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ABSTRACT

Wetreat step skewproducts over transitive subshifts of finite typewith
interval fibers. The fibermaps are diffeomorphisms on the interval; we
assume that the end points of the interval are fixed under the fiber
maps. Our paper thus extends work by V. Kleptsyn and D. Volk who
treated step skew products where the fiber maps map the interval
strictly inside itself. We clarify the dynamics for an open and dense
subset of such skew products. In particular we prove existence of a
finite collection of disjoint attracting invariant graphs. These graphs
are contained in disjoint areas in the phase space called trapping
strips. Trapping strips are either disjoint from the end points of the
interval (internal trapping strips) or they are bounded by an end
point (border trapping strips). The attracting graphs in these different
trapping strips have different properties.
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1. Introduction

We aim to describe the dynamics of specific step skew products

(ω, x) �→ (σω, fω0(x))

with a shift as dynamics in the base and with interval fiber maps. That is, ω = (ωi)i∈Z

is a sequence using finitely many symbols, and σ is the left shift operator acting on it.
We treat such systems in cases where σ is a subshift of finite type and where the fi’s are
diffeomorphisms on a compact interval that fix the endpoints of the interval.

Kleptsyn and Volk [5] conducted a study of dynamics of generic step skew products of
diffeomorphisms on the line over subshifts of finite type. They looked at diffeomorphisms
that are mapping a bounded interval strictly inside itself. They showed that so called bony
graphs (after Kudryashov, see [6]) arise as attractors: these attractors are the union of a
measurable graph and a zero measure set of intervals inside fibers (the bones).

A different situation occurs for diffeomorphisms on a compact interval that fix the
endpoints of the interval. Such systems gained interest with an example by Kan [4] where
they gave rise to intermingled basins. This example is over a full shift on two symbols
and the end points of the interval are attracting on average. Il’yashenko [2,3] similarly
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considered examples of diffeomorphisms over a full shift under an assumption of repulsion
on average at the end points. He established attractors with positive standard measure (the
standard measure is the product of Markov measure on the shift space and Lebesgue
measure on the fiber space). The attractors are the closure of an invariant measurable
graph. Note the contrast with bony graphs which have zero standard measure.

We provide a classification of dynamics of generic step skew products of diffeomor-
phisms on a compact interval (all diffeomorphisms fixing end points of the interval) over
subshifts of finite type. Both types of graphs, bony and thick, can arise in a single step skew
product.

1.1. Step skew product systems over subshifts of finite type

Write � for the finite set of symbols {1, . . . ,N}. Let A = (aij)Ni,j=1 be a matrix with
aij ∈ {0, 1}. Associated to A is the set �A of bilateral sequences ω = (ωn)

∞−∞ composed
of symbols in � and with transition matrix A:

aωnωn+1 = 1

for all n ∈ Z. Let (�A, σ) be the subshift of finite type on �A. The map σ shifts every
sequence ω ∈ �A one step to the left, (σω)i = ωi+1. We can also consider the left
shift operator σ acting on the one-sided symbol space �+

A, i.e. the space of sequences
ω = (ωn)

∞
0 composed of symbols in�with aωnωn+1 = 1 for all n ≥ 0. The spaces�A and

�+
A are endowed with the product topology. We assume that A is primitive, i.e.

∃n0 ∈ N ∀i, j ∈ � (An0)ij > 0.

This implies that the subshift σ is topologically transitive and topologically mixing.
Consider the interval I = [0, 1] and {f1, . . . , fN }, a finite family of orientation preserving

(strictly increasing) C2-diffeomorphisms defined on I assuming that fi(0) = 0 and fi(1) =
1 for every i ∈ �. Write F+ for the skew product system

F+(ω, x) = (σω, fω(x))

on �+
A × I , where the fiber maps fω depend only on ω0, i.e. fω = fω0 . We also write

(F+)n(ω, x) = (σ nω, f nω (x)) for iterates of F+ in which

f nω (x) = fωn−1 ◦ · · · ◦ fω0(x).

Likewise, on �A × I we have

F(ω, x) = (σω, fω(x)).

In this paper we consider the following set of step skew product systems.
Definition 1.1: Wedenote byS the set of step skewproduct systemsF : �A×I → �A×I
of the form

F(ω, x) = (σω, fω0(x)),
for orientation preserving diffeomorphisms fi : I → I that fix end points of I .
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1.2. Markovmeasures

Let � = (πij)
N
i,j=1 be a right stochastic matrix, i.e. πij ≥ 0 and

∑N
j=1 πij = 1, such that

πij = 0 precisely if aij = 0. By the Perron–Frobenius theorem for stochastic matrices,
there exists a unique positive left eigenvector p = (p1, . . . , pN ) for � that corresponds to
the eigenvalue 1; i.e.

N∑
i=1

piπij = pj, ∀j ∈ �. (1)

We assume that p is normalized so that it is a probability vector,
∑N

i=1 pi = 1.
For a finite word ωk1 , . . . ,ωkn , ki ∈ Z, the cylinder Ck1,...,kn

ωk1 ,...,ωkn
(we will also use the

notation Ck1,...,kn
ω ) is the set

Ck1,...,kn
ωk1 ,...,ωkn

= {ω′ ∈ �A ; ω′
ki = ωki , ∀1 ≤ i ≤ n}.

As cylinders form a countable base of the topology on �A, Borel measures on �A are
determined by their values on the cylinders. A Borel measure ν on �A is called a Markov
measure constructed from the distribution pi and the transition probabilities πij, if for
every ω ∈ �A and k ≤ l,

ν(Ck,...,l
ω ) = pωk

l−1∏
i=k

πωiωi+1 .

One can easily check that with this definition ν is well-defined and is a probabilitymeasure.
Moreover, ν is invariant under the shift map σ ; it is ergodic and supp (ν) = �A. From
now on, we consider a fixed ergodic Markov measure ν on �A. Write π for the natural
projection �A �→ �+

A. Then, ν+ = πν is the Markov measure on �+
A.

We do not consider measures on �A that are not Markov measures. The reason is the
connection of Markov measures to stationary measures for the stochastic process induced
by F+, see Section 3.
Definition 1.2: The standard measure s on �A × I is the product of ν and the Lebesgue
measure on the fiber.

1.3. Trapping strips, bony graphs and thick graphs

Let F ∈ S. As in [5], F admits forward invariant regions called trapping strips. Let ϕ1,ϕ2 :
�A → I , be continuous functions such that ϕ1 < ϕ2, i.e. ϕ1(ω) < ϕ2(ω) for any ω ∈ �A.
Given such functions, we define the strip

Sϕ1,ϕ2 = {(ω, x) ; ϕ1(ω) ≤ x ≤ ϕ2(ω)}.

We distinguish two types of strips:

(1) An internal strip has 0 < ϕ1 < ϕ2 < 1;
(2) For a border strip, ϕ1 = 0 or ϕ2 = 1, or both.

If the graph of ϕ1 (or ϕ2) is disjoint from �A × {0} (from �A × {1}), then this graph is
called an internal boundary.
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Definition 1.3: A strip Sϕ1,ϕ2 is called a trapping strip if F(Sϕ1,ϕ2) ⊆ Sϕ1,ϕ2 .
The strip Sϕ1,ϕ2 is called a strict trapping strip if moreover internal boundaries are

mapped inside the interior of Sϕ1,ϕ2 .
Likewise one can consider trapping strips for F+. It is clear that internal and border

trapping strips are the only two possible kinds of trapping strips. Consider a trapping strip
S with boundary functions ϕ1 < ϕ2. Because of monotonicity of the fiber maps, the images
Fn(S) are strips. Since for a trapping stripS also Fn(S) ⊆ S , we get that for every n ≥ 0 the
image Fn(S) is a trapping strip. Therefore any trapping strip S has a non-empty maximal
attractor

Amax =
∞⋂
n=0

Fn(S).

We encounter two different types of maximal attractors.
Definition 1.4: Ameasurable graph B in �A × I is called a bony graph if it is contained
in a closed set that intersects ν-almost every fiber in a single point and every other fiber in
an interval, which is called a bone.

Note that the standard measure of the closure of a bony graph is zero;

s
(
B
) = 0.

Following [5] we also call the closed set that is the union of the measurable graph and the
bones, a bony graph. A bony graph can have an empty set of bones; a bony graph with
an empty set of bones is a continuous graph. It is easy to construct examples where the
maximal attractor is in fact a continuous graph.
Definition 1.5: Ameasurable graph B in �A × I is called a thick graph if its closure has
positive standard measure, i.e.

s
(
B
)
> 0.

We also call the closure of the thick graph, a thick graph.

2. Classification of dynamics for generic skew products

The Lyapunov exponent of a system F ∈ S at a point (ω, x) ∈ �A × I is

lim
n→∞

1
n
ln
(
f ′
ωn−1

◦ · · · ◦ f ′
ω0

(x)
)

= lim
n→∞

1
n

n−1∑
i=0

ln
(
f ′
σ iω(f iω(x))

)
, (2)

in case the limit exists. Since for every i ∈ �, x = 0, 1 are fixed points of fi, by the definition
of Markov measure and Birkhoff’s ergodic theorem, we obtain for x = 0, 1 that

L(x) = lim
n→∞

1
n

n−1∑
i=0

ln
(
f ′
σ iω(x)

) =
∫

�+
A
ln
(
f ′
ω(x)

)
dν+(ω) =

N∑
i=1

pi ln
(
f ′
i (x)

)

for ν+-almost all ω ∈ �+
A. Note that generically L(0) and L(1) differ from zero.
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We have introduced all notions needed to present our description of the dynamics of
generic step skew product systems. The following theorem holds for step skew product
systems from an open and dense subset of S which is given explicitly in Section 2.1 below.
Theorem 2.1: There is an open and dense set G of S, so that F ∈ G satisfies the following.

F admits a finite collection of disjoint trapping strips S t , 1 ≤ t ≤ T, of the form

S t = ∪N
k=1C

0
k × [At

k,B
t
k].

Furthermore,

(1) S t contains a unique attracting invariant graph 
t : 
t is the graph of a measurable
function Xt : Dt ⊂ �A → I defined on a set Dt with ν(Dt) = 1. Given xi ∈ [At

i ,B
t
i ],

for σ−nω ∈ Dt,
|f n

σ−nω(xω−n) − Xt(ω)| → 0 as n → ∞.

(2) If L(0) < 0, then 
 = �A × {0} is an attracting invariant graph: there is a set
Dt ⊂ �A with ν(Dt) = 1, and a positive function r : Dt → (0, 1] so that for (ω, x)
with ω ∈ Dt, 0 ≤ x < r(ω),

f nω (x) → 0 as n → ∞.

A similar statement applies to �A × {1} if L(1) < 0.
(3)

(a) if the strict trapping strip is a border trapping strip, then its maximal attractor is
a thick graph.

(b) if the strict trapping strip is an internal trapping strip, then its maximal attractor
is a bony graph.

(4) With respect to the standard measure on �A × I, the positive orbit of almost every
initial point converges to one of the attracting graphs from items (1), (2).

Kleptsyn and Volk [5] show that the bony graphs in internal strict trapping strips are
upper-semicontinuous:

∀ω ∈ �A ∀ε > 0 ∃δ > 0 d(ω,ω′) < δ ⇒ Bω′ ⊂ Uε(Bω),

where dmetrizes the product topology on�A, Bω = B∩ ({ω}× I) andUε(Bω) denotes the
ε-neighbourhood of Bω in {ω} × I . They refer to these bony graphs as continuous bony
graphs.

2.1. Genericity conditions

The open and dense set G of S in Theorem 2.1 is determined by a number of genericity
conditions. Here we list the imposed genericity conditions. They are equal to those
appearing in [5], with two additional conditions related to the fixed boundary points
of I (items (1) and (5) below). The first condition gives that the end points of I are repelling
or attracting, on average.

(1) L(0), L(1) �= 0.
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To formulate the further conditions we introduce the notions of simple transition and
simple return.
Definition 2.1: A finite word ω1, . . . ,ωn is called admissible if each pair of consecutive
symbols ωiωi+1 is admissible; i.e. πωiωi+1 �= 0. A map of the form

fω1,...,ωn := fωn ◦ · · · ◦ fω1 : I → I ,

is called an admissible composition if the word ω1, . . . ,ωn is admissible.
Definition 2.2: A simple transition is an admissible composition fω1,...,ωn : I → I in
which all the symbols ωi, 1 ≤ i ≤ n are different. It is called a simple return if also
ω1 = ωn+1.

We can now state the following genericity conditions.

(2) Any fixed point q of any simple return g is hyperbolic: g ′(q) �= 1;

and if we consider the restriction of fi’s to the open interval (0, 1) then

(3) No attracting fixed point of a simple return is mapped to a repelling fixed point of a
simple return by a simple transition. Also, no repelling fixed point of a simple return
is mapped to an attracting fixed point of a simple return by a simple transition;

(4) One can not choose from the interior of each interval Ik, k ∈ �, a single point ak
such that for any admissible couple i, j one could have fi(ai) = aj.

Condition (4) precludes finite invariant sets, see [5]. The final condition relates to
minimal iterated function systems. First we recall the definition ofminimality of an iterated
function system. Suppose given an iterated function system IFS {g1, . . . , gk} of continuous
maps gi on a metric space X. Let Y be a subset of X with gi(Y) ⊂ Y for all i. We say that
IFS {g1, . . . , gk} is minimal on Y if for every points x, y ∈ Y and every neighbourhood V
of y, there is a composition gin ◦ · · · ◦ gi1 that maps x into V .

The proof of [2, Lemma 3] gives the following result.
Proposition 2.1: Let f , g : I → I be diffeomorphisms fixing the boundary points of I.
Assume that λ = f ′(0) < 1, μ = g ′(0) > 1. Assume further that either

ln (λ)/ ln (μ) �∈ Q,

or
f ′′(0)
λ2 − λ

�= g ′′(0)
μ2 − μ

.

Then the iterated function system generated by f , g is minimal on some interval (0, u).
Proof: Il’yashenko [2, Lemma 3] considers, for x, y ∈ (0, 1), compositions gl ◦ f k(x) that
converge to y for suitable k, l → ∞. His analysis uses linearizing coordinates h ◦ f ◦
h−1(x) = λx with x ∈ [0, s] for an s < 1. Here h is a local diffeomorphism. The two cases
where ln (λ), ln (μ) are rationally dependent or not, are distinguished. In case ln (λ), ln (μ)

are rationally dependent, the argument works if the second order derivative of h◦g ◦h−1 at
0 is not zero. An explicit calculation shows that this gives the condition in the proposition.

�
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(5) The admissible returns f , g introduced in Lemma 4.6 satisfy the conditions formu-
lated in Proposition 2.1.

3. Stationarymeasures

A key role in our study is played by ergodic invariant measures for the skew product
systems. The necessary material is collected in this section.

Write I = � × I . For every i, j ∈ �, πij equals the probability of the transition from
a point (i, x) in I to another point (j, fi(x)). For every i ∈ � we denote {i} × I ∈ I by Ii.
We can identify Ii with I . Denote by B the Borel sigma-algebra on I . We consider Borel
probability measures m on the space I with m(Ii) = pi. For such a measure m, define the
probability measure mi on Ii by

mi = m|Ii
m(Ii)

.

We denote by fimi the push-forward measure of mi by fi, where fimi(B) = mi(f −1
i (B)) for

B-measurable sets B. Define T on the space of probability measures on I by

(T m)k = 1
pk

N∑
i=1

piπikfimi, ∀k ∈ �,

with an understanding that T m(Ii) = pi.
Definition 3.1: A measure m on the space I is stationary if T m = m.

Recall the notation C0
k = {ω ∈ �A | ω0 = k}. Write C+,0

k = {ω ∈ �+
A | ω0 = k}.

For k ∈ �, write ν+
k for the restriction of the Markov measure ν+ to the cylinder C+,0

k . A
direct computation gives the following correspondence between stationary measures and
invariant measures for the skew product system with one sided time.
Lemma 3.1: A probability measurem is a stationary probability measure if and only ifμ+
defined by

μ+ =
N∑
k=1

ν+
k × mk (3)

is an invariant measure of F+ with marginal ν+ on �+
A.

Let F+ be the Borel sigma-algebra on �+
A. It yields a sigma-algebra F0 = π−1F+ on

�A, where π : �A → �+
A is the natural coordinate projection. Write F for the Borel

sigma-algebra on �A. A measure μ on �A × I with marginal ν has conditional measures
μω on the fibers {ω} × I , such that

μ(A) =
∫

�A
μω(A ∩ ({ω} × I)) dν(ω)

for measurable setsA. Ameasureμ+ on�+
A × I withmarginal ν+ likewise has conditional

measures μ+
ω . It is convenient to consider ν+ also as a measure on �A with sigma-algebra

F0 and μ+ also as a measure on �A × I with sigma-algebra F0 ⊗ B. When ω ∈ �A we
will writeμ+

ω for the conditional measuresμ+
πω. The spaces of measures are equipped with
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the weak star topology. The following result relates invariant measures for the one-sided
and the two-sided skew product systems. It is a special case of [1, Theorem 1.7.2].We write
�A = �−

A × �+
A. and with this ω = (ω−,ω+) for ω ∈ �A.

Proposition 3.1: Letμ+ be an F+-invariant probability measure with marginal ν+. Then
there exists an F-invariant probability measureμwithmarginal ν and conditional measures

μω = lim
n→∞ f n

σ−nωμ+
σ−nω

, (4)

ν-almost surely.
Let μ be an F-invariant probability measure with marginal ν and � : �−

A × �+
A × I →

�+
A × I be the natural projection where �A = �−

A × �+
A. Then

μ+ = �μ (5)

is an F+-invariant probability measure with marginal ν+.
The correspondence μ ↔ μ+ given by (4), (5) is one-to-one and μ is ergodic if and only

if μ+ is ergodic. An invariant measure μ for which μω depends on the past ω− ∈ �−
A only,

corresponds to a measure μ+ that comes from a stationary measure m as in (3).

4. Bony graphs and thick graphs

The proof of Theorem 2.1 is divided into different steps.Wewill first discuss the case where
both L(0) > 0 and L(1) > 0. The other cases are then easy to treat and will be considered
later.

4.1. Repelling end points

We assume L(0) > 0 and L(1) > 0. We briefly outline the different steps in the proof of
Theorem 2.1, which will be worked out below.

Step 1: Stationary measures: By a Krylov–Bogolyubov procedure on a suitable class
of probability measures we construct stationary measures that do not assign measure
to the endpoints 0 or 1 of the interval [0, 1].
Step 2: Trapping strips: The convex hull of the support of an ergodic stationary
measure, as constructed in the first step, provides a trapping strip. Trapping strips
can be border trapping strips or internal trapping strips.
Step 3: Conditional measures: A stationary measure gives rise to an invariant
measure of the skew product system with two sided time. We prove that such an
invariant measure has delta measures as conditional measures on fibers. For each
trapping strip there is a unique invariant measure with support in the trapping strip.
Step 4: Attracting graphs: The points of the delta measures constitute an invariant
graph. We discuss its properties in this final step.

For internal trapping strips these results have been obtained by Kleptsyn and Volk [5].
We now elaborate the different steps.

Step 1: Stationary measures. In the construction of stationary measures we iterate the
transformation T , whose fixed points are the stationary measures. For k ∈ � and for any
n ∈ N, the nth iterate of m under the transformation T is calculated on Ik as
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(T nm)k = 1
pk

N∑
i1,...,in=1

pi1πi1i2 · · ·πin−1inπinkf
n
i1,...,inmi1 . (6)

The above sum is over allNn possible symbol sequences of length n+ 1 in�n ending with
the symbol k, and pi1πi1i2 · · · πin−1inπink is the probability of the transition to the symbol k
in n steps along the symbol sequence i1, . . . , in, k.

We will need the following arithmetic bound that is connected to formula (6). Recall
the assumptions L(0) > 0 and L(1) > 0. Write λi = f ′

i (0) and λ̄i = f ′
i (1).

Lemma 4.1: For n large enough and any k, 1 ≤ k ≤ N,

1
pk

N∑
i1,...,in=1

pi1πi1i2 · · · πin−1inπink
1
n
ln (λi1 · · · λin) > 0, (7)

1
pk

N∑
i1,...,in=1

pi1πi1i2 · · · πin−1inπink
1
n
ln (λ̄i1 · · · λ̄in) > 0. (8)

Proof: We consider the end point 0. First note that for ν+-almost all ω,

L(0) = lim
k→∞

1
k

k−1∑
i=0

ln (f ′
σ iω(0))

= lim
k→∞

1
kn

k−1∑
i=0

ln ((f n
σ niω)′(0))

= 1
n

∫
�+

A
ln ((f nω )′(0)) dν+(ω)

=
N∑

i1,...,in=1

pi1πi1i2 · · · πin−1in
1
n
ln (f ′

i1(0) · · · f ′
in(0)).

Hence

L(0) =
N∑

i1,...,in=1

pi1πi1i2 · · · πin−1in
1
n
ln (λi1 · · · λin). (9)

A similar equality as (9) holds for L(1), the Lyapunov exponent at x = 1.
The sum in (7) is an average over all symbol sequences of length n + 1 ending with a

symbol k:

1
pk

N∑
i1,...,in=1

pi1πi1i2 · · ·πin−1inπink
1
n
ln (λi1 · · · λin) = 1

pk

∫
Pn,k

1
n
ln (λi1 · · · λin) dν+(i),

where i = (i1, . . . ) and Pn,k = {i ∈ �+
A ; σ n+1i ∈ Ck}. Since ν+ is invariant we have

ν+(Ck) = ν+(σ−(n+1)(Ck)) = ν+(Pn,k) for any n ∈ N. We observe that ν+(Pn,k) = pk
independent of n and we suppress the dependence of Pn,k to n.
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Write


(ε,M) =
{
ω ∈ �+

A ;
∣∣∣∣1n ln (λi1 · · · λin) − L(0)

∣∣∣∣ < ε for n ≥ M
}

.

By ergodicity (2), 1
n ln (λi1 · · · λin) converges to L(0) for ν+-almost all (i1, . . . ) ∈ �+

A, as
n → ∞. We therefore have that for all ε > 0 there existsM so that ν+(
(ε,M)) > 1 − ε.

Take the positive constant K such that | ln λj − L(0)| ≤ K for all j. Choose ε small and
M = M(ε) so that ν+(
(ε,M)) > 1− ε. Write 
(ε,M)c = �+

A \
(ε,M). For any n ≥ M
we can compute,

dn =
∣∣∣∣ 1pk

∫
Pk

1
n
ln (λi1 · · · λin) dν+(i) − L(0)

∣∣∣∣
≤ 1

pk

∫
Pk∩
(ε,M)

∣∣∣∣1n ln (λi1 · · · λin) − L(0)
∣∣∣∣ dν+(i)

+ 1
pk

∫
Pk∩
(ε,M)c

∣∣∣∣1n ln (λi1 · · · λin) − L(0)
∣∣∣∣ dν+(i)

≤ ε + Kε.

Therefore, dn → 0, as n → ∞. Likewise,∣∣∣∣ 1pk
∫
Pk

1
n
ln (λ̄i1 · · · λ̄in) dν+(i) − L(1)

∣∣∣∣ → 0, as n → ∞.

Since L(0) and L(1) are positive, for n large both

1
pk

∫
Pk

1
n
ln (λi1 · · · λin) dν+(i) > 0

and
1
pk

∫
Pk

1
n
ln (λ̄i1 · · · λ̄in) dν+(i) > 0.

�
Let M be the space of all Borel probability measures on I endowed with the weak-star

topology. For small 0 < α < 1, q > 0 and c > 0 define

Nc = {m ∈ M; ∀ 0 ≤ x ≤ q, mk
([0, x)) ≤ cxα and mk

(
(1 − x, 1]) ≤ cxα ∀k ∈ �}.

The condition on the measure of small intervals [0, x) and (1 − x, 1] excludes measures
supported on the end points 0 and 1. Note that Nc depends on α and q; but we do not
include this dependence in the notation. We first show that there exist ergodic stationary
measures which belong to Nc .
Proposition 4.1: Under the assumptions of Theorem 2.1 and in particular∑N

i=1 pi ln f
′
i (x) > 0 for x = 0, 1, there exist positive α, c, q and n1 ∈ N such that

T n1Nc ⊂ Nc.
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Proof: Note that by (1), for each k ∈ �,

N∑
i1,...,in=1

pi1πi1i2 · · · πin−1inπink = pk. (10)

Let n1 be a number such that for any n ≥ n1 the inequality (7) holds in Lemma 4.1. In the
following, fix any n ≥ n1. Since for each k there are Nn possible transitions in n + 1 steps
ending with k we may rewrite (7) as

Nn∑
i=1

ρk
i ln γi > 0

in which
∑Nn

i=1 ρk
i = 1 by (10). We claim that there is a small α > 0 such that our

assumption
∑Nn

i=1 ρk
i ln γi > 0 implies

∑Nn

i=1 ρk
i γ

−α
i < 1.Namely, since lim

α→0

1−γ −α
i

α
= ln γi,

1 ≤ i ≤ Nn,
∑Nn

i=1 ρk
i ln γi > 0 implies that for sufficiently small α > 0,

Nn∑
i=1

ρk
i
1 − γ −α

i
α

> 0.

Multiplying by α we get

Nn∑
i=1

ρk
i −

Nn∑
i=1

ρk
i γ

−α
i > 0,

which implies
∑Nn

i=1 ρk
i γ

−α
i < 1, because

∑Nn

i=1 ρk
i = 1.

A similar reasoning applies to the end point 1 of I , starting with (8) rewritten as∑Nn

i=1 ρk
i ln γ̄i > 0, to show that for α small, also

∑Nn

i=1 ρk
i γ̄

−α
i < 1.

Thus, there exists a small δ > 0 so that

Nn∑
i=1

ρk
i

(γi − δ)α
< 1 (11)

and likewise
∑Nn

i=1
ρk
i

(γ̄i−δ)α
< 1.Moreover, for such δ > 0 we are able to choose a sufficiently

small q = q(δ) > 0 in such a way that for each symbol sequence i1, . . . , in in �n,

f −n
i1,...,in(x) ≤ x

(λi1 , . . . , λin) − δ
, ∀ 0 ≤ x ≤ q. (12)

Take c with cqα > 1. Take a measure m from the Nc that corresponds to α and q. We
will prove T nm ∈ Nc . To do this we must show that if x ≤ q then (T nm)k

([0, x)) ≤ cxα

and (T nm)k
(
(1 − x, 1]) ≤ cxα for all k ∈ �. Knowing that mk

([0, x)) ≤ cxα for each
k ∈ � and applying (11), (12) we get:
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(T nm)k
([0, x)) =

N∑
i1,...,in=1

1
pk

pi1πi1i2 , . . . ,πin−1inπinik f
n
i1,...,inmi1

([0, x))

=
N∑

i1,...,in=1

1
pk

pi1πi1i2 , . . . ,πin−1inπinikmi1

(
f −n
i1,...,in[0, x)

)

≤
N∑

i1,...,in=1

1
pk

pi1πi1i2 , . . . ,πin−1inπinikmi1

([
0,

x(
λi1 , . . . , λin

)− δ

))

≤
Nn∑
i=1

ρk
i c
(

x
γi − δ

)α

= c

⎛
⎝ Nn∑

i=1

ρk
i

(γi − δ)α

⎞
⎠ xα

≤ cxα. (13)

Likewise, (T nm)k
(
(1 − x, 1]) ≤ cxα for x ≤ q. Thus, for every m ∈ Nc , the image T nm

belongs to Nc . �
Now we know that T n1(Nc) ⊂ Nc . By the Krylov–Bogolyubov averaging method, for a

measure m ∈ Nc on the compact metric space I there is a subsequence of
{ 1n
∑n−1

r=0 T rn1m}n∈N which is convergent to a probability measure m̂ ∈ Nc such that
T n1m̂ = m̂. Note that

m̄ = 1
n1

(
m̂ + T m̂ + · · · + T n1−1m̂

)
is a probability measure. Since T is linear and T n1m̂ = m̂, the measure m̄ is a fixed point
of T :

T m̄ = 1
n1

(
T m̂ + T 2m̂ + · · · + T n1m̂

) = m̄.

We have found a stationary measure m̄ in Nc for some c.
The following additional reasoning shows that there is an ergodic stationary measure

in Nc . Let N be the set of stationary measures on I which is a convex compact subset
of M. The ergodic stationary measures are the extreme points of it. Note that Nc is a
convex compact subset of N , which is itself also convex and compact. We claim that the
extreme points of Nc are extreme points of N . Suppose by contradiction that there are
m̄1, m̄2 ∈ N \Nc and the convex combination m̄ = sm̄1+ (1− s)m̄2 ∈ Nc . In this case, for
0 ≤ x ≤ q, m̄1,k([0, x)) ≤ (c/s)xα and m̄1,k((1− x, 1]) ≤ (c/s)xα and similar estimates for
m̄2. That is, x �→ m̄i,k([0, x))/xα and x �→ m̄i,k((1 − x, 1])/xα are bounded. As T m̄ = m̄,
we have by (11), (13) that m̄ ∈ Nc̃ for some c̃ < c. It follows that tm̄1 + (1− t)m̄2 ∈ Nc for
t close to s. So s is an interior point of the set of values t for which tm̄1 + (1 − t)m̄2 ∈ Nc .
Since Nc is closed it follows that m̄i ∈ Nc and the claim is proved. Since the extreme
points of N are ergodic stationary measures, we conclude that the extreme points of Nc
are ergodic stationary measures. Since the set of extreme points of Nc is nonempty by the
Krein–Milman theorem, there are ergodic stationary measures.

Step 2: Trapping strips. Recall from Lemma 3.1 that a stationary measure m gives rise
to an invariant measure for the one-sided skew product system, with marginal ν+ on �+

A.
We will see that the supports of such invariant measures are contained inmutually disjoint
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trapping strips. This step closely follows [5], with adjustments to account for the fixed end
points.
Definition 4.1: A subset D = ⋃N

k=1 Dk ⊆ I is called a domain if for each k ∈ �, Dk is
a closed interval in Ik.

A boundary point of an interval Dk different from 0 or 1 is called an internal boundary
point.
Definition 4.2: A domain D = ⋃N

k=1 Dk ⊆ I is trapping if any admissible map takes it
to itself,

∀k, l : πkl > 0, fk(Dk) ⊆ Dl.

The domain is strict trapping if any internal boundary point of Dk is mapped inside the
interior of Dl .

The following proposition is [5, Proposition 4.5] and holds also here.
Proposition 4.2: The following conditions are equivalent:

(i) the domain D = ⋃N
k=1 Dk ⊆ I is (strict) trapping;

(ii) the strip S+ = ⋃N
k=1 C

+,0
k × Dk ⊆ �+

A × I is (strict) trapping for the skew product
F+;

(iii) the strip S = ⋃N
k=1 C

0
k × Dk ⊆ �A × I is (strict) trapping for F.

Consider an arbitrary ergodic stationary measure m ∈ Nc . Denote the interval that
spans the support of mk by Im,k = [Am,k,Bm,k]:

Am,k = min supp (mk),
Bm,k = max supp (mk).

For every admissible i, j we have fi( supp (mi)) ⊆ supp (mj). Since the maps fi are mono-
tone we have that for any admissible transition i, j,

fi(Im,i) ⊆ Im,j. (14)

Therefore, the collection Im = ⋃N
k=1 Im,k is a domain, which is trapping by (14).

The imposed genericity conditions imply that for a trapping domain no interval Im,k
can be a single point.
Lemma 4.2: Consider an arbitrary trapping domain Im. Then either Am,k = 0 for all
k ∈ �, or Am,k �= 0 for all k ∈ �. In the latter case, there exist an attracting fixed point A
of a simple return and a simple transition f such that Am,k = f (A). In the former case, i.e. if
Am,k = 0 for all k ∈ �, then 0 is an attracting fixed point of a simple return. An analogous
statement holds for Bm,k.
Proof: For a chosen trapping domain Im suppose that Am,k = 0 for some k ∈ �. Then,
knowing that x = 0 is a fixed point of fk for all k, we have for any l ∈ � such that k, l is
admissible that

0 = fk(0) = fk(min supp (mk)) ∈ fk( supp (mk)) ⊆ supp (ml).

Hence,Am,l = min supp (ml) = 0. Since the subshift σ is transitiveAm,k = 0 for all k ∈ �.
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IfAm,k �= 0 for all k, [5, Lemma 6.3] applies and the result forAm,k holds by that lemma.
If Am,k = 0 for all k, the arguments of [5, Lemma 6.3] apply to yield the same conclusion
(the simple transition is redundant since 0 is a fixed point of all maps). �

ByBirkhoff’s ergodic theorem, a generic sequence of random iterations (kn, xn), xn ∈ Ikn
of a m-generic initial point is distributed with respect to the measure m. If we choose such
a generic initial point (k0, x0) then because the points (kn, xn) are distributed with respect
to m, the set Xk = {xn}|kn=k is dense in supp (mk) for any k. We apply this observation in
the proof of the next lemma, which corresponds to [5, Lemma 6.7].
Lemma 4.3: For any two trapping domains Im1 and Im2 of two ergodic stationary mea-
sures m1,m2 ∈ Nc the corresponding intervals Im1,k and Im2,k are either disjoint for any k
or coincide for any k.
Proof: Assume that the intervals Im1,k and Im2,k intersect but do not coincide. Then, there
is at least one end point of one of them that does not belong to the other one. Without
loss of generality let it be the point Bm1,k. There is a neighbourhood V of Bm1,k such that
Im2,k ∩ V = ∅.

By genericity condition (4), Am1,k is different from Bm2,k. So there are generic points
of m1 in Im1,k ∩ Im2,k. Choose a generic point p0 for m1 in Im1,k ∩ Im2,k which is different
from Am1,k and Bm2,k. There is an admissible return g such that g(p0) ∈ V (recall the
observation that precedes the lemma), which implies g(p0) /∈ Im2,k. On the other hand
p0 ∈ Im2,k by assumption and g(Im2,k) ⊆ Im2,k by (14). Since the diffeomorphisms fi’s are
monotone g(p0) ∈ Im2,k. This is a contradiction. Therefore, Im1,k and Im2,k have empty
intersection or coincide. �

Again consider trapping domains Im corresponding to ergodic stationary measures m

in Nc . According to Lemma 4.3 these trapping domains are non-intersecting or coincide.
By Lemma 4.2 for each trapping domain Im each end point Am,k and Bm,k which does not
coincidewith x = 0 or x = 1 (respectively) is an image of a fixed point of a simple return by
a simple transition. On the other hand, since� has a finite number of symbols there is only
a finite number of simple returns and simple transitions and by condition (2.1) in Section
2.1 any simple return has only finitelymany fixed points. Hence, for any k ∈ � only a finite
number of Im,k’s can exist in I . Therefore, we conclude that there are finitely many disjoint
trapping domains and corresponding to them finitely many disjoint trapping strips for
F by Proposition 4.2. For every stationary measure m ∈ Nc the corresponding domain
Im = ⋃N

k=1 Im,k and strip Sm = ⋃N
k=1 C

0
k × Im,k are equal to some trapping domain and

trapping strip.
We thus obtain a finite number of stationarymeasuresmt , 1 ≤ t ≤ T , with correspond-

ing trapping domain I t and trapping strip S t .
Step 3: Conditionalmeasures. Wewill see that inside each trapping stripS t , 1 ≤ t ≤ T ,

there exists a unique invariant measurable graph 
t to which almost every point of the
trapping strip is attracted. First we show that for each 1 ≤ t ≤ T ,μt = μmt has δ-measures
as conditional measures along fibers inside the trapping strip S t , ν-almost surely. To prove
the following lemma we follow [1, Theorem 1.8.4].
Lemma 4.4: For every ergodic stationary probability measure m, the conditional measure
μm,ω of μm is a δ-measure for ν-almost every ω ∈ �A.
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Proof: Consider a μm and its conditional measures μm,ω. Let Xm(ω) be the smallest
median of μm,ω, i.e. the infimum of all points x for which

μm,ω([0, x]) ≥ 1
2

and μm,ω([x, 1]) ≥ 1
2
.

The set of medians of μm,ω is a compact interval and Xm : �A → I is measurable.
Define C−

m(ω) := [0,Xm(ω)] for which by definition μm,ω(C−
m(ω)) ≥ 1

2 . The set C
−
m(ω)

is invariant: Since for every i ∈ �, fi is increasing for every x1 < x2 and ω we have
fω(x1) < fω(x2). This implies that x is a median of μm,ω if and only if fω(x) is a median
of fωμm,ω. By invariance of μm we have fωμm,ω = μm,σω. Hence, Xm(σω) = fω(Xm(ω))

which implies C−
m(σω) = fω(C−

m(ω)).
Because μm is ergodic and C−

m(ω) is invariant μm,ω(C−
m(ω)) = 1, ν-almost surely. By

the same argument for C+
m(ω) := [Xm(ω), 1] for {Xm(ω)} = C−

m(ω) ∩ C+
m(ω) we obtain

μm,ω({Xm(ω)}) = 1. Thus μm,ω = δXm(ω) for ν-almost every ω ∈ �A. �
Lemma 4.5: Every trapping strip contains a unique stationary measure with support
contained in the trapping strip.
Proof: Suppose there are two invariant ergodic measures μm1 �= μm2 for which Sm1 =
Sm2 . By Lemma 4.4 there are measurable functions Xmi : �A → I and Di ⊂ �A with
ν(Di) = 1, for i = 1, 2, such that limn→∞ f n

σ−nω
μ+

mi ,σ−nω
= δXmi (ω) for every ω ∈ Di

respectively. From ν(Di) = 1 we have D1 ∩ D2 �= ∅. Therefore, there is ω̄ ∈ D1 ∩ D2 so
that Xm1(ω̄) �= Xm2(ω̄). Without loss of generality suppose that Xm1(ω̄) < Xm2(ω̄).

Since Sm1 = Sm2 we have that for every k ∈ �, Im1,k = Im2,k. So we can find generic
points (k, x1,k) and (k, x2,k) for m1 and m2 such that x1,k > x2,k. Because f n

σ−nω̄
(xi,ω̄−n)

converges to Xmi(ω̄) as n → ∞, and for each j ∈ �, fj is strictly increasing, we conclude
thatXm2(ω̄) < Xm1(ω̄), contradicting our assumption. Thus,μm1 = μm2 is unique in Sm.

�
Step 4. Attracting graphs. By Lemmas 4.4 and 4.5, for every 1 ≤ t ≤ T there exists

a unique measurable function Xt : ω �→ Xt(ω) for each S t with the domain Dt ⊂ �A,
ν(Dt) = 1, such that limn→∞ f n

σ−nω
μ
t,+
σ−nω

= δXt (ω) for each ω ∈ Dt . So there are graphs

t of Xt with 
t ⊂ S t which are invariant because Xt(σω) = fω(Xt(ω)). Therefore, for
every generic point (k, xk) for mt we have limn→∞ f n

σ−nω
(xω−n) = Xt(ω). Since the fiber

maps are strictly increasing for every choice of (k, xk) with xk ∈ Imt ,k (different from 0, 1)
and ω ∈ Dt ,

lim
n→∞ f n

σ−nω(xω−n) → Xt(ω). (15)

For a trapping strip S t denote by At
ω the intersection of its maximal attractor, At

max,
with the fiber Iω = {ω} × I . For an ω ∈ �A define

At
ω,n = fω−1 ◦ · · · ◦ fω−n(S ∩ Iσ−nω).

Since the strip S t is trapping for every n ∈ N, At
ω,n+1 ⊆ At

ω,n. Hence, for each ω ∈ �A,
At

ω = ⋂
n≥0 A

t
ω,n is either an interval or a single point. So for every ω ∈ Dt , X(ω) ∈ At

ω

and 
t ⊂ At
max.

We state two theorems on the structure of the maximal attractor in internal and in
border trapping strips, respectively. The first result is contained in [5].
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Theorem 4.1: Let S t be an internal trapping strip of a skew product F under the assump-
tions of Theorem 2.1. Then themaximal attractor At

max is a bony graph. The attracting graph

t forms the graph part of At

max.
Theorem 4.2: Let S t be a border trapping strip of a skew product F under the assumptions
of Theorem 2.1. Then the maximal attractor At

max is a thick graph. The attracting graph 
t

in S t is dense in At
max:


t = At
max. (16)

Proof: We suppress the index t from the notation. Consider, without loss of generality, a
border trapping stripS that contains�A×{0}. For a trapping strip�A×[0, 1], themaximal
attractor obviously has positive standard measure. For a trapping strip with one internal
boundary, since x = 0 is a fixed point for each fω and 
 ⊂ S , we have Aω = [0,X(ω)],
where X(ω) > 0 for ω ∈ D. So, ν-almost surely Aω has positive Lebesgue measure and
s(Amax) > 0.

Now we prove the density of the graph 
 for border trapping strips. We restrict to
the case of a trapping strip with one internal boundary. Let m be the ergodic stationary
measure supported in S = Sm = ⋃N

k=1 C
0
k × Im,k. By Lemma 4.2, there is a simple return

map f with f ′(0) < 1. Hence, for some 1 ≤ k0 ≤ N there are admissible return maps
f , g : Im,k0 → Im,k0 and J , a small neighbourhood of x = 0, such that for every k ∈ �,
J ⊂ Im,k, f ′(x) < 1 and g ′(x) > 1 for every x ∈ J .
Lemma 4.6: All orbits of the iterated function system generated by f , g restricted to J are
dense in it, i.e. for any point x ∈ J and an open interval J ′ ⊂ J there is a return map
hk0 ∈ IFS {f , g} such that hk0(x) ∈ J ′.
Proof: This follows [2, Lemma 3], see Proposition 2.1. �
Lemma 4.7: Let m be an ergodic stationary measure in Nc, k and k′ be two arbitrary
symbols and Im,k, Im,k′ with Am,k,Am,k′ = 0 and Bm,k,Bm,k′ �= 1. Then, for any ε > 0 there
exists an admissible composition G : Im,k → Im,k′ such that G(Im,k) ⊂ Uε(Am,k′).
Proof: See [5, Lemma 6.9]. �

To establish (16), we need to show that for every point P ∈ Amax and every neigh-
bourhood U of P there exists a point Q in 
 such that Q ∈ U . We may assume U =
C−m,...,m

ω̂
× U , m ∈ N, where ω̂ ∈ D and U is a small interval in [0,X(ω̂)]. We need

to find ω̃ ∈ C−m,...,m
ω̂

∩ D such that X(ω̃) ∈ U . Take a sequence ω′ ∈ D with past part
. . . ω′−3ω

′−2ω
′−1 = ω′− and denote x′ = X(ω′). Note that X depends only on the past part

of the sequence, so x′ depends on ω′−.
By Lemma 4.7 there is an admissible composition G = fαn ◦ · · · ◦ fα1 : Im,ω′

0
→ Im,k0

so that G(Im,ω′
0
) ⊂ J and α1 = ω′

0. Hence, G(x′) ∈ J . Let Um ⊂ J ⊂ Im,k0 be defined by an
admissible composition such that

fω̂−1 ◦ · · · ◦ fω̂−m ◦ fβκ ◦ · · · ◦ fβ1(Um) = U ,

where β1 = k0. By Lemma 4.6 there is a return map hk0 = fηr ◦ · · · ◦ fη1 : Im,k0 → Im,k0 in
IFS {f , g} that takes G(x′) to Um. Take

ω̃ = ω′−α1 . . . αnη1 . . . ηrβ1 . . . βκω̂−m . . . ω̂0 . . . ω̂mω′′+,
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where ω̃0 = ω̂0 and ω′′+ is any admissible sequence. Indeed, with such a construction
the sequence ω̃ belongs to C−m,...,m

ω̂
∩ D, f n+r+κ

σ−(n+r+κ+m)ω̃
(x′) ∈ Um and f m

σ−mω̃
(Um) ∈ U .

Therefore, X(ω̃) = f (n+r+κ+m)

σ−(n+r+κ+m)ω̃
(x′) ∈ U and Q = (ω̃,X(ω̃)) ∈ 
 ∩ U . �

4.2. An attracting end point

It remains to consider cases with negative Lyapunov exponents at end points, i.e. where
L(0) < 0 or L(1) < 0 or both. Note that in an internal trapping strip or border trapping
strip bounded by an end point with positive Lyapunov exponent, stationary measures are
constructed as before and the analysis proceeds as in the previous sections.

The following subcases remain:

(1) L(0) and L(1) have different signs and F has no internal trapping strip,
(2) L(0) and L(1) are both negative and F has no internal trapping strip,
(3) at least one of L(0) or L(1) is negative and F admits an internal trapping strip.

L(0) and L(1) have different signs and F has no internal trapping strip. Here L(0) and
L(1) have different signs. To be definite, say L(0) > 0 and L(1) < 0. We claim that the
only ergodic stationary measures are point measures d0, d1 on 0 and 1; d0k = pkδ0 and
d1k = pkδ1 on the intervals Ik. Indeed, let m be a stationary measure that assigns mass
outside the points {0, 1}. Suppose that the convex hull of the support of m is a union of
intervals [Ak, 1] ⊂ Ik. This defines a trapping strip that we denote by S . As in the previous
section, the stationary measure m gives rise to an attracting invariant graph 
 of a map
X : D → [0, 1] with ν(D) = 1, so that 
 lies inside S and for every (σ−nω, xω−n) ∈ S ,
ω ∈ D (and xi �= 0, 1),

lim
n→∞ f n

σ−nω(xω−n) → X(ω) (17)

(compare (15)). Since the skew product system has negative Lyapunov exponent at the
endpoint 1, �A × {1} has a basin of attraction with positive standard measure. This
contradicts (17). Hence, there is no stationary measure m that assigns mass outside the
points {0, 1}. It follows that for almost all ω ∈ �,

lim
n→∞ f n

σ−nω(x) = 1

for any x ∈ (0, 1].
L(0) and L(1) are both negative and F has no internal trapping strip. By the reasoning

in the previous section, the inverse skew productmap admits an attracting invariant graph.
The skew product system hence has a repelling invariant graph, and attracting invariant
graphs �A × {0}, �A × {1}.

At least one of L(0) or L(1) is negative and F admits an internal trapping strip. Suppose
L(0) < 0. Again by following the reasoning in the previous section, the inverse skew
product map then admits a border trapping strip, bounded by �A × {0}, that contains an
attracting invariant graph. The skew product system hence has a repelling invariant graph,
and an attracting invariant graph �A × {0}.
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