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ABSTRACT 

The portfolio model of hedging framework, based off Markowitz (1952), is used to 

determine the best portfolio of futures, basis, and option contracts to hedge a soybean purchase 

from PNW 28 weeks into the future. Eighteen options are incorporated including in-the-money, 

at-the-money, and out-of-the-money call and puts with different expiration dates. Futures and 

option pricing data is extracted from ProphetX from November of 2013 to December of 2016. 

Expected utility objectives including mean-variance, CVaR, Mean-CVaR, and Mean-CVaR with 

copula are maximized using linear programming optimization methods. A two-stage model is 

built to simulate hedging scenarios while measuring various statistics. Under high risk aversion, 

a standard futures hedge performs the best. Buyers with lower risk aversion should explore 

option strategies. In-the-money calls, collars, strangles, and short butterfly strategies all perform 

well.  
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CHAPTER 1. INTRODUCTION 

1.1. Overview 

Large price swings in the commodity markets can bring vigorous joy or bitter despair to 

commodity trading firms, buyers, and importers. Just before the dawn of financial crisis of 2008, 

commodity prices went wild in February that year leading to large profits and losses depending 

on which side of the trade firms were on. Buyers and sellers confront numerous strategies for 

combating these risks. Examples include basis contracts, HTA (hedged-to-arrive) contracts 

where futures are locked in, regular futures contracts, and a plethora of derivative strategies. 

Altogether, the problem can be approached as a portfolio of alternatives. The question is what 

amount of each of alternative should be procured at different levels of risk aversion. Risk 

aversion determines how much one is willing to lose relative to a profit opportunity. The more a 

hedger is willing to lose to have a probability of reducing cost by a certain figure, the more risk 

tolerant that hedger is. A hedging model is developed which utilizes stochastic optimization to 

determine the best alternatives to include in a hedging portfolio. Important features include the 

use of copulas and Mean-CVaR (condition value-at-risk) objective functions. These can both be 

found is recent related literature. Once developed, the model can be used to determine the 

optimal allocation to each of the hedging alternatives. It also can evaluate VaR (value-at-risk), 

CVaR, and the impacts of higher or lower aversion and volatility. 

The theoretical model can be applied to any type of commodity hedging problem while 

the empirical model is used for a generic soybean purchase from PNW (Pacific North West). 

This is an application of portfolio analysis common in the financial industry. Important features 

include the allocations to cash, basis, futures, and options. The greeks are also of great 

importance, particularly delta and gamma.  
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It is now broadly recognized there is a need for enterprise risk management within firms 

involved in commodity trading. Some firms adopted VaR to theoretically measure the 1st or 5th 

percentile of their loss distribution. Options can provide a similar risk profile to futures but leave 

the upside potential for a case like 2008. However, VaR has its own shortcomings as it was the 

primary risk measure used in the banking system before 2008. This chapter introduces the 

problems commodity trading firms face in dealing with price risk. It also introduces some 

possible solutions and alternative ways of thinking about hedging.  

1.2. Portfolio Model of Hedging 

In one of the most famous papers published in the financial industry to this day, 

Markowitz (1952) outlined the benefits of diversification in an investment portfolio. The biggest 

contribution from the early paper was the derivation of the portfolio variance. Only three 

statistics were needed to compute the variance in a two stock portfolio. These are the respective 

weight of the security in the portfolio, its standard deviation of past prices or returns, and the 

covariance with the other security in the portfolio. If two stocks aren’t perfectly correlated and 

have the same amount of risk, adding the second one would theoretically reduce the variance of 

the portfolio.  

The methodology was intended to be applied to a portfolio of stocks. Researches and 

firms could now optimize for a certain level of return or risk given a choice of stocks and 

assumptions about risk and return. His later work (Markowitz & Stuart, 1959) outlined the 

derivation of expected utility assuming a quadratic utility function. This brought risk and return 

together in one utility function to optimize for utility versus just returns or risk. Utility is a 

function of risk, return, and risk aversion. 
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The same methodology was then applied to hedging problems. A short cash and long 

futures position can be looked at as a two security portfolio with positive correlation but not 

perfect. Ederington (1979) explored the hedging effectiveness of various securities with their 

spot market equivalents. He found that the spot and futures do not move perfectly together thus 

should not be hedged one to one. Later studies focused on different markets, different objective 

functions, and different ways to measure risk.  There is much more literature that is reviewed in 

Chapter 2 relative to this subject. After the financial crisis coupled with extreme volatility in the 

commodities markets, commodity trading companies like Gavilon, Cargill, and numerous others 

built out risk monitoring procedures within their companies. Prior, many firms didn’t have a 

grasp on the inherent risk in these markets. In theory, the portfolio model of hedging 

methodology can be applied to any portfolio of securities.  

1.3. Commodity Trading Today 

 The world of commodity traders are split into two categories: hedgers and speculators. 

Hedgers are the firms we look at in this study. They take physical positions in a commodity and 

“hedge” their risk using the futures or other derivatives. Speculators do not take a physical 

position in the commodity. They buy and sell futures and other derivatives with the sole intent to 

make a profit when they close the position. It’s very similar to betting on a stock. 

 The two are broken apart because one category can be ultra-sophisticated and the other 

not so much. The not-so-sophisticated traders are group of traders that are targeted in this study. 

The typical hedging strategy is to always take an equal and opposite position in the underlying 

physical commodity. If a Chinese soybean buyer agrees to purchase a couple hundred thousand 

tonnes of beans in a few months, they take a long position in the futures market while also 

hedging their currency risk. The way traders like this make money is basically arbitrage. They 
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buy low (U.S), and sell high (China). This kind of arbitrage determines the way commodities 

move throughout the world. After taking out shipping costs, they’re left with essentially a price-

riskless profit.  

 Speculators are often the ones taking opposite positions of the hedgers but also involved 

in options trading and complex derivatives. This isn’t to say that all hedgers use the basic “equal 

and opposite” position but most do. Speculators use standard futures but are also trading options, 

swaps, swaptions, and other related securities. This gives them much more flexibility to bet on 

characteristic of the underlying besides price. For example, volatility is easy to go long or short 

by using a butterfly spread which is explained in chapters 2 and 4. The same principles that are 

used by speculators can be used by hedgers. In today’s world, it’s my opinion that most elevator 

mangers, flour mills, etc. don’t understand how these derivatives behave and see them as too 

risky. There may be an opportunity for hedgers to make more money by applying more 

sophisticated hedging strategies. 

1.4. Problem Statement 

There are many risk factors in most businesses today. A shift in consumer preferences, a 

sudden hike in input costs, and dismal consumer confidence can all derail future revenue and 

profit expectations. No matter the size and scale, unforeseen events can bring even the largest, 

most stable businesses to their knees. Just recall what happened to the some of the big banks 

during the financial crisis only a decade ago. 

For commodity trading firms, risks can be amplified by the price swings in commodities. 

Commodity trading firms buy and source crops, metals, oil, and a plethora of other commodities 

in order to sell or transform them. They make a margin between the prices they bought and sold 
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minus any transportation, storage, or other costs incurred before selling the commodity or refined 

product.  

Price fluctuations in these commodities are one of the main sources of risk for 

commodity trading companies. Input levels for end users are usually known well in advance. 

Even if that’s not the case, the time to transport commodities internationally can take weeks. 

Price swings can happen quickly and violently over that short of a time period. A hedger has 

various alternatives to deal with or combat this risk. They can operate unhedged, hedge with 

various forward or basis contracts, hedge with futures contracts, or deploy some sort of 

derivative hedging strategy. The futures market was created for firms involved in businesses like 

this to hedge their price risk. It works great for a firm which intends to lock in prices at certain 

levels and have little regard for potential margin calls. However, generally hedgers would like to 

be able to take advantage of favorable price moves over this period of uncertainty while still 

controlling their risk. They also are weary of margin calls during unfavorable price moves.  

Hedging with derivative contracts can solve some of these problems. Swaps currently 

don’t require any margin. Options provide a price floor (ceiling) with unlimited risk on the 

upside (downside) for a cost. Depending on current volatility, the time period needed to hedge, 

and the degree of “moneyness” desired can make them expensive to buy and sell. One solution to 

offset those costs is to simultaneously sell similar options. However, this opens up more price 

risk to one side or cuts short what would have been an unlimited upside. In other words, there is 

no free lunch. 

Today, hedgers primarily use the futures market to hedge their price risk. They eliminate 

all price risk inherent in the futures market but give away any would be profits as well. Can you 

imagine firms that went short on oil in 2008 when it was around $140 looking to go higher? That 
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exact situation happened to Delta Airlines before oil prices tumbled down to less than $40 a 

barrel. They took a $1.9 billion hedging loss during that year. Even though they bought oil 

cheaper in the cash market on its way down, management and shareholders were uneasy about a 

hedging loss of that magnitude. Delta’s earnings came in negative that year and the hedging loss 

was the primary cause. (Kelly, 2015) There are plenty of other instances where large trading 

firms have gotten caught on the wrong side of a hedge. 

On the other hand, options have asymmetric payoffs. Firms can lock in a price minimum 

or maximum net price for a small fee called the option premium. They are basic instruments one 

at a time but loading a multitude of them into one portfolio can make for a headache. They also 

require an ample amount of margin compared to the cost of them. 

1.5. Objective, Procedures, and Hypothesis 

The goal of this study is to find out which alternatives would be an optimal hedge under 

risk preferences using different measurement techniques. Securities included to hedge with are a 

futures contract, basis contract, and eighteen options. The options include calls and puts, cover 

various degrees of moneyness, and also include different maturities. Moneyness refers to how far 

in or out-of-the-money the options are. The pricing data used is from November of 2013 and 

ends in December of 2016. All data points are accounted for and no extrapolation is necessary. 

The previous literature has sparsely covered the opportunities for employing a portfolio 

model of hedging using options. The literature that has covered the topic is either theoretical in 

nature or only uses one to two options for the hedges. All pricing is based on models as well. In 

this study actual option prices were gathered from DTN. In general, the model is a large-scale 

optimization hedging problem. It uses two stages so to measure the return and risk of the hedge 
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over the respective period. Volatility is the main input into the price of an option besides its 

degree of moneyness. Implied volatility is sourced from the underlying prices. 

If the objective is to minimize risk, futures should be the best hedge. However, using 

alternative objective functions and risk preferences should make options strategies more 

attractive. Because the data starts right after the large drop is crop prices, particular soybeans 

after the harvest of 2013, the problem is based on a low volatility environment. Strategies that 

involve some upside while limiting downside are expected to perform the best. Collar and 

butterfly strategies are the first to come to mind that fit that profile. 

1.6. Organization 

The organization of this thesis is outlined as follows: next, chapter two provides a 

detailed overview of the previous research that went into this problem. It starts from the dawn of 

portfolio theory and ends with sophisticated semi-variance measures. Chapter three introduces 

the theoretical model. It dives deeper into the model and provides a blueprint for designing 

hedging problems focused on derivatives. Some comments about risk aversion and the effects of 

high or low risk tolerance are also made. Chapter four provides the empirical model. It goes into 

detail about the different option strategies that are included in this study. The method for 

gathering data is also outlined. Lastly, correlations, margins, and optimization procedures are 

covered in the chapter. Chapter five shows the main findings of the study. The results are 

compared to a base case scenario while strategies are also compared across different objective 

functions. Chapter six provides the summary and conclusions. Any shortcomings, limitations and 

comments for further research are provided here. 
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CHAPTER 2. LITERATURE REVIEW 

2.1. Introduction 

It is important for agribusiness firms to control price risk, which is often mitigated by 

taking an opposite position in the specific commodity via a futures, forward, or options contract. 

This is done to lock in a price to counteract future price movements of the relevant commodity. 

Buyers today participate in the futures and options market for those reasons. Generally, it is safe 

to assume that futures and cash prices move together but not perfectly. The difference lies within 

the basis. 

Buyers tends to be short in the cash market. This means they must buy grain in the future. 

The objective of a hedge is to reduce price risk. A hedge offsets losses in the cash market 

through gains in the futures market. Consequently, gains in the cash market can also be offset by 

losses in the futures market. It’s easy to see that a buyer hedged completely has zero price risk 

assuming futures and cash prices are perfectly correlated. Gains and losses refer to profit unless 

otherwise stated.  

This study focuses on a portfolio model of hedging that is designed to reduce risk while 

leaving upside potential for profits. In the next section a history of Modern Portfolio Theory 

(MPT) is provided. Section three expands on the idea and explains how it can be used in a 

portfolio model of hedging framework. Section four introduces Post-Modern Portfolio Theory 

(PMPT) and illustrates its use and possible superiority to MPT. Section five describes more 

recent approaches to portfolio optimization. Finally, section six describes and outlines the 

characteristics of the hedging “vehicles” that are be used in this study. 
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2.2. Modern Portfolio Theory (MPT) 

One of the main questions for individuals and professional asset managers is where to put 

their money. In today’s globalized world, even a retail investor can get access to investments all 

over the world. Money managers are not only expected to achieve high returns, but also to keep 

the risk of a portfolio in check. They also must decide where to invest and how much to allocate 

to each investment. Over the last 60 plus years, investment professionals have answered most of 

these questions. There are hundreds of contributors to today’s knowledge on this topic. Only the 

early contributions that are critical to MPT are highlighted in this chapter. A review of some 

recent innovations in the area are explored while parallels are drawn to a Portfolio Model of 

Hedging framework. 

Markowitz (1952) is widely considered the father of MPT. He published the first paper 

that related risk and return in a portfolio model developing the E-V framework (expected return 

vs variance of returns). He identified the positive relationship that existed between risk and 

return. To achieve better returns, one must take on more risk. Identification and use of the 

correlation coefficients between assets to further interpret the risk of a portfolio is still used 

today. In a two-asset portfolio, the coefficient of correlation between the assets has a positive 

relationship with overall risk. A diversified portfolio is one with assets that usually exhibit 

negative correlation or low positive correlation with other assets held. Using his model, the 

portfolio could be optimized for a certain level of risk, which is measured by the variance or 

standard deviation in returns, or a specific level of return. An individual could further control 

their risk by introducing a risk-free asset into the portfolio. All of these factors play a key role in 

the analysis of a portfolio. These principles led to the formulation of the efficient frontier. 

Although Markowitz (1952) outlined the underlying theory behind the efficient frontier, it wasn’t 
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until Merton (1972) that the frontier was derived and shown as a hyperbola. A graph is shown 

later in this chapter.  

Around the same time, Roy (1952) was working on a similar theory, independent from 

Markowitz. He developed the safety-first criterion which measured the chance of a portfolio 

returning less than a certain extreme loss. The purpose of the criterion is to minimize the chance 

of a portfolio falling below that level. Today, there is a similar measure used is practice called 

the “margin of safety.” The term was coined by Benjamin Graham in his well-known book 

Security Analysis. 

Sharpe (1964) was one of a handful of scientists to be credited with the formulation of the 

Capital Asset Pricing Model (CAPM). The CAPM is a model that combines the efficient frontier 

with a capital market line. The capital market line intersects the y-axis at the risk-free rate and is 

drawn tangent to the efficient frontier. The tangent point lies above the minimum variance point. 

Tobin (1958) is credited with deriving the capital market line. Sharpe et al. (1964) allowed for 

the use of investing or borrowing at the risk-free rate. Today, this is known as leveraging which 

is to borrow money (at the risk-free rate or a different, higher rate depending on the risk of the 

borrower to the creditor) and invest in risky assets. When an investor is short the risk-free asset 

and long the risky asset at a level higher than their equity position, more risk is now injected into 

the portfolio. This creates an opportunity for higher returns but also heavier losses. Sharpe also 

derived systemic and unsystematic risk for an individual security. He proposed a relationship 

exists between economic activity and returns on an asset. This eventually led to an asset’s “Beta” 

being used in the CAPM model, which used in finance classes today. Beta is derived by 

regressing returns or prices of an individual stock against economic activity (usually the S&P 

500). 
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Sharpe (1966) continued developing the CAPM. Thirty-four open ended mutual funds 

were studied using ex post data. Returns and variability of returns were plotted, and the reward-

to-variability ratio was coined. Today, this is known as the Sharpe ratio. The ratio is simply a 

risk-adjusted rate of return. It’s calculated by the ratio of returns, in excess of the risk-free rate, 

over the standard deviation of returns. Although the term “Sharpe ratio” wasn’t officially coined 

until Sharpe (1994), the concept was illustrated 30 years prior. 

Merton (1972) derived and graphed the efficient frontier for a three-asset portfolio. 

Previously, only two asset portfolios were studied, and none derived the efficient frontier as a 

hyperbola shown below. The efficient frontier is derived, on a graph with risk on the x-axis and 

return and the y-axis, by changing the allocation to each security. Any point above the most 

leftward point (minimum variance portfolio) is considered “efficient.” The points below the 

minimum variance portfolio represent asset being sold short (borrowing a share of a stock to sell 

it and buying it back at a later date). Any point (combination of risk and return) on or within the 

efficient frontier is obtainable while points that lie outside the frontier are not obtainable. 

 

Figure 2.1: EV Frontier 
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2.3. Early Advancements in the Portfolio Model of Hedging 

The underlying theory for a portfolio model was introduced by Markowitz (1952). He 

proposed a model where risk and return where connected. Risk was measured by the variance or 

standard deviation of returns over a specified time period. Returns were measured as the 

percentage change over that same time period. Essentially, high standard deviations and 

correlation coefficients (or covariance) characterizes a higher risk portfolio. The opposite is true 

for lower levels of risk. A security with low risk and high returns is considered optimal.   

Traditional theory, at this time, assumed hedgers would either be completely hedged or 

unhedged. Ederington (1979) identified that spot and futures prices in T-bills, GNMAs 

(Government National Mortgage Association), wheat and corn do not move perfectly together. 

Therefore, they should not be hedged perfectly or have a hedge ratio of one (HR = 1). This hedge 

is referred to as a naïve hedge following previous literature. This is true even for a risk-

minimizing individual. He argues that hedging should be treated the same as any other 

investment decision. The objective is to maximize return while taking an appropriate amount of 

risk. Ederington (1979) proved that minimizing risk is done by having a hedge ratio of less than 

one in all securities and time periods studied. He also found that the risk-minimizing hedge ratio 

was lower as the time period of the hedge grew longer in the T-Bill and GNMA market. The 

optimal hedge ratio is further reviewed in the next section.  

2.3.1. Hedging 

“Organized commodity futures trading facilitates two kinds of activity – speculation and 

hedging.” “Most commodity trading theorists have visualized the hedger as a dealer in the 

“actual” commodity who desires “insurance” against the price risks he faces.” (Johnson, 1960) In 

the literature, hedging and speculation are divided by whether there exists an underlying, 
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physical commodity in relation to the transaction. Speculators do not have an underlying cash 

position. They are in the market to speculate on future price movements and profit from those 

positions. 

2.3.2. Minimum Variance Hedge 

Johnson (1960) derived the minimum variance hedge ratio (MV HR) from price levels. 

His formulation for the risk minimizing hedge ratio is derived by taking a first derivative of the 

portfolio variance formula. This results in the ratio of the covariance in spot and futures prices 

over the variance in futures. This is called this the “minimum variance hedge ratio” (MV HR). 

Empirically, this HR is the same as the slope coefficient of an OLS (ordinary least squares) 

regression on futures and cash prices.  

Wilson (1982) used price changes in wheat to determine optimal hedge ratios for eight 

different spot markets using three different futures’ markets. He measured the ratio of variance 

of the optimal hedged portfolio over the naïve hedged portfolio variance to illustrate how 

effective the hedge was over a short and long-term hedge. Using the portfolio of hedging 

framework, he analyzed the effectiveness of a single futures market, two market, and three 

market hedge. He concluded that a two-market hedge can significantly increase the effectiveness 

of a hedge in some cases while hedging in three markets provides almost zero marginal benefit. 

He also found that hedging using short term contracts versus longer term displays a higher 

hedging effectiveness coefficient. 

Brown (1985) also used price changes (returns) to derive the MV HR. He identified an 

assumption of OLS that may be violated when price levels are used to estimate the HR. He 

argued that the “residuals of price level regressions often exhibit significant degrees of 
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autocorrelation.” If autocorrelation is present in the residuals, the estimated MV hedge ratio 

derived may be inefficient. 

 Myers and Thompson (1989) further argued that even returns may not be appropriate to 

use in all situations. Instead of standard OLS they used a more flexible GLS (generalized least 

squares) model. Using a GLS model allows more of the residuals to follow an alternative 

distribution other than normal. They tested a storage hedging model using corn, soybeans, and 

wheat prices. Their results indicate the simple regression model using price levels was not 

appropriate. The OLS model using price changes derived a MV HR that was very similar to the 

GLS model. They note that although they were similar, other data could indicate problems using 

standard OLS. 

There is speculative element that is introduced when the hedger has future price 

expectations. Blank, Carter, & Schmeising (1991) used a hedge ratio that combines the risk-

minimizing hedge ratio plus a speculative element called the “optimal hedge ratio.” In reality, 

hedgers often do have future price expectations and therefore are not driven solely to minimize 

their price risk. However, most buyers still completely hedge themselves (HR =1) even though 

theory may suggest a different hedge ratio. To adjust for this, expected return can be added into 

the objective function while keeping the risk aspect present. This method is further discussed in 

the next section. 

2.3.3. Expected Utility E(U) and Mean-Variance Hedge (E-V) 

Minimizing variance can be one objective of a hedger. However, the risk-minimizing 

hedge ratio does not account for the expected return of the hedge. If a buyer expects grain prices 

in the future to drop, they may want to hedge less than what the risk-minimizing hedge ratio 

would indicate. If prices do drop, the firm would “save” some profits by not hedging earlier. 



 

 15  

They would also benefit from the drop in cash prices. Less price risk is generally more attractive 

to a hedger than more price risk but, higher returns are also more attractive. Both metrics can be 

incorporated to form an optimal hedge ratio using a mean-variance (E-V) framework. Blanc 

(1991) derived the optimal hedge ratio which uses the risk-minimizing HR and a speculative 

element mentioned in the previous section. This HR incorporates bias into the objective function. 

“Although, it can be shown that if the futures price follows a pure martingale process, then the 

optimal mean-variance HR is the same as the MV hedge ratio” (Chen, Lee and Shrestha, 2003). 

In other words, if returns are normally distributed, the optimal HRs are the same. 

The simplistic mean-variance objective function is typically measured by return minus 

one-half times variance. E-V is essentially a subset of expected utility. “For a mean-variance 

framework to be consistent with the expected utility maximization principle, either the utility 

function needs to be quadratic or the returns should be jointly normal” (Chen et al. 2003). If 

neither of these conditions hold true, the optimal HR may not be correct. In that case, the optimal 

hedge ratio can be derived from the expected utility function (Chen et al. 2003). One 

characteristic of an E-V framework is assuming constant risk aversion. In an expected utility 

framework, the quadratic risk aversion parameter can change. Instead of having one-half 

multiplied by variance, the objective function changes to phi (quadratic risk aversion parameter) 

over two multiplied by variance. This is shown in chapter three. 

 Most literature regarding a mean-variance hedge incorporates a risk-return metric 

(Howard and D’Antonio, 1984; Cecchetti, Cumby, & Figlewski, 1998; Hsin, Kuo, & Lee, 1994). 

These studies maximize expected utility using the E-V framework. The Sharpe ratio is one such 

metric used in previous literature. Theoretically, there is no connection between the Sharpe ratio 



 

 16  

and optimal HR derived by Blanc (1991). However, empirically the optimal hedge ratio also 

provides the highest Sharpe ratio available for that “portfolio.” 

Kahl (1983) studied how the assumption of random cash prices affects optimal hedging 

strategies. He argues risk aversion shouldn’t matter when determining the optimal hedge if cash 

prices are unbiased. He points out that if cash prices are stochastic instead of determined 

simultaneously with futures prices, then risk aversion is independent of the optimal hedge. 

Intuitively, this conclusion is parallel to Blanc’s (1991) derivation of the optimal hedge ratio. It 

is also in line with Chen et al. (2003) above. 

Howard and D’Antonio, 1984 used an E-V framework with a risk-free asset incorporated 

into the problem following early modern portfolio theorists to further control the amount of risk 

taken. When a risk-free asset is added to a portfolio, it further reduces the risk but at a cost to 

expected return. The most significant contribution was the derivation of hedging effectiveness. 

Up to this point, the effectiveness of a hedge was measured by r2.  Instead of measuring 

effectiveness with r2, they used a new metric referred to it as the risk-return relative in 

conjunction with ρ (rho) (or r). Both symbols represent correlation. They determined the risk-to-

excess-return relative (λ) of futures versus the spot price was a better measure. The relationship 

between ρ and λ determine the optimal strategy for the hedger. If λ is less than ρ, the hedger 

should have a short futures position. A long futures position should be held if λ is greater than ρ. 

Lastly, if they are equal, no futures position should be held. 

A similar approach was taken by Cecchetti et al. (1988). They studied treasury bonds and 

theoretically hedged in treasury futures. Where they differed from Howard and D’Antionio 

(1984) is they maximized expected utility instead of using the less flexible E-V framework. Past 

studies also implicitly assumed that the joint distribution of cash and futures price do not change 
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in the future. They identified that “when there is time variation present in the joint distribution, 

regressing past data does not correctly estimate current risk.” They used a log-normal utility 

function and aimed to maximize utility as a hedger. This also maximized the certainty 

equivalent. They found that by assuming a log normal utility function, they outperformed the no 

hedge and MV hedge significantly.  

Hsln et al. (1994) developed a model to measure the effectiveness of hedging currency in 

the futures market versus using options. Using assumptions consistent with the E-V framework, 

they measured effectiveness by the difference in the certainty equivalent just as Cecchetti et al. 

(1988) did above. They concluded, at that time, the futures market is a better platform to hedge 

currency than using options. 

Another version of the mean-variance hedging strategies includes ways to by-pass 

assumptions about the utility function and return distributions.  One method is to minimize the 

mean-extended Gini coefficient (MEG) which is consistent with first and second degree 

stochastic dominance, while the other maximizes the optimum MEG (M-MEG). The difference 

between the two is parallel to the differences between the MV hedge and the mean-variance 

hedge. One accounts for expected returns (M-MEG) and the other does not (MEG). Examples of 

this can be seen in (Cheung, Kwan, & Yip; 1990), (Shalit, 1995), and many others. 

The last method to go over in this section is the generalized semivariance method (GSV) 

or lower partial moments. Semivariance is the variance of a certain part of the return distribution 

(usually the left side). Empirically, this is useful when the hedger uses only negative returns or 

negative returns below a threshold (i.e. <2%) in his model to determine risk exposure. This 

methodology is also consistent with stochastic dominance. Hedgers are trying to hedge their 

downside risk and generally do not care about their upside risk. This method lets the hedger 
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focus on returns that are below that threshold instead of including all returns. Just like the MEG 

hedge ratio methodology, one can minimize the GSV or optimize the M-GSV. This was shown 

first by Fishburn (1977) and then by (Lien & Tse, 1998, 2000) (Chen, Lee, Shrestha; 2001).  

2.4. Post-Modern Portfolio Theory 

There are a couple differences between MPT and PMPT (Post Modern Portfolio Theory). 

Although the difference can be somewhat subjective, one key is the way variance is used in the 

models. MPT assumes a symmetrical measure of risk which implies investors have symmetrical 

risk tolerance.  This means they view upside-risk the same on down-side risk. Surprise jumps on 

the upside are treated the same as large moves on the downside. This creates some problems 

because most investors don’t care about their upside risk. That’s why returns, or expected returns 

are measured. Investors should pay more attention to their down-side risk. This makes the 

problem more complex because now risk must be measured asymmetrically. There are other 

differences that you may see throughout this section but the main one is how risk is measured.  

Rom and Ferguson (1994) published one of the first articles on PMPT. They explain 

some limitations of MPT, some of which Markowitz, Sharpe and others had actually identified. 

Markowitz suggests that a mean-variance approached may not be appropriate in all 

circumstances. He suggested a semivariance method would be preferred. However, modern 

portfolio theorists were constrained by the lack of computing power in their time. (Rom et al. 

1994) identifies a minimum acceptable return parameter (MAR). Each MAR (minimum accepted 

return) has its own unique efficient frontier. This is different from MPT where there is only one 

efficient frontier for an entire portfolio. The way that downside risk is measured in PMPT is split 

into two components. The first component is the downside probability which is the probability 

that the return does not meet or exceed the MAR (10% in this study). The second is the average 
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downside magnitude which measures the average shortfall below the MAR. In simpler terms, it 

measures the difference between the MAR and the average return when the return does not meet 

or exceed the MAR. Another limitation outlined by (Rom et al. 1994) was the assumption that 

returns follow a normal distribution. If the underlying asset does not follow the distribution 

assumed, it can create significant problems in estimation. In this study, instead of a two-

parameter normal or lognormal distribution, they use a four-parameter lognormal distribution 

adding skewness and kurtosis. They argue this distribution follows actual returns much closer 

than two parameter distributions. The study consists of five assets with 10 plus years of data to 

estimate efficient portfolios using MPT versus PMPT. They show the difference between the 

MV portfolio using a mean-variance framework and the MV portfolio using a 10% MAR 

approach. The MV portfolio using standard mean-variance is shown to be inefficient compared 

the MV portfolio using a downside risk measure. This difference between the two methods in 

largely due to skewness in the estimated returns distribution.  

Harlow (1991) was one of the first to optimize a portfolio using a semivariance measure 

of risk. There are numerus methods to measure downside risk in finance. These risk measures are 

referred to as lower partial moments (LPM). LPM, for an empirically discrete distribution, is 

measured by taking the probability that the return does not meet the target rate of return 

multiplied by the difference between target rate and the realized return raised to the nth power. 

LPM uses the expected values of the squared negative deviations relative to the target return. 

Hence n would be equal to two. Assuming a symmetric distribution of returns and a target rate of 

0%, this formulation is equal to the regular variance calculation. Another advantage of LPM is 

the relaxed assumptions including investor preferences and return distribution. However, 

skewness and risk aversion (via target return) are still assumed. 
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2.4.1. VaR  

The increased popularity of semivariance methods spawned a metric known as value-at-

risk (VaR) in the 90’s. VaR is defined as the worst loss over a target horizon that won’t be 

exceeded with a given level of confidence (Jorion, 1997) under normal market conditions. VaR 

became popular in the investment industry because firms could now put a number on their risk 

exposure. This number is relative and only should be compared to portfolios of similar value and 

asset allocation. For example, a weekly VaR of $100 million at 95% confidence indicates the 

firm should not lose more than $100 million in any one-week period 95% of the time. However, 

there are times when those losses do exceed the VaR limit. In these cases, another metric called 

conditional value-at-risk (CVaR) can be used. CVaR is defined as the average loss when losses 

do exceed the VaR limit. Notice the similarity between VaR measures and the GSV methods 

above. Another reason VaR became the risk metric of choice was its flexibility. Using a monte-

carlo simulation, one can define distribution parameters and correlation coefficients, they expect 

to see in the future, to compute their portfolio’s VaR. 

One of the first large scale applications of VaR was the development of RiskMetrics by 

JPMorgan. This software could use elements of portfolio theory to combine the risks of long, 

short, futures, options, and other derivative positions. This software was designed to output a 

firm wide risk measurement for the company and is still one of the primary risk measurement 

tools used by JPMorgan Chase today. 

Rockafellar and Uryasev (2000) provided a brief synopsis of VaR in the late during the 

turn of the millennium. They showed the sizable differences between optimizing VaR and 

CVaR. Following a study done by Mausser and Rosen (1999), they had bull butterfly spread 

positions in Mitsubishi and Komatsu. This spread can be accomplished by purchasing a call 



 

 21  

option, selling two calls at a slightly higher strike price, and buying another call at an even 

higher strike price. The trade is generally profitable when the positions exhibit low volatility 

over the relative holding periods. Their entire portfolio value was about 10 million JPY. 

Minimizing for VaR and CVaR using historical data to run a Monte Carlo simulation, values of 

205 K and -1.2 MM JPY respectively were computed. According to VaR, the portfolio is going 

to gain 205 thousand JPY or more 95% of the time. This is somewhat odd because the VaR is 

positive. The estimated CVaR for the same portfolio exhibits a much worse loss relative to 

regular VaR. This indicates the presence of a fat tail that must be present in the return 

distribution. At this time, VaR was a very popular measure of risk, but “it has undesirable 

mathematical characteristics like a lack of subadditivity and convexity. VaR is coherent only 

when it is based on the standard deviation of a normal distribution.” (Rockafellar and Uryasev 

2000).  Mckay and Keefer (1996) and Mausser and Rosen (1999) showed the problem explicitly. 

They tried to minimize VaR and their results showed multiple local minimums. For more on the 

axioms of a coherent measure of risk see (Artzner, Delbaen, Eber, and Heath; 1998) 

With a lone measure for volatility always comes an expected return aspect to incorporate 

into the optimization as previous studies have shown. Mean-VaR (EVaR) is just that. Campbell, 

Huisman, and Koedijk (2001) use a Sharpe ratio to maximize expected utility. By substituting 

VaR for variance, they optimize the Sharpe ratio of a portfolio consisting of a stock and bond 

index. Although, there is no mathematical connection between a mean-variance utility function 

and mean-VaR, they lead to the same optimal portfolio assuming a normal distribution of returns 

and a risk-free rate of zero.  

Alexander and Baptista (2002) analyzed the difference between using E-V and EVaR for 

asset allocation assuming a multivariate normal distribution of returns. They were the first to 
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optimize a portfolio based on VaR. They show the mean-VaR set is not mean-variance efficient 

as the EVaR set lies at a higher point on the efficient frontier than the mean-variance set. Only as 

the confidence level converges to 100% does the EVaR set equal the E-V set. If a portfolio 

manager elects to use VaR instead of variance, under the same assumptions, they should observe 

a larger standard deviation of returns. 

Zabolotskyy and Vitlinskyy (2013) analyzed implications of risk aversion on the EVaR 

model. They find the risk aversion parameter (ρ) has a deeper effect on the model than just how 

VaR is weighted (recall the standard E-V objective function above). A measure of less than one 

is found to be inappropriate.  While a measure of four significantly decreases the expected return 

and almost converge to the MV portfolio. Another finding is the affect ρ has on the portfolio’s 

density function. As ρ decreases from four to one, the probability density function becomes very 

positively skewed with a fat right tail. Hence, a low ρ is not appropriate because of the steep 

increase in portfolio risk. 

2.4.2. Copulas 

When two univariate normal distributions (marginal distributions) are correlated, they 

can form one multivariate normal distribution (joint distribution). A copula is a type of 

multivariate distribution. Skylar’s theorem states “any possible joint distribution can be written 

as a combination of the known marginal distributions as an object called a copula.” Copulas have 

been heavily used in in the financial and risk management industry for over a decade. There are 

three main types of copulas. Archimedean copulas define can define different dependency 

structure from the left side of the distribution to the right. They are simple in that they only 

require one parameter. However, they can only model positively correlated assets. The 

distribution must be reflected across the x or y axes to model negatively correlated assets. 
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Elliptical copulas are similar to a normal distribution. Actually, a Gaussian copula is 

approximately the same as Pearson correlation. A student t’s copula is similar but has fatter tails. 

The last type of copula is an empirical copula. This copula is derived from the exact underlying 

data. To use an empirical copula effectively, one must have an ample amount of data points and 

have a compelling case the data will follow a similar pattern in the future. In general, copulas 

offer more flexibility when defining the relationships between two univariate distributions.   

One of the first papers to use copulas in a portfolio based approach was by David X. Li 

(2000) while working for the RiskMetrics division at JPMorgan. The infamous paper is known, 

among other names, as the paper that destroyed Wall Street. He uses a statistical survival 

technique that is usually used for survival analysis on human beings. He took that framework and 

applied it to credit defaults. For example, instead of measuring the probability that a husband and 

wife would survive for n years, he obtained “time-until-default” probabilities and used a copula 

function to derive a joint distribution of default probability between two securities. This paper 

also showed valuation examples of CDS (credit default swaps) using copula functions. CDS are 

widely blamed for their role in the 2008 recession.  

Ozun and Cifter (2007) used copulas to derive the VaR of a two asset, emerging markets 

portfolio and compared it to an EWMA model (exponential weighted moving average). They 

pointed out that with increased variability in returns, the lesser appropriate normality becomes as 

an assumption. In practice, the assumption of normality is almost never appropriate. The 

appropriate model should decipher between marginality and dependencies among the assets held, 

while also capturing non-linear returns and extreme values. They found that the copula model 

was a better estimator of VaR with the least number of violations between 2001 and 2007. 
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Boubaker and Sghaier (2013) studied the difference between estimation models using 

standard mean-variance, mean-variance-copula, mean-CVaR, and mean-CVaR-copula. They use 

two portfolios. One consisting of US and French stock market indices, and the other with the US 

Dollar / Euro and Yen / Euro (USD/EUR and JPY/EUR) to conduct the study. They found that 

the optimal mean-CVaR portfolio has a lower risk than the optimal mean-CVaR-copula. In other 

words, a copula based approach may be able to capture more risk inherent in the underlying data. 

They used a Gumbel copula based on the AIC (Akaike information criterion) and BIC (Bayesian 

information criterion) scores of the raw data. Gumbel assumes more up-side dependence while 

Clayton assumes more down-side dependence. Both are in the Archimedean family of copulas. 

This is interesting because risk managers should be more wary of the inherent down-side 

dependence than up-side. Put another way, the stock market tends to become highly correlated in 

bear markets.  

2.4.3. Recent Financial Portfolio Approaches 

Since the early years of MPT, risk models have branched off in many different directions. 

A couple branches include risk parity and maximum diversification. Risk parity portfolios are 

constructed so each asset contributes the same amount of total risk to the portfolio. Maximum 

diversification hopefully defines itself as portfolio managers using this strategy attempt to 

diversify away all their systematic risk. Clarke, Silva, and Thorley (2011) provide one of the 

most robust asset allocation studies done to this date. They measured risk and return of a 

minimum-variance, risk parity, and maximum diversification stock portfolio from 1968 – 2012. 

They used 1,000 assets in their model and found that the risk parity portfolio outperformed both 

the other portfolios as well as an equally weighted and market value weighted portfolio. The risk 

parity portfolio averaged a 6.2% annualized return which was the same as the S&P 500 over that 
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time frame. It also displayed less risk than the maximum diversification portfolio as measured by 

standard deviation of returns.  

2.5. Post-Modern Portfolio Model of Hedging in Agribusiness 

Manfredo and Leuthold (2001) used VaR to analyze the cattle feeding margin using a 

portfolio of assets. Those assets being: live cattle, feeder cattle, and corn. The two inputs are 

feeder cattle and corn, while the output is live cattle. The margin is the output minus the inputs. 

One shortcoming of their VaR model is the assumption of normality. Unlike previous studies 

discussed in this chapter, they use a parametric process using the standard deviation of the entire 

distribution to determine VaR of the portfolio. Using various VaR estimation methods within the 

criteria above and comparing actual violations against forecasted values, they determine the best 

model was RiskMetrics which used an exponentially weighted average to forecast volatilities and 

correlations. 

Following the same idea, the methodology has since been applied to numerous 

agribusiness portfolios. The soybean crush margin, crack spread, corn milling, and flour milling 

have all been used as “portfolios” to measure price risk in agribusiness. Chen, Wilson, Larsen, 

and Dahl (2015) applied it to flour milling. They analyzed different long/short scenarios in the 

cash and futures wheat market as well as mill feeds to determine optimal hedge ratios. The main 

findings were longer term hedges should be accompanied by higher hedge ratios. Also, 

conventional techniques for determining VaR may overstate risk relative to copula models.  

Chen, Wilson, Larsen, and Dahl (2016) optimized a portfolio of agriculture assets that 

included farmland, futures contracts, and agriculture related equities. Out of 37 assets, there was 

only four where the returns were best represented by a normal distribution according to a best fit 

AIC score using @Risk. Most other asset returns were best represented by a Logistic or Laplace 
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distribution which are both characterized by excessive kurtosis and symmetry. Even those 

assumptions are stretching the limits because inherent negative skewness in stock prices is still 

not accounted for. The model used a Mean-VaR-copula framework with and without allocation 

restrictions. Their main finding was that farmland offers and exceptional rate of return while 

showing minimal amounts of risk. 

Kimura (2016) used the portfolio of hedging model to solve a different problem; default 

risk. He identified a problem where producers would sell forward to buyers but if prices fell in 

the interim, sometimes those buyers would “default,” or not fulfill the obligations of the contract. 

Prices would be lower now than they were when the buyers entered in to the forward contract. 

Defaulting would allow them to buy grain at lower prices. This is a huge problem because now 

the producers are forced to sell their grain at lower prices than before or store it. He incorporated 

a put option in the strategy for producers to hedge this risk. The producer would buy put options 

while simultaneously selling forward to hedge some of this default risk. That way, if a default 

did occur, the producer could still gain some lost profits from the put options. 

2.6. Hedging Vehicles 

Hedging in an important financial management tool used by agribusiness firms to 

mitigate risk. Hedging is defined as the use of securities or derivatives that are negatively 

correlated with current long or short positions to offset the returns of that position. For an 

agribusiness firm, they would want to hedge their position in the cash market. There are many 

different vehicles in which a grain buyer can use to hedge. Futures, forwards, and basis contracts 

are the most common. Other vehicles include options, spreads on options, swaps, ETFs 

(exchange trades funds), etc. The focus for this study is on futures, basis, and different 

combinations of options. 
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2.6.1. Futures and Forwards 

Futures markets can be traced all the way back to the 1700’s in Japan where the first 

futures market for rice existed. Earlier markets can be traced back to ancient times. Modern day 

futures on more prevalent agriculture commodities were not introduced until the 1970’s by the 

CME. Although the CBOT opened in 1848, it was more than a century later when futures 

markets became widely used.  

The CME and CBOT (now one exchange after a merger in 2007) are exchanges where 

futures’ contracts are traded in a similar manner to stocks traded on the NYSE and the 

NASDAQ. They are standardized contracts where either the underlying asset is deliverable or 

can be settled in cash after the final trading day of the contract. Although most contracts are cash 

settled today. There are hundreds of different futures contracts traded in almost every market 

imaginable today. Crops, precious metals, currencies and stock indices all have a futures market. 

Similar to futures are forward contracts. 

 Forwards are similar but have a few main differences. First, forwards are not 

standardized. Regarding commodities; quantity, quality, time of delivery, and a handful of other 

items can all be agreed upon between the buyer and the seller. For example, if you make an 

agreement to sell stock to a friend at a certain date and price and they agree to buy it, you’ve just 

entered into a forward contract. Another difference is the futures market is run through a 

clearinghouse and requires a margin on both sides of the contract. Margin is a form of financial 

security for the counterparty as well as the exchange itself. When a contract is bought or sold, the 

holder puts down an initial margin as security for the exchange if an unfavorable price 

movement occurs. Typically, the initial margin requirement for soybean futures is around 3%. 

However, it changes based on current volatility and the contract end date. Farther out contracts 
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require less margin than contracts expiring within six months. If the price movement is 

substantial enough, the margin account may fall below the maintenance margin threshold in 

which the holder has to add to their margin account or risk the position being closed. This, plus 

the guarantee from the clearinghouse, ensures that there is no risk of default from the other party 

involved. If for some reason the counterparty does default, the clearinghouse guarantees any 

payments owed.  

On the other hand, forward contracts can be at risk of default. They also do not require 

any margin. Hedgers in the forward market have an incentive to default if the price of the 

underlying moves in an unfavorable direction. This is the reason more hedgers use the futures 

market instead of forward contracts. Previously, forward contracts were more prevalent but 

recently all buyers who have access to the futures market use the exchange instead. The hedgers 

refer to are buyers of grain. Be careful not to confuse these hedgers with producers.  

2.6.2. Basis Contracts 

Basis contracts are totally independent from futures or forward contracts. Basis is defined 

as the difference between the futures price of the current contract and the local cash price. It is 

different in each location and based on transportation, storage, and other local cost variables. 

There’s two reasons why buyers use basis contracts.  

First, is to offset a sale from a producer. Buyers can lock in a basis price with the end 

user (i.e. PNW, GULF, or a food processing plant).  In this situation, that buyer has zero basis 

risk. Second is to lock in an attractive basis. Basis tends to be seasonal in nature. It tends to be 

high right before the North American harvest season (late summer and early fall). Once harvest 

is in full swing, the basis tends to retreat to lower levels. However, other factors can overpower 

this pattern in any given year. Lastly, they can be used to secure future inventory from producers. 
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PNW (Pacific Northwest) and GULF are the two “cash export markets” available in the US. 

PNW is the cash price for export in Portland, OR while GULF is the cash price for export in 

New Orleans. Whether the basis moves up or down, the buyer can eliminate price risk related to 

the basis.  

2.6.3. Hedged-to-Arrive Contracts 

HTA contracts (hedged-to-arrive) are another tool buyers can use to alleviate some price 

risk. An HTA contract is essentially a forward contract without the basis included. Like regular 

forward contracts, they are not used today as much as they used to be. Just as in forward, futures, 

and basis contracts, a buyer can be short or long an HTA contract. If the futures and export basis 

price is high, the buyer may want to lock in their selling price with the end user. When they buy 

the grain from producers, low priced futures and low, local basis would be optimal.  

HTA contracts are not used much, if at all, between a buyer and an end user, but are still 

used between buyers and producers. This is because producers are handling less grain than 

buyers would, and it may be cost effective to use the futures market. 

2.6.4. Spreads 

Spread contracts can also be used by agribusiness firms. However, their use as a risk 

mitigation tool is limited. Spread contracts are very liquid instruments in the highly-traded 

commodity futures. However, most if not all this trading is from speculators. General spreads 

mean much more to a buyer than spread contracts.  A grain buyer should look at spreads and the 

cost of carry. If a buyer can store grain for cheaper than the calendar spread in futures, they can 

buy in the cash market and store it. As long as the carry is more than their storage cost, the buyer 

can make a risk-free profit (arbitrage). 
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Inter-calendar and inter-market spreads are other highly liquid contracts. The first is just 

the spread between contract months for the same commodity. The latter is the spread between 

different exchanges for the same commodity and contract month.  

Inter-commodity spreads are the difference in prices between two commodities in the 

same (or close to the same) contract month. For example, the Nov – Dec spread for soybeans and 

corn is often one of the main indicators of how much of each commodity is expected to be 

planted in the next crop year. There are many other spreads a buyer can analyze. However, in my 

view, the use of these contracts is better classified as speculation versus hedging. 

2.6.5. Options  

Options are a more complicated tool used to mitigate risk. Options are popular because 

they offer more flexibility when hedging. An option is a contract that gives the buyer the right to 

buy or sell the underlying asset at a pre-determined price known as the strike price. The seller is 

then obligated to the sell the underlying at the strike price if exercised by the buyer. Buying an 

option is equivalent to holding a “long” position while the seller holds a “short” position. A call 

option gives the buyer the right to buy the underlying asset while a put option gives the buyer the 

right to sell it at the strike price. A grain buyer can buy a call option at a specified strike price 

that accomplishes relatively the same goal as a long futures or forward position would. The 

difference is the buyer sets a limit, at the strike price, on their downside risk for a premium 

(option price) while leaving unlimited upside potential.  

Just as in the futures market, one must contribute capital to a margin account when 

buying and selling options. If the position moves against the holder, that margin can erode much 

quicker holding options instead of futures contracts. Margins can be much higher or lower for 

options accounts versus futures depending on the type of trading. If naked options are bought and 
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sold, the margin is higher than it is for futures. However, if a collar strategy is used, where there 

is protection on the upside and downside from a substantial price movement in the underlying, 

the initial margin is much less. The required margin varies drastically based on each individual’s 

account holdings. For example, the margins for the CME is determined by a VaR simulation 

model called SPAM (Standard Portfolio Analysis of Risk). The model uses 16 different “risk” 

scenarios to access the risk of an individual portfolio. It outputs an appropriate initial margin for 

the individual based on their option positions. 

In the late 1950’s and 60’s, academics scrambled to find a sound formula to price 

options. They had come up with all kinds of variables that were frankly immeasurable. It wasn’t 

until the early 70’s that a sound formula to derive the value of an options was published (Black 

and Scholes, 1973). The price of options on commodities are usually determined using the 

Black-76 model (Black, 1976). The Black model is very similar to the more well-known Black 

Scholes option pricing model (Black and Scholes, 1973). There are only two differences between 

the two models. The Black model does not include a dividend like the Black-Scholes model 

does. Second, the Black model uses forward prices instead of spot prices. This is because spot 

prices have been known to follow seasonal patterns and therefore are non-random making the 

use forward prices more appropriate.  

Recall from above that basis tends to be seasonal which feeds directly into spot prices. 

This is a problem because both models assume a normal distribution of returns (price changes). 

One other obvious area of seasonality in spot prices exists in the natural gas market. Typically, 

natural gas spot prices are higher in the winter than in the summer. However, forward prices in 

the same market may not show signs of seasonality because the expectations of spot price 
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seasonality should be priced into the market. In general, one is assuming forward prices are 

random. Thus, the Black model is appropriate.  

Besides the price of the underlying, the other factors that affect the price of an option are 

volatility and time to expiration. Volatility can be measured in two ways. First, by the variance 

or standard deviation of past returns. Second, by using implied volatility (IV). IV can be 

calculated using the Black model by inserting the current option premium into the model and 

solving for volatility (sigma σ). Volatility and option prices have a positive relationship 

regardless if the option is a put or a call. This relationship is measured by “Vega” in option 

pricing. It measures the change in the option price given 1% change in volatility.  

Time to expiration is measured by the days until the options expires. Time is important 

because options exponentially decline in value as time to expiration decreases. This is known 

time decay as is measured by Theta. Theta is the amount of premium an option loses each day 

moving forward. Theta has a negative relationship with the price of options. This is considered a 

disadvantage for the holder of an option but an advantage for the seller. 

 Where options offer flexibility is when you pair them with other types of contracts or 

other options. Today there are plenty of well-known option trading strategies. Straddle, strangle, 

collar, protective put, iron condor and a butterfly spread are just a few. For example, if a grain 

buyer wants to protect himself from downside risk but still wants upside potential, he can employ 

a simple protective call strategy. They are already short in the cash market because they expect 

to buy grain from a producer or another grain distributor. To employ a protective call strategy, 

the buyer would only have to buy OTM call options (out of the money). They are now short cash 

and own an option to buy futures. However, this is not a perfect hedging strategy because, as 

stated above, futures and spot prices are not perfectly correlated. The hedge is less effective than 
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a short futures and long call option position but in general accomplishes the same goal. This is 

from a buyer’s perspective, so the strategy would be opposite for a producer. This strategy 

protects them from losing money after the price moves above the strike price but allows them to 

benefit from a downside move in prices as well.  

2.6.6. Option Spreads 

Options spreads are more complex. The more options that kept in a portfolio, the more 

complicated it becomes to track one’s exposure. The greeks (delta, gamma, vega, and theta) are 

key to identifying where risk exposure lies in a portfolio of options. A brief outline of popular 

strategies common for speculators is presented below. This section is meant give the reader a 

brief outline of how options and option spreads are priced and how they behave. Lastly, a case 

for the potential use by hedgers is described. 

One of the more popular strategies is the bull call spread. This is known as a vertical 

spread. A vertical spread is a put or call spread where the option contracts are traded with the 

same expiration date but different strike prices. Specifically, a bull call spread entails buying an 

ITM or ATM call option and selling an OTM one. The benefits of a bull spread include giving 

the user the upside potential with limited loss. Because you are buying and selling call options, 

the premium from the sold option helps pay for the premium of the call. However, the price you 

pay for these benefits comes with a cap on profit as well. This strategy is good when the buyer 

has future price expectations and doesn’t want to deal with Vega or Theta risk. A bull call spread 

payoff function is illustrated below on the left. As you can see, the strike prices are set at $920 

and $1120 in this example. The orange line considers just the payoff for the options. This can be 

looked at as a speculative payoff. The blue line considers the same position along with a short 

cash position. It can be viewed as the hedger’s payoff. 
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Figure 2.2: Bull Call Spread Payoff Function 
 

One could also double the position on the spread to obtain a payoff function that doesn’t 

exhibit as much downside risk as prices move against the buyer. 

 

Figure 2.3: 2x Bull Call Spread Payoff Function 
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Assuming the same volatility for both options, the graphs are an accurate representation 

of total profit. Other similar spreads include a bear call spread as well as bull and bear put 

spreads.  

Another strategy, similar to a vertical spread, is a horizontal spread (or calendar spread). 

A calendar spread entails buying and selling an option with the same strike price at different 

dates of expiration. One could buy the option further from expiration and sell the closer to 

expiration one. This is a “positive theta trade” as the holder makes money as time goes because 

shorter maturity options decay faster than longer maturity options. Decay refers to the value that 

is lost each day from holding an option or gained from selling one. However, a price and 

volatility swing in the underlying asset could also go against the holder. Even though this seems 

similar to the bull spread, the calendar spread exhibits a much different payoff function which is 

shown below. It actually is the same payoff function as a no hedge scenario with a little premium 

gained through the options strategy. If this same graph was shown two months after the hedge 

was placed, the end of the orange line would start to rise which would feed into the blue line as 

well. Assuming volatility stays constant, a “theta premium” would be collected.               

 

Figure 2.4: Long Calendar Spread 
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All three graphs above are static. Slight changes in strike prices, duration, and volatility 

can change these payoff functions quite drastically. To reiterate, the more options that are 

included in a portfolio, the more complex the payoff function becomes. Managing the “greeks” 

becomes an essential part of managing a portfolio of options. 

Today, option spreads are mostly traded by speculators. For some of the large buyers, 

liquidity may be an issue. “Diversifying” their option holdings should solve any liquidity issues 

for large volume buyers. There use for a buyer without any future price expectations could be 

limited. There may be seasonal cases around the new crop (August – November) where option 

prices are less correlated and a diversified hedging strategy becomes optimal. In general, if 

options prices become less correlated to each other, there may be instances where it makes sense 

do some spreading from a risk mitigation stand point. 

2.7. Conclusion    

 Markowitz (1952, 1959) is arguably still considered the most important advancement in 

financial research. The underlying theory has further been refined and advanced with the help of 

computing power not available in the 1950’s, 60’s, or 70’s. Using LPM, a portfolio manager 

could now focus on purely the downside risk of a portfolio. This was another breakthrough 

because from a risk perspective as investors typically do not care about the “upside risk.” In the 

mid 90’s, JPMorgan developed the most comprehensive enterprise risk management (ERM) 

software available at that time. It was able to compute the risk of a portfolio that included 

everything from stocks and bonds to complex derivatives with non-linear payoffs. The software 

used VaR and CVaR as the “risk metrics.” 

Copulas are able to define a joint distribution between any two marginal distributions 

according to Skylar’s theorem. They are more flexible as they can control for different 
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magnitudes of correlation between the high and low side of the joint distribution. More recent 

optimization approaches have incorporated EVaR, Mean-CVaR, and copulas into one objective 

function. Other approaches include risk parity which spreads an equal amount of risk to each 

position. 

Many these concepts have been used in agriculture scenarios thus far. The futures and 

options markets’ in agriculture provide an opportunity for agribusinesses to treat their positions 

as a portfolio. Thus, the portfolio model of hedging is an appropriate method to measure risk 

exposure in this industry. 

 Futures markets have been around for a few centuries but were not open and utilized in 

the US until the latter part of the 20th century. The options market and other derivative markets 

have followed suit and their use has expanded rapidly; most notably leading up to the financial 

crisis of 2008. The options market has created the opportunity for money managers to create an 

unlimited amount of payoff functions that can be used to make excess returns in the right market 

scenarios. These options are also available for agribusinesses but instead of finding complex 

ways to make excess returns, these markets can provide complex portfolio alternatives to 

increase returns and reduce risk relative to just using the futures market. 
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CHAPTER 3. THEORETICAL MODEL 

3.1. Introduction 

A plethora of hedging frameworks were reviewed in Chapter 2. VaR, Copulas, and an 

introduction to hedging vehicles also were presented. Buyers can use these concepts to derive an 

optimal hedge ratio for their operation. This chapter uses the concepts reviewed in chapter 2 and 

applies them to a portfolio that includes futures, basis and option contracts. Futures generally 

don’t follow a normal or lognormal distribution while options are extremely hard to model 

because of their inherent leverage and volatility. A framework is laid out to overcome these 

challenges while capturing performance metrics of the portfolio. The section is organized as 

follows: first a progression of objective functions are shown; next some assumptions and 

problems are laid out; after that the Black-76 pricing model is shown analytically; and finally the 

greeks are outlined and explained in more detail. 

3.2. Risk and Return 

Grain companies offer an excellent example for a portfolio model of hedging framework 

to be applied. Some have short or long positions in the futures market along with other derivative 

positions. The more positions that are held, especially in options or other derivatives, the more 

attention must be paid to control different characteristics of the portfolio. Markowitiz (1952, 

1959), Johnson (1960), Ederington (1979), Brown (1985), and Myers and Thompson (1989) used 

the variance of a portfolio framework to derive MV hedges for a multitude of different assets. 

Blanc (1991) furthered their work by incorporating a speculative element using the E-V 

framework. Finally, Alexander and Baptista (2002) substituted VaR for variance to create the E-

VaR framework.  
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The return of a hedge is fairly straightforward while risk can be subjective. There are 

many ways to measure risk as outlined above and in chapter 2. The use of expected return and 

variance is one of many ways a portfolio can be optimized: 
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Where Er(R) is the expected return of the portfolio, w is the weight of the position 

relative to the portfolio, and r is the return of asset i over time period n. σ2 is the variance of asset 

i, σ is the standard deviation, and ρ is the correlation coefficient between asset i and j. the double 

sum part of equation (3.2) represents the covariance multiplied by the weights of each position. 

Hence, assuming positively weighted assets and negative correlation, the variance is reduced. If 

it’s assumed that two assets have a zero correlation, the right side of that equation should be 

equal to zero as well. Assuming the two assets are futures and basis prices where there is zero 

correlation between them and the portfolio is perfectly hedged, the variance of the portfolio is 

equal to the basis multiplied by the cash position: 

��� = ��� ∗ 	                                                                  (3.3) 

3.3. Specification of Objective Functions 

The ratio of futures to cash positions is usually one to one in practice. However, it’s been 

shown that a hedge ratio of one may not be optimal is most cases. Johnson (1960) derived the 

risk minimizing hedge ratio: 
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Where HR* is the optimal hedge ratio, cov is the covariance of price changes between 

spot and futures, and σ is the standard deviation of the price changes. The MV hedge ratio 

depends largely on the covariance between spot and futures. The higher the covariance is, the 

more effective the hedge when short (long) cash and long (short) futures positions are held. 

However, minimizing risk is not the main objective of all grain buyers. When designing an 

optimal hedge, the return on that hedge should be taken into consideration. An approach taken by 

Blank (1991) does this by maximizing the quadratic utility function from the E-V framework: 

�(�) = �(�) − �
2 ∗ ���                                                     (3.5) 

Where U(R) is the utility of the hedger, E(R) is the expected return of the hedge, ϕ (phi) 

is the quadratic risk aversion parameter, and σ2
p is the variance of the portfolio’s return. The 

expected return and variance are taken from equations (3.1) and (3.2) respectively. This function 

adds risk preferences to the equation. Phi is also known as the risk aversion coefficient. A 

positive number indicates the hedger is risk averse and a negative indicates they are risk loving. 

If phi is positive it makes the right side of the quadratic utility function negative overall, 

subtracting from overall utility. The opposite is true if phi is negative.  

The Allias paradox, designed by Maurice Allais (1953) is worth defining when risk 

preferences are brought into an objective function. The paradox shows the difference is 

preferences between expected value and a sure bet. For example, if a college student has 100% 

chance to win $500 or an 89% chance to win $500, 10% chance of winning $2500, and a 1% of 

winning nothing, what option do they pick? Most would take the “sure bet” of $500 even though 

the expected value of the other option is higher at $695. They wouldn’t want to take the small 

chance of winning nothing. Relating this to the problem, hedgers typically fear downside risk 

more than the “joy” of upside risk. Risk usually isn’t expressed when prices move in your favor. 
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The variance measures the deviations from the mean across the entire return distribution. This is 

why semi-variance methods are used. In a basic sense, the risk aversion parameter helps separate 

the individuals who would pick choice one versus those who would pick two. 

Going further, another problem arises in the E-V framework. The E-V framework 

accounts for risk across the entire distribution of price changes. Hedgers generally don’t care 

about the “up-side risk” of a portfolio. The want to know how much they can lose. The downside 

variance or semivariance frameworks, outlined in Chapter 2, were used because of this.  

Wolf (1987) explored the use of options along with futures in a hedging problem that 

aimed to maximize utility using the E-V framework. He also included basis risk and quantity risk 

in his formulation. Quantity risk is the risk that a producer is over or under hedged because the 

yield on his crop at harvest time is still uncertain. This problem isn’t as pertinent to a buyer and 

is not explored further.  

A simulation was conducted using futures, a call and put option, and a risk-free asset. The 

probability distributions were assumed to be multivariate normal while a static volatility was 

used to price the options using Black’s ’76 model. The beta for the options was also computed. 

 ! = ���(�,"#)
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                                                                  (3.6) 

Where Bc is the beta of the call option, and dc is the call option at date two. The same 

form can be used to find the beta of the put option. If beta is used to measure an option, it’s 

always greater than one for a long call position and less than -1 for a long put position. The 

optimal call position without basis risk was then: 
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Where Ni
c is the number of call options purchased (sold), E is the expected value, r is the 

risk-free interest rate, λ is the risk aversion coefficient, q is the quantity of the cash position, and 

β is the beta of the option relative to the underlying futures. The same equation can be used to 

find the optimal value of put options.  

Bullock and Hayes (1992) followed up Wolf (1987) with a similar approach. They 

modified the problem by endogenizing the variance-covariance matrix of portfolio returns. In the 

previous works, it was arbitrarily specified. They also used a constant absolute risk aversion 

(CARA) instead of a hyperbolic (HARA) utility function. The difference being that the 

individual has constant risk aversion across all levels of wealth with CARA. In a HARA utility 

function, the individual is less risk averse and the wealth function increases. They also only used 

a single put option in their problem citing a synthetic call option could be achieved holding short 

futures position and being short a put option. Generally, they found that investors (producers) 

should use futures to hedge their underlying position. They can then use options to speculate on 

future movements of the price and volatility.  

3.3.1. VaR and CVaR 

VaR was introduced to the world of risk as an easily interpretable number on their risky 

positions. This made it widely popular in the financial industry and other related fields. 

However, minimizing VaR brings about on a couple problems mentioned by Rockafellar and 

Uryasev (2000). They point out that VaR lacks subadditivity and convexity, two of the four 

characteristics of a coherent measure of risk described by Artzner et al. (1998). For a risk 

measure to display subadditivity, the risk of a two-asset portfolio can’t be greater than the risk of 

each individual position added together. This scenario can happen when VaR is used as the risk 

measure. Using variance as measure of risk, two assets can never be more risky than each held 
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by themselves. In order for that scenario to be possible, the correlation coefficient between the 

assets would have to be greater than 1 or less than -1. This scenario if obviously impossible. This 

can be seen in equation (3.2). VaR is also a poor approximation of risk when assets exhibit any 

kind of “jump” process. This is the case because VaR isn’t a coherent measure of risk when a 

function is discrete and also the jump could fall outside of the relevant confidence interval. VaR 

is only a coherent measure of risk when the underlying distributions exhibit normality.  

Following Alexander, Coleman, Li (2006), CVaR can be used instead. The standard 

method for solving CVaR optimization problems is a linear programing (LP) formulation. By 

using Monte Carlo simulation, a piecewise linear function is used to formulate a continuously 

differentiable CVaR function. The problem can then be solved using LP software. One problem 

that CVaR can’t solve is the errors inherent for large-scale problems. CVaR is a coherent 

measure of risk as shown by Pflug, (2000). “In addition, minimizing CVaR typically leads to a 

portfolio with a small VaR” (Alexander et al, 2006) Using linear programming (LP) methods, 

CVaR can be minimized with the use of a standard LP software. The approach is outlined in 

Rockafellar and Uryasec (2000) and again in Alexander et al. (2006). CVaR is defined as 

follows: 

*+,� = ( 1
1 − *) . /(0)%0                                                    (3.8)
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Where C is the critical value (i.e. 90%, 95%, 99%), VaR is the limit set by the hedger, and 

p(x)dx is the probability density function of the cost distribution.  

Minimizing CVaR exhibits attractive characteristics but does not account for the mean 

return on the hedge. Alexander and Baptista (2002) substituted VaR for variance in equation 

(3.2) and maximized utility. If the underlying distributions exhibit normality than the minimum 
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CVaR portfolio is the same as the MV portfolio. Theoretically there is no connection between 

variance and VaR but the two have been used interchangeable in the literature starting with 

Huisman, and Koedijk (2001). The issue with VaR is the return distribution can exhibit fat left 

tails that may not be captured in the 95% or even the 99% confidence intervals. For a portfolio of 

options, that extreme left tail can be very important. Therefore, CVaR is substituted for VaR in 

the E-VaR framework. Maximizing the following utility function displays a utility measure 

based on downside risk and the extreme tail risk in a portfolio of options. 

(�) = �(�) − �
2 ∗ *+,�                                                          (3.9) 

The E-CVaR framework is better designed to measure utility of a portfolio when derivatives are 

present versus E-VaR.  

3.4. Understanding a Hedging Optimization Model 

Assume that a stochastic model for changes in the underlying futures contract is given. 

Also assume that option prices can be retrieved, or another pricing mechanism is used such as 

Black-Scholes or Delta-Gamma approximation. It’s also important that the futures contracts are 

indeed the underlying for the second, fourth, or nth deferred option contract. The futures curve 

can be flat, contango or in backwardation which can significantly skew the data if the active 

contract is the only contract used. The same goes if only a further deferred contract is used. It’s 

important to model each underlying for which an option is present. 

The CVaR optimization problem is a convex, nonlinear function. If the function is 

continuous, it is also continuously differentiable. This standard optimization framework was 

applied by Alexander et al. (2006) to a portfolio of derivatives. They used delta-gamma 

approximations to derive option prices. A pricing model was used because using price changes 

for options is impractical. The option value can increase by more than 1000% or decrease 100% 
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by the time it expires. Some kind of price approximation is necessary to achieve a practical 

problem that can be solved. It depends what kind of data is available to best price the options. 

Black-Scholes is the best pricing mechanism if all the uncertain variables are known. Delta-

gamma approximations can be very close to Black-Scholes for short time periods if volatility 

data is not available. Delta approximation is the least accurate because it becomes a linear 

function. Options are not linear in nature. 

One type of problem that CVaR has a tough time solving are large-scale problems. The 

optimization software is able to optimize for a given statistic of an objective function listed 

above. For example, the mean, variance, or skewness can be maximized, minimized, or set to a 

certain value. The mean of the E-V or E-CVaR framework can also be maximized to find an 

optimal allocation. When more and more alternatives are included in the optimization, there is a 

greater chance the optimization software finds a local maximum (minimum) instead of a global 

maximum (minimum). It’s recommended to keep the problem at an appropriate size so not to run 

into multiple solutions for same problem. 

The return of the portfolio can be approximated using equation (3.12). By approximating 

a quantity that must be hedged, the positions can be weighted using the number of contracts 

needed to hedge. Linear constraints that limit the hedged amount to the actual quantity can be 

enforced but is not essential. Most agriculture assets use 5,000 bushel contracts for both futures 

and options. The weights can then be computed by dividing the number of hedged bushels for 

that futures or option position by the entire quantity of bushels both hedged and unhedged. For 

example, a strangle options strategy can be used for high volatility environments where the price 

of the underlying is likely to move substantially over the life of the hedge. Buying calls equal to 
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100% of the short cash position while also buying puts in the same quantity results in a portfolio 

with 33.3% cash, 33.3% percent call options, and 33.3% puts. 

3.5. Black-76 Option Pricing Model 

After the Black-Scholes option pricing model was developed in 1973, other variations 

were developed in the years to come. The use of the option pricing model for commodities, 

developed by Fischer Black, is essential to this model (Black, 1976). In this section the model is 

outlined in detail. The price of a call and put option is theoretically shown below. 

  C = e489:  ;F= > (d5)– X> (d�)B                                                     (3.10) 

C = D4EF:  ;G> (−%�)– H=> (−%5)B                                              (3.11) 

Where C and P are the price of the call and put respectively, r is the risk-free interest rate, 

t is a stochastic term that represents the time to expiration is years, F is a stochastic term that 

represents the current futures price, X is the current strike price, and Փ is the standard normal 

cumulative distribution function. Nielsen (1992) explains and interprets the d1 and d2 values. 

The price of call is a function of the discounted current forward price multiplied by a probability 

factor (d1) – the discounted exercise price multiplied by another probability factor (d2). 
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Where ln is the natural logarithm, and σ is a stochastic term that represents implied volatility. 

“Briefly stated, N(d2) is the risk-adjusted probability that the option will be exercised” (Nielsen, 

1992). N(d1) is much more complicated. The risk-adjusted, expected value of taking delivery of 

grain, if the option expires in-the-money, is N(d1) multiplied by the forward price discounted at 
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the risk-free rate. Essentially it represents the portion of the present value of taking delivery that 

exceeds the discounted forward price. 

3.5.1. Put-Call Parity 

Just before the Black-Scholes model was published, Stoll (1969) was the first to show the 

relationship between put and call options known as put-call parity. The discounted price of the 

call plus the strike should theoretically be equal to the underlying plus the price of the put option: 

* + G
(1 + �)F = H + C                                                           (3.14) 

By rearranging the above equation and solving for X, the strike prices for each option can be 

extracted: 

G = (H + C − *) ∗ (1 + �)F                                                   (3.15) 

3.6. Variable Relationships 

One of the main questions that has to be answered in a portfolio model is how to treat the 

relationships between variables. In a problem where it is not clear how variables relate to each 

other, it’s acceptable to treat them as independent. When researching commodities or any 

publicly traded asset, an argument can usually be made on both sides to control relationships 

between variables or keep them independent. For example, in the stock market some researches 

define stocks as having two sources of risk; systematic and non-systematic. Systematic risk is the 

general risk in the market. Non-systematic risk is the idiosyncratic risk only relative to that 

individual company. These two categories of risk are well established terms because there is a 

positive correlation inherent in the stock market. Those correlations can vary based on size of the 

company and industry but generally stocks are positively correlated to each other over the long 

term. 
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Commodity prices are also correlated to each other. There are periods of time when 

supply and demand can be out of balance and prices in one commodity may jump or dive while 

the others don’t move. However, over the long term the larger volume commodity prices are 

highly correlated. Below is a monthly price chart of corn, soybean, and wheat. All correlations 

are above .85 during this time period. In a model where prices are stochastic, these relationships 

have a high degree of influence on the results. 

 

Figure 3.1: Crop Prices 
Note: Corn, Soybean, and Wheat prices 2011 - 2017 

Futures and a multitude of options also have positive relationships that should hold over 

the long term. Calls are positively correlated with a long futures position while puts are 

negatively correlated. Comparing the individual options to each other, call options should be 

positively correlated with other calls with the same underlying. The same goes for put options. 

The difference between the time to expiration between options would also affect their 

correlation. Generally, contracts close together exhibit higher correlation than further apart 

contracts. Similar parallels can be drawn between ITM, ATM, and OTM options. The options for 
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the same expiration should still be positively correlated but less so than the same moneyless 

options where the expiration dates are close. The reason being that the value of ITM options is 

more reliant on the intrinsic value versus extrinsic. Intrinsic value of an options is the portion of 

the option’s value that is made up from the degree it’s ITM. Extrinsic value is portion of the 

option’s value that’s derived from the time and volatility. On the other hand, OTM options 

derive all of their value from the extrinsic value. Generally, a price move in the underlying 

causes the value of the ITM option to move more severely than an OTM option. A volatility 

spike causes the value of the OTM option to move more severely than the ITM one. In the 

previous section, the pricing model was defined analytically. Note that σ was defined as a 

stochastic term. Volatility also has a relationship with the option price that must hold as well. A 

fundamental aspect of any financial option pricing model is that volatility has a positive 

relationship with the value of the option. 

3.6.1. Parametric vs Non-parametric 

There are two general frameworks for correlating variables. Parametric is used when 

assumptions are made about the underlying distributions of the variables. Pearson correlation is 

common for the parametric category. 

Q =  R ∑ TU − ∑(T)(U)
P[R ∑ TW − ∑(TW)][R ∑ UW − ∑(UW)]                                         (3.16) 

Where ρ is the Pearson correlation coefficient, n is the number of values in each data set, 

and x and y are the correlated variables. The most prominent assumption is both variables follow 

a normal distribution. Linearity and homoscedasticity are two more assumptions a Pearson 

correlation make. In the financial world, it’s rare to find two assets where a normal distribution 

would best characterize the return distribution of the asset. Even rarer is to find two assets where 

that relationship is stationary over an extended period of time. 
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Non-parametric correlation is more relaxed and does not make assumptions about the 

distribution of the variables. Spearman rank correlation is common for the non-parametric 

category. Spearman rank actually ranks the values in the data set from 1 to n. Then the difference 

in the ranks are inserted into the formula below: 

ρ = 1 − 6 ∑ d[�
n(n� − 1)                                                               (3.17) 

One more parametric technique that measures correlation between two variables is through the 

use of a copula. Recall from chapter 2 that a copula is a multivariate joint distribution. In some 

instances, copulas can better define correlations because of their flexible nature. For example, 

it’s well known that stocks became highly correlated in the financial crisis. The Clayton copula 

can better define this relationship than a Pearson or Spearman correlation. The dispersion 

becomes larger as values increase. This type of relationship could not be defined without a 

copula. There are other forms of copulas that can better define other relationships as well. The 

Clayton copula is shown below: 

 

 Figure 3.2: Clayton Copula Joint Distribution 
 



 

 51  

3.7. The Greeks 

 Managing a portfolio of options can become complex as more positions are added. 

Instead of solely managing a strategy, most portfolio managers who deal with options also 

manage the “greeks” of the portfolio. Delta, gamma, vega, and theta are four of the more 

important greeks. They can describe how the portfolio is most likely to behave based on a variety 

of changes in the underlying variables. These variables are 1st, 2nd, or in some cases, 3rd order 

derivatives of variables that make up the Black pricing model.  

 Delta is the first order derivative of the value of the options relative to the price of 

underlying asset. It measures the amount of value change in the portfolio for a dollar change in 

the underlying. For example, if the portfolio Delta is .25 and the underlying goes up by one 

dollar, the value of the portfolio will increase .25%. Delta of an individual option can also be 

viewed as the probability it will expire in the money assuming a normal distribution for the 

underlying. Delta is positive for calls and negative for puts. Hence adding up the total delta value 

for all assets in a portfolio shows the delta of the portfolio: 

Δ! = D4EF > (%5)                                                               (3.18) 

Δ�^F = D4EF > (%5)                                                           (3.19) 

Δ�_EF = 	
 ∗ Δ
                                                         (3.20) 

Where c, put, and port represent the delta of a call, put, and a portfolio respectably. The delta of 

an underlying long (short) position is one (negative one) discounted back to present value. 

(Usually .97-.99) A fully hedged short cash position theoretically has a delta of zero. For a 

portfolio with basis included, the basis does not have a delta.  
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Gamma is the second order derivative of the value of the option relative to the price of 

the underlying asset. It represents the rate of change in delta with respect to the underlying. 

Gamma has its highest value for ATM options and converges to zero as the option becomes more 

OTM or ITM. A positive gamma indicates the asset or portfolio will increase in value if the 

underlying prices move substantially in either direction. A negative gamma indicates the asset or 

portfolio will benefit most from no movement in prices. Also, it generally decreases as time goes 

by. The gamma of a portfolio is also weighted proportionally to the assets held, just like delta: 

` = D4EF �(%5)
H�√N                                                               (3.21) 

Where Γ is gamma. Gamma is the same for a call and put. The only difference is d1, which is 

different for a call and put. 

Vega is the first order derivative of the value of the option relative to the volatility. Vega 

is the amount of the option value that changes with a 1% change in volatility. It is also positive 

for a long position and negative for a short position. This is because any volatility is positive for 

the holder of the option as shown. Like gamma, vega is always greatest for ATM options. It also 

can be calculated the same way for calls and puts: 

b = HD4EF�(%5)√N                                                     (3.22) 

Where ν, the Greek letter nu, represents vega. It’s also highly dependent on the time 

value. For a scenario where volatility spikes and there is an ample amount of time value left, the 

value of that option will also spike. However, for an option with very little time left before 

expiration, the same volatility spike may not affect the value of the option much depending on 

how close the price of the underlying is to the strike price. 
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The last greek important for a portfolio of options is theta. Theta is concerned with the 

time value of the option as an option with more time left until expiration is worth more, all else 

held equal. It’s the first derivative of the value of the option relative to time, or days to 

expiration. It can be described as the amount of value an option loses in one day. Theta is almost 

always negative for a long position and positive for short position: 

c! = − HD4EF�(%5)�
2√N + �HD4EF > (%5) − �GD4EF > (%�)                              (3.23) 

c� = − HD4EF�(%5)�
2√N − �HD4EF > (−%5) + �GD4EF > (−%�)                          (3.24) 

The formula is slightly different for a put and call. Theta for ATM money options have 

the highest value followed by ITM options while OTM options have the least theta value.  

 That rounds out the four main greeks. There are many more that are important but these 

four are adequate to capture the characteristics of a portfolio that includes options. The greeks for 

a portfolio can be computed the same way as equation (3.14) by substituting gamma, vega, or 

theta for delta. 

3.8. Summary 

The theoretical model is fairly straightforward. The returns from each position is 

calculated individually and then summed together to obtain the profit (cost) of the hedge. The 

risk is jointly determined with equation (3.2). VaR and CVaR are calculated after assumptions 

are made about the underlying distributions of each security and the inherent relationships are 

defined. The black model can be used as an alternative pricing mechanism. It can also be 

manipulated to solve for other variables if price is already known. The assumed relationships 

between prices have a significant effect on the model’s results. There are a couple different 
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options given for correlation. Lastly, a portfolio of derivatives must be managed properly. One of 

the ways to keep risk in check is to manage the greeks. Delta and gamma of a portfolio of 

derivatives play a crucial role in how the portfolio is managed.  
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CHAPTER 4. EMPIRICAL MODEL 

4.1. Introduction  

 The futures market for commodities was created so that producers, elevators, and end 

users could reduce their price risk. Grain is constantly being bought and sold all over the world at 

all times of day. Prices can be very volatile leading up to the next USDA report or around 

harvest season. Buyers can be exposed to a great amount of price risk if they don’t manage it 

well. Holding a long or short futures contract will cancel out any change in price from the date 

the contract is obtained through its expiration. The only other risk is basis risk. Basis risk can be 

mitigated as well but it has to be done with the physical buyer or seller outside of any futures 

market. Options add another alternative to mitigate price risk. Options provide the ability to 

create asymmetric payoff functions curtailed to the holder’s desire. Last chapter I explained the 

nuances of those instruments and outlined their use for hedging. In this chapter, an empirical 

model will be presented using futures, basis, and options contracts for an optimal portfolio 

according to Mean-Variance, Mean-CVaR, and the maximization of CVaR. Then an overview of 

the Black-76 model will be shown and applied to the empirical model. A process for setting up 

the model will follow. Lastly, data sources and distributions for stochastic variables are 

illustrated. 

4.2. The Problem 

This problem is meant to replicate the situation of a large buyer of American produced 

soybeans. However, the problem only covers the hedging part and does not account for 

transportation from PNW to the final destination. It also doesn’t cover any logistical challenges 

inherent in the transportation process. For example, Chinese companies buying beans typically 

use them to feed their livestock. Soybeans are also crushed for their oil and sometimes used in 
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biodiesel. This model measures the efficiency of different hedging strategies these buyers can 

use to reduce risk and lower their buying cost. The model assumes 100,000 m/t (metric tonnes) 

of soybeans are to be bought.  

A typical portfolio would consist of a short cash position and long futures and basis 

positions. Futures and cash prices are generally highly correlated. This means a long futures 

position can lock in a stable, future buying price. The theoretical transaction in the cash market 

takes place at the Port in Portland, Oregon (PNW). The basis at PNW is always positive, 

meaning soybeans are slightly more expensive at Portland than the futures market would 

indicate. The hedge is placed 28 weeks in advance of the purchase. The goal is to reduce risk 

while generating an appropriate return over the time period. 

4.2.1. Alternative Solutions 

The base case in this problem is assuming the buyer doesn’t hedge their purchase at all. 

Meaning they are 100% short in the cash market and their buying cost is exposed if prices move 

higher. On the other end of the spectrum, they would greatly benefit from a down side move 

because their purchase would become cheaper from the port. A payoff function is show below: 

 

Figure 4.1: No Hedge 
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Probably the most popular strategy deployed when buying commodities from a port is to 

hedge the purchase one for one using a futures exchange. This means the buyer will hedge the 

approximate amount of beans they are buying with a long position in the futures market of equal 

volume. It’s the most popular hedging strategy because it’s easy to understand and removes all 

price risk associated with the futures price. Below is a visual representation of what the hedge 

would accomplish: 

 

Figure 4.2: Futures Naïve Hedge 
  

The hedger would have zero price risk associated with the futures price. However, a 

hedger doesn’t have to hedge all of their position. They could under hedge, looking for a future 

price decline. They could also over hedge if they have strong beliefs prices will go up. Either 

way, a buyer can mitigate all price risk associated with the futures price. Basis risk would still be 

present. 

Basis contracts are obtained directly from the seller. Typically, producers sell their grain 

to their local elevators. Elevators, who are largely owned by large grain companies, then ship 

that grain to PNW or GULF port for export. The grain arrives at the company’s port location 
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where the buyer would have a basis contract in place with the seller. Unlike a futures hedge, a 

basis contract is a deal between only two parties with no middle man. It would be unwise for a 

buyer to “over hedge” their position because they would be responsible for buying the entire 

volume stated in the contract. They could of course under hedge, looking for a drop in the PNW 

basis. The consequence of under hedging basis is there may not be extra beans available to buy if 

there’s no contract for purchase in place (basis contract). This would leave the buyer with less 

soybeans then they need (CME group, 2015) 

Hedging with options adds another level of complexity to the problem. Options are 

attractive because they give the hedger a floor or ceiling where their average buying cost can’t 

surpass. The strategy also leaves room for the buyer to take advantage of a potential downward 

price move. Some of the more popular option hedging strategies for buyers would include a 

married call, bull call spread, and a long collar. Many more are explored including: straddles, 

strangles, butterfly spreads, and calendar spreads. I’ll go over each strategy as all are deployed in 

the study. 

4.2.2. More Option Strategies 

 Building off of the brief overview of option spreads in chapter 2, a broader range of 

strategies are defined in this section. First a married call is a basic call option that behaves like a 

futures contract if prices move lower but set a cap on the average price the buyer will pay if 

prices move higher. The payoff function displayed below: 
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Figure 4.3: ATMC4 Hedge  
 

Notice the similarities between the futures graph and this one. With an options contract, 

the hedger will pay a little more to hedge. The call option shown is an ATM option but OTM 

options are also popular. They put in cost floor for themselves when prices rise but still benefit if 

the market goes down. It costs a little more for this “floor” as shown by the graph. 

Collar hedging strategies are another efficient strategy to employ. In a collar strategy, the 

hedger still buys an OTM call. This time, they also sell an OTM put simultaneously. This gives 

the hedger some upside and downside potential but sets floors and ceiling on cost as shown 

below: 
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Figure 4.4: Collar Hedge 
 

The strike price for the call is set at 1120 and the put at 920. This would be ideal for a 

buyer who has a downward bias for prices but doesn’t want to take too much risk. 

Straddles and Strangles are basically the same thing. A straddle consists of buying two 

ATM options. Call and puts are bought at the same strike price in the same quantity. This is a 

“long volatility” strategy where a rise in volatility benefits the hedger. The payoff function looks 

as follows: 
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Figure 4.5: Long Straddle 
 

It’s almost identical to that of a married call. The only difference is the strategy costs 

more and the slope of the net payoff function to the left of the inflection point is double that of a 

regular call with a short cash position. The reason being buying a put on top of the call doubles 

the payoff if prices move in that direction. The only difference between a straddle and a strangle 

is the options purchased for the latter are OTM instead of ATM for a straddle.  

 The graph below portrays a “net” straddle. This is accomplished by buying 2 ATM calls 

instead of both a call and put like the graph above. These are all expensive strategies but can be 

advantageous if the environment turns to a highly volatile one in the future. 
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Figure 4.6: Net Long Straddle 
 

The last strategy, or family of strategies, is the butterfly spread. Technically the strategy 

employed is called an iron butterfly because puts and calls are both used. In a standard long 

butterfly spread using calls, an ITM option is bought, two ATM options are sold, and an OTM 

option is also bought. The butterfly spread is similar to that of a straddle in that it’s a volatility 

play. The only difference between a butterfly spread and an iron butterfly is the iron butterfly 

uses puts and calls where as a standard butterfly spread uses puts or calls. They both can 

represent the same payoff function. The graph on the top represents a typical short iron butterfly. 

It’s not so much of a hedge as it is a speculative play. However, the graph on the bottom is a long 

strangle. The positions are very similar, yet the payoff functions look completely different. 
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Figure 4.7: Long Iron Butterfly 
 

 

Figure 4.8: Net Long Strangle 
 

The first function is accomplished by selling an ATM put and call while buying and 

OTM put and call. The OTM options act as protection for the ATM options that are sold. The 
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second graph is similar except that instead of selling the ATM call, it’s bought instead. The net 

position is actually identical to that of a long strangle. 

To obtain a net payoff that looks closer to a long iron butterfly, we make a slight 

adjustment to the ATM positions. By selling 1 more ATM put and not taking a position in ATM 

call, the desired payoff function is achieved. Below is the payoff function achieved by selling 

two ATM puts and buying both an OTM call and put. Contrary to the goal of the “strangle like” 

position above, this strategy decreases overall cost when volatility is kept to a minimum. 

  

Figure 4.9: Net Long Iron Butterfly 
 

Hedging strategies using options can be used in the same way they are used for 

speculators, which don’t hold an underlying position. Nearly any option payoff function can be 

slightly retooled to achieve the desired qualities for a hedge. The strategies described above are 

used in the model to rank them against each other using the different objectives functions 

described in Chapter 3. This is ultimately how the decision is made on what the optimal hedge 

should entail. 
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To review, a table below shows the strategies above. For each hedge, the table is 

designed to show the net strategy from the hedger’s perspective. For example, a straddle usually 

contains long positions in an ATM put and call. Since the hedger already has a short cash 

position equal to 100%, doubling the call position and not taking a put position nets out to a 

straddle. 

Table 4.1: Option Hedging Table 

  

4.3. Model Overview 

The goal of the model is to identify the most efficient hedge for a soybean buyer. 

Allocating capital to futures, options and basis contracts can be beneficial versus just using the 

futures market and locking in basis. This is done using eighteen generic options. Calls and puts 

are included for the second, fourth, and sixth deferred months. When deferred is used to describe 

a contract, it means it’s not the “active” contract. For example, the next contract to expire after 

the active contract is the second deferred. If it’s the beginning of September, the September 

contract would still be the active contract until it expires on the 3rd Friday of the month. The 

model uses the 15th day of the month instead for simplicity reasons. The November contract is 

called the second deferred contract until the September contract expires. The same process can 

be used to identify the months associated with the fourth and sixth deferred contracts and any 

time during the calendar year.  

Hedge PNW Futures ATMC4 OTMC4 OTMP4 ATMP4 Delta Gamma Vega Theta

Unhedged (100%) -0.98 0.00% - -

Futures (100%) 100% 0.00 0.00% - -

Married Call (100%) 100% -0.25 0.13% 112,604 (18,176)

Collar ATM (100%) 100% (100%) 0.00 -0.02% 197 (2,932)

Collar OTM (100%) 100% (100%) -0.17 -0.01% 3,690 (2,142)

Straddle (100%) 200% 0% -0.01 0.34% 450,417 (72,705)

Strangle (100%) 100% 100% 100% (100%) 0.01 0.08% 178,320 (30,639)

Butterfly Spread (100%) 0% 100% 100% (200%) 0.01 -0.16% (271,505) 33,269
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There are also in-the-money (ITM), at-the-money (ATM), and out-of-the-money (OTM) 

contracts associated with each calendar month. The ITM and OTM options are always a dollar 

away from the at-the-money strike price. The degree for which the options are ITM or OTM is 

arbitrary. One could choose a dollar, two dollars, 40 cents etc. This model uses a dollar which 

can be anywhere from 16% to 7% OTM or ITM depending on the underlying futures price. For 

example, if the futures price for the fourth deferred ATM call option is $10, then the ITM, fourth 

deferred call option (ITMC4) strike price is $9. The OTM, fourth deferred call (OTMC4) strike 

price is $11. The same process is used for the other calendar options as well as puts. To illustrate 

the same with put options, the prices will flip. If the ATM, second deferred put option (ATMP2) 

strike price is $10, the strike prices for the ITMP2 and OTMP2 options are $11 and $9 

respectively.  

The only futures contract that is included in the optimization part of the model is the 

fourth deferred contract. The fourth deferred contract is used because it expires between 24 and 

32 weeks from the generic hedge date. Since the model uses a 28-week hedge, it was the most 

appropriate contract. Contracts for August are not included in the model for simplicity. Without 

August, there are two months between every other soybean contract. The contracts can then be 

modeled the same as the time to expiration is uniform across all contracts. Without that 

assumption, the August contract would pose a big problem for this model. For example, in the 

winter and planting months, the 2nd deferred contract is always between 43 and 84 days from 

expiring. This is because there is 21 trading days in each month. However, with a July, August, 

and September contract, the days to expiration for a 2nd deferred contract could range from 22 to 

84. Taking out August reduces some time variability in the model.  
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Storage and transportation costs are not included in this model. If those two variables 

were included, it may make sense to include other futures contracts and explore hedging with 

spread contracts mixed in. The price of soybeans relies on supply and demand in the market. 

There are a plethora of exogenous variables that can affect supply and demand. Those factors are 

out of the scope of this study. 

The model is made of a short cash soybean position and a combination of a fourth 

deferred futures contract, a basis contract, 9 calls, and 9 puts. The optimal, hedged portfolio 

consists of a mix of positive and negative exposure between these securities.  

4.3.1. Modeling Futures and Basis Prices 

One of the main inputs into the model is futures prices. Futures prices rarely follow a 

normal distribution for any given time period. There can be years when soybeans hover around 

$15 per bushel like they did from the summer of 2012 to the summer of 2014. They can also stay 

closer to $5 like the 3-year period from 1999 – 2002. The extreme volatility makes it very 

difficult to model prices. However, a distribution was fit on the active contract using the AIC 

score to determine the best fitting distribution. The nominal price in the first stage can be looked 

at as arbitrary. What matters to the model is the return of each asset. Therefore, it’s the price 

change that controls the return.  

In the second stage, the model captures the price change over 28 weeks from the data. A 

distribution is then fit on that data, and uses it as a stochastic variable. 2nd, 4th, and 6th deferred 

futures prices are then modeled as spreads from the adjacent contract. For example, the 2nd 

deferred contract is modeled from the active and the spread between the active and 2nd deferred. 

The 4th deferred is modeled from the 2nd, which was just modeled, and the spread between the 

2nd and 4th deferred contracts. 
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Using price distributions or price changes was also explored. The price distributions for 

each contract weren’t able to mimic a practical market even with extremely positive correlation 

coefficients. Modeling price changes turned out just as poor as the price distributions or arguably 

worse. The prices the model output were sometimes two dollars away for consecutive contract 

months which is not practical. Spreads actually behave very well and mimic what the actual 

forward curve would look like. However, the spreads did tend to characterize a bimodal 

distribution. This will be talked about further in Chapter 6. 

Basis was modeled exactly the same as the active futures contract. A best bit distribution 

was used for basis in the first stage of the model. Then a price change distribution was used in 

the 2nd stage. The PNW cash price is modeled as the sum of the active futures contract and basis 

in both stages. 

4.3.2. Modeling Options 

The vast majority of portfolio optimization literature has taken data for price changes 

from periods n to n+1. One can measure the risk and return of the portfolio over that time frame. 

The addition of options into a portfolio makes that approach inappropriate to apply. Price 

changes for soybeans can only change so drastically over 7-month period. A change from $8.55 

to $11.80 can occur over a short period of time as it did in 2016 from February to July. That 

change entails a 38% increase in price over a period of 5 months. With options, an OTM call 

option purchased in February may cost $.10. In July the same option may be worth around $2.50. 

The holder of that option would see a return of 2500%. Using data with price changes that 

include 2500% returns all the way down to -100% creates problems for this framework.  

In the first stage of the model, the option prices were modeled from the empirical data for 

all 18 options. There are inherent relationships that must hold for the majority of these option 
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prices. The ITM options at the same strike price always have to be worth more than the ATM 

and OTM options. The ATMC4 premium should be less than the ATMC6 premium most of the 

time. There are times around harvest when the ATMC6 could be cheaper with new crop coming 

into the market, but it shouldn’t happen often. To hold these relationships within reasonable 

bounds, the price changes were abandoned and, an option pricing model was used in the 2nd 

stage instead. 

The Black-76 model was used to price the options during the second lag of the 

transaction. This is common in the literature so far and very easy to set up. Where this model 

differentiates from the literature is actual option price data was gathered and fit to a distribution 

in the first stage instead of using a pricing model. 

4.3.3. Objective Functions 

Four objective functions were used in the hedging model. The first is a standard quadratic 

utility function based on mean-variance shown in chapter 3.  
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Depending on the risk aversion parameter, a portion of the variance is subtracted from the 

mean to arrive at an expected utility of the hedger. Bullock and Hayes (1992) define a low risk 

aversion parameter as .0001 and high-risk aversion at .01. Since options are heavily used with 

this study, the risk aversion parameters used must be different. Option payoffs have much more 

variance than futures. If the same parameters in Bullock and Hayes (1992) are used, the variance 

will still dominate the utility function. After doing some testing, .00001 and .0000001 are used 

for low and high-risk aversion respectively. In the base case, phi is set at 1 but sensitivity 

analysis will be done with .00001 and .0000001 as well. 
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The second objective is to minimize conditional value-at-risk. This is the average loss of 

the losses that lie in the left five percent of the cost distribution. Most of the literature in Chapter 

2 starts out my minimizing variance and then moves to include the mean and semivariance 

measures. CVaR does a better job of expressing the downside risk of the hedge versus using 

variance. Therefore, a minimum variance objective is not included in this study. 

fgJ[( 1
1 − *) . /(0)%0]                                                    (4.2)
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The next objective function is Mean-CVaR. Similar to mean-variance, Mean-CVaR 

subtracts a portion of the conditional value-at-risk from the mean cost. The risk aversion 

parameter can also be changed in this function. Although, because CVaR is a much higher 

number (less negative), the parameters that entail high and low risk aversion will be higher than 

that of Bullock and Hayes (1992). This will be discussed more in chapter 5. 
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The last objective function used is a Mean-CVaR Copula. It’s the same as the previous 

function but the variables are related by a t copula instead of a spearman correlation. This 

function should exhibit more risk than Mean-CVaR because of a potential fat left tail on the cost 

distribution.   

4.4. Data 

Data was gathered from two sources over a period of 38 months from November of 2013 

to December of 2016. CME (Chicago Mercantile Exchange) soybean futures and option pricing 

data was extracted from ProphetX, a trading platform owned by DTN (Data Transfer Network). 
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The PNW cash prices for soybeans were gathered from Milling and Baking News. PNW basis is 

obviously the difference between the cash and futures prices. 

That extraction of the futures and cash prices are straight forward. Milling and Baking 

News publishes PNW bids weekly and has been doing so for over a decade. The other futures 

prices were extracted into excel using the ProphetX add-in.  

4.4.1. Options Data 

Extracting option data was not as straight forward. Obviously, it’s not practical to extract 

the premium over a long period of time for thousands of options traded over a 38-month period. 

Instead a systematic approach was taken where ITM, ATM, and OTM premiums were extracted. 

At every data point the strike price adjusted because the underlying price most likely moved as 

well. What was left was 18 series of option prices that had small variability in strike prices and 

time, but a substantial amount of variability in volatility. 

The model constructed for gathering the option pricing data started with a table that 

displayed each month and its respective code (letter) alongside it. The non-soybean contract 

months were then eliminated along with August. In the non-contract months, the letter from the 

next month with a soybean contract was back filled. This series was used to identify the active 

contract in the first 15 days of each month. Another series was generated that displayed the 

active month code on a weekly basis that included the 15th day cutoff using the table already 

created. 

The next step was to display the first part of the “option ticker” for the active contract on 

a weekly basis. The first part of the ticker included the symbol of the underlying which was “S”, 

the contract month code (i.e. F for January), and finally the last two digits of the year the contract 

expired. The first part of an option ticker that expired in January of 2017 would then be “SF17.” 
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After the first part of the option ticker is displayed for every listed date where a data point 

should be present, strike prices must be added. It’s important to match up each calendar option 

with its respective futures contract. It should be noted that options that expire in different months 

than its underlying contract are available. However, there’s not as much liquidity as options that 

expire in the same month as its underlying. 

If the active contract is exclusively used as the underlying price series, the option prices 

will be more variable because the further deferred contracts are likely to be priced higher, or in 

some cases, lower than the active. It depends if the market is flat, in contango, or backwardation. 

In an extreme market with the latter cases, using the active contract for pricing options expiring 

in the sixth deferred month will extremely skew the data. 

For Soybean options, there is typically a liquid option every 20 cents around the liquid 

ATM option. The liquid ATM option would be the closest, even, 20 cent option between the two 

whole dollar prices. For example, if the futures price is $9.73 per bushel, the liquid ATM price 

would be $9.80. Rounding the respective futures price to the nearest 20 cents displays the strike 

prices used for the option series. 

The last step is to bring it all together and define the option ticker as a put or call. A put 

or call can be defined using “P” or “C” respectively. It can be concatenated using the first part of 

the option ticker followed by the put or call symbol, and finally the strike price. For example, for 

an ATM call option that expires in September of 2017, where the September futures price is at 

$9.42 and its currently June of 2017, the entire option ticker would read,”SU17C9400”. 

Once option tickers are made, they should change as the date and futures prices change 

following the steps outlined above. From there, extracting option prices is as easy as extracting 

futures prices for the respective commodity. 
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4.5. Treatment of Volatility 

 As was already mentioned above, it’s impractical to use standard price change 

methodology to simulate returns for options. As such, the Black-76 model was used to price the 

options in the second stage of the problem. One concern was how to treat volatility. The best 

situation would be to extract volatility but unfortunately, that data was not available. It is 

possible to go back and measure realized volatility over a certain period of time. However, 

realized volatility tends to lag behind implied volatility and the two don’t necessarily have to 

move together. Realized volatility is measured in high-sight while IV is forward looking. 

 Since there was no historical data for IV, @Risk and excel’s solver tool were used to 

capture the IV distribution. First a cell that displayed the difference between the option prices at 

the first and second stages was included. Using solver, the implied volatility cell was set to the 

changing cell. The cell where the difference in prices was stored was set to 0 as the objective. 

Solver was not run. Instead @Risk was set to run solver after every iteration of the simulation. 

By making the implied volatility as an output cell, which was the changing cell, the distribution 

of implied volatilities was captured. The stochastic volatility replaced the static for all 18 

options. This was appropriate since actual option prices were compared to derived prices. 

Implied volatility is measured with the Black-76 model for commodities. Therefore, the volatility 

extracted should exactly match the implied volatility distribution if actual data was available. 

The only problem was that the correlation between the volatilities and prices were unknown. 

4.6. Correlations and Copulas 

How relationships between variables are treated in any portfolio optimization model can 

drastically affect the optimization results. Whether two data series are positively correlated, 

negatively or totally independent are assumptions that must be made while modeling risk. Many 
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times, the correlations between financial securities are not stable over time. Meaning they will 

change based on the time period and periodicity of the data. Fortunately, option prices are 

derived from the underlying futures contract. Futures prices are also highly correlated with each 

other. That should keep most of the relationships in this model fairly stable over time. The 

relationships that option prices have with other options in this model are not so straightforward. 

Generally, the call options should be positively correlated with futures and other calls. The 

opposite is true for puts. However, it’s difficult to determine the degree of positive or negative 

correlation that should hold between an ITMC4 and OTMC6, for example. Those relationships 

may not be stable over time, especially in times of market “turmoil.” 

There are two types of correlation used in this model. The first one being a spearman 

rank correlation and second is a t copula. The spearman rank was defined in chapter 3. A t copula 

is in the elliptical copula family and is characterized by a bell shaped, symmetric distribution 

with slightly fatter tails than a standard normal distribution. 

@Risk was used to derive the spearman rank correlation matrix for the four futures 

contracts, basis, and 18 options. The matrix was then attached to the price distributions. Along 

with prices, volatility is also a stochastic term in the model.  

One problem involved adding those volatilities into the spearman correlation matrix. 

Since there was no real data for historical implied volatility, the correlation could not be derived 

in the same way as prices. @Risk was used to gather a “string” of spearman correlation 

coefficients. The only coefficients that were captured were between the option price and its 

respective implied volatility. A scatter plot function was used after a simulation had already been 

run to identify the correlation coefficients. That was done for all 18 options and then the 

volatilities were added to the correlation matrix. The correlation coefficients were then added to 
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the matrix. There were only 18 added which left 468 correlations coefficients yet to be 

determined. The matrix, as it was, was not a self-consistent or a positive semi-definite matrix. 

@Risk does have a way to make the matrix positive semi-definite. First it finds the smallest 

eigenvalue in the matrix, E0. It then shifts the matrix so that E0 is now equal to 0. “It does this 

by adding the product of –E0 and the identity matrix (I) to the correlation matrix (C). C’ = C – 

E0I. It then divides the new matrix by 1 – E0 so that the diagonal terms are equal to C’’ = (1 / 1 – 

E0) *C’ (@Risk User’s Guide, Version 7). 

@Risk also lets the user construct a weighted matrix to control which correlation 

coefficients are allowed to change. A weighted matrix was constructed using 100 in every cell 

that had a non-zero value in it. A 0 was placed in every other cell. A value of 100 placed in the 

weighted matrix meant that value could not change or could only change very slightly. A 0 

meant the value was free to change to any value from (-1,1) that would make the matrix positive 

semi-definite. In general, cells with a value were held constant and cells without one were free to 

change as the program shifts the matrix. With only a few slight changes to the coefficients 

already in place, a positive semi-definite matrix was generated. 

The stochastic terms in the second stage of the model had their own spearman correlation 

matrix which was derived from the empirical data. 

4.6.1. Adding IV to the Copula  

A similar process was done to derive a copula correlation for the problem. A copula was 

fit on the empirical option pricing data that was collected. The best fit copula was a t copula. 

This t copula is characterized by fatter tails and a wider distribution from the mean than a normal 

bivariate distribution or a Gaussian copula. The same steps were taken to derive the coefficients 

for IV up until a weighted matrix is needed to correct the “inconsistent” matrix. @Risk does not 
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let the user use a weighted matrix in the same way as it does for a Pearson or Spearman 

correlation matrix. Instead, the “RiskCorrectCorrmat” function was used. This function does the 

same thing as the program would do with an inconsistent Pearson or Spearman matrix and a 

weighted one. The weighted matrix was designed so all non-zero values were set to change 

freely while known values where held stable. @Risk was able to generate a positive semi-

definite matrix from using the methods described. The t copula that was derived looks very 

similar to the Spearman matrix used with the previous methods. 

4.7. Other Notable Variables 

There’s two other notable variables in the model that have not been discussed. They are 

the interest rate and days to expiration (DTE) for the options. The interest rate was set at a static 

rate of 2.75%. The 10-year US Treasury bond yield is typically used as the risk-free rate in 

practice. The rate fluctuated between 1.35% and 3% over the past five years. One could argue 

that the rate has been kept artificially low by the central bank since the financial crisis. 2.75% 

was a fair rate for that time period. 

The other variable is the days to expiration (DTE). DTE is another stochastic variable in 

the model. The distribution is one of uniformity for the number of days between each contract 

month. For example, assuming there are 21 trading days in each month and thus 252 trading days 

in a year, the 2nd deferred contract has between 43 and 84 trading days left. The 4th deferred had 

between 127 and 168 DTE. One of the goals of this model is to solve a generic situation versus a 

more specific problem. Therefore, stochastic DTE was preferred to static. The DTE variables at 

each expiration are perfectly correlated with each other. 
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4.8. Profit, Loss, and Margins 

The overall goal of this problem to mitigate the price risk of soybean purchases by 

hedging with futures, basis, and option contracts. Therefore, there must be an adequate way to 

measure profit and loss on the hedge. There are two stages incorporated in the model. 

Aggregating the profit or loss from each futures, basis, and options contracts will display the 

profit or loss from the entire hedge. One crucial factor that hasn’t been mentioned yet is margins. 

Margins are the reason speculators like to use the futures market and also the reason hedgers fear 

it. 

4.8.1. Margins 

Margins in the futures and options markets are self-defining. They represent the amount 

of money the hedger (speculator) must put on “margin” for their desired position. Anyone who 

takes positions in the futures and options market has to have an account with the clearing house 

involved in the transaction. Of course, this is assuming these are exchange traded contracts. For 

OTC (over-the-counter) trades, no margin is required unless there is an agreement between the 

two parties. Basis contracts are only traded OTC so there are no margin obligations built in to 

them. The account holds the capital as collateral in case the position moves in a disadvantageous 

way. The probability of these scenarios can be very difficult to calculate. Hence futures contract 

margin requirements change from time to time.  

On the other hand, option margins can change frequently and drastically depending on 

the volatility in the market. Each option has its own margin requirement. The margin for a long 

call option position is equal to that of the buying price. The margin for a short call position is: 

h = O + [. 2 ∗ F ∗ C − max(X − F, 0) ∗ C], O + (. 1 ∗ F ∗ C)                             (4.4) 
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Where δ is the margin requirement for a short call position, O is the price of the call option, and 

C is the number of contracts needed to hedge. This is the formula the CBOE (Chicago Board of 

Options Exchange) uses. Basically, the margin requirement is the price of the option plus twenty 

percent of the underlying futures position minus the amount the option is OTM or the price of 

the option plus ten percent of the underlying futures position. Whichever is greater is the initial 

margin. The margin requirement for put positions are identical to that of calls. The only thing 

that changes in the formula is the strike price is subtracted from the futures price because the 

OTM portion is opposite for puts and calls. Generally, for short positions, the margins for the 

options included turns out to be about three times the price for ITM and ATM options and about 

five times for OTM ones. 

For a portfolio of options, the margin requirements can become complex. There is no 

formula that can derive the margin for an options portfolio. Instead a methodology called SPAN 

(Standard Portfolio Analysis of Risk) is used by the CME. It’s a simulation based VaR model 

that accesses the risk of the portfolio in 16 different profit and loss scenarios. This type of 

program is necessary to treat all customers’ positions fairly. For example, if a speculator sells 

100 OTM puts that are five percent OTM, they’ll have to deposit around five times the selling 

price into their trading account. However, if the same speculator sells those same options while 

simultaneously buying 100 OTM puts that are ten percent OTM, the risk of loss is now much 

smaller. After the underlying breaks below the ten percent OTM strike price, there’s no risk of 

losing any more. A graph is shown below for this position. This is a true collar without an 

underlying cash position. 
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Figure 4.10: Bull Put Spread  
Note: Example of Maximum Loss 

If the margins were completely independent from each other, the total initial margin 

requirement would be $1.4M. The notional contract value of the underlying would be $5.1M. 

The most this customer can lose on this trade is $42K. That’s 3% of what the independent 

margin position would have been. With the extra downside protection, the margin will mostly 

likely be the maximum amount they can lose or slightly less. This is a relatively simple example. 

The positions can get much more complex and therefore a simulation model is needed to 

compute that risk. For simple strategies, the initial margin in calculated with the formula above. 

For more complex strategies, the VaR is used as a proxy. The margin is not a factor in any of the 

objective functions but because of the importance in practice, margins for each position will be 

listed with the results in the next chapter. 

4.9. Simulation and Optimization Procedures 

Once the model is all set up, simulations have to be run in order to rank the hedging 

strategies against each other. The first step is to create “allocation” cells or portfolio weights for 

each of the securities used. This can be done a few separate ways. This model used a percentage 



 

 80  

term as the weight based on the amount needed to hedge relative to the underlying short cash 

position. The weight is based on the number of underlying contracts needed for an effective 

hedge. For example, if a scenario is created where the hedger wishes to create a naïve hedge (HR 

= 1) with futures and basis contracts, the weights would be set to a positive 100% for each 

position. If the hedger wanted to “Texas” hedge or hedging extra while creating a net long 

position, 150% or 200% percent can be entered. Texas hedging doesn’t have to end up as a long 

position. It just refers to the speculative behavior outside of a typical hedge. 

Weights for options are derived in the same way. For example, if 100% is the input for 

the weight of ATMC4, the number of underlying contracts needed to hedge 100,000 metric 

tonnes (mt) one to one is 734.8 contracts. To come to that number, 100,000 mt must be 

converted to bushels. Since 1 mt is equal to 36.74 bushels, 100,000 mt is equal to 3,674,000 

bushels. One soybean contract represents 5,000 underlying bushels for futures and options. To 

get to the 734.8 contracts, we take the number of bushels to hedge divided by the number of 

bushels in one soybean contract. 100% allocation to any of the futures, basis, and options 

contracts will result in 734.8 contracts hedged.  

4.9.1. Optimization 

The objective functions defined in Chapter 3 were used as “goals” for the adjustment 

cells. The adjustment cells are the weights that were just defined above. The optimization tool in 

@Risk uses the methods outlined in sections 3.3 and 3.4 to determine the optimal allocation for 

the hedge. The only constraints used in the model are that the weights can’t be below -300% or 

above 300%. The constraints are arbitrary. Some risk tolerant strategies allocate a maximum 

allocation to options and a limit was necessary for simplicity. The number of iterations per 

simulation is set at 5,000 in this model. Then the optimizer runs as many simulations as it takes 



 

 81  

to adequately maximize or minimize the respective objective function by changing the 

allocations. 

4.10. Summary 

There’s a core group of options strategies that are explored through section 4.2. The most 

impactful assumption in the empirical model is the way the contracts are modeled. In this study, 

past data is taken and analyzed to create an optimal solution based on that data. One could also 

use different assumptions regarding the shape of the active futures distribution and the 

correlations between each contract. Three objective functions are studied while E-CVaR also has 

a separate copula model. Actual option pricing data was extracted for this study. Another 

generalized way to make a similar model would be to use the Black model to price at both time 

periods one and two while making assumptions about future volatility. Margins and margin calls 

carry extensive risk when dealing with options. However, they’re very difficult to model because 

they’re based off stress testing. The optimization procedure is a standard linear programing 

optimization searching for a global maximum. The less securities within an optimization 

problem, the higher probability a global maximum will be reached instead of a local maximum.  
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CHAPTER 5. RESULTS 

5.1. Introduction 

Soybean buyers can typically make money on the difference in location basis. The 

arbitrage principle of grain trading involves buying low at one location and selling higher at 

another. One should be left with a “risk-free” profit after such a trade. However, there may exist 

an opportunity to increase profits while limiting risk with the use of derivative contracts. 

International buyers are typically involved in buying and selling hundreds of thousands of tonnes 

of grain around the world. They should have a large “think tank” built that could tip them off to 

the direction prices are going. Still, large grain trading firms routinely hedge their positions on a 

one-to-one basis. The results of this study show some opportunities for buyers to reduce cost 

while limiting risk by using options. 

In chapter two, the portfolio model of hedging blueprint was given. Ways measure risk 

and the differences between them were explored. The biggest difference being variance versus 

semivariance is variance measures the deviations from the mean on both sides of the distribution. 

Semivariance only measures the amount of left-tail risk within the same distribution. Some 

measures identify the mean of the left side of the distribution and take a variance for the 

downside moves relative to that mean. Other measures capture the tenth, fifth, or first percentile 

of the distribution to identify a “worst loss” statistic. VaR (value-at-risk) and CVaR (conditional 

value-at-risk) are used for those measurements. The contrast between how risk is measured 

should differentiate E-V, E-CVaR, and E-CVaR copula substantially. Scientists and practitioners 

have been and still do measure variance over the entire distribution of a variable. This treats 

upside-risk the same as downside. Correlations between variables were also outlined in detail in 
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chapters two, three, and four. Using a Pearson (linear), Spearman, or some form of Copula 

correlation can significantly affect the end results. 

Various option strategies were also illustrated in chapters two and four. There are many 

different approaches to setting up a trade or hedge. These approaches can be applied to a hedging 

problem. When the objective is to make more money or cut costs, it’s worthwhile to explore 

securities with asymmetric payoffs to conform to one’s view of future market prices. This is 

possible without taking undesired amounts of risk.  

This chapter is split between the core results and sensitivity analysis. The next section 

lays out the base case scenario. The base case in comprised of a no hedge and futures hedge 

scenario. After that, alternative option hedging strategies are analyzed using the E-V framework. 

Next, the results from minimizing CVaR are presented. To round out the objective functions, the 

results from E-CVaR and E-CVaR with copula are shown. All objectives have an ARAP 

(absolute risk aversion parameter) comparison following the initial results. Synthetic long 

positions are also explored. After that, further sensitivity analysis involving risk aversion and 

volatility are shown. Finally, a summary at the end highlights the main results in the chapter. 

5.2. Results 

Many of the following results are heavily dependent on the time period used to collect 

data. The data was collected over a time with low volatility in soybean prices. Prices stuck right 

around $10 a bushel. Also, the market was predominantly in backwardation over that time 

period. The main input throughout the entire model is the assumption that the active futures 

contract follows a price distribution that characterizes a gamma distribution. The futures prices in 

this model are based off the active contract. The other main assumption is that the Black-76 
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model is an accurate price approximation tool for the second stage of the hedging model.  

Overall these assumptions all fit the data from the period studied. 

The base case results are reported first, followed by E-V alternatives. CVaR, E-CVaR 

and E-CVaR copula results are reported last. A futures hedge is compared against option hedges 

to follow. Optimized basis HRs are included in every strategy. 

5.2.1. Base Case 

The base case represents an unhedged scenario as well as a naïve hedge with futures, 

basis, and futures and basis together. Table 5.1 compares the results from these cases as well as 

an ATMC4. The red one-hundred percent indicates a short position. The red in this table 

indicates the inherent short cash position at PNW since the hedger buys soybeans in the future. It 

also indicates other short positions throughout this chapter. The regular 100% figures for futures, 

basis, and the call option indicates a one-to-one (naïve) hedge with the short cash position. One-

hundred percent indicates the position is fully hedged. The percentage of each position can be 

interpreted as the position relative to the short cash position. A position of 150% means the 

futures or options underlying position includes 50% more than the cash position. The E-V 

column shows the results of the mean-variance function with an ARAP parameter equal to one. 

Delta and gamma are shown on the right-hand side. It’s helpful to compare those statistics across 

strategies. Lastly, under the table are symbols used to scale the objective functions and initial 

margin. For example, the E-V function is in billions. Those symbols are used throughout this 

chapter. The E-V and initial margin numbers are in dollars. 

The unhedged position is the least attractive according to E-V, followed by a basis only 

hedge and the option hedge. The change from an unhedged to basis only hedge is not significant. 
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By adding a futures hedge, the E-V objective increases by 90%. The goal is to maximize the E-V 

objective. 

Table 5.1: Base Case Results 

 

Margins are also an important aspect of hedging even though it is not included in any 

objectives within this study. The table shows no margin requirement for the unhedged and basis 

hedge. This should be straightforward after the discussion in chapter two. The next two hedges 

are hedged with futures. In this model, futures require 3% of the underlying contract value as 

initial margin. The ATMC4 option is slightly more expensive. The margin reflects the cost to 

buy the option.  

Recall from chapter 3 the delta of a short cash position is equal to -.98. Both futures 

hedges take an equal and opposite position, hence the delta is zero. The option strategy has a 

delta of -.25 and gamma of .08%. The delta of the option alone is .48 and is combined with a 

short cash position with a delta of -.98. Assuming equal positions, the delta of the portfolio 

should be -.25. All greeks listed in this chapter are the greeks of each strategy or portfolio. Delta 

shows price bias in the hedge. A negative delta expresses a negative price bias. In other words, 

the hedger benefits more from a downside move then an upside move. Lastly, the gamma of the 

options hedge is .26%. All of the gamma is coming from the options since futures positions do 

not have a gamma value. Gamma indicates the change in delta relative to the change in price in 

Hedge PNW Futures
PNW 

Basis
ATMC4 E-V Initial Margin Delta Gamma

Unhedged (100%) (28,195) - -0.98 0.00%

Basis (100%) 100% (26,899) - -0.98 0.00%

Futures (100%) 100% (3,333) 1,125 0.00 0.00%

F & B (100%) 100% 100% (2,263) 1,125 0.00 0.00%

ATMC4 (100%) 100% 100% (12,567) 2,064 -0.25 0.26%

*thousands, **millions, ***billions *** *
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the underlying. Gamma is always greatest for an ATM position relative to an ITM or OTM 

position. It can also be a good indicator of overall risk no matter if it is positive or negative. This 

overall risk includes upside and downside risk. A large positive gamma indicates the hedge 

performs better when a large price move happens. A negative gamma indicates the hedge makes 

money if the underlying price is inactive in the future. 

Table 5.2 shows a married call option table that compares the optimized strategies to 

naïve hedges. Recall from chapter four a married call strategy pairs a long call position with a 

short position in the underlying. In this case, the underlying is a short cash position. A naïve 

hedge for futures and basis (F & B) along with an optimized trial that maximized the E-V 

function is used to illustrate the optimal positions. The strategies with 100% in the options 

positions are not optimized but they are compared to the optimized version directly below. The 

E-V heading is highlighted to show which function is being optimized. For the remainder of the 

chapter, the black highlighted column heading shows which function is being optimized. The 

ARAP is listed at the bottom of each table from now on. That parameter can make a substantial 

difference in how the model achieves the optimal portfolio in the E-V and Mean-CVaR objective 

functions. 

The optimal position sizes increase as the options go from ITM to OTM. Also, the deltas 

of those optimized positions are hovering around zero and are all negative. This should be 

expected since the market model is in backwardation and a delta neutral portfolio should contain 

less risk in comparison to a delta positive or negative portfolio. The gamma of each option 

portfolio is positive. As the allocation increases, gamma is expected to increase as well. This is 

also known as delta-hedging which entails making the delta of the hedged portfolio equal to zero. 

A position of 200% in the ATM option would be perfectly delta neutral.  
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CVaR and the Mean-CVaR values are also listed in this table for reference. In chapter 

three, these objective functions were illustrated. The E-V and Mean-CVaR measure of utility is 

slightly different because of the risk measure used. The E-V incorporates all risk while Mean-

CVaR only incorporates downside risk. 

Table 5.2: Married Call Results 

 

In all four of the cases below, the optimized E-V values are higher than their respective 

naïve hedges. This indicates a better performing hedge. The futures hedge is the best performing 

followed by the ITM, ATM, then OTM strategies.  CVaR and Mean-CVaR values are also 

displayed. Those values are also higher for the optimized E-V strategies than their naïve hedges. 

The basis HR is always less than one in the optimized results. This is most likely due to the 

slightly positive correlation between the call options and the basis. Some of the basis risk can be 

hedged efficiently with options. This theme that shows up throughout the chapter. 

5.2.2. E-V Alternative Strategies 

Next are the results for some alternative strategies using mean-variance. Table 5.3 shows 

a married call, a collar, a multi-calendar collar, an all married call, all 4th deferred, and finally a 

short butterfly spread. This table includes the hedge ratio defined as the sum of all positions. For 

example, a naïve collar hedge with 100% and -100% positions in the ATM call and put 

Hedge PNW Futures
PNW 

Basis
ITMC4 ATMC4 OTMC4 E-V CVaR

Mean-

CVaR

Initial 

Margin
Delta Gamma

F & B (100%) 100% 100% (2,263) (4,398) (2,072) 1,125$  0.00 0.00%

F & B (100%) 99% 91% (2,213) (4,379) (2,060) 1,116$  0.00 0.00%

ITMC4 (100%) 100% 100% (7,507) (5,362) (2,141) 4,322$  -0.14 0.20%

ITMC4 (100%) 94% 130% (6,320) (5,165) (1,888) 5,607$  -0.02 0.26%

ATMC4 (100%) 100% 100% (12,567) (6,453) (2,618) 2,064$  -0.25 0.26%

ATMC4 (100%) 97% 155% (10,324) (6,201) (2,180) 3,207$  -0.09 0.40%

OTMC4 (100%) 100% 100% (18,858) (8,354) (3,854) 865$     -0.37 0.21%

OTMC4 (100%) 96% 197% (15,719) (8,185) (3,490) 1,702$  -0.16 0.41%

ARAP = 1 *** * * *

ARAP = Absolute Risk Aversion Parameter
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respectively has a hedge ratio of zero. Also included are the other greeks; vega and theta. They 

paint a better picture of where the risk is coming from in each strategy. Vega displays the effect a 

change in volatility will have on the portfolio. A positive vega indicates a long vega position 

while a negative vega is the opposite. In both married call strategies, vega is high and positive 

while theta is also high but negative. A 1% increase in volatility will increase (decrease) the 

value of that portfolio by vega. Theta displays whether time is in the hedgers favor or not. A 

negative theta indicates eroding time value while a positive theta indicates the position is valued 

higher as time goes. Of course, that assumes prices stay the same. Theta specifies the amount 

that is gained (lost) every day all else held equal. The last new item on this graph are the stars (*) 

on the right side. When present, it denotes that VaR is used as the initial margin. Recall from 

chapter four the reasoning for using VaR. 

The futures and basis positions indicate a perfect hedge is the optimal strategy. Skipping 

strategy two (listed on the left side of the table) because it was in the last set of results, the collar 

nearly shows a naïve collar. The put position is slightly larger than the call, making gamma 

slightly negative. Strategy 3 benefits from a stable futures price. Strategy 4 has six options within 

it. The multi-calendar collar is made up of three different collar hedges at each date of expiration. 

The results from table 5.3 indicate a long collar in the 2nd deferred, a short collar in the 4th 

deferred with a larger position in the put, and a long collar in the sixth deferred with a larger 

position in the put relative to the call. This nets out to an 8% hedge ratio with a portfolio that is 

delta and gamma neutral. Strategy five incorporates all the 4th deferred call position into one 

portfolio. A large long position is taken in the ITM call while a lesser negative position is shown 

for ATM and a small long position in the OTM call. The hedge ratio is close to 100% but the 

gamma of the portfolio is only .1%. In table, 5.2 a hedge ratio of 100% in the ATM strategy has
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Table 5.3: E-V Alternative Strategies 

 

Hedge PNW Futures
PNW 

Basis
ATMC2 ITMC4 ATMC4 OTMC4 ATMC6 ATMP2 OTMP4 ATMP4 ITMP4 ATMP6

Hedge 

Ratio
E-V

Initial 

Margin
Delta Gamma Vega Theta

1 F & B (100%) 100% 100% 100% (2,263) 1,125 0.00 0.00% - -

2 ATMC4 (100%) 97% 155% 155% (10,324) 3,207 -0.09 0.40% 270,531 (43,668)

3 Collar ATM4 (100%) 93% 94% (103%) (9%) (2,148) 3,905 0.00 -0.05% (19,289) 28 *

4 Multi Calendar Collar ATM (100%) 99% 106% (29%) 16% (103%) 58% (57%) (8%) (655) 2,082 0.00 0.00% (5,899) (4,214) *

5 All C4 (100%) 93% 253% (177%) 9% 85% (5,026) 4,437 0.06 0.10% 244,074 (41,286) *

6 All 4th (100%) 98% 55% 32% (5%) (73%) (5%) (29%) (25%) (2,112) 3,845 -0.01 -0.01% (13,491) 1,084 *

7 Short Butterfly Spread 4 (100%) 59% 46% 60% 48% (141%) 13% (2,475) 4,213 0.00 -0.15% (147,149) 18,193 *

ARAP = 1 *** *
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a gamma of .26%. The negative ATM position combined with positive ITM and OTM positions 

reduces the gamma closer to neutral. The reasoning behind the negative ATM call positions is an 

attempt to indirectly lower the gamma of the portfolio. This is possible since the gamma is 

greatest for an ATM options. Gamma decreases in bell-curve like fashion as the options goes 

more ITM or OTM. Strategy six is another six-option strategy. It includes every 4th deferred 

position. The largest positions are taken in the ITM options while lesser positions are allocated to 

the ATM and OTM. The hedge ratio is -25% which seems like a “Texas hedge.” In this case, 

taking a net short position in futures and options while already having a short cash position. 

However, the delta and gamma are both approximately zero. The last strategy is the short 

butterfly spread. This would be somewhere between an iron butterfly and a butterfly spread. The 

ATM position nets out to a -95% in the ATM put while the OTM position are about half that and 

positive. This strategy is also delta neutral but has a negative gamma. This makes perfect sense 

since no price movement is the best-case scenario for a short butterfly strategy. The most 

favorable strategy, according to the table, is strategy four. This creates a portfolio that is nearly 

delta and gamma neutral. It’s close to vega and theta neutral as well. Strategy six is the next best 

performing followed by the collar strategy and the futures hedge. The results would be similar to 

a variance minimization objective since the ARAP is equal to one. It makes sense that the least 

risky portfolio would be approximately delta, gamma, vega, nd theta neutral. It’s difficult to tell 

whether having six different option positions within one portfolio is worth the time to manage it. 

The collar performed very well and only has two option positions within it. If there’s one take 

away from this table, a portfolio that is delta and gamma neutral are the best for highly risk 

averse hedgers. Vega and theta neutral would be bonuses. The more options that are included in 

a portfolio, the easier it is to achieve neutrality in the greeks. Tables 5.4 and 5.5 show the 
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difference risk aversion has on the utility function. In the table 5.4, the optimal positions are 

nearly identical to the results in table 5.2. The objective functions also display the same results. 

Thus, table 5.2 exhibits extremely high-risk aversion. An ARAP of 1 in an E-V framework 

approximately show the same results as a minimization of the variance. 

Table 5.4: E-V High Risk Aversion 

 

An ARAP of 1 and .00001 display the same results and reinforces this fact. The next 

table shows the exact same strategies but with low risk aversion. The ARAP is set to .0000001 

for table 5.5. First, notice how the basis allocation drops form the nineties to the seventies. Part 

of the reason is because 55% of the underlying basis price change distribution is below zero 

percent. Meaning that the data analyzed show a negative move is basis values over a 28-week 

time frame 55% of the time. A risk tolerant buyer is likely to not lock in as many basis contracts 

if the probability of the basis moving lower is greater than 50%. This makes prices cheaper when 

the time comes to buy the physical beans. This is still an E-V optimization which means the right 

tail of the cost function is still counted as “risk.” 

 

Hedge PNW Futures
PNW 

Basis
ITMC4 ATMC4 OTMC4 E-V CVaR

Initial 

Margin
Delta Gamma

Unhedged (100%) (280,392) (13,388) 0 -0.98 0.00%

Futures (100%) 100% (32,414) (5,216) 1,125 0.00 0.00%

F & B (100%) 100% 100% (22,844) (4,460) 1,125 0.00 0.00%

F & B (100%) 99% 93% (21,996) (4,381) 1,112 0.00 0.00%

ITMC4 (100%) 100% 100% (74,737) (5,362) 4,322 -0.13 0.20%

ITMC4 (100%) 99% 129% (62,543) (5,159) 5,562 -0.02 0.26%

ATMC4 (100%) 100% 100% (126,700) (6,453) 2,064 -0.25 0.26%

ATMC4 (100%) 100% 157% (102,342) (6,217) 3,242 -0.09 0.40%

OTMC4 (100%) 100% 100% (187,770) (8,354) 865 -0.37 0.21%

OTMC4 (100%) 96% 198% (156,591) (8,192) 1,716 -0.27 0.41%

ARAP = .00001 * * *



 

 92  

Table 5.5: E-V Low Risk Aversion 

 

The next piece to look at are the positions. The futures position increased to over 100%. 

This was probably due to a slight upward bias within the 4th deferred futures contract. The call 

position also increased across the board. The optimal ITM, ATM, and OTM call positions 

increased by 33%, 43%, and 55% respectively. The main change is the preferred portfolio 

changes from a futures hedge to an option hedge. Specifically, the ITM option was the best 

performing according to E-V. The optimized ITM strategy has the highest value for E-V. It was 

followed by the ATM strategy and the futures hedge. However, the ITM strategy also requires 

the most initial margin since ITM options are expensive to buy. Keep in mind the deltas of all the 

portfolios. The hedge ratios all increased which means the delta increased as well. Each of the 

deltas were pushed to slightly positive territory except for the OTM call. This follows the pattern 

of moving toward a delta neutral portfolio. The optimized ATM strategy is perfectly “delta 

hedged” and nets out to a perfect straddle position for the hedger. The gamma of the portfolios 

also increases because the position sizes increased. The cash and futures positions are gamma 

neutral since the deltas of each do not change individually under any circumstances. They are 

equal to one or negative one minus a slight time value component. This is why the delta is -.98 

and .98 instead. A large move in prices either way benefit, or at least won’t hurt, the hedger in a 

Hedge PNW Futures
PNW 

Basis
ITMC4 ATMC4 OTMC4 E-V CVaR

Initial 

Margin
Delta Gamma

Unhedged (100%) (2,749) (13,388) - -0.98 0.00%

Futures (100%) 100% (159) (5,216) 1,125 0.00 0.00%

F & B (100%) 100% 100% (100) (4,460) 1,125 0.00 0.00%

F & B (100%) 103% 72% (98) (4,430) 1,158 0.01 0.00%

ITMC4 (100%) 100% 100% (205) (5,362) 4,322 -0.13 0.20%

ITMC4 (100%) 71% 152% 127 (5,598) 6,560 0.04 0.30%

ATMC4 (100%) 100% 100% (637) (6,453) 2,064 -0.25 0.26%

ATMC4 (100%) 78% 200% 25 (6,604) 4,127 -0.01 0.51%

OTMC4 (100%) 100% 100% (1,533) (8,354) 865 -0.37 0.21%

OTMC4 (100%) 74% 253% (879) (8,438) 2,192 -0.10 0.52%

ARAP = .0000001 * * *
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gamma positive portfolio. It is easiest to interpret gamma relative to another portfolio’s gamma 

value.  

 Tables 5.6 and 5.7 continue the comparison of risk aversion for the E-V function in 

alternative strategies. Strategy one in table 5.6 behaves in an equivalent manner to the same 

strategy in 5.3. When risk aversion decreases, the allocations change drastically but delta and 

gamma stay approximately the same. The large ATM position could be because the mean profit 

(cost) of that options is slightly higher than the ITM. 

Table 5.6: E-V Alternatives with High Risk Aversion 

 

Table 5.7: E-V Alternatives with Low Risk Aversion 

 

Nearly a perfect collar can be seen in table 5.6 for ATM. The OTM collar was also close 

to equal although the positions were 50% larger. In table 5.7, both collars switch to straddles. In 

table 5.7, the ATM straddle is nearly a perfect straddle. A perfect straddle would have a call 

position of 200% and no put position for a portfolio that already contains a short position in the 

underlying. It’s a delta neutral strategy with highly positive gamma. The strategy losses if prices 

stay the same and wins if prices move substantially in either direction. The OTM version for the 

Hedge PNW Futures
PNW 

Basis
ITMC4 ATMC4 OTMC4 OTMP4 ATMP4 E-V CVaR

Initial 

Margin
Delta Gamma

1 All Call (100%) 100% 92% 206% (209%) 293 (6,141) 8,247 0.02 0.07%

2 Collar ATM4 (100%) 61% 202% (4%) 26 (6,630) 4,176 0.00 0.51% *

3 Collar OTM4 (100%) 60% 242% (38%) (807) (8,127) 6,799 -0.08 0.42% *

4 Strangle 4th (100%) 61% 117% 51% 167% (153%) (1) (5,685) 4,481 0.02 0.06% *

ARAP = .00001 * * *

Hedge PNW Futures
PNW 

Basis
ITMC4 ATMC4 OTMC4 OTMP4 ATMP4 E-V CVaR

Initial 

Margin
Delta Gamma

1 All Call (100%) 52% 200% (148%) 76% (58,077) (5,350) 9,297 -0.01 0.08%

2 Collar ATM4 (100%) 54% 97% (100%) (25,428) (5,065) 4,025 0.00 -0.03% *

3 Collar OTM4 (100%) 65% 147% (151%) (50,195) (7,198) 6,041 -0.07 -0.02% *

4 Strangle 4th (100%) 57% 48% 67% 31% (25,715) (5,314) 4,248 0.01 -0.12% *

ARAP = .00001 * * *
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risk tolerant hedger did something similar. The hedge ratio is still net long about 200% but larger 

positions were taken in both options. Each OTM collar / straddle has a slightly negative delta. 

Besides the graph of the payoff function, one can tell if the strategy is a collar or straddle by 

gamma. A collar has a gamma near zero while a straddle will have a moderate to highly positive 

gamma value. 

The short butterfly strategy in table 5.6 created a net short ATM position equal to 83% 

while the OTM positions were substantially lower than 100%. Table 5.7 shows a strangle for the 

same strategy with a higher allocation to the ATM put than the call. The OTM put has an 

extremely large position compared to the OTM put. This could be a product of the 

backwardation bias in the model. The same method to differentiate between a collar and straddle 

can be used for a short butterfly and strangle. 

The best performing strategy in table 5.6 was the short butterfly by a thin margin over the 

ATM collar. However, the futures strategy in table 5.4 still performed slightly better than each of 

these. The first strategy in table 5.7 was the best performing followed by the ATM straddle and 

OTM strangle. The All call strategy was the best performing strategy overall considering table 

5.5 as well.  

For a highly risk averse hedger, futures is the best hedge. A collar and short butterfly 

work well too. A hedger who is more tolerant to risk prefers the “all call” strategy. ITM married 

call, ATM straddle, and ATM married call would all be considered good hedges. A risk tolerant 

hedger prefers a non-neutral gamma portfolio while a risk averse one prefers gamma neutral. 

5.2.3. CVaR Maximization 

The next set of results are from a maximization of the CVaR objective function. This is 

used instead of variance because a hedger only cares about downside risk. Therefore, it’s more 
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appropriate to do a semivariance maximization. Table 5.8 shows these results. First, notice again 

how the amount of basis hedged is predominantly around 70 to 80% for most strategies. Also, 

the same pattern for the married call strategy emerges in this table that match the E-V tables 

above. The married call strategies are displayed as strategies three, four, and five. The optimal 

ITM allocation is less than the ATM and OTM and also performs better according to CVaR. The 

same pattern has been observed above. 

The next set of strategies are the four collar simulations. ATM and OTM for the 2nd and 

4th deferred options were used. The best performing was the ATM 2nd deferred collar followed 

by the ATM 4th deferred. The 2nd and 4th deferred OTM collar strategies followed in the same 

order. It’s not surprising that the ATM collars perform better than the OTM ones but why do the 

2nd deferred collars perform better than the 4th deferred? Part of the reason has to do with one of 

the potential shortcomings of the study. The left tails of the spreads between contracts couldn’t 

be modeled in the same fashion the data was dressed in. This is discussed further in chapter six. 

The second answer comes from the table in appendix 1A. There, some statistics are listed 

describing the underlying characteristics of each futures and options contract. The mean in the 

table assumes a position equal to 100%. Notice that the means are greater for the 2nd deferred call 

options relative to the 4th deferred. The probability that the profit from each hedged position is 

listed below the mean. Those probabilities are also higher for the 2nd deferred options. The same 

pattern can be seen moving from the 4th deferred call to the 6th deferred. However, the mean in 

the 6th deferred put options are slightly higher than they are for the 4th deferred.  

Appendix table 1A also displays mean prices for every security in the model on the first line, 

their standard deviations, the mean implied volatility for each option and its standard deviation. 

To be clear the standard deviation in the fourth line down is the standard deviation of the implied 
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volatility distribution. This gives slightly better insight into the deviations from the mean in those 

distributions. Lastly the profit (cost) of the hedge is This is the case for ITM, ATM, and OTM. 

The means profit (cost) of the 100% position displays a more negative value in all the ATM calls 

versus the ITM and OTM. One other interesting piece is the volatility is highest in the 4th 

deferred options. Intuitively, the closest options to expiration should have the highest volatility. 

Vega is amplified by the amount of time value left in an option. This would be an abnormal 

market scenario. The volatility distributions become wider for 2nd and 6th deferred options 

relative to 4th as is seen by the standard deviation for volatility. Lastly, the price of the options 

should increase as they move farther from maturity given extra time value. Although this is 

barely the case for the OTM calls, the ITM and ATM mean call prices are smaller in the 6th 

deferred month than the 4th deferred. This would be another abnormal scenario.  

 The puts have some of the same characteristics and some different. First, there’s not 

much of a discrepancy between the probability the option expires ITM at different dates of   

expiration. Second, the volatility eases as maturity is farther out. This is what’s supposed to 

happen. The standard deviation of those volatilities shows the same pattern as the call. The ATM 

has small deviations from the mean relative to ITM or OTM. The mean prices are larger as DTE 

(days to expiration) increases. This is also how option chains are supposed to work in the real 

world. 
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Table 5.8: CVaR  

 

 

Hedge PNW Futures PNW Basis ITMC2 ATMC2 OTMC2 ITMC4 ATMC4 OTMC4 ITMC6 ATMC6 OTMC6 OTMP2 ATMP2 ITMP2 OTMP4 ATMP4
Hedge 

Ratio
CVaR

Initial 

Margin

1 Unhedged (100%) 0% (13,091) -

2 F & B (100%) 99% 78% 99% (4,383) -

3 ITMC4 (100%) 77% 116% 116% (5,094) 5,014

4 ATMC4 (100%) 75% 135% 135% (6,134) -

5 OTMC4 (100%) 68% 144% 144% (8,082) 1,246

6 Collar OTM2 (100%) 77% 231% (108%) 123% (5,157) 4,298 *

7 Collar ATM2 (100%) 76% 126% (81%) 45% (2,653) 1,922 *

8 Collar OTM4 (100%) 77% 131% (144%) (13%) (7,169) 6,041 *

9 Collar ATM4 (100%) 98% 109% (92%) 17% (4,934) 3,788 *

10 Straddle (Turns to Collar)

11 Strangle 2nd (100%) 73% 99% 34% 98% (111%) 120% (2,841) 2,120 *

12 Strangle 4th (100%) 71% 101% 94% 63% (98%) 160% (5,559) 4,418 *

13 All ITM Call (100%) 87% 146% (58%) 26% 114% (2,486) 1,831 *

14 All ATM Call (100%) 87% 173% (76%) 37% 134% (3,036) 2,331 *

15 All OTM Call (100%) 99% 197% (115%) 117% 199% (5,701) 4,892 *

* *
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Table 5.8.1: Supplemental Information to table 5.8 

 

In table 5.8, the CVaR results show the call position in the collar decrease moving from 

2nd deferred to 4th while the puts increase the negative position (selling puts) resulting in a 

smaller hedge ratio. The reasoning for this is along the same lines as the previous page. The 2nd 

deferred calls have a higher probability of profitability than the 4th deferred. Also observe that 

the gammas of the 4th deferred collars are approximately zero from table 5.8.1 which provides 

supplemental information to table 5.8. This reinforces that the idea that a gamma neutral 

portfolio is also less “risky” than not.  

 The next two strategies listed in the table are the two strangles. First, it’s important to 

point out the options involved for a strangle are the same as a short butterfly. When optimizing 

for CVaR, a strangle performs better than a short butterfly. This isn’t shown because the same 

four options are used for a strangle and short butterfly. If the optimizer sells ATM calls and puts, 

the strategy is a short butterfly. If instead it forms something closer to an ATM collar between 

Hedge Cash Basis Futures Options Delta Gamma Vega Theta

1 Unhedged 100%    -0.98 0.00% - -

2 F & B 36% 28% 36%  0.00 0.00% - -

3 ITMC4 34% 26%  40% -0.07 0.23% 125,395 (20,637)

4 ATMC4 32% 24%  44% -0.14 0.35% 205,221 (33,126)

5 OTMC4 32% 22%  46% -0.25 0.30% 188,504 (30,946)

6 Collar OTM2 19% 15%  66% -0.11 0.31% 191,602 (70,843)

7 Collar ATM2 26% 20%  54% 0.01 0.19% 70,577 (25,484)

8 Collar OTM4 22% 17%  61% -0.08 -0.04% (26,197) 1,106

9 Collar ATM4 25% 25%  50% 0.01 0.02% 38,256 (8,628)

10 Straddle (Turns to Collar)

11 Strangle 2nd 19% 14%  66% 0.00 0.04% 26,758 (11,267)

12 Strangle 4th 19% 13%  68% -0.20 0.07% 123,390 (22,380)

13 All ITM Call 24% 21%  55% 0.00 0.19% 73,388 (30,554)

14 All ATM Call 21% 18%  60% -0.14 0.40% 180,109 (70,421)

15 All OTM Call 16% 16%  68% -0.13 0.22% 207,934 (58,830)
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those two positions, a strangle is formed. In both cases the OTM positions should be positive. 

The 2nd deferred strategy performs better than the 4th deferred. This time when moving from the 

2nd to 4th the net HR increases rather than decreases as was observed above. In actuality, the 

positions are very similar besides the OTM call and ATM put. There’s no identifiable reason for 

why the optimizer made those changes. 

 Lastly in table 5.8, the ITM, ATM, and OTM are grouped together. The closer to 

expiration option portfolio performed better than the further deferred as has been observed so far. 

The net HR also went up following the previous results. The last similarity is the large position 

in the ITM options relative to the ATM and OTM. The interesting point about these three 

strategies is a negative 4th deferred position in all three. Recall form table 5.3 that similar type 

allocations were observed. There’s no identifiable rational for this behavior. If the 4th deferred 

position displayed a larger negative, it would characterize a butterfly spread. However, since it’s 

significantly smaller than the ITM position, all three of these strategies net to a straddle like 

payoff function with higher profitability potential if futures prices go down rather than up. 

Although, it performs better than a standard married call strategy, the initial margin is more 

expensive and maybe less attractive in practice. Here’s an example of the ATM strategy: 
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Figure 5.1: Max CVaR ATM All Call Payoff Function 
  

One attractive aspect of optimizing for CVaR is risk preferences do not matter. The 

downfall is profit (cost) is not accounted for. So far, the optimal positions and strategies have 

changed when risk preferences changed and that will continue to be the case. Overall, both 

strategies that included 2nd deferred options instead of 4th deferred performed the best. The next 

best performing strategies were 13, 14, and 15. All three are highly gamma positive. The ITM 

version is delta neutral while the ATM an OTM have a negative delta. 

 Out of the more practical strategies, the collars performed slightly better than the 

strangles with ATM collar displaying more attractiveness than OTM. According to the results in 

table 5.8, excluding the 2nd deferred strategies, the all call strategies are the best. If capital for 

margins are an issue, the collar is the best hedge which is delta and gamma neutral.  

5.2.4. Mean-CVaR  

The last objective function with linear assumptions built into the correlations is E-CVaR. 

Two tables are shown. Table 5.9 reflects high risk aversion with the ARAP equal to ten. The 
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parameter in table 5.10 is equal to two and represents low risk aversion or risk tolerance. The 

parameters for high and low risk aversion are vastly different between E-CVaR and E-V. The 

reason being that the absolute value of CVaR is much smaller than the absolute value of the 

variance. Therefore, after some testing, two is used for high risk tolerance and ten is used for 

high risk aversion.  

Table 5.9: Mean-CVaR Risk Averse  

 

Table 5.9 shows equivalent results to what has been seen so far for the married call 

positions. Strategy six follows table 5.3 with similar allocations. Allocations for ITM are greater 

than the ATM and OTM with the OTM position being negative. This results in a hedge ratio at 

nearly 100% while still staying more gamma neutral than would be a single married call position.  

The collar shows a large bias towards the long call versus short position. The HR is at 

72%. This is a drastic change from the CVaR or E-V optimizations. The delta of the portfolio is 

neutral with a moderately positive gamma. The OTM collar had a hedge ratio similar to the 

CVaR objective but with a larger position in the long call than short put. The strategy is slightly 

delta negative and is gamma neutral. Lastly, the strangle is nearly a perfect strangle with 100% 

allocated to the OTM options as well as the ATM call with a -100% to the ATM put. This give 

the hedger delta neutrality with a slightly negative gamma. 

Hedge PNW Futures
PNW 

Basis
ITMC4 ATMC4 OTMC4 OTMP4 ATMP4

Hedge 

Ratio

Mean-

CVaR

Initial 

Margin
Delta Gamma Vega Theta

1 Unhedged (100%) 0% (65,408) - -0.98 0.00% - -

2 F & B (100%) 99% 87% 99% (21,752) 1,119 0.00 0.00% - -

3 ITMC4 (100%) 88% 117% 117% (25,589) 5,057 -0.07 0.09% 127,567 (20,995)

4 ATMC4 (100%) 86% 139% 139% (29,805) 2,867 -0.13 0.15% 217,423 (35,096)

5 OTMC4 (100%) 76% 158% 158% (39,871) 1,365 -0.23 0.15% 226,342 (37,158)

6 All Call 4 (100%) 71% 113% 16% (31%) 98% (24,605) 5,224 -0.07 0.07% 113,198 (18,624)

7 Collar ATM4 (100%) 48% 132% (60%) 72% (26,369) 5,307 -0.01 0.10% 156,168 (26,264) *

8 Collar OTM4 (100%) 72% 157% (139%) 18% (36,606) 7,155 -0.07 0.02% 53,892 (11,825) *

9 Strangle OTM4 (100%) 86% 98% 89% 94% (100%) 181% (27,499) 5,639 0.00 0.05% 147,427 (25,735) *

ARAP = 10 * *
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Table 5.10: Mean-CVaR Risk Tolerant 

 

Moving to table 5.10, the married call HRs are similar to what’s been demonstrated. 

Lower risk aversion makes for higher hedge ratios. Skipping to the collars, the ATM is very 

similar to the risk averse strategy. A 10% jump in the hedge ratio is experienced. The OTM 

collar changes quite drastically. It actually “blows up” into an ultra-long volatility strangle like 

strategy. The reason being the right tail is so long in this case that even though the chances of 

this strategy being profitable are only about 39%, the mean is significantly positive and 

outweighs the risk in that objective function. A graph of the cost function is shown below.  

Figure 5.2: Ultra-Long Volatility Cost Distribution 
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Hedge PNW Futures
PNW 

Basis
ITMC4 ATMC4 OTMC4 OTMP4 ATMP4

Hedge 

Ratio

Mean-

CVaR

Initial 

Margin
Delta Gamma Vega Theta

1 Unhedged (100%) (13,045) - -0.98 0.00% - -

2 F & B (100%) 100% 82% 100% (4,244) 1,125 0.00 0.00% - -

3 ITMC4 (100%) 87% 121% 121% (4,436) 5,250 -0.05 0.24% 137,517 (22,632)

4 ATMC4 (100%) 82% 158% 158% (5,259) 3,264 -0.09 0.41% 281,771 (45,483)

5 OTMC4 (100%) 76% 186% 186% (7,552) 1,609 -0.18 0.39% 314,356 (51,607)

6 All Call 4 (100%) 86% 86% 65% (19%) 132% (4,508) 5,087 -0.04 0.15% 114,397 (18,676)

7 Collar ATM4 (100%) 86% 142% (60%) 82% (4,996) (4,084) 0.00 0.20% 185,869 (31,038) *

8 Collar OTM4 (100%) 75% 212% 300% 512% (7,046) (9,160) -0.19 0.58% 1,191,964 (181,859) *

9 Strangle OTM4 (100%) 73% 110% 12% 300% (80%) 342% (4,301) (5,804) -0.12 0.43% 849,410 (127,322) *

ARAP = 2 * *
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This strategy will cost the hedger a little under $4 M in margin initially. It still has a 

negative delta because a downward price move would be much more beneficial than an upward 

one. The gamma is highly positive which isn’t surprising considering the allocations observed. 

Also notice the slightly higher OTM put position versus the call. This may be because the 

forward curve in this study is in backwardation according to the means of the distributions. The 

last strategy is the strangle. The OTMP4 position also blows up to the maximum position 

allowed. A negligible position is taken in the OTMC4 while the ATM options form a slightly 

delta positive collar. The payoff function for this strategy is very similar to a long put position. 

The cash position is nearly hedged with the ATM options and the OTMP4 provides a large 

benefit with a downward price move.  

The futures hedge is the best strategy according to table 5.10. The same result can be 

observed for 5.9. Where this simulation differs slightly is the 2nd through 6th best performing 

strategies. This includes the ITM married call, ATM collar, the all call, and strangle. However, 

the differences are minimal and not worth going over in detail. A rank table is provided to the 

right in descending order to illustrate this.  

Table 5.11: CVaR Rank 

 

Hedge 5.8 5.7

Unhedged 9 9

F & B 1 1

ITMC4 3 3

ATMC4 6 6

OTMC4 8 8

All Call 4 4 2

Collar ATM4 5 4

Collar OTM4 7 7

Strangle OTM4 2 5
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The collar, strangle, short butterfly and all call strategies all performed similar or better 

than a futures hedge at some point in this study. What’s interesting is they are all used in 

different environments. The ATM collar is used when the hedger is not willing to take any price 

risk. A strangle is deployed when a large price move is expected in either direction. The short 

butterfly is used in the exact opposite scenario. That strategy performs best in an environment 

where prices don’t change, and volatility stays to a minimum. 

Comparing the two tables, the basis position moves slightly lower as risk aversion pulls 

back. This is similar to what happened with the E-V results. The results for the married call 

strategies are also similar. The position sizes in each table are lower for E-CVaR relative to E-V. 

It’s difficult to compare the high-risk aversion because of the different scales but it is appropriate 

to compare the low risk aversion tables. The difference between the married call strategies in E-

V and E-CVaR for ITM, ATM, and OTM are 12%, 18%, and 42% respectively. The reason 

being the right tail of the return distribution is not factored into E-CVaR like it is in E-V. The 

options in the portfolio amplify that right tail to extreme levels because options can be very 

lucrative during a big price swing if one is on the right side of the trade. In general, the E-V 

optimizer sees this as more risk and hedges more accordingly. The E-CVaR only considers the 

downside risk which does not have a long left tail. The figure illustrates this result: 
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Figure 5.3: 4th Deferred Profit (Cost) Distributions 
 

The figure displays the profit distributions assuming 100% position in each of the 

options. Specifically, notice the max for all of these distributions varies between $17 M and $21 

M while the minimum is between -$5.1 M for an ITM option and -$2 M for OTM one. Also, pay 

attention to the high point on the “left tail.” The ITM has the highest minimum because it’s 

already in the money and most likely expires profitable. However, the right to buy an ITM option 

is expensive and the reason why it displays the highest loss compared to ATM and ITM. Buying 

an OTM option has the least risk of loss but the probability it expires in the money is 

substantially less than an ITM or ATM. The left tail of the green column (OTM) goes up to eight 

on the y axis. To get a better look at the rest of each distribution, it’s cut off at .46.  

 Comparison between E-V and Mean-CVaR shows higher allocations to the married call 

strategies for E-V in both risk scenarios. Basis HRs were near 100% for E-V but much lower for 

E-CVaR. The ATM collar resulted in a near perfect collar in E-V versus higher allocation to the 
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call and lower to the put for E-CVaR. The strategy for E-CVaR actually nets out to a slight 

straddle as can be seen by a moderately positive gamma. The ATM collars for E-CVaR showed 

similar allocations to each other. They were right “between” the risk averse and risk tolerant 

strategies for E-V. The E-CVaR strategies could be considered a hybrid between a collar and 

strangle. The OTM collars for high risk aversion have similar allocations. The risk tolerant 

hedger would prefer a straddle in E-V and an “ultra-strangle” for E-CVaR. The OTM put 

position was -38% for E-V versus 300% for E-CVaR. The E-V strangle allocations were about 

half of what they were for E-CVaR in the risk averse scenario. The E-CVaR case was nearly a 

perfect strangle. The ATM allocations flipped moving from E-V to E-CVaR. A net short position 

by 36% was taken in E-V versus a net long position of 30% in E-CVaR. The behavior for the 

risk tolerant hedger was to decrease the OTM call position and increase the OTM put in both E-

V and E-CVaR. The E-CVaR objective shows a much more drastic shift compared to E-V. The 

OTM put position for E-CVaR is double what it is for E-V while the OTM call position is almost 

non-existent relative to E-V. 

 This last set of result comparisons attempts to compare low risk aversion against one 

another for two different objective functions. It is difficult to tell whether both respective ARAPs 

involve the same amount of risk aversion (.0000001 and 2 for E-V and E-CVaR respectively). 

Generally, the E-V objectives are more apt to buy calls than E-CVaR. E-CVaR is also more apt 

to buy puts. Notice the lower delta values in table 5.8 versus 5.7. While both functions prefer 

delta neutrality, the E-V results show more neutrality relative to E-CVaR. The reason being is 

the E-V objective won’t take one-sides bets. It sees a long right tail in the profit (cost) 

distribution as risk. Therefore, it balances the payoff functions to hedge where a price swing in 

one direction is not any more beneficial than it would be the other direction. 
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5.2.5. Mean-CVaR Copula  

 The last set of results uses a t copula as the joint distribution instead of a joint bivariate 

normal distribution to relate the variables included. Tables 5.12 and 5.13 illustrate the results. It 

shows naïve hedges for E-CVaR versus the same hedges assuming a student t copula correlation. 

Table 5.11 shows the results for E-CVaR and 5.13 shows it with correlations defined by a t 

copula.  

Table 5.12: Mean-CVaR Naïve Hedging Strategies 

 

Table 5.13: Mean-CVaR Copula Naïve Hedging Strategies 

 

The first nuance of the two tables is the copula makes the mean returns (cost) of the 

hedges more positive or negative relative to table 5.12. The t copula has fatter tails than a normal 

distribution which explains why the means are amplified in table 5.12. Measuring by CVaR, the 

unhedged, married calls, and OTM collar are all less (more negative) than their parallel copula 

Hedge PNW Futures
PNW 

Basis
ITMC4 ATMC4 OTMC4 OTMP4 ATMP4

Hedge 

Ratio

Mean-

CVaR

Mean 

Return
CVaR

Initial 

Margin

1 Unhedged (100%) 0% (61,081)$ 51$         (12,226)$ -$      

2 F & B (100%) 100% 100% 100% (24,640)$ 127$       (4,953)$   1,125$  

3 ITMC4 (100%) 100% 100% 100% (24,497)$ 767$       (5,053)$   4,322$  

4 ATMC4 (100%) 100% 100% 100% (29,029)$ 843$       (5,974)$   2,064$  

5 OTMC4 (100%) 100% 100% 100% (38,098)$ 516$       (7,723)$   865$     

6 Collar ATM4 (100%) 100% 100% (100%) 0% (28,128)$ (471)$     (5,531)$   4,232$  *

7 Collar OTM4 (100%) 100% 100% (100%) 0% (35,936)$ (665)$     (7,054)$   5,904$  *

8 Strangle OTM4 (100%) 100% 100% 100% 100% (100%) 200% (27,392)$ 1,220$   (5,722)$   4,441$  *

9 Short Butterfly 4th (100%) 100% 0% 100% 100% (200%) 0% (32,948)$ (931)$     (6,403)$   5,048$  *

ARAP = 10 * * *

Hedge PNW Futures
PNW 

Basis
ITMC4 ATMC4 OTMC4 OTMP4 ATMP4

Hedge 

Ratio

Mean-

CVaR

Mean 

Return
CVaR

Initial 

Margin

1 Unhedged (100%)        0% (65,408)$ 45$         (13,091)$ -$      

2 F & B (100%) 100% 100%      100% (21,865)$ 127$       (4,398)$   1,125$  

3 ITMC4 (100%)  100% 100%     100% (25,735)$ 533$       (5,254)$   4,322$  

4 ATMC4 (100%)  100%  100%    100% (31,675)$ 590$       (6,453)$   2,064$  

5 OTMC4 (100%)  100%   100%   100% (41,520)$ 303$       (8,365)$   865$     

6 Collar ATM4 (100%)  100%  100%   (100%) 0% (25,344)$ (472)$     (4,974)$   3,871$  *

7 Collar OTM4 (100%)  100%   100% (100%)  0% (38,997)$ (644)$     (7,671)$   6,518$  *

8 Strangle OTM4 (100%)  100%  100% 100% 100% (100%) 200% (28,065)$ 782$       (5,770)$   4,551$  *

9 Short Butterfly 4th (100%)  100%  0% 100% 100% (200%) 0% (29,338)$ (873)$     (5,693)$   4,612$  *

ARAP = 10 * * *
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strategy. The Mean-CVaR column has lower values in the unhedged, F&B, ATM collar 

strategies. Six out of ten strategies have a lower E-CVaR objective in table 5.12. Therefore, no 

determination can be made whether copulas over or under estimate risk. The portfolio allocations 

by security type and greeks of the portfolio is located in appendix table 2A for reference. 

The previous set of results displayed the naïve hedges for E-CVaR versus E-CVaR 

copula. It demonstrated the slight difference a copula makes. The next set of results displays the 

optimized tables for Mean-CVaR copula with different levels of risk tolerance. Tables 5.14 and 

5.15 have the same strategies displayed with the addition of an all call strategy. The 4th deferred 

short butterfly isn’t displayed since it’s the same as the strangle with different allocations.  

First the futures position is very different than what has been seen previously. The 

optimal futures position moves lower in each table. This is more in line with related literature in 

chapter 2 that generally concludes a minimum and/or optimal futures HR is less than one to one.  

Table 5.14: Mean-CVaR Copula Optimized Strategies (10) 

 

Hedge PNW Futures
PNW 

Basis
ITMC4 ATMC4 OTMC4 OTMP4 ATMP4

Hedge 

Ratio

Mean-

CVaR
CVaR

Initial 

Margin
Delta Gamma

1 Unhedged (100%) 0% (61,081) (12,226) - -0.98 0.00%

2 F & B (100%) 87% 99% 87% (22,460) (4,514) 976 -0.07 0.00%

3 ITMC4 (100%) 100% 105% 105% (24,070) (4,979) 4,552 -0.11 0.21%

4 ATMC4 (100%) 100% 131% 132% (27,880) (5,801) 2,717 -0.15 0.34%

5 OTMC4 (100%) 100% 160% 160% (36,216) (7,412) 1,387 -0.22 0.33%

6 All Call 4 (100%) 100% 110% (15%) 9% 104% (24,112) (4,979) 4,841 -0.10 0.18%

7 Collar ATM4 (100%) 86% 107% (72%) 35% (24,836) (4,959) 3,806 -0.04 0.08% *

8 Collar OTM4 (100%) 99% 161% (97%) 64% (34,242) (6,788) 5,542 -0.10 0.13% *

9 Strangle OTM4 (100%) 100% 66% 101% 81% (104%) 144% (25,967) (5,330) 4,207 -0.01 0.04% *

ARAP = 10 * * *
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Table 5.15: Mean-CVaR Copula Optimized Strategies (2) 

 

The basis HR in the risk tolerant table (5.15) is higher than what has been seen so far. It’s 

been in the 70 to 80% HR range and is now 90 – 100%. Comparing the Mean-CVaR to the 

Mean-CVaR with copula for the risk averse hedger between tables 5.9 and 5.14, the married call 

strategies generally follow the same pattern as above. The optimal ITM allocation are higher 

than ATM and OTM and also is a better hedge according to E-CVaR copula. The allocations are 

similar to E-CVaR (table 5.9). The ITM and ATM allocation dropped 12% and 8% respectively 

while the OTM allocation was approximately the same.  

The collar strategies behaved differently than anticipated. The HR dropped significantly 

by decreasing the call allocation and increasing the short put slightly. The opposite happened for 

the OTM collar. The call position increased slightly while the short put position decreased by 

42%. The allocations for the strangle and short butterfly are similar to E-CVaR with spearman 

correlation. The deltas of the E-CVaR copula portfolios are slightly more negative for copula 

correlation. Gamma and vega are positive across the board and theta is negative. That 

information is available in appendix table 3A. 

For the risk tolerant hedger, tables 5.10 and 5.15 are compared. The married call 

positions are again less by about 10% for ITM and ATM but the OTM position shot up 56%. The 

ATM collar HR increased substantially after the optimized short call position dropped 

Hedge PNW Futures
PNW 

Basis
ITMC4 ATMC4 OTMC4 OTMP4 ATMP4

Hedge 

Ratio

Mean-

CVaR
CVaR

Initial 

Margin
Delta Gamma

1 Unhedged (100%) 0% (12,176) (12,226) 0 -0.98 0.00%

2 F & B (100%) 86% 100% 86% (4,402) (4,513) 972 -0.07 0.00%

3 ITMC4 (100%) 86% 112% 112% (4,188) (5,066) 4,830 -0.08 0.22%

4 ATMC4 (100%) 100% 149% 149% (4,700) (5,953) 3,075 -0.11 0.38%

5 OTMC4 (100%) 100% 242% 242% (6,433) (7,704) 2,094 -0.11 0.50%

6 All Call 4 (100%) 100% 78% 63% (29%) 112% (4,126) (5,118) 4,680 -0.07 0.12%

7 Collar ATM4 (100%) 93% 145% (23%) 122% (4,621) (5,562) 4,302 -0.06 0.31% *

8 Collar OTM4 (100%) 100% 240% 300% 540% (5,294) (10,067) 8,639 -0.08 0.60% *

9 Strangle OTM4 (100%) 96% 111% 100% 121% (63%) 269% (4,208) (6,290) 5,049 -0.03 0.19% *

ARAP = 2 * * *



 

110 
 

significantly. This increases delta to zero and dropped gamma by .11%. The OTM allocations 

were similar to table 5.10. Lastly, the strangle doesn’t blow up with the copula. The positions are 

similar to a perfect strangle with a larger position in the ATM call then put. 

One other result worth pointing out is the allocation to options increases as risk aversion 

increases. Tables 5.16 show the ratio of options as a percentage of the overall portfolio between 

high risk aversion and low risk aversion with an E-CVaR objective. This shouldn’t be a surprise, 

but the allocation increases 13% on average with an E-CVaR copula function versus a 7% 

average increase in the same trials with spearman correlation. Table 5.16 provides the ratio of 

option allocation for each strategy. Supplemental information is provided in appendix tables A3 

and A4.  

Table 5.16: Options Allocation 

 

5.3. Futures versus Synthetic Positions 

In the results so far, futures are not paired up with options in any strategy. Recall 

discussion about global maximum versus local maximum. When a futures contract is paired with 

an ATM collar position, both strategies have the same payoff function. There is little to no 

discrepancy between a 25% futures and 75% collar position versus a 75% futures and 25% collar 

Hedge Spearman Copula

ITMC4 1.03 1.09

ATMC4 1.09 1.08

OTMC4 1.08 1.23

All Call 4 0.99 1.15

Collar ATM4 0.92 0.95

Collar OTM4 1.18 1.29

Strangle OTM4 1.11 1.05

Average 1.06 1.12
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position when measured by E-V or Mean-CVaR. The one difference would be volatility. In a 

futures position, the only variable that matters is price. With a long collar position, volatility has 

a significant impact on the value of that position. For example, imagine taking an ATM collar 

position when volatility is abnormally low in the market. Seven months later or prior, whenever 

the hedge is unwound, volatility jumps in the market. The hedger is able to unwind their option 

position at a profit, mainly because volatility is high in the market. In the same scenario a futures 

hedge would not provide that volatility premium. However, they wouldn’t sacrifice any option 

premium if volatility stayed the same or dropped.  

Table 5.17 shows the difference between the objectives for three different strategies 

where a long futures and long synthetic futures position (ATM collar) can be interchanged. The 

table displays values for E-V, CVaR, and Mean-CVaR at the two levels of risk aversion. The 

strategy that includes a real futures position performs better than the parallel synthetic futures 

position according to E-V, CVaR, and Mean-CVaR. Actually, all strategies that include a futures 

contract versus a synthetic futures position perform better. In this case, a synthetic futures 

position is made up of a long ATM call and short ATM put. One can conclude that anytime a 

synthetic futures position is created for an option strategy, it is optimal to substitute a futures 

contract is its place. However, many options strategies observed so far do not display perfect 

synthetic positions. Some are far from, especially as risk aversion decreases. The deltas are all 

neutral and displayed on the right side as well. 

The nuance of options compared to futures are the gamma, vega and theta values are not 

seen in a futures position. From this table the differences are not shown. Look back at a strategy 

that compared a futures hedge with an ATM collar hedge. The vega and theta values are zero for 

a futures hedge but not for an options hedge. Also reference table 5.8 where the ITM and ATM 
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hedges outperformed the futures hedge. Sophisticated option traders prefer options because they 

have more control over these three variables. 

Table 5.17: Futures Versus Synthetic Option Positions  

 

5.4. Sensitivity Analysis 

Indirect sensitivity analysis is the main subject of this study. The comparison between 

different objective functions that resulted in different allocations to similar strategies were shown 

above. In this section the risk aversion parameter and volatility are discussed. The decisions for 

the appropriate values assigned to risk aversion parameters for E-V and E-CVaR are discussed.  

Figure 5.4: ARAP Sensitivity Analysis 
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Hedge PNW Futures
PNW 

Basis
ATMC4 OTMC4 OTMP4 ATMP4

E-V 

(.0000001)

EV 

(.00001)
CVaR

Mean-

CVaR (10)

Mean-

CVaR (2)
Delta

F & B (100%) 100% 100% (95,211) (22,107) (4,460) (4,333) (22,173) 0.00

ATM4 (100%) 100% 100% (100%) (690,739) (22,357) (5,038) (5,510) (25,660) 0.00

Strangle w/futures (100%) 100% 100% 100% 100% 476,059 (89,185) (5,348) (3,953) (25,345) 0.00

Strangle (100%) 100% 100% 100% 100% (100%) (116,180) (91,702) (5,937) (5,141) (28,890) 0.01

Short butterfly w/futures (100%) 100% 100% (100%) 100% 100% (100%) (554,105) (28,246) (5,127) (5,413) (25,922) 0.01

Short butterfly (100%) 100% 100% 100% (200%) (1,149,669) (28,500) (5,703) (6,588) (29,400) 0.01

ARAP = 10 * * * *
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Tables that display the effect of a changing ARAP are displayed. Sensitivity analysis to 

changes in volatility are also shown. The risk aversion parameter is the most sensitive parameter 

is the entire model. By creating a uniform distribution from two to ten and inserting it into the 

model, sensitivity analysis by @Risk confirms this. The top output shows the effect the risk 

aversion parameter has on the mean of the E-CVaR objective. 

5.4.1. ARAP Sensitivity  

The rest of the outputs are a mixture of options and futures contracts. The graph above 

shows the change in the mean of the objective given a high and low-risk aversion parameter. The 

right side represents a low input (two) while the right side represents a high input (ten). 

Therefore, it’s important to have strong assumptions about what that parameter is set to for 

different risk preferences. There is a loose guide to what numbers would be appropriate. Recall 

Bullock and Hayes (1992) used .01 and .0001 for low and high-risk aversion for E-V 

optimization respectively. However, they are using futures which have substantially shorter tails 

within their payoff distributions than options would have. An ARAP of 1, .01, and .0001 all 

allocated approximately the same positions to a married call and collar hedging strategy in 

testing. .00001 deviated slightly from those allocations observed and .0000001 deviated quite 

substantially without showing an abundance of “irrationality.” Therefore, those parameters were 

chosen to represent low and high-risk aversion respectively. 

The standard risk aversion parameters for E-CVaR were developed the same way. Two 

and ten were identified as high and low risk aversion parameters. The absolute value of CVaR is 

much smaller than the variance. Therefore, the ARAP has to be much larger to compare similar 

levels of risk aversion across different objective functions. Generally, CVaR has been between 

three and ten million in this study. The mean of the cost distribution generally hovers around 
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zero to one million. With an ARAP equal to ten, CVaR is multiplied by five (first its divided by 

2; see equation 3.9) and subtracted from the mean. In this case CVaR is responsible for over 97% 

of the of the objective’s value. However, when the ARAP is set to two, the optimizer allocates 

the max long positions for certain strategies. That results in a mean of closer to four million. 

CVaR is multiplied by one and subtracted from the mean. This results in a nearly a 75% 

contribution from CVaR and the rest is from the mean.  

To supplement the discussion above, a table 5.18 is provided below to show the changes 

in allocation to a married call and collar strategy while the ARAP changes. Notice the absolute 

changes in the ARAP are smaller as the table goes on. The reason is the Mean-CVaR objective 

function in this model have CVaR and mean profit (cost) values that are relatively close from an 

absolute value point of view. The objective specifies phi (ARAP) over two multiplied by the 

variance. The closer phi gets to one, the more sensitive the equation is. Recall equation 3.9 from 

above. In the E-V function, this problem doesn’t exist since the variance is so much greater than 

the mean profit (cost) value.  

Table 5.18: ARAP Sensitivity 

 

Married Call

ARAP ATMC4 ATMC4 ATMP4

12 130% 105% -70%

10 131% 107% -70%

8 132% 109% -66%

6 134% 113% -63%

4 136% 119% -58%

3 141% 125% -48%

2 149% 140% -34%

1.50 165% 179% 48%

1.25 184% 229% 226%

1 238% 300% 300%

Collar
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First, the married call column shows an increase in allocation as the ARAP becomes 

smaller. This is observed in the tables above as well. Looking at the collar strategy as the ARAP 

changes is quite fascinating. At high levels of risk aversion, the optimizer allocates less to the put 

than the call, but a collar strategy is still deployed. As the ARAP decreases, the call allocation 

increases while it decreases for the put. Jumping from 2 to 1.5 the strategy changes to a straddle, 

illustrating a long position in the put. More allocation to each of those positions is observed as 

the ARAP goes to one.  

5.4.2. Sensitivity to High Volatility 

Sensitivity testing is also done on volatility. This model uses data from a low volatility 

environment. Since volatility is an important part of options pricing, the effects of different 

volatility assumptions should be known. The rest of the model assumed low volatility in the first 

and second stage. The first stage still assumes the same prices and spreads while the volatility 

increases in the second stage. Table 5.19 shows how allocations change moving from low to high 

volatility.  The tests show how hedge ratios change for three strategies based on 25% and 60% 

increases in volatility. The active futures price change, the spreads in the 2nd stage, as well as the 

volatility distributions were all multiplied by 25 and 60% for the tests. 

Table 5.19: Sensitivity to Increasing Volatility  

 

Volatility 

Increase

Married 

Call

ATMC4 ATMC4 ATMP4 ATMC4 OTMC4 OTMP4 ATMP4

0% 131% 107% -72% 66% 101% 81% -104%

25% 143% 130% -54% 96% 55% 106% -104%

60% 162% 152% -26% 116% 50% 113% -85%

Short Butterfly / StrangleCollar
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First, the married call HR increases as volatility increases. This should be obvious since 

the options are still the same price in the first stage but offer a larger profit in the second stage 

with the same or more downside protection. The allocations in the collar increase for the call and 

decreases for the put. This is the same observation that was made for the ARAP sensitivity. It 

can be concluded that the hedge ratio should increase with higher volatility or lower risk 

aversion. The last strategy tested was the strangle / short butterfly. In a high volatility scenario, 

the ATMC4 position increases to approximately a perfect collar while the OTM put allocation 

increases and the OTM call decreases. A perfect collar is 100% allocation to the call and -100% 

allocation to the put. With more volatility entering the market, it would make sense to build up 

larger positions in the OTM money options. However, this may be another effect that a backward 

futures market has on the model. For all three strategies, it’s safe to assume the optimal hedge 

ratio increases and volatility increases.  

5.5. Summary 

The base case results show a futures hedge is the best hedge for a risk averse hedger. 

However, as the ARAP shrinks the optimal hedge consists of options instead based on the large 

upside potential. According to all three objective functions, ITM options are better hedges than 

ATM or OTM for all pertinent strategies. Those positions increase as the ARAP becomes 

smaller. Delta moves closer to zero or to slightly negative values while gamma generally moves 

higher or away from zero as risk aversion decreases. Closer to expiration options offer a better 

hedge according to the model. In the E-V results, strategies that consisted of six options 

performed the best. The ATM collar and strangle / short butterfly strategies performed 

approximately as well as the future hedge. The E-V alternatives in tables 5.6 and 5.7 show 

gamma increases and risk aversion decreases.  
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For the maximization of CVaR, the futures hedge was the best performing besides the 2nd 

deferred options and a couple “all call” strategies. The “all call” strategies aren’t as practical 

since the same payoff function can be achieved using less options. Although the hedger has more 

control over delta and gamma in that strategy.  

The selected strategies with an E-CVaR objective behave in a similar manner to E-V and 

CVaR maximization. The ITM allocations are less than the ATM and OTM optimal allocations. 

The optimal hedge ratios are also larger for a risk tolerant hedger. The ATM collar and strangle 

strategies both perform well in all tests. Generally, delta is neutral or slightly negative while 

gamma is moderately positive. Gamma increases as risk tolerance increases. The parallel copula 

objective had specific effects on the allocations. The call positions decreased around the board. 

The HR of the collar increased while the strangle didn’t blow up in the copula version as it did 

assuming spearman correlation. Except for the collar, gamma decreased for all strategies while 

delta increased. This may indicate the spearman correlation overestimates risk relative to copula 

correlation. 

Comparing the E-V and E-CVaR allocations, married call allocations were higher for E-

V. This indicates E-V overestimates the risk. Lower delta values (negative) were observed for E-

V while E-CVaR delta values were closer to zero. It seems the E-V objective function creates 

symmetrical payoff strategies for both levels of risk aversion while E-CVaR is more apt to create 

“one-side bets” in risk tolerant scenarios. 

The ARAP has a significant effect on the model. The parameter sets how much utility is 

derived from the mean and how much is from the variance or CVaR. As the ARAP decreases, 

the optimal allocations increase. At a high level of risk tolerance, the hedger switches to more of 

a speculator as seen by the switch from a collar to a straddle at lower and higher levels of risk 



 

118 
 

aversion. Volatility has a positive relationship with the hedge ratio. In the married call and collar 

strategy, the net hedge ratio increased as volatility increased.  

In general, a futures hedge, collar, ITM married call, or short butterfly / strangle strategy 

are the best performing hedges. Futures are the best hedge for a risk averse buyer while various 

option strategies are more attractive for lower risk averse buyers. Each of these is optimal for 

different volatility biases in the market. A futures and collar hedge are optimal when no bias is 

present. A short butterfly is best when low volatility is expected. A strangle or straddle is best 

when volatility is expected to increase which may accompany a large price move in either 

direction.  
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CHAPTER 6. CONCLUSION 

6.1. Introduction 

The risks from operating a business largely reliant on commodities is a risky venture. 

Thankfully, there are futures and derivative markets in many different commodity markets. Oil, 

corn, soybeans, and gold to name a few. Firms involved in trading and using these commodities 

often hedge their price risk one-to-one in the futures market. Therefore, they eliminate the 

futures price risk and lock in their net buying price. However, firms also want to make money. 

They also don’t want to go long near the top of a market only to see it drop off a cliff and take a 

large hedging loss on their books. Even though they’ll be able to buy the physical commodity at 

much lower prices, a large hedging loss is not something any company likes to see. This is where 

options and other derivatives can aide firms because options provide asymmetric payoffs. One 

can take advantage of any favorable move and still set a ceiling on the net price they’ll pay in the 

future. Options can also be bought and sold together to create more attractive positions. 

In a seminal paper around the world of finance and investment, Markowitz (1952) 

published what’s now known as modern portfolio theory. He derived the variance of an n asset 

portfolio for the first time. The variance of an entire stock portfolio could be measured with a 

few simple statistics. One problem was traders only cared about their downside risk. Thus, many 

different downside risk measures were adopted. In another famous work, Markowitz (1959) 

illustrated the mean-variance objective which is a quadratic utility function. One could now 

measure utility from return and risk in one objective value. This methodology has been adopted 

in the commodity trading (hedging) world and the framework has been applied to many hedging 

problems involving futures. However, there has not been much research in the realm of options 
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within a hedging portfolio. Through the derivation of the greeks, traders are able to manage a 

portfolio of options with very specific qualities.  

The goal of this study is to find out which alternatives would be an optimal hedge under 

risk preferences using different measurement techniques. Allocations are optimized and statistics 

are displayed from the portfolio. The previous chapter identified the problem and potential 

solutions for it. The theoretical and empirical models were presented including a background on 

options strategies. Results were displayed, analyzed and interpreted for many scenarios. This 

chapter reviews the problem in the study and explicitly identifies the problem. It briefly touches 

on the models from chapters three and four. Prominent results are discussed and implications are 

identified. An outline of the contribution this study makes to the existing literature follows with 

limitations and suggestions for further research as well.  

6.1.1. Problem Statement 

There are many risk factors in commodity oriented business. One of the main risks for a 

buyer or end user is if prices move higher. This increases the cost of inputs and thus lowers 

margins. Buyers are faced with many alternatives to hedge with. Various forward contracts, 

exchange-traded futures contracts, and a plethora of derivative strategies can be used. One 

solution is to hedge the risk with the futures market. A hedger can take an equal and opposite 

position in a futures contract and effectively lock in the price they pay for the commodity at a 

certain time in the future today. There are still risks left to manage. Basis can’t be hedged on an 

exchange. It must be hedged with a forward contract with the opposite party directly. The other 

risk are margin calls. In a futures contract, a hedger only has to initially put up around 3% of the 

notional value. If that position moves against the hedger, a margin call may happen after a 

certain price level is reached. This can be a strain on the working capital of the firm. 
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One other problem with strictly futures oriented strategies is firms don’t like to take a 

large hedging loss. Even though the futures hedge is meant to lock in prices, it doesn’t look good 

to absorb a large hedging loss on the books. Recall what happened to Delta Airlines in 2008 

when prices shot up, looking to go higher and Delta hedged their short cash position when oil 

was well above $120. Shortly after, Delta revamped its approach to hedging which involved 

more reliance on derivatives including swaps and options.  

6.1.2. Commodity Trading Today 

Commodity traders are divided into two groups; hedgers and speculators. Hedgers are the 

subject of this study. They’re the ones taking physical positions and shipping commodities 

around the globe. Speculators do not involve themselves in the physical assets. They only 

“speculate” on price in the futures and derivatives markets. Speculators are often blamed for 

moving the market outside of “equilibrium.” However, the fact is that the opportunity to hedge 

would not be there without speculators in the market. Speculators provide liquidity, the main 

driver for the existence of a market. 

Hedgers and speculators also differ in their trading sophistication. Hedgers often use the 

futures market to hedge their underlying position one-to-one. This reduces futures price risk to 

near zero. The door is still open to going the wrong way on a hedge and taking a large hedging 

loss. Speculators and sophisticated hedgers manage their risk with other alternatives. This 

includes a combination of futures, options, swaps, and other related derivatives. Hedgers can 

employ these strategies to put themselves in a more favorable position based on biases they may 

have. This may or may not satisfy their preferences for risk. 
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6.2. Methodology 

Along with Markowitiz (1952, 1959), Johnson (1960), Ederington (1979), Brown (1985), 

and Myers and Thompson (1989) used the variance of a portfolio to derive MV hedge ratios for a 

variety of financial assets in a portfolio. That framework can be used to optimize a portfolio 

according to other statistics as well. Hedgers are typically worried about the return of the hedge 

as well as risk. Therefore, the objective function should incorporate this. The E-V utility function 

is one way to compare portfolios against each other. The E-V framework can be unpopular 

because it penalizes the objective for long right tail the same way it does for a long left tail. 

Hedgers typically welcome upside risk while trying to avoid downside risk. 

Rom and Ferguson (1994), Harlow (1991), both provided semivariance measures to 

account for downside risk aversion only. Mausser and Rosen (1999), Rockafellar and Uryasev 

(2000) both provided some insight to value-at-risk and its behavior during stochastic 

optimization. VaR became the preferred risk measure of the financial industry in the early 2000s. 

Alexander and Baptista (2002) analyzed a Mean-VaR objective function, similar to E-V but had 

VaR replace the variance. (Artzner, Delbaen, Eber, and Heath; 1998) identified four axioms that 

qualified a risk measure as coherent. VaR lacked two of these characteristics including 

subadditivity. The lack of subadditivity means the risk of two assets together can be more than 

the risk of each asset independently. This axiom can be violated using VaR. Conditional value-

at-risk (CVaR) is a coherent measure of risk and is used as the preferred risk measure instead.  

For a model consisting of options, one must use some sort of price approximation tool if 

option pricing data cannot be extracted. Futures pricing data must be extracted from a data 

source. Delta-gamma approximation and the Black-76 model are two models that work well. 

Various assumptions have to be made for each model. 
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Once the model has pricing mechanisms, the objective functions are formed. E-V, CVaR, 

E-CVaR, and E-CVaR with copula are maximized in this study. An optimization tool is also 

needed. The tool is used to find optimal allocations using different objective functions under 

different risk preferences. Greeks of the portfolio can be measured to give the hedger a better 

idea of where their risk lies. These objective functions are compared and contrasted to identify 

the best hedging strategy available. 

6.3. Empirical Model 

Common option strategies are used to evaluate selected hedging strategies using different 

risk preferences and objective functions. Married call, collar, short butterfly spread, and a 

strangle are the core strategies studied. Payoff functions are shown at the beginning of chapter 4.  

The model is specified in two stages. In the first stage, random draws are taken from 

price distributions for the 4th deferred futures contract, the basis, and all 18 options. The 4th 

deferred futures contract refers to the 4th soybean futures contract from expiration. The active, 

2nd deferred and 3rd deferred will all expire prior to the 4th deferred contract. Those distributions 

were derived from pricing data extracted from ProphetX. The data is correlated and specified 

using a spearman correlation matrix and a t copula matrix. Details on the procedures to correlate 

the prices are explained in chapter 4. 

In the second stage, a pricing model is used to determine prices of the options at 28 

weeks. Price change distributions are used for the active futures and basis distributions. Since 

futures are priced at both stages, the Black-76 model is used to price the options. Volatility is a 

stochastic variable derived from the implied volatility needed to make the price in stage one 

equal to the modeled price is stage two. That distribution is then used as an input into the model 

in the second stage. To obtain the profit or cost of the hedge, allocations are made according to 
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the size of the underlying cash position. 100% indicates a HR of one. The model is set up to 

capture the mean, variance, greeks, etc. Objectives are set up to capture the E-V, VaR, CVaR and 

Mean-CVaR values. A separate model with the copula version is also used. The greeks are 

determined through the equations at the end of chapter 3.  

Once the model is set up and the objective functions are all defined, the optimization 

process can begin. Using the Risk Optimizer tool within @Risk, any combination of options can 

be chosen to allocate capital to with the goal of maximizing the chosen objective function.  

6.4. Results 

The base case results in table 5.1 for E-V indicate futures and basis offer the best hedge. 

Individual hedges with basis only and futures only are also shown. Hedging basis reduces risk by 

about 4.4%. The rest of the risk is associated with the futures price. The ATM married call hedge 

is much more attractive than the unhedged position. A futures hedge is preferred to the married 

call hedge by a wide margin and it also costs less as measured by the initial margin. 

Other base case results compared naïve hedges to optimized hedges according to E-V in 

table 5.2. The results show a preference for a larger HR than one. The optimized results show a 

larger allocation to OTM followed by ATM and ITM. The delta values are all fairly close to zero 

meaning a price move in the underlying will not affect the net value of the hedged portfolio 

everything else held equal. The more OTM an option is, the more allocation has to be given to 

that option to become delta neutral. Gamma is highly positive in all scenarios. A price swing 

either way will benefit the hedger. 

The alternative E-V strategies in table 5.3 point to a multi-calendar collar as the best 

strategy, followed by strategy 6 (all 4th deferred options included), the ATM collar, and finally 

the short butterfly spread. The first two strategies aren’t very practical. They’re reported to 
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demonstrate that the optimization model with improve as more options are added to the problem. 

The collar was nearly a perfect collar. The short butterfly position was about a half of a typical 

butterfly spread. A net short position in the ATM call and puts were approximately 100% with 

about 50% allocated to each OTM option.  

Tables 5.4 through 5.7 show the effect risk aversion has the optimal hedge ratios for E-V. 

Table 5.2 and 5.4 and nearly identical. Tables 5.4 and 5.6 represents high risk aversion while 

tables 5.5 and 5.7 represent low risk aversion. For a risk tolerant hedger optimal HRs and gamma 

increase. The best performing strategies also change to options based strategies rather than 

futures. 

The CVaR objective results (table 5.8) shows smaller allocations to the three married 

calls than E-V. The ATM collars are also much more call heavy while the OTM collars show 

more equal positions between to the two. The strangles look similar to the strangles for E-V. In 

the ITM, ATM, and OTM all call strategies, a large position is taken in the ITM option, a smaller 

but substantially short position is taken in the ATM option, while smaller long positions are 

taken in the OTM. This is an effort to stay gamma neutral which is positively correlated with a 

less negative CVaR value. Futures was the best hedge again. The ATM collar and strangle also 

performed well. 

Mean-CVaR results are similar to E-V and CVaR. The married call allocations behave 

the same between ITM, ATM, and OTM and across risk preference scenarios. The ATM collar is 

weighted heavily toward the call. The payoff actually looks like a straddle for both risk 

scenarios. The OTM straddle with high risk aversion is close to having a HR of zero with long 

and short allocations around 150%. The same strategy for risk tolerance blows up into an ultra-

long volatility straddle. The risk averse strangle is nearly perfect while the risk tolerant strangle 
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allocates the maximum allowed to the OTM put while carrying a negligible position in OTM 

call. It’s challenging to spot a difference in delta, but gamma is greater is the risk tolerant 

scenarios. 

E-CVaR with a t copula as opposed to spearman correlation showed mixed results as to 

which one over or underestimated risk. The optimized married call positions showed smaller 

HR’s with a copula except for the OTM call is the risk tolerant table (table 5.15). Both collars 

behaved similarly to the E-CVaR without a copula. The strangle changed allocations slightly and 

all positions are close to 100%, even in the risk tolerant scenario. The best performing hedge for 

the risk averse strategy was the “all call” strategy followed by the ITM married call, strangle, and 

ATM collar. Optimal option HR’s increased by 6% moving from a spearman correlation to a t 

copula. 

6.4.1. Results Summary 

Comparing the allocations of all four objective functions, E-CVaR with copula has the 

smallest HRs for the married call positions with the largest optimal positions showing up in the 

E-V objective. The ATM collar allocations are different across the board. In the E-V tables, 

approximate collar and straddles are observed for risk averse and risk tolerant hedgers 

respectively. CVaR approximately shows a perfect collar as well. Allocations increased for the 

call and decreased for the put in the E-CVaR objectives, placing the HR closer to 80% under 

both risk preferences. The HR shrank to 30% for the risk averse hedger and grew to 120% for the 

risk tolerant scenario using E-CVaR copula. Lastly the short butterfly with an E-V objective in a 

risk averse scenario changes to a straddle under low risk aversion. The gamma goes from -.12% 

to .06%. CVaR and both E-CVaR objectives under high risk aversion have similar allocations to 

a perfect strangle. The same strategy with a copula for E-CVaR behaves the same with larger 
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positions in both OTM options and 50% higher allocation to the ATM call than put. It also has a 

significantly higher HR and gamma value. The E-CVaR with spearman correlation is still a 

strangle but with a max OTM put position and no OTM call position. The ATM options become 

slightly call biased. 

Futures is the best hedge for a risk averse hedger. Options strategies provide better 

hedges for buyers with low risk aversion. Objective functions with variance as a risk 

measurement (E-V) prefer symmetric payoff functions (straddle, strangle, butterfly) while 

semivariance objectives (CVaR, E-CVaR) will prefer asymmetric payoffs in some scenarios.  

ITM calls, collars, strangles, and short butterflies all provide well performing hedges using the 

four objective functions. The personal biases of the risk tolerant hedger should further decide 

which option hedging strategy is best for themselves. 

6.4.2. Implications 

This study separates risk averse and risk tolerant hedgers into two categories to compare 

potential preferred strategies. Futures are the best hedge under high risk aversion for all 

strategies. For low risk averse hedgers, options are more attractive. The options strategy 

ultimately chosen by the hedger would be based on personal biases. ITM married calls, ATM 

collars, strangles, and short butterfly spreads were the best performing core strategies in this 

study. In practice, these can be coupled with swaps and even more derivatives. 

This result may have large implications on the grain trading industry. Some firms apt to 

take more risk or who under pressure to increase their bottom line may be inclined to deploy 

derivative hedging strategies instead of futures. There’s also an argument for risk averse hedgers 

to pursue derivative strategies. Delta was mentioned in chapter one because they naively hedged 

oil when it was close to its peak price and had an enormous hedging loss on the books. This 
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scenario can be avoided with derivatives. They later hired a new director or hedging and 

employed complex strategies like “cap-swap double-down extendable” which basically entails a 

swap with a less attractive price in exchange for an option to buy additional quantities of the 

underlying at the swap fixed price that is also extendable for a certain amount of time under the 

agreement. They started making money in their hedging department. (Kelly, 2015) 

6.5. Limitations  

The model became quite complex. Deriving and deciding on the appropriate distribution 

along with developing correlations was the most difficult part. One also has to assume the black-

76 pricing model is an accurate pricing model to use in the second stage. A brief but detailed list 

of limitations follows. 

First, the active contract is defined by a gamma distribution with 50% of the prices under 

$10.11. It has a long right tail with a maximum price at $16.50 per bushel. This shape of this 

distribution affects the deferred contracts which affects the option prices in the second stage. The 

deferred contracts were modeled as spreads from the active. The empirical distributions showed 

bimodal-like distributions in the left tail of the spreads that could not be model appropriately. 

This may be the reason the 2nd deferred hedges performed better than the 4th and 6th. The 2nd 

deferred contracts had a higher probability of expiring ITM and there was little probability a 

large negative price move (modeled as the spread) could occur between the 2nd and 4th deferred 

contracts. 

This model correlates parameters for implied volatility to the rest of the stochastic 

variables. A distribution was extracted but questionable methods were used to add on to the 

existing correlation and copula matrix. In a perfect world, implied volatility data would be 

available for extraction and correlations could be derived through standard procedures. 
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The last limitation of the model involves margins. For strategies that included calls and 

puts, especially more than one of each, there’s no formula to determine margins. They are 

determined through simulation models in practice. Accurate margin data would be helpful to a 

hedger when deciding which strategy to deploy. The model also doesn’t use margins in the utility 

functions. In practice, a large initial margin is unattractive and should be considered when 

determining optimal hedging strategies. 

6.6. Summary 

 Buyers today typically place their hedges one to one against the underlying commodity. 

Speculators are known for more advanced derivative strategies. Some large corporations may 

employ these types of strategies, but the bulk of hedging today is done through the futures 

market. A portfolio model of hedging framework is used to construct an optimal hedge. The 

framework is based on Markowitz (1952) which is the most prominent publication in finance and 

more specifically, portfolio theory to date. CVaR is a downside risk measurement that is used 

instead of VaR. The model has two stages where prices are determined from a random pull of a 

stochastic option price in the first stage and priced by the Black-76 model in the second stage. 

Futures, basis, and options are all used to determine the best hedge according to an optimization 

procedure using @Risk. Implied volatility is derived based on the different prices observed in 

each stage. Those differences are fit to a distribution and put back into the model. Spearman 

correlations and a t copula are both used to relate prices and volatility. E-V, CVaR, E-CVaR, and 

E-CVaR with copula are used as objective functions to maximize. The greeks are captured after 

every simulation. 

 The results show a futures hedge is best for a risk averse hedger. Various option 

strategies perform better than futures for a risk tolerant buyer. The best option strategy should be 
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decided based on the buyer’s biases. Married calls, collars, and strangles / short butterflies all 

performed well in low risk aversion scenarios. For practical reasons, risk averse hedgers should 

also explore options strategies as they can “hedge out” any large hedging loss. 

6.7. Suggestions for Further Research 

The intent of this study was to determine the optimal hedging strategies using futures, 

basis, and options. Historical option data is very scarce and having real options prices was a 

priority in this study. However, as of this study no robust portfolio of hedging models involving 

the wide array of options included in this study has been published to my knowledge. An easy 

application for further research would be to set the same model up with no bias. Meaning to use 

a uniformly distributed active contract and normal distributions for the spreads and price change 

variables. Use the Black-76 model to price the options at both stages while using a symmetrical 

distribution for implied volatility. Some kind of simulation model for calculated margins similar 

to (SPAN) should be imbedded within the model as well. Further research can also be done to 

include other types of derivatives including swaps, swaptions, and other exotic derivatives if 

possible.  

The most intriguing related research would be to find the optimal moneyness of options 

to hedge with. Meaning to find the perfect option in the chain that is ITM or OTM. This model 

explicitly assumes each are a dollar from the ATM prices. I’m not sure how a model would be 

constructed or are aware of any research related to the subject either. 

  



 

131 
 

BILIOGRAPHY 

@Risk 7.5 User Guide. (2016). 152. Retrieved October 15, 2017. 

CBOE Margin Calculator (2017). Retrieved September 30, 2017, from 
http://www.cboe.com/trading-tools/calculators/margin-calculator 

Alexander, G. J., & Baptista, A. M. (2002). Economic implications of using a mean-VaR model 
for portfolio selection: A comparison with mean-variance analysis. Journal of Economic 

Dynamics and Control, 26(7), 1159-1193. 

Alexander, S., Coleman, T. F., & Li, Y. (2006). Minimizing CVaR and VaR for a portfolio of 
derivatives. Journal of Banking & Finance, 30(2), 583-605. 

Allais, M. (1953). L'extension des théories de l'équilibre économique général et du rendement 
social au cas du risque. Econometrica, Journal of the Econometric Society, 269-290. 

Artzner, P., Delbaen, F., Eber, J. M., & Heath, D. (1999). Coherent measures of 
risk. Mathematical finance, 9(3), 203-228. 

Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of 

political economy, 81(3), 637-654. 

Black, F. (1976). The pricing of commodity contracts. Journal of financial economics, 3(1-2), 
167-179. 

Blank, S. C., C.A. Carter, and B.H. Schmiesing. Futures and Options Markets – Trading in 
Commodities and Financials, Englewood Cliffs, NJ: Prentice Hall, 1991. 

Boubaker, H., & Sghaier, N. (2013). Portfolio optimization in the presence of dependent 
financial returns with long memory: A copula based approach. Journal of Banking & 

Finance, 37(2), 361-377. 

Brown, S. L. (1985). A Reformulation of the Portfolio Model of Hedging. American Journal of 

Agricultural Economics, 67(3), 508.  

Bullock, D. W., & Hayes, D. J. (1992). Speculation and hedging in commodity options: A 
modification of Wolf's portfolio model. Journal of Economics and Business, 44(3), 201-
221. 

C. (n.d.). Basis Trading for Cash Merchandisers. CBOT Marketing and Education Publications. 



 

132 
 

Campbell, R., Huisman, R., & Koedijk, K. (2001). Optimal portfolio selection in a Value-at-Risk 
framework. Journal of Banking & Finance, 25(9), 1789-1804. 

Cecchetti, S. G., Cumby, R. E., & Figlewski, S. (1988). Estimation of the optimal futures 
hedge. The Review of Economics and Statistics, 70(4), 623-630. 

Chen, S., Lee, C., & Shrestha, K. (2001). On a Mean? Generalized Semivariance Approach to 
Determining the Hedge Ratio. Journal of Futures Markets, 21(6), 581-598. 

Chen, S. S., Lee, C. F., & Shrestha, K. (2003). Futures hedge ratios: a review. The Quarterly 

Review of Economics and Finance, 43(3), 433-465. 

Chen, S., Wilson, W. W., Larsen, R., & Dahl, B. (2015). Investing in agriculture as an asset 
class. Agribusiness, 31(3), 353-371. 

Chen, S., Wilson, W., Larsen, R., & Dahl, B. (2016). Risk Management for Grain Processors and 
“Copulas”. Canadian Journal of Agricultural Economics/Revue canadienne 

d'agroeconomie, 64(2), 365-382. 

Cheung, C. S., Kwan, C. C., & Yip, P. C. (1990). The hedging effectiveness of options and 

futures: A mean‐Gini approach. Journal of Futures Markets, 10(1), 61-73. 

Clarke, R., De Silva, H., & Thorley, S. (2011). Minimum-variance portfolio composition. The 

Journal of Portfolio Management, 37(2), 31-45. 

Correlation (Pearson, Kendall, Spearman). (n.d.). Retrieved October 30, 2017, from 
http://www.statisticssolutions.com/correlation-pearson-kendall-spearman/ 

Data Transmission Network (DTN) ProphetX. 2017. Chicago Mercantile Exchange Soybean 
Futures and Option prices. Retrieved from DTN ProphetX 

Ederington, L. H. (1979). The Hedging Performance of the New Futures Markets. The Journal of 
Finance, 34(1), 157-170. 

Fishburn, P. C. (1997). Mean-Risk Analysis with Risk Associated with Below Target 
Returns. The American Economic Review, 67, 116-126 

Geman, H. (2005). Commodities and commodity derivatives. Modeling and Pricing for 

Agriculturals, Metals and Energy, Chichester (Grande-Bretagne): Wiley Finance. 

Harlow, W. V. (1991). Asset Allocation in a Down-side Risk Framework. Financial Analysis 

Journal, 47(5), 28-40 



 

133 
 

Holton, G. (2016, October 19). Black (1976) Option Pricing Formula. Retrieved September 20, 
2017, from https://www.glynholton.com/notes/black_1976/ 

Howard, C. T., & D'Antonio, L. J. (1984). A risk-return measure of hedging 
effectiveness. Journal of Financial and Quantitative Analysis, 19(01), 101-112. 

Hsin, C. W., Kuo, J., & Lee, C. F. (1994). A new measure to compare the hedging effectiveness 
of foreign currency futures versus options. Journal of Futures Markets, 14(6), 685-707. 

Johnson, L. L. (1960). The Theory of Hedging and Speculation in Commodity Futures. The 

Review of Economic Studies, 27(3), 139. 

Jorian, P. (1997). Value at Risk: The New Benchmark for Controlling Derivatives Risk. Chicago, 
ND: Irwin Professional Publishing. 

Kahl, K. H. (1983). Determination of the Recommended Hedging Ratio. American Journal of 

Agricultural Economics, 65(3), 603. 

Kelly, K. (2015). The Secret Club that Runs the World: Inside the Fraternity of Commodities 

Traders. Penguin. 

Kimura, N. (2016). Hedging Default and Price Risk in Commodity Trading. Unpublished 
master’s thesis, North Dakota State University, Fargo, North Dakota. 

Li, D. X. (2000). On default correlation: A copula function approach. The Journal of Fixed 

Income, 9(4), 43-54. 

Lien, D., & Tse, Y. K. (1998). Hedging time-varying downside risk. Journal of Futures 

Markets,18(6), 705-722. 

Lien, D., & Tse, Y. K. (2000). Hedging downside risk with futures contracts. Applied Financial 

Economics, 10(2), 163-170. 

Manfredo, M. R., & Leuthold, R. M. (2001). Market risk and the cattle feeding margin: An 

application of Value‐at‐Risk. Agribusiness, 17(3), 333-353. 

Markowitz, H. (1952). Portfolio Selection. The Journal of Finance,7(1), 77-91.  

Mausser, H. and Rosen, D. (1999). Beyond VaR: From Measuring Risk to Managing Risk. 
ALGO Research Quarterly. Vol.1, 2, 5-20. 



 

134 
 

McKay, R., & Keefer, T. E. (1996). VaR is a dangerous technique. Corporate Finance Searching 

for Systems Integration Supplement. Sep, 30. 

Merton, R. C. (1972). An Analytic Derivation of the Efficient Portfolio Frontier. The Journal of 
Financial and Quantitative Analysis, 7(4), 1851. 

Myers, R. J., & Thompson, S. R. (1989). Generalized Optimal Hedge Ratio 
Estimation. American Journal of Agricultural Economics, 71(4), 858. 

Nielsen, L. T. (1992). Understanding N (d1) and N (d2): Risk-adjusted probabilities in the 

Black-Scholes model. INSEAD. 

Ozun, A., & Cifter, A. (2007). Portfolio value-at-risk with time-varying copula: evidence from 
the Americas. 

Pflug, G. C. (2000). Some remarks on the value-at-risk and the conditional value-at-risk. 
In Probabilistic constrained optimization (pp. 272-281). Springer US. 

PNW Soybean Prices. (2016, December 30). Milling and Baking News, 40 

Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value-at-risk. The Journal 

of Risk, 2(3), 21-41 

Roy, A. D. (1952). Safety First and the Holding of Assets. Econometrica, 20(3), 431.  

Rom, B. M., & Ferguson, K. W. (1994). Post-Modern Portfolio Theory Comes of Age. The 

Journal of Investing, 3(3), 11-17. 

Shalit, H., & Yitzhaki, S. (1984). Mean‐Gini, portfolio theory, and the pricing of risky 
assets. The Journal of Finance, 39(5), 1449-1468. 

Sharpe, W. F. (1964). Capital Asset Prices: A Theory of Market Equilibrium Under Conditions 
of Risk*. The Journal of Finance, 19(3), 425-442. 

Sharpe, W. F. (1994). The Sharpe Ratio. The Journal of Portfolio Management, 21(1), 49-58. 

Standard Portfolio Analysis of Risk (SPAN) - CME Group. (n.d.). Retrieved November 30, 
2017, from http://www.cmegroup.com/clearing/risk-management/span-overview.html 

Stoll, H. R. (1969). The relationship between put and call option prices. The Journal of 

Finance, 24(5), 801-824. 



 

135 
 

Stuart, A., & Markowitz, H. M. (1959). Portfolio Selection: Efficient Diversification of 
Investments. Or, 10(4), 253. 

Wilson, W. W. (1982). Hedging effectiveness of US wheat futures markets. Department of 
Agricultural Economics, North Dakota Experiment Station, North Dakota State 
University. 

Wolf, A. (1987). Optimal hedging with futures options. Journal of Economics and 

Business, 39(2), 141-158. 

Zabolotskyy, T., & Vitlinskyy, V. (2013). The distribution of the characteristics of the maximum 
expected utility portfolio based on VaR: the impact of investor’s risk aversion 
coefficient. Economic Cybernetics, (4-6 (82-84)), 4-1



 

136 
        

APPENDIX 
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3
7
 

Table A1: Data Statistics 

 

Note: Description 

The mean prices are listed in the first row. The standard deviation of those prices is listed directly below. Next, mean of the 

implied volatility distributions are listed for the options. The standard deviation of those distributions is listed below. Lastly, 

the mean profit assuming 100% position in each contract is listed. The probability that number is above zero is listed below.

Contract Active Futures Price Change 2nd def 4th def 6th def PNW Basis Basis Change ITMC2 ATMC2 OTMC2 ITMC4 ATMC4 OTMC4

Price 1,057.4$          0.0% (16.0)$        (20.4)$        (12.6)$           116.1$       -1.2% 106.7$          35.9$             8.8$            117.6$          56.2$             23.5$         

St. Dev 169.2$             18.7% 27.3$         28.9$         21.9$             36.4$         35.1% 7.4$               10.8$             6.6$            8.0$               9.7$               8.2$            

Volatility 19.4% 17.8% 18.5% 21.0% 19.6% 19.6%

St. Dev 2.5% 3.7% 3.8% 1.8% 2.0% 2.2%

Mean (3,517)$         (130,359)$ 130,711$   (49,329)$       (49,329)$   (12,310)$       (343,090)$    (1,204,564)$ (321,992)$ (1,098,864)$ (2,027,116)$ (865,109)$ 

Prob > 0 47% 47% 54% 45% 45% 44% 51% 46% 32% 47% 39% 26%

Contract ITMC6 ATMC6 OTMC6 OTMP2 ATMP2 ITMP2 OTMP4 ATMP4 ITMP4 OTMP6 ATMP6 ITMP6

Price 104.1$             52.8$             25.6$         6.5$            35.9$             108.9$       18.7$             56.6$             123.8$          25.8$         66.6$             132.3$          

St. Dev 26.9$                14.8$             8.5$            4.4$            9.9$               8.0$            6.9$               9.7$               9.3$               6.4$            8.5$               8.4$               

Volatility 19.9% 17.6% 17.8% 18.1% 17.0% 18.9% 17.3% 16.3% 14.7% 13.8% 12.8% 12.6%

St. Dev 3.7% 3.3% 3.2% 3.6% 4.5% 4.9% 2.2% 2.2% 3.0% 3.7% 3.4% 2.8%

Mean (1,701,027)$    (1,939,543)$  (940,677)$ (238,090)$ (1,082,317)$ (167,708)$ (687,161)$     (1,573,749)$ (336,682)$    (949,631)$ (1,134,755)$ (81,767)$       

Prob > 0 43% 35% 23% 30% 42% 47% 29% 40% 45% 32% 41% 47%
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Table A2: Supplemental Information to tables 5.12 and 5.13 

  

Table A3: Supplemental Information to table 5.14 

 

Table A4: Supplemental Information to table 5.15 

 

Hedge Cash Basis Futures Options Delta Gamma Vega Theta

1 Unhedged 100%    -0.98 0.00% -$           -$         

2 F & B 33% 33% 33%  0.00 0.00% -$           -$         

3 ITMC4 33% 33%  33% -0.13 0.06% 95,760$     (17,707)$ 

4 ATMC4 33% 33%  33% -0.25 0.08% 112,638$   (19,294)$ 

5 OTMC4 33% 33%  33% -0.37 0.07% 92,662$     (15,792)$ 

6 Collar ATM4 25% 25%  50% 0.00 -0.02% 306$          (4,760)$   

7 Collar OTM4 25% 25%  50% -0.17 -0.01% 6,539$       (3,530)$   

8 Strangle OTM4 17% 17%  67% 0.01 0.06% 179,091$   (32,814)$ 

9 Short Butterfly 4th 17% 17%  67% 0.01 -0.14% (270,543)$ 30,082$   

Hedge Cash Basis Futures Options Delta Gamma Vega Theta

Unhedged 100%    -0.98 0.00% -$             -$           

F & B 35% 35% 30%  -0.07 0.00% -$             -$           

ITMC4 34% 29%  38% -0.08 0.22% 119,588$    (22,113)$   

ATMC4 29% 29%  43% -0.11 0.38% 250,068$    (42,834)$   

OTMC4 23% 23%  55% -0.11 0.50% 542,866$    (92,517)$   

All Call 4 27% 27%  46% -0.07 0.12% 95,067$       (17,091)$   

Collar ATM4 28% 26%  47% -0.06 0.31% 231,398$    (39,877)$   

Collar OTM4 14% 14%  73% -0.08 0.60% 1,308,840$ (201,320)$ 

Strangle OTM4 17% 16%  67% -0.03 0.19% 312,761$    (51,705)$   

Hedge Cash Basis Futures Options Delta Gamma Vega Theta

1 Unhedged 100%    -0.98 0.00% -$          -$         

2 F & B 35% 35% 30%  -0.07 0.00% -$          -$         

3 ITMC4 33% 33%  34% -0.11 0.21% 106,217$ (19,640)$ 

4 ATMC4 30% 30%  40% -0.15 0.34% 195,225$ (33,440)$ 

5 OTMC4 28% 28%  44% -0.22 0.33% 238,038$ (40,567)$ 

6 All Call 4 30% 30%  40% -0.10 0.18% 114,752$ (21,241)$ 

7 Collar ATM4 27% 24%  49% -0.04 0.08% 69,918$   (14,430)$ 

8 Collar OTM4 22% 22%  56% -0.10 0.13% 161,027$ (29,696)$ 

9 Strangle OTM4 18% 18%  64% -0.01 0.04% 78,297$   (16,817)$ 


