 49.9 ohms to try and mitigate the erratic 

noise signal that was being induced on each switch. Once this modification was performed, the 

erratic noise issue was mitigated with the input voltage being increased to 50 V and the signals 

showing no sign of corruption. Figure 3.9 shows the preliminary results of the inverter with a 50 

V input and a 70 ohm load on each phase. Figure 3.10 features the output voltage of the inverter 

with a 86 V input and 70 ohm load on each phase. During preliminary testing, the voltage was 

increased to 91 V successfully, however half of the oscilloscope capture image got corrupted 

while the flash drive was ejected from the oscilloscope. Due to this, the measurement numbers 

were cut off from the bottom of the image, but the waveform was still saved. The output voltage 

with a 91 V input is shown in Figure 3.11 
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Figure 3.9. Three-Phase Semi-Quasi-Z-Source Output Voltage with 50 V Input 
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Figure 3.10. Three-Phase Semi-Quasi-Z-Source Output Voltage with 86 V Input 

Figure 3.11. Three-Phase Semi-Quasi-Z-Source Output Voltage with 91 V Input 
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Due to the tight constraints of the PCB layout, custom heatsinks were created for each 

pair of switches to sink heat from the top side cooling pad of each switch. The one of the custom 

heatsinks is shown in Figure 3.12.  

 

Figure 3.12. Heatsink Design 

 

The thermal analysis of the heatsink design was calculated based on the original gate 

resistor values. Because the gate resistor values were increased to eliminate the erratic gate 

signal oscillations, the switching losses of each switch were increased. Due to the increased 

losses, the designed output power will need to be derated based on the junction temperature of 

the switching devices. Further thermal analysis and heatsink design will need to be investigated 

to dissipate the additional losses of each switch at full rated power. 
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4. RMMC WITH PPVR ANALYSIS AND OPERATION 

4.1. RMMC with PPVR 

As mentioned in Chapter 1, an unregulated resonant converter is a very efficient way to 

transfer power. Many unregulated regulated converter topologies have been developed that have 

very high efficiencies and high conversion ratios. These highly efficient, unregulated topologies 

are also known as DC transformers or DCX as mentioned in Chapter 1. The downfall of these 

converters is that they are unregulated. This means that the output voltage is directly proportional 

to the input voltage so as the input voltage drifts up and down, the output drifts as well. The 

solution is to use a regulated converter, however many of the standard regulated converter 

topologies are less efficient than the unregulated topologies and they offer very high device 

stresses. The solution to this problem is to use the idea of partial power voltage regulation 

(PPVR). The main idea of PPVR is to use a highly efficient and low device stress unregulated 

topology to convert a bulk of the power in a system and then a lower efficiency and higher 

device stress regulated topology is used to provide the voltage regulation but only process a 

small amount of power. This split in power offers the benefits of voltage regulation with the 

benefit of very high system efficiency thanks to the unregulated converter doing a bulk of the 

work. The PPVR power breakdown idea is shown in Figure 4.1. This figure shows that using a 

regulated converter to process just a small amount of the system power still results in a very high 

system efficiency but with the added benefit of voltage regulation. 
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Figure 4.1. PPVR Power Breakdown 

 

This voltage regulation is key for an automotive application where the input battery 

voltage fluctuates greatly as the battery is discharged. With the voltage regulation, the output 

voltage of the converter is always stable and at the desired value so the inverter can run at peak 

efficiency and the electric vehicle can deliver maximum power to the road when it is desired. If 

just an unregulated topology was used, the inverter input voltage would be constantly fluctuating 

and the vehicle power could be derated as the battery voltage drops due to current limitations of 

the system.  

4.2. Operation of RMMC Topology 

A very efficient resonant modular converter was selected for the unregulated portion of 

the system. The topology is based off of the work presented in [19],[20]. The converter features a 

very modular topology so scaling for various conversion rations is very easy. Due to the resonant 

operation, the converter also offers ZCS which reduces the switching losses to almost zero with 

aides in device stress and overall efficiency. The converter topology has two switching states. 

Each pair of switches operates at a fixed 50% duty cycle, so the pairs of switches are switched in 

a complementary fashion and all evenly share the voltage and current stress because each switch 

operates for half of the switching period. The topology for the selected RMMC topology is 

Total Power

Unregulated Stage

5/6 Total Power

Optimized Efficiency ~99%

Regulated Stage

1/6 Total Power

Efficiency ~92%

Regulated Output

System Efficiency ~98%



 

39 

shown in Figure 2.1. This figure features a topology with a conversion ratio of 2 for ease of 

analysis. However, this topology can be scaled for N-times conversion ratio. 

Figure 4.2. 2X RMMC Topology 

 

The first switching state for this topology is shown in Figure 4.3. In this state switches 

SB2 and SW1 are conducting. In this state Cr1 charges through Lr1 and charges up to Vin.  

Figure 4.3. RMMC Switching State I 
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The second switching state is shown in Figure 4.4. In this state switches SB1 and SW2 are 

conducting. During this state Cr1 charges Cc1 up to Vin because Cr1 is charged up to Vin. Cout is 

charged up to the potential of Cr1 plus Vin. Since Cr1 is charged to Vin, then Cout is charged to 2 

times Vin.  

Figure 4.4. RMMC Switching State II 

 

During both switching states Cc1 clamps the voltage across SW1 and SW2 so there is 

negligible voltage spike when the switches turn off. The addition of the inductor gives a 

sinusoidal current in the series Lr1 and Cr1 path. The resonant frequency of this LC chain is 

shown in Eq. 4.1. If the switching frequency of the switching devices is set to this resonant 

frequency, then when the current in the LC branch crosses zero, ZCS can be achieved.  

 fr=
1

2π√LC
 (Eq. 4.1) 

As more modules are added on, the conversion ratio goes up by the number of modules 

added. This shows how the topology is highly modular. Figure 4.5 shows a 6X conversion ratio 

topology that will be used for analysis in the following sections. Even though the topology is for 

a conversion ratio of 6, the conversion ratio can be lowered by putting modules in a pass-through 

state. In this state the Sw# switches will be turned on all the time and the SB# switches will be 

turned off all the time so the module is active. 
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Figure 4.5. 6X RMMC Topology 

 

4.3. Operation of RMMC with PPVR 

The topology mentioned in the previous section is a great choice for a modular RMMC 

topology and since this topology is unregulated, it is a great choice to apply PPVR. This is 

achieved by inserting a regulated converter topology within the existing topology. As mentioned 

in the previous section, the voltage across each module is equal to the input voltage of the 

converter.  By controlling the number of resonant full-bridge modules are active in the RMMC, 

the DCX stage can achieve the discrete conversion ratios of 4, 5, and 6. The inactive modules are 

put into a bypass mode where the wing side switches are in a fully on state and the input side 

switches are in a fully off state.  

Figure 4.6. Composite Converter Topology 
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With the addition of the regulation stage, the converter can operate at any conversion 

ratio between 4 and 6. As mentioned in the introduction, the proposed topology is transformer-

less, so the system is fully modular and is more flexible for different battery voltage ranges and 

output voltage requirements. Whereas the topologies in [9]-[11] rely on a fixed transformer turns 

ratio, which limits the applications of the converter without having to redesign the transformer 

and the switch selection. The composite converter topology featured in [11], [12] is shown in 

Figure 4.6. The voltage regulation can be achieved by changing the voltage on the node where 

the bottom side switches and the wing side switches meet. The output voltage then becomes the 

number of modules minus one times the input voltage plus the voltage at the regulation node. 

This is shown in equation 4.2. The location of where the PPVR circuit is added is shown in 

Figure 4.7. 

 VOut=(# of Modules-1)VIn+VRegulation (Eq. 4.2) 

 

Figure 4.7. PPVR Location 

 

COut

Lr1

Cr1
inV

SW2SW1

SB1

SB2

R

Cc1

Partial Power 

Regulator

VRegulation



 

43 

The optimized regulated topology is up for debate depending on the application of the 

overall converter and the conversion ratio range required. The buck converter topology for the 

PPVR circuit will be analyzed further in the following sections. A 6X RMMC converter with a 

buck converter PPVR stage is shown in Figure 4.8. However, many topologies can be used. For 

example, a non-inverting buck-boost PPVR converter is shown with a 6X RMMC topology in 

Figure 4.9. This topology may be useful if the conversion ratio range is very small but can drift 

slightly above or below what the unregulated converter can deliver. The non-inverting buck-

boost regulation stage can mitigate duty cycle limitations of the buck converter regulation stage 

when duty cycle is nearing 0% or 100% [14]. 

Figure 4.8. 6X RMMC with Buck Converter PPVR  

 

 

Figure 4.9. 6X RMMC with Non-Inverting Buck-Boost Converter PPVR 
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4.4. RMMC with PPVR Device Stress Analysis 

With the demand for more efficient converter topologies, switching device selection has 

also been a driver to topology efficiency and a driving factor for topology selection. This 

analysis will focus on using a GaN based switching device for comparison between the 

traditional boost converter, the composite converter architecture in [11], [12] and the proposed 

converter topology. For an equal comparison, the Rds(on) for an ideal GaN device will be used. 

The device resistance is based on the blocking voltage of the device. By interpolating the data in 

[15]-[18] a curve and a function have been derived for an ideal GaN device. The ideal Rds(on) 

curve can be seen in Figure 4.10 and it is mathematically shown in (Eq. 4.3). Three device 

voltage ratings and the corresponding Rds(on) is shown in Table 4.1. The Rds(on) has been 

nominalized with the die area which accounts for the current ratings for the switching devices.  

Many comparisons were made between the three different topologies. The conduction 

power stress and the voltage and current stress ratios were all analyzed among the three different 

converters. All comparisons were made using the nominal 250 V input voltage, 1200 V output, 

and a 4 kW load. To make a fair comparison, it was assumed that the transformer turns ratio for 

the composite converter in [11], [12] could be changed from 1:1.9 to 1:3.8 to achieve the 1200 V 

output voltage requirement. The conduction power stress can be found using (Eq. 4.4) and (Eq. 

4.5) and the comparison table is shown in Table 4.2. The device stress ratio can be found using 

(Eq. 4.4), (Eq. 4.6), and (Eq. 4.7) and the comparison table is shown in Table 4.3. 

 RDS(on)=0.0000003(BVDS
1.99) (Eq. 4.3) 

 Switch Current Stress=IRMS (Eq. 4.4) 

 Conduction Power Stress= ∑ (
IRMS

IOut
)2RDS(On) (Eq. 4.5) 

 Switch Voltage Stress=VS (Eq. 4.6) 
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 Device Stress Ratio= ∑ (
𝐼𝑅𝑀𝑆

𝐼𝑂𝑢𝑡
)(

𝑉𝑆

𝑉𝑂𝑢𝑡
) (Eq. 4.7) 

 

 

Figure 4.10. Ideal GaN Rds(on) versus Device Blocking Voltage Curve 

 

 

Table 4.1. Rds(on) for Device Voltage Ratings 

Device Blocking Voltage (V) Rds(on) (Ωcm²) 

650 0.12 

1200 0.40 

1700 0.80 
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Table 4.2. Converter Conduction Power Stress Comparison 

 

Table 4.3. Device Stress Ratio Comparison 

 

Converter 

Parameters
Converter Switch

Switch 

RMS 

Current 

(Arms)

Switch 

Voltage 

Rating 

(V)

Switch 

Rdson 

(mΩcm²)

Number 

of 

Switches

Conduction 

Power 

Stress

Total 

Switch 

Conduction 

Power 

Stress

Total Partial 

Power 

Processing 

Conduction 

Stress

Conventional Boost High 7.31 1700 0.80 1 3.85

Conventional Boost Low 14.23 1700 0.80 1 14.58

Composite Buck High 11.61 650 0.12 1 1.46

Composite Buck Low 5.00 650 0.12 1 0.27

Composite Boost High 4.22 650 0.12 1 0.19

Compositie Boost Low 3.27 650 0.12 1 0.12

Composite DCX Primary 12.67 650 0.12 4 6.93

Composite DCX 

Secondary
3.33 1200 0.40 4 1.60

Proposed DCX (Active) 5.24 650 0.12 16 4.74

Proposed DCX 

(Bypass: On)
3.33 650 0.12 2 0.24

Proposed DCX

(Bypass: Off)
0.00 650 0.12 2 0.00

Proposed Buck High 2.98 650 0.12 1 0.10

Proposed Buck Low 1.49 650 0.12 1 0.02

Converter Conduction Power Stress Comparison: 250 V Input, 1200 V Output, 4 kW

Boost D=0.792

Buck D=0.844 

Boost D=0.375 

Turns Ratio=1:3.8

Buck D=0.8

18.43

10.57

5.10

N/A

2.03

0.12

Converter 

Parameters
Converter Switch

Switch 

RMS 

Current 

(Arms)

Switch 

Voltage 

Stress 

(V)

Current 

Stress Ratio 

(Irms/Iout)

Voltage 

Stress Ratio 

(Vs/Vout)

Number 

of 

Switches

Device 

Stress 

Ratio

Total 

Device 

Stress 

Ratio

Total Partial 

Power 

Processing 

Stress Ratio

Conventional Boost High 7.31 1200 2.19 1.00 1 2.19

Conventional Boost Low 14.23 1200 4.27 1.00 1 4.27

Composite Buck High 11.61 250 3.48 0.21 1 0.73

Composite Buck Low 5.00 250 1.50 0.21 1 0.31

Composite Boost High 4.22 400 1.27 0.33 1 0.42

Compositie Boost Low 3.27 400 0.98 0.33 1 0.33

Composite DCX Primary 12.67 211 3.80 0.18 4 2.67

Composite DCX 

Secondary
3.33 800 1.00 0.67 4 2.66

Proposed DCX (Active) 5.24 250 1.57 0.21 16 5.24

Proposed DCX

(Bypass: On)
3.33 0 1.00 0.00 2 0.00

Proposed DCX

(Bypass: Off)
0.00 250 0.00 0.21 2 0.00

Proposed Buck High 2.98 250 0.89 0.21 1 0.19

Proposed Buck Low 1.49 250 0.45 0.21 1 0.09

Device Stress Ratio Comparison: 250 V Input, 1200 V Output, 4 kW

Boost D=0.792

Buck D=0.844

Boost D=0.375

 Turns Ratio=1:3.8

Buck D=0.8

6.46 N/A

7.12 1.79

5.52 0.28
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The total conduction power stress and device stress are calculated using all of the 

switching devices in each topology. Also, the partial power processing stress is calculated using 

just the switches used for voltage regulation. It can be seen that the proposed converter topology 

has a much lower conduction power stress than the traditional boost converter and half the 

conduction power stress than the composite converter architecture. The total device stress ratio is 

also much lower on the proposed topology than the other two topologies. The partial power 

processed by the proposed converter is also much less than the composite converter architecture. 

The conduction power stress of the proposed partial power circuit is almost 17 times lower than 

the composite converter partial power processing devices. The disadvantage that the composite 

converter architecture has in the device stress ratio is that it requires the use of a 1200 V device 

on the secondary side of the DCX stage, whereas the proposed topology can utilize 650 V 

devices for all switches. 

4.5. RMMC with PPVR Simulation Results 

A simulation was performed for a 4 kW converter with an output voltage of 1200 V. The 

input voltage was set to a nominal 250 V battery voltage to stay consistent with the analysis 

performed in the above sections. The resonant inductor and capacitor values are 1.5 µH and 132 

nF, respectively. From (Eq.4.1) the switching frequency of the RMMC switches was set to 

357.674 kHz. A buck converter was selected as the PPVR circuit for the simulations. The buck 

inductor was set to 38 µH and the buck output capacitor was set to 4 µF. The switching 

frequency of the buck converter was set to the same frequency as the resonant frequency and had 

a duty cycle of 0.8. The output capacitor for the converter was set to 2 µF. The clamping 

capacitors for the wing side resonant switches were 3 µF each. The output voltage of the 

converter is shown in Figure 4.11. The RMMC DCX switch current is shown in Figure 4.12. The 
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DCX resonant LC current is shown in Figure 4.13. The converter input voltage and the output of 

the PPVR buck converter is shown in Figure 4.14. Finally, the PPVR buck converter switch 

current is featured in Figure 4.15. 

 

Figure 4.11. Converter Output Voltage 

 

Figure 4.12. Converter DCX Switch Current 
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Figure 4.13. Converter Resonant LC Current 

 

 

 

Figure 4.14. Input and PPVR Buck Output Voltage 
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Figure 4.15. PPVR Buck Switch Current 
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5. RMMC WITH PPVR PROTOTYPE DESIGN 

5.1. 4kW RMMC with PPVR Buck Converter Design 

A 4 kW prototype was developed based on the topology featured on Figure 4.7. A 6 times 

conversion ratio RMMC converter with a buck converter PPVR circuit interleaved. The output 

voltage of the converter is rated at 1200 V. The input voltage was designed to range from 200 V 

to 300 V with a nominal battery voltage of 250 V. The RMMC converter and the PPVR buck 

converter were designed as two separate boards to different PPRV circuits can be interleaved and 

tested with the resonant converter in future testing. The GaN Systems GS66508B device was 

selected for the switching device for all resonant switches and the buck converter switches. The 

resonant inductor value was set to 1.5 µH so the Coilcraft XAL1060-152MEB inductor was 

selected. The resonant capacitor value was set to 132 nF. To get an equivalent 132 nF, four TDK 

CGA9Q1C0G3A333J280KC parts were selected and assembled in parallel to obtain the desired 

capacitance value. These capacitors are a C0G material, so there no chance in capacitance with 

voltage bias. This feature is critical for the resonant capacitor, so the LC string doesn’t change 

resonant frequency with voltage. The resonant clamping capacitance value was set to 3.84 µF. 

The TDK C5750X6S2W225K250KA was selected and six parts are placed in parallel to obtain 

the desired capacitance value at nominal input voltage. The output capacitor for the buck 

converter was set to 4 µF. Six TDK C5750X6S2W225K250KA parts were placed in parallel to 

obtain the desired capacitance at the nominal input voltage case. The buck converter inductor 

was set to 38 µH. Two Coilcraft XAL6060-223MEB parts are connected in series to obtain the 

desired inductance. The output capacitor value is set to 2 µF so thirty-eight TDK 

B58031U9254M062 Ceralink capacitors were placed in parallel to achieve the desired 

capacitance at full 1200 V output voltage.  
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5.2. RMMC and Gate Drive Schematic 

Similarly to the semi-quasi-z-source inverter gate drive circuity, each switching device 

for the resonant converter circuit has its own isolation stage and gate driver circuit. An isolated 

gate drive IC was selected to eliminate the need for a digital isolator and a gate driver IC. This 

reduces the number of parts needed and simplifies the circuit. The Silicon Labs SI8271GB-IS 

isolated gate driver IC was selected for the design. The 9 V isolated power supply voltage was 

biased using a 6.2 V Zener diode. This gives a positive 6.2 V and negative 2.8 V gate signal. 

Having a negative bias gate voltage when the switch is off makes for a more robust driver circuit 

and helps mitigate any noise turning the device on when it is not signaled to be on. Figure 5.1 

shows the gate drive circuitry for one GS66508B device. Figure 5.2 shows the schematic for one 

of the five resonant modules on the board. The same topology was duplicated to build up to a 6 

times conversion ratio resonant DCX converter.  

Figure 5.1. RMMC Gate Drive Circuit Schematic  
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Figure 5.2. One RMMC Module Schematic  

 

5.3. RMMC PCB Design 

The PCB is a 6-layer design with 2 oz. copper on each layer. The board material that was 

selected was IT-180A to provide a higher dielectric strength than standard FR-4 and IT-180A 

can handle higher temperatures than standard FR-4. The PCB stack-up for the board is shown in 

Figure 5.3. An ENIG finish was selected for the board design. 
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Figure 5.3. Custom PCB Stack-Up  

 

The board was designed to minimize the high frequency current loops to minimize losses 

and to optimize the design so provide the clearance and creepage requirements for a high voltage 

board design but still provide the maximum power density. Both sides of the board were fully 

utilized to allow for design changes in the future. The resonant LC design allows for multiple 

resonant inductor and resonant capacitor placements to change the values so the resonant 

frequency can be changed and the capacitor voltage ripple can be changed based on the 

capacitance value. The design also allows for some of the modules to be bypassed when they are 

not in use so the board allows for higher flexibility when it is used for testing. The PCB layout 

with all 6 copper layers shown is featured in Figure 5.4. The bare PCB top and bottom sides are 

featured in Figure 5.5 and Figure 5.6, respectively.  
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Figure 5.4. RMMC PCB Layout with 6 Copper Layers Shown  

 

Figure 5.5. RMMC DCX PCB Top Side Bare Board 
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Figure 5.6. RMMC DCX PCB Bottom Side Bare Board 

 

The board was assembled by hand and one circuit was assembled and verified before the 

whole board was assembled. The top side assembly is shown in Figure 5.7. The bottom side 

assembly is shown in Figure 5.8. The side profile of the fully assembled prototype is shown in 

Figure 5.9. The connection to add the PPVR converter is featured on the two connectors on the 

left side on the top of the RMMC board. These two terminals are shorted together when a PPVR 

circuit is not utilized. 
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Figure 5.7. RMMC DCX Assembled Top Side 

 

Figure 5.8. RMMC DCX Assembled Bottom Side 

 

Figure 5.9. RMMC DCX Assembled Side View 
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5.4. PPVR Buck Converter Schematic 

The buck converter PPVR board was based off of the gate drive design of the RMMC 

board featured in the previous sections. The schematic for the buck converter is shown in Figure 

5.10.  

Figure 5.10. PPVR Buck Converter Schematic 

 

5.5. PPVR Buck Converter PCB Design 

The buck converter board is a 1 kW design that is a 6 layer board with 2 oz. copper on 

each layer. The board stack-up follows the same as the RMMC design shown in Figure 5.1. The 

buck converter used a high temperature 170 Tg FR-4 material instead of IT-180A based off of 

the materials that the PCB manufacturer had available. The PCB layout with all 6 layers shown 

is in Figure 5.11. The top and bottom sides of the buck converter prototype are featured in Figure 

5.12 and Figure 5.12, respectively.  
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Figure 5.11. Buck Converter PCB Layout with 6 Copper Layers Shown 

 

 

Figure 5.12. Buck Converter Top Side 
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Figure 5.13. Buck Converter Bottom Side  

 

5.6. Converter Efficiency Estimations 

Efficiency estimation calculations were performed to develop an idea of the efficiency of 

the converter prototype. The calculations are based on the nominal 250 V battery input with a 

resistive load. The efficiency is calculated based on the MOSFET output capacitance loss, gate 

driver loss, inductor loss, capacitor ESR loss, and the MOSFET conduction loss. The output 

capacitance loss, Coss loss, calculation is shown in (Eq. 5.1). The gate driver loss calculation is 

shown in (Eq. 5.2). The inductor loss is the inductor copper loss and the core loss which were 

obtained from Coilcraft’s online calculator. The capacitor ESR loss is shown in (Eq. 5.3) and the 

MOSFET conduction loss is shown in (Eq. 5.4).  

 

 Coss Loss=
CossVDS

2fs

2
 (Eq. 5.1) 
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 Gate Driver Loss= (
VGQGfs

2
) (

RGH

RGH+RI+RON
+

RGL

RGL+RI+ROFF
) (Eq. 5.2) 

 Capacitor ESR Loss=I2RESR (Eq. 5.3) 

 MOSFET Conduction  Loss=I2RDS(on) (Eq. 5.4) 

 

The estimated efficiency of the converter is shown in Figure 5.14. The power loss 

breakdown of the system is shown in Figure 5.15. Figure 5.16 shows the breakdown in power 

loss between the DCX converter and the PPVR buck converter.  

Figure 5.14. Estimated Converter Efficiency 
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Figure 5.15. Power Loss Breakdown of System 

 

 

Figure 5.16. Power Loss Breakdown between DCX and PPVR 
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As shown in Figure 5.14, it is estimated that the converter reaches a peak efficiency of 

98.6% at around 60% of the rated load. The main loss mechanisms of the converter are the 

MOSFET output capacitance loss, the inductor losses and the switch conduction losses. It is also 

shown that the PPVR circuit does not dominate the system losses which shows the advantage of 

using a partial power circuit. 

5.7. Preliminary Results 

Some preliminary results of the RMMC DCX prototype were obtained. To start, only two 

of the modules were activated with the other three being put into a pass through mode. This 

makes an unregulated conversion ratio of 3. A 40 V input was applied with a 150 ohm load. The 

output power was 100 watts. Figure 5.17 shows the input voltage, output voltage and the two 

inductor resonant current waveforms. Figure 5.18 shows the bridge side switch voltages for SB1 

and SB2. Figure 5.19 shows the bridge side switch voltages for SW1 and SW2. From the switch 

voltage results, it is shown that the switch voltage stress is equal to the input voltage. Based on 

the results, the converter is working properly and testing will be continued for more power and 

higher conversion ratios in the future. Once confidence of the DCX converter is obtained, the 

PPVR buck converter prototype will be added to the system to obtain a regulated output voltage. 

The fully assembled RMMC prototype with the PPVR buck converter is featured in Figure 5.20. 
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Figure 5.17. 3X DCX Converter Preliminary Output Results: Vin= 40 V, P= 100 W 

 

Figure 5.18. 3X DCX Converter Bridge Side Switch Voltages: Vin= 40 V, P= 100 W 
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Figure 5.19. 3X DCX Converter Wing Side Switch Voltages: Vin= 40 V, P= 100 W 

 

Figure 5.20. Fully Assembled 4 kW RMMC with Buck PPVR 
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6. CONCLUSION 

This thesis presented two different approaches to boost the voltage for electrified vehicle 

applications. One approach was to boost the AC voltage in one stage rather than having a two 

stage approach where a boost converter increased the DC link voltage of the inverter. The other 

approach was to develop a very efficient boost converter topology that can replace the traditional 

boost converter topology and offer a very high overall efficiency. 

The first approach featured a three-phase semi-quasi-z-source inverter topology that 

offered twice the output voltage of traditional inverter topologies and offered a sinusoidal output 

voltage due to the internal LC filter in the inverter topology. This system not only allows for a 

higher power density and less complex system because it eliminates the need for a boost 

converter, but the life of the electric motor is also extended due to the sinusoidal voltage. The 

downfall of this topology is that the voltage and current stresses are higher than a traditional 

inverter switching. As a result, the switches in this new topology will need higher voltage and 

current rating.  

The second approach was to develop a much more efficient boost converter. This 

approach makes the system more complicated, but the increase in efficiency can outweigh the 

additional complexity. The converter design discussed in this thesis consists of a DCX converter 

stage and a partial power voltage regulation stage. This approach allows for a very efficient 

unregulated converter topology to become regulated with very few additional losses with the 

incorporation of the PPVR stage. The topology that was presented has an estimated efficiency of 

up to 98.6% with switching device stresses that are much lower than other leading composite 

converter designs that were discussed. This allows for smaller and cheaper switches to be used 

which increased converter power density and makes the converters cheaper. 
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APPENDIX. MATLAB CODE FOR SEMI-QUASI-Z-SOURCE INVERTER SWITCH 

CURRENT CALCULATIONS 

clear all; 
close all; 
tic 
fs=100020;%switching frequency 100 kHz 
fo=60;%fundemental frequency 
res=60000; %number of steps per fs cycle 
step=1/(fs*res); %step size 
cycle=1; %number of periods 
w=2*pi*fo;%angular frequency 
Ts=1/fs;%switching period 
Vin=200; %Vin 
R=6; %Load Resistance 
io_peak=Vin/R; %peak output current 
N=fs/fo;%N points during one fundamental period 
N_Cyc=N*cycle; 
t=0:step:cycle/fo; 
D=zeros(1,N*cycle); 
Dz=zeros(1,N*cycle); 
Dz_2=zeros(1,N*cycle); 
Dboost=zeros(1,N*cycle); 
T=zeros(1,N*cycle); 
Tz=zeros(1,N*cycle); 
Tz_2=zeros(1,N*cycle); 
Tboost=zeros(1,N*cycle); 
Ti=zeros(1,N*cycle); 
Ti_z=zeros(1,N*cycle); 
Ti_z_2=zeros(1,N*cycle); 
Ti_boost=zeros(1,N*cycle); 
i=zeros(1,length(t)); 
iz=zeros(1,length(t)); 
iz_2=zeros(1,length(t)); 
iboost=zeros(1,length(t)); 
DCDC_Duty=0.5; 
Voll_z=Vin*sqrt(3)/sqrt(2); 
Voll_boost=Vin/DCDC_Duty*sqrt(3)/2/sqrt(2); 
Pout_Z=Voll_z*io_peak/sqrt(2)*sqrt(3); 
Pout_boost=Voll_boost*io_peak/sqrt(2)*sqrt(3); 
I_DCDC=Pout_boost/Vin; 

  
for n=1:N*cycle 
 Dz(n)=Ts*((1-sin(2*pi*n/N))./(2-sin(2*pi*n/N))); 
 %Dz(n)=Ts*((1)./(2-sin(2*pi*n/N))); 
 %D(n)=abs(Ts*(sin(2*pi*n/N))); 
 Tz(n)=Ts*n; 
 if(n==1) 
     Ti_z(n)=Dz(n); 
 end 
 if(n>1) 

      
   Ti_z(n)=Tz(n-1)+Dz(n); 
 end 



 

71 

end 
irms_z=0; 
n=1; 

  
for k=1:length(t) 
   if(mod(k,res)==0 && n<N_Cyc) 
       n=n+1; 
   end 

    

    
        if(t(k)<=Ti_z(n)) 
            %i(k)=io_peak.*sin(w.*t(k)); 
           iz(k)=((io_peak.*-(2.*sin(w.*t(k))-sin(w.*t(k)).*... 
               sin(w.*t(k))))); 

             
        end 
        if(t(k)>Ti_z(n)) 
            iz(k)=0; 
        end 

     
  irms_z=irms_z+((iz(k).*iz(k))); 
end 
Z_Irms=sqrt(irms_z*(1/length(t))) 

  
figure 
%subplot(411) 
plot(t,iz) 
title('S1 Current') 
ylim([-io_peak*1.1 3*io_peak*1.1]) 
xlim([0 (1/fo)*cycle]) 
ylabel('Current (Amps)') 
xlabel('Time (s)') 

  

  
% 
%%% 
%%%%% 
%%%%%%% 
%%%%%%%%% 
%%%%%%%%%%% 
%%%%%%%%% 
%%%%%%% 
%%%%% 
%%% 
% 

  
for n=1:N*cycle 
 Dz_2(n)=Ts*((1)./(2-sin(2*pi*n/N))); 
 %Dz(n)=Ts*((1)./(2-sin(2*pi*n/N))); 
 %D(n)=abs(Ts*(sin(2*pi*n/N))); 
 Tz_2(n)=Ts*n; 
 if(n==1) 
     Ti_z_2(n)=Dz_2(n); 
 end 
 if(n>1) 
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   Ti_z_2(n)=Tz_2(n-1)+Dz_2(n); 
 end 
end 
irms_z_2=0; 
n=1; 

  
for k=1:length(t) 
   if(mod(k,res)==0 && n<N_Cyc) 
       n=n+1; 
   end 

    

    
        if(t(k)<=Ti_z_2(n)) 
            %i(k)=io_peak.*sin(w.*t(k)); 
           iz_2(k)=-((io_peak.*-(2.*sin(w.*t(k))-sin(w.*t(k)).*... 
               sin(w.*t(k))))); 

             
        end 
        if(t(k)>Ti_z_2(n)) 
            iz_2(k)=0; 
        end 

     
  irms_z_2=irms_z_2+((iz_2(k).*iz_2(k))); 
end 
Z_Irms_2=sqrt(irms_z_2*(1/length(t))) 

  
figure 
%subplot(412) 
plot(t,iz_2) 
title('S2 Current') 
ylim([-io_peak*3.1 io_peak*1.1]) 
xlim([0 (1/fo)*cycle]) 
ylabel('Current (Amps)') 
xlabel('Time (s)') 

  

  
% 
%%% 
%%%%% 
%%%%%%% 
%%%%%%%%% 
%%%%%%%%%%% 
%%%%%%%%% 
%%%%%%% 
%%%%% 
%%% 
% 
for n=1:N*cycle 
 %Dz(n)=Ts*((1-sin(2*pi*n/N))./(2-sin(2*pi*n/N))); 
 %D(n)=abs(Ts*(sin(2*pi*n/N))); 
 D(n)=(Ts*(0.5+(0.5.*sin(2*pi*n/N)))); 
 %D(n)=Ts*0.5; 
 T(n)=Ts*n; 
 if(n==1) 
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     Ti(n)=D(n); 
 end 
 if(n>1) 

      
  Ti(n)=T(n-1)+D(n); 
 end 
end 
irms_boost=0; 
n=1; 
for k=1:length(t) 
   if(mod(k,res)==0 && n<N_Cyc) 
       n=n+1; 
   end 

    

    
        if(t(k)<=Ti(n)) 
            i(k)=io_peak.*sin(w.*t(k)); 
           %(k)=((io_peak.*-(2.*sin(w.*t(k))-sin(w.*t(k)).*sin(w.*t(k))))); 

             
        end 
        if(t(k)>Ti(n)) 
            i(k)=0; 
        end 

     
  irms_boost=irms_boost+((i(k).*i(k))); 
end 
Boost_Irms=sqrt(irms_boost*(1/length(t))) 

  
figure 
%subplot(413) 
plot(t,i) 
title('Three Phase w/Boost Switch Current') 
ylim([-1.1*io_peak 1.1*io_peak]) 
xlim([0 (1/fo)*cycle]) 
ylabel('Current (Amps)') 
xlabel('Time (s)') 

  

  

  
% 
%%% 
%%%%% 
%%%%%%% 
%%%%%%%%% 
%%%%%%%%%%% 
%%%%%%%%% 
%%%%%%% 
%%%%% 
%%% 
% 

  

  
for n=1:N*cycle 
 %Dz(n)=Ts*((1-sin(2*pi*n/N))./(2-sin(2*pi*n/N))); 
 %D(n)=abs(Ts*(sin(2*pi*n/N))); 
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 %D(n)=(Ts*(0.5+(0.5.*sin(2*pi*n/N)))); 
 Dboost(n)=Ts*DCDC_Duty; 
 Tboost(n)=Ts*n; 
 if(n==1) 
     Ti_boost(n)=D(n); 
 end 
 if(n>1) 

      
  Ti_boost(n)=Tboost(n-1)+D(n); 
 end 
end 
irms_dcdc_boost=0; 
n=1; 
for k=1:length(t) 
   if(mod(k,res)==0 && n<N_Cyc) 
       n=n+1; 
   end 

    

    
        if(t(k)<=Ti_boost(n)) 
            iboost(k)=I_DCDC; 
           %(k)=((io_peak.*-(2.*sin(w.*t(k))-sin(w.*t(k)).*sin(w.*t(k))))); 

             
        end 
        if(t(k)>Ti_boost(n)) 
            iboost(k)=0; 
        end 

     
  irms_dcdc_boost=irms_dcdc_boost+((iboost(k).*iboost(k))); 
end 
Boost_DCDC_Irms=sqrt(irms_dcdc_boost*(1/length(t))) 

  
figure 
%subplot(414) 
plot(t,iboost) 
title('DCDC Boost Switch Current') 
ylim([(0-0.1*I_DCDC) 1.1*I_DCDC]) 
xlim([0 (1/fo)*cycle]) 
ylabel('Current (Amps)') 
xlabel('Time (s)') 

  
Semi_Z_Current_Stress_Ratio= (3.*(Z_Irms.*Z_Irms)+3.*(Z_Irms_2.*... 
    Z_Irms_2))./((io_peak./sqrt(2)).*(io_peak./sqrt(2))) 
Three_Phase_Boost_Current_Stress_Ratio= (6.*(Boost_Irms.*Boost_Irms)... 
    +2.*(Boost_DCDC_Irms.*Boost_DCDC_Irms))./((io_peak./sqrt(2)).*... 
    (io_peak./sqrt(2))) 
Ratio_Semi_Z_to_Three_Phase_Boost=Semi_Z_Current_Stress_Ratio./... 
    Three_Phase_Boost_Current_Stress_Ratio 
toc 

 


