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ABSTRACT
Musculoskeletal modelling is widely used to estimate internal loading conditions. In order to 
optimise robustness and reduce errors between the subject-specific reference motion data (RMD) 
and the musculoskeletal simulation, 90 permutations of kinetic and kinematic data were analysed 
during split squats. A ranking for the scaling and kinematic weighting concepts based on the 
RMS errors when including functional centres of rotation (fCoRs), joint angles, and skin markers, 
revealed that analyses should include fCoR in the scaling and the simulation processes, as well as an 
automated weighting procedure including all attached skin markers for optimal registration of the 
musculoskeletal model to the RMD.

Introduction

Musculoskeletal (MS) simulation plays a key role in bio-
mechanics for estimating internal loading conditions, 
including muscle and joint contact forces. More specif-
ically, knowledge of the internal forces has been exten-
sively used to provide improved understanding of clinical 
treatments e.g. joint replacement (Delp et al. 1990; Piazza 
& Delp 2001) and its outcome (Jonkers et al. 2008), or 
muscle replacement in crouch gait children (Delp et al. 
2007), but also to estimate the loading conditions in sports 
and activities of daily living (Pandy et al. 1990; van Soest 
et al. 1993; Bobbert 2001; Liu et al. 2006; Lewis et al. 
2009; Blajer et al. 2010). Direct measurement of muscle 
and joint contact forces is currently not possible, resulting 
in the recent development of MS modelling techniques 
that are able to provide access to these parameters, albeit 
indirectly, by means of numerical optimisation processes 
(Schellenberg et al. 2015). As a result of the detailed mod-
elling approaches required to accurately determine the 
kinetics of the human body, MS simulation software pack-
ages such as Anybody (Anybody Technology, Aalborg, 
Denmark), OpenSim (Simtk, Standford, CA, United 
States; Delp et al. 2007), Biomechanics of Body (BoB; 
Shippen & May 2010) and others have become widely 
available.

A common approach for generating MS simulations is 
to first scale a reference MS model that possesses generic 

anthropometrical parameters, such as height, body weight, 
segment lengths, muscle paths etc. to the specific subject 
in question. The second step is to calculate the body/seg-
ment kinematics from e.g. skin marker trajectories or joint 
angles captured during the target movement. Finally, the 
scaled model and the calculated segment kinematics are 
combined with measured kinetic data to allow estimation 
of the internal loading conditions by means of inverse 
dynamics and optimisation processes to solve the muscle 
distribution problem (Schellenberg et al. 2015).

The accurate measurement of segment kinematics 
is challenging due to the complexity of the soft tissues 
moving relative to the underlying skeletal structures 
(Taylor et al. 2005; Zemp et al. 2014). As a result, motion 
capture varies from techniques using data extracted from 
simple videos, through retro-reflective markers attached 
to the subject’s skin, to extensive measurement using e.g. 
video-fluoroscopy (Banks & Hodge 1996; List, Foresti, et al. 
2012; List, Gerber, et al. 2012), MRI (Arnold et al. 2010) or 
ultrasound (Ito et al. 2000). However, due to their increasing 
availability, non-invasive, high-speed and accurate 
nature, optoelectronic infra-red measurement devices 
have now become a standard technique for the capture 
of human movement. In order to improve the robustness 
of MS simulations (De Groote et al. 2010; Lu et al. 1997), 
specific approaches for the reduction of soft tissue artefact 
(Taylor et al. 2005) and the assessment of the underlying 
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robustness of MS simulation in OpenSim using different 
scaling methods and differently weighted kinematic con-
cepts, as well as to estimate the resulting errors in terms 
of kinematics and kinetics.

Methods

Kinematic and kinetic data

The data used in this study was captured previously in 11 
subjects for the analysis of loading conditions in the lower 
limbs during six repetitions of 10 different types of split 
squats, leading to 660 cycles (Schütz et al. 2014). Split squats 
are a common multi-joint strength exercise to train mainly 
the m. gluteus maximus, m. iliopsoas, quadriceps, and ham-
strings (Graham 2002) in a slow, non-impact manner. Their 
use in this study also allowed large knee and hip ranges of 
motion (RoMs) to be examined. The data-set consisted of 
3D kinematic skin marker trajectories of 55 bone and soft 
tissue markers, mainly attached to the lower limb (List et al. 
2013; no spine) captured using an opto-electronic infrared 
system (100 Hz, Vicon, OMG, Oxford, UK) together with 
ground reaction force data (2 kHz, Kistler AG, Winterthur, 
CH) (Figure 1). This data was used to generate the reference 
movement data (RMD) as well as to scale the models and 
run the simulation (Modelling approach) with OpenSim 
as described below.

Reference movement data

While the approaches for kinematic and kinetic assess-
ment vary considerably between motion laboratories, the 

skeletal kinematics (Charlton et al. 2004; Ehrig et al. 2006, 
2007; Taylor et al. 2010) have been developed (Peters  
et al. 2010) and are now even integrated within commercial 
motion capture software (e.g. Vicon).

In order to understand the subject specific loading con-
ditions based on the measured kinematic data, approaches 
to register reference MS models to the individual’s anat-
omy and kinematics are required. However, the accuracy 
of a simulation is known to be sensitive to the subject spe-
cific anatomical specification, including bone and muscle 
architecture (Arnold et al. 2010). Therefore, the scaling 
processes, as well as the method of including kinematic 
data into the simulation, will influence the resulting inter-
nal loading conditions in a complex manner (Correa & 
Pandy 2011; Winby et al. 2008). With the aim of enhanc-
ing the physiological validity and accuracy of the segment 
kinematics, different methodologies for weighting the 
motion capture data (Heller et al. 2011) and/or geomet-
rical parameters, such as human shape, bone structure 
or muscle paths, are also thought to improve the robust-
ness of MS models (Moeslund et al. 2006). Consequently, 
reconstruction of a subject’s original motion and kinetics, 
using specific scaled MS models involves many unknowns 
and assumptions, making the result highly sensitive to the 
considerable number of settings used during the scaling 
and kinematics registration.

With numerous approaches for scaling and fitting 
model anatomic and kinematic data, it is often unclear 
how the settings used during scaling and kinematics reg-
istration can best be utilised to allow the motion patterns 
that were actually measured to be reconstructed in the MS 
model. Therefore, the aim of this study was to quantify the 

(A) (B) (C) (D)

Figure 1. study design. (a) Kinematic data from skin markers and fCoRs, as well as pre-calculated joint angles from the rmd and ground 
reaction forces, were used as input data. (B) scaling concepts (green) leading to 2 permutations were used to register the reference model. 
(C) kinematic weighting concepts (3 × 5 × 3 = 45 permutations: green) were investigated for driving the scaled musculoskeletal model. 
(d) to assess simulation robustness, the 3d location of the fCoRs, the rom of the joint angles, as well as maximal external joint moments 
were calculated and used as evaluation parameters. high: high weighting; low: low weighting; none: no weighting; m all: manually 
weighted inclusion of all markers; all: weighting of all joint angles in all planes; m bone: manually weighted inclusion of markers based 
on bone landmarks; a bone: automatic weighted inclusion of markers based on bone landmarks; a all: automatic weighted inclusion of 
all markers; flexion: weighting of joint angles in the sagittal plane; sag: sagittal plane; Front: frontal plane; trans: transverse plane.
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approach according to List and co-workers (2013) was 
used for functionally determining the lower limb joint 
centre of rotations (fCoRs) and functionally defined axis 
of rotation (fAoR) in the knee, acquired during a range of 
basic motion tasks. The basic motion tasks consist of one 
reference measurement assessed in the natural standing 
position of the subject as well as eight different standard-
ised movements (two for each ankle, one for each knee, 
and one for each hip joint) in order to provide movement 
data of the segments over a large RoM for each joint. A 
predefined centre or axis of rotation was then iteratively 
optimised using the relative movement of the distal to 
the proximal segment, in order to determine the corre-
sponding fCoR or fAoR, respectively (List et al. 2013). Joint 
angles were calculated using a direct kinematics procedure 
after which external joint moments for each of the 660 
cycles were calculated using quasi-static inverse dynamics 
(List et al. 2013). The resulting subject-specific kinematic 
data, from here on named the ‘RMD’ was used to compare 
results estimated in this study.

Modelling approach

Scaled generic MS models (Delp et al. 2007) were 
constructed to assess the resultant joint kinetics and 
kinematics in the ankles, knees and hips of each subject. 
Here, the ‘Gait2392_simbody’ model (Yamaguchi & 
Zajac 1989; Delp et al. 1990; Anderson & Pandy 1999, 
2001) was adapted to include 14 body segments and one 
segment describing the barbell (Figure 2). The reference 
model therefore comprised 30 degrees of freedom (DoF), 
including 3 DoFs in each knee and ankle joint, as well 
as a predefined flexion dependent path of the centre of 
rotation (CoR) at the knee introduced by Yamaguchi and 
Zajac (1989). Forty seven skin markers were attached to the 
reference MS model at segment locations according to List 
and co-workers (2013) (six markers attached on the elbow 
and wrist were not included in the MS model) and two on 
the barbell. Twenty one markers were palpated on bone 
landmarks, where 25 markers were additionally placed 
on lower limb segments and subsequently handled as soft 
tissue markers (Figure 2). Furthermore, six virtual markers 
were also included in the model at the CoR of the hip, knee 
and ankle joints. These virtual markers allowed to take the 
subject specific joint centre positions and movements into 
account. The chosen coordinate systems and joint angle 
definitions were consistent with ISB recommendations 
(Wu & Cavanagh 1995) based on Grood and Suntay (1983).

Subject specific scaling concepts

Two different scaling concepts were used to register the 
reference MS model: The first scaling concept was based 

on the standard operational procedures used in OpenSim 
(Delp et al. 2007). Here, the segment dimensions were 
determined according to the bone landmarks. The 
markers of the reference model were then fitted to the 
captured marker cloud during an upright standing trial 
(Figure 1(B)), that included a marker weighting of 5–1 
for the palpated bone to soft tissue markers respectively 
(Figure 2), as well as the pre-calculated joint angles with 
a weighting of 0.02.

In the second scaling concept, the segment dimensions 
were based on the distances between the fCoRs of the hip, 
knee and ankle of the RMD of each subject. Keeping the 
same marker weightings as in the first scaling concept, 
the fCoRs were additionally weighted with a factor of 60 
(Figure 1(B)). For determination of the local coordinate 
system at the knee, the fAoR of the knee of the RMD was 
included in the scaled model.

Kinematic approach

For each subject (n = 11) and each scaling concept (n = 2), 
segment kinematics were calculated using the inverse 
kinematics procedure in OpenSim after which an inverse 
dynamics analysis was performed to calculate the external 
joint moments. In order to explore the effects of different 
standard weighting options available within OpenSim (Delp 

Figure 2. the adapted ‘gait2392_simbody’ model with 14 body 
and one barbell segment resulted in 30 degrees of freedom. 21 
markers were palpated on bone landmarks (highlighted with a 
black circle), while the remaining 25 markers were classified as 
soft tissue markers. in addition, 6 virtual markers were included at 
the Cor of the hip, knee and ankle joints.
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Secondly, in a similar manner, the differences in the 
range of motions (RoMs) (ΔRoMJoint,p) of the individual 
degrees of freedom (p: sagittal [flexion], frontal [adduc-
tion] and transversal [rotation]; according to Grood and 
Suntay (1983)) of each joint (hip, knee and ankle) of the 
front and rear limbs were calculated over each cycle as 
follows:

 

Additionally, the normalised differences ΔRoMJoint,p
norm  were 

computed by dividing ΔRoMJoint,p by RoMJoint,p

RMD
 to allow a 

fair comparison between the different movement types.
As a kinetic evaluation parameter, reported for the hip 

and knee joints only (ankle joint is of low interest during 
this type of strength exercise and is less affected due to the 
low external moment), the absolute difference in the max-
imum external joint moment in the sagittal plane, divided 
by each subject’s bodyweight, was calculated as follows:

 

The mean differences, their standard deviations (SDs), as 
well as the root-mean-square error (RMSE) were calcu-
lated for all 90 permutations for each parameter. To quan-
tify the robustness of each of the scaling and kinematic 
options (highlighted in green in Figure 1), the RMSEs 
of the three aforementioned evaluation parameters were 
averaged and the SDs were calculated for all possible per-
mutations that include that specific option. To provide 
a fair comparison, each RMSE was normalised (Norm 
RMSE) by dividing the RMSE by its averaged RMSE from 
all permutations.

Ranking

In order to assess the relative performance of each of the 
90 different simulation permutations in a fair manner, a 
ranking based on each parameter’s Norm RMSE was pro-
duced. The sum of the three normalised RMSEs (ΔdJoint, 
ΔRoMJoint,p and ΔMJoint

max ) was calculated (sum Norm RMSE) 
and ranked according to the values, where a lower sum 
Norm RMSE resulted in a higher ranking, indicating that 
the kinematics and kinetics of the resulting MS simulation 
better reflected those of the RMD.

Results

All scaling and kinematic weighting concepts could be 
successfully simulated in OpenSim except for the six per-
mutations that involved no marker weighting and no fCoR 
weighting. These permutations were therefore not taken 
into account for further analysis.

(2)ΔRoMJoint,p
=
|||
RoM

Joint,p

MSs
− RoM

Joint,p

RMD

|||

(3)ΔMJoint
max =

|||
MJoint

MSsmax

−MJoint
RMDmax

|||

et al. 2007), 45 ‘kinematic weighting concepts’ were inves-
tigated for driving the inverse kinematics solution. These 
differed based on skin marker weightings, the in- or exclu-
sion of fCoRs, and the in- or exclusion of pre-calculated joint 
angles (List et al. 2013; Schütz et al. 2014; Figure 1(C)). The 
skin markers were either neglected completely (weight being 
0, Figure 1(C)), or assigned weightings according to four dif-
ferent approaches: (I) only the bone markers (Figure 2) were 
included and weighted manually with a factor of 1; (II) all 
markers were weighted manually with a factor of 1; (III) only 
the bone markers were included, and weighted automatically 
based on soft tissue artefacts (STA), and (IV) all markers 
were included, and weighted automatically based on STA. 
The STA automated weighting procedure was adapted from 
Heller et al. (2011) and Kratzenstein et al. (2012) using the 
relative variance of distance between each skin marker and 
the corresponding segment centre of mass. In order that 
each segment was considered with equal importance, the 
sum of all skin marker weighting factors was defined to be 
10 on each segment, independent of the number of markers 
attached to that segment. The fCoRs were included as addi-
tional virtual markers and either neglected (weighted with 0, 
Figure 1(C)); weighted low (for the hip (10), knee (10) and 
ankle (6) joints), or weighted high (100, 100 and 60 respec-
tively) in order to simulate almost complete dependence 
upon the joint centres alone. Similarly, the absolute joint 
angles of the pelvis and the relative joint angles between 
the lumbar, pelvis, thigh and tibia segments using the direct 
kinematics approach were either neglected, weighted only in 
the sagittal plane (weighting 0.02), or weighted in all planes 
(30 DoF; weighting 0.02).

This resulted in 90 possible scaling and kinematic per-
mutations for each of the 6 repetitions of 10 exercises in 
each of the 11 subjects; and therefore a total of 59,400 
individual MS simulations.

Robustness

The trajectories of the joint centres and angles from the 
inverse kinematics, as well as the external joint moments 
were compared against the RMD for all 90 scaling and 
kinematic permutations. To assess the effect on the kine-
matics, two parameters were evaluated. Firstly, differences 
in the 3D locations (global coordinate system) of the hip, 
knee and ankle joints (ΔdJoint) between the MS simulations 
(MSs) and the RMD were calculated for each cycle:
 

where ⃗r is the 3D location of the joint (hip, knee and ankle 
of front and rear limbs), and n is the number of frames in 
the respective cycle.

(1)
ΔdJoint

=

∑n

i=1

�
���
������⃗rJoint
MSsi

−
�������⃗rJoint
RMDi

����
n
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joints and all planes, except for adduction and rotation of 
the rear hip and rotation of the front hip. However, more 
unstable permutations resulted in unrealistic angles with 
extreme maximum errors of up to 98° (Table 2). Similar to 
ΔdJoint, comparable errors were found between the joints 
of the front and trailing limbs. The SDs in all joints and all 
planes were almost as high as the mean values themselves 
(Table 2), indicating large differences between the smallest 
and highest values compared to the RMD.

Moments

The mean as well as the maximum ΔMJoint
max  were higher 

in the knee than in the hip (Figure 4). RMSEs of between 

Robustness

The scaling concept that included fCoRs resulted in smaller 
RMSEs in ΔdJoint than without (Table 1). Similarly, the inclu-
sion of highly weighted fCoRs in the kinematic weighting 
concepts, and omitting other input data (i.e. markers: 
none, angles: none), resulted in the smallest RMSEs in 
ΔdJoint. Regarding RMSEs of ΔRoMJoint, the inclusion of 
all precalculated angles in the simulations showed similar 
RoMs to the RMD and was at least five times smaller than 
when the pre-calculated angles were excluded. Moreover, 
this concept subgroup had the smallest SD (0.1°) suggest-
ing one of the most robust combinations. On the other 
hand, neglecting all skin markers as kinematic input data 
resulted in large RMSEs for ΔRoMJoint as well as for ΔMJoint

max .  
Furthermore, neglecting pre-calculated joint angles 
resulted in large RMSEs in ΔMJoint

max . In- or exclusion of all 
other parameters did not seem to play a key role for the 
evaluation parameters. Compared to the mean RMSEs 
of ΔMJoint

max , large SDs were observed in the permutations 
where fCoRs were included, but also where markers or joint 
angles were excluded as kinematic input data.

Joint Centres

Looking more specifically at the different joints, a large 
variation in the difference of 3D locations of the hip, knee 
and ankle joints (ΔdJoint) was observed (Figure 3) However, 
the average ΔdJoint was similar for each the front and the 
rear limbs in all joints The mean RMSE for the hip, knee 
and ankle joints between the MS simulation and RMD 
was about 136 mm (SD (43 mm).

Range of motions

The means of the minimal differences in the range of 
motion in each joint (ΔRoMJoint,p) were below 0.5° in all 

Table 1. averaged rmses resulting from the scaling and weighting permutations, including the corresponding sds. the different col-
umns distinguish the three evaluation parameters: the 3d location of the joint centres (ΔdJoint), the roms (ΔRoMJoint) and maximal exter-
nal joint moments (ΔMJoint

max
). each of these columns is separated by the two scaling permutations. the first row (all) shows the averaged 

difference (between the reference and simulated data) of all kinematic weighting permutations, while the following rows show grouped 
mean values according to the kinematic weighting concepts used.

  Scaling concepts

RMSE ΔJoint [mm] RMSE ΔROMJoint [°] RMSE ΔMJoint
max

 [Nm/BW]

high none high none high none

Kinematic weight-
ing concepts

all 8.5 ± 2.6 18.0 ± 2.9 4.8 ± 7.6 4.5 ± 6.3 0.11 ± 0.14 0.11 ± 0.11
fCoR none 11.4 ± 1.0 21.8 ± 1.1 2.1 ± 1.2 2.4 ± 1.4 0.09 ± 0.01 0.11 ± 0.01

low 7.7 ± 2.0 17.2 ± 1.8 5.2 ± 8.9 4.4 ± 7.0 0.12 ± 0.17 0.11 ± 0.14
high 6.9 ± 2.2 15.8 ± 1.6 6.7 ± 8.9 6.4 ± 7.6 0.12 ± 0.16 0.11 ± 0.13

markers none 6.2 ± 3.1 15.9 ± 1.5 18.0 ± 13.8 12.9 ± 12.2 0.33 ± 0.29 0.23 ± 0.25
m bone 9.1 ± 3.1 18.2 ± 3.3 4.0 ± 4.1 4.8 ± 5.8 0.09 ± 0.03 0.11 ± 0.09
m all 8.5 ± 2.2 18.0 ± 2.9 2.1 ± 1.7 2.5 ± 2.1 0.07 ± 0.01 0.07 ± 0.02
a bone 8.9 ± 2.3 18.9 ± 3.2 2.3 ± 1.7 2.9 ± 2.1 0.08 ± 0.01 0.09 ± 0.02
a all 8.9 ± 2.2 18.4 ± 2.9 2.1 ± 1.4 2.5 ± 1.8 0.07 ± 0.01 0.08 ± 0.02

angles none 7.0 ± 3.3 16.6 ± 2.8 6.5 ± 8.4 7.6 ± 9.3 0.16 ± 0.22 0.16 ± 0.18
flex 8.1 ± 1.8 17.7 ± 2.8 7.6 ± 9.0 5.6 ± 3.1 0.10 ± 0.06 0.09 ± 0.02
all 10.3 ± 1.1 19.8 ± 2.3 0.4 ± 0.1 0.5 ± 0.1 0.07 ± 0.01 0.08 ± 0.02

Figure 3.  Boxplot of the rmse of the differences in the 3d 
locations of the hip, knee and ankle joints (rmse ΔdJoint) of the 
front and rear leg between the rmd and simulated locations for 
all 90 permutations.
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Ranking

The concepts leading to the highest 20 rankings and that 
therefore best fit the RMD all used the scaling concept 
with the inclusion of fCoRs (Table 3). In addition, the 
highest 17 rankings included fCoRs in the inverse kin-
ematics procedure, where the first 9 (except the permu-
tation ranked 4) all used a high weighting. The inclusion 
or exclusion of the skin markers seemed to make little or 
no difference to the total error. Furthermore, the concepts 
leading to the first 6 rankings all used the inclusion of 
pre-calculated angles in all planes. Importantly the rank-
ings 7–9 all excluded (none) the use of joint angles, but 
were otherwise the same permutations as 3, 5 & 6 regard-
ing the scaling concepts and the inclusion of fCoR and 
skin marker weightings. These permutations (rank 7–9) 
produced similar levels of total error (Sum Norm RMSE 
between 1.36 and 1.39) compared to the permutations 
ranked 1–6; however, the errors (Norm RMSEs) of each 
parameter (ΔdJoint, ΔRoMJoint, and ΔMJoint

max ) were distrib-
uted differently compared to the errors seen for ranks 1–6. 
In fact, this trend was also more generally observed where 
ΔdJoint and ΔRoMJoint both displayed a clear dependency 
on the usage of joint angles. Here, ΔdJoint was larger in 
permutations that included joint angles, while ΔRoMJoint 
was lower, and vice versa.

Discussion

With musculoskeletal modelling simulations becoming 
increasingly available, access to an individual’s internal 
loading conditions now opens perspectives for improve-
ments in subject specific training, rehabilitation regimes 

approximately 0.05 and 0.1 Nm/BW were observed across 
all four joints, thus representing 3–9% of the absolute joint 
moments. Similar to the RoM, more unstable permuta-
tions resulted in unrealistic joint loading conditions with 
extreme maximum errors up to 1.3 Nm/BW.

Table 2. the mean values of all 90 permutations, its sd, and the rmse of the differences in the roms of the hip, knee and ankle joints in 
each anatomical plane (ΔRoMJoint,p), as well as the normed differences (ΔRoMJoint,p

norm
), are given for the front (above) and rear (below) limbs. 

out of all 90 permutations, the maximal values are shown separately for all joints and planes. (flex: flexion, add: adduction, rot: rotation, 
inv: inversion).

      ΔROMJoint,p[°]  ΔRoMJoint,p
norm

[]

      Mean Max SD RMSE Mean Max SD RMSE
Front hip flex 1.0 5.0 0.8 1.3 0.02 0.11 0.02 0.03

add 0.8 1.5 0.7 1.1 0.11 0.22 0.11 0.16
rot 8.5 66.1 7.3 11.2 1.12 9.06 1.23 1.67

Knee flex 3.6 53.0 2.5 4.6 0.05 0.66 0.03 0.06
add 11.3 79.4 7.3 13.7 2.98 19.62 2.65 4.04
rot 9.6 98.4 10.4 14.4 1.50 14.15 2.01 2.53

ankle flex 2.9 32.7 1.3 3.2 0.10 1.00 0.04 0.11
rot 4.2 29.3 3.0 5.2 0.75 5.15 0.62 1.00
inv 3.5 9.5 2.3 4.3 0.44 1.25 0.31 0.56

rear hip flex 0.9 4.9 0.7 1.1 0.06 0.31 0.06 0.08
add 1.1 3.5 0.9 1.4 0.12 0.38 0.11 0.16
rot 5.6 51.3 4.6 7.2 0.78 7.64 0.79 1.12

Knee flex 3.2 49.9 2.3 4.0 0.05 0.71 0.03 0.06
add 7.6 72.4 5.2 9.3 2.80 27.39 2.49 3.77
rot 6.9 82.1 8.5 11.1 1.37 15.32 1.92 2.38

ankle flex 1.4 16.6 1.3 1.9 0.09 1.00 0.05 0.11
rot 2.3 10.5 2.2 3.3 0.50 2.42 0.46 0.71
inv 2.4 7.7 2.1 3.2 0.33 1.00 0.25 0.44

Figure 4. Boxplot of the rmse of the absolute difference (between 
the reference and simulated data) in the maximum external 
joint moment in the sagittal plane, normalised to each subject’s 
bodyweight (rmse ΔMJoint

max
) for all 90 permutations in the hip and 

knee joints of the front and rear limbs. For comparison, the blue 
lines report the ranges of absolute external moments over all 10 
types of split squats analysed by schütz and co-workers (2014), 
and demonstrate that in certain cases, the error is as large as the 
measured values.
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and 16 mm (Leardini et al. 1999; Hicks & Richards 2005; 
Cereatti et al. 2009; Sangeux et al. 2011) for approaches 
that also included functional joint centres, and up to 
38 mm (Bell et al. 1990) for those that did not. Similarly, 
in the estimation of joint centres, errors of 19–36  mm 
have been observed using anthropometrical data (Bell  
et al. 1990), suggesting that the source of different errors is 
consistent with our analyses using permutations without 
the inclusion of fCoRs.

Joint centres

Despite the very different kinematics of the lower limbs 
during the split squat activities, the average ΔdJoint was 
similar for each joint. The lowest single RMSE of ΔdJoint 
of all permutations was 1.8 mm, and was found in the hip 
joint of the front leg (Figure 3), values that were compa-
rable to the errors reported in other studies, including 
Heller and co-workers (2011), whose weighted optimal 
common shape technique achieved hip joint centres with 
a precision of 3.4 ± 1.1 mm. The lowest average errors 
over all permutations observed for a joint, however, were 
10.9 mm, found in the ankle joint of the rear leg – an error 

and even targeted therapies. However, with a variety of 
potential errors for relating the observed motion capture 
to the scaled generic MS model in an inverse kinematics 
approach, it remains unclear how best to achieve robust 
MS modelling analyses in terms of producing mini-
mal errors between kinematics calculated using direct 
and inverse kinematics procedures. As such, we aimed 
to determine the parameters that allow scaled generic 
musculoskeletal models to be registered to the recorded 
motion data in the most robust manner possible, but also 
understand the levels of error involved. Here, open source 
musculoskeletal simulation software (OpenSim SimTk; 
Delp et al. 2007) was used to explore the effects of 90 dif-
ferent permutations of scaling and kinematic weighting 
concepts on the robustness of the resulting MS analyses.

Our results indicate an overall difference (mean of 45 
permutations) in the 3D locations of the hip, knee and 
ankle joints (ΔdJoint) throughout complete activity cycles 
(in this case squats) of 8.5 mm when functionally derived 
joint centres were included in the scaling process, whereas 
mean registration errors up to 18.0 mm were observed 
with their exclusion (Table 1). These results are compara-
ble to values reported in the literature varying between 8 

Table 3.  rankings were assigned to each permutation based on the parameters’ normed rmses (Norm RMSE). each parameter was 
ranked according to the total error i.e. the difference in 3d location of the joint centres of rotations, angles and moments (sum norm 
RMSE), where a lower sum norm RMSE resulted in a higher ranking, indicating that the ms simulation was closer to the reference motion 
data.

Ranking
Scaling concept 

fCoR

Kinematic weighting concept Norm RMSE

Sum norm RMSEfCoR Skin markers Joint angles ΔdJoint [] ΔRoMJoint,p [] ΔMJoint
max []

1 high high none all 0.73 0.06 0.55 1.34
2 high high m bone all 0.72 0.06 0.56 1.34
3 high high m all all 0.72 0.06 0.57 1.35
4 high low none all 0.74 0.06 0.55 1.35
5 high high a all all 0.71 0.06 0.58 1.35
6 high high a bone all 0.71 0.06 0.58 1.36
7 high high m all none 0.38 0.46 0.54 1.37
8 high high a all none 0.38 0.46 0.54 1.38
9 high high a bone none 0.38 0.47 0.53 1.39
10 high low m bone all 0.72 0.07 0.61 1.40
11 high low m all all 0.73 0.07 0.62 1.42
12 high low m bone none 0.44 0.44 0.56 1.43
13 high low m all none 0.47 0.41 0.56 1.44
14 high low a all all 0.76 0.07 0.66 1.50
15 high low a bone all 0.77 0.08 0.68 1.52
16 high low a all none 0.53 0.44 0.61 1.59
17 high low a bone none 0.54 0.44 0.62 1.60
18 high none m all all 0.86 0.08 0.72 1.66
19 high none a all all 0.88 0.08 0.74 1.70
20 high none a bone all 0.89 0.08 0.76 1.74
… … … … … … … … …
81 none high none none 1.12 5.05 4.58 10.74
82 high high none none 0.21 5.00 6.15 11.36
83 high low none none 0.21 5.14 6.33 11.68
84 none low none none 1.14 5.22 5.45 11.81
85 high none none all no numerical solution achieved
86 high none none flex
87 high none none none
88 none none none all
89 none none none flex
90 none none none none
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Nm/kg and knee: 0.04 Nm/kg) (Kirkwood et al. 1999; 
Besier et al. 2003) calculated using different approaches 
during gait, despite the fact that the magnitudes of the 
moments in this study were considerably higher. Here, 
large SDs were observed across the results for different 
permutations (Figure 4), indicating that scaling and kin-
ematic weighting concepts could lead to a considerable 
variability in the levels of robustness of the calculated joint 
moments. Compared to RoM and CoRs, the parameter 
ΔMJoint

max  seems to be robust over many permutations, hence 
suggesting low sensitivity of this parameter to any specific 
input, as long marker and angle weighting are included; 
however, non-physiological kinematic simulation clearly 
affects the moments and any resulting MS analysis, and 
should be avoided at all costs.

General

Interestingly, the RMSEs of ΔRoMJoint and ΔMJoint
max  differ 

considerably with the inclusion or exclusion of weighting 
factors for the pre-calculated joint angles in the MS 
simulation (Table 1), even although the applied weighting 
factors were extremely small (0.02). Since SDs of the RMSEs 
of ΔRoMJoint and ΔMJoint

max  were in general large when pre-
calculated joint angles or all skin markers were excluded 
from the kinematic weighting (Table 1), the accuracy of 
reproducing the RMD remains somewhat unknown. On 
the other hand, by including pre-calculated joint angles, 
low RMSEs as well as low SDs can be achieved for all three 
parameters (hence indicating high robustness). Since the 
outcomes of a MS simulation are highly dependent on the 
ability to accurately reproduce the RMD, and therefore 
reliant upon the scaling and kinematic weighting concepts, 
the final permutation chosen should be directly based on 
the specific aim of the study, e.g. if accurate determination 
of movements of a specific joint is required or kinematic 
or kinetic aspects are of high interest.

To consider all these aspects, a specific ranking was 
developed to evaluate the different weighting concepts 
that could then be used for future studies (Table 3). In 
our case, all permutations of the first 17 rankings included 
fCoRs in both the scaling and the kinematic weighting 
concepts. Therefore, the inclusion of fCoRs in the scal-
ing procedure in the simulation, instead of simply using 
anthropometric based data, is appropriate. Permutations 
that only used skin marker data to scale the reference MS 
model and register the kinematic movement without the 
inclusion of fCoRs led to a rank above 55 and resulted 
in a Sum rel RMSE of 2.75 (Norm RMSE: ΔdJoint = 1.70; 
ΔRoMJoint = 0.09; ΔMJoint

max  = 0.96) or higher. Due to effi-
ciency reasons or if pre-calculated joint angles are not 
available, rank 7 with a Sum rel RMSE of 1.37 should be 
used such that low errors can be achieved. Despite being 

value that could be considered representative of general 
or standard procedures that aim to reproduce measured 
kinematics in MS models. Since the CoR of the ankle joint 
has only low displacement in space, as well as the lowest 
soft tissue coverage compared to the hip and the knee 
(Barré et al. 2015; Camomilla et al. 2015; Thouzé et al. 
2016), it is entirely reasonable that this joint experiences 
the lowest STA and therefore exhibited the lowest mean 
differences to the RMD. However, based on the presented 
rankings, targeted weighting and scaling of measurement 
input during scaling and inverse kinematics can reduce 
considerably the errors down to a few millimetres, or up 
to a factor of 8 compared to their mean RMSE values (hip 
of front limb).

Range of motions

Large RMSEs and SDs compared to the mean ΔRoMJoint,p 
(Table 2) indicate only low levels of robustness in this 
parameter. Here, since mean and RMSE outliers of up 
to 98° were found, most likely due to non-physiolog-
ical or unnatural simulation postures resulting from 
under-determined boundary conditions, it is important 
to avoid unrealistic segment ‘flipping’, and ensure appro-
priate RoMs for each joint within each anatomical plane. 
Importantly, permutations that excluded the use of skin 
markers and joint angles resulted in unrealistic solu-
tions (rankings 81–84, Table 3), while permutations that 
excluded fCoRs and skin markers were even worse, where-
upon no numerical solution could be achieved (rankings 
85–90). In studies investigating the effects of STA on real 
segment kinematics using photogrammetric and fluoro-
scopic approaches, comparable errors of up to 192 and 
117% were found in the RoM for knee abduction–adduc-
tion and internal–external rotation respectively (Stagni 
et al. 2005). Similarly, the observed RMSEs for flex/ex: 
7.3–47.3%; int/ext: 46.7–102.3%; abd/add: 29.3–93.5% for 
open-chain knee flexion, hip axial rotation, level walk-
ing, and step-up exercises suggest that such errors are 
not only joint, but also activity dependent (Akbarshahi 
et al. 2010; c.f. Table 2). However, the lowest ΔRoMJoint,p 
of all 90 permutations in our study were below 0.5° in 
all planes, indicating a good representation of the RMD, 
hence signifying that robust solutions can be achieved 
when permutations including pre-calculated angles in all 
planes were employed.

Moments

An average RMSE of 0.11 Nm/BW was computed for the 
external joint moment (ΔMJoint

max ) across all permutations. 
This value is within the observed range of mean error of 
external joint moments (sagittal plane; hip: −0.05–0.15 
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joint angles, and skin markers, provides a sound basis for 
ensuring robust and high quality scaling of the reference 
MS models and consequent registration of kinematic data 
for the individualisation of MS models.
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