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ABSTRACT
Understanding collagen and stress fiber remodeling is essential for the development of engineered
tissues with good functionality. These processes are complex, highly interrelated, and occur over
different time scales. As a result, excessive computational costs are required to computationally
predict the final organization of these fibers in response to dynamic mechanical conditions. In
this study, an analytical approximation of a stress fiber remodeling evolution law was derived. A
comparison of the developed technique with the direct numerical integration of the evolution law
showed relatively small differences in results, and the proposed method is one to two orders of
magnitude faster.
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1. Introduction

The actin stress fiber organization largely influences cell
functions and their potential to adapt to their surround-
ings. These actin bundles are known to be essential for
cellular migration (Saez et al. 2007), cellular contractility
(Deshpande et al. 2006), and the maturation of other
cellular structures such as focal adhesions (Vogel 2006;
Johnson et al. 2007). Moreover, they play a crucial role
in the remodeling of the extracellular matrix structures,
such as collagen. The mechanical properties of soft tis-
sues depend to a large extent on the organization of the
collagen network, which is considered as the main load-
bearing component in most tissues and the principal
contributor to their anisotropic mechanical properties.
For example, in heart valves, circumferentially aligned
collagen fibers have been observed (Billiar & Sacks 2000a;
Martin & Sun 2012) that transfer the pressure applied
on the closed heart valve to the aortic wall (Peskin &
McQueen 1994). Furthermore, they reinforce the cir-
cumferential direction enabling the stretch in the ra-
dial direction for a proper closure of the heart valve
(Billiar & Sacks 2000a, 2000b; Sacks et al. 2009; Mar-
tin & Sun 2012; Fan et al. 2013; Loerakker et al. 2013).
Next to external loads (Ruberti & Hallab 2005; Bhole
et al. 2009; Wyatt et al. 2009; De Jonge et al. 2013),
the collagen network is remodeled by contractile forces
exerted by the cells along their principal direction, which
is determined by the organization of actin stress fibers
(Wang et al. 2003; Ghibaudo et al. 2008; Faust et al. 2011).
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Therefore, to ensure the functionality of engineered
tissues, understanding the process of stress fiber remod-
eling is necessary.

Like collagen, stress fibers can change their orientation
over time. These actin bundles reorient in response to
competing stimuli called strain anisotropy, and anisotr-
opy ofmechanical resistance (Obbink-Huizer et al. 2014).
Experiments have shown that cells orient in the direc-
tion perpendicular to the strain when undergoing cyclic
strain on a stiff substrate or a biaxially constrained gel
(Kaunas et al. 2005; Foolen et al. 2012; Tondon et al.
2012; Foolen et al. 2014). This phenomenon, in response
to solely strain anisotropy, is known as strain avoidance
and is influenced by the frequency and amplitude of
the cyclic strain (Kaunas et al. 2005; Faust et al. 2011;
Tondon et al. 2012; Foolen et al. 2014). Anisotropy of
mechanical resistance occurs when cells are seeded on
a substrate with anisotropic stiffness or residing in a
uniaxially constrained gel. In this case, stress fibers rem-
odel in the stiffest direction (Saez et al. 2007; Ghibaudo
et al. 2008; Foolen et al. 2012). When a gel is constrained
and cyclically strained in the same direction, the effects of
strain anisotropy andanisotropyofmechanical resistance
are in competition. It has been shown (Foolen et al.
2012; Obbink-Huizer et al. 2014) that the anisotropy
of mechanical resistance has often a larger influence in
this case, such that cells orient along the constrained
direction.
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Several computational models have been proposed
to simulate the process of stress fiber remodeling in re-
sponse to mechanical stimuli (Deshpande et al. 2006;
Kaunas&Hsu 2009; Zemel et al. 2010; Vernerey&Farsad
2011; Obbink-Huizer et al. 2014). Deshpande and col-
leagues developed a computational model that can pre-
dict the effects of strain anisotropy and anisotropy
of mechanical resistance when separately considered
(Deshpande et al. 2006; Wei et al. 2008). Unfortunately,
this computational model is inaccurate when the effects
of strain anisotropy and anisotropy of mechanical
resistance are competing. In 2014, Obbink-Huizer et al.
proposed a computational model capable of overcoming
these limitations (Obbink-Huizer et al. 2014) by combin-
ing twopreviousmodels (Deshpande et al. 2006;Vernerey
& Farsad 2011).

Recently, Loerakker et al. (2014) have used Obbink-
Huizer’s computational model to investigate the influ-
ence of stress fibers on collagen fiber remodeling when
static mechanical stimuli are applied to engineered
tissues. The computational simulations were able to pre-
dict the collagen organization observed in several exper-
iments. However, the direct numerical integration of the
constitutive model for stress fiber development and the
calculation of the effects of complex loading profiles on
the tissue would lead to excessive computational times in
case of dynamic loading conditions. As a result, simula-
tions of soft tissue in vivo remodeling in the case of cyclic
strain would not be practically feasible.

Obbink-Huizer et al. (2014) have modeled the remod-
eling process of stress fibers using evolution laws which
can be described with a system of ordinary differential
equations (ODEs). This system has constant coefficients
in case of static mechanical conditions, and periodic co-
efficients with cyclic loading.While it is possible to deter-
mine an analytical solution for constant coefficients, this
is not achievable when the coefficients are periodic. In
this paper,weprovide an analytical approximation for the
asymptotic solution of the analyzed system. Furthermore,
we propose a strategy to accelerate the computational
simulation of stress fiber remodeling. For verification, the
simulations presented in the prior study (Obbink-Huizer
et al. 2014) have been repeated using the approximation
and direct numerical integration. The results show that
the developed strategy drastically reduces the computa-
tional costs of the integration of the computationalmodel
for stress fiber remodeling. Therefore, the new method
will enable the simulations of tissue remodeling under
cyclic strain. Moreover, the approach can be generalized
and applied to other computational simulations involv-
ing ODEs with periodic coefficients.

2. Methods

2.1. The computationalmodel proposed by
Obbink-Huizer et al. (2014)

Recently, Obbink-Huizer et al. (2014) have published
a computational model able to predict the stress fiber
distribution in response to the effects of strain avoidance
and anisotropy of mechanical resistance. The model was
developed considering phenomenological hypotheses for
stress fiber remodeling. Briefly, cells were supposed to
exert stress onto their surroundings. The value of this
stress was a homogenization of the product between the
stress fiber stress σ p

θ , and the stress fiber volume fraction
�

p
θ over the N considered directions:

σ cell = 1
N

∑
θ

�
p
θσ

p
θ eθ eθ , (1)

where eθ is the stress fiber orientation in the current state
(deformed configuration).

The magnitude of the stress fiber stress along one
singular direction was determined with a Hill-type con-
traction law, dependent on the global Green–Lagrange
strain εθ and strain rate ε̇θ in that direction:

σ
p
θ = σmaxfε(εθ )fε̇ (ε̇θ ), (2)

where σmax is the maximal stress fiber stress, while fε(εθ )
and fε̇ (ε̇θ ) are functions depending on the strain and
strain rate in the direction θ . In particular, fε̇ is a positive
increasing function:

fε̇ (ε̇θ ) = 1
1 + 2√

5

(
1 + kv ε̇θ + 2√

(kv ε̇θ + 2)2 + 1

)
, (3)

with kv a positive parameter. fε is a function composed of
an active and a passive part, namely fε,a and fε,p, which are
respectively a gaussian function and a piecewise parabolic
function:

fε = fε,a + fε,p; (4)

fε,a(εθ ) = exp

[
−
(
εθ

ε0

)2
]

; (5)

fε,p(εθ ) =

⎧⎪⎪⎨
⎪⎪⎩
0 if εθ < 0,

(
εθ

ε1

)2
if εθ ≥ 0,

(6)

where ε0 and ε1 are positive parameters.
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Concerning the evolution law for stress fiber remodel-
ing, the depolymerization was supposed to be isotropic,
while the synthesis of stress fibers was hypothesized to be
dependent on the product between fε,a and fε̇ :

d�p
θ

dt
= (kf0 + kf1σmaxfε,afε̇ )�m − kd�

p
θ , (7)

where �m is the amount of monomeric actin and kf0, k
f
1,

and kd are positive constants. The last equation present
in the model is a conservation law of actin mass, which
relates�m with the polymerized actin:

�tot = �m + 1
N

∑
θ

�
p
θ , (8)

where �tot is a positive constant representing the total
actin volume fraction.

With these features, the described computational
model was able to predict the stress fiber alignment in
numerous experiments, as presented in Obbink-Huizer
et al. (2014). However, the resolution of system (7) by
means of direct numerical integration requires high com-
putational costs when the stress fibers are subjected to
cyclic strain. This limitation has restrained the applica-
tion of the proposed model for more complex simula-
tions. We propose an analytical approximation for the
asymptotic solution of system (7) which will be used to
accelerate the computational simulations.

2.2. Approximation for the asymptotic solution of a
system of ODEs with periodic coefficients

Consider the following system of ODEs of dimension
n ∈ N

ẋ(t) = f (t)x(t)+ g(t), (9)

with x : R → R
n a solution of the system and f : R →

R
n×n, g : R → R

n knownperiodic functionswith period
T ∈ R

+ having the following properties:

(I) the asymptotic solution x∞(t) of the system is
periodic with period T ;

(II) either f (t) or x∞(t) is almost constant;

(III) f̄ = 1
T

∫ T

0
f (t)dt is an invertible matrix.

In that case, the asymptotic solution can be approximated
by

x̄∞ = 1
T

∫ T

0
x∞(t)dt. (10)

To approximate x̄∞, we can substitute x∞(t) into
Equation (9) and then integrate this equation between
0 and T , dividing by T . Then, the left-hand side of the

obtained equation is zero due to the property (I), while
on the right-hand side 1

T
∫ T
0 f (t)x∞(t)dt ≈ f̄ x̄∞ because

of the property (II). At this point, using the property (III),
we can obtain:

x̄∞ ≈ −f̄ −1ḡ . (11)

2.2.1. Example
As a simple example, consider

ẋ + x = a + b cos2 (t), (12)

with x : R → R and a, b ∈ R constant. In this case our
method gives

x̄∞ ≈ a + b
2
, (13)

while the analytical solution is

x∞(t) = a + b
2

+ b
5
sin (2t)+ b

10
cos (2t). (14)

Concluding, our method is able to capture the mean
value of the asymptotic solution, while neglecting its
oscillations. The oscillations of the asymptotic solution
of (7) are expected to be relatively small, so this method
seems very suitable for approximating the solution of this
system of ODEs.

2.3. Approximation for the asymptotic solution of
system (7)

For N = 1, when the strain sensed by the stress fibers
εθ is periodic over time with period T (or constant),
the asymptotic solution of system (7) tends to a func-
tion which has the same period and is slightly oscillating
around a constant value (Appendix 1). We assumed this
to be true also for higher values of N . We hypothesized
that

for t → +∞, �p
θ → �̃

p
θ for all θ , (15)

where �̃p
θ areperiodic functionswithperiodT and slightly

oscillating around constant values. Subsequently, as pro-
posed in the previous section, approximating the asymp-
totic value of�p

θ was achievable using the mean value of
�̃

p
θ over its period:

lim
t→+∞�

p
θ ≈ 1

T

∫ T

0
�̃

p
θdt. (16)

To obtain an analytical expression for this value
depending on the profile of the strain, other identities
and approximations were necessary. First of all, another
identity followed from (15) and the periodicity of �̃p

θ :

lim
t→+∞

∫ t+T

t

d�p
θ

dt
dt =

∫ T

0

d�̃p
θ

dt
dt = 0. (17)
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Moreover, using (15) and (16), and observing that fε,a
and fε̇ are periodic in case of periodic strain, the following
approximation was possible:

lim
t→+∞

1
T

∫ t+T

t

(
kf0 + kf1σmaxfε,afε̇

)
�

p
θdt

≈ 1
T2

∫ T

0
�̃

p
θdt
∫ T

0

(
kf0 + kf1σmaxfε,afε̇

)
dt. (18)

Finally, an analytical expression for (16) was obtained
substituting (8) in (7), integrating the resulting system of
ODEs between t and t + T for t → +∞ using the prop-
erties (17) and (18), and solving the subsequent algebraic
system with unknown variables 1

T
∫ T
0 �̃

p
θdt. As a result,

we were able to approximate the asymptotic solution of
the system of ODEs (7) with the quantity

lim
t→+∞�

p
θ ≈ 1

T

∫ T

0
�̃

p
θdt ≈ āθ∑

α
āα
N + kd

�tot, (19)

where α, the variable in the summation, is covering all
the considered stress fiber directions, and

āθ = 1
T

∫ T

0

(
kf0 + kf1σmaxfε,a(εθ )fε̇ (ε̇θ )

)
dt (20)

are auxiliary constants.

2.4. Approach for the computational simulation

Both the direct numerical integration of the ODE system
(7), and the application of the dynamic mechanical loads
are computationally too expensive to simulate weeks of
tissue remodeling. To overcome these limitations, we
focused on the asymptotic solution of system (7). The
stress fiber remodeling is much faster than the colla-
gen remodeling; thus, to account for the effects of the
stress fiber orientation on the collagen remodeling, the
final stress fiber configuration is more important than
its evolution over time. However, completely eliminating
the applied dynamic mechanical loads was not possi-
ble. When the deformation changes, the strain profile
sensed by the cells is different and this modification in-
fluences the system (7). Therefore, knowing how the
strains vary over the load cycle is necessary. We included
these variations in the stress fiber remodeling algorithm
using the coefficients (20) (and consequently (19)). Thus,
we reduced the number of applied dynamic mechanical
loads to the minimum value necessary to approximate
the auxiliary constants defined using (20). For the rest of
the remodeling period, the current maximum load was
applied.

The following approach was then developed:

• the dynamic mechanical loads were only applied
everyM ∈ N cycles;

• in the remainder of the simulation, the dynamic
loads were substituted with a constant mechanical
load equal to the current maximum value of the
dynamic load, while the dynamic features were used
only for the calculation of (20) and subsequently
(19);

• the current stress fiber volume fractions were
updated assuming that they evolve towards pre-
ferred values�p

θ ,P defined using (19) as

�
p
θ ,P := āθ∑

α
āα
N + kd

�tot, (21)

where the constants āθ were calculated using (20) at
the current configuration, and therefore

d�p
θ

dt
= 1
τ

(
�

p
θ ,P −�

p
θ

)
(22)

with τ a parameter representing the stress fiber
remodeling rate.

2.5. Assessment

To assess the quality of the analytical approximation, the
derived computational method was used to simulate the
stress fiber remodeling process inside cells residing in
three kinds of mechanical environments: having stiffness
anisotropy; undergoing cyclic strain with isotropic high
stiffness; and again undergoing cyclic strain, but with low
stiffness and uniaxially constrained. These simulations
were then repeated using the direct numerical integration
method used in Obbink-Huizer et al. (2014). Finally, the
results and computational times were compared.

Except for the derivation of the solution of system
(7) and the application of the dynamic stimuli, the two
computational simulation methods were identical; they
were performed with the same boundary conditions and
material parameters reported in Obbink-Huizer et al.
(2014). The main characteristics are reported below.

For the implementation of the material behavior, we
used the user subroutine UMAT of the commercial finite
element package ABAQUS (Dassault Systèmes Simulia
Corp., Providence, RI, USA). A 2D situation was con-
sidered in all cases, and cells were supposed to sense the
same strain as the substrate. Thus, they were sharing the
same mesh of the substrate composed of Nel hexahedral
elements (C3D8).



COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING 1351

Table 1. Parameters for the mechanical models.

Simulation name 3.3 kPa 13 kPa 5MPa 1a 1b 1c 2a 2b 2c microtissue

Nel 4 4 4 4 4 4 4 4 4 145
ENH 3.3 kPa 13 kPa 5MPa 1MPa 1MPa 1MPa 1MPa 1MPa 1MPa 10 kPa
Ef 6.6 kPa 26 kPa 10MPa – – – – – – –
μ 0.4 0.4 0.4 0.19 0.19 0.19 0.15 0.15 0.15 0.4
f – – – 0.01 Hz 0.1 Hz 1 Hz 0.052 Hz 0.034 Hz 0.009 Hz 0.5 Hz
A – – – 0.1 0.1 0.1 0.049 0.084 0.32 0.1
d – – – 0 s 0 s 0 s 3 s 3 s 3 s 0 s

Parameters taken from Obbink-Huizer et al. (2014).

The substrate was described as a Neo-Hookean com-
pressible material:

σNH =
[

ENH
3(1 − 2ν)

ln (J)
J

I + ENH
2(1 + ν)J

(F FT − J2/3 I)
]
,

(23)
where σNH is the Cauchy stress in the substrate, F is the
deformation tensor with determinant J = det (F), and
finally ENH and ν are respectively the Young’s modulus
and the Poisson’s ratio of the substrate. For the simu-
lations of the substrate having anisotropic stiffness, the
substrate was reinforced with additional fibers, such that
the total substrate stress σ sub was

σ sub = σNH + Ef λf ef ef , (24)

with Ef the fiber stiffness, λf the fiber stretch, and ef the
fiber direction.

The substrate was square-shaped, with a thickness
equal to the 10% of the other two dimensions. No stretch
was applied to the substrate with anisotropic stiffness,
while the loading shape of the dynamic mechanical stim-
uli present in the other two types of simulations is shown
in Figure 1. In addition, symmetry conditions were pre-
scribed in every simulation. The values of the parameters
used for the substrate material, and the ones for the stress
fiber model are reported in Tables 1 and 2 respectively.
The computational simulations were performed assum-
ing that no stress fibers were present at the beginning,
and their remodeling was calculated for a time period of
t = 10000 s. Finally, to take into account the change in
density of the discrete fibers in the deformed tissue, the
fiber volume fraction in each direction was multiplied
by the ratio of the undeformed angle between its two
neighboring directions to the corresponding deformed
angle (Obbink-Huizer et al. 2014).

3. Results

3.1. Anisotropic substrate

Experimental studies have demonstrated that cells on
anisotropic substrates orient along the stiffest direction
(Saez et al. 2007; Ghibaudo et al. 2008). This alignment
is more evident with decreasing absolute stiffness. The

Table 2. Parameters for the stress fiber model.

N 20
�tot 5.0e−2

σmax 2.0e+5 Pa
ε0 1.2e−1

ε1 1.7e−1

kv 5.0e+1 s
kf0 1.5e−6 s−1

kf1 7.00e−7 s−1Pa−1

kd 1.00e−3 s−1

Parameters taken from Obbink-Huizer et al. (2014).

computational model of Obbink-Huizer et al. (2014) is
able to capture these characteristics. As shown in Figure
2, the analytical approximation perfectly replicated the
results obtained using direct numerical integration. This
result is particularly evident in the bottom graphs of
Figure 2, which shows that the results are equal in all
fiber directions.

3.2. Cyclic strain applied to a high stiffness
substrate

On a high stiffness substrate subjected to a cyclic strain
of various amplitudes and frequencies, stress fibers
remodel to avoid the strain and align perpendicular to
the direction of cyclic strain (Kaunas et al. 2005; Tondon
et al. 2012). Figure 3 compares the results of the simula-
tions of this phenomenon. For every case, the analytical
approximation gave predictions very similar to the direct
numerical integration. For low frequencies (Figure 3(1a)
and (1b)) and low amplitudes (Figure 3(2a) and (2b)), the
predicted stress fibers distributions were approximately
the same. Larger differences were visible with increasing
frequency (Figure 3(1c)) or amplitude (Figure 3(2c)).
Nevertheless, even when the differences were quanti-
tatively larger (Figure 3, bottom), the results were still
qualitatively similar.

3.3. Cyclic strain applied to a low stiffness
environment

Finally, cells embedded in a uniaxially constrained col-
lagen gel exposed to cyclic strain were simulated. In the
experiments, despite the cyclic strain, the stress fibers
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complete load history

applied load in approximation load cycle to update
minimum strains

. . .
. . . . . .
. . .

A

T=1/f

d

d

Figure 1. Cyclic loading profile, adapted from Obbink-Huizer et al. (2014).

aligned parallel to the direction of this mechanical stim-
ulus (Foolen et al. 2012; Obbink-Huizer et al. 2014). In
addition to the equilibrium stress fiber distribution, the
deformation of the tissue resulting from the two simu-
lations was obtained. As can be seen from Figure 4, the
deformed configurations were very similar. Concerning
the stress fiber volume fractions, compared to the previ-
ous simulations (Figures 2 and 3), larger dissimilarities
were visible between the twomethods (Figure 5, bottom).
However, the main orientation of the actin stress fibers
was successfully estimated for every location using the
analytical approximation (Figure 5, top and center).

3.4. Comparison of the computational times

As illustrated in Figure 6, the analytical approximation
was computationally less expensive for every simulation.
The computational time necessary to run the simula-
tionswithdirect numerical integration strongly increased
when increasing the frequency or amplitude of the ap-
plied cyclic strain. Interestingly, using the analytical ap-
proximation, this behavior was no longer observed; the
computational time remained almost constant when the
frequency and amplitude of the stretch were changed. As
a result, as can be seen observing Figure 7, the proposed
strategy was particularly more efficient in case of large
amplitudes and frequencies of strain, as well as complex
deformations. For instance, the microtissue simulation
took slightly less than 19 h with the direct numerical
integration scheme (67960 s), and only 256 s using the
approach with the analytical approximation.

4. Discussion

The purpose of this study was to develop an approach to
efficiently predict actin stress fiber remodeling by means
of computational simulations. The model proposed by
Obbink-Huizer et al. (2014) is able to predict the stress
fiber alignment for a range of experimental conditions.
Thus, we chose to analyze this computational model and

to determine amethod to accelerate the related computa-
tional simulations. The asymptotic solution of the ODE
system which describes the stress fiber evolution was
analytically approximated. Then, an approach to bene-
fit from this approximation was derived, such that the
final outcome of the simulations can be obtained without
applying the complete dynamic deformation profile over
time.

To assess the quality of the proposed approach, the
same computational simulations reported in Obbink-
Huizer et al. (2014) were performed using direct numer-
ical integration and the analytical approximation. Then,
the results and computational times were compared. In
particular, actin stress fiber remodeling was simulated
for cells seeded on an anisotropic substrate and on a
uniaxially stretched isotropic substrate, and then for cells
embedded in a gel uniaxially constrained and stretched.

The main predicted SF alignment was similar when
the analytical approximation was used instead of direct
numerical integration. In particular, the results of the
two methods were identical when simulations of tissue
remodeling under static conditions were performed
(Figure 2). An explanation for this is that, in the abs-
ence of dynamic mechanical stimuli, the system (7) has
constant coefficients and, as a consequence, the approx-
imation (19) becomes the exact solution. Conversely,
the outcomes differed slightly when cyclic strain was
applied to the tissue. In particular, the dissimilarities
increased when increasing the strain frequency, strain
amplitude, or decreasing the stiffness (Figures 3 and 5).
All these changes involve larger deformations, so this
phenomenon underlines a correlation between the
deformation of the tissue and the quality of the approx-
imation; more deformation corresponds to larger
differences between the results obtained using direct
numerical integration and the analytical approximation.
These discrepancies may be due to a propagation of
approximations. On the one hand, the constants āθ used
to compute the preferred value�p

θ ,P (respectively defined
in (20) and (21))were calculatedbymeans of the profile of
the strain sensed by the cells, which was obtained using
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Figure 2. Stress fiber distribution for cells cultured on a substrate with varying values of substrate and horizontal reinforcing fiber
stiffness (ENH and Ef respectively). On top of each figure, there are the values of ENH , while Ef = 2ENH in every case. The results are
obtained using direct numerical integration (top, and black on the bottom) and the analytical approximation (center, and blue on the
bottom). In the top and central figures, the length of the lines in each direction is proportional to the associated stress fiber volume
fraction.
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Figure 3. Stress fiber distribution for cells cultured on a high stiffness substrate cyclically strained using several frequencies and
amplitudes (Table 1). The direction of the strain is horizontal. The results were obtained using direct numerical integration (top, and
black on the bottom) and the analytical approximation (center, and blue on the bottom). In the top and central figures, the length of the
lines in each direction is proportional to the associated stress fiber volume fraction.

the deformation. On the other hand, the deformations
depended on the stress fiber stress which was influenced
by the stress fiber organization and, therefore, by the
constants āθ .

In conclusion, as expected, the proposed method does
not provide a perfect solution of the ODE system (7), but

an approximation. However, the discrepancies between
the two computational approaches aremuch smaller than
the experimentally observed variations (Saez et al. 2007;
Ghibaudo et al. 2008; Kaunas & Hsu 2009; Foolen et al.
2012). Consequently, the inaccuracy of the herein pro-
posed method is acceptable.
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Figure 4. Equilibrium configuration of the deformed tissue resulting from the simulations of cells embedded in an environment with
low stiffness, cyclically strained in the horizontal direction at an amplitude of 10% and a frequency of 0.5 Hz. The black color highlights
the elements chosen to compare the local stress fiber distributions shown in Figure 5.
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Figure 5. Stress fibers distribution for cells cultured on a low stiffness substrate cyclically strained at an amplitude of 10% and a frequency
of 0.5 Hz. The direction of the strain is horizontal. The results were obtained using direct numerical integration (top, and black on the
bottom) and the analytical approximation (center, and blue on the bottom). In the top and central figures, the length of the lines in each
direction is proportional to the associated stress fiber volume fraction.

Most importantly, for every simulation the proposed
approach is faster than the direct numerical integration.
Interestingly, as shown in Figure 7, larger dissimilarities
between the two computational algorithms correspond

to larger advantages in terms of computational times.
Figure 6 suggests that this phenomenon may be again
related to the deformation magnitudes. Larger deforma-
tions lead to increased computational costs. Our
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Figure 6. Comparison of the computational times necessary for the simulations.

Figure 7. Comparison of the computational times necessary for the simulations.

approach was relatively unaffected by this process
because we used a small number of loading cycles. This
explanation is supported by the results shown in
Figure 6. In fact, for the simulations of cells seeded on
a uniaxially stretched isotropic substrate, the computa-
tional time varied with the frequency and amplitude of
the strain when direct numerical integration was used,
while it was constant for the analytical approximation.
Therefore, our approach overcomes the limitations re-

lated to the application of the dynamic mechanical stim-
uli, even if the inclusion of some loading cycles was still
needed due to the calculations of the auxiliary constants
āθ .

The proposed strategy can be generalized and inserted
into the context of numerical methods for the resolu-
tion of ODEs that have solutions with high frequencies
(Petzold 1981; Petzold et al. 1997; Hairer et al. 2006).
However, while these numerical methods are able to cap-
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ture the slow oscillations of the solutions and neglect the
fast oscillations, our method approximates the average
value of the solutions and neglects all the oscillations.
Therefore, it is suitable to solve problems only when a
slightly constant solution is expected. This is the case for
ODEs describing the process of SF remodeling, as these
fibers are expected to reach a homeostatic configuration.
Concerning the point of viewof computational efficiency,
further numerical analysis is necessary to compare the
proposed strategy to other numerical methods. Regard-
ing the analytical approximation, a similar approach was
previously used by Wei et al. (2008) to approximate the
computational model of Deshpande et al. (2006) for
stress fiber remodeling.However, this approximationwas
applied only to a single ODE and not generalized for a
system of ODEs. Furthermore, in our study, the approxi-
mation led to the development of a subsequent numerical
method suitable for finite element simulations where the
profiles of strain and strain rate can slightly vary over
time.

In summary, the previously shown results demon-
strate that the new approach provides efficient
computational simulations of stress fiber remodeling.
This result may have major consequences for future
research onpredicting tissue remodeling. In fact, not only
are these findings advantageous for stress fiber remodel-
ing simulations, but they also open to the possibility to
computationally investigate the long term effects of col-
lagen remodeling on soft tissues and to include the effects
of dynamic loading conditions. Moreover, the numerical
method derived in this research can be generalized, and
it is applicable to other ODE systems of first order with
periodic coefficients.
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Appendix 1. Analytical analysis of system (7) for
N = 1

In this paper, we approximated the asymptotic solution of theODE
system (7) which was introduced in Obbink-Huizer et al. (2014)
to describe the stress fiber remodeling process. In particular, the
analytical approximation was obtained assuming that the asymp-
totic behavior of the solution in case of a periodic strain is periodic
and slightly oscillating around a constant value. The assumption
can be explained through an analysis of the ODE system (7) for
N = 1. When only one direction for the stress fibers is considered,
defining the solely unknown variable as � and substituting (8)
into (7), the ODE system becomes

�̇+ (a + kd)� = a�tot, (A1)

where a is an auxiliary function dependent on the deformation
profile and defined as

a := kf0 + kf1σmaxfε,a(ε)fε̇ (ε̇)

= kf0 + kf1σmax

1 + 2/
√
5

(
1 + kv ε̇ + 2√

(kv ε̇ + 2)2 + 1

)
exp (− (ε/ε0)

2).

(A2)

The Equation (A1) is an ordinary differential equation with
coefficients dependent on the strain profile, and it has the analytical
solution

�(t) = exp
(−A(t)

) [
�tot

∫ t

0
exp
(
A(τ )

)
a(τ )dτ +�(0)

]
,

(A3)
where A is the following auxiliary function:

A(t) =
∫ t

0
(a(τ )+ kd)dτ. (A4)

The integrand of the function A(t) is strictly positive for every
value of t, thus

lim
t→+∞ exp (− A(t)) = 0. (A5)

As a consequence, the asymptotic behavior of the solution of
the ODE (A1) corresponds to the function

�̃(t) := �tot exp (− A(t))ψ(t), (A6)

where

ψ(t) =
∫ t

0
exp (A(τ ))a(τ )dτ. (A7)

So far, we did not use the periodicity of the applied strain. In what
follows, a representation for the function �̃(t)which benefits from
the properties of the periodic strain will be derived. First of all, if
we suppose that ε(t) is a periodic function of period T , then also a
has the same characteristics. In fact,

a(t + T) = kf0 + kf1σmax

1 + 2/
√
5

(
1 + kv ε̇(t + T)+ 2√

(kv ε̇(t + T)+ 2)2 + 1

)

× exp (− (ε(t + T)/ε0)2) (A8)

= kf0 + kf1σmax

1 + 2/
√
5

(
1 + kv ε̇(t)+ 2√

(kv ε̇(t)+ 2)2 + 1

)

× exp (− (ε(t)/ε0)2) = a(t). (A9)

Concerning A, proving that

A(t + T) = A(t)+ kdT +
∫ T

0
a(τ )dτ (A10)

is possible using algebraic properties of the integrals and the pe-
riodicity of a. As a consequence, the following identity can be
derived:

exp[A(t + jT)] = exp[A(t)]dj ∀j ∈ Z, (A11)

where d is a constant defined with d = exp (kdT + ∫ T0 a(τ )dτ).
The last term of the function �̃(t) that has to be analyzed is

ψ(t). Using the periodicity of a, Equation (A11), and algebraic
passages, the function ψ(t) can be rewritten as

ψ(t) = ψ(T)

⌊ t
T
⌋−1∑

j=0
dj + d

⌊ t
T
⌋
ψ

(
t −
⌊
t
T

⌋
T
)
. (A12)
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Substituting (A11) and (A12) in Equation (A6), a represen-
tation for �̃(t) can be found:

�̃(t) = �tot exp
(

−A
(
t −
⌊
t
T

⌋
T
))

×
⎛
⎜⎝ψ(T)

⌊ t
T
⌋∑

j=1
d−j + ψ(t −

⌊
t
T

⌋
T)

⎞
⎟⎠ , (A13)

where ψ(t) := ∫ t
0 a(τ ) exp (A(τ ))dτ . The last representation can

be derived noting that

lim
t→+∞

⌊ t
T
⌋∑

j=1
d−j = 1

d − 1
. (A14)

Concluding, we have derived a new representation for the func-
tion �̃(t) which describes the behavior of the solution of (A1):

�̃(t) = �tot exp
(

−A
(
t −
⌊
t
T

⌋
T
))

×
(
ψ(T)
d − 1

+ ψ

(
t −
⌊
t
T

⌋
T
))

. (A15)

Proving that the asymptotic solution of (A1) is periodic is
then possible using Equation (A15), and noting that t−⌊ t

T
⌋
T =

t + T −
⌊
t+T
T

⌋
T .

�̃(t) is also slightly oscillating around a constant value. In
fact, it is composed of a constant term ψ(T)

d−1 which is added to
an increasing function and multiplied with a decreasing function.
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