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Abstract

Process systems design, operation and synthesis problems under uncertainty can read-

ily be formulated as two-stage stochastic mixed-integer linear and nonlinear (noncon-

vex) programming (MILP and MINLP) problems. These problems, with a scenario

based formulation, lead to large-scale MILPs/MINLPs that are well structured.

The first part of the thesis proposes a new finitely convergent cross decomposition

method (CD), where Benders decomposition (BD) and Dantzig-Wolfe decomposition

(DWD) are combined in a unified framework to improve the solution of scenario

based two-stage stochastic MILPs. This method alternates between DWD iterations

and BD iterations, where DWD restricted master problems and BD primal prob-

lems yield a sequence of upper bounds, and BD relaxed master problems yield a

sequence of lower bounds. A variant of CD, which includes multiple columns per

iteration of DW restricted master problem and multiple cuts per iteration of BD re-

laxed master problem, called multicolumn-multicut CD is then developed to improve

solution time. Finally, an extended cross decomposition method (ECD) for solving

two-stage stochastic programs with risk constraints is proposed. In this approach,

a CD approach at the first level and DWD at a second level is used to solve the

original problem to optimality. ECD has a computational advantage over a bilevel

decomposition strategy or solving the monolith problem using an MILP solver.
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The second part of the thesis develops a joint decomposition approach combining

Lagrangian decomposition (LD) and generalized Benders decomposition (GBD), to

efficiently solve stochastic mixed-integer nonlinear nonconvex programming problems

to global optimality, without the need for explicit branch and bound search. In this

approach, LD subproblems and GBD subproblems are systematically solved in a sin-

gle framework. The relaxed master problem obtained from the reformulation of the

original problem, is solved only when necessary. A convexification of the relaxed mas-

ter problem and a domain reduction procedure are integrated into the decomposition

framework to improve solution efficiency. Using case studies taken from renewable

resource and fossil-fuel based application in process systems engineering, it can be

seen that these novel decomposition approaches have significant benefit over classi-

cal decomposition methods and state-of-the-art MILP/MINLP global optimization

solvers.
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Chapter 1

Introduction

1.1 Model-based decision making via mathematical programming

Mathematical programming, as a field of applied mathematics, has evolved and seen

tremendous application in a wide range of areas in engineering decision making; it has

been a major area of process systems engineering (PSE) over the last four decades. It

is concerned primarily with making optimal decision in the use of scarce resources to

meet some desired objectives. Application of mathematical programming, also called

mathematical optimization, to PSE ranges from modeling and process development

to process synthesis and design and then to process operations, control, planning

and scheduling [1] [2] [3]. Example of design and synthesis problems include chem-

ical reactor and heat exchanger networks synthesis, distillation sequencing, process

flowsheeting [4]. A major reason for the numerous application of mathematical pro-

gramming is the fact that in many of these problems, it is often not easy to find the

optimal solution amongst the set of the very many alternative solutions. Moreso, in

many cases, finding an optimum can lead to significant economic savings, a greater

energy efficiency and a cleaner environment.
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The key aspect of mathematical programming for PSE is the availability of mod-

els (specifically mathematical models). Models are necessary in order to define the

objective function and the constraints sets. Models in PSE can come from mass,

momentum and energy balance equations, kinetic relationships, mass transfer rela-

tions, equilibrium relationships, etc. Model-based decision making, which involves

application of modeling for system analysis, design, verification and validation, is the

core of this thesis. Accuracy and reliability of models is therefore paramount, and

can lead to more realistic decisions. A general optimization problem can be cast in

the following form:

min
x

f(x)

s.t g(x) ≤ 0,

x ∈ D ⊂ Rn,

(P?)

where D = {x ∈ Rn : Ax ≤ d}.

The functions f : D → R and g : D → Rm are continuous, and parameters A ∈

Rn×m and d ∈ Rm. A minima to Problem (P?) exist if the set D∩{x ∈ Rn : g(x) ≤ 0}

is nonempty and compact (Weierstrass extreme value theorem [5]).

Depending on how f and g are defined, Problem (P?) can be the following:

1. Linear program (LP), if f and g are affine.

2. Nonlinear program (NLP), if at least one of f or gj, ∀j = 1, ...,m is nonlinear.

A nonlinear program can be,

(a) convex, if f and g are convex functions.
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(b) nonconvex, if either f or gj,∀j = 1, ...,m is a nonconvex function.

Another class of optimization problems is when the variables in Problem (P?)

include some integer values. Problem (P?) could be:

1. mixed-integer linear program (MILP), if f and g are affine and some xi,∀i =

1, ..., n are integer variables, or,

2. mixed-integer nonlinear program (MINLP), if f or gj,∀j = 1, ...,m is nonlinear

and some xi,∀i = 1, ..., n are integer variables.

An excellent book to review convex programming is [6]. The nice feature of a

convex program is that every local solution is a global solution. Nonconvexities, in

general, can be caused by either nonconvex functions and/or sets (as mentioned ear-

lier) or the presence of integer variables. Hence, the following classes of problems

are nonconvex; (a) MILP, (b) nonconvex NLP, (c) convex and nonconvex MINLP.

This clearly means that alot of practical problems in PSE are nonconvex problems.

Nonconvex programming problems can be solved by a special class of optimization

methods that can solve Problem (P?) to ε-optimality called deterministic global opti-

mization [7] [8]. Deterministic global optimization is discussed in the next section.

Application of MILP in PSE include production planning and scheduling [9], op-

timization of supply chains [10], determining minimum number of matches in heat

exchanger synthesis [11], heat integration in sharp distillation column sequences [12],

scheduling of batch processes [13], etc. MINLP typically arises in synthesis, design

and scheduling problems [1] [3], e.g. synthesis of distillation-based seperation systems

[14], design of complex reactor networks [15], design and scheduling of multipurpose
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plants [16], finding optimum pump configuration [17], etc. They also give much

greater flexibility for modeling a wide variety of problems [1].

1.2 Large-scale optimization problems with decomposable structures

The different application areas described in section 1.1, require that decisions are

made in the presence of uncertainty [18]. Uncertainty for instance affects the price

of fuel, demand of electricity, supply of raw materials, etc, in these applications.

One approach to handle uncertainty in mathematical programming is stochastic pro-

gramming. In the two-stage stochastic programming approach, decisions are divided

into first-stage or here and now decisions, and second-stage or wait and see deci-

sions [19] [20] [21]. Let us consider Problem (P?) with x = (x1, x2), f = (f1, f2)

and g = (g1, g2), a sample space Ω, with element ω ∈ Ω. We denote ζ as a finite

dimensional random vector and Eζ , the mathematical expectation with respect to ζ.

The two-stage stochastic program for Problem (P?) is then:

min
x1∈X1

f1(x1) + EζQ(x1, ζ) (TSSP0)

where,

Q(x1, ζ) = min
x2

f2(x2, ζ)

s.t g1(x1) + g2(x2, ζ) ≤ 0,

x2 ∈ X2(ζ),
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where x1 and x2 are the first and second-stage decision variables respectively. In the

first-stage, decisions are made without realization of uncertainty. Examples of such

kinds of decisions in PSE are design decisions, which are to determine the number or

capacity of process units, whether or not to include a process unit, etc. In the second-

stage, decisions called recourse decisions are made after the realization of uncertainty.

Second-stage decisions are typically operational decisions such as determining mate-

rial flowrates, pressures, concentrations in a process unit. A typical approach to solve

Problem (TSSP0) is to approximate the uncertainty set Ξ by a finite subset Ξ̃ that

follow a discrete distribution with finite support Ξ̃ = {ζ1, ..., ζs} ⊂ Ξ. Each realization

(called scenarios) ω ∈ {1, ..., s} ∈ Ω, has a associated probability pω. Discrete distri-

butions have a lot of applications, either directly or empirically, as approximations to

the underlying probability distribution [22]. Problem (TSSP0) can then be restated

as the so-called deterministic equivalent program [21]:

min
x1,x2,1,...,x2,s

s∑
ω=1

pω[f1(x1) + f2(x2,ω, ζω)]

s.t g1(x1) + g2(x2,ω, ζω) ≤ 0, ∀ω ∈ {1, ..., s}

x1 ∈ X1, x2 ∈ X2(ζω), ∀ω ∈ {1, ..., s}

or more conveniently as;
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min
x1,x2,1,...,x2,s

s∑
ω=1

pω[f1(x1) + f2,ω(x2,ω)]

s.t g1(x1) + g2,ω(x2,ω) ≤ 0, ∀ω ∈ {1, ..., s}

x1 ∈ X1, x2,ω ∈ X2,ω, ∀ω ∈ {1, ..., s}

(TSSP)

The above two-stage formulation implicitly assumes that ∀ω ∈ {1, ..., s},

x1 ∈ P (ω) = {x1 ∈ X1 : ∃x2,ω ∈ X2,ω, g1(x1) + g2,ω(x2,ω) ≤ 0}.

An alternative to the above is to introduce duplicate variables x1,1, ..., x1,s for x1 and

rewrite Problem (TSSP) as the following:

min
x1,x1,1,...,x1,s
x2,1,...,x2,s

s∑
ω=1

pω[f1(x1,ω) + f2,ω(x2,ω)]

s.t x1,ω = x1,ω+1, ∀ω ∈ {1, ..., s− 1},

g1(x1,ω) + g2,ω(x2,ω) ≤ 0, ∀ω ∈ {1, ..., s}

x1,ω ∈ X1, x2,ω ∈ X2,ω, ∀ω{1, ..., s}

(TSSP1)

where x1,1 = x1,2 = ... = x1,s are the nonanticipativity constraints [23] [24] [25]. The

goal of stochastic programming is to minimize the expected cost. Considering ex-

pected cost alone however, usually leads to a risk-neutral formulation [21] [26]. When

the effect of risk is considered in the two-stage stochastic programming formulation,

such as the value-at-risk or the condition value-at-risk variability metric, a more re-

alistic risk-averse stochastic program results [27] [19]. Another approach to modeling
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uncertainty in stochastic programming is the use of probabilistic or chance constrained

programming [28]. Probabilistic programming ensures that the probability of an un-

desirable outcome is limited by a specified threshold [29]. This is a useful approach

when ensuring feasibility over all realization of uncertainty is difficult.

Two-stage stochastic programming with or without risk/chance constraints lead

to large-scale optimization problems when s is large. These problems are large-scale

in the sense that the number of variables and constraints are large. However, these

problems have special structure because the constraint coefficient matrix are usually

quiet sparse. The problem structure can either be angular, dual-angular [30] [31],

or hybrid-angular structure. These different block structures are shown in Figure

1.1. Dual-angular programs contain variables that links across all rows in the block

structure e.g. Problem (TSSP). These variables (i.e. x0 in Problem (TSSP) ) are

called linking variables and the associated constraints can be referred to as weak

linking constraints. Angular programs contain strong linking constraints (referred to

as global constraints in [31]) that links all variables in the associated blocks. The

constraints x1,1 = x1,2 = ... = x1,s in Problem (TSSP1) are strong linking constraints.

Hybrid-angular structures contain both strong and weak linking constraints, e.g. two-

stage stochastic program with embedded chance or risk constraints, the chance or risk

constraints take the form h(x1, x2,1, ..., x2,ω) ≤ 0. More discussion on risk constraints

is in Chapter 4.

Other kinds of problems with special structure such as: (i) multiperiod optimiza-

tion [32], where decisions are made over finite time periods, or (ii) modeling dynam-

ically decoupled subsystems with linking constraints, e.g. a boiler-turbine system
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Dual-angular structure 
(e.g. Problem (TSSP))

Angular structure 
(e.g. Problem (TSSP1))

Hybrid-angular structure 
(e.g. Two-stage chance or risk constrained programs)

Figure 1.1: Dual-angular, angular and hybrid-angular structures

producing high pressure, middle pressure and low pressure steam as well as electric-

ity; the boilers being the dynamically decoupled subsystems while the demand for

various steam qualities and electrical power constitute the linking constraints [33].

These lead to large-scale optimization problems but they are however not considered

in this thesis.
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1.3 Decomposition based Approach for large-scale optimization problems

Approaches for solving large-scale mathematical programs may be divided broadly

into two classes: (i) monolith (direct) methods, which involves solving the overall

problems as a generic class of optimization problem such as LP, MILP, nonlinear con-

vex or nonconvex programming, etc, and (ii) decomposition or partitioning techniques

[30].

Decomposition based approaches are characterized by a splitting of the original

problem into smaller independent subproblems and a coordinating problem, and solv-

ing these subproblems iteratively until convergence. The key to the validity of decom-

position based approaches is that after solving the smaller subproblems for a finite

number of times, the coordinating problem attains the optimal solution of the origi-

nal problem; either precisely or within the prescribed tolerance, in most cases. The

classical decomposition methods are Benders decomposition [34]/generalized Ben-

ders decomposition [35] (a variant of GBD is outer approximation by Duran and

Grossmann [36]), Dantzig-Wolfe decomposition [37], Lagrangian decomposition [38]

(variants include augmented Lagrangian method [39] , Progressive hedging [40] and

the alternating direction of multiplier method [41] [42]).

J.F. Benders first introduced a decomposition technique, now called Benders de-

composition (BD), to solve large-scale mixed-integer programming problems [34]. In

stochastic programming literature, Van Slyke and Wets [43] [21] applied BD to dual-

angular problems and called it L-shaped method (because of the L-shaped struc-

ture of angular programs). A recent review paper containing a list of application is

[44]. Geoffrion developed the generalized Benders decomposition (GBD) for mixed-

integer nonlinear programming problems [35], by using Lagrangian duality theory. In
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BD/GBD, Problem (TSSP) is reformulated to the following problem by projection

onto the space of x1 thus:

min
x1

v(x1)

s.t x1 ∈ X1 ∩ V
(Pproj?)

where,

v(x1) = inf
x2,1,...,x2,s

s∑
ω=1

pω[f1(x1) + f2,ω(x2,ω)]

s.t g1(x1) + g2,ω(x2,ω) ≤ 0, ∀ω ∈ {1, ..., s}

x2,ω ∈ X2,ω, ∀ω ∈ {1, ..., s}

and,

V = {x1 ∈ X1 : ∃x2 ∈ X2, g1(x1) + g2(x2,ω) ≤ 0, ∀ω ∈ {1, ..., s}}.

The master problem, equivalent to Problem (TSSP), is constructed by applying

Lagrangian duality on Problem (Pproj?). The relaxed master problem (the coordi-

nating problem in this case), obtained by removing some of the constraints or cuts

in the master problem, is updated by cuts derived by solving subproblems called

primal problems. These cuts (or cutting planes [45]) are added iteratively to the

relaxed master problem until it converges to the master problem. Further discussion

of BD/GBD include multicut Benders decomposition [46] [47] and cut strengthening

[48]. In GBD, dual information of the subproblems is required to construct the relaxed
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master problem. In outer approximation, a variant of GBD, where primal informa-

tion of the subproblems and differentiability property of the participating functions

are required to construct the relaxed master problem [36].

Dantzig-Wolfe decomposition (DWD) was first developed for linear programs with

angular structure by G. Dantzig and P. Wolfe [37]. Several applications, especially

under the term column generation, appear in the literature [49] [50] [51]. DWD is

based on the principle of convex combination. We can write a polyhedral set X2 as:

X2 = {x2 ∈ Rnx2 : x2 =
∑
j∈J

θjxj
2, θ

j ≥ 0,∀j ∈ J}.

where xj
2 corresponds to the extreme points (called columns) in X2 and J is the set

containing indices of extreme points in X2. A master problem, containing a convex

hull representation of X2 given above, is constructed. The extreme points or columns

are generated by solving subproblems called pricing problems. Generation of columns

iteratively refines the description of the restricted master problem (containing a subset

of columns in the convex hull of X2), ultimately leading to the convergence of the

procedure. There is close relationship between BD and DWD, as BD applied to a

problem is equivalent to applying DWD on the dual of the problem (only true for

linear programming) [30] [39].

Lagrangian decomposition or relaxation (LD) (also closely related to DWD [52])

can be applied to large-scale programs with angular structure as well [53] [38]. LD

are applicable to problems without a dual gap, which includes linear and convex

nonlinear programming problems. In the LD procedure, the following dual problem

for Problem (TSSP1) is obtained by dualizing the nonanticipativity constraints:
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max
λ1,...,λs−1∈Rm

D(λ1, ..., λs−1) (DP?)

where λ1, ..., λs−1 are the Lagrange multipliers associated with the nonanticipativity

constraints. The dual function D is given by,

D(λ1, ..., λs−1) = min
x1,x1,1,...,x1,s
x2,1,...,x2,s

L(x1, x1,1..., x1,s, x2,1..., x2,s, λ1, ..., λs−1)

s.t g1(x1,ω) + g2,ω(x2,ω) ≤ 0, ∀ω ∈ {1, ..., s},

x1 ∈ X1, x2,ω ∈ X2,ω, ∀ω ∈ {1, ..., s},

(DF?)

and the Lagrangian function L is,

L(x1, x1,1..., x1,s, x2,1..., x2,s, λ1, ..., λs−1) =
s∑

ω=1

pω[f1(x1) + f2,ω(x2,ω)] +
s−1∑
ω=1

λT
ω(xω − x1,ω)

Problem (DP?) provides lower bounds on the original problem, but it is not

solved directly. Problem (DF?), with Lagrange multipliers λ1, ..., λs−1 fixed, called

Lagrangian subproblem is solved. λ1, ..., λs−1 can be generated by: (i) cutting plane

methods, i.e. solving a master problem [54], or (ii) using heuristic based subgra-

dient method [24] [39]. The issues in the application of Lagrangian decomposition

are that; (a) the solution obtained from the Lagrangian subproblem may violate the

constraints that have been relaxed, (b) the dual function, D, is seldom differentiable

and (c) it may be difficult to obtain feasible solution to the original problem [55] [39].

To ensure convergence to the optimal solution for problems with a duality gap (e.g.
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mixed-integer linear programs), Lagrangian decomposition is applied in the branch-

and-bound framework [56]. One way to avoid numerical instability in LD is the

augmented Lagrangian method [39], [57], where the augmented Lagrangian function,

Laug, has a stabilization term to penalize violation of infeasible solution, i.e.,

Laug(x1, x1,1, ..., x1,s, x2,1, ..., x2,s, λ1, ..., λs−1) =
s∑

ω=1

[pω(f1(x1) + f2,ω(x2,ω)) + λT
ω(xω − x1,ω)

c

2
||(xω − x1,ω)||2

and,

Daug(λ1, ..., λs−1) = min
x1,x1,1,...,x1,s
x2,1,...,x2,s

Laug(x1, x1,1, ..., x1,s, x2,1..., x2,s, λ1, ..., λs−1)

s.t g1(x1,ω) + g2,ω(x2,ω) ≤ 0, ∀ω ∈ {1, ..., s},

x1 ∈ X1, x2,ω ∈ X2,ω, ∀ω ∈ {1, ..., s},

where c is a positive parameter, and ||.|| is typically the 2−norm. Progressive hedging

introduced by R. Wets [40] and alternating direction of multiplier method (ADMM)

[41] [42] are other decomposition methods based on the augmented Lagrangian func-

tion above and are not explored further. More discussions on BD/GBD, DWD and

LD are in chapter 2 and 5. The key advantage of BD/GBD approach over the other

decomposition methods is that, with the appropriate problem reformulation, it can

guarantee rigorous global solutions for nonconvex optimization problems.

It is well known that BD is a cutting plane method [30]. All BD cuts form

convex constraints in the BD master problem. As mentioned earlier, DWD on a
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problem is equivalent to performing BD on the dual of the problem and therefore a

cutting plane method [58]. The idea of cutting plane method for convex programs

dates back to Kelly [59], which in turn has some connection to Gomory cuts [60] in

integer programming. It has been proven that for convex programs, if the cuts are

properly selected, the cutting plane method has geometric convergence rate [45] [58].

Geometric convergence is defined as the following:

||xk − x?|| ≤ cδk, ∀k,

where xk, is the value at a particular iteration k, x? is the optimal solution and c and

δ are constants.

Rigorous proofs of geometric convergence for BD/GBD or DWD/LD is not known

till date. This is because for convex programs, the standard implementation of BD

and DWD may not yield proper cuts to achieve a geometric convergence rate, and

for nonconvex programs the current proofs are not valid (as convexity of the feasible

set is needed for the proof). Two important notes about BD/GBD or DWD/LD are

the following:

1. Although theoretical rate of convergence of BD/GBD or DWD/LD is not known,

no observations have been made in the literature to suggest that the number

of BD/GBD or DWD/LD iterations could grow exponentially with the size of

the overall problem (actually in the case studies to be presented in the subse-

quent chapters, no significant change in number of iterations can be seen for

decomposition as the problem size increases).

2. Slow rate of convergence of BD/GBD or DWD/LD (called ”tailing off effect”)
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have been widely recognized [51] [61] [62].

1.4 Global Optimization

Nonconvex optimization problems have been important throughout history in many

engineering applications. Nevertheless, solutions to nonconvex problems had largely

remained unexplored because of the huge amount of computational effort required.

However, the work of G.P. McCormick in the late 1970s, led to a surge in activity

in global optimization. The surge was partly due to the advancement of computer

hardwares [63], and partly due to the realization that existing local optimization

methods may find local solutions which are far away from global optimal solutions

[18]. Global optimization of a nonconvex optimization problem (e.g. Problem (P?))

entails finding at least one point x? ∈ D satisfying f(x?) ≤ f(x), ∀x ∈ X, where

X = D ∩ {x ∈ Rn : g(x) ≤ 0} or show that Problem (P?) is infeasible. There are

possibly two major difficulties in solving nonconvex optimization problems:

1. gradient-based search strategies for convex (local) optimization cannot guaran-

tee global solution.

2. MILP belong to the class of NP-complete problems [64] [65] and nonconvex

continuous NLP is in class of NP-hard [66], therefore in general, nonconvex

optimization belong to the class of NP-hard problems [67]. This means that in

the worse case, the computational time grows exponentially with problem size.

A lot of practical engineering problems, however, can be solved rather efficiently.

Global optimization methods refers to class of solution methods for nonconvex opti-

mization problems. They can generally be categorized as stochastic or deterministic.
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Stochastic methods rely on physical analogy by generating trial points which mimic

the approach to an equilibrium point [1]. Examples include genetic algorithm, tabu

search, particle swarm algorithms, simulated annealing, etc. These methods cannot

guarantee that a global solution is obtained. Deterministic approaches on the other

hand, operate by generating rigorous upper and lower bounds on the problem, that

ultimately converge to an ε-optimal global solution. They typically provide math-

ematical guarantees for convergence to ε-global minimum in finite number of steps

and is the focus of this thesis. General deterministic solution strategy for nonconvex

optimization are based on the following key ingredients: branch-and-bound search,

convex relaxation and relaxation strengthening.

In branch-and-bound [68] methods, the feasible set is relaxed and subsequently

split into parts (branching) over which lower (and often upper) bounds of the objective

function value can be determined (bounding). The details of the above step for

Problem (P?), is as follows [66]:

1. start with a relaxed feasible set M ⊃ X and partition M into finitely many

subsets, Mi, i ∈ I.

2. for each subset Mi, determine lower bounds α(Mi) and possibly upper bounds

β(Mi), that satisfies

α(Mi) ≤ min
x∈Mi∩X

f(x) ≤ β(Mi).

Then LBD = mini∈I α(Mi) and UBD = mini∈I β(Mi), where

LBD ≤ min
x∈X

f(x) ≤ UBD
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3. if UBD − LBD ≤ ε, where ε is a small tolerance, then return the current

solution as the ε-optimal global solution and stop.

4. otherwise select some of the subsets Mi, and partition these chosen subsets in

order to obtain a refined partition of M (by fathoming some portions). Deter-

mine new bounds and the new partitions and repeat the process.

Convex relaxation (specifically continuous relaxation for MILP [69]) is one of the

important tools in global optimization, and an essential aspect of the branch-and-

bound process. Convex relaxations for a nonconvex problem (P?) are obtained by

replacing nonconvex functions f , g by convex relaxation functions f̂ and ĝ, where

f̂ ≤ f , ĝ ≤ g and the nonconvex set X by a convex relaxation X̂ ⊃ X. Because

every local optimum is a global optimum for convex programs, solving the convex

relaxation,

min
x∈X̂

f̂(x),

with a local optimizer will obtain a global minimum of the above problem, which is

a lower bound to Problem (P?). Several techniques available for generating convex

relaxations include McCormick relaxation [70], piecewise linear relaxation [71] [72],

outer linearization [73] for factorable nonconvex functions and αBB relaxation for

twice-differentiable nonconvex functions [74]. A hybrid relaxation approach is dis-

cussed in [75]. Consider Figure 1.2, for a univariate nonconvex function f(x) = −x2

on the interval [−1 2], a convex relaxation of the nonconvex function derived via

αBB relaxation is shown. The convex function derived in this case, i.e., f̂(x) = −x−2,

provides a lower bound to f and is infact the convex envelope of f (tightest possible

convex relaxation).
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The convex relaxation can often be very loose [2], and can be improved by strength-

ening. Typical examples of ways to strengthen convex relaxation are; addition of cut-

ting planes [76] and domain reduction (either optimization based domain reduction

or bound tightening [74], or marginal based domain reduction [77]). Figure 1.3 shows

how a tighter convex relaxation of f(x) = −x2, i.e. f̂(x) = −1.5x−1, is generated by

fathoming part of the interval that does not contain the optimum (the shaded portion

on the left), in other words, by reducing the range of x from [−1 2] to [−0.5 2],

the convex relaxation of f is tightened.
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Figure 1.2: convex relaxation of −x2 for x ∈ [−1 2]

Note that because global optimization methods rely on branch-and-bound search

for solution, in the worse case, the solution time varies exponentially with the number

of variables to be branched on. However, the difference between monolith and de-

composition based approaches lie in the following; (i) standard monolith approaches
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Figure 1.3: convex relaxation of −x2 for x ∈ [−1 2] and x ∈ [−0.5 2]

for solving nonconvex problems exhibit exponential computational complexity (NP-

hard) [66] with respect to the full problem size, (ii) decomposition based optimization,

on the other hand, is also NP-hard (because nonconvex problems are often solved)

but with respect to the size of the smaller nonconvex subproblems. This partially ex-

plains why monolith approaches for stochastic programs exhibit exponential growth in

solution time as the number of scenario increases, while decomposition based methods

tend to exhibit a linear (at most polynomial) time behavior with increase in number

of scenarios. The behavior is observed in the case studies in chapter 2, 3, 4 and

5. The other good feature of decomposition based approaches is that decomposition

subproblems can readily be solved in parallel to improve computational time of the

overall problem. Therefore, applying parallel computing architectures to decompo-

sition algorithms can greatly improve solution time. Consequently, decomposition
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approaches, in conjunction with global optimization techniques on smaller subprob-

lems can potentially improve efficiency for large-scale optimization problems.

The current rigorous decomposition methods for global optimization of nonconvex

programs are the following:

1. Lagrangian based branch and cut algorithm by Karuppiah and Grossmann [78].

This approach combines Lagrangian decomposition, branch-and-bound search

and cutting planes to solve mixed-integer nonconvex programming problem.

2. Nonconvex generalized Benders decomposition (NGBD) by Li and Barton [79].

This approach is an extension of GBD whereby convex relaxations (based on

McCommick relaxations [70]) and canonical cuts [80] are combined with GBD

to solve mixed-integer nonconvex programs.

3. A most recently developed decomposition approach by Kannan and Barton [81]

combines nonconvex generalized Benders decomposition, Lagrangian decompo-

sition and branch-and-bound to solve mixed-integer nonconvex programs.

The methods presented above either require explicit branch-and-bound search at

the decomposition level e.g. (1) and (3), or require that the linking variables, i.e. x1

in Problem (TSSP) are integer variables e.g. (2).

1.5 Objective and Contribution of Thesis

The objective of the thesis is to develop new rigorous decomposition based methods

that can, (i) improve performance of BD/GBD, and (ii) do not require explicit branch-

and-bound search at the decomposition level, for global optimization of mixed-integer

linear and nonlinear nonconvex optimization problems.
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The contributions in this thesis is two-fold. First, a cross decomposition (CD)

framework, a blend of BD and LD, is developed to solve angular and dual-angular

mixed-integer linear programs. The CD in this thesis is different from CD in the

literature [82] [83] [84] [54] due to the following reasons (i) it generates extra upper

bounding problems for the original problem, (ii) feasibility issues are addressed exten-

sively and (iii) new heuristic to avoid solving unnecessary subproblems are developed.

A variant of CD composed of multicolumn and multicut restricted and relaxed master

problem respectively, called multicolumn-multicut (MCMC) cross decomposition is

also developed. Moreso, a novel extension of CD to handle hybrid-angular structures

called extended cross decomposition (ECD), is proposed. Case studies of a bioprod-

uct and a chemical supply chain optimization problems are used to demonstrate the

performance of the new decomposition strategies.

Secondly, a novel decomposition technique for mixed-integer nonconvex programs

referred to as ”joint decomposition” is developed. This method is different from

current decomposition techniques in the literature because, (i) it does not require

explicit branch-and-bound search at the decomposition level, (ii) it can guarantee

rigorous global solutions for MINLPs. In addition, domain reduction schemes are

applied for the first time to joint decomposition to improve solution efficiency. Case

studies include a pooling problem and a natural gas network design and operation

problem.

1.6 Organization of Thesis

The thesis is organized as follows. In chapter 2, a new cross decomposition method

for two-stage stochastic mixed integer programming is presented.
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Thereupon chapter 3 discusses multicolumn-multicut extensions of cross decom-

position method for two-stage stochastic mixed integer programming.

The extended cross decomposition to solve two-stage stochastic programs with

strong and weak linking constraints (with the strong linking constraints coming from

conditional value-at-risk constraints, CVaR) is described in chapter 4.

Chapter 5 discusses a novel decomposition technique to solve two-stage stochastic

nonlinear nonconvex optimization problems. This method is called ‘joint decomposi-

tion‘.

Chapter 6 draw conclusions and outlines future research directions.
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Chapter 2

A New Cross Decomposition Method for

Stochastic Mixed-Integer Linear Programming ∗

2.1 Introduction

Mixed-integer linear programming (MILP) paradigm has been applied to a host of

problems in process systems engineering, including but not limited to problems in

supply chain optimization [85], oil field planning [86], gasoline blending and scheduling

[87], expansion of chemical plants [32]. In such applications, there may be parameters

in the model that are not known with certainty at the decision making stage. These

parameters can be customer demands, material prices, yields of the plant, etc. One

way of explicitly addressing the model uncertainty is to use the following scenario-

based two-stage stochastic programming formulation:

∗This chapter has been published in Ogbe E, Li X, A new cross decomposition method for
stochastic mixed-integer linear programming, European Journal of Operational Research, 256 (2017),
pp. 287-299. The equations, assumptions, propositions, theorems, symbols and notations defined in
this chapter are self-contained.
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min
x0

x1,...,xs

s∑
ω=1

[cT0,ωx0 + cTωxω]

s.t. A0,ωx0 + Aωxω ≤ b0,ω, ∀ω ∈ {1, ..., s},

xω ∈ Xω, ∀ω ∈ {1, ..., s},

x0 ∈ X0,

(SP)

Here x0 includes the first-stage variables, which include ni integer variables and nc

continuous variables. Set X0 = {x0 ∈ Zni×Rnc : B0x0 ≤ d0}, xω includes the second-

stage variables for scenario ω and set Xω = {xω ∈ Rnx : Bωxω ≤ dω}. Parameter b0,ω ∈

Rm, and other parameters in problem (SP) have conformable dimensions. Note that

the second-stage variables in (SP) are all continuous.

Usually a large number of scenarios are needed to fully capture the characteristics

of uncertainty; as a result, Problem (SP) becomes a large-scale MILP, for which

solving the monolith (full model) using commercial solvers (such as CPLEX) may

fail to return a solution or return a solution quickly enough. However, Problem (SP)

exhibits a nice block structure that can be exploited for efficient solution. Figure 5.1

illustrates this structure. The structure of the first group of constraints in Problem

(SP) is shown by part (1) of the figure, and the structure of the last two groups is

shown by part (2).

There exist two classical ideas to exploit the structure of Problem (SP). One is

that, if the constraints in part (1) are dualized, Problem (SP) can then be decom-

posed over the scenarios and therefore it becomes a lot easier to solve. With this

idea, the first group of constraints in Problem (SP) are viewed as linking constraints.
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Figure 2.1: The block structure of Problem (SP)

Dantzig-Wolfe decomposition (DWD) [37] or column generation [49] [51] is one classi-

cal approach following this idea. In this approach, constraints in part (1) are dualized

to form a pricing problem. The optimal solution of the pricing problem not only leads

to a lower bound for Problem (SP), but also provides a point, or called a column,



2.1. INTRODUCTION 26

which is used to construct a restriction of set
∏s

ω=1Xω. With this restriction, a (re-

stricted) master problem is solved, and the solution gives an upper bound for Problem

(SP) and new dual multipliers for constructing the next pricing problem. Another ap-

proach following the same idea is Lagrangian decomposition/relaxation [53] [88] [89],

where a lower bounding Lagrangian subproblem is solved at each iteration and the

Lagrange multipliers for the subproblems can be generated by solving the non-smooth

Lagrangian dual problem or by some heuristics. Since this idea relies on the fact that

the dualization of the constraints in part (1) is not subject to a duality gap, these

methods can finitely find an optimal solution of Problem (SP). If integer variables

are present, the methods have to be used in a branch-and-bound framework to ensure

finite termination with an optimal solution [90] [89] [91], such as the branch-and-price

method [92] [50] [90] [93] [94] [95] [96] [97] and the branch-price-cut method [98].

The other idea to exploit the structure is based on the fact that, if the value of

x0 is fixed, then the block column A0,1, · · · , A0,s in part (1) no longer links the differ-

ent scenarios and therefore Problem (SP) becomes decomposable over the scenarios.

With this idea, the first-stage variables are viewed as linking variables. Benders De-

composition (BD) [34] or L-shaped method [43] is a classical approach following this

idea. In this approach, through the principle of projection and dualization, Problem

(SP) is equivalently reformulated into a master problem, which includes a large but

finite number of constraints, called cuts. A relaxation of master problem that includes

a finite subset of the cuts can be solved to yield a lower bound for Problem (SP) as

well as a value for x0. Fixing x0 to this value yields a decomposable upper bounding

problem for Problem (SP). One important advantage of BD over DWD or Lagrangian

decomposition is that, finite termination with an optimal solution is guaranteed, no
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matter whether x0 includes integer variables. However, when x0 is fixed for some

problems, the primal problem can have degenerate solutions[48] [83] [99], resulting in

redundant Bender cuts and slow convergence of the algorithm [100] [101].

It is natural to consider synergizing the two aforementioned ideas for a unified

decomposition framework that not only guarantees convergence for mixed-integer x0,

but also leads to improved convergence rate. Van Roy proposed a cross decompo-

sition method, which solves BD and Lagrangian relaxation subproblems iteratively

for MILPs with decomposable structures [82]. The computational advantage of the

method was demonstrated through application to capacitated facility location prob-

lems [83]. Further discussions on the method, including generalization for convex

nonlinear programs was done by Holmberg [102] [84]. One important assumption of

this cross decomposition method is that, the (restricted or relaxed) master problems

from BD and Lagrangian relaxation are difficult to solve and should be avoided as

much as possible. However, this is usually not the case for Problem (SP). Therefore,

Mitra, Garcia-Herreros and Grossmann recently proposed a different cross decompo-

sition method [103] [54], which solves subproblems from BD and Lagrangian decom-

position equally frequently. They showed that their cross decomposition method was

significantly faster than BD and the monolith approach for a two-stage stochastic

programming formulation of a resilient supply chain with risk of facility disruption

[104] [105]. Both Van Roy and Mitra et al. assumed that all the subproblems solved

are feasible.

In this chapter, we propose a new cross decomposition method which has two

major differences from the cross decomposition methods in the literature. First, we

combine BD and DWD instead of BD and Lagrangian decomposition in the method.
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Second, we solve the subproblems in a different order. In addition, we include in

the method a mechanism so that the algorithm will not be stuck with infeasible

subproblems. In order to simplify our discussion, we rewrite Problem (SP) into the

following form:

min
x0,x

cT0 x0 + cTx

s.t. A0x0 + Ax ≤ b0,

x ∈ X,

x0 ∈ X0,

(P)

where x = (x1, · · · , xs), X =
∏s

ωXω, c0 = (c0,1, · · · , c0,s), c = (c1, · · · , cs), b0 =

(b0,1, · · · , b0,s), A0 = (A0,1, · · · , A0,s), A = diag(A1, · · · , As). Remember that due to

the problem structure shown in Figure 2.1, when x0 is fixed or/and the first group

of constraints are dualized, Problem (P) becomes much easier. Since for most real-

world applications, the values of decision variables are naturally bounded, we make

the following assumption.

Assumption 2.1. X0 and X are non-empty and compact.

In fact, this assumption is not vital for the proposed method, but with it the

discussion is more convenient.

The remaining part of the article is organized as follows. In section 2.2, we dis-

cuss classical decomposition methods and their relationships. Then, in section 2.3,

we present the new cross decomposition method, give the subproblems and discuss

the properties of the subproblems. In section 2.4, we give further discussions on

the new method, including warm starting the algorithm with a Phase I procedure
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and adaptively alternate between DWD and BD iterations. Two case studies; a bio-

product supply chain optimization problem and an industrial chemical supply chain

problem, are presented to demonstrate the computational advantage of the new cross

decomposition method in section 2.5. The article ends with conclusions in section

2.5.3.

2.2 Classical Decomposition Methods

In this section we discuss three classical decomposition methods, which are BD, DWD,

and Lagrangian decomposition. We review some theoretical results that are impor-

tant for understanding how and why our new cross decomposition method works.

The results either have been proved in literature or are easy to prove. Proofs of all

propositions in the chapter are provided in Appendix A.

2.2.1 Benders decomposition

We first explain BD from the Lagrangian duality perspective, such as in [35], rather

than from the linear programming (LP) duality perspective. There are two benefits in

doing this here. One is the convenience for associating BD to DWD and Lagrangian

decomposition, the other is the convenience for future extension of the cross decompo-

sition to convex nonlinear problems. In BD, an alternative problem that is equivalent

to Problem (P) is considered. We call this problem Benders Master Problem (BMP)
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in this chapter, and it is given below:

min
x0,η

η

s.t. η ≥ inf
x∈X

(
cTx+ λTAx

)
+ (cT0 + λTA0)x0 − λT b0, ∀λ ∈ Λopt,

0 ≥ inf
x∈X

λTAx+ λT (A0x0 − b0), ∀λ ∈ Λfeas,

x0 ∈ X0.

(BMP)

This problem can be equivalently transformed from Problem (P) via projection and

dualization. The reformulation procedure is explained in [35]. The first group of

constraints in Problem (BMP) are called optimality cuts, and the second group of

constraints are called feasibility cuts. λ represents Lagrange multipliers from dualiz-

ing the linking constraints, and the different optimality or feasibility cuts are differ-

entiated by the different multipliers involved. The multipliers in the optimality cuts

are optimal dual solutions of the following Benders Primal Problem (BPP), which is

constructed at Benders iteration k by fixing x0 to constant xk0:

min
x

cT0 x
k
0 + cTx

s.t. A0x
k
0 + Ax ≤ b0,

x ∈ X.

(BPPk)

If Problem (BPPk) is infeasible for x0 = xk0, then the following Benders Feasibility

Problem (BFPk) is solved and its optimal dual solution is a multiplier for a feasibility
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cut:

min
x,z

||z||

s.t. A0x
k
0 + Ax ≤ b0 + z,

x ∈ X,

z ≥ 0,

(BFPk)

where || · || can be any norm function. The 1-norm is used in the case studies of this

chapter. Note that Problem (BFPk) is always feasible and has a finite objective value

if X is nonempty.

Proposition 2.1. Problem (BMP) is equivalent to Problem (P) if Λopt is {λ ∈ Rm :

λ ≥ 0} or the set of all extreme dual multipliers of Problem (BPPk), and Λfeas is

{λ ∈ Rm : λ ≥ 0} or the set of all extreme dual multipliers of Problem (BFPk). Here

extreme dual multipliers of a LP problem refer to extreme points of the feasible set of

the LP dual of the problem.

In BD, a relaxation of Problem (BMP) that includes part of the optimality and

feasibility cuts, instead of Problem (BMP) itself, is solved at each iteration. This

problem can be called Benders Relaxed Master Problem (BRMP). We will further

discuss BRMP in the next section.

2.2.2 Dantzig-Wolfe decomposition

DWD considers a different master problem, which is constructed by representing the

bounded polyhedral set X in Problem (P) with a convex combination of all its extreme

points. We call this problem Dantzig-Wolfe Master Problem (DWMP) and give it
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below:

min
x0,x

cT0 x0 + cTx

s.t. A0x0 + Ax ≤ b0,

x0 ∈ X0,

x ∈

{
x : x =

nF∑
i=1

θixi,

nF∑
i=1

θi = 1, θi ≥ 0 (i = 1, · · · , nF )

}
.

(DWMP)

The next proposition shows that, for Problem (DWMP) being equivalent to Problem

(P), the points xi in Problem (DWMP) do not have to all be the extreme points.

Proposition 2.2. Problem (DWMP) is equivalent to Problem (P) if E(X) ⊂ {x1, · · · , xnF } ⊂

X, where E(X) denotes the set of all extreme points of X.

In DWD, a restriction of Problem (DWMP) that includes part of the extreme

points of X, called Dantzig-Wolfe Restricted Master Problem (DWRMP), is solved

at each iteration, yielding an upper bound for Problem (P). The extreme points are

selected from the solutions of the following Dantzig-Wolfe Pricing Problem (DWPP):

min
x

(cT + (λk)TA)x

s.t. x ∈ X,
(DWPPk)

where the λk denotes Lagrange multipliers of the linking constraints for the previously

solved DWRMP. We will further discuss on DWRMP in the next section.
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2.2.3 Lagrangian decomposition

Lagrangian decomposition considers the following dual problem of (P):

max
λ≥0

min
x0∈X0,x∈X

cT0 x0 + cTx+ λT (A0x0 + Ax− b0) (LD)

Note that Problem (LD) is equivalent to Problem (P) only when there is no duality

gap. However, this is generally not the case for MILPs. In iteration k of Lagrangian

decomposition, the following relaxation of Problem (P), called Lagrangian subprob-

lem, is solved:

min
x0,x

cT0 x0 + cTx+ (λk)T (A0x0 + Ax− b0)

s.t. x0 ∈ X0,

x ∈ X.

(LSk)

It is not trivial to generate λk for (LSk) at each iteration. Several approaches have

been used in the literature for multiplier generation, including solving the nonsmooth

Lagrangian dual problem via some nonsmooth optimization methods such as subgra-

dient methods [106] [38] [107], and solving restricted Lagrangian dual problems [82]

[103]. The restricted Lagrangian dual master problem is given as:

max
η0,λ

η0

s.t. η0 ≤ cT0 x
i
0 + cTxi + (λ)T (A0x

i
0 + Axi − b0), i ∈ Ik

λ ≥ 0,

(RLDk)
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where xi0 are extreme points of X0 that are generated from previous iterations.

Obviously, Problem (LSk) can be decomposed into a subproblem including x0 only

and a subproblem including x only. The latter one is actually Problem (DWPPk).

Thus we can view DWD as a variant of Lagrangian decomposition, which, in addition

to what a regular Lagrangian decomposition approach does, also provides a systematic

mechanism to generate Lagrange multipliers and problem upper bounds.

The next proposition states that, for a group of given Lagrange multipliers, a Ben-

ders optimality cut can be constructed either from the solution of a BD subproblem

or from a DWD subproblem.

Proposition 2.3. Let λk represent Lagrange multipliers for the linking constraints

in Problem (BPPk) and Problem (DWPPk), then

inf
x∈X

(
cTx+

(
λk
)T
Ax
)

+
(
cT0 + (λk)TA0

)
x0 − (λk)T b0

=objBPPk +
(
cT0 + (λk)TA0

) (
x0 − xk0

)
=objDWPPk +

(
cT0 + (λk)TA0

)
x0 − (λk)T b0,

where objBPPk , objDWPPk denote the optimal objective values of Problems (BPPk),

(DWPPk), respectively, and xk denotes an optimal solution of Problem (BPPk) asso-

ciated with λk.

The next proposition states that a Benders feasibility cut can be constructed from

the solution of Problem (BFPk).

Proposition 2.4. Let λk represent Lagrange multipliers for the linking constraints
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Figure 2.2: Three cross decomposition strategies

in Problem (BFPk), then

inf
x∈X

(λk)TAx+ (λk)T (A0x0 − b0)

=objBFPk + (λk)TA0

(
x0 − xk0

)
,

where objBFPk denotes the optimal objective values of Problems (BFPk) and xk de-

notes an optimal solution of Problem (BFPk).

2.3 The New Cross Decomposition Method

2.3.1 Different Cross Decomposition Strategies

Figure 2.2 illustrates the diagrams of three cross decomposition strategies proposed

by Van Roy [82], Mitra et al. [54], and this chapter. Van Roy’s cross decomposition
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includes BD subproblems BPP and BRMP, and Lagrangian decomposition subprob-

lems RLD and LS. Here RLD stands for restricted Lagrangian dual problem, which

results from restricting set X in Problem (LD) to the convex hull of a number of

extreme points of X. Since this cross decomposition method is designed for applica-

tions in which the master problems RLD and BRMP are much more difficult than

problems BPP and LS, so it mostly solves BPP and LS iteratively and only solves

RLD and BRMP when necessary.

The cross decomposition proposed by Mitra et al. includes the same subproblems,

but the order in which the subproblems are solved is different. As the method is

designed for stochastic MILPs in which the master problems RLD and BRMP are

usually easier than subproblems LS and BPP, it does not avoid solving RLD and

BRMP as much as possible. Instead, it solves each of the four subproblems equally

frequently. In addition, solutions of BPP are used to yield extra columns to enhance

RLD and the solutions of LS are used to yield extra cuts to enhance BRMP. Although

the extra cuts and columns make the master problems larger and more time consuming

to solve, they also tighten the relaxed master problems and reduce the number of

iterations needed for convergence.

The cross decomposition method proposed in this chapter was initially motivated

by the complementary features of DWD and BD. So this method includes DWD it-

erations that solve DWRMP and DWPP and BD iterations that solve BPP/BFP

and BRMP. The method alternates between several DWD iterations and several BD

iterations. Just like in the cross decomposition proposed by Mitra et al., the solutions

of BPP and DWPP are used to generate extra columns and cuts to enhance mas-

ter problems DWRMP and BRMP. Compared to the other two cross decomposition
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methods, we believe that there are two major advantages of the method proposed in

this chapter:

1. The DWD restricted master problem DWRMP provides a rigorous upper bound

for Problem (P), while the restricted Lagrangian dual RLD does not. Actually,

according to Van Roy (1983), RLD is a dual of DWRMP. On the other hand,

DWPP is similar to LS and either one can provide a cut to BRMP (according

to the discussion in the previous section). Therefore, using DWD instead of

Lagrangian decomposition in the cross decomposition framework is likely to

achieve a better convergence rate.

2. Feasibility issues are addressed systematically. When BPP is infeasible, a Ben-

ders feasibility problem BFP is solved to allow the algorithm to proceed. In

addition, a Phase I procedure is introduced to avoid infeasible DWRMP.

In the next two subsections, we will give details for the subproblems solved in the

proposed new cross decomposition method, and the sketch of the basic algorithm. In

section 2.4, we will propose a Phase I procedure to avoid solving infeasible DWRMP

and also discuss how to adaptively alternate between DWD and BD iterations.

2.3.2 Subproblems in the New Cross Decomposition Method

In the new cross decomposition method, we call either a BD iteration (i.e., the solution

of one BPP/BFP and one BRMP) or a DWD iteration (i.e. the solution of one

DWRMP and one DWPP) a CD iteration. At the kth CD iteration, subproblem

BPP/BFP or DWPP to be solved is same to Problem (BPPk)/(BFPk) or (DWPPk)

given in section 2.2. The BRMP problem solved in the kth CD iteration can be
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formulated as follows:

min
x0,η

η

s.t. η ≥ objBPP i +
(
cT0 + (λi)TA0

) (
x0 − xi0

)
, ∀i ∈ T kopt,

0 ≥ objBFP i +
(
λi
)T
A0(x0 − xi0), ∀i ∈ T kfeas,

η ≥ objDWPP i +
(
cT0 + (λi)TA0

)
x0 − (λi)T b0, ∀i ∈ Uk

opt,

x0 ∈ X0,

(BRMPk
r)

where T kopt includes the indices of all previous iterations in which Problem (BPPk)

is solved and feasible, T kfeas includes the indices of all previous iterations in which

Problem (BFPk) is solved, Uk
opt includes the indices of all previous iterations in which

Problem (DWPPk) is solved.

Proposition 2.5. Problem (BRMPk
r) is a valid lower bounding problem for Problem

(P)

The DWRMP problem solved in the kth CD iteration can be formulated as follows:

min
x0,θi

cT0 x0 + cT

(∑
i∈Ik

θixi

)

s.t. A0x0 + A

(∑
i∈Ik

θixi

)
≤ b0,

∑
i∈Ik

θi = 1,

θi ≥ 0, ∀i ∈ Ik,

x0 ∈ X0,

(DWRMPk)

where the index set Ik ⊂
(
T kopt ∪ T kfeas ∪ Uk

opt

)
, in other words, the columns considered
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in Problem (DWRMPk) come from the solutions of some previously solved BPP/BFP

and DWPP subproblems. Note that here we assume that Ik is nonempty and it is

such that Problem (DWRMPk) is feasible. In the next section, we will discuss how

to ensure this through a Phase I procedure.

Proposition 2.6. Problem (DWRMPk) is a valid upper bounding problem for Prob-

lem (P).

2.3.3 Sketch of the New Cross Decomposition Algorithm

A sketch of the new cross decomposition algorithm is given in Table 2.1. With the

following assumption, the finiteness of the algorithm can be easily proved.

Assumption 2.2. The primal and dual optimal solutions of an LP returned by an

optimization solver are extreme points and extreme dual multipliers.

This assumption is needed to prevent the generation of an infinite number of

Lagrange multipliers that lead to the same feasible solution of Problem (P). This is a

mild assumption as most commercial solvers (such as CPLEX) return extreme optimal

primal and dual solutions for LPs using ’primal simplex’ and ’dual simplex’ algorithm

options respectively. If an ’interior point’ algorithm is used, a ’cross over’ from an

’interior point’ solution to a ’basic feasible solution’ (a default option in CPLEX) [108],

ensures that extreme points solution is generated. With this assumption, Problem

(BPPk) or (BFPk) can only yield a finite number of Lagrange multipliers.

Theorem 2.1. If there are at most a finite number of DWD iterations between two BD

iterations, then the cross decomposition algorithm described in Table 2.1 terminates

in a finite number of steps with an optimal solution of Problem (P) or an indication

that Problem (P) is infeasible.
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Proof. This proof is based on the finite convergence property of the BD method. It is

well known that (e.g., [34], [30]), Problem (BPPk) will not yield the same Lagrange

multipliers (for constructing cuts in Problem (BRMPk
r)) twice unless the Lagrange

multipliers are the ones associated with an optimal solution of Problem (P). And

upon generation of optimal Lagrange multipliers for a second time, the upper bound

from Problem (BPPk) and the lower bound from Problem (BRMPk
r) will coincide,

leading to termination with an optimal solution of Problem (P). This procedure is

finite as (a) only a finite number of Lagrange multipliers can be generated by Problem

(BPPk) and (b) there are at most a finite number of DWD iterations between two

BD iterations.

If Problem (P) is infeasible, then the master problem (BMP) is infeasible. Note

that according to Proposition 2.1, we can consider Problem (BMP) to involve a finite

number of extreme dual multipliers. So Problem (BRMPk
r) needs only a finite number

of steps to grow into Problem (BMP), and therefore after a finite number of steps, it

must be infeasible which indicates the infeasibility of Problem (P).

2.4 Further Discussions

2.4.1 Phase I Procedure

Problem (DWRMPk) is feasible only when at least one convex combination of the

columns {xi}i∈Ik is feasible for Problem (P). Here we introduce a Phase I procedure

as a systematic way to generate a group of columns that enable the feasibility of

Problem (DWRMPk) or indicate the infeasibility of Problem (P). Similar to the

Phase I procedure in simplex algorithm, this proposed Phase I procedure is to solve



2.4. FURTHER DISCUSSIONS 41

Table 2.1: Sketch of the New Cross Decomposition Algorithm

Initialization:
(a) Give set I1 that includes indices of a number of points in set X such that Problem (DWRMPk) is feasible.

Give termination tolerance ε.

(b) Let index sets U1
opt = T 1

opt = T 1
feas = ∅. Iteration counter k = 1, upper bound UBD = +∞, lower bound

LBD = −∞.
Step 1 (DWD iterations):
Execute the DWD iteration described below several times:

(1.a) Solve Problem (DWRMPk). Let xk0 , {θi,k}i∈Ik be the optimal solution obtained, and λk be Lagrange
multipliers for the linking constraints. If objDWRMPk < UBD, update UBD = objDWRMPk and the
incumbent solution (x∗0, x

∗) = (xk0 ,
∑

i∈Ik θ
i,kxi). If UBD ≤ LBD + ε, terminate and the incumbent

solution (x∗0, x
∗) is an optimal solution for Problem (P).

(1.b) Solve Problem (DWPPk), let xk be the optimal solution obtained.

(1.c) Generate Ik+1, Uk+1
opt for adding columns and cuts to the master problems. Update k = k + 1.

Step 2 (BD iterations):
Execute the BD iteration described below several times, and then go to step 1.

(2.a) Solve Problem (BRMPk
r ). Let (ηk, xk0) be the optimal solution obtained. If ηk > LBD, update LBD = ηk.

If UBD ≤ LBD+ ε, terminate and the incumbent solution (x∗0, x
∗) is an optimal solution for Problem (P).

(2.b) Solve Problem (BPPk). If Problem (BPPk) is feasible and objBPPk < UBD, update UBD = objBPPk

and the incumbent solution (x∗0, x
∗) = (xk0 , x

k). If Problem (BPPk) is infeasible, solve Problem (BFPk).
No matter which problem is solved, let xk, λk be an optimal solution and the related Lagrange multipliers
for the linking constraints.

(2.c) Generate Ik+1, Tk+1
opt , Tk+1

feas for adding columns and cuts to the master problems. If Problem (BPPk)

is feasible, Tk+1
opt = Tk

opt ∪ {k}, T
k+1
feas = Tk

feas; otherwise, Tk+1
feas = Tk+1

feas ∪ {k}, T
k+1
opt = Tk+1

opt . Update

k = k + 1.

the following Feasibility Problem instead of Problem (P) itself:

min
x0,x,z

||z||

s.t. A0x0 + Ax ≤ b0 + z,

x0 ∈ X0,

x ∈ X,

z ≥ 0,

(FP)

where || · || denotes any norm function, and the 1-norm is used for the case studies

in this chapter. In the Phase I procedure, Problem (FP) is solved via the proposed

cross decomposition method, and this procedure is illustrated in Figure 2.3. In this
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procedure, each DWD iteration solves a restricted DWD master problem for Problem

(FP), DWFRMP, and a DWD pricing problem for Problem (FP), DWFP. Each BD

iteration solves a primal for Problem (FP), BFP, and a BD relaxed master problem

for Problem (FP). BFP at the kth CD iteration is same to Problem (BFPk), so we

are to give the other three subproblems.

BFP:	
  Benders	
  Feasibility	
  Problem	
  
BFRMP:	
  Benders	
  Feasibility	
  Relaxed	
  Master	
  Problem	
  
DWFP:	
  Dantzig-­‐Wolfe	
  Feasibility	
  Problem	
  	
  
DWFRMP:	
  Dantzig-­‐Wolfe	
  Feasibility	
  Restricted	
  Master	
  	
  	
  	
  
Problem	
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Figure 2.3: Diagram of the Phase I procedure

Problem BFRMP solved at the kth CD iteration is:

min
x0,η

η

s.t. η ≥ objBFP i +
(
λi
)T
A0(x0 − xi0), ∀i ∈ T kfeas,

η ≥ objDWFP i + (λi)T (A0x0 − b0), ∀i ∈ Uk
feas,

x0 ∈ X0,

(BFRMPk)

where T kfeas includes the indices for all previous BD iterations and Uk
feas includes

the indices for all previous DWD iterations. λi denotes Lagrange multipliers for the

linking constraints for Problem (BFPi) or for Problem (DWFPi), and xi0 denotes the

fixed x0 value for Problem (BFPi). As a result of Proposition 2.5, Problem (BFRMPk)

is a valid lower bounding problem for Problem (FP).
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Problem DWFRMP solved at the kth CD iteration is:

min
x0,z,θi

||z||

s.t. A0x0 + A

(∑
i∈Ik

θixi

)
≤ b0 + z,

∑
i∈Ik

θi = 1,

θi ≥ 0, ∀i ∈ Ik,

x0 ∈ X0,

z ≥ 0,

(DWFRMPk)

where Ik = T kfeas ∪ Uk
feas. As a results of Proposition 2.6, Problem (DWFRMPk) is

a valid upper bounding problem for Problem (FP). Note that the Phase I procedure

starts with solving Problem (DWFRMPk) (for k=1), in which the index I1 has to

include at least one column. In order to generate an initial column, called x0, for I1,

the following initial pricing problem is solved:

min
x

cTx

s.t. x ∈ X.
(IPP)

Note that if Problem (IPP) is infeasible, then set X is empty and therefore Problem

(P) is infeasible.

Problem DWFP solved at the kth iteration is:

min
x

(λk)TAx

s.t. x ∈ X,
(DWFPk)
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where λk includes Lagrange multipliers for the linking constraints in Problem (DWFRMPk).

The following theorem results from applying Theorem 2.1 to Problem (FP).

Theorem 2.2. The Phase I procedure illustrated in Figure 2.3 terminates finitely with

an optimal solution of Problem (FP) or an indication that Problem (FP) is infeasible.

If the optimal objective value of Problem (FP) is greater than 0, then Problem (P)

is infeasible; otherwise, Problem (P) is feasible and Problem (DWRMPk) is feasible

with the columns generated in the Phase I procedure.

Note that the optimal value of Problem (FP) cannot be negative, so the Phase

I procedure can terminate when the current upper bound is 0 (no matter what the

current lower bound is). In this case, the 0 upper bound comes from either the

optimal value of Problem (BFPk) or the optimal value of Problem (DWFRMPk), and

therefore the solution of one of the problems provides a feasible column, with which

Problem (DWRMPk) is feasible.

After completing the Phase I procedure, the algorithm starts the Phase II proce-

dure that solves Problem (P) using the cross decomposition strategy. In the Phase II

procedure, the iteration counter k continues to increase from its value at the end of

the Phase I procedure, and the index sets Ik, T kfeas also grows from the ones at the

end of the Phase I procedure. The index set Uk
feas remains the same as the one at

the end of the Phase I procedure because Problem (DWFPk) is never solved in the

Phase II procedure.

With the results from the Phase I procedure, the BD relaxed master problem in
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Phase II can be updated as:

min
x0,η

η

s.t. η ≥ objBPP i +
(
cT0 + (λi)TA0

) (
x0 − xi0

)
, ∀i ∈ T kopt,

0 ≥ objBFP i +
(
λi
)T
A0(x0 − xi0), ∀i ∈ T kfeas,

η ≥ objDWPP i +
(
cT0 + (λi)TA0

)
x0 − (λi)T b0, ∀i ∈ Uk

opt,

0 ≥ objDWFP i + (λi)T (A0x0 − b0), ∀i ∈ Uk
feas,

x0 ∈ X0.

(BRMPk)

Note that the cuts in this problem come from the subproblems solved in both the

Phase I procedure and the Phase II procedure. The following proposition states the

validity of the cuts.

Proposition 2.7. Problem (BRMPk) is a valid lower bounding problem for Problem

(P).

Now we give a cross decomposition algorithm that combines the Phase I and the

Phase II procedures to systematically solve Problem (P). In either phase, the algo-

rithm alternates between one DWD iteration and one BD iteration. The solutions of

subproblems in the DWD iterations are all used to construct extra cuts to enhance

Problem (BFRMPk)/(BRMPk), while the solutions of subproblems in the BD itera-

tions are all used to construct extra columns to enhance Problem (DWFRMPk)/(DWRMPk).

The details of the algorithm is given in Table 2.2. According to Theorems 2.1 and

2.2, the algorithm has finite convergence property.

Corollary 2.1. Cross Decomposition Algorithm 1 given in Table 2.2 terminates in a

finite number of steps with an optimal solution for Problem (P) or an indication that
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Problem (P) is infeasible.

Table 2.2: Cross Decomposition Algorithm 1

Initialization

(a) Select a point from set X (e.g., by solving Problem (IPP)). Let x0 be the selected point and I1 = {0}. If
X is empty, then Problem (P) is infeasible.

(b) Give termination tolerance ε. Let index sets U1
opt = T 1

opt = T 1
feas = ∅, iteration counter k = 1, bounds for

Problem (FP) UBDF = +∞, LBDF = −∞, bounds for Problem (P) UBD = +∞, LBD = −∞.
Cross Decomposition Phase I

Step 1 (DWD iteration):
(1.a) Solve Problem (DWFRMPk). Let λk be the obtained Lagrange multipliers for the linking constraints. If

objDWFRMPk < UBDF , update UBDF = objDWFRMPk .

(1.b) Solve Problem (DWFPk), let xk be the optimal solution obtained.

(1.c) Update Ik+1 = Ik ∪ {k}, Uk+1
feas = Uk

feas ∪ {k}, U
k+1
opt = Uk

opt, k = k + 1. If UBDF ≤ ε, end Phase I and

go to Phase II.
Step 2 (BD iteration):

(2.a) Solve Problem (BFRMPk), update LBDF = objBFRMPk . If LBDF > ε, terminate and Problem (P) is
infeasible.

(2.b) Solve Problem (BFPk), and let xk, λk be the obtained optimal solution and the related Lagrange multipliers
for the linking constraints. If objBFPk < UBDF , update UBDF = objBFPk

(2.c) Update Ik+1 = Ik ∪ {k}, Tk+1
feas = Tk

feas ∪ {k}, T
k+1
opt = Tk

opt, k = k+ 1. If UBDF ≤ ε, end Phase I and go

to Phase II; otherwise, go to step (1.a).
Cross Decomposition Phase II

Step 1 (DWD iteration):
(1.a) Solve Problem (DWRMPk). Let xk0 , {θi,k}i∈Ik be the optimal solution obtained, and λk be Lagrange

multipliers for the linking constraints. If objDWRMPk < UBD, update UBD = objDWRMPk and the
incumbent solution (x∗0, x

∗) = (xk0 ,
∑

i∈Ik θ
i,kxi). If UBD ≤ LBD + ε, terminate and (x∗0, x

∗) is an
optimal solution for Problem (P).

(1.b) Solve Problem (DWPPk), let xk be the optimal solution obtained.

(1.c) Update Ik+1 = Ik ∪ {k}, Uk+1
opt = Uk

opt ∪ {k}, U
k+1
feas = Uk

feas, k = k + 1.

Step 2 (BD iteration):
(2.a) Solve Problem (BRMPk), update LBD = objBRMPk . If UBD ≤ LBD + ε, terminate and (x∗0, x

∗) is an
optimal solution for Problem (P).

(2.b) Solve Problem (BPPk). If Problem (BPPk) is feasible and objBPPk < UBD, update UBD = objBPPk

and the incumbent solution (x∗0, x
∗) = (xk0 , x

k). If Problem (BPPk) is infeasible, solve Problem (BFPk).
No matter which problem is solved, let xk, λk be an optimal solution and the related Lagrange multipliers
for the linking constraints.

(2.c) If Problem (BPPk) is feasible, Tk+1
opt = Tk

opt ∪ {k}, T
k+1
feas = Tk

feas; otherwise, Tk+1
feas = Tk

feas ∪ {k},
Tk+1
opt = Tk

opt. Update Ik+1 = Ik ∪ {k}, k = k + 1. Go to step (1.a).
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2.4.2 Adaptive Alternation Between DWD and BD Iterations

Cross Decomposition Algorithm 1 shown in Table 2.2 alternates between one DWD

iteration and one BD iteration. However, in some cases it may be better to perform

several DWD iterations or BD iterations in a row. For example, if the solution of

a DWD restricted master problem decreases the current upper bound significantly,

then the DWD pricing problem is likely to generate a good column for another DWD

iteration to further reduce the gap; in this case, the algorithm should go to another

DWD iteration rather than going to a BD iteration. If the solution of a BD primal

problem cannot decrease the current upper bound, the column from the solution is

not likely to enhance the DWD restricted master problem for further decrease of the

upper bound; in this case, the algorithm should go to another BD iteration rather

than going to a DWD iteration.

As a result, we introduce a different cross decomposition algorithm, which adap-

tively determines the type of the next iteration according to the following rules:

1. After a DWD iteration, solve Problem (BFRMPk) (for Phase I) or (BRMPk)

(for Phase II). If the decrease of the upper bound in the DWD iteration is

more than the increase of the lower bound (resulting from the solution of

(BFRMPk)/(BRMPk)), then the algorithm will go to another DWD iteration.

Otherwise, the algorithm will go to a BD iteration.

2. After a BD iteration, solve Problem (DWFRMPk) (for Phase I) or (DWRMPk)

(for Phase II). If the optimal value of the problem is better than the current

upper bound, then the algorithm will go to a DWD iteration. Otherwise, the

algorithm will go to another BD iteration.
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The details of this different algorithm is given in Table 2.3.

Table 2.3: Cross Decomposition Algorithm 2

Initialization

(a) Select a point from set X (e.g., by solving Problem (IPP)). Let x0 be the selected point and I1 = {0}. If
X is empty, then Problem (P) is infeasible.

(b) Set termination tolerance ε. Let index sets U1
opt = T 1

opt = T 1
feas = ∅, iteration counter k = 1, bounds for

Problem (FP) UBDF = +∞, LBDF = −∞, bounds for Problem (P) UBD = +∞, LBD = −∞.
Cross Decomposition Phase I

Step 1 (DWD iteration):
(1.a) Solve Problem (DWFRMPk). if objDWFRMPk > UBDF − ε, ∆DW = 0 go to step (2.a); otherwise

calculate ∆DW = UBDF − objDWFRMPk , update UBDF = objDWFRMPk , and let λk be the obtained
Lagrange multipliers for the linking constraints.

(1.b) Solve Problem (DWFPk), let xk be the optimal solution obtained.

(1.c) Update Uk+1
feas = Uk

feas ∪ {k}, U
k+1
opt = Uk

opt, I
k+1 = Ik ∪ {k}. If UBDF ≤ ε, k = k + 1, end Phase I and

go to Phase II
Step 2 (BD iteration):

(2.a) Solve Problem (BFRMPk). If objBFRMPk > ε, terminate and Problem (P) is infeasible. Calculate ∆BD =
objBFRMPk − LBDF , update LBDF = objBFRMPk . If ∆BD ≥ ∆DW , go to step (2.b); otherwise, go to
step (1.a).

(2.b) Solve Problem (BFPk). Let xk, λk be an optimal solution and the related Lagrange multipliers for the
linking constraints.

(2.c) Update Tk+1
feas = Tk

feas ∪ {k}, T
k+1
opt = Tk

opt. If objBFPk < UBDF − ε, Ik+1 = Ik ∪ {k}; otherwise,

Ik+1 = Ik. If min{UBDF, objBFPk} ≤ ε, k = k + 1, end Phase I and go to Phase II.

(2.d) If objBFPk < UBDF , UBDF = objBFPk ; set k = k + 1 and go to step (1.a).
Cross Decomposition Phase II

Step 1 (DWD iteration):
(1.a) Solve Problem (DWRMPk). Let xk0 , {θi,k}i∈Ik be the optimal solution obtained, and λk be the related

Lagrange multipliers for the linking constraints. If objDWRMPk > UBD − ε, go to step (2.a). Other-
wise, calculate ∆DW = UBD − objDWRMPk , update UBD = objDWRMPk , and the incumbent solution
(x∗0, x

∗) = (xk0 ,
∑

i∈Ik (θi)kxi).

(1.b) Solve Problem (DWPPk), let xk be the optimal solution obtained.

(1.c) Update Uk+1
opt = Uk

opt ∪ {k}, U
k+1
feas = Uk

feas, Ik+1 = Ik ∪ {k}.
Step 2 (BD iteration):

(2.a) Solve Problem (BRMPk). If UBD ≤ objBRMPk + ε, terminate and (x∗0, x
∗) is an optimal solution for

Problem (P). Calculate ∆BD = objBRMPk − LBD, update LBD = objBRMPk . If ∆BD ≥ ∆DW , go to
step (2.b); otherwise, go to step (1.a).

(2.b) Solve Problem (BPPk). If Problem (BPPk) is feasible and objBPPk < UBD, the incumbent solution
(x∗0, x

∗) = (xk0 , x
k). If Problem (BPPk) is infeasible, solve Problem (BFPk). No matter which problem is

solved, let xk, λk be an optimal solution and the related Lagrange multipliers for the linking constraints.

(2.c) If Problem (BPPk) is feasible, Tk+1
opt = Tk

opt ∪ {k}, T
k+1
feas = Tk

feas. Update UBD = min{UBD, objBPPk}.
Then set Ik+1 = Ik ∪ {k}, k = k + 1 and go to step (1.a).

(2.d) If Problem (BPPk) is infeasible, Tk+1
feas = Tk

feas ∪ {k}, T
k+1
opt = Tk

opt, k = k + 1, go to step (1.a).

Proposition 2.8. In Cross Decomposition Algorithm 2 shown in Table 2.3, there
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cannot be an infinite number of DWD iterations between two BD iterations.

According to Theorems 2.1, 2.2 and Proposition 2.8, the algorithm also has the

finite convergence property.

Corollary 2.2. Cross Decomposition Algorithm 2 given in Table 2.3 terminates in a

finite number of steps with an optimal solution for Problem (P) or an indication that

Problem (P) is infeasible.

2.5 Case Study Results

2.5.1 Case Study Problems

We demonstrate the advantages of the proposed CD methods using two case study

problems. Case study A is a bio-product supply chain optimization (SCO) problem,

which was originally studied in [10] but modified into a two-stage stochastic MILP

problem in [109]. The supply chain has four echelons involving different operations

such as preprocessing, conversion and product distribution. The goal of the strategic

SCO is to determine the optimal configuration of the supply chain network and the

technologies used in the processing plants, such that the total profit is maximized

and the customer demands at the demand locations are satisfied. Two uncertain

parameters, demand for electricity and corn stover yield are considered. They are

assumed to be independent of each other and follow uniform distributions. The first-

stage decisions are whether or not specific units or technologies are to be included

in the supply chain and these are represented by binary variables. The second-stage

decision variables are material or product flows that are determined by the operation

of the supply chain, and they are represented by continuous variables. The model



2.5. CASE STUDY RESULTS 50

contains 18 binary variables, 2376s+7 continuous variables and 3192s+10 constraints,

where s is the number of scenarios.

Case study B is a two-stage stochastic MILP formulated by McLean et al. [110]

for optimization of an industrial chemical supply chain. The supply chain involves

different grades of Primary Raw Material (PRM) that is converted in 5 manufacturing

plants for onward delivery to customers. The aim of the SCO problem is to determine

the optimal capacities of the plants, such that the total profits are maximized and

customer demands are satisfied. The uncertainty considered is minimum demands,

and it is modeled using two uniformly distributed random variables described in [110].

The first-stage decisions are the capacities of plants represented by integer variables.

The second-stage decision variables are material or product flows that are determined

by the operation of the supply chain, and they are represented by continuous variables.

Consequently, the model contains 5 positive integer variables (all bounded from above

by 20), 8210s+ 6 continuous variables and 14770s+ 11 constraints.

2.5.2 Implementation

The two case studies were performed on a virtual machine created on a computer

allocated with a 3.4GHz CPU and 4GB RAM. The virtual machine runs Linux op-

erating system (Ubuntu 14.04). All decomposition algorithms and the subproblems

were implemented on GAMS 24.6.1 [111]. CPLEX 12.6.3 [108] was used as the LP

and MILP solver for all algorithms. Four solution approaches were compared in the

case studies, namely, monolith, BD, CD1, and CD2. Here monolith refers to solving

the problem directly using CPLEX, CD1 and CD2 refer to the first and the second
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CD algorithms, respectively. A GAMS extension, based on the principle of ’Gather-

Update-Solve-Scatter’ or GUSS [112], was utilized in all of the three decomposition

methods (with default GUSS options), in order to achieve efficient model generation

and solution for the decomposed scenario problems.

The relative tolerance used for all approaches was 10−3. For monolith approach,

the initial point was generated by CPLEX via its preprocessing procedure. For BD,

the initial values for all first-stage variables were 0. CD1 and CD2 generated the

initial columns x0 by solving Problem (IPP). For case study A, (IPP) is very easy to

solve so the CD methods obtained an optimal solution of (IPP) as the initial column.

For case study B, however, solving (IPP) to optimality is very time-consuming and

therefore only a feasible solution of (IPP) was obtained and used as the initial column.

In addition, CPLEX was set to use interior point method for the LP/MILP sub-

problems for case study B, as it can significantly reduce the solution time. But interior

point method does not have significant benefit for case study A subproblems, so the

default solution method option of CPLEX was used for case study A.

2.5.3 Results and Discussion

The computational results for case study A with the four solution approaches are

summarized in Tables 2.4, 2.5, 2.6 and 2.7, and those for case study B in Tables 2.8,

2.9, 2.10 and 2.11. For both case studies, all approaches lead to the same optimal

objective values (within the specified tolerance). The monolith approach is faster

than the decomposition approaches for small numbers of scenarios, but with the

increase of number of scenarios, its performance deteriorates rapidly because it does

not exploit the decomposable structure present in the problem. For case study A,
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CD1 and CD2 are faster than BD, as they both can significantly reduce the number

of BD iterations with the DWD iterations. In addition, CD2 is faster than CD1 for

the cases in which it can reduce the number of BD iterations with much fewer DWD

iterations. Note that CD2 is not always better than CD1, as the rules it follows to

determine the next iteration is only likely (and cannot guarantee) to avoid ineffective

DWD iterations. For case study B, the performance of BD is very good as no more

than 50 BD iterations are needed for convergence. For this case study, CD1 is worse

than BD, because it does not significantly reduce the number of BD iterations but

needs a relatively large number of DWD iterations. On the other hand, CD2 can

reduce the number of BD iterations at the expense of only a few DWD iterations.

As a result, CD2 requires fewer total iterations than BD (except for the 361 scenario

case where BD requires fewer total iterations but more total solution time). These

results indicate that CD2 is a better choice than CD1 if we need an approach that

can consistently outperform BD.

Note that each of the tables for the decomposition approaches shows two differ-

ent total times. ”Total solver time” refers to the total time for CPLEX to solve all

the LP/MILP subproblems. ”Total run time” refers to the wall time for solving the

problem, including the total solver time as well as the computing overhead. The

computing overhead mainly comes from the frequent loading of scenario data and

generation of scenario subproblems in the GAMS environment. If the decomposition

approaches had been implemented with a platform/language that incurs little com-

puting overhead (such as C++), the total run times could be significantly reduced.

But even with the large computing overhead, the total run times of the three decom-

position approaches are still much less than the monolith approach for large problems
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cases.

The advantages of the proposed decomposition methods can also be seen from

how the bounds of each decomposition method change at each iteration. Figure 2.4

shows for case study A how the upper and lower bounds (UBD and LBD) in the

decomposition methods improve over the iterations. It can be seen that, compared

to BD, CD1 and CD2 both generate better upper bounds and reach the optimal

solution much faster. Although BD may generate better lower bounds at the first

several iterations, CD1 and CD2 start to generate similarly good lower bounds fairly

quickly. This is because a good upper bounding problem (DWRMP or BPP) solution

is likely to yield a good BD cut, and CD1 and CD2 apparently can generate such

solution earlier. This can be seen more clearly from case study B bound evolution

curves shown in Figure 2.5. For this case study, CD1 and CD2 again generate better

upper bounds at the first several iterations, and CD2 also generate better lower

bounds at the beginning (which is due to the better upper bounding solutions used

to construct the BD cuts). Since CD1 needs to follow a large number of DWD

iterations that cannot improve the bounds, it has very slow convergence. But CD2

improves the bounds much more efficiently than CD1, and it requires fewer number

of iterations than BD (except for the 361 scenario case in which BD requires 3 less

iterations). These results indicate that, the main advantage of CD1/CD2 over BD

is the generation of better upper bounds, and the other advantage is that the better

upper bounding solutions can sometimes lead to better lower bounds. Compared to

CD1, CD2 is able to consistently exploit these advantages to outperform BD, as it

avoids solving DWD subproblems that are unlikely to improve the bounds.
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Table 2.4: Results for case study A - Monolith (Unit for time: sec)

Number of scenarios 9 49 121 225 289 361

Optimal obj. (Million $) -73.44 -75.53 -75.81 -75.88 -75.92 -75.93

Total solver time 70 1133 2559 8553 20990 43503

Total run time 71 1142 2571 8988 21105 43646

Table 2.5: Results for case study A - BD (Unit for time: sec)

Number of scenarios 9 49 121 225 289 361

Number of iterations 312 436 398 470 411 389

Optimal obj. (Million $) -73.44 -75.53 -75.80 -75.90 -75.91 -75.94

Time for BPP/BFP 414 3127 6829 15990 14311 20593

Time for BRMP 41 91 95 124 35 74

Total solver time 455 3218 6924 16114 14393 20668

Total run time 793 4010 7930 17879 15882 22609

Table 2.6: Results for case study A - CD1 (Unit for time: sec)

Number of scenarios 9 49 121 225 289 361

Num. of BD iterations 73 134 102 140 137 118

Num. of DWD iterations 73 134 102 140 137 118

Total num. of iter. 146 268 204 280 274 236

Optimal obj. (Million $) -73.44 -75.53 -75.81 -75.86 -75.92 -75.94

Time for IPP/DWPP/DWFP 75 770 1571 4119 5141 5631

Time for DWRMP/DWFRMP 17 475 869 3510 3021 3442

Time for BPP/BFP 67 626 1147 3213 3765 3976

Time for BRMP/BFRMP 5 8 4 9 10 19

Total solver time 164 1879 3591 10851 11938 12957

Total run time 291 2759 4922 15301 16064 18734

Table 2.7: Results for case study A - CD2 (Unit for time: sec)

Number of scenarios 9 49 121 225 289 361

Num. of BD iterations 233 128 130 131 98 79

Num. of DWD iterations 8 5 3 5 5 3

Total num. of iter. 241 133 133 136 103 82

Optimal obj. (Million $) -73.44 -75.53 -75.80 -75.88 -75.91 -75.94

Time for IPP/DWPP/DWFP 9 25 38 128 159 105

Time for DWRMP/DWFRMP 11.1 13.8 35 71 77 68

Time for BPP/BFP 213 654 1413 3251 2609 2699

Time for BRMP/BFRMP 16 6 5 5 4 2

Total solver time 249 699 1489 3455 2848 2872

Total run time 454 923 1901 4650 3783 3762
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Table 2.8: Results for case study B - Monolith (Unit for time: sec)

Number of scenarios 9 25 49 121 225 361

Optimal obj. (Million $) -21592 -21613 -21615 – † –‡ –‡

Total solver time 1258 6457 17454 – – –

Total run time 1263 6473 17524 – – –

†: Out of memory with 4GB RAM. With 8GB RAM, no integer solution returned within 36000 seconds.
‡: Out of memory with 8GB RAM.

Table 2.9: Results for case study B - BD (Unit for time: sec)

Number of scenarios 9 25 49 121 225 361

Number of iterations 39 46 47 45 40 46

Optimal obj. (Million $) -21602 -21610 -21612 -21614 -21615 -21615

Time for BPP/BFP 161 306 618 1641 2563 5243

Time for BRMP 0.3 0.3 0.3 0.4 0.3 0.3

Total solver time 162 306 618 1642 2563 5244

Total run time 272 452 835 2081 3186 6375

Table 2.10: Results for case study B - CD1 (Unit for time: sec)

Number of scenarios 9 25 49 121 225 361

Num. of BD iterations 34 34 31 36 35 43

Num. of DWD iterations 35 35 32 37 36 44

Total num. of iter. 69 69 63 73 71 87

Optimal obj. (Million $) -21608 -21613 -21615 -21616 -21616 -21616

Time for IPP/DWPP/DWFP 135 250 437 1046 1849 3603

Time for DWRMP/DWFRMP 0.6 1.2 2.9 6.0 10.0 35.7

Time for BPP/BFP 64 154 284 848 1842 4090

Time for BRMP/BFRMP 0.6 0.7 0.5 0.4 0.3 0.4

Total solver time 201 406 725 1901 3701 7729

Total run time 390 651 1049 2615 4992 10776

Table 2.11: Results for case study B - CD2 (Unit for time: sec)

Number of scenarios 9 25 49 121 225 361

Num. of BD iterations 29 33 35 33 33 40

Num. of DWD iterations 4 8 8 7 5 9

Total num. of iter. 33 41 43 40 38 49

Optimal obj. (Million $) -21608 -21613 -21615 -21616 -21616 -21616

Time for IPP/DWPP/DWFP 42 109 222 458 731 1437

Time for DWRMP/DWFRMP 0.4 1.0 1.9 5.0 8.1 25

Time for BPP/BFP 46 170 352 770 1580 3202

Time for BRMP/BFRMP 0.3 0.3 0.4 0.3 0.2 0.4

Total solver time 89 281 576 1233 2319 4665

Total run time 168 433 814 1678 3014 6182
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Figure 2.4: Comparison of bound evolution in different decomposition methods (case
study A)
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Figure 2.5: Comparison of bound evolution in different decomposition methods (case
study B)
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2.6 Conclusions

This chapter proposes a new cross decomposition framework for solving Problem

(P). Different from the existing cross decomposition methods in the literature, this

framework exploits the synergy between BD and DWD (rather than Lagrangian de-

composition) to achieve improved solution efficiency. In this framework, a sequence

of upper bounds for Problem (P) are generated via solving BD primal problems and

DWD restricted master problems, and a sequence of lower bounds are generated via

solving BD relaxed master problems, where some BD cuts are generated via solving

DWD pricing problems. A phase 1 procedure to warm start the solution procedure

is also developed, so the framework can deal with infeasible problems or problems

for which initial feasible solutions are difficult to find. With this new framework,

two cross decomposition algorithms, CD1 and CD2, are developed. CD1 alternates

between one BD iteration and one DWD iteration, while CD2 determines the type of

the next iteration adaptively.

The performance of the new CD approaches is demonstrated in comparison with

the monolith and BD approaches, via case study of a bio-product SCO problem and

an industrial chemical SCO problem. In both cases, the three decomposition methods

outperform the monolith approach significantly when the number of scenarios is large.

In the first case study where BD convergences slowly, both CD1 and CD2 require much

fewer iterations and therefore less total solver times; when the number of scenarios

is 361, CD2 reduces the solution time by more than 80% over BD (and 90% over the

monolith approach). In the second case study where BD converges quickly, CD2 is

still faster than BD but CD1 is slower due to the many ineffective DWD iterations.

These results indicate that, for problems for which BD is not efficient enough (e.g.,
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due to the ”tailing off effect”), the proposed CD methods are good alternatives for

exploiting the problem structure. In addition, for problems for which BD is already

efficient, CD2 may still be a better alternative, but its advantage over BD may not be

very significant. For example, if a two-stage MILP problem has a tight LP relaxation,

BD is likely to be efficient and the advantages of the proposed CD methods may not

be significant. But if this problem has a weak LP relaxation, BD is not likely to be

efficient and the proposed CD methods can be much better alternatives.

The proposed CD framework applies to two-stage MILPs where the second-stage

variables are continuous. Obviously, it also applies to two-stage LP problems. Exten-

sion of the current CD framework to MILPs with second-stage integer variables and

MINLPs is a potential future research direction. This extension can be developed

based on generalized versions of BD [35] [79] and DWD methods [113]. Furthermore,

while we only discuss the application of CD to two-stage stochastic programs in this

chapter, the application to multi-stage programs is viable and it is another potential

future research direction.
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Chapter 3

A Multicolumn-multicut Cross Decomposition

Method for Stochastic Mixed-integer Linear

Programming ∗

3.1 Introduction

Mixed-integer linear programming (MILP) paradigm has been applied to a host of

problems in Process Systems Engineering (PSE) literature. Typical applications in-

clude supply chain optimization, process network design and operation, production

∗This chapter is based off of the conference paper; Ogbe E, Li X, Multicolumn-multicut cross
decomposition for stochastic mixed-integer linear programming, Computer Aided Chemical Engi-
neering, 37 (2015) pp. 737-742. The equations, assumptions, propositions, theorems, symbols and
notations defined in this chapter are self-contained. The following changes were made to the paper
to increase the implementation performance:

a. The MATLAB/GAMS implementation platform was avoided to reduce overhead time.

b. Newer version of GAMS and CPLEX, GAMS 24.6.1 and CPLEX 12.6.3, were used to increase
subproblem solution performance.

c. The GAMS utility, Gather-Update-Solve-Scatter (GUSS) [112], was utilized to efficiently solve
decomposable subproblems.

d. The cross decomposition cited in this section is the first submission of the now published
paper, Ogbe E, Li X, A new cross decomposition method for stochastic mixed-integer linear
programming, European Journal of Operational Research, 256 (2017), pp. 287-299”.
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planning and scheduling, etc. These applications often involve factors that are usually

not known with certainty before some decisions are made, which result in uncertain

parameters in the MILP model. Using the classical scenario approach, the stochastic

MILP problem can be formulated into a two-stage stochastic programming problem

[21] as follows:

min
x0,

x1,...,xs

cT
0 x0 +

∑
ω∈Ω

cT
ωxω

s.t. A0,ωx0 + Aωxω ≤ b0,ω, ∀ω ∈ Ω,

xω ∈ Xω, ∀ω ∈ Ω,

x0 ∈ X0,

(P)

where x0 ∈ X0 = {x0 = (x0,b, x0,c) ∈ {0, 1}nx0,b × Rnx0,c : B0x0 ≤ d0} denotes the

first-stage decisions, xω ∈ Xω = {xω ∈ Rnx : Bωxω ≤ dω} denotes the second-stage

decisions, and the subscript ω ∈ Ω = {1, 2, ..., s} indexes each scenario. We assume

that sets X0 and xω are nonempty and bounded.

Problem (P) is computationally challenging when the number of scenarios involved

is large, but its structure can be exploited by a decomposition strategy for efficient

solution. Classical decomposition methods for Problem (P) include Dantzig-Wolfe

decomposition (DWD) [37], Benders decomposition (BD) [34], Lagrangian decompo-

sition (LD) [89], and cross decomposition (CD) [82] [114].

Recently, a new CD method has been developed through the integration of the

classical DWD and BD methods, which has significant advantages over the classical

DWD and BD methods for solving Problem (P) [115]. In this CD method, only

a single column or a single cut is added to the DWD or Benders master problem
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in one iteration. This chapter proposes a variant of the new CD that adds multiple

columns or cuts in one iteration to achieve an improved convergence rate, as it is well-

known that the multicolumn and multicut strategies can accelerate the convergence

of classical DWD and BD [30].

The remaining part of the article is organized as follows. In section 3.2, we briefly

introduce the new CD method. Then in section 3.3, the multicolumn-multicut CD is

presented together with its convergence property. Case study results for a bio-product

supply chain problem is presented in section 3.4 to demonstrate computational ad-

vantage of the proposed method. The article ends with conclusions in section 3.5.

3.2 The cross decomposition method

The CD method recently developed by the authors synergizes DWD and BD by

solving the subproblems from each decomposition method in a unified framework

[115]. On the one hand, two subproblems from DWD, called DWD restricted

master problem and DWD pricing problem in this chapter, are solved in the

CD. They are constructed through vertex representations of bounded polyhedral sets.

Specifically, set X =
∏

ω∈Ω Xω in Problem (P) can be represented as:

X = {x = (x1, ..., xs) ∈ Rs·nx : xω =
∑
j∈J

θjxj
ω, ω ∈ Ω,

∑
j∈J

θj = 1, θj ≥ 0,∀j ∈ J},

(3.1)

where set J includes indexes for all extreme points of X and possibly other points in

X as well [115]. Each point used for defining X is called a column. The following set,
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used in the lth DWD iteration in the CD method, is a subset of X,

X l = {x = (x1, ..., xs) ∈ Rs·nx : xω =
∑
j∈J l

θjxj
ω, ω ∈ Ω,

∑
j∈J l

θj = 1, θj ≥ 0, ∀j ∈ J l},

(3.2)

where J l ⊂ J . When using X l instead of X, Problem (P) is restricted into the DWD

restricted master problem, which can be written in the following form:

objDWRMP l = min
x0,θj

cT
0 x0 +

∑
ω∈Ω

cT
ω

∑
j∈J l

θjxj
ω


s.t. A0,ωx0 + Aω

∑
j∈J l

θjxj
ω

 ≤ b0,ω, ∀ω ∈ Ω,

∑
j∈J l

θj = 1, θj ≥ 0, ∀j ∈ J l,

x0 ∈ X0.

(DWRMPl)

As a result, Problem (DWRMPl) provides an upper bound for Problem (P). Let πlω

be Lagrangian multipliers for the first group of constraints in Problem (DWRMPl),

then a DWD pricing problem can be solved to generate an extra point for set X l.

This problem can be decomposed over the scenarios; for scenario ω, the subproblem

is:

objDWPP l
ω

= min
xω

(cT
ω +

(
πlω
)T
Aω)xω

xω ∈ Xω.

(DWPPl
ω)

On the other hand, two subproblems from BD, called BD primal problem and

BD relaxed master problem in this chapter, are also solved in CD. The BD primal
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problem is constructed at the kth BD iteration by fixing x0 = xk0. The resulting

problem provides an upper bound for Problem (P), and it can be decomposed over

the scenarios. For scenario ω, the subproblem can be written as:

objBPPk
ω

= min
xω

cT
0 x

k
0 + cT

ωxω

s.t. A0,ωx
k
0 + Aωxω ≤ b0,ω,

xω ∈ Xω.

(BPPk
ω)

Using the principles of projection and dualization [35], Problem (P) can be equiva-

lently formulated into a master problem that includes a finite number of duality-based

constraints called cuts. When including a subset of the cuts, the problem becomes

the following BD relaxed master problem:

min
x0,η

η

s.t. η ≥
∑
ω∈Ω

objBPP j
ω

+
∑
ω∈Ω

(
cT

0 + (λjω)TA0,ω

) (
x0 − xj0

)
, ∀j ∈ T k,

η ≥
∑
ω∈Ω

objDWPP j
ω

+
∑
ω∈Ω

(
cT

0 +
(
πjω
)T
A0,ω

)
x0 −

(
πjω
)T
b0,ω, ∀j ∈ U l,

x0 ∈ X0,

(BRMPk)

where T k includes indexes of Lagrangian multipliers generated from previously solved

Problem (BPPk
ω) before the kth BD iteration, and U l includes indexes of Lagrangian

multipliers generated from previously solved Problem (DWPPl
ω).

The CD method solves the above four subproblems iteratively to yield a sequence

of upper bounds and lower bounds of Problem (P), and the algorithm can converge
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in a finite number of iterations to an optimal solution. Figure 3.1 illustrates the

algorithmic framework. More details about the CD algorithm can be found in [115].

Remark 3.1. The CD method is advantageous over the classical BD method, because

it generates better upper and lower bounds via using (a) the better one of the upper

bounds provided by DWD and BD upper bounding problems and (b) the better one of

the lower bounds from DWD and BD lower bounding problems. Note that in Problem

(BRMPk), the cuts generated by DWD subproblems do not necessarily dominate the

Benders cuts, and vice versa.

3.3 The multicolumn-multicut cross decomposition method

In the multicolumn-multicut (MCMC) CD, a multicolumn DW restricted master

problem instead of Problem (DWRMPl), and a multicut BD relaxed master problem

instead of Problem (BRMPk), are solved. The multicolumn DW restricted master

problem restricts set X using the following set X l
MC instead of X l:

X l
MC = {x = (x1, ..., xs) ∈ Rs·nx : xω =

∑
j∈J l

θj
ωx

j
ω,
∑
j∈J l

θjω = 1, θjω ≥ 0,∀j ∈ J l, ∀ω ∈ Ω}.

(3.3)
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Figure 3.1: The cross decomposition algorithm flowchart

As a result, the problem can be written as:

objDWRMP−MCl = min
x0,θ

j
ω

cT
0 x0 +

∑
ω∈Ω

cT
ω

∑
j∈J l

θj
ωx

j
ω


s.t. A0,ωx0 + Aω

∑
j∈J l

θj
ωx

j
ω

 ≤ b0,ω, ∀ω ∈ Ω,

∑
j∈J l

θj
ω = 1, θjω ≥ 0, ∀ω ∈ Ω, ∀j ∈ J l,

x0 ∈ X0.

(DWRMP-MCl)
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The following definition relates to the idea of a better restriction/relaxation of a

problem.

Definition 3.1. Problem (DWRMP-MCl) is a better restriction of Problem (P) com-

pared to Problem (DWRMPl) if the optimal objective generated by Problem (DWRMP-

MCl) is closer to the solution of Problem (P) compared to that of Problem (DWRMPl).

Similarly, Problem (BRMP-MCk) is a better relaxation of Problem (P) compared to

Problem (BRMPk) if the optimal objective generated by Problem (BRMP-MCk) is

closer to the solution of Problem (P) compared to that of Problem (DWRMPl)

Proposition 3.1. Problem (DWRMP-MCl) is a better restriction of Problem (P)

compared to Problem (DWRMPl).

Proof. ∀x = (x1, . . . , xs) ∈ X l
MC , consider xω in this vector (∀ω ∈ Ω). As xω is a

convex combination of points in the convex set Xω (according to Eq. (3.1)), xω ∈ Xω.

So x ∈
∏

ω∈ΩXω = X. Therefore, X l
MC ⊂ X, and Problem (DWRMP-MCl) is a

restriction of Problem (P).

On the other hand, ∀x = (x1, . . . , xs) ∈ X l, according to Eq. (3.2), ∃θj ≥ 0, xjω

(j ∈ J l, ω ∈ Ω) such that
∑

j∈J l θj = 1, xω =
∑

j∈J l θjxjω. According to Eq. (3.3)

this implies that x ∈ X l
MC . So X l ⊂ X l

MC , which means that the feasible set of

Problem (DWRMP-MCl) is closer to the feasible set of Problem (P) and therefore

Problem (DWRMP-MCl) is a better restriction of Problem (P).
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The multicut BD relaxed master problem for the CD can be written as:

min
x0,η1,...,ηs

∑
ω∈Ω

ηω

s.t. ηω ≥ objBPPω(xj0) +
(
cT

0 + (λjω)TA0,ω

) (
x0 − xj0

)
, ∀j ∈ T k, ∀ω ∈ Ω,

ηω ≥ objDWPP j
ω

+
(
cT

0 +
(
πjω
)T
A0,ω

)
x0 −

(
πjω
)T
b0,ω, ∀j ∈ U l, ∀ω ∈ Ω,

x0 ∈ X0.

(BRMP-MCk)

Proposition 3.2. Problem (BRMP-MCk) is a better (tighter) relaxation of Problem

(P) compared to Problem (BRMPk).

Proof. This has been proved (in the context of multicut Benders decomposition) in

the literature [46] [116].

Theorem 3.1. if Problem (P) is feasible, and all the subproblems can be solved to

ε-optimality in a finite number of steps, the MCMC CD algorithm terminates in a

finite number of steps with an ε-optimal solution of Problem (P).

Proof. The CD algorithm in proved to be finitely convergent in [115]. Propositions

1 and 2 show that the multicolumn and the multicut reformulations of the master

problems even improves the upper and lower bounds generated at each iteration, so

the MCMC CD method is finitely convergent.

Note that, to simplify the presentation, here we assume that Problem (BPPk
ω) and

Problem (DWRMPl) (or Problem (DWRMP-MCl) are always feasible. This assump-

tion can actually be relaxed with appropriate changes to the algorithm. Readers are

referred to [115] for more details.
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3.4 Case Study

3.4.1 Case Study Problem and Implementation

We compare BD, multicut BD (MC BD), CD and MCMC CD through a bio-product

supply chain optimization problem. This problem was originally presented in [10], and

later modified into a two-stage stochastic MILP formulation by [109]. The stochastic

MILP model contains 18 binary variables and 2376s+ 7 continuous variables, where

s is the number of scenarios.

The case study was implemented on a virtual machine setup running Ubuntu 16.04

on a computer allocated with a 2.4 GHz CPU and 4 GB of memory. The decompo-

sition algorithm and subproblems were modeled on GAMS 24.6.1 [111] with CPLEX

12.6.3 [108] (with default options) as the LP and MILP solver for the algorithm.

GUSS [112], a GAMS extension, was utilized in all decomposition methods (with

default GUSS options), for efficient model generation and solution of the decomposed

scenario problems.

3.4.2 Results and Discussion

Figure 3.2 summarizes the times used to solve the case study problem with different

numbers of scenarios using the four approaches. It can be seen that BD is the slowest

among the four, and with the multicut formulation, the performance of BD is signif-

icantly improved. The multicolumn-multicut formulation also significantly improves

the efficiency of CD, and the MCMC CD method achieves the best performance.

Why MCMC CD is the fastest algorithm among the four can be explained from

the bound progression curves in Figures 3.3, 3.4 and 3.5. This figures illustrates how

the bounds obtained by the four algorithms change during the solution procedure for
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scenario instances of 81, 121 and 169. It can be seen that the bounds generated by

MCMC CD converge the fastest, which is because MCMC CD not only updates the

bounds using subproblems from both DWD and BD, but also uses better restricted

and relaxed subproblems (through multicolumn and multicut formulations). The

number of iterations for MCMC CD to converge is just slightly better than MC BD

for 81 scenarios but performance gets better as the number of iterations increases; it

has 20 % less iterations for the 361 scenarios. Additionally, MCMC CD is less than

half of that for CD, and less than a fourth of that for BD. The fact that MCMC CD

is faster than MCMC BD may be due to two reasons. One is that in MCMC CD,

the upper bound is the better one of the upper bounds yielded from BD and DWD

upper bounding problems. The other is that the solutions of DWD pricing problems

provide extra cuts for the Benders relaxed master problem, some of which can be

better than the Benders cuts. This is seen from the lower bound curves in Figures

3.3, 3.4 and 3.5.

3.5 Conclusions

A MCMC CD algorithm is developed in this chapter to solve stochastic MILPs in

form of Problem (P). Tighter upper and lower bounds are derived for the MCMC CD

through the multicolumn and multicut formulations and the new formulation does

not hurt the finite convergence of the algorithm.

Case study of a bio-product supply chain optimization problem demonstrates the

computational advantage of the proposed algorithm. The MCMC CD is faster than

the classical BD method by an order of magnitude when the number of scenarios is

large, and it is also significantly faster than CD and MC BD for all cases.
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Figure 3.2: Summary of computational times
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Figure 3.3: Bound evolution (for 81 scenarios)
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Figure 3.4: Bound evolution (for 121 scenarios)
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Figure 3.5: Bound evolution (for 169 scenarios)
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Chapter 4

Extended Cross Decomposition Method for

Mixed-integer Linear Programs with Strong and

Weak Linking Constraints ∗

4.1 Introduction

This chapter aims at developing an efficient decomposition method to solve large-scale

mixed-integer linear programming (MILP) problems in the following form:

min
x0,x

cT0 x0 + cTx

s.t. B1x0 + A1x ≤ b1,

B2x0 + A2x ≤ b2,

x ∈ X,

x0 ∈ X0,

(P)

∗This chapter has been submitted for publication as Ogbe E, Li X, Extended cross decomposi-
tion method for stochastic mixed-integer linear programs with strong and weak linking constraints,
Computers & Chemical Engineering. The equations, assumptions, propositions, theorems, symbols
and notations defined in this chapter are self-contained.
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where variables x0 ∈ {(xi, xc) : xi ∈ Zni , xc ∈ Rnc}, x ∈ Rnx , parameters b1 ∈ Rm1 ,

b2 ∈ Rm2 , and other parameters have conformable dimensions. The first two groups

of constraints in (P) are called linking constraints in the sense that without them (P)

can be decomposed into a number of small problems that are much easier to solve. In

other words, linking constraints hinder the decomposition of (P). Among the linking

constraints, the second group of constraints are called weak linking constraints in the

sense that they do not hinder the decomposition of (P) if x0 has fixed value, and

the first group of constraints are called strong linking constraints in the sense that

they hinder the decomposition of (P) even if x0 has fixed value. Variables in x0 are

called linking variables. Sets X and X0 are defined by linear constraints, and they

are assumed to be nonempty and bounded throughout the chapter for convenience of

discussion.

Many engineering optimization problems can be formulated in form of (P). A

typical example is optimization under uncertainty through two-stage stochastic pro-

gramming, which has been adopted in many areas of process systems engineering,

such as supply chain optimization [116], natural gas network design and operation

[117], refinery planning [118], expansion of chemical processes [119], etc. In two-

stage stochastic programming, the first-stage decisions are to be implemented before

the realization of uncertainty, and the second-stage (or recourse) decisions are made

to satisfy the second-stage (or recourse) problem for all scenarios addressed by the

problem formulation. In the context of two-stage stochastic programming (rigorously
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speaking, its deterministic equivalent program [21]), Problem (P) can be written as:

min
x0,x1,...,xs

s∑
ω=1

(
cT

0,ωx0 + cT
ωxω

)
s.t. B1x0 +

s∑
ω=1

A1,ωxω ≤ b1, 1©

B2,ωx0 + A2,ωxω ≤ b2,ω, ω ∈ {1, ..., s}, 2©

x0 ∈ X0,

xω ∈ Xω, ω ∈ {1, ..., s},

(SP)

where x0 includes the first-stage variables, xω includes the second-stage variables for

scenario ω, and there are totally s scenarios addressed. 1© represents strong linking

constraints that include xω for all scenarios (and therefore hinder the decomposition

even when x0 is fixed). 2© represents weak linking constraints, each linking first-stage

variables and second-stage variables for one scenario. Traditional two-stage stochastic

programming formulation (which minimizes an expected cost) includes weak linking

constraints but not strong linking constraints. Recently, two variants of two-stage

stochastic programming formulations have attracted more attention and both of them

include strong linking constraints. One variant is risk-averse two-stochastic program-

ming [120] [121] [27] [122], which not only minimizes an expected cost, but also min-

imizes or limits some risk measure of loss, such as conditional value-at-risk (CVaR)

[123]. When the risk measure is bounded in the formulation, the loss in different

scenarios need to appear in a same constraint, which is a strong linking constraint.

The other variant is chance-constrained two-stage stochastic programming [29] [124]

that integrates the notion of chance constraint programming [28] into the two-stage

formulation. In this formulation, the first-stage decisions are made such that the
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Figure 4.1: Block structure of constraint 1© and 2© in Problem (SP)

probability of the recourse problem being feasible is larger than a predefined level.

The probability requirement is modeled with a constraint that includes all scenarios,

so this constraint is a strong linking constraint. Figure 4.1 illustrates the structure

of Problem (SP).

When Problem (P) does not include strong linking constraints, it can be effi-

ciently solved by Benders decomposition (BD) [34] (or called L-shaped method [43]

when applied to Problem (SP)) BD is efficient because, rather than solving the orig-

inal problem directly, it solves a sequence of upper bounding problems with fixed x0

values and a sequences of lower bounding problems that do not include x. Both up-

per bounding and lower bounding problems are much easier to solve than the original

problem. However, when strong linking constraints are present, the upper bounding

problems are not decomposable and BD does not have computational advantage. On

the one hand, Dantzig-Wolfe decomposition (DWD) [37] [49] or Lagrangian decom-

position [53] [38] can be applied to exploit the structure of Problem (P) by dualizing

the weak and/or strong linking constraints. However, these methods are rigorous
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only if Problem (P) has zero dual gap, which is very unlikely considering the problem

includes integer variables. While new decomposition methods are needed for solv-

ing Problem (P) with both strong linking and weak linking constraints, the relevant

research is rarely seen in the literature. The existing ideas for solving Problem (P)

include the modification of Benders decomposition method that yields decompos-

able upper bounding problems [125] [29] and the combination of BD and Lagrangian

decomposition [125].

The main contribution of this chapter is the development of a new decomposition

method that is able to efficiently solve Problem (P), based on a novel cross decompo-

sition (CD) method recently developed [126]. The idea of CD was first proposed by

Van Roy [82]; it combines BD with Lagrangian decomposition in order to achieve im-

proved efficiency. Several variants of CD method has then been developed (e.g., [84]

[54]), and recently, we have developed a novel variant that combines BD and DWD

[126]. There are two major advantages of our CD method. One is that the upper

bound of the problem can be updated by not only the BD upper bounding problems,

but also the DWD upper bounding problems (while CD methods using Lagrangian

decomposition update the upper bound only through BD upper bounding problems).

The other is that problem infeasibility is handled in a systematic way. We extend our

CD method in this chapter via adding an additional DWD, so that the structure of

Problem (P) can be readily exploited for efficient optimization.

The remaining part of the chapter is structured as follows. In section 4.2, we

propose a novel bilevel decomposition strategy for solving Problem (P) and prove

its validity. The discussion of this strategy motivates the extension of CD. In sec-

tion 4.3, we present extended CD method, which includes a Phase I procedure that
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prevents infeasible DWD subproblems. In section 4.4, we discuss in detail how to

apply the proposed extended CD method to CVaR constrained two-stage stochastic

programming. In section 4.5, the advantages of CVaR constrained two-stage stochas-

tic programming and the proposed solution method are demonstrated via the case

study of a bioenergy and bioproduct supply chain optimization problem. Relevant

conclusions are duly drawn in section 4.6 with further discussions on future work.

4.2 A bilevel decomposition strategy for (P)

The extended cross decomposition is motivated by a bilevel decomposition strat-

egy. In this strategy, Problem (P) is solved by BD via viewing x0 as complicating

variables, and the BD upper bounding problems (or called primal problems), which

include strong linking constraints and cannot be directly decomposed, are solved by

DWD. Figure 4.2 illustrates the bilevel decomposition. Here we index the upper level

iterations by k and the lower level iterations for each upper level iteration by l.

4.2.1 The upper level decomposition

In the upper level, BD is used to solve Problem (P). At each iteration k, x0 is fixed

to a constant xk0, and the following Benders feasibility problem is solved:

objBFPk = min
x,z1≥0,z2≥0

‖z1‖+ ‖z2‖

s.t. A1x ≤ b1 −B1x
k
0 + z1,

A2x ≤ b2 −B2x
k
0 + z2,

x ∈ X.

(BFPk)
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Figure 4.2: A bilevel decomposition strategy combing BD and DWD

If objBFPk > 0, then Problem (P) is infeasible for x0 = xk0, and a BD feasibility cut

will be generated. Otherwise, the following Benders primal problem will be solved

and a BD optimality cut will be generated:

objBPPk = min
x

cTx+ cT0 x
k
0

s.t. A1x ≤ b1 −B1x
k
0,

A2x ≤ b2 −B2x
k
0,

x ∈ X.

(BPPk)
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Note that objBPPk is a valid upper bound for Problem (P). Then the following lower

bounding problem (called BD relaxed master problem) is solved at iteration k:

min
x0, η

η

s.t. η ≥ objBPP i +
(
cT0 +

(
λi1
)T
B1

) (
x0 − xk0

)
+
(
λi2
)T
B2

(
x0 − xk0

)
, ∀i ∈ Skopt,

0 ≥ objBFP i +
(
µi1
)T
B1

(
x0 − xk0

)
+
(
µi2
)T
B2

(
x0 − xk0

)
, ∀i ∈ Skfeas,

x0 ∈ X0.

(BRMP-Stdk)

Here the first group of constraints are optimality cuts generated in previous iterations

i at which Problem (BPPi) is feasible, and λi1, λi2 are Lagrange multipliers for the

strong and weak linking constraints in (BPPi), respectively. The second group of

constraints are feasibility cuts generated from previous iterations i at which Problem

(BPPi) is infeasible, and µi1, µi2 are Lagrange multipliers for the strong and weak

linking constraints in (BFPi), respectively. Readers are referred to [126] for more

discussion on (BRMP-Stdk).

4.2.2 The lower level decomposition

Problem (BPPk) or (BFPk) is not naturally decomposable because of the strong link-

ing constraints, but it can be solved by a DWD procedure for efficient optimization.



4.2. A BILEVEL DECOMPOSITION STRATEGY FOR (P) 80

Specifically, (BPPk) can be solved by iteratively solving the following two subprob-

lems:

objDWRMP−Rk,l = min
θ0,··· ,θl−1≥0

cT

(
l−1∑
i=0

θixk,i

)
+ cT

0 x
k
0

s.t. A1

(
l−1∑
i=0

θixk,i

)
≤ b1 −B1x

k
0,

A2

(
l−1∑
i=0

θixk,i

)
≤ b2 −B2x

k
0,

l−1∑
i=0

θi = 1.

(DWRMP-Rk,l)

objDWPP−Rk,l = min
x

cTx +
(
λk,l1

)T

A1x

s.t. A2x ≤ b2 −B2x
k
0,

x ∈ X.

(DWPP-Rk,l)

Problem (DWRMP-Rk,l) represents the Dantzig-Wolfe restricted master problem and

Problem (DWPP-Rk,l) represents the Dantzig-Wolfe pricing problem. l indexes the

DWD iteration. In (DWRMP-Rk,l), xk,i represents the solution of (DWPP-Rk,i) that

is obtained in a previous DWD iteration i(< l), and it is often called a column.

When l = 1, an initial column xk,0 is needed to construct (DWRMP-Rk,l). This

initial column can be obtained at the beginning of the algorithm, via solving the

following initial pricing problem:

min
x

cTx

s.t. x ∈ X.
(IPP)
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Let the solution of the above problem be x0. In the first DWD iteration for solving

a (BFPk) or (BPPk), always set xk,0 = x0. Lagrange multipliers of the strong linking

constraints of (DWRMP-Rk,l) are represented by λk,l1 , and they are used to con-

struct (DWPP-Rk,l). objDWRMP−Rk,l is a valid upper bound of Problem (BPPk), and

objDWPP−Rk,l + cT0 x
k
0 + (λk,l1 )T (B1x

k
0 − b1) is a valid lower bound of Problem (BPPk).

The DWD procedure reaches an optimal solution of Problem (BPPk) when the upper

and lower bounds converge. Readers are referred to [126] for more explanation on

DWD.

Problem (BFPk) can also be solved by a similar DWD procedure. The DWD

restricted master problem is:

objDWFRMP−Rk,l = min
θ0,··· ,θl−1,z1,z2≥0

‖z1‖+ ‖z2‖

s.t. A1

(
l−1∑
i=0

θixk,i

)
≤ b1 −B1x

k
0 + z1,

A2

(
l−1∑
i=0

θixk,i

)
≤ b2 −B2x

k
0 + z2,

l−1∑
i=0

θi = 1.

(DWFRMP-Rk,l)

Let µk,l1 , µk,l2 be Lagrange multipliers for the strong and weak linking constraints of

(DWFRMP-Rk,l), respectively, then the DWD pricing problem can be expressed as:

objDWFP−Rk,l = min
x,z2≥0

(
µk,l1

)T

A1x+ ‖z2‖

s.t. A2x ≤ b2 −B2x
k
0 + z2,

x ∈ X.

(DWFP-Rk,l)
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The proposed DWD procedure for solving Problem (BFPk) is similar to but slightly

different from the Phase I of a standard DWD procedure, so we prove the validity

of the procedure via the next two propositions. The first proposition states that

the solution of (DWFP-Rk,l) yields a valid lower bound of Problem (BFPk), and the

second proposition states the procedure terminates in a finite number of iterations

with an optimal solution to Problem (BFPk).

Proposition 4.1. objDWFP−Rk,l +
(
µk,l1

)T (
B1x

k
0 − b1

)
is a valid lower bound of Prob-

lem (BFPk).

Proof. Since (DWFRMP-Rk,l) cannot be unbounded or infeasible, it must have an

optimal solution. We can express the optimal objective value of (DWFRMP-Rk,l) as:

objDWFRMP−Rk,l

= min
x∈Xk,l, z1,z2≥0

(µk,l1 )T (A1x+B1x
k
0 − b1 − z1) + (µk,l2 )T (A2x+B2x

k
0 − b2 − z2) + ‖z1‖+ ‖z2‖

=

{
min
x∈Xk,l

(µk,l1 )T (A1x+B1x
k
0 − b1) + (µk,l2 )T (A2x+B2x

k
0 − b2)

}
+

{
min
z1≥0
‖z1‖ − (µk,l1 )T z1

}
+

{
min
z2≥0
‖z2‖ − (µk,l2 )T z2

}
,

where set Xk,l = {x ∈ Rnx : x =
∑l−1

i=0 θ
ixi,

∑l−1
i=1 θ

i = 1, θi ≥ 0,∀i = 0, · · · , l − 1}.

Suppose ∃ẑ1 ≥ 0 such that ‖ẑ1‖ − (µk,l1 )T ẑ1 ≤ −ε (ε > 0), then ∀α > 0, ‖αẑ1‖ −

(µk,l1 )Tαẑ1 ≤ −αε, which implies that minz1≥0 ‖z1‖−(µk,l1 )T z1 = −∞. This contradicts

the fact that objDWFRMP−Rk,l is finite. Therefore ‖z1‖− (µk,l1 )T z1 ≥ 0, ∀z1 ≥ 0, which

results in

min
z1≥0
‖z1‖ − (µk,l1 )T z1 = 0,
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(where the minimum value is attained at z1 = 0). Similarly,

min
z2≥0
‖z2‖ − (µk,l2 )T z2 = 0.

According to weak duality of Problem (BFPk), the following value is a lower bound

of (BFPk):

min
x∈X, z1,z2≥0,

A2x≤b2−B2xk0+z2

(µk,l1 )T (A1x+B1x
k
0 − b1 − z1) + ‖z1‖+ ‖z2‖

=

 min
x∈X,z2≥0

A2x≤b2−B2xk0+z2

(µk,l1 )TA1x+ ‖z2‖+ (µk,l1 )T (B1x
k
0 − b1)


+

{
min
z1≥0
‖z1‖ − (µk,l1 )T z1

}
.

=objDWFP−Rk,l +
(
µk,l1

)T (
B1x

k
0 − b1

)
.

In order to establish the finite convergence of decomposition, we make the following

assumption on the linear programming (LP) solver used to solve the LP subproblems.

Assumption 4.1. The primal and dual optimal solutions of a LP problem returned

by the LP solver are extreme points of the LP and its dual problems, respectively.

Proposition 4.2. The DWD procedure for solving Problem (BFPk), i.e., iteratively

solving (DWFRMP-Rk,l) and (DWFP-Rk,l), is finite.

Proof. At the DWD iteration l, suppose that the solution of (DWFP-Rk,l), xk,l, is
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also the solution of a previously solved pricing problem. On the one hand,

objDWFP−Rk,l = min
z2≥0,

A2xk,l≤b2−B2xk0+z2

||z2||+ (µk,l1 )TA1x
k,l.

On the other hand, the optimal value of (DWFRMP-Rk,l) can be expressed as:

objDWFRMP−Rk,l = min
x∈Xk,l,z1,z2≥0

A2x≤b2−B2xk0+z2

||z1||+ ||z2||+
(
µk,l1

)T (
B1x

k
0 + A1x− b1 − z1

)

=

 min
x∈Xk,l,z2≥0

A2x≤b2−B2xk0+z2

||z2||+ (µk,l1 )TA1x

+ (µk,l1 )T
(
B1x

k
0 − b1

)
+

{
min
z1≥0
||z1|| − (µk,l1 )T z1

}

=

 min
x∈Xk,l,z2≥0

A2x≤b2−B2xk0+z2

||z2||+ (µk,l1 )TA1x

+ (µk,l1 )T
(
B1x

k
0 − b1

)

where Xk,l = {x ∈ Rnx : x =
∑l−1

i=0 θ
ixi,

∑l−1
i=0 θ

i = 1, θi ≥ 0,∀i = 0, · · · , l − 1}.

Since xk,l has been generated before, it is a point in Xk,l, so

min
x∈Xk,l,z2≥0

A2x≤b2−B2xk0+z2

||z2||+ (µk,l1 )TA1x ≤ min
z2≥0,

A2xk,l≤b2−B2xk0+z2

||z2||+ (µk,l1 )TA1x
k,l,

and therefore

objDWFRMP−Rk,l ≤ objDWFP−Rk,l + (µk,l1 )T
(
B1x

k
0 − b1

)
.

This means that, the upper and lower bounds of Problem (BFPk) converge once an

extreme point of X is generated at the second time. Since polyhedral set X has only
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a finite number of extreme points, so the DWD procedure always terminates in a

finite number of iterations.

4.2.3 Integration of the two levels

At the termination of the DWD procedure for solving Problem (BPPk),

objBPPk = objDWPP−Rk,l + cT0 x
k
0 + (λk,l1 )T (B1x

k
0 − b1), (4.1)

where l indexes the last DWD iteration. (xk0, x
k,l) is a feasible solution for the original

problem (P), and it can be used to update the upper bound of (P). The feasible

solution that gives the best upper bound of the current BD iteration is called the

incumbent solution, denoted by (x∗0, x
∗).

Let λk,l2 be Lagrange multipliers for the weak linking constraints in (DWPP-Rk,l),

according to strong duality of (DWPP-Rk,l),

objDWPP−Rk,l = min
x∈X

cTx+
(
λk,l1

)T
A1x+

(
λk,l2

)T (
A2x− b2 +B2x

k
0

)
. (4.2)

From equations (4.1) and (4.2),

objBPPk = min
x∈X

cTx+ cT0 x
k
0 +
(
λk,l1

)T (
A1x− b1 +B1x

k
0

)
+
(
λk,l2

)T (
A2x− b2 +B2x

k
0

)
,

which implies that λk,l1 and λk,l2 are (optimal) Lagrange multipliers of (BPPk). There-

fore, the optimality cuts in the standard BD relaxed master problem (BRMP-Stdk)
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can be written as (via substituting (4.1)):

η ≥ objDWPP−Ri,j + cT0 x0 +
(
λi,j1

)T
(B1x0 − b1) +

(
λi,j2

)T
B2

(
x0 − xk0

)
, ∀(i, j) ∈ T kopt,

where T kopt includes index pairs that index the BD iteration at which an optimality cut

is generated and the last DWD iteration for this BD iteration. We can also rewrite

the feasibility cuts in the similar way. As a consequence, Problem (BRMP-Stdk) can

be rewritten as:

min
x0, η

η

s.t. η ≥ objDWPP−Ri,j + cT0 x0 +
(
λi,j1

)T
(B1x0 − b1) +

(
λi,j2

)T
B2

(
x0 − xk0

)
,

∀(i, j) ∈ T kopt,

0 ≥ objDWFP−Ri,j +
(
µi,j1

)T
(B1x0 − b1) +

(
µi,j2

)T
B2

(
x0 − xk0

)
, ∀(i, j) ∈ T kfeas,

x0 ∈ X0.

(BRMP-BLDk)

where T kfeas includes index pairs that index the BD iteration at which a feasibil-

ity cut is generated and the last DWD iteration for this BD iteration. If Problem

(BRMP-BLDk) is infeasible, then Problem (P) is also infeasible.

Figure 4.3 provides the flowchart of the bilevel decomposition algorithm. The

algorithm considers two tolerances, ε and σ. ε is the tolerance for the solution of

Problem (P), and it is also the tolerance for the upper level decomposition. σ is the

tolerance for each lower level DWD procedure. ε >> σ is required to ensure the

final solution is ε-optimal. According to Assumption 4.1, both the upper level BD

procedure and the lower level DWD procedures can terminate in a finite number of
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Figure 4.3: The flowchart of the bilevel decomposition method

iterations, so the bilevel decomposition method has the following finite termination

property.
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Theorem 4.1. The bilevel decomposition algorithm shown in Figure 4.3 terminates in

finite time with an ε-optimal solution or a certification that Problem (P) is infeasible,

if Assumption 4.1 holds and all subproblems can be solved in finite time.

We have not seen in the literature the bilevel decomposition method was ever

developed for solving Problem (P), but methods using similar ideas exist, such as the

one developed by Bruno and Sagastizábal [125]. In Bruno and Sagastizábal’s bilevel

decomposition method, the upper level is Lagrangian decomposition and the lower

level is BD, but the method is rigorous for (P) only when no integer variables are

present, because it requires strong duality of (P).

4.3 The extended cross decomposition method

4.3.1 The basic ECD framework and subproblems

In this section, we develop a decomposition framework motivated by ideas from bilevel

decomposition presented in section 4.2 and cross decomposition [126]. In this frame-

work, which is shown in Figure 4.4, an upper and a lower level decomposition strategy

are integrated to efficiently solve Problem (P). At the upper level, a cross decompo-

sition approach for (P) where the following problems; DW restricted master problem,

DW pricing problem, Benders primal and feasibility problems (BPPk and BFPk)

and Benders relaxed master problems, are iteratively solved is presented. Problems

(BPPk) and (BFPk), that are not decomposable, are then solved via a finitely con-

vergent DWD procedure at the lower level, as in the bilevel decomposition. We refer

to this approach as the extended cross decomposition (ECD) approach. The ECD

lower level subproblems are same to the lower level subproblems in the bilevel de-

composition method proposed in the last section, so we only describe the upper level
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subproblems here.

DWRMP-CDk: DWD Restricted Master 
Problem for CD
BPPk: BD Primal Problem
BRMP-CDk: BD Relaxed Master Problem for CD
DWPPk: DWD Pricing Problem

DWPP-Rk,l: Restricted DWD Pricing Problem
DWRMP-Rk,l: Restricted DWD Restricted Master Problem

Upper level Decomposition

Lower level Decomposition (for solving BPPk/BFPk)

Lower bounds

Upper boundsUpper bounds

Cuts 

Columns  
DWRMP-CDk

DWPPk

k kBPP / BFP

kBRMP-CD

k,l k,lDWRMP-R / DWFRMP-R

k,l k,lDWPP-R / DWFP-R

Extra columns/cuts 
to the upper level  

Figure 4.4: Extended cross decomposition method

At a particular upper level iteration k of ECD, the following DW restricted master
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problem is solved first:

objDWRMP−CDk = min
x0,θi

cT0 x0 +
k−1∑
i=0

θixi

s.t. B1x0 + A1

k−1∑
i=0

θixi ≤ b1,

B2x0 + A2

k−1∑
i=0

θixi ≤ b2,

k−1∑
i=0

θi = 1,

θi ≥ 0,

(DWRMP-CDk)

where xi is a column generated at the upper level and i = 0, 1, ..., k − 1 are indices

of the generated columns. Problem (DWRMP-CDk) provides valid upper bounds

to Problem (P). Just like in the bilevel decomposition, an initial feasible column,

x0 ∈ X, is needed to solve Problem (DWRMP-CDk). It can be obtained by solving

the initial pricing problem (IPP). Here we assume that Problem (DWRMP-CDk)

is always feasible for convenience, and later we will discuss how to guarantee the

feasibility via a Phase I procedure.

Let λk1 and λk2 be the Lagrange multiplier associated with strong and weak linking

constraints in Problem (DWRMP-CDk) respectively, then we can construct and solve

the following DW pricing problem:

objDWPPk = min
x

cTx+
(
λk1
)T
A1x+

(
λk2
)T
A2x

s.t. x ∈ X.
(DWPPk)

The solution of Problem (DWPPk), denoted by xk, provides a new column for Problem



4.3. THE EXTENDED CROSS DECOMPOSITION METHOD 91

(DWRMP-CDk).

If a full DWD iteration is completed and the algorithm is to enter a BD iteration,

the following Benders relaxed master problem is solved:

min
x0,η

η

s.t. η ≥ objDWPP i + cT0 x0 +
(
λi1
)T

(B1x0 − b1) +
(
λi2
)T

(B2x0 − b2) , ∀i ∈ Uk
opt,

η ≥ objDWPP−Ri,j + cT0 x0 +
(
λi,j1

)T
(B1x0 − b1) +

(
λi,j2

)T
B2

(
x0 − xj0

)
, ∀(i, j) ∈ T kopt,

0 ≥ objDWFP−Ri,j +
(
µi,j1

)T
(B1x0 − b1) +

(
µi,j2

)T
B2

(
x0 − xj0

)
, ∀(i, j) ∈ T kfeas,

x0 ∈ X0,

(BRMP-CDk)

where Uk
opt includes the indices of all previous iterations in which Problem (DWPPk)

is solved, while T kopt and T kfeas have been defined in section 4.2. The optimality and

feasibility cuts in (BRMP-CDk) come from previous BD iterations and DW iterations,

and readers are referred to [126] for more discussions on (BRMP-CDk) .

Note that in ECD, DW restricted master problems and DW pricing problems are

included in both the upper level and the lower level. However, in the upper level

both strong and weak linking constraints complicate the problem and therefore they

are dualized in the DW pricing problems, while in the lower level only strong linking

constraints complicate the problem (because the weak linking constraints no longer

complicate the problem when x0 is fixed) and therefore weak linking constraints are

not dualized in the DW pricing problem.
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4.3.2 Synergizing the upper and the lower level

The two levels in ECD can be synergized to yield stronger bounds and accelerate

convergence, like the synergy of DWD and BD iterations within the CD method.

Specifically, columns and cuts can be generated from the solutions of the DW pricing

problems at the lower level, and they can be added to Problem (DWRMP-CDk) and

(BRMP-CDk) at the upper level in order to yield better upper and lower bounds

for the original problem (P). As a result, the DW restricted master problem can be

enhanced as:

min
x0,θi

cT0 x0 +
t−1∑
i=0

θix̂i

s.t. B1x0 + A1

t−1∑
i=0

θix̂i ≤ b1,

B2x0 + A2

t−1∑
i=0

θix̂i ≤ b2,

t−1∑
i=0

θi = 1,

θi ≥ 0,

(DWRMP-ECDk)

where x̂i represent a column generated from either the upper level or the lower level,

and t indexes all the columns. If x̂i is generated at the kth upper level iteration, then

x̂i = xk. If x̂i is generated at the lth lower level iteration for the kth upper level

iteration, then x̂i = xk,l.
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The enhanced Benders relaxed master problem can be written as:

min
x0,η

η

s.t. η ≥ objDWPP i + cT0 x0 +
(
λi1
)T

(B1x0 − b1) +
(
λi2
)T

(B2x0 − b2) , ∀i ∈ Uk
opt,

η ≥ objDWPP−Ri,j + cT0 x0 +
(
λi,j1

)T
(B1x0 − b1) +

(
λi,j2

)T
B2

(
x0 − xj0

)
, ∀(i, j) ∈ T̂ kopt,

0 ≥ objDWFP−Ri,j +
(
µi,j1

)T
(B1x0 − b1) +

(
µi,j2

)T
B2

(
x0 − xj0

)
, ∀(i, j) ∈ T̂ kfeas,

x0 ∈ X0,

(BRMP-ECDk)

where T̂ kopt includes index pairs that index the BD iteration at which an optimality

cut is generated and all DWD iterations for this BD iteration, while T̂ kfeas includes

index pairs that index the BD iteration at which a feasibility cut is generated and all

DWD iterations for this BD iteration.

Figure 4.5 shows the algorithmic flowchart of ECD. The left part of the flowchart

depicts the ECD upper level, where Problems (DWRMP-ECDk), (DWPPk) and

(BRMP-ECDk) are solved, and the right part of the flowchart depicts the ECD lower

level, where Problems (DWFRMP-Rk,l) and (DWFP-Rk,l) are solved iteratively. The

finite convergence property of the lower level procedure is proved in the last section,

and the finite convergence property of the upper level CD procedures is proved in

[126], so we have the following finite convergence property of ECD.

Theorem 4.2. If Assumption 4.1 holds and all subproblems can be solved in finite

time, then the extended cross decomposition method in Figure 4.5 terminates in a

finite number of steps with an ε-optimal solution of Problem (P) or a certification

that Problem (P) is infeasible.



4.3. THE EXTENDED CROSS DECOMPOSITION METHOD 94

DWFRMP-Rk,l 

DWFP-Rk,l 

UBDFR< 
LBDFR+σ? 

DWRMP-Rk,l 

DWPP-Rk,l 

UBDR< 
LBDR+σ? 

Initialization 

( ) ( ),
,

1 1 0 1k l

Tk l k
DWFP R

LBDFR obj B x bµ
−

= + −

1l l= +

  

x̂0 = x0 , ε , σ , Topt
1 = Tfeas

1 =∅, k = l = t = 1,

UBDFR =UBDR =UBD = ∞,
LBDFR = LBDR = LBD = −∞.

UBDFR>σ? 

No 

Yes 

Yes 

No 

( ) ( ),
,

1 1 0 1k l

Tk l k
DWPP R

LBDR obj B x bλ
−

= + −

Yes No 

1l l= +

BRMP-ECDk 

( ){ }ˆ ˆ ,k k
feas feasT T k l= U

( ){ }ˆ ˆ ,k k
opt optT T k l= U

kBRMP ECD
LBD obj

−
=

    End 

Update (x0
*,x*) 

BRMP-ECDk 

  Feasible? 

No 

(P) is 
infeasible 

{ }min ,UBD UBD UBDR=

UBD<LBD+ε? 

Yes 

Yes 

No 

1k k= +

(x0
*,x*) is 

 ε-optimal 

DWRMP-ECDk 

DWPPk 

kDWRMP ECD
UBD obj

−
=

,k lDWRMP R
UBDR obj

−
=

,k lDWFRMP R
UBDFR obj

−
=

,0 01, kl x x= =

,ˆ t k lx x=

ˆ t kx x=

,ˆ t k lx x=

1t t= +

1t t= +

1t t= +

Figure 4.5: The flowchart of the extended cross decomposition method

4.3.3 Further discussions

Phase 1 procedure and subproblems

In this section, we present a Phase I procedure to prevent the infeasibility of Problem

(DWRMP-ECDk). The Phase I procedure essentially solves the following feasibility
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problem:

objFP = min
x0,x,z1≥0,z2≥0

‖z1‖+ ‖z2‖

s.t. A1x ≤ b1 −B1x0 + z1,

A2x ≤ b2 −B2x0 + z2,

x ∈ X.

(FP)

where z1 and z2 are slack variables and || · || denotes any norm function. We use the

1-norm in the case study in this chapter.

Problem (FP) is always feasible with the assumption that X and X0 are nonempty.

The Phase I procedure actually employs ECD to solve Problem (FP), and the sub-

problems need to be solved in this procedure is illustrated in Figure 4.6. At iteration

k at the upper level, the following DW restricted master problem is solved:

min
x0,θ0,...,θk−1≥0,z1≥0,z1≥0

‖z1‖+ ‖z2‖

s.t. B1x0 + A1

t−1∑
i=0

θixi ≤ b1 + z1,

B2x0 + A2

t−1∑
i=0

θixi ≤ b2 + z2,

t−1∑
i=0

θi = 1,

x0 ∈ X0.

(DWFRMP-ECDk)

Let µk1 and µk2 be the Lagrange multipliers for the strong and weak linking constraints

of the Problem (DWFRMP-ECDk), then the following DW pricing problem can be
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DWFRMP-ECDk: Phase I DWD Restricted Master 
Problem
BFPk: BD Feasibility Problem
BRMPI-ECDk: Phase I BD Relaxed Master Problem
DWFPk: Phase I DWD Feasibility Pricing  Problem

Lower bounds

DWFP-Rk,l: Phase I Restricted DWD Feasibility Pricing Problem
DWFRMP-Rk,l: Phase I Restricted DWD Feasibility Restricted 
Master Problem

k,lDWFRMP-R

k,lDWFP-R

Upper boundUpper bounds

DWFRMP-ECDk

DWFPk

kBFP

kBRMPI-ECDCuts 

Columns  

Upper level Decomposition

Lower level Decomposition (for solving BFPk)

Extra columns/cuts 
to the upper level  

Figure 4.6: Diagram of the Phase I procedure for extended cross decomposition
method

constructed and solved:

min
x

(
µk1
)T
A1x +

(
µk2
)T
A2x

s.t. x ∈ X.
(DWFPk)
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The BD relaxed master problem solved in Phase I can be written as:

min
x0,η

η

s.t. η ≥ objDWFP i +
(
µi1
)T

(B1x0 − b1) +
(
µi2
)T

(B2x0 − b2) , ∀i ∈ Uk
feas,

η ≥ objDWFP−Ri,j +
(
µi,j1

)
(B1x0 − b1) +

(
µi,j2

)T
B2

(
x0 − xi0

)
, ∀(i, j) ∈ T̂ kfeas,

x0 ∈ X0.

(BRMPI-ECDk)

where Uk
feas includes the indices of all previous iterations in which Problem (DWFPk)

is solved. Note that there are no feasibility cuts generated in Phase I, because Problem

(BFPk) is always feasible (provided X and X0 are nonempty).

Remark 4.1. The Phase I procedure illustrated in Figure 4.6 terminates finitely with

an δ-optimal solution of Problem (FP). If objFP > δ, then Problem (P) is infeasible;

otherwise, Problem (P) is feasible and the optimal solution of Problem (FP) is a

feasible solution of Problem (P).

In order for the optimality of Problem (FP) to precisely imply the feasibility of

Problem (P), we need to select a sufficiently small optimality tolerance δ for Phase

I (as least no larger than the feasibility tolerance of Problem (P)). The algorithmic

flowchart of Phase I is similar to the one given in Figure 4.5, so it is omitted.

The optimal solution of Problem (FP) and all the other columns generated in

Phase I will be added in Problem (DWRMP-ECDk) in Phase II, so Problem (DWRMP-ECDk)

is always feasible. The cuts generated in Phase I can also be added to the BD relaxed

master problem in Phase II, but these cuts will all appear like feasibility cuts, as
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explained in [126]. The Phase II BD relaxed master problem can be written as:

min
x0,η

η

s.t. η ≥ objDWPP j + cT0 x0 +
(
λj1
)T

(B1x0 − b1) +
(
λj2
)T

(B2x0 − b2) ∀j ∈ Uk
opt,

η ≥ objDWPP−Ri,j + cT0 x0 +
(
λi,j1

)T
(B1x0 − b1) +

(
λi,j2

)T
B2

(
x0 − xj0

)
, ∀(i, j) ∈ T̂ kopt,

0 ≥ objDWFP i +
(
µi1
)T

(B1x0 − b1) +
(
µi2
)T

(B2x0 − b2) , ∀i ∈ Uk
feas,

0 ≥ objDWFP−Ri,j +
(
µi,j1

)T
(B1x0 − b1) +

(
µi,j2

)T
B2

(
x0 − xi0

)
, ∀(i, j) ∈ T̂ kfeas,

x0 ∈ X0.

(BRMPII-ECDk)

Adaptive switching between upper and lower level subproblems

In [126], it is demonstrated that the CD method can be improved by switching be-

tween DWD and BD iterations in an adaptive way. The switching rules proposed in

[126] can effectively avoid ineffective iterations at which columns and cuts generated

do not help to close the optimality gap, so it can be adapted here to improve the

convergence rate. Specifically, the ECD switching rules determine the alternation

between the lower and the upper levels, following two criteria:

1. After an upper level DWD iteration, solve Problem (BRMPI-ECDk) (for Phase

I) or (BRMPII-ECDk) (for Phase II) to update the lower bound. If the decrease

of the upper bound in the DWD iteration is more than the increase of the lower

bound, then the algorithm will go to another DWD iteration. Otherwise, the

algorithm will go to the lower level in order to solve (BFPk) (for Phase I) or

(BPPk) (for Phase II).

2. After the convergence of a lower level procedure, solve Problem (DWFRMP-ECDk)
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(for Phase I) or (DWRMP-ECDk) (for Phase II). If the optimal objective value

of the problem is better than the current upper bound, then the algorithm will

go to an upper level DWD iteration. Otherwise, the algorithm will go to an-

other BD iteration, which requires solving (BFPk) (for Phase I) or (BPPk) (for

Phase II) via another lower level procedure.

We tag the algorithm following the above rules as ”ECD2” and the standard

algorithm without the rules as ”ECD1”. The advantage of ECD2 will be seen through

the case study.

4.4 Application of ECD: Risk-averse two-stage stochastic programming

4.4.1 Background

Different risk measurement metrics are adopted in the literature for risk-averse two-

stage stochastic programming, such as variance, variability index, probabilistic finan-

cial risk, downside risk, value-at-risk (VaR), etc [127]). In this chapter, the conditional

value-at-risk, CVaR, developed by Rockafellar and Uryasev [123] is used to account

for risks because of its ability to account for worse case, computational tractability

and its close relationship to VaR [123] [128] [129] [130].

CVaR can be included two-stage stochastic programming in two ways. One is to

penalize CVaR in the objective function; in this case Problem (SP) does not have

strong linking constraints, and it can be solved by classical decomposition methods.

For example, Ahmed [27] used a cutting plane approach to solve a risk-averse stochas-

tic linear program; the risk measured by a dispersion metric. Schultz and Tiedemann

[131] applied Lagrangian decomposition to solve a risk averse stochastic mixed-integer

programming problem. Noyan [121] developed two decomposition techniques based
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on generic BD to solve a stochastic LP minimizing CVaR. Qi et al. used multicut

BD to solve a risk-averse problem [132].

The other way is to bound CVaR in constraints. Some applications with CVaR

included in constraints include portfolio optimization [123], oil and energy optimiza-

tion [125], oil supply chain [133], large-scale industrial batch plants [134] [135], trav-

eling saleman’s problem [130]. Modeling CVaR as objective and as constraints have

been shown by Krokhmal et al. to provide the same efficient frontier [128]. How-

ever, CVaR constrained approach is preferred because decision makers interpret and

quantify right hand side easier than penalty parameters in the objective function, as

argued by Fabian and Veszpremi [136]. The research on decomposition based strategy

to solve CVaR constrained two-stage stochastic programming is very limited in the

literature. Huang and Zheng [130] proposed a BD-type approach for the traveling

saleman’s problem with risk constraints. In their strategy, they seperated the risk

constraints from scenario coupling constraints. Feasibility cuts were then developed

to exclude solutions already generated. Bruno and Sagastizábal [125] developed two

decomposition approaches to solve a two-stage stochastic linear program with CVaR

constraints. The first approach is a Benders-like procedure, and the second approach

is a bilevel decomposition procedure with Lagrangian decomposition in the upper

level and BD in the lower level. The second approach is rigorous only for linear

programming problems.
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4.4.2 CVaR-constrained two-stage stochastic programming

We consider the following CVaR constraints for scenario-based risk-averse two-stage

stochastic programming derived in Appendix B based on [128] [134] [135]:

ζ +
1

(1− β)

∑
ω∈S

pωψω ≤ b0, (4.3)

ψω ≥ fω(xω)− ζ, ψω ≥ 0, ∀ω ∈ {1, ..., s}, (4.4)

where fω(xω) denotes a scenario dependent loss function of the second-stage variables

at scenario ω, pω ∈ {0, 1} denotes the probability of scenario ω (
∑s

ω=1 pω = 1),

β ∈ {0, 1} is a user specified probability, b0 is a user specified risk threshold for

the loss function over all scenarios. When the CVaR constraints are included, the

two-stage stochastic programming problem can be written as:

min
x0,x1,...,xs
ζ,ψ1,...,ψs

s∑
ω=1

(
cT

0,ωx0 + cT
ωxω

)
s.t. A0,ωx0 + Aωxω ≤ b0,ω, ω ∈ {1, ..., s}, (A)

ψω ≥ fω(xω)− ζ, ω ∈ {1, ..., s}, (B)

ζ +
s∑

ω=1

p̂ωψω ≤ b0, (C)

xω ∈ Xω, ψω ≥ 0, ∀ω ∈ {1, ..., s},

x0 ∈ X0, ζ ∈ R,

(CVaR-SP)

where we define p̂ω = 1
(1−β)

pω for convenience. In this formulation, x0 denotes the first-

stage decisions and xω denotes second-stage decisions for scenario ω. Constraints (A)

and (B) are weak linking constraints, because when x0 is fixed, they are decomposable
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over the scenarios. Constraints (C) are strong linking constraints, because they cannot

be decomposed over the scenarios no matter whether x0 is fixed.

ECD is developed under the assumption that all variables are explicitly bounded,

because otherwise some ECD subproblems may be unbounded. In (CVaR-SP), ψω

and ζ are not explicitly bounded although their boundedness is already implied by

the formulation, so next we are to show how to estimate the bounds for ψω and ζ in

order to prevent unbounded ECD subproblems.

First, from equation (4.4), a valid lower bound of ψω is ψloω = 0, ∀ω ∈ {1, · · · , s}.

Second, from equations (4.3) and (4.4),

ζ ≤ b0 −
1

1− β

s∑
ω=1

pωψωb0 ≤ b0,

so a valid upper bound on ζ is ζup = b0.

Next, we show that a valid lower bound on ζ is

ζ lo = min

{
−(1− β)

β
b0 +

1

β
f lo, f lo

}
,

where f lo is a valid lower bound for the loss function for any scenario, i.e.,

f lo ≤ min
ω∈{1,··· ,s}

{
min
xω∈Xω

fω(xω)

}
.

We show this by showing that any ζ that is less than ζ lo does not satisfy (1). This is
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because ∀ζ < ζ lo,

ζ +
1

1− β

s∑
ω=1

pωψω ≥ ζ +
1

1− β

s∑
ω=1

pω(fω(xω)− ζ)

≥ ζ +
1

1− β

s∑
ω=1

pω(f lo − ζ)

= ζ +
(f lo − ζ)

1− β

s∑
ω=1

pω

= ζ +
(f lo − ζ)

1− β

=
−β

1− β
ζ +

1

1− β
f lo

>
−β

1− β

{
−(1− β)

β
b0 +

1

β
f lo
}

+
1

1− β
f lo

= b0.

Finally, we show that ψupω = fupω − ζ lo is a valid upper bound for ψω, where fupω is

a valid lower bound for the loss function for scenario ω, i.e.,

fupω ≥ max
xω∈Xω

fω(xω).

According to equation (4.4), this can be shown by showing that fupω − ζ lo ≥ 0, and

fupω − ζ lo ≥ fω(xω)− ζ, and these two relations result directly from the definitions of

fωup and ζ lo.
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In summary, the bounds ζ and ψω can be computed as follows:

ψloω = 0, ∀ω ∈ {1, · · · , s},

ζup = b0,

ζ lo = min{−(1− β)

β
+

1

β
f lo, f lo},

ψupω = fupω − ζ lo, ∀ω ∈ {1, · · · , s}.

The ECD subproblems, including those for Phase I and Phase II, are explained in

Appendix B.

4.5 Case Study

4.5.1 Case Study Problem

The case study considers an energy and bio-product supply chain optimization (SCO)

problem originally studied in [10]. The supply chain considered has four layers in-

volving material collecting, material preprocessing, energy and bio-product produc-

tion and product distribution. The goal of the strategic SCO is to determine the

optimal configuration of the supply chain network and the technologies used in the

production plants, such that the total profit is maximized and the customer demands

at the demand locations are satisfied. McLean and Li [109] considered uncertainties

in the supply chain and formulate a risk-neutral two-stage optimization problem in

the form of problem (SP), where the first-stage decisions are binary variables deter-

mining whether or not specific units are to be developed and specific technologies are

to be adopted for energy/bio-product production, and the second-stage decisions are

continuous variables determining material and product flows in the operation of the
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supply chain. We consider two uncertain parameters in the problem, the yield of corn

stover and the minimum demand for electricity at each of the three demand loca-

tions. The yield and demand uncertainties are assumed to be uniformly distributed

in ranges [790 890] t/km2 · year and [1 3] 106 ·MWh/year, respectively. Other

details of the case study is provided in Appendix B.

We consider two formulations for the case study problem. One is a risk-neutral

stochastic programming formulation without CVaR constraints, where the uncer-

tainty in the minimum electricity demands are not considered. The other a risk-

averse stochastic programming formulation with CVaR constraints, where the loss

function fω(xω) is total unsatisfied minimum electricity demands (i.e., the total min-

imum electricity demand minus the total electricity supply). The parameters for the

CVaR constraints are explained in Appendix B.

4.5.2 Solution methods and Implementation

The risk-neutral formulation does not have strong linking constraints. We compare

four solution methods for this formulation, which are monolith (i.e., solving the full

problem directly using an existing commercial optimization solver), BD (i.e., clas-

sical Benders decomposition), CD1 (the CD method proposed in [126] without the

adaptive alternation between BD and DWD iterations), and CD2 (the CD methods

proposed in [126] with the adaptive alternation). The risk-averse formulation does

have strong linking constraints (which come form the CVaR constraints), and we

also compare four solution methods for it, which are monolith, BLD (i.e., the bilevel

decomposition method proposed in section 4.2), ECD1 (the proposed ECD method

without adaptive switching between the two levels), and ECD2 (the proposed ECD
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method with adaptive switching between the two levels).

The simulation was run on a virtual machine setup running Ubuntu 16.04 on a

computer allocated with a 2.4 GHz CPU and 4 GB of memory. The two formulations

and the solution methods were programmed on GAMS 24.6.1 [111] with CPLEX

12.6.3 [108] being the LP/MILP solver. GUSS [112], a GAMS extension, was utilized

in all decomposition methods (with default GUSS options), in order to achieve efficient

model generation and solution for the decomposed scenario problems. The relative

termination tolerance used for all solution methods was ε = 10−3.

4.5.3 Results and Discussion

The results for the risk-neutral formulation are shown on Tables 4.1, 4.2, 4.3 and 4.4

while those for the risk-averse formulation are given on Tables 4.5, 4.6, 4.7 and 4.8.

The objective values shown in the tables present negative profits. The results show

that both decomposition and monolith approaches attain the same optimal profit

(within the tolerance) for every problem instance. We can also see that the optimal

profit attained by the risk-averse formulation is lower than that of the risk-neutral

formulation by 8%. This results from the restriction of the CVaR constraints, and

indicates that the optimal profit predicted by the risk-neutral formulation is actually

not realistic if we want to satisfy most part of the minimum electricity demand.

The computational results from the risk-neutral formulation reemphasizes the

computational superiority of cross decomposition for large-scale MILPs. It can be

seen from the results in Tables 4.1, 4.2, 4.3 and 4.4 that for the 9 scenario instance

(a relatively small-scale problem), the monolith approach is better than the decom-

position methods. This is understandable because the problem is not large enough
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for the benefit of exploiting problem structure being significant. However, for all sce-

nario instances greater than 9, the monolith approach suffers from solving large-scale

problems. We see a drastic rise in solution time for monolith (from 9 scenarios to

25 scenarios, and from 25 scenarios to 49 scenarios) because of the large number of

simplex iterations required for solution, eventhough the number of explored nodes for

branch-and-bound does not consistently increase. This behavior is as a result of the

change in problem nature for different realization of uncertainty, which in turn give

rise to increasing difficulty of removing initial dual infeasibilities when the monolith

solver solves the dual LP problem. On the other hand, we see no such behavior

when decomposition is applied. Overall, decomposition is better than the monolith

approach for scenarios greater than 9. Cross decomposition is superior to BD; CD1,

even though takes more CD iterations for all instances, is superior to BD, because

of fewer BD primal problem are solved. Apparently, BD primal problem is more

expensive to solve compared to the DW pricing problem as seen from the tables.

For the largest case, CD1 is able to save 18 % of solver time compared to BD. The

monolith for this instance is not able to find the optimal solution within 24 hours.

CD2 has superior computational performance compared to all the other approaches

considered, CD1, BD and monolith; for all scenarios compared to CD1 and BD, and

for scenario instances greater than 9 for the monolith. The overall iteration by CD2

is consistently better than CD1 and BD; with an average solver time decrease of 40

% and 32 % compared to BD and CD1 respectively. The computational efficiency

of CD can be attributed to the better initial upper bounds and cuts generated from

the DW restricted and pricing problems respective. This was discussed extensively

in Ogbe and Li [126].
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For the risk-averse formulation, we can see similar results from Tables 4.5, 4.6, 4.7

and 4.8. For small-scale problems, the monolith approach is very efficient. For large

problem instances however, we see similar drastic rise in solution time for monolith

(from 9 scenarios to 25 scenarios, and from 49 scenarios to 81 scenarios) as large

number of simplex iterations are required for solution, eventhough the number of

explored nodes for branch-and-bound does not change significantly. Decomposition

is necessary for efficient solution; solving the pricing problem dominates the wall time

as no primal problems are solved. The number of pricing problems solved is therefore

indicative of the level of difficulty in solving the overall problem. For BLD, the total

number of pricing problems solved corresponds to the number of lower level DWD

iterations shown on Table 4.6. The number of upper level iterations and total number

of pricing problems solved for ECD1 are less than that for BLD except for the 121

scenario instance. This translates to better performance of ECD1 compared to BLD.

Even more impressive performance is achieved by the ECD2. ECD2 is superior to

ECD1 for all instances except the 81 scenario case, and better than BLD for all

scenario instances. For example, for the largest scenario case considered, ECD2 can

achieve as much as 10 times reduction in wall time compared to BD, and over an

order of magnitude compared to the monolith. The efficiency of ECD2 can be due to

the fact that it is able to avoid solving inefficient upper DWD iterations (especially

solving inefficient upper level pricing problems) compared to ECD1, and also ECD2

can reduce the number of lower level problems solved compared to BLD.

The upper and lower bound progression shown on Figures 4.7 and 4.8 further

demonstrates the effectiveness of the proposed extended decomposition strategy. For

the risk-neutral formulation, the upper bounds provided by CD2 are consistently
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better than that from CD1 and BD. Initially, the lower bounds are not as good as

those from BD, but eventually becomes better than BD and closes the optimality

gap quickly. CD1, on the other hand, has more iterations compared to BD, but the

computational time is less than BD for most instances as mentioned earlier. We see

for the risk-averse formulation, that the upper bounds of ECD2 are not necessarily

as good as that from BLD for all scenario instances. However, as the algorithm

progresses, both upper and lower bounds from ECD (all instances for ECD2 and

particular instances of 9, 49, 81 and 169 for ECD1) quickly approach each other

faster than those from BLD, and ultimately converges to the optimal solution faster

than BLD. It is important to note that for this case, the number of pricing problems

solved gives a better indication of the computational efficiency than the number of

upper BD iterations. Hence, the bound evolution plots should be used in conjunction

with the computational results to fully assess the performance of the ECD.

4.6 Conclusions and Future work

An extended cross decomposition method was developed for problems with strong and

weak linking constraints, as in Problem (P). We show that the algorithm converges to

the optimal solution within the set tolerance. A Phase 1 procedure for the extended

cross decomposition was also developed to handle infeasible subproblems.

The problem with CVaR constraints is Problem (CVaR-SP). Problem (CVaR-SP)

reduces to a risk neutral two-stage stochastic problem which can be solved by ordinary

cross decomposition or Benders decomposition. CD2 has superior performance over

CD1, BD and monolith for large scenario instances. This is seen from the computa-

tional times and bound evolution plots. Compared to BD, about 37 % of solver time
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Figure 4.7: Comparison of bound evolution in different decomposition methods (Risk
neutral stochastic program)
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Figure 4.8: Comparison of bound evolution in different decomposition methods (Risk
averse stochastic program)
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can be saved using CD2. Additionally, CD2 performs significantly better than the

monolith for the large scenario case, where the monolith could not return a solution

within a day.

The extended cross decomposition showed good performance over bilevel decom-

position and the monolith, for Problem (CVaR-SP). As we have seen from the results,

ECD2 can achieve 10 times reduction in wall time compared to BD, and over an or-

der of magnitude reduction in wall time compared to the monolith. In the future,

we would like to extend the current paradigm to handle risk averse nonlinear pro-

grams. In this case, generalized Benders decomposition [35], rather than Benders

decomposition, is applicable. Another future direction will be to extend the approach

to multiperiod and multistage programming problems.
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Table 4.1: Results for risk neutral stochastic program - Monolith (time in sec)

Number of scenarios 9 25 49 81 121 169

Number of iterations 71183 246978 637861 955705 1335655 -

Number of nodes explored 49 122 74 61 51 -

Optimal obj. (Million $) -29.42 -29.43 -29.43 -29.43 -29.43 -

Wall time 144 2410 9892 32465 67264 86421‡

Table 4.2: Results for risk neutral stochastic program - BD (time in sec)

Number of scenarios 9 25 49 81 121 169

Number of iterations 86 90 96 102 94 90

Optimal obj. (Million $) -29.43 -29.42 -29.42 -29.43 -29.42 -29.42

Time for primal problem 247 814 1770 3130 4425 6153

Time for BD relaxed MP 4.6 4.52 3.5 2.97 3.3 2.8

Total solver time 251 819 1773 3133 4428 6156

Wall time 352 968 2124 3929 5664 8245

Table 4.3: Results for risk neutral stochastic program - CD1 (time in sec)

Number of scenarios 9 25 49 81 121 169

Num. of iterations 115 101 123 197 99 107

Num. of DWD iterations 58 51 62 99 50 54

Num. of BD iterations. 57 50 61 98 49 53

Optimal obj. (Million $) -29.43 -29.42 -29.42 -29.42 -29.43 -29.43

Time for pricing problems 65.5 183 417 1223 1073 1572

Time for DW restricted MP 4.7 9.7 33.8 139 53.6 83.8

Time for primal problems 160.6 429 1056 2914 2343 3348

Time for BD relaxed MP 3.4 2.2 4.7 3.8 2.2 2.2

Total solver time 234 829 1526 4297 3472 5007

Wall time 342 795 1968 6697 4994 7752

Table 4.4: Results for risk neutral stochastic program - CD2 (time in sec)

Number of scenarios 9 25 49 81 121 169

Num. of CD iterations 67 46 57 68 54 65

Num. of DWD iterations 3 3 3 3 3 4

Num. of BD iterations 64 43 54 65 51 61

Optimal obj. (Million $) -29.43 -29.43 -29.42 -29.42 -29.43 -29.42

Time for pricing problem 2.8 9.6 15.5 32.5 46.7 70.9

Time for DW restricted MP 2.4 2.5 4.8 10.6 9.6 17.7

Time for primal problem 185 600 994 1962 2466 3740

Time for BD relaxed MP 1.87 1.2 1.4 1.6 1.3 1.8

Total solver time 192 408 897 2006 2523 3831

Wall time 282 522 1328 2897 3916 7022

‡: Resource limit of 24 hours for MIP solution reached
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Table 4.5: Results for risk averse stochastic program - Monolith (time in sec)

Number of scenarios 9 25 49 81 121 169

Number of iterations 37930 187070 279729 581145 780983 908994

Number of nodes explored 15 20 20 21 13 22

Optimal obj. (Million $) -26.96 -26.96 -26.96 -26.96 -26.96 -26.96

Wall time 118 2563 4971 37851 55117 111677‡

Table 4.6: Results for risk averse stochastic program - BLD (time in sec)

Num. of scenarios 9 25 49 81 121 169

Num. of upper BD iterations 56 74 76 103 55 152

Num. of lower DWD iterations 245 310 364 491 236 741

Optimal obj. (Million $) -26.96 -26.94 -26.96 -26.96 -26.96 -26.96

Time for pricing problems 232 986 2156 5132 2689 18006

Time for DW restricted MP 3.4 8.21 18.9 43.5 37.9 154

Time for BD relaxed MP 1.8 2.41 1.45 1.83 0.63 3.4

Total solver time 238 996 2176 5177 3728 18164

Wall time 392 1320 2991 8224 5012 40184

Table 4.7: Results for risk averse stochastic program - ECD1 (time in sec)

Number of scenarios 9 25 49 81 121 169

Num. of upper BD iterations 53 87 67 65 89 75

Num. of upper DWD iterations 27 44 34 33 45 38

Num. of lower DWD iterations 109 186 160 140 189 154

Num. of pricing prob. solved # 136 230 194 173 234 192

Optimal obj. (Million $) -26.94 -26.95 -26.96 -26.96 -26.96 -26.93

Time for pricing probs. 123 707 1114 1738 3924 4501

Time for DW restricted MP 6.1 49.7 73.4 83.3 335.6 271

Time for BD relaxed MP 0.5 1.6 0.57 0.45 0.79 0.6

Total solver time 130 759 1188 1840 4260 4774

Wall time 205 1026 1543 2368 5790 6336

Table 4.8: Results for risk averse stochastic program - ECD2 (time in sec)

Number of scenarios 9 25 49 81 121 169

Num. of upper BD iterations 29 36 42 52 43 36

Num. of upper DWD iterations 4 4 4 4 4 4

Num. of lower DWD iterations 108 137 157 216 166 133

Num. of pricing probs. solved # 112 141 161 220 170 137

Optimal obj. (Million $) -26.96 -26.94 -26.96 -26.94 -26.94 -26.96

Time for pricing probs. 103 425 813.1 2103.3 2611 2669

Time for DW restricted MP 6.7 29.3 55.5 181.4 159 116

Time for BD relaxed MP 0.3 0.48 0.5 1.2 0.58 0.4

Total solver time 111 455 869 2302 2771 2786

Wall time 187 632 1171 3115 3783 3924

#: Total number of IPP, DWPP, DWFP, DWPP-R and DWFP-R solved
‡: CPLEX found an MIP solution after 18 hours but could not solve final LP within 24 hours
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Chapter 5

A Joint Decomposition Method for Global

Optimization of Multiscenario Mixed-integer

Nonlinear Nonconvex Programs ∗

5.1 Introduction

Global optimization is a field of mathematical programming devoted to obtaining

global optimal solutions; and it has over the years found enormous applications in

Process Systems Engineering (PSE). Mixed-integer nonlinear programs are global

optimization problems where some decision variables are integer while others are

continuous. Discrete decisions and nonconvex nonlinearities introduce combinatorial

behavior for such problems [137] [73]. Various applications of mixed-integer nonlin-

ear programming for PSE systems include natural gas network design and operation

[117], gasoline blending and scheduling problems [79], expansion of chemical processes

∗This chapter has been submitted for publication as Ogbe E, Li X, Joint decomposition method
for multiscenario mixed-integer nonlinear nonconvex programs, Journal of Global Optimization. The
equations, assumptions, propositions, theorems, symbols and notations defined in this chapter are
self-contained.
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[119], reliable design of software [138] [139], pump network problem [140] [17], chem-

ical process design synthesis [141], planning of facility investments for electric power

generation [142], etc.

In most PSE problems, there are factors or parameters in the model that are

usually not known with certainty. One way to explicitly characterize uncertainty is

using the two-stage stochastic programming approach [21] [18]. Using the classical

scenario based two-stage stochastic programming formulation to model uncertainty,

we obtain the following multiscenario problem [43] [21]:

min
x0

z1,...,zs

s∑
ω=1

[f0,ω(x0) + fω(zω)]

s.t. g0,ω(x0) + gω(zω) ≤ 0, ∀ω ∈ {1, ..., s},

zω ∈ Zω, ∀ω ∈ {1, ..., s},

x0 ∈ X0,

(P0)

where functions f0,ω : X0 → R, fω : Zω → R, g0,ω : X0 → Rm , gω : Zω → Rm.

Elements in sets X0 and Zω can include continuous and/or integer variables. The first

stage decision variable is x0 and is made before the uncertainty is realized. The second

stage decision z1, ..., zs is made after the uncertainty is revealed. The associated cost

for x0 is f0,ω and that for zω is fω for every scenario ω. When at least one set or

function in the problem is nonconvex, Problem (P0) is a nonconvex mixed-integer

nonlinear program (MINLP), or a nonconvex nonlinear program (NLP) if no integer

variables are involved. To fully capture the uncertainty effect in Problem (P0), usually

a large number of scenarios need to be considered. This implies that Problem (P0)
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is potentially a large-scale nonconvex MINLP, which is typically very challenging to

solve.

Based on ideas from branch-and-bound for mixed-integer programing, branch-and-

bound method has been employed to globally solve nonconvex MINLPs [143] [144]

[73]. The method entails systematically generating lower and upper bounds of the op-

timal objective function value over subdomain of the search space. To generate lower

bounds, McCommick developed tighter convex relaxations called McCommick relax-

ations [70]. Other ways to generate lower bounds is through the use of Lagrangian

relaxation (or decomposition) [38][56][88]. In Lagrangian decomposition, the linking

constraints in Problem (P0) are dualized and the resultant subproblem, which pro-

vides a lower bound to Problem (P0), is solved. Several ways of generating multipliers

for the Lagrangian subproblem exist; including subgradient methods [106], cutting

plane methods [38], and the Dantzig-Wolfe master problem (also known the restricted

Lagrangian master problem) [82] [126]. Branch-and-bound alone have been successful

mostly for small to medium sized problems.

One idea to improve branch-and-bound based strategies is incorporation of domain

reduction techniques. Domain reduction entails eliminating portions of the feasible

domain using feasibility and optimality information. Bound tightening or contrac-

tion [145], range reduction [146] and generation of cutting planes [147] are different

domain reduction strategies that have been successful in solving nonconvex problems

[139]. In bound contraction, the variable bounds are shrunk at every iteration by

solving bound contraction subproblems [145]. In range reduction, the bounds on the

variables are shrunk based on simple calculations using Lagrange multiplier informa-

tion [146]. For cutting planes generation, Lagrangian relaxation information provides
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cuts that is used to cut-off portion of the feasible domain that does not contain the

global optimum [78]. Current state-of-the-art commercial deterministic global opti-

mization solvers embody branch-and-bound and enhancements such as tighter convex

relaxations and domain reduction techniques, such as the Branch-And-Reduce Op-

timization Navigator (BARON) [73] and Algorithms for coNTinuous/Integer Global

Optimization of Nonlinear Equations (ANTIGONE) [148]. They generally provide

rigorous frameworks for global solutions to Problem (P0). However, because these

methods are based on branch-and-bound search, the search tree can become pro-

hibitively large when the size of the problem becomes large.

Multiscenario problems, such as Problem (P0), have special structure; they can

be solved efficiently using decomposition methods. Benders decomposition (BD) [34]

(known as L-shaped method in the stochastic programming literature [43] [21]) is

one class of decomposition methods applied for mixed-integer linear programs. Geof-

frion [35] generalized BD into Generalized Benders Decomposition (GBD), for solving

convex MINLPs. Li et al. developed a further extension, called Nonconvex Gener-

alized Benders Decomposition [79], for solving nonconvex MINLPs, but this method

can guarantee finite termination with an optimal solution only if the linking variable

is fully integer. Outer Approximation (OA) is another decomposition technique for

solving nonconvex MINLP, with nonlinearities in the second stage [36] [149]. This

method solves a sequence of upper bounding continuous NLP subproblems and a

sequence of lower bounding MILP subproblems until the bounds converge to an op-

timum. Karuppiah and Grossmann applied Lagrangian decomposition based scheme

to solve Problem (P0) [25]. In order to guarantee convergence to a global optimum,

explicit branch-and-bound of linking variables are needed. They also presented bound
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contraction as an optional scheme in their Lagrangian-based branch-and-bound strat-

egy. A more recent algorithm combining NGBD and Lagrangian decomposition has

been proposed by Kannan and Barton [81], and this algorithm also requires explicit

branch-and-bound for convergence.

Efforts have been taken to achieve better computational efficiency by combining

classical decomposition methods. In 1983, Van Roy proposed a cross decomposition

method that combines Lagrangian decomposition and Benders decomposition [82] to

solve MILP problems which do not have second stage integer variables. Since then,

a number of extensions and variants of cross decomposition has been developed [83]

[84] [102] [150] [54] [126]. All of these methods require that no nonconvexity comes

from second stage variables as otherwise finite convergence cannot be guaranteed.

In this chapter, we develop a new decomposition method for global optimization

of Problem (P0), without the need for explicit branch-and-bound. The user of the

method does not have to select a heuristic that is normally required by a branch-and-

bound search. This is a practical advantage, especially considering that a branch-

and-bound heuristic cannot fully exploit the problem structure. The method was

inspired by cross decomposition, and it follows a similar algorithm design philosophy,

combining primarily generalized Benders decomposition and Lagrangian decomposi-

tion. However, its decomposition procedure is rather different in many details due to

the nonconvexity it has to deal with, so we do not call it cross decomposition, but a

new name joint decomposition.

The remaining part of the article is organized as follows. In section 5.2, we give

a brief introduction to generalized Benders decomposition and Lagrangian decompo-

sition, using a reformulation of Problem (P0). Then in section 5.3, we present the
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basic joint decomposition algorithm and the convergence proof. Section 5.4 discusses

enhancements to the basic joint decomposition algorithm, including domain reduction

and use of extra convex relaxation subproblems. The joint decomposition methods

are tested for two case study problems adapted from the literature, and the simula-

tion results shown in section 5.5 demonstrate the effectiveness and the computational

advantages of the methods. The article ends with concluding remarks in section 5.6.

5.2 Problem reformulation and classical decomposition methods

In order to bring up the joint decomposition idea, we reformulate Problem (P0) and

briefly discuss how the reformulated problem can be solved via classical GBD and LD

methods. We first separate the convex part and the nonconvex part of the problem.

Specifically, let zω = (zc,ω, znc,ω), where zc,ω includes convex variables that are only

involved in convex functions and sets and znc,ω includes nonconvex variables that

are involved in at least one nonconvex function or nonconvex set. In addition, we

introduce duplicate variables x1, ..., xs for variable x0, to express the relation among

all scenarios using nonanticipativity constraints (NACs) [88][89] [78]. We then rewrite

Problem (P0) as the following:
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min
x0,z0,1,...,z0,s
zc,1,...,zc,s
znc,1,...,znc,s

s∑
ω=1

[f0,ω(z0,ω) + fc,ω(zc,ω) + fnc,ω(znc,ω)]

s.t. x0 = z0,ω, ∀ω ∈ {1, ..., s},

g0,ω(z0,ω) + gc,ω(zc,ω) + gnc,ω(znc,ω) ≤ 0, ∀ω ∈ {1, ..., s},

x0 ∈ X0,

z0,ω ∈ X̂0, zc,ω ∈ Zc,ω, znc,ω ∈ Znc,ω, ∀ω ∈ {1, ..., s},

(P1)

where x0 is called linking variable as it links different scenarios. Set X0 ⊂ Rn0 can be

either convex or nonconvex, set Zc,ω ⊂ Rnc is convex, set Znc,ω ⊂ Rnnc is nonconvex.

Functions fc,ω : Zc,ω → R, gc,ω : Zc,ω → Rmc are convex, functions fnc,ω : Znc,ω → R,

and gnc,ω : Znc,ω → Rmnc include only nonconvex variables (but they themselves may

be either convex or nonconvex). Set X̂0 ∈ Rn0 is a convex relaxation of X0. The

restriction z0,ω ∈ X̂0 is actually redundant with the presence of NAC; however, it

tightens the problem when the NACs are dualized.

Note that in order to generate a convex relaxation of X0, extra variables may be

introduced [75], so the dimension of the relaxation may be larger than that of X0.

Here X̂0 can be understood as the projection of the relaxation set on the Rn0 space.

For simplicity of notation, in this chapter we always express a convex relaxation (of a

set or a function) on the original variable space and do not explicitly show the extra

variables needed for constructing the relaxation.

For convenience of subsequent discussion, we further rewrite Problem (P1) in the

following form:
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min
x0,x1,...,xs
y1,...,ys

s∑
ω=1

cTωxω

s.t. x0 = Hωxω, ∀ω ∈ {1, ..., s},

Aωxω +Bωyω ≤ 0, ∀ω ∈ {1, ..., s},

x0 ∈ X0,

xω ∈ Xω, yω ∈ Yω, ∀ω ∈ {1, ..., s},

(P)

where xω ∈ Rnx , yω ∈ Rny , Xω is convex, Yω is nonconvex, and Hω ∈ Rn0 × Rnx

selects from xω the duplicated x0 for scenario ω. The derivation for reformulation (P)

is shown in Appendix C.1.

Problem (P) is difficult to solve because of the presence of linking variables x0 and

nonconvex variables yω. The classical GBD method can be used to solve Problem (P)

by treating x0 and yω as complicating variables, while the LD method can be used to

solve Problem (P) by dualizing NACs so that x0 no longer links different scenarios.

In the next two subsections we briefly introduce GBD and LD for Problem (P), and

we make the following assumptions for Problem (P) for convenience of discussion.

Assumption 5.1. X0, Xω and Yω for all ω ∈ {1, ..., s} are non-empty and compact.

Assumption 5.2. After fixing (x0, y1, · · · , ys) to any point in X0 × Y1 × · · · × Ys, if

Problem (P) is feasible, it satisfies Slater condition.

Assumption 5.1 is a mild assumption, as for most real-world applications, the

variables are naturally bounded and the functions involved are continuous. If a dis-

continuous function is involved, it can usually be expressed by continuous functions
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and extra integer variables. Assumption 5.2 ensures strong duality of convex subprob-

lems that is required for GBD. If this assumption is not satisfied for a problem, we can

treat the convex variables that fail the Slater condition to be complicating variables,

so that after fixing all complicating variables the Slater condition is satisfied.

5.2.1 Generalized Benders decomposition

At each GBD iteration l, fixing the complicating variables x0 = x
(l)
0 , yω = y

(l)
ω (∀ω ∈

{1, ..., s}) results in an upper bounding problem that can be decomposed into the

following Benders primal subproblem for each scenario ω:

obj
BPP

(l)
ω

= min
xω

cTωxω

s.t. x
(l)
0 = Hωxω,

Aωxω +Bωy
(l)
ω ≤ 0,

xω ∈ Xω,

(BPP
(l)
ω )

objBPPl
ω

is the optimal objective value of (BPP
(l)
ω ). For convenience, we indicate the

optimal objective value of a problem in the above way for all subproblems discussed in

this chapter. Obviously,
∑s

ω=1 objBPP
(l)
ω

represents an upper bound for Problem (P).

If (BPP
(l)
ω ) is infeasible for one scenario, then solve the following Benders feasibility
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subproblem for each scenario ω:

obj
BFP

(l)
ω

= min
xω ,z

+
1,ω ,z

−
1,ω ,z2,ω

||z+
1,ω||+ ||z−1,ω||+ ||z2,ω||

s.t. x
(l)
0 = Hωxω + z+

1,ω − z−1,ω,

Aωxω +Bωy
(l)
ω ≤ z2,ω,

xω ∈ Xω, z+
1,ω, z

−
1,ω, z2,ω ≥ 0,

(BFP
(l)
ω )

where z+
1,ω, z−1,ω, and z2,ω are slack variables.

At the same iteration, the following Benders relaxed master problem is solved to

yield a lower bound for Problem (P):

min
x0,η0,η1,...,ηs

y1,...,ys

η0

s.t. η0 ≥
s∑

ω=1

ηω

ηω ≥ obj
BPP

(j)
ω

+ (λω
(j))TBω(yω − y(j)

ω ) + (µ(j)
ω )T

(
x0 − x(j)

0

)
,

∀ω ∈ {1, ..., s}, ∀j ∈ T (l),

0 ≥ obj
BFP

(j)
ω

+ (λω
(j))TBω(yω − y(j)

ω ) + (µ(j)
ω )T

(
x0 − x(j)

0

)
,

∀ω ∈ {1, ..., s}, ∀j ∈ S(l),

x0 ∈ X0,

yω ∈ Yω, ∀ω ∈ {1, ..., s},

(BRMP(l))

where µ
(l)
ω includes Lagrange multipliers for the first group of constraints in Problem

(BPP
(l)
ω ) or (BFP

(l)
ω ), and λ

(l)
ω includes Lagrange multipliers for the second group of

constraints in Problem (BPP
(l)
ω ) or (BFP

(l)
ω ). Set T (l) includes indices of Benders
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iterations at which only (BPP
(l)
ω ) is solved, and set S(l) includes indices of Benders

iterations at which (BFP
(l)
ω ) is solved. Note that Problem (BRMP(l)) is used in the

multicut BD or GBD, which is different from the one used in the classical single cut

BD or GBD. The multicut version of the Benders master problem is known to be

tighter than the single cut version [46] [151], so it is considered in this chapter.

Remark 5.1. The finite convergence property of GBD is stated and proved in [35].

In Section 3, we will provide more details in the context of our new decomposition

method.

Remark 5.2. For (P), the relaxed master problem (BRMP(l)) can still be very diffi-

cult as its size grows with the number of scenarios. However, if most variables in (P)

are convex variables, the size of (BRMP(l)) is much smaller than that of (P), and

therefore (BRMP(l)) is much easier to solve than (P).

5.2.2 Lagrangian decomposition

We start discussing LD from the Lagrangian dual of Problem (P) that is constructed

by dualizing the NACs of the problem:

objDP = max
π1,··· ,πs≥0

objLS(π1, · · · , πs), (DP)
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where objLS(π1, · · · , πs) is the optimal objective value of the following Lagrangian

subproblem with given (π1, · · · , πs):

min
x0,x1,...,xs
y1,...,ys

s∑
ω=1

[cTωxω + πTω (x0 −Hωxω)]

s.t. Aωxω +Bωyω ≤ 0, ∀ω ∈ {1, ..., s},

x0 ∈ X0,

xω ∈ Xω, yω ∈ Yω, ∀ω ∈ {1, ..., s}.

(LS(π1, · · · , πs))

Due to weak duality, Problem (DP) or any Lagrangian subproblem is a lower bounding

problem for Problem (P). Typically, the LD method is incorporated in a branch-

and-bound framework that only needs to branch on linking variables x0 to guarantee

convergence to an ε-optimal solution. At each branch-and-bound node or LD iteration

k, a set of multipliers (πk1 , · · · , πks ) are selected to construct a Lagrangian subproblem

for (DP), and this subproblem can be naturally decomposed into s+ 1 subproblems,

i.e.,

objLSk
0

= min
x0

s∑
ω=1

(πkω)Tx0

s.t x0 ∈ X0,

(LSk0)

and

min
xω ,yω

cTωxω − (πkω)THωxω

s.t. Aωxω +Bωyω ≤ 0,

xω ∈ Xω, yω ∈ Yω,

(LSkω)
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for all ω ∈ {1, · · · , s}. Let objLSk be the optimal objective value of the Lagrangian

subproblem, then objLSk =
∑s

ω=1 objLSk
ω

+ objLS0
k . Clearly, objLSk ≤ objDP always

holds. If (πk1 , · · · , πks ) happens to be an optimal solution of (DP), then objLSk = objDP.

In all LD methods, the lower bounds are generated by solving the Lagrangian

subproblems. However, the upper bounds and the multipliers for constructing La-

grangian subproblems may be generated in different ways. In this subsection, we

introduce one approach to generate the upper bounds and the multipliers. In this

approach, at each iteration k, a primal problem is constructed via fixing x0 = xk0, and

this problem can be separated into s primal subproblem in the following form:

objPPk
ω

= min
xω ,yω

cTωxω

s.t. xk0 = Hωxω,

Aωxω +Bωyω ≤ 0,

xω ∈ Xω, yω ∈ Yω,

(PPk
ω)

Let objPPk be the optimal objective value of the primal problem, then objPPk =∑s
ω=1 objPPk

ω
.

For generation of multipliers, we take the idea from Dantzig-Wolfe decomposition,

which is essentially a special LD method. Consider the convex hull of nonconvex set

Yω:

Ỹω = {yω ∈ Rny : yω =
∑
i∈I

θ[i]
ω y

[i]
ω ,
∑
i∈I

θ[i]
ω = 1, θ[i]

ω ≥ 0,∀i ∈ I},

where y
[i]
ω denotes a point in Yω that is indexed by i. The index set I may need to

be an infinite set for Ỹω being the convex hull. Replace Yω with its convex hull for all

ω in (P), then we get the following Dantzig-wolfe master problem, or called primal
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master problem in this chapter:

min
x0,θ

[i]
1 ,...,θ

[i]
s

x1,...,xs

s∑
ω=1

cTωxω

s.t. x0 = Hωxω, ∀ω ∈ {1, ..., s},

Aωxω +Bω

∑
i∈I

θ[i]
ω y

[i]
ω ≤ 0, ∀ω ∈ {1, ..., s},

∑
i∈I

θ[i]
ω = 1, θ[i]

ω ≥ 0, ∀i ∈ I, ∀ω ∈ {1, ..., s},

x0 ∈ X0,

xω ∈ Xω, ∀ω ∈ {1, ..., s}

(PMP)

Clearly, Problem (PMP) is a relaxation of Problem (P), and it is either fully convex or

partially convex (as set X0 can still be nonconvex). At LD iteration k, the following

restriction of (PMP) can be solved:

min
x0,θ

[i]
1 ,...,θ

[i]
s

x1,...,xs

s∑
ω=1

cTωxω

s.t. x0 = Hωxω, ∀ω ∈ {1, ..., s},

Aωxω +Bω

∑
i∈Ik

θ[i]
ω y

[i]
ω ≤ 0, ∀ω ∈ {1, ..., s},

∑
i∈Ik

θ[i]
ω = 1, θ[i]

ω ≥ 0, ∀i ∈ Ik, ∀ω ∈ {1, ..., s},

x0 ∈ X0,

xω ∈ Xω, ∀ω ∈ {1, ..., s},

(RPMPk)

where index set Ik ⊂ I is finite. Ik may consist of indices of yω that are generated
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in the previously solved primal problems and Lagrangian subproblems. Problem

(RPMPk) can be solved by a state-of-the-art optimization solver directly or by GBD.

The multipliers for the NACs obtained at the solution of (RPMPk) can be used to

construct a Lagrangian subproblem for iteration k.

Actually, we can construct a different Lagrangian dual of Problem (P) by dualizing

both the NACs and the second group of constraints in the problem, as what we do for

GBD in the last subsection. However, this Lagrangian dual is not as tight as Problem

(DP) (as stated by the following proposition), so it is not preferred for a LD method.

The following proposition follows from Theorem 3.1 of [88] and its proof is omitted

here.

Proposition 5.1. Consider the following Lagrangian dual of Problem (P):

objDP2 = max
µ1,··· ,µs≥0
λ1,··· ,λs≥0

objLS2(µ1, · · · , µs, λ1, · · · , λs), (DP2)

where

objLS2 = min
x0,x1,...,xs
y1,...,ys

s∑
ω=1

[cTωxω + µTω(x0 −Hωxω) + λTω(Aωxω +Bωyω)]

s.t. x0 ∈ X0,

xω ∈ Xω, yω ∈ Yω, ∀ω ∈ {1, ..., s}.

The dual gap of (DP) is no larger than the dual gap of (DP2).
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5.3 The joint decomposition method

5.3.1 Synergizing LD and GBD

In the LD method described in the last section, at each iteration the subproblems

to be solved are much easier than the original problem (P), as either the size of

the subproblem is independent of number of scenarios, such as (PPk
ω), (LSk0), and

(LSkω), or the subproblem is a MILP or convex MINLP that can be solved by existing

optimization solvers or by GBD relatively easily, such as (RPMPk). However, without

branching on the linking variables x0, LD cannot guarantee finding a global solution,

and we do not always know how to exploit the problem structure to efficiently branch

on x0 and whether the branching can be efficient enough.

On the other hand, GBD can find a global solution, but it requires solving the non-

convex relaxed master problem (BRMP(l)) at each iteration. The size of (BRMP(l))

may be much smaller than the size of (P) if most variables in (P) are convex variables,

but (BRMP(l)) can still be difficult to solve, especially considering that it needs to be

solved at each iteration and its size grows with the number of iterations.

Therefore, there may be a way to combine LD and GBD, such that we solve as

many as possible LD subproblems and Benders primal subproblems (BPP
(l)
ω ) (as they

are relatively easy to solve), but avoid solving many difficult Benders relaxed master

problems (BRMP(l)). This idea is similar to the one that motivates cross decomposi-

tion [82], but it leads to very different subproblems and a very different algorithmic

procedure. The subproblems are very different, because for problem (P), we prefer

dualizing only NACs in LD in order to achieve the smallest possible dual gap (accord-

ing to Proposition 5.1), but we have to dualize both the NACs and the second group

of constraints in GBD. In addition, due to the different nature of the subproblems,
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the order in which the subproblems are solved and how often the problems are solved

are different. Therefore, we do not name the proposed method cross decomposition,

but call it joint decomposition (JD).

Figure 5.1 shows the basic framework of JD. Each JD iteration includes one LD

iteration part, as indicated by the solid lines, and possibly one GBD iteration, as

indicated by the dashed lines. In a JD iteration, the GBD iteration is performed only

when the LD iteration improves over the previous LD iteration substantially. The

GBD iteration is same to the one described in the last section, except that the relaxed

master problem (BRMP(l)) includes more valid cuts (which will be described later).

The LD iteration is slightly different from the one described in the last section. One

difference is that, after solving (PPk
ω) at LD iteration k, a Benders primal problem

(BPPk) is constructed using xk0 (which is used for constructing (PPk
ω)) and (y1, · · · , ys)

(which is from the optimal solution of (PPk
ω)). The (BPPk) is solved to generate a

Benders cut that can be added to (BRMP(l)). The other difference is that (RPMPk),

(LSk0), (LSkω) (decomposed from (LSk)) slightly differ from the ones described in the

last section, and they will be described later.

Remark 5.3. The JD method requires that all subproblems can be solved using an

existing optimization solver within reasonable time. If this requirement is not met,

then JD does not work, or we have to further decompose the difficult subproblems into

smaller, solvable subproblems.

5.3.2 Feasibility issues

According to Assumption 5.1, a subproblem in JD either has a solution or is infeasible.

Here we explain how JD handles infeasibility of a subproblem.
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Initialize

PPk BPP(l)

RMP(l)LSk

BPPk

RPMPk

RPMPk: Restricted Primal Master Problem
LSk: Lagrangian subproblem, decomposed into (LSk0) and (LSkω)
(ω = 1, · · · , s). RMP(l): Relaxed Master Problem, with extra cuts
from LSk and BPPk.
BPP(l): Benders Primal Problem, decomposed into (BPP

(l)
ω ) (ω =

1, · · · , s).
PPk: Primal Problem, decomposed into (PPk

ω) (ω = 1, · · · , s).
BPPk: Benders Primal Problem, solved after PPk is solved.

Figure 5.1: The basic joint decomposition framework

First, if a lower bounding problem (LSk) or (BRMP(l)) is infeasible, then the

original problem (P) is infeasible and JD can terminate.

Second, if (BPPk) or (BPP(l)) is infeasible, then JD will solve the corresponding

Benders feasibility problem (BFPk) or (BFP(l)) to yield a feasibility cut. If (BFPk)

or (BFP(l)) is infeasible, then (P) is infeasible and JD can terminate.

Third, if (PPk
ω) is infeasible, then JD will solve a feasibility problem that ”softens”

the second group of constraints: and this problem can be separated into s subproblems
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as follows:

min
xω ,yω ,zω

||zω||

s.t. xk0 = Hωxω,

Aωxω +Bωyω ≤ zω,

xω ∈ Xω, yω ∈ Yω, zω ≥ 0.

(FPk
ω)

If (FPk
ω) is infeasible for one scenario ω, then (P) is infeasible and JD can terminate. If

(FPk
ω) is feasible for all scenarios, then JD can construct and solve a feasible Benders

feasibility problem (BFPk) to yield a Benders feasibility cut for (BRMP(l)).

Finally, problem (RPMPk) can actually be infeasible if none of the (y
[i]
1 , · · · , y

[i]
s )

in the problem is feasible for the original problem (P). To prevent this infeasibility,

we can generate a point (ŷ1, · · · , ŷs) that is feasible for (P), by solving the following

initial feasibility problem:

min
x0,x1,··· ,xs
y1,··· ,ys
z1,··· ,zω

s∑
ω=1

||zω||

s.t. x0 = Hωxω, ∀ω ∈ {1, ..., s},

Aωxω +Bωyω ≤ zω, ∀ω ∈ {1, ..., s},

x0 ∈ X0,

xω ∈ Xω, yω ∈ Yω, zω ≥ 0, ∀ω ∈ {1, ..., s}.

(IFP)

Problem (IFP) is not naturally decomposable over the scenarios, but it can be solved

by JD. When solving (IFP) using JD, the restricted primal master problem (RPMPk)

must have a solution (according to Assumption 5.1).
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5.3.3 The tightened subproblems

The relaxed master problem described in section 5.2 can be tightened with the so-

lutions of previously solved subproblems in JD. The tightened problem, called joint

decomposition relaxed master problem, can be written as:

min
x0,η0,η1,...,ηs

y1,...,ys

η0

s.t. η0 ≥
s∑

ω=1

ηω,

ηω ≥ obj
BPP

(j)
ω

+ (λ(j)
ω )TBω(yω − y(j)

ω ) + (µ(j)
ω )T

(
x0 − x(j)

0

)
,

∀ω ∈ {1, ..., s}, ∀j ∈ T (l),

0 ≥ obj
BFP

(j)
ω

+ (λ(j)
ω )TBω(yω − y(j)

ω ) + (µ(j)
ω )T

(
x0 − x(j)

0

)
,

∀ω ∈ {1, ..., s}, ∀j ∈ S(l),

ηω ≥ objBPPj
ω

+ (λjω)TBω(yω − yjω) + (µjω)T
(
x0 − xj0

)
,

∀ω ∈ {1, ..., s}, ∀j ∈ T k,

0 ≥ objBFPj
ω

+ (λjω)TBω(yω − yjω) + (µjω)T
(
x0 − xj0

)
,

∀ω ∈ {1, ..., s}, ∀j ∈ Sk,

η0 ≤ UBD,

η0 ≥ LBD,

ηω ≥ objLSi
ω

+ (πiω)Tx0, ∀ω ∈ {1, ..., s}, ∀i ∈ Rk,

x0 ∈ X0, yω ∈ Yω, ∀ω ∈ {1, ..., s},

(JRMP(l))

where the index set Rk = {1, · · · , k}, UBD is the current best upper bound for (P),

and LBD is the current best lower bound for (P).
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Proposition 5.2. Problem (JRMP(l)) is a valid lower bounding problem for Problem

(P).

Proof. Since it is already known that Problem (BRMP(l)) is a valid lower bounding

problem and UBD and LBD are valid upper and lower bounds, we only need to prove

that the cuts from Lagrangian subproblems together with the Benders optimality cuts

do not exclude an optimal solution. Let objP be the optimal objective value of (P),

then

objP =
s∑

ω=1

objPPω(x0),

where

objPPω(x0) = min{cTωxω : x0 = Hωxω, Aωxω +Bωyω ≤ 0, xω ∈ Xω, yω ∈ Yω}.

On the one hand, ∀πiω, i ∈ Rk,

objPPω(x0)

≥min{cTωxω + (πiω)T (x0 −Hωxω) : Aωxω +Bωyω ≤ zω, xω ∈ Xω, yω ∈ Yω}

=objLSi
ω

+ (πiω)Tx0.

(5.1)

On the other hand,

objPPω(x0) = min
yω∈Yω

vω(x0, yω),

where vω(x0, yω) = min{cTωxω : x0 = Hωxω, Aωxω + Bωyω ≤ 0}. From weak duality,
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∀j ∈ T (l),

vω(x0, yω)

≥min{cTωxω + (λ(j)
ω )T(Aωxω +Bωyω) + (µ(j)

ω )T(x0 −Hωxω) : xω ∈ Xω}

=obj
BPP

(j)
ω

+ (λ(j)
ω )TBω(yω − y(j)

ω ) + (µ(j)
ω )T

(
x0 − x(j)

0

)
.

Thefore, ∀yω ∈ Yω,

objPPω(x0) ≥ obj
BPP

(j)
ω

+ (λ(j)
ω )TBω(yω − y(j)

ω ) + (µ(j)
ω )T

(
x0 − x(j)

0

)
. (5.2)

Equations (5.1)-(5.2) indicate that the cuts from Lagrangian subproblems together

with the Benders optimality cuts do not exclude an optimal solution of (P).

For convenience, we call the cuts from the Lagrangian subproblems, Lagrangian

cuts. The Benders cuts and the Lagrangian cuts in (JRMP(l)) imply that, ∀i ∈ Rk,

UBD ≥ η0 ≥
s∑

ω=1

ηω ≥
s∑

ω=1

objLSi
ω

+
s∑

ω=1

(πiω)Tx0.

Now we get new constraints

UBD ≥
s∑

ω=1

objLSi
ω

+
s∑

ω=1

(πiω)Tx0, ∀i ∈ Rk, (*)

which only include variable x0 and do not link different scenarios. This constraint

can be used to enhance any subproblems that involves x0 as variables. Specifically,
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problems (LSk0), (LSkω), (RPMPk) can be enhanced as:

min
xω ,yω

cTωxω − (πkω)THωxω

s.t. Aωxω +Bωyω ≤ 0,

UBD ≥
s∑

ω=1

objLSi
ω

+
s∑

ω=1

(πiω)Tx0, ∀i ∈ Rk,

xω ∈ Xω, yω ∈ Yω.

(LSkω)

min
x0

s∑
ω=1

(πkω)Tx0

s.t. UBD ≥
s∑

ω=1

objLSi
ω

+
s∑

ω=1

(πiω)Tx0, ∀i ∈ Rk,

x0 ∈ X0.

(LSk0)

min
x0,θ

[i]
1 ,...,θ

[i]
s

x1,...,xs

s∑
ω=1

cTωxω

s.t. x0 = Hωxω, ∀ω ∈ {1, ..., s},

Aωxω +Bω

∑
i∈Ik

θ[i]
ω y

[i]
ω ≤ 0, ∀ω ∈ {1, ..., s},

∑
i∈Ik

θ[i]
ω = 1, θ[i]

ω ≥ 0, ∀i ∈ Ik, ∀ω ∈ {1, ..., s},

UBD ≥
s∑

ω=1

objLSi
ω

+
s∑

ω=1

(πiω)Tx0, ∀i ∈ Rk,

x0 ∈ X0, xω ∈ Xω, ∀ω ∈ {1, ..., s},

(RPMPk)

Note that the index set Ik includes indices for all constant points y
[i]
ω in Problem
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(RPMPk), and the constant points y
[i]
ω come from all previously solved PP, FP, LS

and JRMP.

5.3.4 The basic joint decomposition algorithm

Table 5.1 shows the basic JD algorithm. As described in section 5.3.1, a JD iteration

always include a LD iteration and sometimes a GBD iteration as well. Whether the

GBD iteration is performed at JD iteration k depends on whether LD iteration k

improves over LD iteration k − 1 substantially, i.e., whether objLSk ≥ objLSk−1 + ε.

This strategy implies the following result.

Proposition 5.3. The JD algorithm shown in Table 5.1 cannot perform an infinite

number of LD iterations between two GBD iterations.

Proof. The initial point (x1
0, y

[1]
1 , · · · , y

[1]
s ) that are feasible for Problem (P) can lead to

a finite upper bound UBD. According to Assumption 5.1, all Lagrangian subproblems

are bounded, so between two GBD iterations, the first LD iteration leads to a finite

objLS, and the subsequent LD iterations increase objLS by at least ε > 0 (because

otherwise a GBD iteration has to be performed). Therefore, in a finite number LD

iterations either objLS exceeds UBD − ε and the algorithm terminates with an ε-

optimal solution, or a GBD iteration is performed. This completes the proof.

Remark 5.4. If an initial feasible point for Problem (P) is not known, the initial

feasibility problem (IFP) can be solved to get a feasible point for (P) or verify that

Problem (P) is infeasible (when the optimal objective value of Problem (IFP) is pos-

itive). Note that it is easy to find a feasible point of Problem (IFP).

In the JD algorithm, we use k to index both a JD iteration and a LD iteration,

as every JD iteration includes one LD iteration. We use l (together with ’()’) to
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Table 5.1: The basic joint decomposition algorithm

Initialization

(I.a) Select x1
0, y

[1]
1 , · · · , y[1]

s that are feasible for Problem (P).

(I.b) Give termination tolerance ε > 0. Let index sets T 1 = S1 = R1 = ∅, I1 = {1},
iteration counter k = 1, i = 1, l = 1, bounds UBD = +∞, LBD = −∞.

LD Iteration
(1.a) Solve Problem (PPkω). If Problem (PPkω) is infeasible, solve Problem (FPkω). Let

the solution obtained be (xkω, y
k
ω), and update i = i+1, Ik=Ik∪{i}, (y

[i]
1 , · · · , y

[i]
s ) =

(yk1 , · · · , yks ).

(1.b) Solve Problem (BPPkω) by fixing (x0, y1, ..., ys) = (xk0, y
k
1 , ..., y

k
s ). If (BPPkω) is

feasible for all ω, generate Benders optimality cuts with the obtained dual solu-
tion µkω and λkω, and update T k+1 = T k ∪ {k}. If

∑s
ω=1 objPPk

ω
< UBD, up-

date UBD =
∑s

ω=1 objPPk
ω

, and incumbent solution (x∗0, x
∗
1, · · · , x∗s, y∗1, · · · , y∗s) =

(xk0, x
k
1, · · · , xks , yk1 , · · · , yks ). If Problem (BPPkω) is infeasible for at least one ω, solve

Problem (BFPkω). Generate Benders feasibility cuts with the obtained dual solution
µkω and λkω, and update Sk+1 = Sk ∪ {k}.

(1.c) Solve Problem (RPMPk). Let xk0, {θ[i,k]
ω }i∈Ik,ω∈{1,...,s} be the optimal solution ob-

tained, and πk1 , ..., π
k
s be Lagrange multipliers for the NACs.

(1.d) Solve Problems (LSkω) and (LSk0), and let the obtained solution be (xkω, ykω), xk0.
If objLSk =

∑s
ω=1 objLS1kω

+ objLS0
k > LBD, update LBD = objLSk . Generate a

Lagrangian cut and update Rk+1 = Rk ∪ {k}. Update i = i + 1, Ik+1 = Ik ∪ {i},
(y

[i]
1 , · · · , y

[i]
s ) = (yk1 , · · · , yks ).

(1.e) If UBD ≤ LBD+ ε, terminate and return the incumbent solution as an ε-optimal
solution. If objLSk ≥ objLSk−1 + ε, k = k + 1, go to step (1.a); otherwise k = k + 1
and go to step (2.a);

GBD Iteration

(2.a) Solve Problem (JRMP(l)), and let the obtained solution be (x
(l)
0 , y

(l)
1 , ..., y

(1)
s ). Up-

date i = i+1, Ik+1 = Ik∪{i}, (y
[i]
1 , · · · , y

[i]
s ) = (y

(l)
1 , · · · , y(l)

s ). If objRMP (l) > LBD,
update LBD = objJRMP (l) .

(2.b) Solve Problem (BPP
(l)
ω ) by fixing (x0, y1, · · · , ys) = (x

(l)
0 , y

(l)
1 , · · · , y(l)

s ). If (BPP
(l)
ω )

is feasible for all ω, generate Benders optimality cuts with the dual solution
µkω and λkω, and update T (l+1) = T (l) ∪ {l}. If

∑s
ω=1 objBPP (l)

ω
< UBD, up-

date UBD = objBPP (l) and the incumbent solution (x∗0, x
∗
1, · · · , x∗s, y∗1, · · · , y∗s) =

(x
(l)
0 , x

(l)
1 , · · · , x(l)

s , y
(l)
1 ), · · · , y(l)

s ). If Problem (BPP
(l)
ω ) is infeasible for at least one

ω, solve Problem (BFP
(l)
ω ). Generate Benders feasibility cuts with the obtained

dual solution µlω and λlω, and update S(l+1) = S(l) ∪ {l}.
(2.c) If UBD ≤ LBD+ ε, terminate and return the incumbent solution as an ε-optimal

solution; otherwise l = l + 1, go to step (1.a).
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index a GBD iteration, and usually l < k because not every JD iteration includes

one GBD iteration. We use i (together with ’[]’) to index the columns generated for

constructing Problem (RPMPk). Next, we establish the finite convergence property

of the JD algorithm.

Proposition 5.4. If set Xω is polyhedral ∀ω ∈ {1, · · · , s}, the JD algorithm shown

in Table 5.1 cannot perform an infinite number of GBD iterations.

Proof. In this case, the GBD part of the algorithm reduces to BD, and BD is known

to have finite termination property [34] [30]. The finite termination property results

from:

(a) The Benders master problem (BRMP(l)) (and therefore JRMP(l) as well) requires

only a finite number of Benders cuts to equal Problem (P), due to linear duality

theory;

(b) A same Benders cut cannot be generated twice before the optimality gap is closed.

Proposition 5.5. If X0×Y1×· · ·×Ys is a finite discrete set, the JD algorithm shown

in Table 5.1 cannot perform an infinite number of GBD iterations.

Proof. This result comes from the fact that a point in X0 × Y1 × · · · × Ys cannot be

generated twice before the optimality gap is closed. For more details readers can see

Theorem 2.4 of [35].

Proposition 5.6. The JD algorithm shown in Table 5.1 cannot include an infinite

number of GBD iterations at which the Benders primal problem BPP is feasible.

Proof. A similar proposition has been proved in the context of GBD in [35] (as The-

orem 2.5). The central idea of the proof can be used here for JD.
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Suppose the JD algorithm includes an infinite number of GBD iterations at which

the Benders primal problem BPP is feasible. Let superscript (n) index these GBD

iterations, {(η(n)
0 , x

(n)
0 , y

(n)
1 , ..., y

(n)
s )} be the sequence of optimal solutions of JRMP and

{(µ(n)
ω , λ

(n)
ω )} be the sequence of dual solutions of BPP. Since {η(n)

0 } is nondecreasing

and is bounded from above, so a subsequence of it converges to a finite value, say η∗0.

Due to the compactness of X0, Y1, · · · , Ys, a subsequence of {(x(n)
0 , y

(n)
1 , ..., y

(n)
s )}, say,

{(x(ni)
0 , y

(ni)
1 , ..., y

(ni)
s )}, converges to (x∗0, y

∗
1, ..., y

∗
s) ∈ X0× Y1× · · · × Ys. Solving BPP

in this subsequence of GBD iterations can be viewed as point-to-set mappings from

points in X0 × Y1 × · · · × Ys to the relevant Lagrange multiplier sets. From Lemma

2.1 of [35] and Assumption 5.2, such a mapping is uniformly bounded in some open

neighborhood of the point it maps from. Let such open neighborhood of (x∗0, y
∗
1, ..., y

∗
s)

be N(x∗0, y
∗
1, ..., y

∗
s), then ∃t such that ∀ni > t, (x

(ni)
0 , y

(ni)
1 , ..., y

(ni)
s ) ∈ N(x∗0, y

∗
1, ..., y

∗
s),

and then the relevant subsequence of Lagrange multipliers is bounded, which must

contain a subsequence converging to {µ?ω, λ?ω}. Therefore, there exists a subsequence of

{(η(n)
0 , x

(n)
0 , y

(n)
1 , ..., y

(n)
s , µ

(n)
ω , λ

(n)
ω )}, say, {(η(m)

0 , x
(m)
0 , y

(m)
1 , ..., y

(m)
s , µ

(m)
ω , λ

(m)
ω )}, which

converges to {(η∗0, x∗0, y∗1, ..., y∗s , µ∗ω, λ∗ω)}.

Consider any GBD iteration m > 1 in this convergent subsequence. Let UBD

and LBD be the upper and lower bounds after this GBD iteration, then

objBPP (m−1) ≥ UBD,

LBD ≥ η(m),
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and that the JD algorithm does not terminate after GBD iteration m implies

UBD > LBD + ε,

therefore

objBPP (m−1) > η(m) + ε. (5.3)

According to how JRMP is constructed,

η(m) ≥objBPP (m−1)+

s∑
ω=1

[
(λ(m−1)

ω )TBω(y(m)
ω − y(m−1)

ω ) + (µ(m−1)
ω )T

(
x

(m)
0 − x(m−1)

0

)]
.

(5.4)

Equations (5.3) and (5.4) imply that

0 >
s∑

ω=1

[
(λ(m−1)

ω )TBω(y(m)
ω − y(m−1)

ω ) + (µ(m−1)
ω )T

(
x

(m)
0 − x(m−1)

0

)]
+ ε. (5.5)

However, when m is sufficiently large, y
(m)
ω − y(m−1)

ω and x
(m)
0 − x(m−1)

0 are sufficiently

close to 0 while µ
(m−1)
ω and λ

(m−1)
ω are sufficiently close to limit points µ∗ω and λ∗ω, so

the right-hand-side of Equation (5.5) is a positive value (as ε > 0). This contradiction

implies that the JD algorithm cannot include an infinite number of GBD iterations

at which BPP is feasible.

Lemma 2.1 in [35] can be rewritten as the following, in the context of Problem

(P).

Lemma 5.1. Assume that X1, ..., Xs are compact convex sets and Slater condition is
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satisfied for (P) for any fixed (x̄0, ȳ1, , ..., ȳs) ∈ X0×Y1× ...×Ys. Then the point-to-set

mapping Θ : X0× Y1× ...× Ys → U is uniformly bounded in an open neighborhood of

any (x̄0, ȳ1, , ..., ȳs) ∈ X0 × Y1 × ...× Ys. Here, U denotes a set of optimal multipliers

sets, and an element in U is a set of optimal multipliers of a BPP with a fixed

(x̄0, ȳ1, ..., ȳs).

Theorem 5.1. With an initial feasible point, the JD algorithm shown in Table 5.1

terminates in a finite number of iterations with an ε-optimal solution, if one the

following three conditions is satisfied:

(a) Set Xω is polyhedral ∀ω ∈ {1, · · · , s}.

(b) Set X0 × Y1 × · · · × Ys is finite discrete.

(c) There are only a finite number of GBD iterations at which the Benders primal

problem BPP is infeasible.

Proof. From Proposition 5.3, the JD algorithm can only include a finite number of

LD iterations. From Propositions 5.4 and 5.5, when condition (a) or (b) is satisfied,

the JD algorithm can only include a finite number of BD iterations. From Proposition

5.6, the JD algorithm can only have a finite number of GBD iterations at which the

Benders primal problem BPP is feasible, and together with condition (c), it implies

that the JD algorithm can only include a finite number of BD iterations. Therefore,

if one of the three conditions is satisfied, the JD algorithm can only include a finite

number LD and BD iterations before termination.

On the other hand, according to Proposition 5.2, the JD algorithm never excludes

an optimal solution. This together with the termination criterion ensures that the

solution returned is ε-optimal.
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Remark 5.5. Condition (c) in Theorem 5.1 is actually not a very restrictive condi-

tion, because we can always ”soften” the complicating constraints in Problem (P) (i.e.,

penalize the violation of these constraints in the objective function) so that Problem

(BPP
(l)
ω ) is always feasible.

5.4 Enhancements to joint decomposition

The solution of Problem (JRMP(l)) is the bottle neck of the JD algorithm, even

considering that the problem is solved only when necessary. Problem (JRMP(l)) is

challenging due to two major reasons. One is that the number of nonconvex variables

in Problem (JRMP(l)) is dependent on the number of scenarios, so the size of Problem

(JRMP(l)) is large (although smaller than the original problem). The other is that the

number of constraints in the problem grows with the JD iteration; in other words,

Problem (JRMP(l)) becomes more and more challenging as JD progresses. In this

section, we introduce two ways to mitigate the difficulty in solving Problem (JRMP(l)):

1. To solve a convex relaxation of Problem (JRMP(l)) before solving Problem

(JRMP(l)). If the solution of the convex relaxation can improve the lower bound,

then skip solving Problem (JRMP(l)).

2. To perform domain reduction iteratively in JD in order to keep reducing the

ranges of nonconvex and linking variables. This way, the convex relaxation

of Problem (JRMP(l)) is progressively tightened and Problem (JRMP(l)) itself

does not become much harder as the algorithm progresses.

In addition, domain reduction for the linking and the nonconvex variables can

make other nonconvex JD subproblems easier, including Problems (LSkω) and (PPk
ω).
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Domain reduction for the linking variables can also tighten the Lagrangian relaxation

gap [23]; in extreme cases, the Lagrangian relaxation gap can diminish and there is

no need to solve Problem (JRMP(l)) in JD to close the optimality gap. Note that

we do not perform domain reduction for convex variables, because normally reducing

ranges on convex variables do not help much to tighten convex relaxations and ease

the solution of nonconvex subproblems.
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5.4.1 Convex relaxation and domain reduction

The convex relaxation of Problem (JRMP(l)) is a valid lower bounding problem for

Problem (JRMP(l)) and consequently for Problem (P) as well. It can be written as:

min
x0,η0,η1,...,ηs

y1,...,ys

η0

s.t. η0 ≥
s∑

ω=1

ηω,

ηω ≥ obj
BPP

(j)
ω

+ (λ(j)
ω )TBω(yω − y(j)

ω ) + (µ(j)
ω )T

(
x0 − x(j)

0

)
,

∀ω ∈ {1, ..., s}, ∀j ∈ T (l),

0 ≥ obj
BFP

(j)
ω

+ (λ(j)
ω )TBω(yω − y(j)

ω ) + (µ(j)
ω )T

(
x0 − x(j)

0

)
,

∀ω ∈ {1, ..., s}, ∀j ∈ S(l),

ηω ≥ objBPPj
ω

+ (λjω)TBω(yω − yjω) + (µjω)T
(
x0 − xj0

)
,

∀ω ∈ {1, ..., s}, ∀j ∈ T k,

0 ≥ objBFPj
ω

+ (λjω)TBω(yω − yjω) + (µjω)T
(
x0 − xj0

)
,

∀ω ∈ {1, ..., s}, ∀j ∈ Sk,

η0 ≤ UBD,

η0 ≥ LBD,

ηω ≥ objLSi
ω

+ (πiω)Tx0, ∀ω ∈ {1, ..., s}, ∀i ∈ Rk,

x0 ∈ X̂0, yω ∈ Ŷω, ∀ω ∈ {1, ..., s}.

(JRMPR(l))

Here X̂0 and Ŷω denote the convex relaxations of X0 and Yω. Let objJRMPR(l) be the

optimal objective of Problem (JRMPR(l)).

Since Problem (JRMPR(l)) is also a valid convex relaxation of Problem (P), the
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solution of Problem (JRMPR(l)) can be exploited to eliminate the parts of variable

ranges that cannot include an optimal solution of Problem (P), using marginal based

domain reduction method. This method was first proposed in [146] (and it was called

range reduction therein). The following proposition lays the foundation of marginal

based domain reduction for noconvex variables yω in JD, which results directly from

Theorem 2 in [146].

Proposition 5.7. Consider the following bounds on yω,j (∀ω ∈ {1, · · · , s}, ∀j ∈

{1, · · · , ny}):

yω,j − yupω,j ≤ 0,

yloω,j − yω,j ≤ 0,

whose Lagrange multipliers obtained at the solution of Problem (JRMPR(l)) are uω,j,

vω,j. Let J(l)
1,ω include indices of upper bounds whose uω,j are nonzero, and J(2)

1,ω include

indices of lower bounds whose vω,j are nonzero, then the following constraints do not

exclude an optimal solution of (P):

yω,j ≥ yupω,j −
(UBD − objJRMPR(l))

uω,j
, ∀j ∈ J(l)

1,ω, ∀ω ∈ {1, ..., s},

yω,j ≤ yloω,j +
(UBD − objJRMPR(l))

vω,j
, ∀j ∈ J(l)

2,ω, ∀ω ∈ {1, ..., s}.

The following proposition states similar result for the linking variables x0:
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Proposition 5.8. Consider the following bounds on x0,j (∀j ∈ {1, · · · , n0}):

x0,j − xup0,j ≤ 0,

xlo0,j − x0,j ≤ 0,

whose Lagrange multipliers obtained at the solution of Problem (JRMPR(l)) are u0,j,

v0,j. Let J(l)
1,0 include indices of upper bounds whose u0,i are nonzero, and J(l)

2,0 include

indices of lower bounds whose v0,i are nonzero, then the following constraints do not

exclude an optimal solution of (P):

x0,j ≥ xup0,j −
(UBD − objJRMPR)

u0,j

, ∀j ∈ J(l)
1,0

x0,j ≤ xlo0,j +
(UBD − objJRMPR(l))

v0,j

, ∀j ∈ J(l)
2,0

According to Propositions 5.7 and 5.8, the bounds of nonconvex and linking vari-

ables can be updated via the following range reduction calculation:

yupω,j = min

{
yupω,j, yloω,j +

G(l)

uω,j

}
, ∀j ∈ J(l)

1,ω, ∀ω ∈ {1, ..., s},

yloω,j = max

{
yloω,j, yupω,j −

G(l)

vω,j

}
, ∀j ∈ J(l)

2,ω, ∀ω ∈ {1, ..., s},

xup0,j = min

{
xup0,j, xlo0,j +

G(l)

u0,j

}
, ∀j ∈ J(l)

1,0,

xlo0,j = max

{
xlo0,j, xup0,j −

G(l)

v0,j

}
, ∀j ∈ J(l)

2,0,

(MDR(l))

where G(l) = UBD − objRMPCR(l) .

The effectiveness of marginal based domain reduction relies on how many bounds

are active, the magnitude of Lagrange multipliers of active bounds at the solution of
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JRMPR(l), and how often JRMPR(l) is solved. In order to ahieve effective domain

reduction more consistently, we also introduce optimization based domain reduction

in JD. Optimization based domain reduction, or called bound contraction or bound

tighening [145] [152], is to maximize or minimize a single variable over a convex

relaxation of the feasible set of the original problem. For example, if we are to

estimate the upper bound of a linking variable x0,j at JD iteration k, we can solve

the following optimization problem:

max
x0,x1,...,xs
y1,,...,ys

x0,i

s.t. x0 = Hωxω, ∀ω ∈ {1, ..., s},

Aωxω +Bωyω ≤ 0, ∀ω ∈ {1, ..., s},
s∑

ω=1

cT
ωxω ≤ UBD,

x0 ∈ Xk
0 ,

xω ∈ Xω, yω ∈ Ŷ k
ω , ∀ω ∈ {1, ..., s}.

(ODRStdki )

The third group of constraints in Problem (ODRStdki ) utilizes the known upper

bound of (P) to tighten the convex relaxation, but it cannot be included in Prob-

lem (ODRStdki ) when UBD is not available (e.g., before a feasible solution of (P) is

known). We now index sets X0, Ŷω with the JD iteration number k, as these sets

may change after the domain reduction calculations.

Problem (ODRStdki ) represents the standard optimization based domain reduction

formulation, but it can be further enhanced in the JD algorithm, via the incorporation

of valid cuts derived from other JD subproblems. First, we can add the following
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constraint:
s∑

ω=1

cT
ωxω ≥ LBD.

This constraint is redundant in the classical branch-and-bound based global optimiza-

tion, as LBD is obtained via convex relaxation as well. In JD, LBD is obtained via

Lagrangian subproblems and JD relaxed master problems, which may be tigher than

convex relaxations of the original problem, so this constraint may enhance Problem

(ODRStdki ). Second, we can include constraints (*) (that are drived from Problem

(JRMP(l))). Therefore, we can write the enhanced optimization based domain reduc-

tion formulation as:

min
x0,x1,...,xs
y1,,...,ys

/ max
x0,x1,...,xs
y1,,...,ys

x0,i

s.t. x0 = Hωxω, ∀ω ∈ {1, ..., s},

Aωxω +Bωyω ≤ 0, ∀ω ∈ {1, ..., s},
s∑

ω=1

cT
ωxω ≤ UBD,

s∑
ω=1

cT
ωxω ≥ LBD,

UBD ≥
s∑

ω=1

objLSi
ω

+
s∑

ω=1

(πiω)Tx0, ∀i ∈ Rk,

x0 ∈ Xk
0 ,

xω ∈ Xω, yω ∈ Ŷ k
ω , ∀ω ∈ {1, ..., s}.

(ODRk
i )

If we are to estimate an upper bound, then Problem (ODRk
i ) is a maximization

problem; otherwise, Problem (ODRk
i ) is a minimization problem.

Although Problem (ODRk
i ) is convex, it can have a very large size because its
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size grows with the number of scenarios. Therefore, we proposed to solve Problem

(ODRk
i ) for x0 but not for yω. Actually, we can see in the case study section that

optimization based domain reduction is time consuming even when we only solve

Problem (ODRk
i ) for x0.

5.4.2 The enhanced joint decomposition method

Figure 5.2 shows the framework of the JD method that includes solving convex re-

laxation, Problem (JRMPR(l)), bound tightening for x0 and the domain reduction

calculations. In this framework, optimization based domain reduction is performed

at the beginning of the algorithm and in every LD iteration (right before the solution

of nonconvex Lagrangian subproblems). Convex relaxation, Problem (JRMPR(l)) is

solved before solving Problem (JRMP(l)), and after solving Problem (JRMPR(l)),

marginal based domain reduction is performed. Problem (JRMP(l)) is not solved if

Problem (JRMPR(l)) can improve the lower bound significantly; this strategy can

postpone solving Problem (JRMP(l)) to a later time, so that the ranges of x0 can

be reduced as much as possible when a Problem (JRMP(l)) has to be solved. The

detailed algorithm for the enhanced JD is shown in Table 5.2.

Theorem 5.2. The decomposition algorithm described in Table 5.2 terminates in a

finite number of steps with an ε-optimal solution of Problem (P), if one the following

three conditions is satisfied:

(a) Set Xω is polyhedral ∀ω ∈ {1, · · · , s}.

(b) Set X0 × Y1 × · · · × Ys is finite discrete.

(c) There are only a finite number of GBD iterations at which the Benders primal

problem BPP is infeasible.
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Initialize

ODRk
i

PPkBPPk

ODRk
i

LSkRPMPk

BPP(l)

objJRMPR(l)

≥
LBD + ε?

JRMPR(l)

and MDR(l)

JRMP(l)

yes

no

Figure 5.2: The enhanced joint decomposition framework

Proof. This can be proved by showing that, solving Problem (JRMPR(l)) in every

GBD iteration in JD and including domain reduction calculations do not invalidate

the finite termination to an ε-optimal solution.

First, we can show that there cannot be an infinite number of GBD iterations at

which Problem (JRMPR(l)) is solved but Problem (JRMP(l)) is not solved. Consider

a GBD iteration at which Problem (JRMPR(l)) is solved but Problem (JRMP(l)) is

not solved, then Problem (JRMPR(l)) is not unbounded (because otherwise Problem

(JRMP(l)) needs to be solved) and the lower bound LBD is finite. The upper bound

UBD is also finite (because an initial feasible solution exists). Therefore, it is not

possible that LBD can be improved by ε > 0 for an infinite number of GBD iterations,
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so there cannot be an infinite number of GBD iterations at which Problem (JRMPR(l))

is solved but Problem (JRMP(l)) is not solved. According to the proof of Theorem

5.1, JD can only include a finite number of LD iterations, and a finite number of GBD

iterations at which Problem (JRMP(l)) is solved, if one of the three listed conditions

are satisfied.

Second, domain reduction reduces the ranges of x0 and y1, ..., ys but does not

exclude any optimal solution from the reduced ranges. So the Lagrangian relaxation

problems and JD relaxation master problems are still valid lower bounding problems

and they cannot cut off any optimal solution.

5.5 Case Studies

5.5.1 Case study problems

Case Study A - This problem is variant of the stochastic Haverly pooling problem

[117], which was originally developed based on the classical Haverly pooling problem

[153] [154]. Figure 5.3 shows the superstructure of the pooling system to be devel-

oped. The circles denote four sources that supply intermediate gasoline products

with different sulfur percentages and costs, the ellipse denotes a blender (or called a

pool) at which some intermediate products can be blended, and the rectangles denote

product sinks at which the final products are blended. The goal of optimization is

to minimize the negative profit of the system by determining: (1) Whether the pool

and the two product sinks are to be developed in the system; (2) The capacities of

the sources and the pipelines. The stochastic pooling model of the problem can be

found in Appendix C.2. Two uncertain parameters, percentage of sulfur in source 4
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Design	Problem	Example	A	-	from	Haverly’s	system	
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Figure 5.3: Superstructure of case study A problem

and upper limit on the demand at sink 1, were considered. They were assumed to

following independent normal distributions, with means of 2.5 and 180, and standard

deviations of 0.08 and 10. Other parameters used in the problem can be found in

[117]. For this problem, x0 contains 3 binary variables and 13 continuous variables,

xω contains 7s continuous variables and yω contains 14s continuous variables, where s

stands for the total number of scenarios. In the case study, each uncertain parameter

was sampled for 5, 6, 7, 8, 9 and 10 scenario values, via the sampling rule described

in [117], and this led to problem instances with 25, 36, 49, 64, 81 and 100 scenarios.

Case Study B - This problem is a variant of the Sarawak Gas Production System

(SGPS) design problem [155], and the original form of the design problem appeared in

[117]. Figure 5.4 shows the superstructure of the SGPS system under consideration,

where the circles represent gas fields (sources), ellipses represent offshore gas platforms

(pools) at which gas flows from different gas fields are mixed and split, rectangles

represent onshore liquefied natural gas (LNG) plants (product terminals). Symbols
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with solid lines represent the part of the system that is already developed, and symbols

with dashed lines represent the superstructure of the part of the system that needs

to be designed in the problem. The goal of optimization is to maximize expected

net present value while satisfying specifications for gas qualities at the LNG plants

in the presence of uncertainty. There are two uncertain parameters, i.e., the quality

of CO2 at gas field M1 and upper limit on the demand at LNG plant 2. They were

assumed to follow independent normal distributions with means of 3.34% and 2155

Mmol/day, and standard deviations of 1% and 172.5 Mmol/day. In the case study,

each uncertain parameter was sampled for 5, 6, 7, 8, 9 and 10 scenario values, via

the same sampling rule described in [117], which led to problem instances with 25,

36, 49, 64, 81 and 100 scenarios. The problem was also formulated following the new

stochastic pooling model provided in Appendix C.2. In the resulting formulation, x0

contains 5 binary variables and 29 continuous variables. The 5 binary variables are

to determine whether gas fields HL, SE, M3, M1 and JN are to be developed, and the

29 continuous variables are the capacities of other units to be developed. xω contains

8s variables and yω contains 85s variables, where s stands for the total number of

scenarios.

5.5.2 Solution approaches and implementation

The case studies was run on a virtual machine allocated with a 3.2 GHz CPU. The

virtual machine ran Linux operating system (Ubuntu 13.0) with 6 GB of memory.

Three solution approaches were compared in the case studies: Monolith, JD1, JD2.

The monolith approach solved the problems using a commercial optimization solver,

ANTIGONE 1.1 [148], which adopted CONOPT 3 [156] as its NLP solver and CPLEX
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Figure 5.4: Superstructure of case study B problem

12.6 [108] as its LP/MILP solver. JD1 refers to the basic JD algorithm, and JD2

refers to the enhanced JD algorithm. The case study problems and the subproblems

required in JD1 and JD2 were all modeled on GAMS 24.6.1 [111], but JD1 and

JD2 algorithms were programmed on MATLAB 8.1.0 [157]. Data exchange between

MATLAB and GAMS was realized via GAMS GDXMRW facility [158]. Nonconvex

NLP/MINLP subproblems in JD1 and JD2 were solved by ANTIGONE 1.1, and

LP/MILP subproblems in JD1 and JD2 were solved by CPLEX 12.6.

In JD2, the construction of Problems (ODRk
i ) and (JRMPR(l)) require the convex

relaxation of nonconvex setsX0 and Yω. In the case studies, X0 was a mixed integer set

defined by linear constraints, and it was relaxed into a polyhedral set via continuous

relaxation. Yω was a nonconvex continuous set defined with bilinear functions, and

it was relaxed into a polyhedral set via standard McCormick relaxation [70]. The

relative and absolute termination tolerances for Case Study A were set to 10−3, and

for Case study B were set to 10−2. JD1 and JD2 started with all design decisions
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being 0 (which are feasible for the case study problems).

During the execution of JD1 and JD2, large computing overhead may be incurred

due to frequent model generation in GAMS and data exchange between GAMS and

MATLAB. So both ”Total solver time” and ”Total run time” are recorded for the

simulation studies, which refer to the total time for the subproblem solvers to solve

each individual subproblem and the wall time for solving the overall problem. The

computing overhead can be significantly reduced if JD1 and JD2 are implemented

using general purpose programming languages, such as C++.

5.5.3 Results and discussion

Summary of the results for case study A is presented on Tables 5.3, 5.4, 5.5 below.

Table 5.3 shows the results for the monolith implementation. As seen from the results,

the monolith approach (with ANTIGONE) solves different scenario instances of the

problem for a maximum of 81 scenarios within 10 minutes. However, a larger problem

with 100 scenarios does not return a solution after an hour. This typifies the behavior

of branch-and-bound based solvers for large scale MINLP. Table 5.4 shows the result

for the basic joint decomposition method, JD1, proposed. JD1 solves the problem

within 10 minutes except for the 81 scenario case that requires 17 minutes of solver

time. Also, for a large scale problem with 100 scenarios, JD1 solves it easily (within

10 minutes). This is a big improvement over the monolith. Furthermore, even for

relatively small problem with 64 scenarios, solver time for JD1 was about half that of

the monolith run time. The results on Table 5.5 shows the performance of enhanced

joint decomposition, JD2. JD2 does not do very well compared to the monolith, for

small scale problems with few scenario, but it solves large scale scenario instance
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better than the monolith. Also, JD2 has comparable performance to JD1. On the

other hand, JD2 generally solves fewer number of JRMP(l) compared to JD1 (except

for 64 scenarios where JD2 solves 5 JRMP and JD1 solves 4 JRMP(l)) because of

the embedded enhancements. This means that JD2 can potentially solve Problem

(P) better if JRMP(l) is more difficult to solve. We see this evidently in the instance

with 49 and 81 scenarios, where more than 35 % and 70 % of solver time is saved

respectively. However, because of the time spent on solving Problem (ODRk
i ) for

domain reduction, total solver time for JD2 can still be worse than that of JD1 (as

in scenario 25 and 36) despite the reduction in the number of JRMP(l) solved.

Tables 5.6, 5.7 presents the results for case study B. Monolith implementation ter-

minates for 25 and 36 scenarios but with an optimality gap greater than the specified

tolerance. For large scenario cases (above 49 scenarios), the monolith does not termi-

nate after the two-day run time limit. The results for JD1 is not shown, because JD1

does not terminate for the case study B within the run time limit either; the JRMP(l)

solved does not converge within the time limit of 1 day set for decomposition, after

a sufficient number of cuts are added. On the other hand, JD2, as shown on Table

5.7 solves the problem for all scenario instances within a day. Also, because of the

enhancements to the algorithm, JD2 can sometimes solve a few JRMP(l), as in the

36 scenarios instance, or as many as 35 JRMP(l) subproblems in the 49 scenario case,

and still converge to the solution.

Note that Tables 5.3, 5.4, 5.5, 5.6 and 5.7 does not include the times to solve

easy LP and MILP subproblems like Problem (BPP
(l)
ω ), Problem (BFP

(l)
ω ), Problem

(LSk0) and Problem (JRMPR(l)), because those times are very small, within 1 % of

the overall solver time. It is interesting to also note that the number of nonconvex



5.6. CONCLUDING REMARKS 159

variables, yω, is far more than the number of convex variables, xω in both case studies;

the number of yω is twice the number of xω for case study A and about 10 times the

number of xω for case study B. However, JD2 still performs significantly well. In

Remark 5.2 we imply that the JD framework may not be practical for problems for

which the size of (BRMP(l)) is much smaller than that of (P). However, the case

results indicate that JD1 and JD2 are better than what we initially thought, and this

may be due to the special structure of (BRMP(l)). It remains an interesting question

for future work. We believe that the integration of domain reduction also has helped

to accelerate the solution of (BRMP(l)).

5.6 Concluding Remarks

Two joint decomposition methods, JD1, and JD2, are developed in this chapter for

global optimization of Problem (P). It has been proved that the algorithms can termi-

nate in finite number of iterations with an ε-optimal solution if some mild conditions

are satisfied. As seen from the simulation results, for a relative simple problem (case

study A), JD1 and JD2 perform better than the monolith approach for large scenario

instances, and JD2 outperforms JD1 for some scenario instances. For a more difficult

problem (case study B), the superiority of JD2 is more clear.

It is also seen from the simulation studies that Problem (JRMP(l)) can be much

easier to solve than the original problem, even when their sizes are close. We will

investigate in the future why this happens. In addition, we will consider nonconvex

relaxations/restrictions of (JRMP(l)) that are decomposable over the scenarios and

can be used to yield tighter bounds.

In this chapter, we consider optimization based domain reduction for only the
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linking variables x0. In the future, we can also consider efficient optimization based

domain reduction for some key nonconvex variables yω, which can tighten the convex

relaxation of Problem (JRMP(l)), and therefore reduce the number of JRMP(l) to be

solved and increase the efficiency of solving each JRMP(l).
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Table 5.2: Enhanced joint decomposition method - Enhancement is in bold font

Initialization

(I.a) Select x10, y
[1]
1 , · · · , y[1]s that are feasible for Problem (P).

(I.b) Give termination tolerance ε > 0. Let index sets T 1 = S1 = R1 = ∅, I1 = {1}, iteration
counter k = 1, i = 1, l = 1, bounds UBD = +∞, LBD = −∞.

(I.c) Solve Problem (ODRk
i ) to update bounds of all x0,i.

LD Iteration
(1.a) Solve Problem (PPk

ω). If Problem (PPk
ω) is infeasible, solve Problem (FPk

ω). Let the solution

obtained be (xkω, y
k
ω), and update i = i+ 1, Ik=Ik ∪ {i}, (y

[i]
1 , · · · , y

[i]
s ) = (yk1 , · · · , yks ).

(1.b) Solve Problem (BPPk
ω) by fixing (x0, y1, ..., ys) = (xk0 , y

k
1 , ..., y

k
s ). If (BPPk

ω) is feasible for all
ω, generate Benders optimality cuts with the obtained dual solution µk

ω and λkω, and update
T k+1 = T k ∪ {k}. If

∑s
ω=1 objPPk

ω
< UBD, update UBD =

∑s
ω=1 objPPk

ω
, and incumbent

solution (x∗0, x
∗
1, · · · , x∗s, y∗1 , · · · , y∗s ) = (xk0 , x

k
1 , · · · , xks , yk1 , · · · , yks ). If Problem (BPPk

ω) is
infeasible for at least one ω, solve Problem (BFPk

ω). Generate Benders feasibility cuts with
the obtained dual solution µk

ω and λkω, and update Sk+1 = Sk ∪ {k}.
(1.c) Solve Problem (ODRk

i ) to update bounds of all x0,i.

(1.d) Solve Problem (RPMPk). Let xk0 , {θ[i,k]ω }i∈Ik,ω∈{1,...,s} be the optimal solution obtained,

and πk
1 , ..., π

k
s be Lagrange multipliers for the NACs.

(1.e) Solve Problems (LSk
ω) and (LSk

0), and let the obtained solution be (xkω, ykω), xk0 . If objLSk =∑s
ω=1 objLSk

ω
+ objLS0

k > LBD, update LBD = objLSk . Generate a Lagrangian cut and

update Rk+1 = Rk ∪ {k}. Update i = i+ 1, Ik+1 = Ik ∪ {i}, (y
[i]
1 , · · · , y

[i]
s ) = (yk1 , · · · , yks ).

(1.f) If UBD ≤ LBD+ ε, terminate and return the incumbent solution as an ε-optimal solution.
If objLSk ≥ objLSk−1 + ε, k = k + 1, go to step (1.a); otherwise k = k + 1 and go to step
(2.a);

GBD Iteration
(2.a) Solve Problem (JRMPR(l)), and then perform marginal based domain reduction

(MDR(l)). If objJRMPR(l) ≥ LBD+ ε, let the obtained solution be (x
(l)
0 , y

(l)
1 , ..., y

(1)
s ),

update LBD = objJRMPR(l) , i = i+ 1, Ik+1 = Ik ∪ {i}, (y
[i]
1 , · · · , y

[i]
s ) = (y

(l)
1 , · · · , y(l)s ),

go to step (2.c). Otherwise, go to set (2.b).

(2.b) Solve Problem (JRMP(l)), and let the obtained solution be (x
(l)
0 , y

(l)
1 , ..., y

(1)
s ). Update

i = i + 1, Ik+1 = Ik ∪ {i}, (y
[i]
1 , · · · , y

[i]
s ) = (y

(l)
1 , · · · , y(l)s ). If objRMP (l) > LBD, update

LBD = objJRMP (l) .

(2.c) Solve Problem (BPP
(l)
ω ) by fixing (x0, y1, · · · , ys) = (x

(l)
0 , y

(l)
1 , · · · , y(l)s ). If (BPP

(l)
ω ) is

feasible for all ω, generate Benders optimality cuts with the dual solution µk
ω and λkω, and

update T (l+1) = T (l) ∪ {l}. If
∑s

ω=1 objBPP
(l)
ω

< UBD, update UBD = objBPP (l) and

the incumbent solution (x∗0, x
∗
1, · · · , x∗s, y∗1 , · · · , y∗s ) = (x

(l)
0 , x

(l)
1 , · · · , x(l)s , y

(l)
1 ), · · · , y(l)s ). If

Problem (BPP
(l)
ω ) is infeasible for at least one ω, solve Problem (BFP

(l)
ω ). Generate Benders

feasibility cuts with the obtained dual solution µl
ω and λlω, and update S(l+1) = S(l) ∪ {l}.

(2.d) If UBD ≤ LBD+ ε, terminate and return the incumbent solution as an ε-optimal solution;
otherwise l = l + 1, go to step (1.a).
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Table 5.3: Results for case study A - Monolith (Unit for time: sec)

Number of scenarios 25 36 49 64 81 100

Optimal obj. ($) -532.1 -530.6 -531.2 -531.5 -531.1 -531.1
Total run time 18 44 138 395 651 – †

† No global solution was returned within 3600 seconds.

Table 5.4: Results for case study A - JD1 (Unit for time: sec)

Number of scenarios 25 36 49 64 81 100

Num. of iterations 9 12 9 12 11 12

Num. of JRMP(l) solved 4 5 4 4 6 5

Optimal obj. ($) -531.7 -530.3 -530.8 -531.5 -531.1 -530.9

Time for LSk
ω 21 46 40 70 76 95

Time for PPk 6 12 11 22 27 32

Time for JRMP(l) 2 7 134 97 884 23

Total solver time 30 69 187 194 994 158

Total run time 107 241 343 446 1322 541

Table 5.5: Results for case study A - JD2 (Unit for time: sec)

Number of scenarios 25 36 49 64 81 100

Num. of iterations 8 10 10 13 11 12

Num. of JRMPR(l) solved 3 5 5 9 6 7

Num. of JRMP(l) solved 0 1 1 5 3 3

Optimal obj. ($) -532.1 -530.3 -531.0 -531.5 -531.1 -531.1

Time for LSk
ω 16 29 42 69 73 98

Time for PPk 4 6 11 20 22 27

Time for JRMP(l) 0 2 9 117 34 43

Time for ODRk 25 42 56 101 113 160

Total solver time 46 81 120 313 249 335

Total run time 115 209 311 673 586 778



5.6. CONCLUDING REMARKS 163

Table 5.6: Results for case study B - Monolith (Unit for time: sec)

Number of scenarios 25 36 49 64 81 100

Optimal obj. (Billion $) -33.87 -33.67 -33.81 -33.76 -33.78 -33.79
Total run time 140431 † 154517 ‡ – # – – –

† ANTIGONE terminated with an optimality gap of 1.4 %.
‡ ANTIGONE terminated with an optimality gap of 2.1 %.
# No global solution was returned within 172800 seconds (2 days).

Table 5.7: Results for case study B - JD2 (Unit for time: sec)

Number of scenarios 25 36 49 64 81 100

Num. of iterations 28 21 46 27 27 26

Num. of JRMPR(l) solved 21 14 41 18 17 18

Num. of JRMP(l) solved 13 6 35 14 10 11

Optimal obj. (Billion $) -33.74 -33.52 -33.65 -33.59 -33.62 -33.52

Time for LSk
ω 4342 970 17697 3004 4610 6452

Time for PPk 945 821 1799 659 1584 1746

Time for JRMP(l) 2930 909 7258 2936 7481 30542

Time for ODRk 7124 6495 28989 23141 24056 34089

Total solver time 15387 9240 56166 29929 37938 73249

Total run time 18605 11899 70767 33854 43104 82772
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Chapter 6

Conclusions and Future Work

This thesis presents novel decomposition based approaches to solve large-scale mixed-

integer linear and nonlinear optimization problems with angular, dual-angular, and

hybrid-angular structures. The summary of the results in this thesis are discussed in

section 6.1. Section 6.2 discusses future research direction.

6.1 Conclusions

The following four subsections summarize the conclusions drawn from the thesis.

6.1.1 A new cross decomposition for stochastic mixed-integer linear pro-

gramming

In chapter 2, we proposed a new cross decomposition framework to solve two-stage

stochastic MILPs. This decomposition approach exploits the synergy between BD and

DWD to efficiently solve the original problem. The two key contributions in this CD

framework is the use of DWD restricted master problem for generating upper bounds,

and the ability to deal with infeasible problems or problems for which initial feasible

solutions are difficult to find using a phase 1 procedure. From this decomposition
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framework, we develop two cross decomposition algorithms, CD1 and CD2. CD1

alternates between a BD iteration and a DWD iteration, while CD2 determines when

to switch from BD to DWD and back, adaptively.

We demonstrate the performance of the new CD approaches by comparing with

the monolith and BD approaches, using case study of a bio-product SCO problem

and an industrial chemical SCO problem. Both case studies show that the three

decomposition methods outperform the monolith approach significantly when the

number of scenarios is large. In the first case study, we see that both CD1 and CD2

require much fewer iterations and therefore less total solver times; using CD2, we

achieve a reduction in solution time by more than 80% over BD (and 90% over the

monolith approach) when the number of scenarios is 361. BD has better convergence

in the second case study compared to CD1, but CD2 is still a better alternative

because of its superior performance.

6.1.2 Multicolumn-multicut cross decomposition for stochastic mixed-

integer linear programming

A MCMC CD algorithm is developed in chapter 3 to solve stochastic MILPs. We

derive tighter upper and lower bounds for the MCMC CD through the multicolumn

and multicut formulations of the DWD restricted master and Benders relaxed master

problems respectively, and the new formulation does not perturb the finite conver-

gence of the algorithm. Using case study of a bio-product supply chain optimization

problem, we show that that MCMC CD is computational faster than the classical

BD method by an order of magnitude when the number of scenarios is large, and it

is also significantly faster than CD and MC BD for all scenario instances considered.
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6.1.3 Extended cross decomposition for stochastic mixed-integer pro-

grams with strong and weak linking constraints

In chapter 4, an extension of the cross decomposition method was developed for

two-stage stochastic MILPs with strong and weak linking constraints. A CVaR con-

strained two-stage stochastic programming problem was taken as an example in the

above problem class. Case study with risk neutral and risk averse constraints was

considered.

The risk neutral form of the case study was solved using monolith, ordinary cross

decomposition and Benders decomposition. CD2 applied to this case has superior

performance over CD1, BD and monolith for large scenario instances. About 37 %

of solver time can be saved using CD2 compared to BD. Furthermore, for the largest

scenario case where the monolith could not return a solution within a day, CD2

returns under less than two hour. For the risk averse case study, the proposed ECD

showed good performance over the naive BLD and the monolith. ECD2 can achieve

as much as 10 times reduction in wall time compared to BLD, and over an order of

magnitude reduction in wall time compared to the monolith.

6.1.4 Joint decomposition for multiscenario mixed-integer nonlinear non-

convex programming

We developed two joint decomposition methods, JD1, and JD2, in chapter 5 to glob-

ally solve two-stage stochastic nonconvex MINLPs. The two algorithms have been

shown to converge in finite number of iterations with an ε-optimal global solution.

The results from the simulations suggests that for a relative simple problem (case

study A), JD1 and JD2 perform better than the monolith approach for large scenario
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instances, and JD2 outperforms JD1 for some scenario instances. For a larger and

more realistic problem (case study B), the superiority of JD2 is more glaring, as JD2

returns the solution to the problem where the monolith and JD1 fails. Finally, it can

be observed that the relaxed master problem, which has similar size to the original

problem, can be much easier to solve than the original problem because of the domain

reduction strategy embedded, as demonstrated in the case studies.

6.2 Future Work

The following areas will be the focus of future work; (i) dealing with multiple primal

and dual solutions from subproblems, (ii) developing more efficient domain reduc-

tion techniques and (iii) more applications of the proposed decomposition strategies.

These three aspects are discussed below.

6.2.1 Multiple primal and dual solutions

The decomposition techniques developed in this thesis rely on optimal solutions from

primal and dual subproblems. However, in a lot of application, multiple primal and

dual solution exists [48] [159]. Applications where this problem is prevalent is net-

work design and operation. This is because in such applications, for any fixed network

design, there exist multiple production schemes to achieve the same objective. Mul-

tiple primal and dual solutions increases the number of iterations for decomposition

methods, deteriorating convergence. Strategies to overcome this problem can include:

(a) Cut strengthening: The seminal paper by Magnanti and Wong [48] for BD and a

paper by Van Roy for CD [83] describe a way to strengthen cuts in the relaxed

master problem in BD/CD application. They showed that by solving extra
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subproblems at each BD iteration, the best Lagrangian multiplier for each cut

can be obtained, significantly reducing the overall BD iterations. This approach

can be applied in the new CD in the future.

(b) Column strenthening: The pricing problem can have multiple solutions which

can affect the tightness of the DW restricted master problem, thus affecting the

performance of CD/ECD/JD. Therefore, similar to cut strengthening, column

strengthening in the DW restricted master problem could lead to improvement

in decomposition performance.

6.2.2 Novel domain reduction techniques

The bottleneck in the performance of joint decomposition technique in chapter 5

is the fact that a nonconvex Benders relaxed master problem needs to be solved.

However, we have seen that domain reduction; either through marginal based domain

reduction, or through bound tightening, can significantly reduce the computational

complexity of subproblems, especially the Benders relaxed master problem. Going

forward, the following new efficient domain reduction techniques can be investigated

to further improve the performance of joint decomposition.

(a) New marginal based domain reduction schemes: The current marginal based

domain reduction by Ryoo and Sahinidis [146] solve probing subproblems (if

the marginal values of constraints are zeros) that do not tighten the convex

relaxation. A potential future direction is to implement a probing procedure,

where solving a probing problem for a particular variable can enable the bounds

on the other variables in the problem to be improved, thereby tightening the

convex relaxation.
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(b) New bound tightening schemes: In the joint decomposition method, we consider

optimization based domain reduction for only the linking variables x0. In the

future, efficient optimization based domain reduction for some of the important

nonconvex variables yω can be considered. This can tighten the convex relax-

ation of Problem (JRMP(l)) and therefore increase the efficiency of solving each

JRMP(l). Additionally, developing a new improved bound tightening technique

is a potential future direction.

6.2.3 More applications of the proposed decomposition approaches

The focus of this thesis was to develop and apply decomposition based techniques to

solve scenario based stochastic programs. In the future, application of decomposition

methods can be extended to areas in large-scale mathematical programming such as:

(a) Multiperiod programming: Here, the different periods are considered as in-

dependent blocks, and the linking variables or constraints comes from links

between these blocks. With proper problem reformulation, the decomposition

approaches presented in this thesis can be applied to such problems.

(b) Large scale physical systems with loosely connected parts: One application of

these kinds of problems, i.e., dynamically decoupled subsystems with linking

constraints, was described in chapter 2. Another application in process sys-

tems engineering is plantwide optimization, which require the optimization of a

system consisting of distillation columns, heat exchangers, seperators, reactors,

connected together. Because these problems have loosely connected structures,

applying decomposition methods can explore this special structure for efficient

solution.
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Appendix A

Proof of Propositions from chapter 2

Proof of Proposition 2.1. The equivalence holds when Λopt = Λfeas = {λ ∈ Rm : λ ≥

0} due to the strong Lagrangian duality [35]. Furthermore, from the LP duality, Λopt

or Λfeas only needs to include all extreme dual multipliers of Problem (BPPk) or

Problem (BFPk) for the equivalence of Problem (BMP) and Problem (P) [30].

Proof of Proposition 2.2. Since X is a bounded polyhedral set, conv(E(X)) = X, so

conv({x1, · · · , xnF }) ⊃ conv(E(X)) = X.

On the other hand, {x1, · · · , xnF } ⊂ X implies

conv({x1, · · · , xnF }) ⊂ X.

Therefore, conv({x1, · · · , xnF }) = X and Problem (DWMP) is equivalent to Problem

(P).
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Proof of Proposition 2.3. According to strong duality of Problem (BPPk),

objBPPk = inf
x∈X

(
cT0 x

k
0 + cTx+ (λk)T (A0x

k
0 + Ax− b0)

)
= inf

x∈X

(
cTx+ (λk)TAx

)
+ (cT0 + (λk)TA0)xk0 − (λk)T b0,

so

objBPPk +
(
cT0 + (λk)TA0

) (
x0 − xk0

)
= inf

x∈X

(
cTx+ (λk)TAx

)
+ (cT0 + (λk)TA0)x0 − (λk)T b0,

Similarly, according to strong duality of Problem (DWPPk),

objDWPPk = inf
x∈X

(
cTx+ (λk)TAx

)
,

so

objDWPPk +
(
cT0 + (λk)TA0

)
x0 − (λk)T b0

= inf
x∈X

(
cTx+

(
λk
)T
Ax
)

+
(
cT0 + (λk)TA0

)
x0 − (λk)T b0.

Proof of Proposition 2.4. According to strong duality of Problem (BFPk),

objBFPk = inf
x∈X,z≥0

(
||z||+ (λk)T (A0x0 + Ax− b0 − z)

)
= inf

z≥0
(||z|| − (λk)T z) + inf

x∈X
(λk)TAx+ (λk)T (A0x

k
0 − b0)

Since objBFPk is finite and infx∈X(λk)TAx is finite (as set X is compact), infz≥0(||z||−

(λk)T z) is finite. When z = 0, ||z|| − (λk)T z = 0, so infz≥0(||z|| − (λk)T z) ≤ 0. Next
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we prove that infz≥0(||z|| − (λk)T z) = 0 by contradiction. Suppose ∃ẑ > 0 such that

∃ε > 0, ||ẑ|| − (λk)T ẑ ≤ −ε, then ∀α > 0, ||αẑ|| − (λk)Tαẑ ≤ −αε, which implies that

infz≥0(||z|| − (λk)T z) = −∞, which contradicts that infz≥0(||z|| − (λk)T z) is finite.

Therefore, ∀z > 0, ||z|| − (λk)T z) ≥ 0, so infz≥0(||z|| − (λk)T z) = 0. As a result, the

above expression can be simplified as:

objBFPk = inf
x∈X

(λk)TAx+ (λk)T (A0x
k
0 − b0),

so

objBFPk + (λk)TA0

(
x0 − xk0

)
= inf

x∈X
(λk)TAx+ (λk)T (A0x

k
0 − b0) + (λk)TA0

(
x0 − xk0

)
= inf

x∈X
(λk)TAx+ (λk)T (A0x0 − b0).

Proof of Proposition 2.5. According to Proposition 2.3, the first and the third group

of constraints in Problem (BRMPk
r) are valid Benders optimality cuts, and according

to Proposition 2.4, the second group of constraints in Problem (BRMPk
r) are valid

Benders feasibility cuts. So according to Proposition 2.1, Problem (BRMPk
r) is a re-

laxation of Problem (BMP) and therefore a valid lower bounding problem for Problem

(P).

Proof of Proposition 2.6. Since the columns xi involved in Problem (DWRMPk) come

from the solutions of Problems (BPPk), (BFPk), and (DWPPk), so they are all points

in set X. Therefore, the feasible set of Problem (DWRMPk) is a subset of that of the

master problem (DWMP), and so according to Proposition 2.2, Problem (DWRMPk)
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is a valid upper bounding problem for Problem (P).

Proof of Proposition 2.7. According to Propositions 2.3 and 2.4, the first three groups

of constraints are valid cuts for the BD relaxed master problem. So it is left to prove

that the fourth group of constraints are also valid cuts. ∀i ∈ Uk
feas, according to

strong duality of Problem (DWFPi),

objDWFP i = inf
x∈X

(λi)TAx,

so

objDWFP i + (λi)T (A0x0 − b0) = inf
x∈X

(λi)TAx+ (λi)T (A0x0 − b0).

Thus the fourth group of constraints in Problem (BRMPk) are valid cuts, according

to Proposition 2.1. Therefore, Problem (BRMPk) is a valid lower bounding problem

for Problem (P).

Proof of Proposition 2.8. This can be proved by showing that the optimal value of

Problem DWRMP or DWFRMP cannot keep decreasing for an infinite number of

iterations. Let’s consider Problem DWRMP first. After each DWD iteration, Prob-

lem DWRMP is updated with a column that is the solution of Problem DWPP. The

solution of DWPP returned by a solver is one of the extreme points of set X (consid-

ering Assumption 2.2), so the total number of new columns can be generated from

solving Problem DWPP is finite. As a result, Problem (DWRMPk) will remain the

same after a finite number of steps and its optimal objective value will not change

thereafter. Similarly, the optimal value of Problem (DWFRMPk) will not change

after a finite number of steps.
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Appendix B

From chapter 4

B.1 Derivation of CVaR constraints

B.1.1 Background of CVaR

Suppose u ∈ Rp is a random vector representing uncertainty and is governed by a

probability measure P on a set Y that is independent of the decision vector x. To

define the CVaR, we first define a loss function f : Rn × Rp 7→ R. For a general

distribution, we define the distribution function χ : Rn × R>0 7→ R as:

χ(x, ζ) = P{u : f(x, u) ≤ ζ}

The value-at-risk, VaR, for a loss random variable associated with x within a

specified probability interval (0, 1) is given by:

ζβ(x) = min{ζ ∈ R : χ(x, ζ) ≥ β}

The conditional expectation of the loss function above a certain value ζβ(x), CV aRβ :

R>0 7→ R introduced by [123] [128] is defined as the following:
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CV aRβ(x) =mean of the β − tail distribution of f(x, u)

According to Rockfellar and Uryasev, we can define a function F : Rn×R>0 7→ R

for general distributions as:

Fβ(x, ζ) = ζ +
1

(1− β)
E{[f(x, u)− ζ]+}

where [f(x, u)− ζ]+ = max{0, f(x, u)− ζ}

The following results show the relationship between CV aRβ(x) and Fβ(x, ζ).

Rockefellar and Uryesav [123] [128] Fβ(x, ζ) is convex and continuously differ-

entiable as a function of ζ. The CV aRβ of the loss associated with any x ∈ X ⊂ Rn

is given by:

CV aRβ(x) = min
ζ∈R

Fβ(x, ζ)

if f(x, u) is convex w.r.t x, then Fβ(x, ζ) is convex on (x, ζ).

Rockefellar and Uryesav [123] [128] The problem of minimizing the CV aRβ(x),

∀x ∈ X ⊂ Rn, Fβ(x, ζ) is equivalent to the problem of minimizing Fβ(x, ζ) over all

(x, ζ) ∈ X × R implying that:

min
x∈X

CV aRβ(x) = min
(x,ζ)∈X×R

Fβ(x, ζ)

The proof of the above results are in the reference [123, 128].
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B.1.2 Discretization and Linearization

Fβ(x, ζ) can be approximated by a summation by sampling the probability distribu-

tion over many scenario realization ω ∈ {1, ..., s}. The loss function is then given by

f(x, uω) and can be determined in part by sampling the underlying distribution of

the stochastic vector u as well.

F̃β(x, ζ) = ζ +
1

(1− β)

∑
ω∈{1,...,s}

pω[f(x, uω)− ζ]+

where ω is the scenario realization and pω is the probability that a given sce-

nario ω, will occur. From the above results, Fβ(x, ζ), after discretization, can been

approximated by the function F̃β(x, ζ). Furthermore, using dummy variables ψω,

ω ∈ {1, ..., s}, the function F̃β(x, ζ) can be replaced by the affine function

F̃β(x, ζ) = ζ +
1

(1− β)

∑
ω∈{1,...,s}

pωψω

where,

ψω ≥ f(x, uω)− ζ, ψω ≥ 0,∀ω ∈ {1, ..., s}, ζ ∈ R

The above equation is the scenario based formulation of CVaR. If the loss function

f(x, uω) is affine with respect to x, then the function F̃β is convex and piecewise linear.

F̃β is convex if f(x, uω) is convex with respect to x.
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B.2 ECD subproblems for CVaR-constrained two-stage stochastic pro-

gramming

The extended cross decomposition (ECD) was presented earlier for a generic Problem

(P). In this section, we apply the ECD to Problem (CVaR-SP). In the ECD, we

treat the variables that are independent of scenarios, (x0, ζ) different from the vari-

ables (xω, ψω), ∀ω ∈ {1, ..., s}, associated with scenarios. The ECD subproblems for

two-stage stochastic programming with CVaR constraints are described in the subse-

quent subsections. They are presented under the Phase I and Phase II subproblems

subsections.

First, the following subproblem is solved to provide initial point or column for the

algorithm to commence.

min
xω ,ψω

cT
ωxω

xω ∈ Xω.

(CVaR-IPPω)

Let x?ω be the optimal solution of Problem (CVaR-IPPω). The initial feasible column

needed to start the algorithm is (x0
ω, ψ

0
ω), where x0

ω = x?ω and ψ0
ω = 0.

B.2.1 Phase I subproblems

The DW restricted master problem to solve at the upper level for Phase I is given as:
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min
x0,ζ

θ0,...,θt−1≥0
z1,1,...,z2,s
z2,1,...,z2,s

z3

|| (z1,1, ..., z1,s) ||+ || (z2,1, ..., z2,s) ||+ ||z3||

s.t. Aωx0 + Aω

t−1∑
i=0

θixiω ≤ b0,ω + z1,ω, ω ∈ {1, ..., s},

−
t−1∑
i=0

θiψω
i + fω(

t−1∑
i=0

θixiω)− ζ ≤ z2,ω, ω ∈ {1, ..., s},

ζ +
s∑

ω=1

p̂ω(
t−1∑
i=0

θiψiω) ≤ b0 + z3,

t−1∑
i=0

θi = 1,

x0 ∈ X0, ζ ∈ R, z1,ω, z2,ω ≥ 0,∀ω ∈ {1, ..., s}, z3 ≥ 0.

(CVaR-DWFRMPk)

The 1-norm is used for the case studies. Let µk1,ω, µk2,ω be the Lagrange multiplier

associated with the weak linking constraints (first and second group of constraints),

and, µk3 be associated with the strong linking constraints (third group of constraints).

The DW pricing problem for Phase I is given below:

min
xω ,ψω

(
µk1,ω

)T
Aωxω + µk2,ω(−ψω + fω(xω)) +

(
µl3
)
p̂ωψω

xω ∈ Xω, ψω ≥ 0.

(CVaR-DWFPk
ω)

Let the solution be given by (xkω, ψ
k
ω) and the optimal objective objCV aR−DWFPk =∑s

ω=1 objCV aR−DWFPk
ω
. The solution to Problem (CVaR-DWFPk

ω) provides a column

for Problem (CVaR-DWFRMPk).
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The DW restricted master problem at the lower level can be written as:

min
θ0,...,θl−1≥0
z1,1,...,z2,s
z2,1,...,z2,s

z3

|| (z1,1, ..., z1,s) ||+ || (z2,1, ..., z2,s) ||+ ||z3||

s.t. Aω

l−1∑
i=0

θixk,iω ≤ b0,ω − Aωxk0 + z1,ω, ω ∈ {1, ..., s},

−
l−1∑
i=0

θiψω
k,i + fω(

l−1∑
i=0

θixk,iω ) ≤ ζk + z2,ω, ω ∈ {1, ..., s},

s∑
ω=1

p̂ω(
l−1∑
i=0

θiψk,iω ) ≤ −ζk + b0 + z3,

l−1∑
i=0

θi = 1,

z1,ω, z2,ω ≥ 0,∀ω ∈ {1, ..., s}, z3 ≥ 0.

(CVaR-DWFRMPRk,l)

Let µk,l3 be the Lagrange multiplier associated with the strong linking constraints for

(CVaR-DWFRMPRk,l).

The DW pricing problem at the lower level can be written as:

min
xω ,ψω ,z1,ω ,z2,ω

(
µk,l3

)
p̂ωψω + ||z1,ω||+ ||z2,ω||

s.t. Aωxω ≤ −A0,ωx
k
0 + b0,ω + z1,ω,

− ψ + fω(xω) ≤ ζk + z2,ω,

xω ∈ Xω, ψω ≥ 0,

z1,ω, z2,ω ≥ 0,

(CVaR-DWFPRk,l
ω )
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Again, let the solution of (CVaR-DWFPk
ω) be given by (xk,lω , ψ

k,l
ω ) and the opti-

mal objective objCV aR−DWFPRk,l =
∑s

ω=1 objCV aR−DWFPRk,l
ω

. The solution provides a

column for Problem (CVaR-DWFRMPRk,l). An initial pricing problem is solved to

generate a starting column for the DWD procedure and was given previously.

The relaxed master problem to solve at Phase I is now given as the following:

min
x0,ζ,η

η

s.t. η ≥ objCV aR−DWFP i +
s∑

ω=1

(µ1,ω
i)TA0,ωx0 −

s∑
ω=1

(
µ1,ω

i
)
b0,ω −

s∑
ω=1

(
µ2,ω

i
)
ζ

+ µi3ζ − µi3b0, ∀i ∈ Uk
feas,

η ≥ objCV aR−DWFPRi,j +
s∑

ω=1

(µ1,ω
i,j)TA0,ω(x0 − xi0)−

s∑
ω=1

(
µ2,ω

i,j
)

(ζ − ζ i)

+ (µi,j3 )ζ − (µi,j3 )b0, ∀(i, j) ∈ T kfeas,

x0 ∈ X0, ζ ∈ R, η ∈ R,

(CVaR-BRMPIk)

B.2.2 Phase II subproblems

Based on the columns obtained from the subproblems above, the following DW re-

stricted master problem is solved at the upper level.
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min
x0,ζ

θ0,...,θt−1≥0

s∑
ω=1

(
cT

0,ωx0 + cT
ω(

t−1∑
i=0

θixiω)

)

s.t. Aωx0 + Aω

t−1∑
i=0

θixiω ≤ b0,ω, ω ∈ {1, ..., s},

−
t−1∑
i=0

θiψω
i + fω(

t−1∑
i=0

θixiω)− ζ ≤ 0, ω ∈ {1, ..., s},

ζ +
s∑

ω=1

p̂ω(
t−1∑
i=0

θiψiω) ≤ b0,

t−1∑
i=0

θi = 1,

x0 ∈ X0, ζ ∈ R.

(CVaR-DWRMPk)

Let λk1,ω, λk2,ω, and λk3, be the Lagrange multiplier associated with the first, second,

and third group of constraints of (CVaR-DWRMPk). The pricing problem is the

following decomposable problem:

min
xω ,ψω

(
cT
ω +

(
λk1,ω

)T
Aω

)
xω + λk2,ω(−ψω + fω(xω)) +

(
λk3
)
p̂ωψω

xω ∈ Xω, ψω ≥ 0.

(CVaR-DWPPk
ω)

Let the solution of (CVaR-DWPPk
ω) be given by (xkω, ψ

k
ω) and the optimal objec-

tive objCV aR−DWPPk =
∑s

ω=1 objCV aR−DWPPk
ω
. The solution provides a column for

Problem (CVaR-DWRMPk). The Phase II DW restricted master problem solved at

the lower level is given as:
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min
θ0,...,θl−1≥0

s∑
ω=1

(
cT

0,ωx
k
0 + cT

ω(
l−1∑
i=0

θixiω)

)

s.t. Aω

l−1∑
i=0

θixiω ≤ b0,ω − Aωxk0, ω ∈ {1, ..., s},

−
l−1∑
i=0

θiψω
i + fω(

l−1∑
i=0

θixiω) ≤ ζk, ω ∈ {1, ..., s},

s∑
ω=1

p̂ω(
l−1∑
i=0

θiψiω) ≤ −ζk + b0,

∑
i∈Ji

θi = 1,

(CVaR-DWRMPRk,l)

Let λk,l3 be the Lagrange multiplier associated with the strong linking constraints.

Similarly, the Phase II DW pricing problem solved at the lower level is the following:

min
xω ,ψω

(
cT
ω +

(
λk,l1,ω

)T

Aω

)
xω + λk,l3 (p̂ωψω)

s.t. Aωxω = −A0,ωx
k
0 + b0,ω, ω ∈ {1, ..., s},

− ψω + fω(xω) ≤ ζk, ω ∈ {1, ..., s},

xω ∈ xω, ψω ≥ 0.

(CVaR-DWPPRk,l
ω )

Again let the solution of Problem (CVaR-DWPPRk,l
ω ) be given by (xk,lω , ψ

k,l
ω ) with

the optimal objective objCV aR−DWPPRk,l =
∑s

ω=1 objCV aR−DWPPRk,l
ω

. The solution

provides a column for Problem (CVaR-DWRMPRk,l). The Phase II relaxed master

problem, a lower bound to Problem (CVaR-SP) is the following:



B.3. BLD SUBPROBLEMS FOR CVAR-CONSTRAINED
TWO-STAGE STOCHASTIC PROGRAMMING 202

min
x0,ζ,η

η

s.t. η ≥ objCV aR−DWPP i +
s∑

ω=1

(
cT

0,ω + (λ1,ω
i)TA0,ω

)
x0 −

s∑
ω=1

(
λ1,ω

i
)T
b0,ω

−
s∑

ω=1

λ2,ω
iζ + λi3(ζ − b0), ∀i ∈ Uk

opt,

0 ≥ objCV aR−DWFP i +
s∑

ω=1

(µ1,ω
i)TA0,ωx0 −

s∑
ω=1

(
µ1,ω

i
)T
b0,ω −

s∑
ω=1

µ2,ω
iζ

+ µi3(ζ − b0),∀i ∈ Uk
feas,

η ≥ objCV aR−DWPPRi,j +
s∑

ω=1

cT
0,ωx0 +

s∑
ω=1

(λ1,ω
i,j)TA0,ω(x0 − xi0)

−
s∑

ω=1

λ2,ω
i,j(ζ − ζ i) + λi,j3 (ζ − b0), ∀(i, j) ∈ T kopt,

0 ≥ objCV aR−DWFPRi,j +
s∑

ω=1

(µ1,ω
i,j)TA0,ω(x0 − xi0)−

s∑
ω=1

µ2,ω
i,j(ζ − ζ i)

+ µi,j3 (ζ − b0),∀(i, j) ∈ T kfeas,

x0 ∈ X0, ζ ∈ R, η ∈ R.

(CVaR-BRMPIIk)

B.3 BLD subproblems for CVaR-constrained two-stage stochastic pro-

gramming

The lower level subproblems for bilevel decomposition are same to that for ECD. At

the upper level however, the following Benders relaxed master problem is solved.
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min
x0,ζ,η

η

s.t. η ≥ objCV aR−DWPPRi,j +
s∑

ω=1

cT
0,ωx0 +

s∑
ω=1

(λ1,ω
i,j)TA0,ω(x0 − xi0)

−
s∑

ω=1

λ2,ω
i,j(ζ − ζ i) + λi,j3 (ζ − b0), ∀(i, j) ∈ T kopt,

0 ≥ objCV aR−DWFPRi,j +
s∑

ω=1

(µ1,ω
i,j)TA0,ω(x0 − xi0)−

s∑
ω=1

µ2,ω
i,j(ζ − ζ i)

+ µi,j3 (ζ − b0),∀(i, j) ∈ T kfeas,

x0 ∈ X0, ζ ∈ R, η ∈ R.

(CVaR-BRMP-BLDk)

B.4 Some details of the case study problem

The case study problem is a modification of Uncertain Case A in [109]. The changes

include (a) the different uncertain parameter settings, (b) the additional CVaR con-

straints, and (c) some parameter values. The first two changes are already described

in section 4.4. The new parameter values are given below:

• The fixed investment cost of incineration: 3 Million $.

• The variable investment cost of incineration: 90.32 $/t.

• The capacity of a technology facility: dry-grind 100,000 t/year, digestion 16,000

t/year, incineration 200,000 t/year.

• The maximum demand for heat at demand location j3: 6.26× 108 MJ/year.

• The maximum demand for electricity at each demand location: 6×106 MWh/year.
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The upper threshold for the CVaR measure b0 = 0, and the probability β =

90%. Note that the upper and lower bounds of the loss function are needed to

compute bounds of ζ and ψω in the CVaR constraints. The upper bound of the loss

function is estimated as the sum of largest possible minimum electricity demands at

all demand locations. The lower bound of the loss function is estimated as the sum

of smallest possible minimum electricity demands at all demand locations minus the

total maximum demands at all demand locations.
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Appendix C

From chapter 5

C.1 Reformulation from (P1) to (P)

Define new variables tω, αc,ω, αnc,ω, βc,ω, βnc,ω, such that Problem (P1) can be written

as:

min
s∑

ω=1

tω

s.t. x0 = z0,ω, ∀ω ∈ {1, ..., s},

βc,ω + βnc,ω ≤ 0, ∀ω ∈ {1, ..., s},

tω ≥ αc,ω + αnc,ω, ∀ω ∈ {1, ..., s},

αc,ω ≥ f0,ω(z0,ω) + fc,ω(zc,ω), ∀ω ∈ {1, ..., s},

αnc,ω ≥ fnc,ω(znc,ω), ∀ω ∈ {1, ..., s},

βc,ω ≥ g0,ω(z0,ω) + gc,ω(zc,ω), ∀ω ∈ {1, ..., s},

βnc,ω ≥ gnc,ω(znc,ω), ∀ω ∈ {1, ..., s},

x0 ∈ X0,

z0,ω ∈ X̂0, zc,ω ∈ Zc,ω, znc,ω ∈ Znc,ω, ∀ω ∈ {1, ..., s}.

(C.1)
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Define xω = (z0,ω, zc,ω, tω, αc,ω, βc,ω), yω = (znc,ω, αnc,ω, βnc,ω), then the above formu-

lation can be written as the following Problem (P):

min
s∑

ω=1

cTωxω

s.t. x0 = Hωxω, ∀ω ∈ {1, ..., s},

Aωxω +Bωyω ≤ 0, ∀ω ∈ {1, ..., s},

x0 ∈ X0,

xω ∈ Xω, yω ∈ Yω, ∀ω ∈ {1, ..., s},

(C.2)

where the matrices

cω =



0

0

I

0

0


, Hω = [I 0 0 0 0] , Aω =

 0 0 0 0 I

0 0 −I I 0

 , Bω =

 0 0 I

0 I 0

 ,

and the sets

Xω ={(z0,ω, zc,ω, tω, αc,ω, βc,ω) : z0,ω ∈ X̂0, zc,ω ∈ Zc,ω,

αc,ω ≥ f0,ω(z0,ω) + fc,ω(zc,ω), βc,ω ≥ g0,ω(z0,ω) + gc,ω(zc,ω)},

Yω ={(znc,ω, αnc,ω, βnc,ω) : znc,ω ∈ Znc,ω, αnc,ω ≥ fnc,ω(znc,ω), βnc,ω ≥ gnc,ω(znc,ω)}.

The ”0” and ”I” in the matrices represent zero and identity matrices, and their

dimensions are conformable to the relevant variables.
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C.2 The stochastic pooling problem with mixed-integer first-stage deci-

sions

The two-stage stochastic pooling problem from Li et al. [117] is modified here to

address continuous design (first-stage) decisions. The nomenclature used in [117] is

adopted to describe the model, in which the scenarios are indexed by h (rather than

ω).

In the modified model, the design decisions on sources, pools, product terminals,

denoted by yS
i , y

P
j , yT

k , can be continuous, integer, or mixed integer. If ySi ∈ {0, 1},

then the design decision is to determine whether source i is to be developed, and the

related parameter ZUB
i represents the fixed capacity of the source. If ySi is continuous

and yS
i ∈ [0, 1], then it is a capacity design decision, specifically it represents the

ratio of source i capacity to the maximum allowed capacity of the source (denoted by

ZUB
i ). The design decisions on the pipelines among sources, pools, and terminals are

all continuous, denoted by ySP
i,j , y

ST
i,k, y

PP

j,j− , yPT
j,k ∈ [0, 1]. They represent the ratios of

the pipeline capacities to the maximum allowed capacities (denoted by F SP,UB

i,j , F ST,UB

i,k ,

F PP,UB

j,j− , F PT,UB

j,k ).

All design and operational decision variables are nonnegative, and we do not

impose other lower bounds on these variables in order to simplify discussion. The

new stochastic pooling model consists primarily of three submodels, for the sources,

pools, and product terminals, respectively.

C.2.1 Model for the sources

The following group of constraints (C.3) represents the submodel for the sources. Eq.

(C.1a-C.1c) are same to Eq. (12-14) in [117], except that the lower flow bounds are
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not imposed. Eq. (C.1d-C.1f) are developed in place of the topology constraints Eq.

(15-16) (which are invalid for continuous design decisions). Eq. (C.1d-C.1e) limit

the capacity of a pipeline by the capacity of the source it connects. If yS
i = 0, then

there cannot exist a pipeline connecting it, in other words, the capacity of a pipeline

connecting it has to be zero. Eq. (C.1f) requires that the total capacity of all pipelines

connecting to a source should be no less than the capacity of the source. This is to

ensure enough pipeline capacity to move all materials generated in the source to other

parts of the system in real-time.

∑
j∈ΘSP

i

f SP

i,j,h +
∑
k∈ΘST

i

f ST

i,k,h ≤ yS

iZ
UB

i , (C.3a)

f SP

i,j,h ≤ ySP

i,jF
SP,UB

i,j , (C.3b)

f ST

i,k,h ≤ yST

i,kF
ST,UB

i,k , (C.3c)

ySP

i,jF
SP,UB

i,j ≤ yS

iZ
UB

i , (C.3d)

yST

i,kF
ST,UB

i,k ≤ yS

iZ
UB

i , (C.3e)

yS

iZ
UB

i ≤
∑
j∈ΘSP

i

ySP

i,jF
SP,UB

i,j +
∑
k∈ΘST

i

yST

i,kF
ST,UB

i,k , (C.3f)

∀i ∈ {1, ..., n}, ∀j ∈ ΘSP

i , ∀k ∈ ΘST

i , ∀h ∈ {1, ..., b}.

C.2.2 Model for the pools

The following group of constraints (C.4) represents the submodel for the pools. Eq.

(C.2a-C.1e) are same to Eq. (17-21) in [117], except that the lower flow bounds are not

imposed. Eq. (C.2f-C.2k) are developed in place of the topology constraints (23-26)

in [117]. The interpretation of Eq. (C.2f-C.2k) is similar to that of Eq. (C.1d-C.1f)
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and therefore omitted.

fPT

j,k,w,h = sPT

j,k,h

∑
i∈ΩSP

j

f SP

i,j,hUi,w,h +
∑

j+∈ΩPP+
j

fPP

j+,j,w,h

 , (C.4a)

fPP

j,j−,w,h = sPP

j,j−,h

∑
i∈ΩSP

j

f SP

i,j,hUi,w,h +
∑

j+∈ΩPP+
j

fPP

j+,j,w,h

 , (C.4b)

∑
j−∈ΩPP–

j

sPP

j,j−,h +
∑
k∈ΩPT

j

sPT

j,k,h = 1, sPP

j,j−,h, s
PT

j,k,h ≥ 0, (C.4c)

yPP

j,j−F
PP,LB

j,j− ≤
∑

w∈{1,...,l}

fPP

j,j−,w,h ≤ yPP

j,j−F
PP,UB

j,j− , (C.4d)

yPT

j,kF
PT,LB

j,k ≤
∑

w∈{1,...,l}

fPT

j,k,w,h ≤ yPT

j,kF
PT,UB

j,k , (C.4e)

yP

jZ
P,UB

j ≥ ySP

i,jF
SP,UB

i,j , (C.4f)

yP

jZ
P,UB

j ≥ yPP

j+,jF
PP,UB

j+,j , (C.4g)

yP

jZ
P,UB

j ≥ yPP

j,j−F
PP,UB

j,j− , (C.4h)

yP

jZ
P,UB

j ≥ yPT

j,kF
PT,UB

j,k , (C.4i)

yP

jZ
P,UB

j ≤
∑

j+∈ΩPP+
j

yPP

j+,jF
PP,UB

j+,j +
∑
i∈ΩSP

j

ySP

i,jF
SP,UB

i,j , (C.4j)

yP

jZ
P,UB

j ≤
∑

j−∈ΩPP-
j

yPP

j,j−F
PP,UB

j,j− +
∑
k∈ΩPT

j

yPT

j,kF
PT,UB

j,k , (C.4k)

∀j ∈ {1, ..., r}, ∀j− ∈ ΩPP-

j , ∀k ∈ ΩPT

j , ∀w ∈ {1, ..., l}, ∀h ∈ {1, ...b}.
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C.2.3 Model for the product terminals

The following group of constraints (C.5) represents the submodel for the terminals.

Eq. (C.3a-C.3b) are same to Eq. (27-28) in [117], except that the lower flow bounds

and content bounds are not imposed. Again, Eq. (C.3c-C.3e) are developed in place

of the old topology constraints that are invalid for continuous design decisions (i.e.,

Eq. (23-26) in [117]).

∑
j∈ΠPT

k

∑
w∈{1,...,l}

fPT

j,k,w,h +
∑
i∈ΠST

k

f ST

i,k,h ≤ yT

kD
UB

k,h, (C.5a)

∑
j∈ΠPT

k

fPT

j,k,w,h +
∑
i∈ΠST

k

f ST

i,k,hUi,w,h ≤ ∑
j∈ΠPT

k

∑
w∈{1,...,l}

fPT

j,k,w,h +
∑
i∈ΠST

k

f ST

i,k,h

V UB

k,w (C.5b)

yT

kD
UB

k ≥ yST

i,kF
ST,UB

i,k (C.5c)

yT

kD
UB

k ≥ yPT

j,kF
PT,UB

j,k , (C.5d)

yT

kD
UB

k ≤
∑
i∈ΠST

k

yST

i,kF
ST,UB

i,k +
∑
k∈ΠPT

k

yPT

j,kF
PT,UB

j,k (C.5e)

∀k ∈ {1, ...,m}, ∀w ∈ {1, ..., l}, ∀h ∈ {1, ..., b}.
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The modified stochastic pooling model can be stated as:

minimize objective

s.t. Eq. (C.1a-C.1f), Eq. (C.2a-C.2k), Eq. (C.3a-C.3e),

yS

i , y
P

j , y
T

k ∈ {0, 1} or [0, 1],

ySP

i,j , y
ST

i,k, y
PP

j,j− , y
PT

j,k ∈ [0, 1],

all flow rates are nonnegative,

redudant constraints for accelerating global optimizaiton (Eq. (38-39) in [117]).

The objective can be negative net present value, or negative annualized profit, as

specified in [117].


