
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=gdea20

Journal of Difference Equations and Applications

ISSN: 1023-6198 (Print) 1563-5120 (Online) Journal homepage: https://www.tandfonline.com/loi/gdea20

A proof of convergence of general stochastic
search for global minimum

Jerzy Ombach &

To cite this article: Jerzy Ombach & (2007) A proof of convergence of general stochastic search
for global minimum, Journal of Difference Equations and Applications, 13:8-9, 795-802, DOI:
10.1080/10236190701396560

To link to this article:  https://doi.org/10.1080/10236190701396560

Copyright Taylor & Francis Group, LLC

Published online: 13 Aug 2007.

Submit your article to this journal 

Article views: 444

View related articles 

Citing articles: 1 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=gdea20
https://www.tandfonline.com/loi/gdea20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10236190701396560
https://doi.org/10.1080/10236190701396560
https://www.tandfonline.com/action/authorSubmission?journalCode=gdea20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=gdea20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10236190701396560
https://www.tandfonline.com/doi/mlt/10.1080/10236190701396560
https://www.tandfonline.com/doi/citedby/10.1080/10236190701396560#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/10236190701396560#tabModule


A proof of convergence of general stochastic
search for global minimum†
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(Received 22 September 2006; in final form 12 March 2007)

We present a general criterion guaranteeing stochastic convergence of a wide class of numerical methods
used for finding global minimum of a continuous function.
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The aim of this paper is to establish a general sufficient condition for stochastic convergence

of a wide class of stochastic numerical methods used for solving global optimization

problems. We consider methods of the form Xt ¼ TðXt21;Yt21Þ for t ¼ 1, 2, 3, . . . , where T

is a given operator and Yt are random variables. Such methods have been more and more

developed in recent years and their most advantage is that they can be used in situations when

an objective function is not differentiable. Several properties of such methods have been

established, e.g. see Ref. [4] where Markov Chains techniques is extensively used. In this

paper we apply a version of the classical Lyapunov Stability Theorem to a Foias operator on

the space of probability measures to prove stochastic convergence of Xt to the set of the

solutions of global minimization problem. Our main result is Theorem 1. In Section 5 we

apply this result to get a criterion for stochastic convergence of a wide class of evolutionary

algorithms which combine stochastic search with local deterministic methods.

1. Let A be a metric space and f: A ! R be a continuous function having its global

minimum min f on A. Without loss of generality we can assume that min f ¼ 0. Let A * , A

be the set of all the solutions of the global minimization problem, i.e.

A* ¼ {x [ A : f ðxÞ ¼ 0}:

A vast part of stochastic algorithms used for finding a solution of the global optimization

problem yields the following form:

Xt ¼ TðXt21;Yt21Þ for t ¼ 1; 2; 3; . . . ð1Þ

Here, X0 is a fixed random variable having a known distribution on A,Yt are random variables

having a common distribution on B. T: A £ B ! A is an operator identifying the algorithm.

We are interested in convergence of the sequence of random variables Xt to a solution of the

global optimization problem.
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Let B(A) and B(B) denote the family of Borel subsets of the space A and B, respectively.

Let M denote the set of all probability measures on B(A). Let n be a probability measure on

the s-algebra B(B). Let (V, S, Prob) be a probability space. Let X0 be a random variable

defined on V and assume that its distribution m0 [ M. Let Yt be a sequence of independent

random variables defined onV identically distributed on B with common distribution n each.

We assume that X0 and Yt are independent. Assume that T is a measurable function

A £ B ! A. Thus Xt are random variables.

The following theorem to be proved in Sections 2–4 provides a general sufficient

condition for the stochastic convergence of Xt to the set A *

Theorem 1. Assume that A is compact and:

(A) For any x0 [ A and any sequence xn ! x0:

Tðxn; yÞ! Tðx0; yÞ a:e: n; as n!1:

(B) For any x [ A * and y [ B, T(x, y) [ A *.

(C) For any x [ A\A *: ð
B

f ðTðx; yÞÞnðdyÞ , f ðxÞ: ð2Þ

Then, for every 1 . 0:

lim
t!1

ProbðdistðXt;A*Þ , 1Þ ¼ 1: ð3Þ

Corollary 1. One can release the assumption of compactness of the set A assuming the

following conditions instead:

(D) For every x [ A and y [ B: f ðTðx; yÞÞ # f ðxÞ.

(E) There exists r . 0 such that set Ar U {x [ A : f ðxÞ # r} is compact and

supp m0 , Ar.

In fact, by (D) TðAr £ BÞ , Ar. Clearly, m0 is a probability measure on Ar and A * , Ar.

Hence, we may apply Theorem 1 to set Ar.

2. As we will see, the above Theorem is a simple consequence of Theorem 3 below on the

asymptotic stability of the Foias operator P:M ! M defined as follows:

PmðCÞ ¼

ð
A

ð
B

ICðTðx; yÞÞnðdyÞ

� �
mðdxÞ; for m [ M; C [ BðAÞ; ð4Þ

where IC is the indicator function of the set C. We are interested in the successive iterations

P t of the Foias operator, i.e. maps defined as: P0 ¼ idM, Ptþ1 ¼ P+Pt, for t ¼ 0, 1, 2, . . . .

First we recall some basic properties. It is known, see [6], that M with the Fortet–Mourier

metric is a metric space and its topology is determined by the weak convergence of the

sequences of measures as follows. The sequences mn [ M converges to m [ M if and only

if for any continuous (bounded as A is compact) function h,ð
A

hdmn !

ð
A

hdm; ð5Þ
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as n ! 1. Another equivalent conditions for (weak) convergence is:

mnðCÞ! mðCÞ; ð6Þ

as n ! 1, for any C [ B(A) such that m(dC) ¼ 0, where dC is the boundary of C.

Since A is compact so is M.

We will use two basic properties of the Foias operator summarized in two Lemmas below,

for more details and proofs see for example Chapter 12 in Ref. [3].

Lemma 1. Let the initial random variable X0 be distributed according to a measure

m0 [ M. Then, for every t ¼ 1, 2, 3, . . . :

Ptm0 ¼ mT
t ; ð7Þ

where the measures mT
t are defined by

mT
t ðCÞ ¼ ProbðXt [ CÞ ¼ ProbðX21

t ðCÞÞ;C [ BðAÞ: ð8Þ

For a measurable function h:A ! R we define the function Uh as:

UhðxÞ ¼

ð
B

hðTðx; yÞÞnðdyÞ ð9Þ

Lemma 2. Let m [ M. If h is continuous, then:ð
A

hdðPmÞ ¼

ð
A

Uhdm: ð10Þ

Proposition 1. Assumption (A) implies that P:M ! M is a continuous map. In other

words P is (weak) Feller, see Refs. [3,4] or [8]. for more details on Feller operators.

Proof. Let mn ! m, mn,m [ M. Let h:A ! R be continuous function. We have to show thatÐ
A
hdðPmnÞ!

Ð
A
hdðPmÞ. Let x0 [ A and xm ! x0 be fixed. From (A) Tðxm; ·Þ! Tðx0; ·Þ a.e.

n and so hðTðxm; ·ÞÞ! hðTðx0; ·ÞÞ on the set of full measure n and the Dominated

Convergence Theorem may be applied. We then have:

UhðxmÞ ¼

ð
B

hðTðxm; yÞÞnðdyÞ!

ð
B

hðTðx0; yÞÞnðdyÞ ¼ Uhðx0Þ;

so the function Uh is continuous. By Lemma 2 and condition (5):ð
A

hdPmn ¼

ð
A

Uhdmn !

ð
A

Uhdm ¼

ð
A

hdPm;

and the Proposition follows. A

3. The above Proposition means that P induces semi-dynamical system on M. Recall

some definitions from the theory of dynamical systems. For any measure m [ M, v(m)

denotes the v-limit set of m: vðmÞ ¼ {l [ M : ’ti !1;Ptim! l}. A compact set

Y – K , M is invariant if PðKÞ , K. Let @ be a metric onM compatible with the topology.

It is known and easy to see, that for any invariant set K , M: @ðPtm;KÞ! 0 for t ! 1, if

and only if, vðmÞ – Y and vðmÞ , K. As M is compact then, vðmÞ – Y for any m [ M.
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We recall a version of the famous Lyapunov Theorem on asymptotic stability, see [5] for a

proof or [2] for a proof of its “continuous” counterpart.

Theorem 2. Let (M, @) be a compact metric space, Y – K , M a compact and invariant

set, P : M !M a continuous map. Let V : M ! R be a Lyapunov function, i.e.:

1. V is continuous,

2. VðxÞ ¼ 0, for x [ K,

3. VðxÞ . 0, for x [ MnK.

4. For every x [ MnK

VðPðxÞÞ , VðxÞ: ð11Þ

Then, for every x [ M,

@ðPtx;KÞ! 0; as t!1: ð12Þ

This theorem can be applied to our Foias operator as follows. Define:

M* ¼ {m [ M : suppm , A*}:

It is easy to see that M* is a compact subset of M as A* a compact subset of A. Also,

m [ M*, if and only if, mðA*Þ ¼ 1. (If A* is a singleton, so is M*. Otherwise, M* is

uncountable. In fact, if a, b [ A * are different points and 0 , p , 1 then the measure m

defined by m({a}) ¼ p, m({b}) ¼ 1 2 p, belongs to M*.)

Our main result, Theorem 1, is a consequence of the following:

Theorem 3. Assume that the set A is compact and conditions (A), (B) and (C) hold true.

Then, M* is invariant and for any measure m [ M:

@ðPtm;MwÞ! 0; as t!1:

Proof. As mentioned above compactness of A implies compactness of M. It is easy to see

that condition (B) yields invariance of the set M*.

Define function V:M ! R:

VðmÞ ¼

ð
A

fdm

to be a Lyapunov function. We are going to show, that the assumptions of Theorem 2 are

satisfied.

Continuity of V is an immediate consequence of the definition of the topology on M. Let

mn ! m. We put h ¼ f in (5) to get:

VðmnÞ ¼

ð
A

fdmt !

ð
A

fdm ¼ VðmÞ:

Clearly V(m) $ 0 for all m [ M and V(m) ¼ 0 for all m [ M*. Let V(m) ¼ 0 for some

m [ M. Then, we have: 0 ¼ VðmÞ ¼
Ð
A
fdm ¼

Ð
A * fdmþ

Ð
AnA * fdm ¼

Ð
AnA * fdm. As f is

strictly positive on AnA*, supp m , A*, and hence m [ M*.
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Let m [ MnM*. Condition (C) says that for any x [ AnA*:ð
B

f ðTðx; yÞÞnðdyÞ , f ðxÞ ð13Þ

and then by (9) and (10) and the choice of the measure m.

VðPmÞ ¼

ð
A

fdPm ¼

ð
A

Ufdm ¼

ð
A

ð
B

f ðTðx; yÞÞdnðyÞ

� �
dmðxÞ ,

ð
A

fdm ¼ VðmÞ

Theorem 2 completes the proof. A

4. Proof of Theorem 1. We will interpret the above Theorem 3 in terms of random variables

Xt. Note first that for any measure m* [ M* and any set C [ BðAÞ such that A* , int C we

have m*ðdCÞ ¼ 0 and m*ðCÞ ¼ 1, and then condition (6) implies that for any sequence of

measures mn [ M such thar mn ! m* we have

mnðCÞ! 1; as n!1

In terms of random variables it can be expressed by Lemma 1 as follows.

Let BðA*; 1Þ ¼ {a [ A : distða;A*Þ , 1}. Fix any measure m0 [ M. Theorem 3 guarantees

that the v-limit set, vðm0Þ, is nonempty and is contained in M*. Hence, for any sequence

tn !1, there exists a subsequences tni !1 and a measure m* [ M* such that Ptnim0 ! m*

and hence Ptnim0ðBðA*; 1ÞÞ! m*ðBðA*; 1ÞÞ ¼ 1. But this means that Ptm0ðBðA*; 1ÞÞ! 1, as

t!1. So by Lemma 1 we have: for every 1 . 0:

lim
t!1

ProbðdistðXt;A*Þ , 1Þ ¼ 1; ð14Þ

what completes the proof of Theorem 1. A

5. We show an application of Theorem 1. One of the numerical methods for finding an

approximation of the set A * is an evolutionary algorithm which can be described as follows.

As before we assume that A is a metric space, f : A! R is a continuous function.

Consider measures m0, n0 [ M and let k, m be natural numbers. Let w : A! A be a map

such that A* is invariant under w, i.e. wðA*Þ , A*. We call such w a local method.

The Algorithm.

1. Choose an initial population, i.e. a simple sample of points from A distributed according

to m0:

x ¼ ðx1; . . . ; xmÞ [ Am

2. Draw a simple sample y ¼ ðy1; . . . ; ykÞ [ Ak according to the distribution n0.

3. Apply w to each xi and yi to get

ðwðx1Þ; . . . ;wðxmÞ;wðy1Þ; . . . ;wðykÞÞ

4. Sort this sequence using f as a criterion to get

ð�x1; . . . ; �xmþkÞwith f ð�x1Þ # . . . # f ð�xmþkÞ:

A proof of convergence of general stochastic search 799



5. Form the next population with the first m points

�x ¼ ð�x1; . . . ; �xmÞ

and go to point (2) with x ¼ �x.

Repeat according to a stopping rule.

There are a number of local methods, w, available. For example, a classical one is the

gradient method. It requires differentiability of the objective function f still it is quite

effective in finding local minima attained at interior points of the set A. If f is not a smooth

function or its local minimum point are at the boundary of A, then more sophisticated method

can be used, see Ref. [7] and survey paper [9]. Obviously, the identity map is a local method.

It is easy to describe the Algorithm in form (1). To simplify notations we will assume in the

sequel m ¼ 1. The results can be easily repeated with m . 1. Define the map T : A £ Ak ! A

as follows. Let ðx; yÞ [ A £ Ak, y ¼ ðy1; . . . ; ykÞ. Now we put

Tðx; yÞ ¼
wðxÞ; if for all i ¼ 1; . . . ; k f ðwðxÞÞ , f ðwðyiÞÞ

wðyi0 Þ; otherwise

(
ð15Þ

where i0 is the smallest number such that for all i ¼ 1; . . . ; k f ðwðyi0 ÞÞ # f ðwðyiÞÞ.

So we see that the Algorithm yields form (1) with B ¼ Ak and n ¼ n k
0 .

The following theorem gives sufficient conditions for stochastic convergence of the above

evolutionary algorithm to the solution of the global minimization problem. A similar result

has been established in [5], where more direct proof was presented under assumption that A

was compact and w fulfilled an extra condition.

Theorem 4. Assume that:

(a1) n0ðlcÞ ¼ 0 for any level curve of f ; lc U {x [ A : f ðxÞ ¼ c}.

(a2) The local method w is continuous.

(a3) The local method w is n0-nonsingular, i.e.

n0ðCÞ ¼ 0 ) n0ðw
21ðCÞÞ ¼ 0 for any C [ BðAÞ; ð16Þ

(a4) If G , A is a neighourhood of A*, then n0ðGÞ . 0.

(a5) There exists r . 0 such that set Ar :¼ {x [ A : f ðxÞ # r} is compact and

supp m0 , Ar.Then, for every 1 . 0:

lim
t!1

ProbðdistðXt;A*Þ , 1Þ ¼ 1: ð17Þ

Let A* be a singleton a*, i.e. the global optimization problem has a unique solution a*.

Under the above assumptions we have:

Corollary 2. For every 1 . 0 and any norm on Rn:

lim
t!1

ProbðkXt 2 awk , 1Þ ¼ 1: ð18Þ

In other words the sequence Xt stochastically converges to the solution a*.
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Proof. It is enough to show that conditions (a1)–(a5) imply conditions (A)–(E).

We prove (A). Fix x0 [ A and a sequence xn ! x0. Consider the level curve l ¼ lf ðwðx0ÞÞ.

By Assumption (a1) n0ðlÞ ¼ 0 and as w is n0-nonsingular, n0ðw
21ðlÞÞ ¼ 0. Fix y ¼

ðy1; . . . ; ykÞ [ B such that for all i ¼ 1; . . . ; k yi � w21ðlÞ. We claim that Tðxn; yÞ! Tðx0; yÞ.

In fact, if f ðwðx0ÞÞ , minðf ðy1Þ; . . . ; f ðykÞÞ, then by continuity of f and w for large n’s also

f ðwðxnÞÞ , minðf ðy1Þ; . . . ; f ðykÞÞ and then Tðxn; yÞ ¼ wðxnÞ! wðx0Þ ¼ Tðx0; yÞ. Otherwise,

f ðwðx0ÞÞ . f ðyi0Þ, where i0 is the smallest index such that f ðyi0 Þ ¼ minðf ðy1Þ; . . . ; f ðykÞÞ. Like

above, for large n’s f ðyi0 Þ , f ðwðxnÞÞ and hence Tðxn; yÞ ¼ wðyi0Þ ¼ wðx0Þ ¼ Tðx0; yÞ, which

proves the claim. Now, Tðxn; ·Þ! Tðx0; ·Þ on the set of full measure n k as required.

Conditions (B) follows from the definition of the local method.

We prove (C). Let x [ AnA*. If wðxÞ [ A*, then also Tðx; yÞ [ A*, hence f ðTðx; yÞÞ ,

f ðxÞ for all y [ B. So assume now that wðxÞ � A*. We then have f ðwðxÞÞ . 0. As for any

y [ A*, f ðwðyÞÞ # f ðyÞ ¼ 0, then, by continuity of f +w and compactness of A* there exists G,

a neighborhood of A*, such that f ðwðyÞÞ , f ðwðxÞÞ for y [ G, and hence f ðTðx; yÞÞ , f ðxÞ for

all y [ B having at least one coordinate yi [ G, i.e. for y [ BnðAnGÞk. By condition

(a4) we have n0ðGÞ . 0, and hence nðBnðAnGÞkÞ . 0. In the both cases we have:

f ðTðx; yÞÞ , f ðxÞ; for all y from a set of positive measure n; ð19Þ

By the definition of T we clearly see that f ðTðx; yÞÞ # f ðxÞ for all y [ B. It implies that:ð
B

f ðTðx; yÞÞnðdyÞ ,

ð
B

f ðxÞnðdyÞ ¼ f ðxÞ; ð20Þ

what is required. Conditions (D) follows from the description of the map T. Conditions (E) is

just the same as (a5).

Theorem 1 and Corollary 1 complete the proof. A

Let us note that (a1)–(a5) are rather mild conditions. Assume that A is a compact set of

finite dimensional space, say A , Rn, and the objective function f is defined on some

neighborhood of A. It seems that the measures n0 absolutely continuous with respect to the

Lebesgue measure meet these requirements with most functions being optimized in practise.

In fact, if function f is of class C 1 and a [ Rn is not a critical point of f, then the level curve

passing through a, lf ðaÞ, is locally a submanifold of Rn of dimension n2 1 and as such has its

Lebesgue measure zero. So, if f is a Morse function, then (a1) is satisfied. Also, (a3) is

satisfied if n0 is absolutely continuous with respect to the Lebesgue measure and w is a local

diffeomorphism. Condition (a4) is satisfied if n0 has a density with respect to the Lebesgue

measure which is positive on a neighborhood of A, e.g. it is non degenerate normal. Also,

most real situation correspond to assumption (a5).

6. Theorem 1 and Corollary 1 have nice interpretation in a very special case when the map

T does not depend on the second variable y. Let ðX;@Þ be a metric space. Let S : X ! X be a

continuous function. A nonempty set K , X is globally asymptotically stable iff: (i) It is

stable, i.e. for every 1 . 0 there exits d . 0 such that if @ðx;KÞ # d, then for all n $ 0

@ðSnðxÞ;KÞ # 1, and (ii) For every x [ X SnðxÞ! K as n!1. Let X0 be a random variable

on X distributed according to a probability measure m0. Then we can form sequence of

random variables:

Xn ¼ SðXn21Þ; n ¼ 1; 2; 3; . . .

We can prove the following quite natural folklore result:

A proof of convergence of general stochastic search 801



Theorem 5. Let X be a locally compact metric space and S : X ! X a continuous function.

Let nonempty compact set K , X be a globally asymptotically stable set. Let supp m0 be a

compact set. Then: for every 1 . 0:

lim
n!1

ProbðdistðXn;KÞ , 1Þ ¼ 1: ð21Þ

Proof. As K is globally asymptotically stable there exists a Lyapunov function, say

f : X ! ½0;1Þ, such that: (a) f is continuous, (b) f ðxÞ ¼ 0 iff x [ K, (c) f ðSðxÞÞ , f ðxÞ for

x � K (d) For every c . 0 there exists a compact set L such that f ðxÞ $ c for x � L, see [1]

and [2]. Now, we can apply Theorem 1 and Corollary 1 with A ¼ X, an arbitrary set B and

any measure m, and Tðx; yÞ U SðxÞ. As supp m0 is compact and f is continuous, there

exists r . 0 such that supp m0 , Ar ¼ {x [ A : f ðxÞ # r}. Putting c . r in (d) we have a

compact set L such that Ar , L. So Ar is compact and condition (E) holds true. Since

conditions (A)–(D) are also evidently satisfied the proof is complete. A

References

[1] Berger, A. and Siegmund, S., 2003, On the gap between randon dynamical systems and continuous skew
products. Journal of Dynamics and Differential Equations, 15, 237–279.
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