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ABSTRACT 

Water demand has increased exponentially since 2007 in western North Dakota. This 

increase can largely be traced to the advancement of technology in hydraulic fracturing 

(fracking) which has led to one of the largest oil booms in the country. Along with the recent oil 

boom, water depots have expanded and played a significant role in providing water for fracking.  

Using decentralized agent-based modeling (ABM) to model water allocation among 

water depots, a scenario analysis obtains results for four scenarios. Policy suggestions, based on 

the scenario analysis, include allowing greater access to LSMR water sources and restricting SW 

and GW use for the oil industry to reduce water scarcity in the Bakken. These results support 

allowing greater access to LSMR water sources for the oil industry as desired by the North 

Dakota State Water Commission (SWC), and other elected officials in the past decade. 
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CHAPTER I. INTRODUCTION 

Water is one of the most precious natural resources in the world. Humans cannot live 

without it, and its presence separates Earth from the rest of the planets in the universe. North 

Dakota is home to many different water sources, but western North Dakota faces challenges in 

water management associated with the increased water demand as a result of the increased 

activity in the oil industry in recent years (Hearne & Fernanado, 2016).  

Bakken shale oil activity in North Dakota has been around for decades. Exploratory 

drilling began during the 1970s in the Williston basin; however, it was overlooked by most oil 

producers. In fact, Bakken shale was discovered in 1951, but shale oil production was not 

economical at that time. Production levels in North Dakota hit a low point in 1974, but 

rebounded due to the oil boom in late 1970s (Gerhard & Anderson, 1979). This boom continued 

until the mid-1980s when oil prices fell again. However, oil production began again in the 2000s 

with another oil price spike. Development in fracking and horizontal drilling also lowered oil and 

gas extraction costs. As a result of the latest oil boom, population and other economic 

development projects increased dramatically. These changes have been most prominent in the 

“core” counties of North Dakota. These core counties are where most of the oil production in the 

Bakken occurs and these include Dunn, Mountrail, McKenzie and Williams Counties (KLJ, 

2014). 

A U.S. Geological Survey (USGS) report released in 2008 estimated recoverable oil 

levels in the Bakken formation to be the largest in the Continental United States with a mean 

around 3.65 billion barrels. An updated USGS report in 2013 found similar oil levels in the 

Bakken formation, but it also found a mean recoverable oil level of 3.73 billion barrels in the  
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Three Forks formation underlying the Bakken formation for an approximate 7.4 billion barrels of 

oil in the region. However, this expansion of the oil industry in North Dakota as a result of the 

hydraulic fracturing technology and favorable oil prices led to tremendous increases in the 

demand for water among other natural, physical, social and economic resources between 2008 

and 2014. 

Before the recent oil boom, rural users, such as ranchers and farmers in western North 

Dakota, struggled to access clean freshwater. North Dakota has a variety of surface and 

groundwater sources; although, most are not suitable for long-term use for various reasons. 

Many surface water sources are being used at full sustainable capacity, and groundwater sources 

may not be economically feasible to access; however, there is overwhelming agreement among 

many investigators and the North Dakota State Water Commission (SWC) that Lake Sakakawea 

and the Missouri River are dependable sources of water that could be used to keep up with 

demand (Schuh, 2010; Harms, 2010; Shaver, 2012; Horner et al., 2014; Hearne & Fernando, 

2016). Conflict with the United States Army Corps of Engineers (USACE) over Surplus Water 

Policy on water distribution from these sources has prevented desired usage of these water 

sources (Best, 2013).  

Trying to understand the complexities of the energy-water nexus with the rapid changes 

in North Dakota—especially with hydraulic fracturing—is difficult. North Dakota’s agricultural 

sector has always played a substantial role in its economy accounting for almost 14% of the 

state’s GDP in 2013 (Springer, 2014); it should be no surprise that irrigation accounted for over 

almost half of its consumptive water use in 2014 (Figure 2, Chapter 2). Data provided by the 

State Water Commission show how the fracking industry in North Dakota has grown in less than 

a decade accounting for about 5% of total consumptive water use in the state in 2013 (Sando, 
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2014). The exponential nature of growth is seen in Figure 2 comparing 5% of total consumptive 

water use in the state in 2013 to about 10% in 2014. Further comparison shows fracking 

accounted for under 1% of the total annual water use in the entire United States in 2011 and 2012 

(EPA, 2015). 

Because of the rapid growth in water demand in the Bakken region of North Dakota, 

research is needed to examine water consumption connected with the water depot-based water 

allocation system in this region. In the past couple of years, greater uncertainty regarding future 

levels of oil activity in the region also has developed.  There is a vast amount of water in the 

Missouri River system; however, there is limited access to these waters. The United States Army 

Corps of Engineers (USACE) has limited the access to these sources under authority granted 

through the Flood Control Act of 1944 (Best, 2013). In addition to the prior water demand, the 

advent of the recent oil boom has generated even greater demand for water. Land owners and 

others with access to water realized the potential gains from selling water—assuming they could 

obtain proper water permits—and thus came the exponential growth in the number of water 

depots.  

With a number of water depots selling water making large profits (Scheyder, 2013) there 

also is great incentive to pump and sell as much water as possible; however, the State Water 

Commission (SWC) has imposed fines for water violations in an attempt to curb illegal water 

sales (Springer, 2015). Knowing where water is being drawn from and protecting precious 

groundwater sources is vital for the health of North Dakota and its residents.  

The water depot-based water allocation system in North Dakota is unique and provides 

an opportunity to examine the efficacy of this system. Outcomes associated with the analysis will 

improve understanding of agents’ behavior in an autonomous environment. 
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Objectives 

 There is no question that the oil boom helped North Dakota remain one of the leaders in 

economic well-being during economic difficulties for the rest of the country, but it is important 

to recognize the potential negative impacts it has as well. Energy generation through power 

plants and other means also requires a substantial quantity of water. This research is intended to 

provide nascent knowledge on the water depot-based water allocation system present in western 

North Dakota. This is achieved by providing a new model framework that can be used and built 

upon using agent-based modeling (ABM) for the water depot-based water allocation system in 

western North Dakota.  

Policy makers and other readers can be more informed on how water allocation in 

western North Dakota could be impacted by possible scenarios. Four scenarios are examined to 

address additional issues that could occur. ABM simulations provide a scenario analysis which 

allows for discussion of policy implications under each scenario. This research should help 

policy makers and the general public be better equipped to take action—when needed—to 

optimize precious water resource usage in the state. 

 

Method 

   An agent-based model is capable of simulating the emergent patterns found in the water-

depot based water allocation system in North Dakota. This model sheds light on expected 

behavior of water depot owners and helps forecast how water depots will affect the future water 

system through a scenario analysis. This model treats water depots as agents with autonomy in 

an attempt to resemble the real-world situation.  
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This research examines a few scenarios and the effects each could cause on water 

consumption from water depots. This research also provides a review of numerous water issues 

and advances basic principles of understanding in the field of water resource management along 

with further application of agent-based modeling (ABM) in the field of water resource 

economics. Further research could include a greater number of classifications for water depots or 

apply techniques used here in different water allocation studies as this is an exploratory study 

with potential changes to water allocation methods. Some factors that may change water 

allocation procedures include a change in behavior patterns for water depots, changes in the oil 

industry’s behaviors, and other dynamic socioeconomic and environmental factors. Changes in 

oil prices would be a common factor to continue observing that is capable of impacting each of 

these factors. 

 

Summary 

Chapter 2 provides extensive background information on the Bakken area and the issues 

surrounding water specifically in North Dakota. A review of the literature follows in Chapter 3 

looking at water valuation methods, water markets, and a comparison of the Bakken shale play to 

shale plays in other states. Chapters 2 and 3 also provide some background on the impact of the 

oil industry and what role oil plays in water management. After a general awareness of the issues 

surrounding the energy-water nexus in North Dakota is addressed, methodologies used in 

previous water management research and agent-based modeling (ABM) are reviewed in Chapter 

4. In Chapter 5, ABM is applied to the water-depot based allocation system problem addressed in 

this thesis. Chapter 6 presents a discussion of the data related to North Dakota water, and 

Chapter 7 presents results and discussion stemming from this research. Finally, Chapter 8 offers 
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a conclusion of overall contributions and findings from this research with suggestions for policy 

actions to provide a sustainable water supply through water practices in the Bakken region in 

North Dakota.  
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CHAPTER II. BACKGROUND 

Understanding the complex environmental and socioeconomic factors connected to North 

Dakota provides background for this research. An extensive look at issues associated with the 

energy-water nexus focused on North Dakota are examined. These issues are separated into the 

following sections: (1) Natural Resource Property Rights, (2) Water Sources, (3) Sectors of the 

Energy-Water Nexus, and (4) Water Depots. 

 

Natural Resource Property Rights  

Countries and states have different ways of defining property rights of water, so this is an 

important distinction to consider when trying to understand water allocation systems. 

North Dakota’s state constitution makes clear that property rights of water resources belong to 

the state (Paulson, 1990). North Dakota water rights follow the doctrine of prior appropriation as 

well. In North Dakota citizens are required to apply for water permits if water use would exceed 

12.5 acre-feet per year if used for irrigation or industrial uses (Schuh, 2010). Applications are not 

always accepted, and any complaints can be voiced and taken into consideration if received, 

typically in the first 30 days (Schuh 2010). If objections are not an obstacle—assuming the 

permit passes through a hydrologist and the State Engineer—the permit receives “conditional” 

status and can become a “perfected” permit after inspected at a later date to prove the water is 

meeting beneficial use standards (Schuh, 2010).  

Water permits also have a priority listing dependent on the intended use of the water. 

Ranking from highest to lowest, the priorities are domestic, municipal, livestock, irrigation, 

industrial, and recreation (Schuh, 2010). There also is importance in noting that permits filed 

within 90 days of each other will be evaluated based on this priority level; if the total amount of 
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water requested cannot be granted to all permits, higher ranking uses will be granted first (Schuh, 

2010). 

In places like North Dakota where there is also a great demand for water in obtaining oil, 

understanding mineral rights laws is important too. Mineral rights are attached with the land in 

North Dakota, so oil companies often obtain rights to the oil by buying or leasing those rights 

from various landowners (Banning 2013). In many other countries, the mineral rights are owned 

by the government; this has also played an important role in the development of the natural 

resources in the United States (Scanlon, Reedy, & Nicot, 2014a). 

 

Water Sources in North Dakota 

Awareness of the unique sustainability, political, and water access problems for a variety 

of users all contribute to the complex energy-water nexus in the state. Basic background on 

where and how the water is being used also is vital to effective water management in the state.  
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Figure 1. Fox Hills Aquifer in North Dakota. Source: Modified from Shaver (2012). 

 

Fox Hills-Hell Creek (FH-HC) Aquifer 

Western North Dakota heavily relies on the Fox Hills-Hell Creek (FH-HC) aquifer for its 

water needs. As seen in Figure 1, this aquifer is quite extensive. Water depths in this aquifer vary 

from being at the surface to 2,000 feet in the middle of the Williston Basin area (Schuh, 2010; 

Shaver, 2012). There is estimated to be around 346 million acre-feet of water throughout the 

aquifer (Schuh, 2010).  

Farmers, ranchers, cities, and small industries are some of the users that rely on the 

freshwater available from the FH-HC aquifer (Schuh, 2010). Living in western North Dakota, 

these water users do not have many options with many areas being rural and isolated. Because of 

such dependence on this aquifer for water, pressure head declines in the aquifer of 1-2 feet per 

year has been observed since the 1980s (Harms, 2010; Gordon & Garner, 2014).  
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In Schuh’s 2010 summary, he states the importance of withholding the FH-HC aquifer 

from large industrial uses pointing out that the water is already being mined meaning the water is 

being taken out faster than it can be recharged. At these levels of use, there are already concerns 

about the longevity of wells that draw water from the FH-HC aquifer (Gordon & Garner, 2014). 

Although the FH-HC aquifer is important for meeting many needs in North Dakota, it is unable 

to be used for drinking water in most cases due to its total dissolved solids (TDS) concentration 

of around 2,500 mg/L (Gordon & Garner, 2014). 

 

Dakota Aquifer 

Spanning nearly all of North Dakota, the Dakota aquifer is another tremendous source of 

water; unfortunately, most of this water cannot be used without treatment (Schuh, 2010). The 

Dakota aquifer ranges from 4,000-6,000 feet in the Williston Basin to 2,000-3,000 feet in north-

central North Dakota, and is shallow in eastern North Dakota (Schuh, 2010). In oil drilling areas, 

this formation is often where produced water from hydraulic fracturing is injected to dispose of 

the wastewater that would otherwise need to be treated (Schuh, 2010).   

 

Glacial Aquifers 

Glacial aquifers play an important role in providing quality water. Most of these aquifers 

are shallow only going to depths of a few hundred feet (Gordon & Garner, 2014). This provides 

easier access to these groundwater sources compared to other aquifers in the state. Irrigation 

water often needs to come from these aquifers as well because qualities inherent to these aquifers 

result in lower concentrations of TDS than other water sources in the area (Gordon & Garner, 

2014).  
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Missouri River System 

The Missouri River and Lake Sakakawea are the largest sources of surface water in North 

Dakota. Lake Sakakawea covers more than 500,000 acres of flooded land (Harms, 2010), and the 

Sakakawea Reservoir has 7,800 billion gallons storage capacity (Scanlon et al., 2014a). The lake 

is capable of providing 10 billion gallons of water using one inch of the lake as estimated by the 

North Dakota Department of Mineral Resources (Hicks, 2010). This is why there is a desire for 

greater access to water from the lake for the oil and gas industry from the North Dakota State 

Water Commission (SWC), the governor, and the congressional delegation (Harms, 2010); 

however, the United States Army Corps of Engineers (USACE) controls the points of diversion 

to Lake Sakakawea.   

 

Conflict with USACE 

Restricted access to Lake Sakakawea began in May 2010 when the USACE “announced 

that a three to seven year storage availability study would be required before any additional 

water access permits could be approved from Lake Sakakawea” (Schuh, 2010, p. ES-8). In 

addition to the storage availability study, the USACE worked to calculate a value for “surplus 

water” storage fees (Schuh, 2010) so when the first study was completed there would be a price 

that could be charged to those who wanted to access this surplus water. This power of the 

USACE comes from the Flood Control Act of 1944 which the agency to charge fees for this 

water in its Surplus Water Policy (Best, 2013). Water from Lake Sakakawea is classified as 

surplus because there were authorized projects in the area that would have used this water, but 

were never finished (Best, 2013).  
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Little time was needed before 100,000 acre feet of water per year was made available for 

the next five years in December 2010 (U.S. Army Corps of Engineers, 2010). Because this 

supply was made available on a temporary basis, Gordon and Garner (2014) argue that without 

permanent availability, infrastructure to transport water for the oil industry will not be 

constructed. 

 

Sectors of the Energy-Water Nexus 

With background on basic problems and availability associated with the water sources in 

North Dakota, delving into the consumption of water throughout the different sectors of water 

use will provide some quantifiable data for water planning. Water demand can be gathered and 

seen mainly in a few different sectors in North Dakota. Most of the consumption comes in the 

form of irrigation, with industrial and municipal usage as the other major forms. However, 

fracking water use accounted for 43% of total water use in the four major oil-producing counties 

(Williams, Mountrail, McKenzie, and Dunn) in North Dakota in 2014, up from 0.7% in 2007 

(Lin, Lin, & Lim, 2015). Examining some of these components will provide a better 

understanding of the role water depots play in the water allocation system present in North 

Dakota. 
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Figure 2. Water Consumption in North Dakota (2014). Source: North Dakota State Water 

Commission (2016). 

 

Irrigation  

Irrigation is by far the most extensive use of water in North Dakota. As previously 

mentioned, irrigation accounts for almost half of consumptive water use in North Dakota (Figure 

2). But this water, even with the recent oil boom, is being used to support the agriculture industry 

which remains the largest industry in North Dakota (Hearne & Fernando, 2016). Farmers have 

always needed water for their crop production. Being a leading agricultural state, it is important 

to continue to make sure water is available in this sector as water demand grows in other areas.  

 

Biomass – Ethanol Production 

Biomass is one of these areas where there is a great deal of energy being generated.  The 

importance of biomass to United States energy production is not difficult to see when in 2007, it 

was greater than that of hydropower (Schuh, 2010). When trying to meet our future energy 

demands, failing to take advantage of biomass would leave an incredibly valuable source of 



14 

 

energy to waste. This is why it is important to recognize its connection to water consumption as 

well. There are five operating ethanol plants in North Dakota with a combined production of 465 

million gallons of fuel ethanol per year as of July 2015 (Nebraska Energy Office, 2015). 

Using a 3-3.5 gal of water/gal of ethanol ratio in North Dakota (Schuh, 2010) and an 

operating production of 470 million gallons of ethanol per year for July 2016 in North Dakota 

(Nebraska Energy Office, 2016), the industry’s annual use ranges from about 4,330-5,050 acre-

feet of water used in the state.  

 

Municipal 

 A key area of municipal water use is domestic water demand. With populations 

increasing in North Dakota oil field regions, there is expected to be a correlated increase in water 

demand. Looking at population changes in the City of Williston where the recent oil boom has 

had an enormous impact, the U.S. Census Bureau (2014) estimated a change in population from 

16,046 in 2010 to 24,562 in 2014 which would be a 50% increase in population. This is just one 

example of the growth in population the Bakken region of North Dakota. If population continues 

to grow at rates even close to this, municipal water demand will continue to increase at rates 

putting increased pressure on the already scarce quality water supply in the Bakken region. 

Industrial & Electricity Generation (Non-Fracking) 

Another water intensive industry is thermoelectric energy generation. Thermoelectricity 

in North Dakota uses water, but much of the water is reused. Using terms to differentiate 

between the water used is important, and Schuh (2010, p. ES-10) describes as those before him 

did, “Withdrawn water is returned to the source stream after it is used and has little effect on the 

source waters. Consumed water is not returned to the source stream after it is used.”  
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The United States is quite reliant on thermoelectric energy generation as it accounts for 

about 90% of all electrical capacity (EERC, 2015). Thermoelectric plants using Missouri River 

water have the capacity to provide 15,000 Megawatts (MW) of energy (Hearne & Prato, 2016). 

This knowledge should help solidify the need and importance of some of these water intensive 

forms of energy generation. A couple other energy industries in North Dakota are natural gas and 

wind. Both of these industries use little water leading to little worry in being able to supply their 

water needs (Schuh 2010).  

 

Hydraulic Fracturing 

In the past decade, oil production has increased in North Dakota due to advances in 

hydraulic fracturing technology, or fracking. Fracking compliments horizontal drilling in North 

Dakota’s Bakken play which is different from conventional oil production methods where there 

is only vertical drilling. Another distinction is that hydraulic fracturing does not occur until 

drilling of the well is completed. Fracking is the process used to create small fractures in the rock 

where oil can flow out and be recovered at the surface of the well. This is where the hydraulic 

part comes in because 98 to 99.5 percent of the fluid used to create these fractures is water and 

sand (FracFocus, 2015). This fracking fluid opens fractures by pumping a large volume of the 

fluid into the well at high pressures. Many precautions are taken throughout the drilling process 

to protect groundwater sources and other environmental resources.  

Fracking is occurring in the Bakken and Three Forks Shale formations in North Dakota 

which hold an abundant amount of oil. To frack these formations, drills must reach depths 

around 10,000 feet. Based on estimations conducted by the North Dakota Industrial 

Commission’s (NDIC) Department of Mineral Resources (DMR), there are 200-300 billion 
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barrels of oil in the Bakken but only 1.4 percent would be recoverable (Harms, 2010); however, 

more recent recovery rates are in the 4-6 percent range (Stockdill, 2014). This shows just how 

plentiful oil is in North Dakota and why there is so much interest in the Bakken play.  

Water required for hydraulic fracking is immense. Because fracking has grown quickly, 

finding sustainable water supplies to support the demand has been worrisome. There is common 

consensus in the state and literature that support the Missouri River system and Lake Sakakawea 

to be the best source of water to support hydraulic fracking’s demand (Schuh, 2010; Harms, 

2010; Horner et al., 2014; Shaver, 2012). 

The amount of water for each frack varies greatly. A 2010 estimate by the North Dakota 

Department of Mineral Resources found 1.5-4 million gallons of water needed from start to 

finish per well (Hicks, 2010); whereas, another report estimated use in the 2-8 million gallon 

range per well or more (Clark, Horner, & Harto, 2013). However, the 2013 average water 

consumption per well due to the fracking process in the Bakken is estimated at 3.6 million 

gallons based on information provided by the North Dakota State Water Commission (2015b; 

Hearne & Fernando, 2016).  Considering there were “about 8,000 still-active wells drilled 

between 2006 and 2014” (Gordon & Carter, 2014, p. 1), water demand will continue to grow, 

especially if new wells are drilled. Oil production over the lifetime of a well uses a similar 

amount of water as initially fracking a well (North Dakota State Water Commission (2015b). 

Water also is used during the drilling process, but most of the water is used in fracking and 

maintenance of the well (Gordon & Carter, 2014). Maintenance water can reach 100 barrels per 

day per well (G. Slick, cited in Geiver, 2014). 
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Water Depots 

Water depots in North Dakota’s Bakken region make the water allocation system 

different from anywhere else in the world. Because many oil companies rely on these depots for 

their water needs, and with the increased role oil has played in the state and the world, 

understanding what water depots are, how they operate, why they have become popular, and how 

the state has been involved are questions for water resource managers to understand. 

One way to think about the function of water depots is to consider a gas station where 

drivers pump gasoline; oil companies go to water depots to fill their trucks with water in a 

similar manner. Water depots often have only a small building with pumps that draw the water 

from a source and hookups to dispense the water to the trucks (Scheyder, 2013). Figure 3 below 

shows an image of a water depot. 

 

 
 

Figure 3. Water Depot. Source: Tong Lin (NDSU). 
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 There also are several reasons why water depots have continued to expand. One reason is 

the lack of tax or any other cost to selling the water; another reason is the incredible profits 

realized due to the demand for water (Scheyder, 2013; Kusnetz, 2012). A number of farmers 

have converted their irrigation water permits to sell water to the oil industry temporarily 

(Kusnetz, 2012). Figure 4 shows how the number of water depots has increased exponentially in 

recent years. From 2007 to 2010, the number of water depots nearly tripled increasing from 17 to 

43; however, the number of water depots from 2010 to 2014 increased from 43 to 555 showing 

an increase of more than 1,000 percent. Water consumption from water depots also has increased 

over 800 percent from 2010 to 2014. 

  

 

Figure 4. Number of Water Depots (2007-2014). Source: Author using data from North Dakota 

State Water Commission (SWC). 
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CHAPTER III. LITERATURE REVIEW 

Introduction 

Water management is an important task for every community around the world to address 

and prioritize. With growing global water availability concerns, effective policy and water 

management plans are becoming increasingly important. Supply and demand analysis is an 

essential part of addressing these issues. Therefore, work in economics and other disciplines has 

become increasingly important in providing timely solutions to these problems. Proper economic 

analyses of water supply and demand are needed to ensure demand for water is being met while 

water supplies also are being sustained.  

Prior to the 1970s and 1980s, water management relied on supply-side solutions to 

meeting the needs of a population, but policy has since shifted to demand-side solutions (Chong 

& Sunding, 2006; Galán, López-Paredes, & del Olmo 2009). With more advanced economic 

methods and computational tools now available, water management issues can be more 

effectively countered from an efficiency standpoint.  

An outline of the primary sections in this chapter is provided. Water: A Private or Public 

Good? examines the classification of water as a private or public good. Non-Market and Market 

Valuation Methods reviews different ways to value water. Without proper economic valuations 

of water, it can be difficult for policy makers to develop policy that not only protects water 

sources, but also allows for water to be used for other beneficial economic activities. Water 

Supply and Demand in Other Shale Plays examines water management in other shale plays. 
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Water: A Private or Public Good? 

 Classification of goods as private or public is critical to understanding how a good is 

valued. Different ownership characteristics (especially with public goods) requires different 

ways of valuing them. The following paragraphs highlight various classification characteristics 

water exhibits in different forms.  

 

Water as a Public Good 

 Water has traditionally been identified as a public good (Grimble, 1999), but with 

different water management systems currently being used, there is cause to examine whether 

water is no longer a public good. Public goods are non-rival and non-excludable in nature; 

therefore, rivalry and excludability characteristics must be examined for water. This begs the 

question: is water a private good, public good, or both?  

One characteristic of water that nearly all water resource managers have agreed on is that 

it is an economic good (Savenije & van der Zaag, 2002). As set out in the fourth principle of the 

Dublin conference on water and the environment: “Water has an economic value in all its 

competing uses and should be recognized as an economic good” (ICWE, 1992). This principle 

classifies water as an economic good, but the implication of this principle is unclear (Savenije & 

van der Zaag, 2002).        

Savenije (2002) argues that water is a public good, but that it also is a special economic 

good with inherent properties that prevent it from being treated like other economic goods. In 

fact, it has been argued that water is “the quintessential public good” (Dellapenna, 2001, p. 1). 

This might be because water is essential to all people. To protect human rights, access to water 

must be provided to those who cannot afford it. If water consumption by high or middle-class 
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income brackets exhibits characteristics of rivalry or if low-income groups can be excluded from 

the consumption of water, violations of basic human rights may occur. However, this does not 

entitle governments to provide water for free (Savenije, 2002). Citizens in Egypt and India also 

consider water to be a public good (Allen, Dávila, & Hofmann, 2006).  

 

Water as a Private Good 

Water also can have characteristics associated with private goods. Schouten & Schwartz 

(2006) note that water services are examples of private goods most of the time. This is because 

water services can be rival in consumption by one user leaving less for another and excludable 

by water service providers who are able to prevent access to consumers.  

Another example of water as a private good is the case of water being privatized. 

Traditionally, water has been allocated using public companies as can be seen in many 

municipalities. However, private companies became significantly more involved in water 

resource management in the 1990s (Bakker, 2013). 

Private versus public water management has now become a controversial issue. Anti-

privatization advocates voice that privatization of water can lead to water acting like any other 

market good which is sold for profit without taking into account the ability of a consumer to pay. 

Fears also arise that the right to access water will not be adequate for all peoples if it is turned 

into a good used mainly for profit. The anti-privatization movement in Cochabamba in the early 

2000s is one movement which sparked other anti-privatization movements throughout the world 

(Laurie & Crespo, 2007; Swyngedouw, 2013). As a result of a global movement, the United 

Nations General Assembly “adopted a resolution recognizing the human right to water and 

sanitation as human rights that are essential for the enjoyment of life and all other human rights” 
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(Baer, 2014, p. 145). Advocates of water privatization point to increases in economic efficiency 

of water use as a major motivation for privatization. Letting markets decide the price 

theoretically will move water from lower to higher uses with greater efficiency (Rosegrant & 

Binswanger, 1994). Water privatization also removes some power from centralized management. 

Even with privatization, state level involvement provides necessary provisions in providing the 

right to water for all peoples (Baer, 2014). Therefore, water privatization does not necessarily 

imply a water market system without regulation. As current water markets are further developed 

and new water markets are established, the benefits and costs of privatization should become 

clearer for both advocates of anti-privatization and privatization. 

 

Water Markets  

 Acknowledging that water is typically seen as a public good, but that it also can exhibit 

the characteristics of private goods, markets have been developed attempting to maximize 

economic efficiency in the use of water resources. Looking at the different water allocation 

systems then sparks debate on issues similar to those discussed with water privatization issues. 

 Advocates of water markets believe markets can provide more efficient water 

management, but those opposed to water markets believe that environmental and water 

protection and conservation measures will be neglected in markets (Bakker, 2014). Both of these 

points should be addressed and balanced in any water allocation system. Neither advocacy group 

would disagree with trying to promote both efficiency and water protection; but with nearly all 

of life’s problems, finding balance in issues is essential. Examining different characteristics and 

implementations of water markets will provide examples of how they work, a couple of different 

forms they take, and the larger issues they face.  



23 

 

Regulation is needed because of the essential role water plays in sustaining human and 

other life. Evidence points to the establishment of water markets with proper regulation actually 

increasing the value of water, but there is uncertainty on the environmental impacts of 

establishing water markets (Tietenberg, 2003). Issues of equity and sustainability are several 

other factors that have to be addressed within a proper market framework for water.  

There are different criteria that may be included in best water management practices 

outside of economic efficiency (such as sustainability), but using markets also can be one way of 

removing a strong central authority that may be perceived as self-interested from having control 

over water allocation. The old Soviet Union’s strong central government exemplifies this type of 

central authority, and its management of the Aral Sea and surrounding area has left a lasting 

impact on the region. The Soviet Union had developed too many irrigation projects around the 

Aral Sea without proper water resource management. This resulted in the once great freshwater 

source in Central Asia being reduced to a fraction of the size it was in the 1960s. In fact, the 

volume of the sea decreased by 90% (Micklin, 2007). Other water planners around the world—

including those in North Dakota—should recognize the importance of responsible, efficient 

water management in response to events like these and realize that the water resources they 

manage have great value.  

 

Additional Costs Associated with Water Markets 

The possibility for market failures should be examined in any market analysis as well. 

Because water is a complex economic good, there are a few different reasons market failures 

may occur such as its nature of being a public good, being bulky, and being a desirable 

environmental resource to live near (Savenije, 2002). Each of these characteristics corresponds 
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respectively to the broader topics of transaction costs, transportation costs, and externalities. 

Additional problems faced in water markets include information burdens and establishing 

effective monitoring and enforcement (Garrick, Siebentritt, Aylward, Bauer & Purkey, 2009). 

One source for market failures is the existence of transaction costs. Transaction costs 

make markets less than efficient. Whenever there are additional costs associated only with the 

process of exchanging goods or service (such as time or transaction fees), a transaction cost is 

present. Garrick, Whitten, & Coggan (2013, p. 196) explain how—in the case of water 

markets—transactions costs occur due to “the high cost and impracticality of perfectly defining 

private tradable water rights for a socially and physically interconnected resource.” Therefore, 

water market exchanges are only to be expected when benefits to both parties exceed the 

transaction costs. 

There also are issues concerning the costs associated with transportation of water. This is 

because water is not cost-effective to transport. Water is bulky; it cannot be transported at a cost 

that would make its transportation profitable like other economic goods such as fuel and food 

(Savenije, 2002). In the context of water depots, transporting water is more expensive than the 

water itself (Kurz, Stepan, Harju, Stevens, & Cowan, 2011) which has incentivized oil 

companies to obtain water that is priced higher at closer distances to avoid an overall higher cost. 

This particular example highlights both problems of trying to exchange large quantities of water 

and exchanging water over greater distances. 

Water markets face externalities too. Some of these externalities are commonly 

associated with any type of environmental resource. An example of a positive externality is the 

beauty of a nearby water source owned privately but still visible to others. This comes from the 

human desire to live near clean water (Savenije, 2002). There also can be negative externalities 
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associated with the use of water in a market if property rights for water are not well-defined. 

These negative externalities occur when a water source has downstream flows or is used by 

multiple users. As one user may sell water from this source, other users will have less water 

available for uses such as recreation and fishing for which they do not receive compensation 

(White, 2015).  

Externalities are a common problem in any market when property rights are not well-

defined. The Coase Theorem addresses well-defined property rights as one of the essential 

characteristics for a market to operate efficiently. There also needs to be a means of enforcement 

through regulation in environmental markets (Garrick et al., 2009). Flowing water sources (such 

as rivers and streams) provide a greater chance for externalities to exist because of the integral 

connection between upstream water use and downstream water use. Failing to take into account 

externalities associated with water markets, if they exist, will result in some loss of economic 

efficiency in water allocation. Because water markets are to be used in an attempt to obtain more 

efficient use of water, externalities should not be excluded from any water market efficiency 

analysis.   

 

Water Banks 

 Other water market tools have developed such as water banks. Water banks handle short-

term water allocation transactions (Goemans & Pritchett, 2014) and less often permanent 

transfers of water (Ghosh, Cobourn, & Elbakidze, 2014). Most water banks are found in the 

western United States. They do have different forms of implementation, but they share a mission 

in moving water to areas of greatest need (Washington State Department of Ecology, 2016). 

Some differences include the organizational structures of federal, state, or other local level 
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ownership (Goemans & Pritchett, 2014). Common processes water banks facilitate include 

setting water prices and determining who may participate in water banking (Ghosh et al., 2014), 

but pricing structures also can be determined through auctions (Goemans & Pritchett, 2014). 

Sellers lease the rights to water that they have to the water bank so that the water bank may find 

buyers to rent the water. In this way, a water bank acts as an intermediary in connecting buyers 

and sellers. This is one way that water banks can reduce transaction costs and provide a water 

exchange that benefits both buyers and sellers as is evident by continued participation in water 

markets. 

Conjunctive administration (CA) is another component of management in water banking. 

This is where surface and groundwater rights are merged into one framework (Ghosh et al., 

2014). CA also is compatible with the doctrine of prior appropriation for water rights which 

follows first come, first served and beneficial use criteria (Paulson, 1990; Best, 2013; Ghosh et 

al., 2014). A majority of the states in the western United States “(North Dakota to Texas and 

west)” follow the doctrine of prior appropriation for water rights (Saxowsky, 2016). The 

common doctrine of prior appropriation shared between North Dakota and other states in the 

west provides a similar framework for water rights. However, North Dakota has only begun to 

allow those interested in water banks to apply in June 2016 (North Dakota Department of 

Agriculture, 2016). With the use of water depots and little involvement using water banks in 

North Dakota at the present time, North Dakota separates itself from other states in the west in 

water allocation practices.  
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States with Water Banks 

Examining water banks in California, Idaho, and Colorado provide background 

information and examples of water markets and water banks in contrast to the water-depot 

allocation system in North Dakota.     

 

California 

 California faces a number of water issues like other western states. These issues have 

particularly been seen with California facing severe droughts in the past five years (USGS, 

2016).  One of the ways California has experimented with addressing water scarcity has been 

through the development of water markets.  Because of major economic sector shifts in 

California’s history, water markets have become an attractive option versus the alternative of 

accepting large costs associated with further development of water resources (Howitt, 2014). 

Water market buyers and sellers tend to stay local in exchanges to avoid high transactions costs, 

but there are various avenues of transportation including canals and infrastructure throughout the 

state that allow for a greater scope for water markets (Griffen, 2006). Water markets in 

California include long term and permanent transfers of water along with selling water itself in 

spot markets, but these spot markets have declined since 2000 (Howitt, 2014). 

 California water rights follow a combination of riparian and prior appropriation doctrines 

(Saxowsky, 2016). The riparian doctrine—unlike prior appropriation doctrine—focuses on who 

owns the land connected to a water source and assigns the water right this way (Clifford, Landry, 

& Larsen-Hayden, 2004; Saxowsky, 2016). Under riparian doctrine in California, water rights 

are also correlative meaning that riparian water rights holders share the same water source 

equally (Saxowsky, 2016). Water rights for surface water and groundwater also are regulated 
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differently in California where surface water follows appropriative and riparian rights, and 

groundwater follows rule of capture and reasonable use doctrines (Clifford et al., 2004; 

Saxowsky, 2016). Rule of capture doctrine gives full ownership of groundwater to the landowner 

and reasonable use doctrine limits water use to beneficial purposes (Saxowsky, 2016). 

In California, conjunctive use of water also refers to “the temporary storage of water in a 

groundwater aquifer through intentional recharge and subsequent extraction for later use” 

(California Statutes, Water Code, §79171). Exchanges of both surface water and groundwater 

occur through water banks with CA. This includes stored water uses. Conjunctive management 

of water resources allows surface water to be stored during wet years so the same water may be 

pumped for use later in dry years. 

The start of water markets making an impact in California began with the 1991 Drought 

Water Bank buying 821,000 acre-feet of water resulting in a successful project (Howitt et al., 

1992 cited in Howitt, 2014; Coppock, Gray, & McBean, 1994 cited in Griffen, 2006). However, 

this success was not repeated with the 2009 Drought Water Bank which targeted a purchase of 

600,000 acre-feet but only bought 82,000 acre-feet of water (Howitt, 2014). One of the reasons 

for differences in the success of these two projects was due to having a well-known and trusted 

leader working with the water bank in the 1991 Drought Water Bank (Howitt, 2014). These two 

examples show how water banks and water markets can succeed and fail to meet expectations in 

the same area. Different time periods and other factors obviously played a major role in these 

outcomes, but they still point out that water market implementation should be considered on a 

case-by-case basis. 
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Idaho 

In Idaho, water markets mostly exist in the form of water banks. Active water banks in 

Idaho date back to 1932, but there was a lack of legislation regarding water banking until 1979 

(Clifford et al., 2004). The primary avenue water rights are leased and rented through is the 

Idaho Water Supply Bank, but rental pools also exist for storage water transactions (Idaho 

Department of Water Resources, 2016). The Idaho Water Bank covers 18 regions across 

southern Idaho (Ghosh et al., 2014).  

Water rights in Idaho follow conjunctive administration (CA) and CA allows for prior 

appropriation to be applied across surface and groundwater rights in the state (Ghosh et al., 

2014). Surface water belongs to the state (Clifford et al, 2004) and the use of unappropriated 

surface waters is acquired only by appropriation under the application, permit, and license 

procedures of the state (Idaho Statutes, Water Code, §42-103). 

Water banks have been active in Idaho. Water rented from water banks has increased 

from 2008 to 2013 starting with 12,000 acre-feet in 2008 and reaching 75,000 acre-feet in 2013 

(Idaho Department of Water Resources, 2013). If averaged, water rented increased over the 

original volume by 12,000 acre-feet each year. This type of water usage makes it important to 

continue to be aware of water banks and their role in water markets. 

Bulletin board markets often operate under the water bank title (Hadjigeorgalis, 2009). In 

bulletin board markets, transactions occur through buyers and sellers making offers using a 

bulletin board at a central location or through an electronic system rather than paying prices 

established by a water bank (Hadjigeorgalis, 2009). Bulletin board markets have been a simple 

mechanism used to conduct trades following the same goal of water banks in providing a means 

for buyers and sellers to reduce search and transaction costs. 
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Colorado 

Like other western states, water in Colorado is conjunctively managed and has been since 

the 1960s (Blomquist, Heikkila, & Schlager, 2004). This combines water rights of surface water 

and groundwater sources. Colorado is different from other states like California in that it does 

not primarily use conjunctive management for long-term underground storage, but rather in 

protecting the water rights of senior water rights holders (Blomquist et al., 2004). Water in 

Colorado follows the doctrine of prior appropriation as well (Blomquist et al., 2004; Lepper & 

Freeman, 2010). Water rights issued through water courts begin with “conditional” status and 

obtain “absolute” status after the water has been put to beneficial use (Colorado Division of 

Water Resources, 2016). This process is similar to the one in North Dakota with “conditional” 

and “perfected” status for permits. 

Other water markets have been functioning in the state since the late 1880s (Clifford et 

al., 2004), but Colorado’s water banking program was tested from 2001-2005 (Clifford et al., 

2004; Lepper & Freeman, 2010). Legislation in 2003 (HB-1318) opened water banking to all 

river basins in Colorado and made the program operational (Clifford et al., 2004; Lepper & 

Freeman, 2010). However, due to many problems (including a lack of protection for senior water 

rights owners) and a lack of interest, the pilot program was decommissioned in 2005 (Lepper & 

Freeman, 2010).  The Northern Colorado Water Conservancy District (NCWCD) is the current 

water bank in Colorado which operates a bulletin board market (Hadjigeorgalis, 2009). 
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 Valuation Methods 

 Placing a value on water can be a difficult but important task. In North Dakota and 

around the world, it is difficult to know how important something is without placing some type 

of value on it. In North Dakota, this could include using water for energy generation, oil 

production, or irrigation to produce crops. 

Strangely, the most essential resources can appear to have lower monetary values than 

others. This particularly holds true with water as a resource that is essential to the survival of 

humans, yet its market value is lower than that of many other goods that have no practical use to 

humans. This interesting phenomenon is an example of the water-diamond paradox explained in 

Adam Smith’s Wealth of Nations (1776) pointing out how a diamond with little practical use is 

valued at a much greater level than water. This issue of scarcity in determining market value is 

particularly highlighted in the water-diamond paradox.  

With this knowledge, one could reason that market prices alone do not always show the 

true value in use. This is true with water, and as explained later there is a non-use value to water 

that markets may not always reflect. Accounting for the opportunity cost of water is important in 

deriving the economic value of water as well. Savenije & van der Zaag (2002) explain that water 

has intrinsic values that provide greater benefits than the market value or willingness to pay for 

water. These additional considerations, however, should not undermine the importance of market 

mechanisms and water scarcity in determining water’s true value. Awareness of these issues also 

points to the importance of being able to calculate the opportunity cost of water using non-

market valuation techniques when such situations do not allow only for market valuation 

procedures. 
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Non-Market Valuation Techniques 

 Non-market valuation is used to obtain a dollar amount of economic value for water in 

areas where there is no market to determine the value of water (Loomis, 1997). Valuing water 

through non-market valuation methods is important because trying to place an approximate value 

on something like water in a situation without market factors for valuation becomes near-

impossible. There are both revealed and stated preference methods used in non-market 

valuations.  

One of two common revealed preference methods is the travel cost method (TCM). The 

TCM credits its foundation to Hotelling (1947, cited in Pearce, 2002) and development to 

Clawson (1959, cited in Birol, Karousakis, & Koundouri, 2006). It is an alternative method used 

when no market valuation system exists for ecological valuations. TCM valuations are computed 

using observed data such as travel distance, travel cost, and time costs (Pearce, 2002; Birol et al., 

2006). This method faces limitations; however, in valuing water resources as TCM valuations 

cannot be used in determining the non-use value of water.  

The other common revealed preference method is the hedonic pricing method. This 

method traces its origin to ideas Lancaster (1966) set forth on how people receive benefits from a 

good based on its characteristics rather than from the good itself. Hedonic pricing methodology 

used in the valuation of water quality (Poor, Pessagno, & Paul, 2007) shows continued 

applicability of non-market valuation related to water resources in the past decade. Limitations 

with this methodology are similar to the obstacles faced in using TCM for non-market valuation; 

i.e., hedonic pricing cannot be applied in non-use valuations either. 

One popular stated preference method used for water and other environmental economic 

problems is the contingent valuation method (CVM). Its continued popularity in recent literature 
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is evident with numerous applications such as valuing aquifers (Rupérez-Moreno, Pérez-

Sánchez, Senent-Aparicio, & del Pilar Flores-Asenjo, 2015) and valuing willingness to pay for 

water (Roy & Chakraborty, 2014) among many other water-related uses that can be found with a 

Google Scholar search inclusive of the words “water” and “contingent valuation”. Studies using 

CVM rely on responses from individuals. Using stated preference methods is beneficial in the 

ability to obtain all types of information related to economic value (Pearce, 2002). However, a 

limitation apparent in these studies is obtaining useful information that comes from only truthful 

responses to questionnaires (Pearce, 2002).  

 

Water Supply and Demand in Other Shale Plays 

Examining other shale plays in the United States provide comparisons to North Dakota. 

Most of these are in semi-arid areas that have some type of water scarcity problems that have an 

impact on fracking in these regions as well. As seen in Figure 5, there are plays from California 

to New York, but the largest oil producing plays are the Eagle Ford (Texas), Bakken (mainly 

North Dakota), and Permian (mainly Texas), respectively accounting for 34%, 29%, and 23% of 

United States oil production in 2013 (Scanlon et al., 2014b). Examining the relationship between 

water supply and demand in these other plays should shed more light on the problems facing 

North Dakota in the Bakken shale play.   
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Figure 5. Shale Plays in the Lower 48 States. Source: EIA (2015). 

 

 

Water Management in Other States 

 Texas and Pennsylvania’s shale plays each provide a different comparison to the Bakken 

shale play in North Dakota. 

 

Texas 

The Eagle Ford play in Texas produces both shale oil and gas, and unconventional 

production began in this region in 2008 (Scanlon et al., 2014a; Scanlon et. al, 2014b). Both types 

of production use large amounts of water, but the focus here will be on the oil component to 

make comparisons to the Bakken play where nearly all of the production is oil. About 18 billion 

gallons (approximately 55,240 acre feet) of water were used in the Eagle Ford play for fracking 
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in 2013 (Scanlon et al., 2014a); more than 1.5 times greater than the water used for fracking in 

North Dakota (Figure 2, Chapter 2). Texas also is home to the Permian Basin where 

approximately 10.4 billion gallons (approximately 32,000 acre feet) of water was used for 

fracking between 2011 and mid-2013 (Scanlon et al., 2014a). 

Water rights in Texas differ for surface water and groundwater. For groundwater, water 

rights follow English common law and follow previous court rulings which have consistently 

provided landowners the right to pump as much water from below their land that they desire, 

consistent with the rule-of-capture (Clifford et al., 2004; Texas A&M University, 2014). For 

surface water, however, it remains property of the state and users only acquire a right to the 

water (Texas Statutes, Water Code, §11.021; Saxowsky, 2016). Surface water rights also follow 

riparian doctrine (water rights are connected to the person who owns the land), prior 

appropriation doctrine, beneficial purpose, and historical use (Clifford et al., 2004; Texas A&M 

University, 2014). Prior appropriation doctrine in Texas follows “first in time, is the first in 

right” (Texas Statutes, Water Code, §11.027) in determining priority for water rights. Temporary 

permits issued for periods of one year or less can be issued like in North Dakota; however, 

permits in Texas cannot exceed 10 acre-feet if they are temporary (Texas Statutes, Water Code, 

§11.138). 

Water supply is another factor that should be taken into consideration. Most of the water 

used for fracking in the Eagle Ford play comes from the Carrizo-Wilcox aquifer recharge and 

other groundwater sources, but some of the water also comes from the Rio Grande (Scanlon et 

al., 2014a). Looking at water demand versus water supply, production in the Eagle Ford play is 

not expected to be limited by water resources in the future (Scanlon et al., 2014a).  
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Oil wells in the Bakken play were found to use about half the water needed for those in 

the Eagle Ford play, which was largely based on differences in geology (Scanlon et al., 2014b). 

Some other factors that affect the amount of water used in fracking are “type of well (vertical vs 

horizontal); length of horizontal wells or laterals; number of HF [hydraulic fracturing] stages; 

and HF fluid types (e.g., slickwater, X-link gel, or hybrids)” (Scanlon et al., 2014b, pp. 12386-

12387). In comparing the Bakken to Eagle Ford, other differences—besides geology—in 

fracking could come from the number of stages and the length of the laterals where both are 

about twice in the Bakken what they are in the Eagle Ford play (Scanlon et al., 2014b).  

Comparing water issues in fracking between Texas shale plays and the Bakken play in 

North Dakota reveals key differences between the two states. A few of the water suppliers in the 

Barnett shale play in Texas include “self-suppliers, local landowners, municipalities, larger water 

districts, and river authorities” (Nicot et al., 2014). In the Bakken (referring to the North Dakota 

part of the Bakken), water for fracking is mainly supplied by water depots. These water depots 

are primarily owned by private individuals, but there also are water depots owned by the 

government and individual cities. Texas and North Dakota both regulate surface water 

withdrawals with a permitting system operating through a state commission (North Dakota State 

Water Commission (SWC) in North Dakota and Texas Commission on Environmental Quality 

(TCEQ) in Texas). However, in Texas groundwater is not regulated by this same permitting 

system since the water belongs to the landowner unlike North Dakota. Also, water is scarce in 

both states, so they both face constraints in accessing suitable water for fracking.  
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Pennsylvania 

 The Marcellus shale play extends from New York to West Virginia underlying most of 

Pennsylvania (Figure 5). This shale play primarily produces gas, unlike the Bakken which 

primarily produces oil (Scanlon, Reedy, & Nicot, (2014b). The first well in the Marcellus was 

completed in 2004, but greater media attention did not come to the play until late 2007 when 

research by Dr. Terry Engelder and Dr. Gary Lash was highlighted in press releases claiming the 

Marcellus could produce 50 trillion cubic feet of gas (Harper & Kolstelnik, n.d.). Swindell 

(2016) estimated the number of wells in the Marcellus shale play in June 2014 at over 5,400, but 

Kondash and Vengosh (2015) estimated 8,307 wells in the Marcellus shale play.  

 Water rights in Pennsylvania follow riparian and common law (previous court decisions) 

doctrine with landowners owning the water beneath their land as well (Abdalla, 1997). Water is 

further classified into four types: (1) surface water, (2) diffuse surface water, (3) percolating 

groundwater, and (4) groundwater with “separate, inconsistent rules” (Bishop, 2006). However, 

there is not full ownership of water in any classification as the state owns the water (Bishop, 

2006).  

Shale gas wells use large amounts of water. Water consumption from hydraulic fracturing 

shale gas wells ranges from 2 to 5 million gallons (6 to 15 acre-feet) per well (Arthur, Uretsky, & 

Wilson, 2010; Ground Water Protection Council & ALL Consulting, 2009). Over a well’s life 

cycle, water consumption is estimated at 20,000 m3 (approximately 16.21 acre-feet) for an 

average well excluding final gas utilization (Jiang, Hendrickson, & VanBriesen, 2013). 

 Comparing Pennsylvania and North Dakota water issues in their shale plays further 

highlights the unique issues faced in the Bakken. Water used for fracking in Pennsylvania must 

be approved by either the Susquehanna River Basin Commission (SRBC) or the Delaware River 
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Basin Commission (DRBC) (depending on withdrawal site) and the state, but in the case of a 

water withdrawal outside of the jurisdiction of either of these commissions, water is handled by 

state regulations (Koncelik, 2016; Abdalla & Drahan, 2010). A guideline for areas outside of 

river basins in Pennsylvania limits water withdrawals during low water flow for streams, but 

allows them in high or normal flow (Abdalla & Drahan, 2010). 

In North Dakota, the State Engineer working with the SWC approves permits throughout 

the state. Most of the water used for fracking in the Marcellus comes from operators withdrawing 

it directly from surface water sources, but also it comes from public suppliers and reused 

(produced) water (Mitchell, Small, & Casman, 2013). Operators have had to submit water 

management plans (WMP) to the Pennsylvania Department of Environmental Protection 

(PADEP) since 2009 (Mitchell et al., 2013). In the Marcellus play, approximately 85% of the 

water used for fracking is surface water (Mitchell, et al., 2013). However, water shortages are not 

problematic in the Marcellus region (Rodriguez & Soder, 2015).  

 

 

 

 

 

 

 

 

 

 



39 

 

CHAPTER IV. REVIEW OF METHODOLOGY  

Methods for Addressing Water Demand, Policy, and Management 

A variety of demand models have been developed to address issues surrounding water 

resource management. Table 1 summarizes various models and offers comparisons of 

methodologies examined in this chapter.  

Forecasting water demand has been one of the fundamental methods used for water 

management since water management shifted to a demand-side approach. Forecasting is done by 

looking at future populations and growth to estimate future water demand using statistical 

models. These models can be useful in helping water policy makers or other water management 

officials establish proper measures to maintain and provide water necessary for residents and 

other water users in the region they are presiding over. 

One particular statistical method commonly used in economic literature to examine 

demand-side water management is econometrics. The regression models formed from using 

econometric techniques often are used in studies that aid city or other regional water planners in 

estimating the amount of water they will need to supply residents and other users in the future. 

Multiple examples of municipal water demand are seen in forecasting using econometrics 

(Martinez-Espiñeira, 2002; Babel, Gupta, & Pradhan, 2007; Qi & Chang, 2011). This is further 

illustrated by Arbués, García-Valiñas, & Martínez-Espiñeira (2003) and Milutinovic (2006) who 

provide reviews of water demand studies.  
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Table 1 

 

Economic methods for water demand and optimization 
Method Comments Scope Sources 

Econometric 

Regression 

Early model using regression in water demand. This research 

provided a foundation for a growth of research in the 

following decades focused on using regression techniques in 

residential water demand forecasting. 

Multi-city Howe & 

Linaweaver 

(1967) 

 

  

Two-stage least squares (2SLS) regression used in 

forecasting domestic water demand. This study uses panel 

data at the household-level. 

 

Scenario analysis is used in a log-linear regression model. 

This research does not focus on forecasting or predictions 

like most of prior research. 

 

Two communities 

 

 

 

Multi-county 

 

 

 

Renwick & 

Archibald 

(1998) 

 

Dziegielewski 

& Chowdhurry 

(2012) 

 

Artificial Neural 

Network (ANN) 

The model forecasted water demand using artificial neural 

network (WDF-ANN) which combines ANN and 

econometrics. Forecasting with ANN is also relatively new 

at this time in its application to domestic water forecasting. 

This study focuses on water demand in Weinan City, China.  

 

The model used incorporates methods of determining “more 

realistic assessment of parameter and model prediction 

uncertainties” (Cutore et al., 2008, p. 125). This model shifts 

away from previous trends in models which used a 

deterministic context. This study focuses on daily water 

consumption in Catania, Italy. 

 

This study finds using different methods together can be 

useful in short-term forecasting of water demand. Univariate 

time-series models used include the Holt-Winters 

exponential smoothing, ARIMA, and GARCH models along 

with a random walk model for basic comparisons. This study 

uses daily water demand in Spain. 

 

Weinan City, 

China. 

 

 

 

 

Catania, Italy. 

 

 

 

 

 

 

Spain 

Liu et al. 

(2003) 

 

 

 

 

Cutore et al. 

(2008) 

 

 

 

 

 

Caiado (2010) 

Economic-

Engineering 

Optimization 

Large-scale optimization model used in California water 

management. Builds on detail and scope of previous 

optimization models. Results show potential for water 

markets in California. 

 

Multi-region 

(California) 

Draper et al. 

(2003) 

Agent-Based 

Modeling (ABM) 

A decentralized agent-based model (ABM) is used to 

simulate behavior of agents in a watershed. This allows self-

interested optimizations rather than system level 

optimization criteria. This study also includes a hypothetical 

case study in its application. A scenario analysis looking at 

different water levels is included. 

 

This study follows the work of Yang et al. (2009). It applies 

the decentralized ABM to the Yellow River Basin in China 

and analyzes 3 management scenarios.  

Watershed  

 

 

 

 

 

 

Yellow River Basin  

Yang et al. 

(2009) 

 

 

 

 

 

Yang et al. 

(2012) 
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Forecasting in any time period is subject to error. Some of these errors can occur due to 

unexpected changes in political or physical environments, which cause supply, demand, or both 

supply and demand-side shocks to the system; however, long-term forecasts are even more 

susceptible to errors. This is one reason statistical approaches in forecasting are not always 

reliable on their own. In addition, statistical methods use correlation which does not always 

identify causality.  

Mathematical models have been used as well in forecasting water consumption. Artificial 

neural network (ANN) models are mathematical models with variant types. A model combining 

econometrics and ANN was used by Liu, Savenije, & Xu (2003) to forecast water demand in 

Weinan City, China when application of ANN to water demand forecasting was relatively new. 

Later ANN models have separated themselves from others modified by a unique algorithm 

(Cutore, Campisano, Kapelan, Modica, & Savic, 2008) to predict daily water consumption in 

Catania, Italy and using combined forecasts which improved short-term forecasting (Caiado, 

2010). Using forecasting models together with other more sophisticated models is appropriate for 

situations where water demand may not follow a predictable trend (Galán et al., 2009).  

Significant advances in computational power have led to sophisticated models using 

simulation and optimization as other methods to assist demand-side water solution efforts. 

Economic models focusing on water policy, planning, and management have been increasingly 

seen in academic literature. One example is an economic model using an optimization 

framework to maximize net benefits in irrigation practices (Reca et al., 2001). Other models are 

integrated with ideas from other disciplines as well. In addressing water management issues in 

California, optimization methods in both economics and engineering have been applied (Draper 

et al., 2003; Jenkins et al., 2004). Optimization techniques also have been used in an integrated 
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three-model framework, which was designed for evaluating options associated with the Central 

Valley Project Improvement Act (CVPIA) in California (Sunding, Zilberman, Howitt, Dinar, & 

MacDougall, 2002). The California Agriculture and Resource Model (CARM), agroeconomic, 

and rationing models presented by Sunding et al., (2002) address several goals associated with 

the water issues concerning agriculture in California, including farmer profit, water productivity, 

and measuring how changes in water supply policy impact crop production in water districts 

(Chong & Sunding, 2006).  

Other researchers have developed models that use techniques that focus on the behaviors 

of individual actors, players, or firms in a given water management problem. These models are 

dynamic, rather than previous static models, allowing for more intensive computational analysis.  

However, dynamic models also face problems in becoming too complex to the point that other 

suitable forecasting methods may be preferred depending on the scenario (House-Peters & 

Chang, 2011). Agent-based models or agent-based modeling (ABM) are dynamic models that 

use optimization and simulation to assess individual agents’ behaviors and the impact their 

choices have on a water management region.  

 

Agent-based Modeling 

Agent-based modeling (ABM) is a tool that can use a “bottom-up” approach in 

comparison to classical modeling techniques that use a “top-down” approach (Tesfatsion, 2010). 

In ABM, the analysis focuses on the individual or micro level first and allows defined behavior 

and attributes at the micro level to translate into a macro result. Using a bottom-up approach 

allows the modeler to avoid some assumptions that cannot be avoided in top-down approaches. 

ABMs, in contrast, make no assumptions about the existence of efficient markets or general 
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equilibrium (“Agents of Change”, 2010). In this thesis, using a bottom-up approach allows the 

water depots (agents) to act according to their behaviors without constraint at the system level.  

Agents are the individuals or objects within the model with defined attributes and 

behaviors. Another defining characteristic of agents is that they are autonomous. ABM relies on 

the independence of agents so they follow individual rules and behaviors unlike a model where 

rules may be applied universally to the entire system (Wilensky & Rand, 2015).  

This independence allows for many more real-world applications such as agents 

representing humans as citizens in a computational model of Tiebout competition (Kollman, 

Miller, & Page, 1997). In this model, multiple institutions are examined and differences are 

found to exist between them. Agents in this model follow utility maximization behaviors. Albin 

& Foley (1992) also used agents in a simulated decentralized exchange system with bargaining. 

Agents in this model maximize utility between two goods. Exchanges are made by advertising, 

which includes a cost, accounting for communication or search costs. These studies provide 

sources of ABM application in economics using utility function maximization theory. 

 Another distinction is that ABM always starts at the micro level—the level of the 

agent—and outcomes and properties at the macro level rely on how agents are defined and how 

they behave (Wilensky & Rand, 2015). This is what is meant when ABM is described as using a 

“bottom-up” approach. This approach allows users to examine complex systems and the 

phenomena of emergence.  

Complex systems with interacting agents cause the system to exhibit properties and 

behaviors that are not found in the properties and behaviors of the individual agents. These 

interaction effects have a large influence on the final outcome of the system. Wilensky and Rand 

(2015) noted several real-world examples of complex systems occurring in the flight of birds in a 
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“V” formation and in traffic flows. Complex systems are formed from each bird or driver of 

vehicles acting independently and randomly according to the rules and behaviors for each bird or 

driver, but from these random actions, an ordered system emerges. The result of randomness 

leading to order is the phenomenon of emergence. 

 Emergent behavior and properties can be useful in deepening knowledge at macro and 

micro levels of a system. Sometimes research results will focus on the final outcome (macro 

level) while neglecting careful examination of how the micro level decisions led to the macro 

level result. Without the analysis of micro level behaviors, there is the possibility of making false 

inferences about how the micro level explains and leads to the macro level results. This can be 

seen in the example of birds flying in a flock where looking at a stable “V” formation can lead to 

the false inference that each birds remains in the same place when in reality, birds will occupy 

different places throughout flight (Wilensky & Rand, 2015). This leads to an understanding that 

macro properties do not always translate to properties of those at the micro level. Research is not 

expected to be flawless, but taking extra steps to support each level involved in reaching 

conclusions is an effective way to minimize the possibility of errors. 

To uncover the more intricate details of the water depot-based allocation system in 

western North Dakota, ABM will be an effective means of examining the emergent behaviors 

present in the region. Through the use of ABM, deeper insight into the driving factors for water 

depots in the Bakken will be revealed. Examining emergence in complex systems is the main 

goal of agent-based models, and this is one reason ABM will be used to examine water depot 

behavior. 
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Adam Smith and Principles of ABM 

One of Adam Smith’s most important ideas in the Wealth of Nations (1776) stems from 

people acting in regards to their own self-interest. Smith wrote, “It is not from the benevolence 

of the butcher, the brewer, or the baker, that we expect our dinner, but from their regard to their 

own interest” (1776, I.2.2). We also see in perhaps, a more startling fashion, “By pursuing his 

own interests he frequently promotes that of the society more effectually than when he really 

intends to promote it” (Smith, 1776, IV.2.9). People acting in complete disregard for others—

only looking upon themselves—often is what is best for society, but there is still the question of 

how and why this works.  

Smith also introduced the idea of the invisible hand in markets. By the work of the 

invisible hand, free markets efficiently distribute goods and services such that actors in the 

market will change their supply and demand of goods and services, especially based on price 

mechanism. This is all completed without outside regulation or influence, i.e., the invisible hand 

dictates the process.  

Smith’s ideology runs parallel with the principles of ABM which assumes no outside 

intervention, and agents acting in accord to their own goals can lead not only to a functional 

result, but also to a stable equilibrium in the result. This also relates to decentralized actions 

where there is no central planner involved. 

 

Welfare Economics and The Walrasian Auctioneer 

Adam Smith’s invisible hand is a way of expressing the first fundamental theorem of 

welfare economics before the theorem was formally contrived (Blaug, 2007). Other economists, 

such as French economist Leon Walras, also played a large role in advancing toward this 
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theorem and in advancing the field of welfare economics. This is evident as many scholars may 

refer to competitive equilibriums as Walrasian equilibriums, but Vilfredo Pareto is credited with 

the formal derivation of the first theorem of welfare economics in 1906 (Blaug, 2007). Walras’s 

model continues to have a large impact today as it is still the foundation used by many 

economists attempting to model economic systems (Tesfatsion, 2005).  

Competitive (Walrasian) equilibriums occur when prices are allowed to fluctuate and 

when the existence of a market containing other consumers and producers creates a competitive 

environment where a market equilibrium is reached. This type of equilibrium requires some 

assumptions be made about price and market competition; prices must be flexible and there 

needs to be market competition. An example where there would not be a competitive equilibrium 

and therefore an improper application of the first fundamental welfare theorem would be in the 

case of a market dominated by a monopoly or any competition-restricting markets. If 

assumptions about price and competition hold, the competitive equilibrium is Pareto-optimal as 

well, i.e., in a market no one can be made better off at the expense of the other. Reaching a 

competitive equilibrium and therefore also reaching a Pareto-optimal point signifies a market 

clearing point many economists and general observers may agree to be good benchmarks for 

price and quantity in many markets. 

Determining how prices fluctuate and are determined in such competitive environments 

is another issue that is vitally important to competitive equilibrium models. This analysis 

examines additional assumptions about the pricing mechanism. 

In analyzing the invisible hand, how the market arrives at equilibrium prices and 

quantities that benefit everyone is not recognized, but the Walrasian Auctioneer’s role is to carry 

out a sequence that allows a decentralized market to lead to an efficient outcome. In order to 
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transition to ABM, the Walrasian Auctioneer is replaced by an agent-driven procurement process 

(Tesfatsion, 2005). Also, Tesfatsion (2005, p. 5) warns, “It [Walrasian equilibrium] does not 

address, and was not meant to address, how production, pricing, and trade actually take place in 

real-world economies through various forms of procurement processes”.  Keeping these ideas in 

mind, the auctioneer calls out prices and, essentially, gathers bids from both the demand and 

supply sides. If there is excess supply or demand, prices will continue to be adjusted—rising if 

there is excess demand and falling if there is excess supply—until supply is greater than or equal 

to demand (Tesfatsion, 2005). 

 When using this mechanism, goods and services are not exchanged until the equilibrium 

is reached which is one of a few assumptions that must be made when using the Walrasian 

Auctioneer. Additional assumptions that can be gleaned are the lack of interaction between 

agents prior to exchanges and knowledge of the auctioneer in knowing demand and supply 

functions of those in the market. Because of the lack of interaction between market agents, this 

prevents strategic behavior and collaboration from occurring between these market agents 

(Tesfatsion, 2005). These characteristics and assumptions simplify a real-world problem (as a 

model typically does), but oversimplification can be overdone as well. 

 

ABM & The Market Mechanism 

Using ABM, one can attempt to fill the void of the auctioneer with methodology that 

simulates a more realistic mechanism for reaching equilibriums. Modeling Walrasian 

equilibrium without using the Walrasian Auctioneer is nearly impossible, if not impossible, in 

many cases (Tesfatsion, 2005). Using ABM in this context is often referred to as agent-based 

computational economics (ACE). Tesfatsion (2005) simulates this process of replacing the 
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Walrasian Auctioneer, and suggests that a similar process can be applied to other economic 

theories with assumptions that may be constraining.  

 

ABM vs Other Models 

A key difference between ABM and other traditional models is that “ABM is simulation 

based, not equilibrium based” (Nolan et al., 2009, p. 419). ABM can be modeled using sets of 

equations, and the equations describe agents separately (Bonabeau, 2002). At times, equation-

based modeling takes a centralized approach which makes the modeling techniques significantly 

different. When comparing decentralized approaches in ABM to centralized approaches, a 

centralized approach often requires more assumptions. Some assumptions that can be relaxed in 

economic applications include assuming rational agents, homogeneous agents, decreasing returns 

to scale in economic processes, and looking at long-run equilibrium as the main focus in the 

system (Arthur, Durlaf, & Lane, 1997; Macal & North, 2010). Relaxing several assumptions can 

result in a more representative model of how agents—particularly human agents—behave 

because the model has fewer obstacles if agents do not exhibit the previous properties in the real 

world. Econometric and theoretical models are limited as well in addressing scenarios of 

heterogeneous decision-making units and heterogeneous environments, but ABM is suitable for 

these scenarios (Nolan et al., 2009; Parker et al., 2003).  

 

Issues in using ABM 

Agent attributes, behaviors, and states must be well understood to generate an accurate 

model. Models with a centralized approach do not require understanding every individual in 

nearly as much detail, but that also comes at the cost of losing accuracy or even unrealistic 
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results if agents should be modeled heterogeneously (Wilensky & Rand, 2015); if a system can 

be modeled with homogeneous agents, ABM may not be important to use. 

 Although technology continues to grow, another problem ABM can encounter is the 

issue of computation. Bonabeau (2002) pointed out how one could possibly model a system 

using only a few equations if looking at the aggregate level of the system. In contrast, ABM 

requires so much information at the agent level that running simulations would use a great deal 

of computation and time, especially if there is a large number of agents. 

 

Benefits of ABM 

ABM has many benefits that make it more useful than other modeling techniques. 

Bonabeau (2002) concisely states, “The benefits of ABM over other modeling techniques can be 

captured in three statements: (i) ABM captures emergent phenomena; (ii) ABM provides a 

natural description of a system; and (iii) ABM is flexible” (2002, p. 7280). In a time when we do 

not know what the macro result will look like—especially in an economic context—having a 

modeling technique that does not require assumptions about the macro system is important. 

 ABM in the context of modeling the economy at the macro level could complement 

current models. After the recent financial crisis of the late 2000s, criticism of traditional 

economic models in macroeconomic forecasting opened investigation into the possible 

application of ABM for macroeconomic forecasting (“Agents of Change”, 2010). This type of 

modeling could theoretically model consumers, producers and many other agents. Agents could 

be modeled with unique attributes, behaviors and states that reflect how each would behave in 

the real-world environment. ABM does not keep strong assumptions of rational expectations on 
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agents either, which has been criticized in other economic models (“Agents of Change”, 2010). 

This is because ABM allows for behavioral uncertainty in agents (Tesfatsion, 2005). 

 ABM allows for modeling flexibility as well by the ability to adjust the number of agents 

or characteristics for each agent as conditions may change. Bonabeau (2012) suggests that ABM 

may be used if there is uncertainty regarding the complexity of a model, and experimenting with 

different variables can help determine that complexity.  

Using ABM in water management scenarios is beneficial as it avoids some drawbacks 

faced in older forecasting methods such as problems presenting underlying hypotheses, problems 

integrating significant geographical features, and problems forming a model that considers 

multiple socioeconomic factors (Galán et al., 2009). Another benefit of ABM is the more 

realistic feedback system because ABM operates iteratively which can prevent immediate 

actions from agents that would not react immediately to water management changes (House-

Peters & Chang, 2011). ABMs also fall under the category of a multiple agent system (MAS) 

framework and have been used to simulate agent behavior in watershed basins in an attempt to 

more effectively model the real world behaviors of actors. Presenting a water management 

analysis in North Dakota using optimization and simulation in an ABM framework will provide 

contributions for further research to be conducted in both North Dakota water management and 

ABM. 
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CHAPTER V. A DECENTRALIZED ABM APPROACH 

Theoretical Framework for a Decentralized ABM 

Decentralized Optimization 

Following the decentralized optimization method used by Lim et al. (2016) and Yang et 

al. (2012), an agent-based model will be used to simulate water depot behavior using equations 

based on utility maximization theory. Utility maximization in a multiple agent system (MAS) has 

been applied in watershed management scenarios before (Yang, Cai, & Stipanovic, 2009; Yang, 

Zhao, & Cai, 2012). Following this example, the methodology with adjustments is applied to fit 

the unique water depot allocation system in western North Dakota. Each water depot attempts to 

maximize its benefit by selling as much water as it can subject to a set of constraints. The 

constraints reflect the limits set by either water permits issued to the water depots and the supply 

of water available to all water depots. These can change each year based on different political 

and environmental factors.  

Agents behave autonomously and do not necessarily follow the same behavior as other 

agents. Environmental constraints on water source, in themselves, are not an issue for water 

consumption. The amount of water permitted from the water sources is the constraint associated 

with the regulations imposed. 

Using a penalty-based decentralized optimization method, water depots balance 

maximizing their benefit functions with facing penalties associated with their penalty functions. 

This can be seen by the objective of each agent in Equation 1: 

max
𝑥𝑖

Π𝑖(𝑥𝑖 , 𝛽𝑖|{𝑥𝑟}𝑖) = max[𝛽𝑖 ∙ 𝜋𝑖(𝑥𝑖) − 𝑃𝑖(𝑥𝑖|{𝑥𝑟}𝑖 )],          

                  (1) 

∀𝑖 ∈ 𝑀 = {1, … 𝑚} agents, where Π𝑖 is the objective function for agent i, 𝑥𝑖 is a decision 

variable for i with permits to draw water, 𝛽𝑖 is a local interest parameter with 𝛽𝑖 > 0, {𝑥𝑟}𝑖 is a 
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set of actions by agents in the relative area that affect i,  𝜋𝑖 is the benefit function without 

application of any penalties, and 𝑃𝑖 is the penalty function which accounts for any violation of 

the constraints.  If 𝑃𝑖 > 0,  the agent is penalized for violating a constraint and its benefit from 

selling water is reduced by −𝑃𝑖; otherwise, 𝑃𝑖 = 0. Larger values of 𝛽𝑖 correspond to larger 

values for the benefit function of agent i; however, agent i will be more likely to incur larger 

penalty values as well. The benefit function will measure profit by representing water sales. 

Marginal costs are also insignificant for water depots, so costs are assumed to be zero. Penalty 

functions penalize agents when water consumption is greater than water permitted to individual 

agents or groups of agents consuming from the same water source acting in the place of fines 

imposed on unregulated water use. 

 

Local Optimization 

 When looking at local optimization, agents are assumed to attempt to maximize their 

benefits given the actions of other agents in their relative area. The decentralized optimization 

problem for each agent is defined in Equation 2: 

max
𝑥𝑖

 Π𝑖(𝑥𝑖, 𝛽𝑖|{𝑥𝑟}𝑖),          

       (2) 

               

 

with the solution in Equation 3: 

[𝑥𝑖
∗|𝛽𝑖, {𝑥~𝑖}] = arg max

𝑥𝑖

 Π𝑖(𝑥𝑖, 𝛽𝑖|{𝑥𝑟}𝑖)                                     

                      (3) 

 

The optimal solution 𝑥𝑖
∗ is the optimal water quantity for water depot i to consume. This water 

quantity will provide water depot i with the greatest benefit given the constraints placed by its 

neighboring agents’ water consumption.       
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Global Optimization 

 The penalty function 𝑃𝑖 in Equation (1) contains all the constraints associated with 𝑥𝑖 at 

the system level and is shown in Equation 4: 

𝑃𝑖(𝑥𝑖|{𝑥𝑟}𝑖) = 𝑃𝑙𝑖(𝑥𝑖) + 𝑃𝑔𝑖(𝑥𝑖|{𝑥𝑟}𝑖), 

(4) 

where 𝑃𝑙𝑖
(𝑥𝑖) = ∑ 𝑃𝑙𝑖,𝑞(𝑥𝑖)

𝑞𝑖
𝑞=1  is the sum of all local constraints associated with 𝑥𝑖, and 

𝑃𝑔𝑖
(𝑥𝑖|{𝑥𝑟}𝑖) = ∑ 𝑃𝑔𝑖,𝑠

(𝑥𝑖|{𝑥𝑟}𝑖)
𝑠𝑖
𝑠=1  is the sum of all constraints associated with 𝑥𝑖 and {𝑥𝑟}𝑖. The 

second half of Equation 4 therefore is the interconnecting penalty function  

The penalty function for local constraints applies to individuals consuming water above 

individual permits and the global penalty function incorporating the system constraints applies 

when agents drawing water from the same source have higher combined water consumption than 

these same agents’ total permitted water amounts from that source. Global constraints with 

source violations are based on permits as the SWC runs a model that calculates and allows a 

certain quantity of water to be permitted encapsulating this global constraint already (M. Hove, 

personal communication, June 28).  All constraints are permit constraints rather than physical 

constraints. 

The global objective function is presented in Equation 5: 

Π(𝑥, 𝛽|{𝑥𝑟}𝑖) = ∑ (𝛽𝑖 ∙ 𝜋𝑖(𝑥𝑖) − 𝑃𝑙𝑖
(𝑥𝑖)) − ∑ 𝑃𝑔𝑖,𝑠

(𝑥𝑖|{𝑥𝑟}𝑖)

𝑠𝑖

𝑠=1

𝑚

𝑖=1

, 

(5) 

 

where 𝑚 is the number of agents. Equation (5) obtains a global performance metric (İnalhan et 

al., 2002). Also, the sum of the objective functions in Equation 5, measures the benefits of all 

agents given the permit constraints, while the sum of the global constraints measures the system 

violation.  
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First-Order Necessary Condition and Second-Order Sufficient Condition for Decentralized 

Optimization 

Solving for the optimal solution in (1), and based on Inalhan, Stipanovic, & Tomlin 

(2002) and Yang et al. (2009), the first-order necessary condition and the second-order sufficient 

conditions are shown in Equation 6 and Equation 7, respectively. The negative definite matrix in 

Equation 7 shows that the value from the first derivative in Equation 6 is a true local maximum.  

 

𝜕

𝜕𝑥𝑖
 Π𝑖(𝑥𝑖

∗, 𝛽𝑖
∗|{𝑥𝑟}𝑖 ) = 0, ∀𝑖 ∈ 𝑀, 

                   (6) 

𝜕2

𝜕𝑥𝑖
2 Π𝑖(𝑥𝑖

∗, 𝛽𝑖
∗|{𝑥𝑟}𝑖 ) < 0, ∀𝑖 ∈ 𝑀, 

                   (7) 

where < 0 indicates the matrix is negative definite in Equation 7. 

 

Differentiable Inexact Penalty Format 

Equation 6 also represents differentiating Equation 1 and setting the derivative equal to 

zero. This finds the maximum of the objective function, and the first-order necessary condition 

can also be written as: 

𝜕

𝜕𝑥𝑖
 Π𝑖(𝑥𝑖

∗, 𝛽𝑖
∗|{𝑥𝑟}𝑖 ) = 𝛽𝑖 ∙

𝜕𝜋𝑖(𝑥𝑖)

𝜕𝑥𝑖
−

𝜕𝑃𝑖(𝑥𝑖|{𝑥𝑟}𝑖 )

𝜕𝑥𝑖
|

𝑥=𝑥∗,𝛽=𝛽∗

 

       = 0, ∀𝑖 ∈ 𝑀.              

       (8) 



55 

 

The penalty function allows for negative profits in the profit function incorporating both local 

and global constraints as follows: 

𝑃𝑖(𝑥𝑖|{𝑥𝑟}𝑖 ) = ∑ max( 0, 𝑔𝑖(𝑥𝑖|{𝑥𝑟}𝑖 )
2)

𝑘𝑖

𝑘=1

, 

                    (9) 

where 𝑘𝑖 denotes the number of constraints associated with agent 𝑖; 𝑔𝑖(𝑥𝑖|{𝑥𝑟}𝑖 ) is squared to 

ensure second-order differentiability as seen in Equation 7, and 𝑔𝑖(𝑥𝑖|{𝑥𝑟}𝑖 )  is the constraint 

function that accounts for agent 𝑖’s local constraints (𝑔𝑙𝑖(𝑥𝑖)) and global constraints 

(𝑔𝑔𝑖(𝑥𝑖|{𝑥𝑟}𝑖 )): 

𝑔𝑖(𝑥𝑖|{𝑥~𝑖}) = {
𝑔𝑙𝑖(𝑥𝑖) ≤ 0

𝑔𝑔𝑖(𝑥𝑖|{𝑥𝑟}𝑖) ≤ 0
. 

                 (10) 

global constraints, 𝑔𝑔𝑖(𝑥𝑖|{𝑥𝑟}𝑖), interconnect agent 𝑖 to other agents within the system.  

The decentralized agent-based model does not obtain a system-level optimal solution, and 

this is because agents do not have an awareness of system level factors. The agents are only 

aware of themselves and the factors in their related areas. Also because agents are self-interested, 

they are not concerned with maximizing system level benefits, but rather with maximizing their 

own benefits. They do this taking into consideration individual constraints along with the system 

level constraints that apply to them. 

 

Water Depots in North Dakota 

In this thesis, agents are nine different types of water depots based on identifying 

characteristics such as organizational structure, permit type, and water source (see Table 2). Each 

type of water depot has a description and water source. The descriptions reflect the most 
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common owners of water depots in western North Dakota or the permit type associated with the 

water depot. These were decided based on the literature and communication with people actively 

involved with water depots including members of the North Dakota State Water Commission 

(SWC).  These combinations of permit types and water sources were selected based on general 

knowledge gathered from the two sources just mentioned as well through examination of the data 

provided by the SWC. When analyzing the data, if there were a sufficient number of water 

depots or amount of reported water consumption, these types of water depots would be compared 

with the general knowledge to prevent the addition of water depot types that only came from 

looking at the data. The time period from 2007-2014 was chosen based on available 

completeness and reliable data from the SWC. These criteria are fitting to provide a 

representative sample of water depots to be used for the purposes of this study. Future studies on 

water depots in North Dakota could analyze the individual water depots rather than sorting them 

into types for a greater in-depth analysis. 

 

Agent Equations & Constraints  

 

Agent types exhibit unique equations and constraints. Table 2 provides an overview for 

each agent type. 
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Table 2 

 

Agent definitions for different types of water depot (WD) 

Agent WD type Definition 

1 Industrial – Fox Hills Privately owned WDs with perfected permits for 

withdrawing water from the Fox Hills aquifer. 

2 Industrial –GW Privately owned WDs with perfected permits for 

withdrawing water from shallow groundwater (GW) 

aquifers. 

3 Industrial – LSMR Privately owned WDs with perfected permits for 

withdrawing water from Lake Sakakawea (LS) or the 

Missouri River (MR). 

4 Industrial –SW Privately owned WDs with perfected permits for 

withdrawing water from surface water sources other than 

LS or the MR. 

5 Government-Enacted – 

LSMR 

Government owned WDs with permits for withdrawing 

water from LS or the MR. 

6 City –GW City owned WDs with permits transferred from 

municipal water use permits withdrawing water from 

shallow GW aquifers. 

7 Irrigation transferred –

GW 

Privately owned WDs with yearly permits temporarily 

transferred from irrigation permits withdrawing water 

from shallow GW aquifers. 

8 Temporary – LSMR Privately owned WDs with temporary permits (less than 

1 year) withdrawing water from LS or MR. 

9 Temporary –SW Privately owned WDs with temporary permits (less than 

1 year) withdrawing water from surface water sources 

other than LS or MR. 
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Agent 1: Permanent-Fox Hills (Water Depot Type 1) 

 This agent is a water depot that sells industrial water sourced from the Fox Hills (FH-HC) 

aquifer. This is a particularly important groundwater source in North Dakota, and provides water 

for many farmers and ranchers (Shaver, 2012).  

The benefit function given the constraints for agent 1 is given in Equation 11:  

max 𝑓1(𝑥1𝑡) = 𝑎1𝑥1𝑡
2 + 𝑏1𝑥1𝑡 + 𝑐1 +  𝛿1𝑇,                                 (11) 

   𝑥1𝑡 

                    𝑥1𝑡 −  𝑊𝑃1𝑡 ≤ 0, 

Subject to    𝑛1𝑡𝑥1𝑡 − 𝐹𝐻𝑡  ≤ 0   

 

 

where the subscript 1 denotes agent 1; 𝑓1(𝑥1𝑡) is the objective function for agent 1 deriving 

benefit from the amount of water consumption of agent 1 in year t (𝑥1𝑡) and 𝑎1, 𝑏1, 𝑐1, and 𝛿1 are 

the coefficients of the objective function for agent 1 where 𝑇 is a year variable with the base year 

in 2007. 

 The first constraint in (11) means water consumption for agent 1 (𝑥1𝑡) should not exceed 

the amount of water permitted to be used by agent 1 in year t (𝑊𝑃1𝑡). In the second constraint in 

(11) 𝑛1𝑡 is the number of type 1 water depots in year t. Total water consumption of all type 1 

water depots in year t (𝑛1𝑡𝑥1𝑡) should not exceed the total water available from the FH-HC 

aquifer in year t (𝐹𝐻𝑡). 

 

 

Agent 2: Permanent-Other Groundwater (Water Depot Type 2) 

 This agent is a water depot with a conditional or perfected water permit which obtains its 

water from a groundwater source other than the FH-HC aquifer.   

The benefit function given the constraints for agent 2 is given in Equation 12: 
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max 𝑓2(𝑥2𝑡) = 𝑎2𝑥2𝑡
2 + 𝑏2𝑥2𝑡 + 𝑐2 + 𝛿2𝑇,                             (12) 

  𝑥2𝑡 

     𝑥2𝑡 − 𝑊𝑃2𝑡  ≤ 0, 

Subject to           𝑛2𝑡𝑥2𝑡 +  𝑛6𝑡𝑥6𝑡 +  𝑛7𝑡𝑥7𝑡 −  𝐺𝑊𝑡 ≤ 0 

 

where the subscript 2 denotes agent 2; 𝑓2(𝑥2𝑡) is the objective function for agent 2 deriving 

benefit from the amount of water consumption of agent 2 in year t (𝑥2𝑡) and 𝑎2, 𝑏2, and 𝑐2, and 

𝛿2 are the coefficients of the objective function for agent 2. 

The first constraint in (12) means water consumption for agent 2 (𝑥2𝑡) should not exceed 

the amount of water permitted to be used by agent 2 in year t (𝑊𝑃2𝑡). The second constraint in 

(12) implies that total water consumption by type 2, 6, and 7 water depots in year t should not 

exceed the total water available from shallow aquifers (GW) in year t (𝐺𝑊𝑡). 

       

  

Agent 3: Permanent-Lake Sakakawea/Missouri River (Water Depot Type 3) 

 This agent is a water depot with a conditional or perfected water permit which obtains its 

water from Lake Sakakawea or the Missouri River. There is an abundance of water from these 

sources, but there has also been conflict between the state and federal governments over access 

to these water sources. 

The benefit function given the constraints for agent 3 is given in Equation 13: 

 

max 𝑓3(𝑥3𝑡) = 𝑎3𝑥3𝑡
2 + 𝑏3𝑥3𝑡 + 𝑐3 + 𝛿3𝑇,                            (13) 

  𝑥3𝑡 

                           𝑥3𝑡 −  𝑊𝑃3𝑡 ≤ 0, 

Subject to         𝑛3𝑡𝑥3𝑡 +  𝑛5𝑡𝑥5𝑡 +  𝑛8𝑡𝑥8𝑡 −  𝐿𝑆𝑀𝑅𝑡 ≤ 0 
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where the subscript 3 denotes agent 3; 𝑓3(𝑥3𝑡) is the objective function for agent 3 deriving 

benefit from the amount of water consumption of agent 3 in year t (𝑥3𝑡) and 𝑎3, 𝑏3, 𝑐3, and 𝛿3 are 

the coefficients of the objective function for agent 3. 

 The first constraint in (13) means water consumption for agent 3 (𝑥3𝑡) should not exceed 

the amount of water permitted to be used by agent 3 in year t (𝑊𝑃3𝑡). The second constraint in 

(13) implies that total water consumption by type 3, 5, and 8 water depots in year t should not 

exceed the total water available from LSMR in year t (𝐿𝑆𝑀𝑅𝑡). 

 

Agent 4: Permanent-Other Surface Water (Water Depot Type 4)  

 This agent is a water depot with a conditional or perfected water permit which obtains its 

water from a surface water source other than Lake Sakakawea or the Missouri River. Typically, 

these water depots source their water from tributaries of rivers. 

 

The benefit function given the constraints for agent 4 is given in Equation 14: 

 

max 𝑓4(𝑥4𝑡) = 𝑎4𝑥4𝑡
2 + 𝑏4𝑥4𝑡 + 𝑐4  +  𝛿4𝑇,                         (14) 

  𝑥4𝑡 

                                   𝑥4𝑡 − 𝑊𝑃4𝑡 ≤ 0, 

Subject to      𝑛4𝑡𝑥4𝑡 +  𝑛9𝑡𝑥9𝑡 − 𝑆𝑊𝑡 ≤ 0 

 

 

where the subscript 4 denotes agent 4; 𝑓4(𝑥4𝑡) is the objective function for agent 4 deriving 

benefit from the amount of water consumption of agent 4 in year t (𝑥4𝑡) and 𝑎4, 𝑏4, 𝑐4, and 𝛿4 are 

the coefficients of the objective function for agent 4.  

 The first constraint in (14) means water consumption for agent 4 (𝑥4𝑡) should not exceed 

the amount of water permitted to be used by agent 4 in year t (𝑊𝑃4𝑡). The second constraint in 

(14) implies that total water consumption by type 4 and 9 water depots in year t should not 

exceed the total water available from SW in year t (𝑆𝑊𝑡). 
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Agent 5: Coop-Lake Sakakawea/Missouri River (Water Depot Type 5) 

 This agent is a water depot which is a part of a cooperative agency. These agencies 

include the Southwest Water Authority (SWA) and the Western Area Water Supply Authority1 

(WAWSA). The depots included in this grouping obtain their water from Lake Sakakawea or the 

Missouri River. Agent 5 accounts for the largest amount of water consumed by the different 

agents (Table 3). 

The benefit function given the constraints for agent 5 is given in Equation 15: 

 

max 𝑓5(𝑥5𝑡) = 𝑎5𝑥5𝑡
2 + 𝑏5𝑥5𝑡 + 𝑐5 + 𝛿5𝑇,           (15) 

  𝑥5𝑡 

                           𝑥5𝑡 −  𝑊𝑃5𝑡 ≤ 0, 

Subject to         𝑛3𝑡𝑥3𝑡 +  𝑛5𝑡𝑥5𝑡 +  𝑛8𝑡𝑥8𝑡 −  𝐿𝑆𝑀𝑅𝑡 ≤ 0 

 

 

where the subscript 5 denotes agent 5; 𝑓5(𝑥5𝑡) is the objective function for agent 5 deriving 

benefit from the amount of water consumption of agent 5 in year t (𝑥5𝑡) and 𝑎5, 𝑏5, 𝑐5, and 𝛿5 are 

the coefficients of the objective function for agent 5. 

 The first constraint in (15) means water consumption for agent 5 (𝑥5𝑡) should not exceed 

the amount of water permitted to be used by agent 5 in year t (𝑊𝑃5𝑡). The second constraint in 

(15) implies that total water consumption by type 3, 5, and 8 water depots in year t should not 

exceed the total water available from LSMR in year t (𝐿𝑆𝑀𝑅𝑡). 

 

 

 

                                                 
1 The Western Area Water Supply Authority (WAWSA) was primarily formed to provide more accessible drinking 

water for the population in this region (Western Area Water Supply Authority, 2011). Funding came in the form of a 

$110 million loan from the state with another $40 million that would be received at a later date (Western Area Water 

Supply Authority, 2011; Kusnetz, 2012). By 2013 the WAWSA owned nine water depots and planned to pay back 

the state by selling 20 percent of the water it owned for fracking purposes (Scheyder, 2013).  
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Agent 6: City-Other Groundwater (Water Depot Type 6) 

 This agent is a water depot owned by a city. These water depots access their water from 

groundwater sources that do not include the FH-HC aquifer. Many of these depots have 

transferred previous permits to industrial use in lieu of the oil boom and have done so on a 

temporary basis. 

The benefit function given the constraints for agent 6 is given in Equation 16: 

 

max 𝑓6(𝑥6𝑡) = 𝑎6𝑥6𝑡
2 + 𝑏6𝑥6𝑡 + 𝑐6 + 𝛿6𝑇,                      (16) 

  𝑥6𝑡 

                           𝑥6𝑡 −  𝑊𝑃6𝑡 ≤ 0, 

Subject to         𝑛2𝑡𝑥2𝑡 +  𝑛6𝑡𝑥6𝑡 +  𝑛7𝑡𝑥7𝑡 −  𝐺𝑊𝑡 ≤ 0 

 

 

where the subscript 6 denotes agent 6; 𝑓6(𝑥6𝑡) is the objective function for agent 6 deriving 

benefit from the amount of water consumption of agent 6 in year t (𝑥6𝑡) and 𝑎6, 𝑏6, 𝑐6, and 𝛿6 are 

the coefficients of the objective function for agent 6. 

 The first constraint in (16) means water consumption for agent 6 (𝑥6𝑡) should not exceed 

the amount of water permitted to be used by agent 6 in year t (𝑊𝑃6𝑡). The second constraint in 

(16) implies that total water consumption by type 2, 6, and 7 water depots in year t should not 

exceed the total water available from shallow aquifers (GW) in year t (𝐺𝑊𝑡). 

 

 

Agent 7: Irrigation Transferred-Other Groundwater (Water Depot Type 7) 

 This agent is a water depot which originally had a water permit for irrigational use and 

has temporarily transferred it to industrial use. This transfer was allowed because of increased 

demand for water from the oil industry. However, these transfers will no longer be allowed after 

September 2016 according to Mike Hove from the SWC (personal communication, June 28, 

2016). 
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The benefit function given the constraints for agent 7 is given in Equation 17: 

 

max 𝑓7(𝑥7𝑡) = 𝑎7𝑥7𝑡
2 + 𝑏7𝑥7𝑡 + 𝑐7 + 𝛿7𝑇,                             (17) 

  𝑥7𝑡 

                           𝑥7𝑡 −  𝑊𝑃7𝑡 ≤ 0, 

Subject to         𝑛2𝑡𝑥2𝑡 +  𝑛6𝑡𝑥6𝑡 +  𝑛7𝑡𝑥7𝑡 −  𝐺𝑊𝑡 ≤ 0 

 

 

where the subscript 7 denotes agent 7; 𝑓7(𝑥7𝑡) is the objective function for agent 7 deriving 

benefit from the amount of water consumption of agent 7 in year t (𝑥7𝑡) and 𝑎7, 𝑏7, 𝑐7, and 𝛿7 are 

the coefficients of the objective function for agent 7. 

 The first constraint in (17) means water consumption for agent 7 (𝑥7𝑡) should not exceed 

the amount of water permitted to be used by agent 7 in year t (𝑊𝑃7𝑡). The second constraint in 

(17) implies that total water consumption by type 2, 6, and 7 water depots in year t should not 

exceed the total water available from shallow aquifers (GW) in year t (𝐺𝑊𝑡). 

 

 

Agent 8: Temporary-Lake Sakakawea/Missouri River (Water Depot Type 8) 

 This agent is a water depot with a temporary water permit. In order for this agent to 

continue selling water, it must reapply for a new temporary permit every year. This agent only 

uses water from Lake Sakakawea or the Missouri River. 

The benefit function given the constraints for agent 8 is given in Equation 18: 

 

max 𝑓8(𝑥8𝑡) = 𝑎8𝑥8𝑡
2 + 𝑏8𝑥8𝑡 + 𝑐8 + 𝛿8𝑇,                      (18) 

  𝑥8𝑡 

                           𝑥8𝑡 −  𝑊𝑃8𝑡 ≤ 0, 

Subject to         𝑛3𝑡𝑥3𝑡 +  𝑛5𝑡𝑥5𝑡 +  𝑛8𝑡𝑥8𝑡 −  𝐿𝑆𝑀𝑅𝑡 ≤ 0 
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where the subscript 8 denotes agent 8; 𝑓8(𝑥8𝑡) is the objective function for agent 8 deriving 

benefit from the amount of water consumption of agent 8 in year t (𝑥8𝑡) and 𝑎8, 𝑏8, 𝑐8, and 𝛿8 are 

the coefficients of the objective function for agent 8. 

 The first constraint in (18) means water consumption for agent 8 (𝑥8𝑡) should not exceed 

the amount of water permitted to be used by agent 8 in year t (𝑊𝑃8𝑡). The second constraint in 

(18) implies that total water consumption by type 3, 5, and 8 water depots in year t should not 

exceed the total water available from LSMR in year t (𝐿𝑆𝑀𝑅𝑡). 

 

 

Agent 9: Temporary-Other Surface Water (Water Depot Type 9) 

 This agent is a water depot with a temporary water permit. This agent must also apply for 

a new temporary permit every year to continue operating. This agent uses water from surface 

water sources other than Lake Sakakawea and the Missouri River. Often these agents use creeks, 

ponds, and other small water sources. 

The benefit function given the constraints for agent 9 is given in Equation 19: 

 

max 𝑓9(𝑥9𝑡) = 𝑎9𝑥9𝑡
2 + 𝑏9𝑥9𝑡 + 𝑐9 + 𝛿9𝑇,                      (19) 

  𝑥9𝑡 

                           𝑥9𝑡 −  𝑊𝑃9𝑡 ≤ 0, 

Subject to         𝑛4𝑡𝑥4𝑡 +  𝑛9𝑡𝑥9𝑡 − 𝑆𝑊𝑡 ≤ 0 

 

 

where the subscript 9 denotes agent 9; 𝑓9(𝑥9𝑡) is the objective function for agent 9 deriving 

benefit from the amount of water consumption of agent 9 in year t (𝑥9𝑡) and 𝑎9, 𝑏9, 𝑐9, and 𝛿9 are 

the coefficients of the objective function for agent 9. 

 The first constraint in (19) means water consumption for agent 9 (𝑥9𝑡) should not exceed 

the amount of water permitted to be used by agent 9 in year t (𝑊𝑃9𝑡). The second constraint in 
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(19) implies that total water consumption by type 4 and 9 water depots in year t should not 

exceed the total water available from SW in year t (𝑆𝑊𝑡). 

 

Coefficients 

Coefficients a, b, c and δ in equations (11) through (19) are adjusted in a trial and error 

process to model agent behavior and simulate water consumption values matching those from the 

data. This results in different values for the coefficients depending on the agent type. Different 

signs are also used in coefficients so that the benefit function for each agent will have the shape 

of a concave parabola—coefficients a and c are negative while b and δ are positive.  

The shape of the parabola is shown in Figure 6 with two important values on the graph. 

Point I is negative profits in the concave optimization equation for the ABM model, which 

occurs at a zero water consumption level. Point II is the optimization point for profits. The use of 

a quadratic benefit function ensures the existence of a maximum. In this thesis, agents’ benefits 

are measured by their profit functions. 

The water demand curve facing each water depot is downward sloping because the water 

depot industry is spatially or monopolistically competitive, since some water depots have a 

location advantage over their competitors. For example, a water depot near the oil field has a 

location advantage over another water depot farther away.  The total cost is assumed to be 

constant. Thus, the assumptions provide a profit function that is quadratic. 
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Figure 6. Graph of Profit Function.  

 

 

Scenarios 

 The baseline scenario is the current practices going on in the Bakken with the water 

depots. Permits are allowed for each water depot and water source as reported by the SWC. In 

the other scenarios, permits are restricting based on a specific criteria involved with a real 

scenario in which it could occur.  

Scenario 1 looks at the effects of restricting water consumption from LSMR sources. This 

involves the permit constraints for agents 3, 5, and 8. This could occur if continued conflict 

between USACE and the state of North Dakota escalates to much larger restrictions on LSMR 

water access. 
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Scenario 2 looks at the effects of restricting water consumption from GW sources. This 

involves the permit constraints for agents 2, 6, and 7. This could occur in the case of droughts 

where surface water is lacking and water depots turn to groundwater sources for available water. 

Scenario 3 looks at the effects of restricting water consumption from SW sources. This 

involves the permit constraints for agents 4 and 9. This could occur if a drought occurs and, in an 

effort to conserve water, the SWC reduces the amount of surface water that is allowed to be 

extracted for use by water depots. 

Scenario 4 looks at the effects of restricting water consumption from both GW and SW 

sources. This is a worst-case scenario for a lack of water resources. This could be the case where 

water levels are so low from a severe drought that only LSMR sources are allowed to be used by 

water depots. 
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CHAPTER VI. DATA  

 Looking at the location and quantity of water depots from a geographical standpoint 

helps in becoming aware of how water depots have developed. Looking at Figure 7, one can note 

the increase in water depots especially beginning in 2007. Many farmers starting selling water 

from water depots with temporary permits rather than conditional or perfected permits in 2008, 

so this is one contributing factor in the increasing number of water depots in the past decade. 

Conditional and eventually perfect permits were still being received and used by applicants, but 

temporary permits allowed more people the ability to create water depots. Figure 7’s other 

purpose is to show how the number of water depots has increased in separate time periods. There 

were water depots prior to 2007 as far back as 1965. These water depots, however, supplied only 

small amounts of water. The next six years from 2007-2012 show a large number of new water 

depots established due to the oil boom. Then, the years 2013-2014 show how fast the number of 

water depots grew in only two years. This separation for the years 2013-2014 also demonstrates 

how the increase in the number of water depots remained strong.  

Figure 8 examines the amount of water consumption by individual water depots and the 

total water consumption amounts of water depots for each county in the western portion of North 

Dakota. The four counties with the highest water depot consumption amounts (Williams, 

Mountrail, McKenzie, and Dunn) also are the core oil producing counties in North Dakota. 

Williams County’s water depots have accounted for most of the water consumption of all water 

depots in the state using approximately 71,500 acft from 2007-2014 (Figure 8). This map also 

notes that there are a number of water depots that have obtained water permits, but they have not 

reported any water use.   
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Table 3 provides information about the different agents. Agent 1 draws water from the 

FH-HC aquifer and this agent type uses the smallest amount of water accounting for 0.65% of 

total water withdrawn by water depots between 2007 and 2014. This could be because water 

from the FH-HC aquifer is being preserved for use by ranchers and farmers. Agent 5 draws water 

from Lake Sakakawea or Missouri River (LSMR) water sources; this agent withdraws more 

water than any other agent (23.84%). Agent 5 water depots also withdraw the largest amount of 

water on average—almost 1,500 acre-feet from 2007 to 2014. Even though agent 5 uses LSMR 

water, GW accounts for the majority of water withdrawn by water depots over the 8-year study 

period. 
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Figure 72. Growth of Water Depots over Time. Data from North Dakota State Water 

Commission (SWC). 

 

                                                 
2 In Figure 7, all water depots are included. Also, some of the water depots from the later 2 sub-

groups (2007-2012 & 2013-2014) are hidden under the 1965-2006 and 2007-2012 sub-groups 

respectively, since some of the same water depots have remained from previous years. 
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Figure 83. Water Use by Water Depots (2007-2014). Data from North Dakota State Water 

Commission (SWC). 

 

 

 

 

                                                 
3 In Figure 8, all water depots are included. Counties with Reported Water Use of 0 contain 

water depots that have permits for water but did not use any water. Only water depot water 

consumption amounts are included in the county level water consumption values. The county 

level data contains the water use of the same water depots in different years. (e.g., the same 

water depot using 100 acre feet/year for five years would report 500 total acre feet towards the 

values in this figure) 
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Table 3 

 

Summary of the water withdrawn by and approved water permits for different types of water 

depot (2007-2014)  
Agent WD type Total 

water 

withdrawn 

(ac-ft) 

Percent 

total water 

withdrawn 

(ac-ft) 

Average 

water 

withdrawn 

(ac-ft) 

Water 

withdrawn 

range (ac-

ft) 

Total 

approved 

water 

permit 

(ac-ft) 

Average 

approved 

water 

permit 

(ac-ft) 

Approved 

water 

permit 

range (ac-

ft) 

1 Industrial – 

Fox Hills 

 

515.40 0.65% 
 

16.11 0-60.36 1,040.00 32.50 20-60 

2 Industrial –

GW 

 

10,865.90 13.66% 50.54 0-291.21 40,646.4

0 

189.05 19.40-

2,588.50 

3 Industrial – 

LSMR 

 

5,741.53 7.22% 
 

249.63 0-

1,946.90 

548,728.

00 

23,857.7

4 

1,950-

90,000 

4 Industrial – 

Other SW 

 

2,789.74 3.51% 174.36 6.80-

930.40 

20,332.0

0 

1,270.75 100-9,000 

5 Government

-Enacted – 

LSMR 

 

18,961.80 23.84% 

 

1,458.60 372.30-

5,854.30 

232,315.

00 

17,870.3

8 

1,130-

40,325 

6 City –GW 

 

3,484.76 4.38% 84.99 0-292.80 12,229.5

0 

 

298.28 19-750 

7 Irrigation 

transferred –

GW 

 

16,928.32 21.28% 132.25 0-783.70 82,837.1

0 

647.16 20-4,182 

8 Temporary – 

LSMR 

 

3,441.16 4.33% 118.66 0-

1,126.30 

62,078.7

4 

2,140.65 10.31-

6,000.00 

9 Temporary –

SW 

16,814.73 21.14% 
 

27.48 0-

1,183.89 

108,498.

60 

178.45 0.46-

10,000 
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CHAPTER VII. RESULTS & DISCUSSIONS 

Utility maximization for each agent is accomplished using an iterative process following 

the equations previously outlined (Equations 11-19 in Chapter V). Each agent is interconnected 

in its consumption looking at the consumption of the other agents in determining an optimum 

consumption level for itself. An iterative process is used to find convergence in optimal 

consumption values for each agent. Simulated violations of the system water constraints along 

with permit constraints are measured. Each of these indicates the boundary was exceeded when 

the values are positive. When violations are present, they indicate areas where water depots 

might overuse water if left unchecked. Examining the violations provides policy makers with key 

areas to monitor if different scenarios occur. 

Four scenarios are examined which provide possible future outcomes based on different 

precipitation and political factors. Each scenario simulates slightly different outcomes that can 

provide an additional resource for policy makers to consider before making adjustments to 

current water management policy. These scenarios are outlined and a baseline is provided for 

water depot water consumption in western North Dakota. 

 

Scenario Results 

 Simulated violations and benefits are tracked in these scenarios. The violations are 

identified as two types: the permit violation of an individual water depot (V1) and the water 

source violations (V2). Constraints V2 violations are based on the SWC using a model to 

establish the total amount of water it will approve in water permits for each water source. This 

information is used to establish the constraint used in calculating V2 violations. V2 violations in 

each scenario are further analyzed to quantify the water use violation for each water source. 
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Benefits are the profits of the water depots, and total benefits is used to show total simulated 

profits gained by water depot water sales each year. Violations in acre-feet are shown on the left 

vertical axis while profits in millions of dollars are shown on the right vertical axis in Figures 9-

17. 

 

Baseline 

 As seen in Figure 9, violations decrease over time while benefits increase over time. 

TotalV1 is the aggregate individual water depot permit violation and TotalV2 is the aggregated 

water source violations. Total benefits or profits have been increasing each year with the greatest 

increase occurring from 2013 to 2014. With additional time, water depot owners have been able 

to build a larger customer base as oil production has increased (Figure A.2 in the appendix).  

 

 

Figure 9. Baseline Violations and Profits. 
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Table 4 

 

Percentage total water use/total water permitted for water depots (2007-2014) 
Year 2007 2008 2009 2010 2011 2012 2013 2014 

Total 

Water 

Use 

(Acft.) 

 

716.5 1,242.7 1,420.7 3,850.8 7,709.8 10,223.3 18,804 30,988.5 

Total 

Water 

Permitted 

(Acft.) 

 

1,915.7 3,025.7 4,691.2 141,410.7 162,723.8 171,432.5 246,855.7 343,331.6 

Use % 37.4% 41.1% 30.3% 2.7% 4.7% 6.0% 7.6% 9.0% 

 

 

Scenario 1 

 Scenario 1 looks at the effects of restricting access to LSMR water sources. As seen in 

Figure 10, total violations by type of violation change because of different reasons around 2010. 

Individual total violations (TotalV1) decreased due to the substantial decrease in the ratio of total 

water used by water depots to the total water permitted in 2010 (Table 4); this decrease is seen in 

each scenario. However, the system violation for water withdrawn from LSMR water sources 

increased because of the constraint imposed in addition to constraints placed by the USACE in 

the same time period. These are the largest system violations of any scenario and again illustrate 

the role that LSMR sources play in providing water for water depots. Benefits continue to rise at 

a rate lower than the baseline in each scenario.  

 Figure 11 shows how nearly all of the violations relate to LSMR violations, as is 

expected since this is the water source being restricted. However, some SW violations occur 

from 2007-2010 as well. 
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Figure 10. Scenario 1 Violations and Profits. 

 

 

 

Figure 11. Scenario 1 System Violations Breakdown and Profits. 
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Scenario 2 

 Scenario 2 looks at the effects of restricting access to GW water sources due to a drought. 

As shown in Figure 12, both violations decrease around 2009 and 2010. Benefits continue to rise, 

but at a slower rate than the baseline. 

 Figure 13 shows a large number of violations coming from LSMR violations from 2007-

2009, but all of the violations come from GW violations when water consumption is greater in 

2011-2014. However, some SW violations occur from 2007-2010 as well. 

  

 

Figure 12. Scenario 2 Violations and Profits. 
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Figure 13. Scenario 2 System Violations Breakdown and Profits. 

 

 

Scenario 3 

 Scenario 3 examines the restriction of SW sources due to drought. As seen in Figure 14, 

TotalV2 violations decrease around 2009 and TotalV1 violations decrease around 2010. Benefits 

continue to rise, but at a slower rate than the baseline and actually reach a lower peak than the 

previous scenarios. 

 Figure 15 shows large violations from LSMR violations from 2007-2009, but SW 

violations also are occurring. From 2010-2014, only SW violations are occurring. 
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Figure 14. Scenario 3 Violations and Profits. 

 

 

 

 

Figure 15. Scenario 3 System Violations Breakdown and Profits. 
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Scenario 4 

 Scenario 4 examines the situation of a severe drought where both SW and GW sources 

are restricted. As seen in Figure 16, TotalV2 violations decrease around 2009 and TotalV1 

violations decrease around 2010. Benefits continue to rise, but at a slower rate than the baseline 

and have the lowest peak of all the scenarios.  

 Figure 17 shows how much of the violations in 2007-2009 result from LSMR violations, 

but GW and SW violations also are occurring. In the other years, GW and SW violations are 

nearly equal which shows no preference for either water source as well as the interconnectedness 

of GW and SW. 

  

 

Figure 16. Scenario 4 Violations and Profits. 
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Figure 17. Scenario 4 System Violations Breakdown and Profits. 

 

 

Scenario Comparisons 
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on top of the contemporary USACE constraints. These large system violations also show the role 

that LSMR sources play in providing water for water depots. 

 

 

 

Figure 18. Total Benefits Comparison between Scenarios. 
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Figure 19. Violation 1 Comparisons between Scenarios. 

 

 

 

Figure 20. System Violations between Scenarios. 
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CHAPTER VIII. CONCLUSIONS 

Scenario Analysis 

 Four scenarios were selected to be examined—each dealing with political or 

environmental factors that affect the levels of water being used by water depots. The scenarios 

placed restrictions on Lake Sakakawea and Missouri River (LSMR) water, groundwater (GW), 

surface water (SW), and both surface water and groundwater. LSMR water was found to play an 

important role in providing water for water depots. This is seen as the largest violations occurred 

in scenario 1 where LSMR sources were restricted. This further illustrates the importance of 

allowing greater access to LSMR sources in North Dakota.  

Based on the simulated violations seen throughout each of the scenarios, there also is 

increased potential for illegal water use by water depot owners if water is restricted. Violations 

did occur in the baseline, indicating there could have been overuse of water. However, some of 

these simulated violations suggest there were illegal water sales even without water source 

restriction. In either case, increased efforts to monitor water meters could help identify illegal 

water use and reduce the possibility of undetected water resource use. 

Profits or benefits realized by water depot owners show incentives for water depot 

owners to participate in illegal water sales. The baseline results estimate profits from water sales 

eclipsing $200 million, and the average water depot can generate over $700,000 per year 

(Scheyder, 2013). These profits could outweigh a risk-reward ratio. 

 From 2012-2014, all the violations at the system level came from the water source being 

restricted. These are expected results, and many LSMR violations occurred at the system level in 

the years 2007-2009 for many of the scenarios. 
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 Restricted access to SW values resulting from a drought in scenario 3 result in the lowest 

system violations. LSMR sources make up most of the violations from 2007-2009, but the 

remaining years are all violations from SW.  

 In scenario 4, SW and GW sources are both restricted due to a severe drought. From 

2007-2009, LSMR violations dominate individual SW and GW violations. In the remaining 

years from 2010-2014, SW and GW violations are nearly the same. The combined SW and GW 

violations increase each year from 2010-2014.  

Total benefits or profits are found to increase every year in the baseline and in each 

scenario. This shows an increase in water sold each year by the water depots to meet water 

demand. The consumer base also increases each year for water depot owners as the location of 

the water depot is known and as more oil wells are developed. 

 

Policy Implications  

 Restricting access to LSMR water is not a reasonable option. In scenario 1, violations of 

LSMR water use show that water would continue to be used by water depots even if the LSMR 

water supplies were restricted. Water depots established to use LSMR water would not have easy 

access to other water sources. There were some SW violations in the years 2007-2010, but this 

was minimal. System violations also are greater in scenario 1 than in the other scenarios. The 

violations for LSMR sources alone in scenario 1 are measured at nearly 3,000 acre-feet or more 

each year—surpassing the violations of other sources restricted in their respective scenarios. The 

violations of both GW and SW in scenario 4 range from 1,000-1,200 acre-feet per year, so 

LSMR violations are nearly triple the next largest violations. LSMR violations also occur more 

frequently in the other scenarios at larger levels than any other water source. 
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Conservation of groundwater and surface water for uses outside of the oil and gas 

industry should be considered. In the case of a severe drought, water resources should be 

carefully managed. Scenario 4 examines the situation where both SW and GW resources are 

restricted, and results in combined simulated violations surpassing 1,000 acre-feet for SW and 

GW. The violations occur at nearly the same levels in each year for SW and GW, showing the 

nexus between surface water and groundwater.  

 Conserving SW and GW water resources would be advisable even in moderate droughts. 

Scenario 2 restrictions on SW and scenario 3 restrictions on GW sources result in fewer 

violations of these resources than in scenarios 1 or 4. Lack of SW or GW from a drought is 

examined in scenarios 2 and 3. The violations seen for GW in scenario 2 and SW in scenario 3 

remain under 700 acre-feet. In the other scenarios, violations for the water sources being 

impacted are at 1,000 acre-feet or more. These results show that a moderate drought could be 

handled, but will impact the water sources. A report produced by the Harms Group in 2010 

stated “groundwater will not meet future demands for oil development” (Harms, 2010) showing 

support for conservation of GW resources. Because the results and previous literature show that 

SW and GW are hydraulically connected (Ghosh et al., 2014, p. 6929), surface water may not 

meet future demands either. 

  

Thesis Focus/Limitations 

In this thesis, agents are used to simulate human behavior or water depot’s behavior in 

the water allocation system at the Bakken. The main problem addressed in this thesis is not 

trying to maximize agent profits, but rather trying to examine future scenarios that would change 

current water allocation and use patterns. Agent benefit (or profit) maximization provides a 
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realistic framework of modeling agents which allows analysis of how agents respond in changing 

circumstances.  

Because this thesis focuses on analyzing a broad spectrum of water depot types while at 

the same time trying to keep the model simple, the number of water depot type classifications is 

not too large. The goal of this thesis is to provide a pioneer model using an adaptable framework 

that others can build upon. A simple model including most of the water depots in the state allows 

for a larger number of scenarios to be tested more easily in further research. Further research also 

could expand the number of classifications to test different scenarios.  

 

Water Price and Transportation Cost 

In this thesis, prices are not formally assigned to water depots. Prices in this thesis are 

calculated by dividing total profits by total annual water consumption and vary from $23 to $31 

per 1000 gallons by. These prices are generally above the observed price range of $5.95 to $25 

per 1000 gallons (Kurz et al., 2013). These higher prices should be considered when examining 

profits at a strictly quantitative viewpoint. This model focused more on simulating accurate water 

consumption values for water depots than obtaining accurate prices.  

There is a location dependency with prices as well because water depots selling water 

closer to an oil well site can charge a higher rate. Location of water depots is not integrated into 

the model in an effort to maintain model simplicity. Transportation costs are another variable 

that is not included. Adding location and transportation costs variables in further research could 

provide more accurate quantitative results. 

 Water depots located close to oil well sites are likely to experience larger profits than 

those farther away. At these locations, water depots can charge higher prices because the cost of 
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transportation decreases for oil companies. With transportation costs much larger than the price 

of water itself (water cost ranging from $0.25 to 1.05/bbl and transportation cost ranging from 

$0.63 to $5.00/bbl) (Kurz et al, 2011), minimizing distances between water depots and oil well 

locations is vital for minimizing costs and maximizing profits. 

The Western Area Water Supply Authority (WAWSA), however, has its price for water 

set at $0.84/barrel (WAWSA employee, personal communication, June 29, 2016; Western Area 

Water Supply Authority, 2015). Although there is a set price for water sold by the WAWSA, it 

still brings increased competition among water depots. Because the WAWSA is government-

owned, it has faced opposition in selling water from independent sellers who have invested in 

their own water depots at an average start-up cost of $200,000 (Mortenson, 2011; Scheyder, 

2013). The conflict between these two parties along with the stable prices set for the WAWSA 

further show how the model would lose simplicity with the addition of a more stringent price 

application. 

 

Oil Price 

The impact of oil prices is not included in this model. Sustained changes in oil prices 

would probably affect simulated profits and violations. Decreasing oil prices could have affected 

water depot water consumption from 2008 to 2009. As seen in Figure 21, water consumption by 

water depots increased approximately 180 acre-feet from 2008 to 2009 compared to an increase 

of over 500 acre-feet from 2007 to 2008. From 2008 to 2009, oil prices also experienced a large 

decline (Figure 21); however, oil prices increased substantially the following year. This example 

shows only minor changes in water consumption associated with a substantial change in oil 

prices. From 2009 to 2014, a relatively sustained increase in oil prices (Figure 21) and an 
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increase in water sales in each scenario (Figure 18, Chapter 7) supports following sustained 

changes in oil prices to see changes in water sales. However, policy implications would not be 

expected to change if oil prices were a factor in the model. There could be quantitative changes 

in simulated profits and violations, but the quantitative changes should not affect the severity of 

simulated violations in each scenario—scenario 1 should continue to experience the largest 

simulated system violations followed scenarios 4, 2, and 3. 

  

 

Figure 21. Oil Price and Water Consumption. Source: Author using data from North Dakota 

State Water Commission (SWC) and EIA. 
 

General Conclusions 

Oil in the Bakken formation has become an enormous asset for the state of North Dakota; 

however, hydraulic fracturing and other steps required to access this oil have led to greater 

concerns for the water supply in the state. There is no doubt about the importance of continued 

and expanded energy development to keep up with an ever-growing energy demand but this 

development also brings a faster growing water demand. Carter (2011) observes this relationship 
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between water and energy by assessing shifts in meeting energy demand across the nation to 

shifts in intensity of water practices to produce energy. Finding a balance between preservation 

of the water supply and meeting the water demand for continued growth and stability throughout 

the state will be of utmost importance at all times. Without this balance there could be either a 

stagnation of growth or a depletion of water in the future leading to even more serious 

consequences.  

Restricting consumption of groundwater sources should be further examined. 

Conservation of groundwater for uses outside of the oil and gas industry should be considered.  

Further access to the Missouri River system and Lake Sakakawea appears to be the best resource 

for meeting future water demand. However, most of the water being drawn by water depots is 

drawn from GW sources (Table 3, Chapter 7).  Water depots have been able to supply a large 

amount of water to energy companies thus far, but reliance on water depots may not be the best 

long-term solution. Proper care and preservation of natural resources and the environment must 

always take precedence in any decisions that may cause negative impact on them as well.  

The role of water depots in North Dakota must continue to be examined because of the 

uncertainty facing the future of the oil industry in the state. Oil activity in the region was 

growing exponentially until 2015, but oil production continues to exceed one million barrels per 

day as of June 2016 (U.S. Energy Information Administration, 2016). Predictions of continued 

levels of growth experienced prior to 2015 have not been realized for the past two years, 

resulting in the need to re-evaluate expected growth levels for the oil industry. If more 

predictable levels of oil activity are experienced in the region, clearer water management policy 

could be implemented as well. The Bakken region also is unique in having a much lower 

population density than other shale plays (Raimi & Newell, 2016).  The continued role that water 
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depots play will largely hinge on the oil industry’s activity for the future, demonstrating a greater 

need to continue research in this area as developments occur. 

Water depots play an integral role in the water allocation system in western North 

Dakota. With fracking water use accounting for 43% of total water use in Williams, Mountrail, 

McKenzie, and Dunn counties in 2014 (Lin, Lin, & Lim, 2015), special attention needs to follow 

water depot activity. Because of the relatively short time period that water use by water depots 

has been significant, conducting future research will be important for managing water resources 

in the state. 
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APPENDIX 

 Additional information on population, oil activity, oil prices can provide further insight 

into the circumstances in the Bakken. As one might expect, there is a general growth in water 

consumption and population in North Dakota over time. However, data does show unpredictably 

sharp increases and decreases in total water consumption and population throughout the state. 

Figures are included at the end of the appendix. 

Figure A.1 shows how water consumption and population have increased at different 

rates in North Dakota the past 40 years. From 2000 to 2013 there has been an approximate 17% 

increase in water consumption and 13% increase in population across the state. This makes 

continued studies on water consumption important in planning for water demand, especially with 

the volatility of water consumption and population in the state shown in Figure A.1. Knowing 

how much water consumption to expect makes a large difference in how cities and other water 

suppliers plan to store and distribute water for the future. Being aware of population changes also 

plays a role in determining future water demand. If water consumption is higher than expected, 

there is the problem of trying to provide enough water to meet the demand, but if it is lower than 

expected, there could be storage costs to keep the water available.  

Oil production in North Dakota has increased rapidly in the past decade. Figure A.2 

shows that 2008 marked the highest level of oil production ever seen in North Dakota and how 

oil production continued to increase at a rate never experienced before in the state. Oil 

production in 2015 throughout the state was nearly ten times greater than that in 2007. Average 

daily oil production also surpassed one million barrels a day for 2014. This growth can be 

attributed to the technological advances in the oil industry, especially in fracking. 
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Following the impacts of changing technology in fracking may provide additional 

information into the future of oil activity in the Bakken as well. Greater technological 

advancements could point to higher levels of optimism for the future of oil prices leading to 

larger oil activity, leading to increase water consumption and a larger role for water depots. This 

chain of effects demonstrates the importance of understanding each part of the water-energy 

nexus as each sector is so interconnected that the impacts in one will be experienced in the other. 

The chain of effects also will bring clarity to an uncertain future for increased confidence for 

water resource planners, policy decisions, and even looking ahead at the impacts of whatever 

direction the oil industry may follow.  

Oil prices will continue to have a major impact on the future of the Bakken. If prices 

continue to remain low for an extended period of time, past estimates and other projections for 

the future will need to be adjusted even further. Tracking behavior of oil industry leaders in the 

Bakken will be important in forming policy and other estimates in regard to the energy-water 

nexus in North Dakota.  

High oil prices have also been a contributing factor to the rapid expansion and investment 

in oil in North Dakota, but oil prices plummeted in mid-2014 (Figure A.3). However, despite 

falling oil prices production has remained strong. For the first seven months of 2015, oil was still 

being produced at about 1.2 million barrels per day, but has been slowly falling since then sitting 

closer to 1 million barrels per day in June 2016 (U.S. Energy Information Administration, 2016). 

However, with lower oil prices many are forced to find additional ways of cutting costs. Some 

companies are doing this by finding ways to cut down the time it takes to drill a well and even 

drilling wells but waiting to frack them until the price of oil rises again (Krauss, 2015). 

Companies are completing wells, but they are waiting to stimulate them.  
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The period of low oil prices has been a blessing for development of infrastructure. 

Infrastructure among many other things had not been able to grow fast enough to support the 

tremendous growth in areas due to the oil industry. This period of lower oil prices and a lower 

numbers of oil rigs in the fields should allow some needed time for everything else citizens need 

in the towns near oil hot spots to develop and sustain the influx of people in the future (Brooks, 

2015).  

 

 

 

 

Figure A.1. North Dakota Water Consumption and Population. Data from North Dakota State 

Water Commission (SWC) and Bureau of Economic Analysis (BEA). 
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Figure A.2. North Dakota Annual Oil Production. Data from U.S. Energy Information 

Administration (EIA). 

 

 

 

 
 

Figure A.3. Historical Crude Oil Prices. Source: http://www.macrotrends.net/1369/crude-oil-

price-history-chart. 
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