
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=gdea20

Journal of Difference Equations and Applications

ISSN: 1023-6198 (Print) 1563-5120 (Online) Journal homepage: https://www.tandfonline.com/loi/gdea20

Stability of dynamical structures under
perturbation of the generating function

J. Smítal & T.H. Steele

To cite this article: J. Smítal & T.H. Steele (2009) Stability of dynamical structures under
perturbation of the generating function, Journal of Difference Equations and Applications, 15:1,
77-86, DOI: 10.1080/10236190802563761

To link to this article:  https://doi.org/10.1080/10236190802563761

Copyright Taylor and Francis Group, LLC

Published online: 02 Dec 2008.

Submit your article to this journal 

Article views: 482

View related articles 

Citing articles: 1 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=gdea20
https://www.tandfonline.com/loi/gdea20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10236190802563761
https://doi.org/10.1080/10236190802563761
https://www.tandfonline.com/action/authorSubmission?journalCode=gdea20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=gdea20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10236190802563761
https://www.tandfonline.com/doi/mlt/10.1080/10236190802563761
https://www.tandfonline.com/doi/citedby/10.1080/10236190802563761#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/10236190802563761#tabModule


Stability of dynamical structures under perturbation of the generating
function

J. Smı́tala* and T.H. Steeleb1

aMathematical Institute, Silesian University, Opava, Czech Republic; bDepartment of Science and
Mathematics, American University of Rome, Roma, Italy

(Received 13 October 2008; final version received 14 October 2008 )

We consider the set valued functions C, NW and L taking f in C(I, I) to its centre C( f ), its set of
nonwandering points NW( f ) and its collection of v-limit sets L( f ) ¼ {v (x, f ) : x [ I}, and
consider how these sets are affected by pertubations of f. Our main results characterize those
functions g in C(I, I) at which C, NW and L are continuous. In particular, we show that either
of the maps C and NW is continuous at g if and only if one of the following conditions is
satisfied: (i) The map v which takes a function f to its set v ( f ) of v-limit points is continuous
at g; (ii) the periodic orbits of g which are p-stable, i.e. stable with respect to small
perturbations of g, are dense in the set CR(g) of chain recurrent points of g; (iii) CR(g) ¼ v (g)
and the p-stable periodic orbits of g are dense in the set of periodic points of g.

Keywords: centre of a system; chain recurrent points; Hausdorff metric; nonwandering
points; omega-limit points; stability under perturbation
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1. Introduction and main results

We shall be concerned with the class C(I, I) of continuous self-maps of the unit interval I ¼ [0,1].

For f in C(I,I) and any integer n $ 0, f n denotes the nth iterate of f. Let P( f ) denote the set of

periodic points of f. For each x [ I, we denote byv (x, f ) thev-limit set of fgenerated byx, i.e. the set

of limit points of the sequence {f k(x)}k$0. Let v ð f Þ ¼ <x[Iv ðx; f Þ and L( f ) ¼ {v (x, f ) : x [ I}.

If x [ P( f ) has period n, and if any neighbourhood of x contains points u, v such that

f n(u) , u and f n(v) . v (i.e. if f n(y) 2 y is unisigned in no neighbourhood of x) then x is an

essential periodic point which cannot be removed by small perturbations of f. We let S0( f )

represent the essential periodic points of f. We also say that a periodic orbit A of f of period n $ 1

is a p-stable periodic orbit if for any 1 . 0 there is a d . 0 such that any g [ C(I,I) with

k f 2 gk , d has a periodic orbit B of period n satisfying rH(A,B) , 1, where rH denotes the

Hausdorff metric. We denote by S( f ) the union of p-stable periodic orbits of f. It follows that

[

j$0

f jðS0ð f ÞÞ # Sð f Þ; ð1Þ

so that a periodic orbit of an essential periodic point is p-stable (for the argument see Section 2).

We also denote by (K,rH) the class of nonempty closed sets K # I ¼ [0,1] endowed with the
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Hausdorff metric rH, and ðK*; r*
HÞ consists of the nonempty closed subsets of K. Other terms,

definitions and previously known results are provided in Section 2.

Bruckner [5] posed several questions regarding the iterative stability of a continuous function f

of the interval with respect to small perturbations. In particular, how are the set v ( f ) of v-limit

points and the collection L( f ) of v-limit sets of f affected by slight changes in that function? As

one sees from examples in Refs. [5,12], in general, both these sets may be affected dramatically by

arbitrarily small perturbations. Some results concerning the continuity structure of the maps

v : f 7! v ( f ) and L : f 7! L( f ) were obtained in Refs. [13,14]; the following is proved in Ref. [13].

Proposition 1.1. The map v : ðCðI; IÞ; k�kÞ! ðK; rHÞ is continuous at g if and only if the

p-stable periodic orbits of g are dense in the set of chain recurrent points of g.

The next result is from Steele [14]; note that, by Blokh et al. [3], the set L( f ) is a compact

subset of (K,rH) so that the map L is correctly defined.

Proposition 1.2. The map L : ðCðI; IÞ; k�kÞ! ðK*; r*
HÞ is upper semi continuous at g if and

only if LðgÞ contains all sets L [ Kwith gðLÞ ¼ L such that, for every proper closed subset F

of L, F > gðLnFÞ – Y.

In this paper we build upon these results. In particular, in Section 3 we show that the

condition from Proposition 1.1 characterizes the points of continuity of the maps C and NW

taking f in C(I,I) to its centre C( f ), and its set of nonwandering points NW( f ), respectively.

Recall that by the classical Birkhoff definition, the centre C( f ) of f is the nonwandering set

of the nonwandering set of the nonwandering set . . . , continued by transfinite induction until one

gets nothing smaller. However, for any map f in C(I,I), Sharkovsky [8] proved that Cð f Þ ¼ Pð f Þ,

i.e. it is the closure of the set P( f ) of periodic points. See also Ref. [1]. We say that x [ I is a

nonwandering point of f and write x [ NW( f ) if, for any neighbourhood U of x there is an n . 0

so that f n(U) > U – Y.

Now, let 1 . 0 be given, and take x and y to be points in I. An 1-chain from x to y with

respect to a function f is a finite set of points {x0, x1, . . . , xn} in I with x ¼ x0, y ¼ xn, and

j f(xk21) 2 xkj , 1 for k ¼ 1,2, . . . ,n. We call x a chain recurrent point of f if there is an 1-chain

from x to itself for any 1 . 0, and write x [ CR( f ). It is well-known [1] that

f [ CðI; IÞ ) Sð f Þ # Pð f Þ # Pð f Þ ¼ Cð f Þ # v ð f Þ # NWð f Þ # CRð f Þ ð2Þ

and C( f ),v ( f ),NW( f ) and CR( f ) are closed sets in I.

Our main result is the following extension of Proposition 1.1:

Theorem 1.3. Let w : ðCðI; IÞ; k�kÞ! ðK; rHÞ be any of the maps f 7! v( f ), f 7! C( f ),

f 7! NW( f ). Then the following conditions are equivalent:

(i) w is continuous at g [ C(I,I);

(ii) the set of points in p-stable periodic orbits of g is dense in CR(g);

(iii) v(g) ¼ CR(g) and the set of points in p-stable periodic orbits of g is dense in the set of

periodic points of g.

Whereas Steele [14] contains a characterization of the points of continuity of the map L
restricted to the set of functions f [ C(I,I) with zero topological entropy, in Section 4 we
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characterize the points of continuity of L without any restrictions on the elements of C(I,I). Our

main result there is the following theorem which solves a problem from Ref. [5].

Theorem 1.4. The map L : ðCðI; IÞ; k�kÞ! ðK*; r*
HÞ is continuous at g [ C(I,I) if and only if all

of the following holds:

(i) the periodic points of g are dense in CR(g),

(ii) all the periodic points of g belong to p-stable periodic orbits, and

(iii) if L [ K, g(L) ¼ L and, for any proper closed subset F of L, F > gðLnFÞ – Y, then
L [ L(g).

The following problem is related to Theorem 1.3. We conjecture that the answer is positive.

Problem 1.5. Let CR denote the map taking any f [ C(I,I) to the set CR( f ) of chain recurrent

points of f. Is it true that CR is continuous at a g [ C(I,I) if and only if v is continuous at g?

The next Section 2 presents much of the terminology and many of the essential facts used in

what follows.

2. Preliminaries

Here we introduce terminology, notation and basic results. If no specific reference is given, the

result can be found in Ref. [1] (or in most standard books on low-dimensional dynamics).

We already defined p-stable periodic orbits. To prove (1), suppose x0 [ S0( f ) with period n, and

v (x0,f ) ¼ {x0,x1, . . . ,xn21} is the periodic orbit generated by x0. Since x0 [ S0( f ), whenever g is

sufficiently close to f, g must have a periodic point y0 close to x0 such that g n(y0) ¼ y0. Because f

and g are both continuous and g is uniformly close to f, it follows that yi ¼ g i(y0) must be close

to xi ¼ f i(x0), for any i.

In connection with (1) it would be interesting to know other relations between essential

periodic points and p-stable periodic orbits (even though this is not really necessary for the

paper). In particular, does every p-stable periodic orbit contain at least one essential periodic

point? Is any point in a p-stable periodic orbit essential? It seems that the answer to both

questions is positive but there is no regular proof.

In addition to the usual, Euclidean metric on I, we will be working in three metric spaces.

Within C(I,I) we will use the uniform metric k·k. Our second metric space (K,rH) is the space

of all nonempty closed sets K in I endowed with the Hausdorff metric rH given by

rHðE;FÞ ¼ inf{d . 0;E # BdðFÞ;F # BdðEÞ}, where Bd(F) is the open d-neighbourhood of F.

This space is compact [6] and, for any f [ C(I,I), L( f ) is its compact subspace [3]. Our final

metric space ðK*; r*
HÞ consists of the nonempty closed subsets of K. Thus, K [ K* if K is a

nonempty family of nonempty closed sets in I such that K is closed in K with respect to rH.

We endow K* with the metric r*
H so that K1 and K2 are close with respect to r*

H if each member

of K1 is close to some member of K2 with respect to rH, and vice versa. This metric space is also

compact [5].

A set valued function w : (C(I,I),k�k) ! (K,rH) is upper semicontinuous at g [ C(I,I) if, for

any 1 . 0, there exists d . 0 so that w( f ) # B1(w(g)) whenever k f 2 gk , d. Similarly, w is

lower semicontinuous at g if for any 1 . 0 there exists d . 0 so that w(g) # B1(w( f )) whenever

k f 2 gk , d. The following result is well-known (see, e.g., Proposition V.38 in Ref. [1]) and

will be used in what follows.
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Proposition 2.1. ThemapCR : ðCðI; IÞ; k�kÞ! ðK; rHÞ is upper semicontinuous.

It is well-known that any v-limit set of a map f [ C(I,I) is contained in a maximal v-limit set

(maximal with respect to inclusion). This has been proved by Sharkovsky [9] and further

developed by Blokh [2]. Maximal v-limit sets can be of three possible types: cycles (which are

the only finite v-limit sets), basic sets, and solenoids. If an infinite maximal v-limit set ~v

contains a periodic point then it is a basic set. Otherwise ~v is a solenoidal set. For any maximal

solenoidal v-limit set ~v of a map f [ C(I,I) there is an associated system of periodic intervals

{Jk}
1
k¼1 which is a nested family of compact periodic intervals such that, for any k, Jk has period

nk (so that nkþ1 is a multiple of nk), nk , nkþ1, and

~v #
\1

k¼1

[nk21

i¼0

f iðJkÞ , CRð f Þ: ð3Þ

Here an interval J # I is periodic with period k $ 1 if f k(J) ¼ J and if J, f(J), . . . , f k21(J) are

pairwise disjoint. If (3) is satisfied then, for any x [ ~v, there is a sequence {i(k, x)}k$0 of

positive integers such that x [ >1
k¼1 f

iðk;xÞðJkÞ V Mx, and Mx is a singleton or a compact

interval. If Mx is a singleton for any x [ ~v then ~v is a minimal set; recall that A is a minimal set

for f if v (x,f ) ¼ A, for any x [ A. Such a set is perfect, i.e. nonempty, closed, without isolated

points. On the other hand, if a solenoidal v-limit set is not minimal then it contains countably

many isolated points [2]. If b [ ~v is such a point then Mb is a nondegenerate wandering interval,

i.e. f j(Mb) > Mb ¼ Y. It follows that the interior of Mb is disjoint from the nonwandering set of f.

Thus, in view of (3) we have the following result which is implicitly contained in Ref. [2] and

will be used in what follows:

Lemma 2.2. If a maximal solenoidal v-limit set ~v of f [ C(I,I) contains an isolated point then

NW( f ) – CR( f ).

We also need the following result.

Lemma 2.3. Let f [ C(I,I) and let W be a minimal set contained in a solenoidal v-limit set of f.

Then W , Pð f Þ. Moreover, if P( f ) has empty interior then W , S0ð f Þ.

Proof. The first statement is well-known (see, e.g., Proposition IV.15 in Ref. [1]). To prove the

second one, let W be a minimal solenoidal set with associated system {Jk}k$0 of compact

periodic intervals such that Jk has period nk, and nk ! 1. Let a [ W, and let U be a

neighbourhood of a. By (3), for any x [ W there is a sequence {i(k,x)}k$0 with 0 # i(k,x) , nk
such that x [ >1

k¼1 f
iðk;xÞðJkÞ ¼: Mx. Since W is a perfect set, and since Mx can be a

nondegenerate interval only for countably many x, there is a y [ W > U and a k . 0 such that

y [ f i(k,y)(Jk) , U. Then L U f i(k,y)(Jk) is a compact periodic interval of period nk which

contains r U nkþ1/nk $ 2 of periodic intervals of f nk of period r hence, a periodic orbit

p1 , p2 , · · · , pr of f nk of period r (this actually proves the first statement). Let A be the

set of fixed points of f nk contained in the interval ( p1,pr). Since A , L, any z [ A is a periodic

point of f of period nk, and if P( f ) has empty interior, then A is nowhere dense and closed.

Therefore f nk ð p1Þ . p1 and f nk ð prÞ , pr imply the existence of a p [ A such that any its

neighbourhood contains points u, v satisfying u , p , v, f nk ðuÞ . u and f nk ðvÞ , v. Thus,

p [ S0( f ) > U and consequently, a [ S0ð f Þ. A
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Concerning basic sets, we recall a few important properties (see, e.g., Ref. [2]): Any basic set

~v of an f [ C(I,I) is perfect, and the periodic points of f are dense in it. There is a minimal

compact interval J and an integer k $ 1 such that J, f(J), . . . , f k21(J) are non-overlapping

intervals which cover ~v. The sets ~v> f jðJÞ ¼: ~vj form the decomposition of ~v into a maximal

system of periodic portions which may have common endpoints. If k ¼ 1 then ~v is

indecomposable. Obviously, any ~vj is an indecomposable basic set for f k. The map on a basic set

is transitive but, in what follows, we need more (cf. [2] or Lemma 3.3 in Ref. [11]). Assume ~v is

an indecomposable basic set for an f [ C(I,I), and J ¼ [a, b ] is the minimal invariant interval

containing ~v. Then, for any compact intervals U,V , (a,b),

U > ~v is uncountable ) Int f nðUÞ . V ; for any sufficiently large n: ð4Þ

We use basic sets in proofs of Lemmas 3.6 and 3.7.

3. Mapping f to C( f ) and NW( f )

The main result of this section is the following theorem.

Theorem 3.1. Each of the maps f 7! C( f ) and f 7! NW( f ) is continuous at g [ C(I,I) if and only

if SðgÞ ¼ CRðgÞ.

Proof. Characterization of those g at which C is continuous follows by Lemmas 3.2, 3.5 and 3.12,

and by (1). The result concerning NW follows by Lemmas 3.2, 3.4, 3.10 and 3.11, and by (1). A

Lemma 3.2. Let g [ C(I,I) for which SðgÞ ¼ CRðgÞ. Then the maps taking f in C(I,I) to

Cð f Þ;vð f Þ;NWð f Þ and CRð f Þ in ðK; rHÞ are all continuous at g.

Proof. By Proposition 2.1, CR is upper semicontinuous at g so that if 1 . 0 then there exists

d1 . 0 for which CR( f ) # B1(CR(g)) whenever k f 2 gk , d1. It is easy to see that the map

f 7! Sð f Þ is lower semicontinuous. In particular, there exists d2 . 0 so that SðgÞ # B1ðSð f ÞÞ

should k f 2 gk , d2. If d ¼ min{d1,d2} and k f 2 gk , d, then SðgÞ # B1 Sð f Þ
� �

#
B1ðv ð f ÞÞ # B1ðNWð f ÞÞ # B1ðCRð f ÞÞ # B21ðCRðgÞÞ ¼ B21 SðgÞ

� �
. It follows that all of our

maps are continuous at g. A

Lemma 3.3. Let f [ C(I,I). Then for any 1 . 0 there exists g in C(I,I) so that k f 2 gk , 1 and

CRð f Þ # B1 SðgÞ
� �

.

Proof. Since CR( f ) is compact, for any 1 . 0 there exists an 1-net of CR( f ) composed of chain

recurrent points. Fix 1 . 0, and take {x1,x2, . . . ,xn} # CR( f ) to be an 1-net of CR( f ). Now, from

Lemma V.49 in Ref. [1], we may perturb f to a new function g so that k f 2 gk , 1 and

{x1,x2, . . . ,xn} # S(g). This gives CRð f Þ # B1ð{x1; x2; . . . ; xn}Þ # B1ðSðgÞÞ. A

Lemma 3.4. If the map f 7! NW( f ) is upper semicontinuous at g then NW(g) ¼ CR(g).

Proof. Suppose that NW(g) C CR(g). Then there exist fn ! g so that Sð f nÞ! CRðgÞ; this follows

by Lemma 3.3 and Proposition 2.1. Since Sð f nÞ # NWð f nÞ # CRð f nÞ for each n, we have
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limn!1Sð f nÞ ¼ limn!1NWð f nÞ ¼ limn!1CRð f nÞ ¼ CRðgÞ. In particular, NW is not upper

semicontinuous at g. A

Since Sð f Þ # Cð f Þ, the proof of Lemma 3.4 remains valid when NW is everywhere replaced

with C. Thus, we have the following.

Lemma 3.5. If the map f 7! C( f ) is upper semicontinuous at g then C(g) ¼ CR(g).

We now turn our attention to the lower semicontinuity of the maps NW and C.

Lemma 3.6. If P( f ) has empty interior then any basic set is a subset of S0ð f Þ.

Proof. Suppose W is a basic set with W0 < W1 < · · · < Wm21 the decomposition of W into its

maximal system of periodic portions. Let U be a neighbourhood of a point in W, and assume,

contrary to what we wish to show that U > S0( f ) ¼ Y. There exists V # U a compact interval

such that V > W is uncountable, and none of the points maxWi and minWi, 0 # i , m, belongs

to V. Such a V exists since W is perfect. Then, by (4), Int f k(V) $ V, for some k . 0. It follows

that there exist x and y in V such that f k(x) . x and f k(y) , y. Since f k is continuous there is a

point z0 between x and y such that f k(z0) ¼ z0. Without loss of generality we may assume that

f k(w) $ w in a neighbourhood of z0. If Fix(w) denotes the set of fixed points of w, and

F ¼ {z [ Fixð f kÞ> ½x; y �; f kðwÞ2 w $ 0 on some neighbourhood of z} then F – Y. Assume

y . z0 and let z1 ¼ supF. (If y , z0 the argument is similar, with z1 ¼ infF.) Since Fix( f k) is

closed, z1 [ Fix( f k) and obviously, f k(w) $ w, for w in a left neighbourhood of z1. Since

Int(P( f)) ¼ Y, any left neighbourhood of z1 contains a point w with f k(w) . w. If any right

neighbourhood of z1 contains a point w with f k(w) , w then z1 [ S0( f ) and we are done.

Otherwise, since P( f ) has empty interior, there is a point w1 [ (z1,y) with f k(w1) . w1 and since

f k(y) , y there is the minimal point z2 [ (w1,y) with f k(z2) ¼ z2. Then, by the minimality of z2,

f k(w) . w if z1 , w , z2. On the other hand, z2 � F hence, any right neighbourhood of z2

contains a point w with f k(w) , w. Thus, z2 [ S0( f ). This proves W # S0ð f Þ. A

Lemma 3.7. If the map f 7! NW( f ) is continuous at g then any infinite maximal v-limit set of g

either is a basic set, or a minimal solenoidal set. In particular, PðgÞ ¼ v ðgÞ.

Proof. By Lemmas 3.4 and 2.2, any infinite solenoidal v-limit set of g is minimal. Hence, the

maximal v-limit sets of g are cycles, basic sets or minimal solenoidal sets. Since periodic points

are dense in any basic set, PðgÞ ¼ v ðgÞ follows by Lemma 2.3. A

Lemma 3.8. If P(g) has nonempty interior then neither f 7! C( f ) nor f 7! NW( f ) is lower

semicontinuous at g.

Proof. If P(g) has a nonempty interior then it contains a compact interval L. Denote by Pn the set

of periodic points of g of period n. By the Baire category theorem there is an m $ 1 such that

Pm > L contains a compact interval V ¼ [a,b]. Then, for any 1 . 0 there is a w [ C(I,I) which is

the identity outside of V, w(x) . x for a , x , b, w(V) ¼ V, and kg +w 2 gk , 1. Then V is a

periodic interval of f ¼ g +w such that NW( f ) > (a,b) ¼ Y and hence, C( f ) > (a,b) ¼ Y. A

The next result is known, see, e.g., Lemma IV.9 in Ref. [1].
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Lemma 3.9. Let f [ C(I,I), let J be an interval and j, k positive integers. If x, f j(x), y, f k(y) [ J

and J > P( f ) ¼ Y, then x , f j(x) implies y , f k(y).

Lemma 3.10. If the map f 7! NW( f ) is continuous at g then S0ðgÞ ¼ v ðgÞ.

Proof. Let NW be continuous at g. Then, by Lemma 3.7, PðgÞ ¼ v ðgÞ. So assume S0ðgÞ C PðgÞ.

Then there is a compact interval U such that U > S0ðgÞ ¼ Y but U > P(g) – Y. By Lemma 3.8 we

may assume that P(g) has empty interior. Then, by Lemmas 2.3, 3.6 and 3.7, one can take U so that

U > v ðgÞ ¼ U > PðgÞ ¼: P – Y. By (2), P is a closed set. To prove the discontinuity of NW at g

it suffices to show that there are p [ P, and h . d . 0 such that, for any 1 . 0 there is a map

f [ C(I,I) with f(x) ¼ g(x) for x � ( p 2 h, p þ h), k f 2 gk , 1, and ( p 2 d, p þ d) >
NW( f ) ¼ Y.

Assume first that P contains an isolated point p of period m $ 1, and let

V ¼ ( p 2 h,p þ h) , U be such that V > P ¼ {p}. Without loss of generality assume

g m(x) . x for x [ V, x – p, and g j(V) > V ¼ Y whenever 0 , j , m. Then, for any y [ V,

y – p, and any j $ 1, g mj(y) . y since otherwise there would be a k . 1 such that g mk(y) , y,

and a z . p, sufficiently close to p, with g mk(z) . z. This would imply existence of a periodic

point – p of g in V. Thus, by Lemma 3.9,

gmjðxÞ . x; and gkðxÞ [ V implies gkðxÞ . x; whenever x [ V; x – p; and j; k . 0: ð5Þ

Let d . 0 be such that, for W ¼ ( p 2 d, p þ d), g2m(W) # V. Let w [ C(I,I) be the identity

outside of V, w(x) . x for x [ V. Given 1 . 0, w can be chosen such that

kg +w2 gk , 1; ðg +wÞ jðVÞ> V ¼ Y if 0 , j , m; and ðg +wÞmðWÞ , V : ð6Þ

Denote f ¼ g +w. Thus, the graph of f m is obtained by shifting any point of the graph of g m

over V horizontally to the left. Take a point a [ W. By (6) there is a tiny neighbourhood G , W

of a such that f m(G) ¼ g m(w(G)) . w(G) . G but f j(G) > V ¼ Y for 0 , j , m. (Here A . B

for sets means x . y, for any x [ A, y [ B.) Let z [ f m(G). The point z may enter V again. If so

let k1,k2, . . . be the corresponding moments. Then it follows from the above that f k1ðzÞ ¼

gk1 ðwðzÞÞ . z and hence, w(z) � G. By induction we get that f kj ðzÞ is a growing sequence, hence

in fact f k(y) � G for any y [ G, k [ N. This proves that a � NW( f ) as desired.

If P contains no isolated points denote by Pn the set of points in P of period n. Since P is

closed some Pm has nonempty interior (with respect to the relative topology on P), by the Baire

category theorem. Hence there is a compact interval V , U such that V > P ¼ V > Pm is a

perfect set. We may assume that the endpoints of V are in Pm. Since P(g) has empty interior,

V > Pm is a Cantor-type set. Without loss of generality we may assume that g m(x) $ x for

x [ V, since otherwise there would be an essential periodic point in Pm. Then the argument is

similar as before. A

Lemma 3.11. If the map f 7! NW( f ) is continuous at g then v(g) ¼ NW(g).

Proof. Let NWl(g) be the set of points x in NW(g) such that for any left open neighbourhood U of x

there is an n . 0 such that U > g n(U) – Y, and let NWr(g) be defined similarly with right
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neighbourhood U. It is well-known [10] that

v ðgÞ ¼ NWlðgÞ< NWrðgÞ; ð7Þ

and the set NW(g)nv(g), if nonempty, consists of isolated points (cf. also [1]).

Now to prove the lemma assume v(g) – NW(g), and let a [ NW(g)nv(g). Then there is an

1 . 0 such that (a 2 1,a þ 1) > NW(g) ¼ {a}. Moreover, since a is nonwandering, for any

d . 0 there are infinitely many k such that gkðða2 d; aþ dÞÞ> ða2 d; aþ dÞ – Y. Since

a � v(g), (7) implies that either g k((a 2 d,a)) > (a,a þ d) – Y, for infinitely many k, or

g k((a,a þ d)) > (a 2 d,a) – Y, for infinitely many k. By symmetry, we may assume the first

case and hence, by (7), there is a d0 . 0 such that g k((a,a þ d0)) > (a 2 d0,a) ¼ Y, for any

k $ 0. Let fn ! g such that fn(x) ¼ g(x) for x � (a 2 dn,a), dn , d0, dn ! 0, and let fn(x) ¼ g(a)

for x [ (a 2 dn/2,a]. Then NW( fn) > (a 2 1,a þ 1) ¼ Y and consequently, rH(NW( fn),

NW(g)) $ 1. A

Lemma 3.12. If the map f 7! C( f ) is lower semicontinuous at g then SðgÞ ¼ CðgÞ.

Proof. Let g [ C(I,I) for which SðgÞ C CðgÞ. By (2), CðgÞ ¼ PðgÞ, and by Lemma 3.8 we may

assume that P(g) has empty interior. By Lemmas 2.3 and 3.6 there is U an open interval such that

U > SðgÞ ¼ Y, but that U > v(g) ¼ U > P(g) is nonempty and comprised of periodic points.

We may now proceed as in the proof of Lemma 3.10 to show that, for a p [ U > P(g) there is a

neighbourhood V # U of p such that for any d . 0, there is some f [ C(I,I) for which

k f 2 gk , d, yet V > P( f ) ¼ Y. A

Proof of Theorem 1.3. It follows by Proposition 1.1 and Theorem 3.1. A

4. Mapping f to L( f )
This section is devoted to the proof of Theorem 1.4.

Lemma 4.1. If f 7! Lð f Þ is lower semicontinuous at g [ C(I,I) then P(g) ¼ S(g).

Proof. Let x [ P(g)nS(g), say of period n. Then, by (1), there is an open interval Ni containing

xi ¼ gi(x) so that gn(xi) 2 xi is unisigned on Ni, for 0 # i , n. We may assume that Ni > Nj ¼ Y
whenever i – j. Let 1 . 0 so that B1(xi) , Ni and gðB1ðxiÞÞ # Niþ1, for any i, letting Nn ¼ N0.

Then there is a d . 0 such that, for any i, f ðB1ðxiÞÞ , Niþ1, whenever k f 2 gk , d. Then there

is an f [ C(I,I) so that N0 contains no periodic point of f of period n, and k f 2 gk , d. Indeed, if,

e.g., gn(x) $ x, for x [ N0, it suffices to take f(x) ¼ g(x) þ d/2 for x [ B1(xn21), f(x) ¼ g(x) for

x � Nn21, and extend f properly onto the whole interval I.

We show that rH(v(x,g),v(y,f)) . 1 for all y in I. Suppose, to the contrary, that there exists

y* [ I so that rH(v(x,g),v*) , 1, where v* ¼ v ( y*,f ). Then v* # B1ðv ðx; gÞÞ # <n21
i¼0 Ni, and

by choosing f as we did we know that f(v* > Ni) ¼ v* > Niþ1 for any i. Thus, f n(v* > N0) ¼

v* > N0 so that the convex closure of (v* > N0) contains a periodic point of f of period n. This,

however, contradicts our earlier choice of f. A
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Proposition 4.2. Let g [ C(I,I), and let PðgÞ ¼ CRðgÞ. Then any v-limit set of f is in the

Hausdorff closure of the periodic orbits, and any solenoidal v-limit set is minimal, i.e. without

isolated points.

Proof. The first part is proved in Ref. [7], Theorem 4.6; see also Ref. [4]. So it suffices to show

that no solenoidal v-limit set W has isolated points. This follows by Lemma 2.2, since

Pð f Þ # NWð f Þ, by (2). A

Lemma 4.3. Let g [ C(I,I) such that (i) SðgÞ ¼ CRðgÞ and (ii) P(g) ¼ S(g). Then f 7! Lð f Þ is
lower semicontinuous at g.

Proof. Let v [ L(g). Then, by (i) and Proposition 4.2, v is approximable by periodic orbits. By

(ii), these orbits are p-stable whence f 7! L( f ) is lower semicontinuous at g. A

Proof of Theorem 1.4. Suppose the map L is continuous at g. It follows immediately from the

definition of the map v that it, too, must be continuous there. This implies (i), by Proposition 1.1.

Condition (ii) follows by Lemma 4.1, and condition (iii) by Proposition 1.2. Conversely, (i) and

(ii) imply that L is lower semicontinuous, by Lemma 4.3, and (iii) implies the upper

semicontinuity of L, by Proposition 1.2. A
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