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ABSTRACT
A symmetric Lorenz map is obtained by ‘flipping’ one of the two
branches of a symmetric unimodal map. We use this to derive a
Sharkovsky-like theorem for symmetric Lorenzmaps, and also to find
cases where the unimodal map restricted to the critical omega-limit
set is conjugate to a Sturmian shift. This has connectionswith proper-
ties of unimodal inverse limit spaces embedded as attractors of some
planar homeomorphisms.
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1. Introduction

Topological properties of a continuous dynamical system are, in general, easier to under-
stand than those of discontinuous systems. For example, for continuous functions of the
real line there is the celebrated Sharkovsky Theorem [29], which says that if the map has a
periodic point of prime period n, it also has a periodic point of prime period m for every
m ≺ n in the Sharkovsky order

1 ≺ 2 ≺ 4 ≺ 8 ≺ · · · ≺ 4 · 7 ≺ 4 · 5 ≺ 4 · 3 · · · ≺ 2 · 7 ≺ 2 · 5 ≺ 2 · 3 · · · ≺ 7 ≺ 5 ≺ 3.

However, in general there is no analogue of the Sharkovsky theorem for discontinuous
functions of the reals.

In this paper we study Lorenzmaps, which are piecewisemonotone intervalmaps with a
single discontinuity point. Such Lorenz maps appear as Poincaré maps of geometric mod-
els of Lorenz attractors described independently by Guckenheimer [20], Williams [30]
and Afraimovich, Bykov and Shil’nikov [1]. For the class of ‘old’ maps (discontinuous
degree one interval maps) which also include Lorenz maps, a characterization of peri-
odic orbit forcing was given by Alsedá, Llibre, Misurewicz and Tresser in [3]. Hofbauer
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Figure 1. An increasing and decreasing symmetric Lorenzmapϕ andψ obtained from a unimodalmap
f.

in [22] obtained a result similar as in [3] using an oriented graph with infinitely many
vertices whose closed paths represent the periodic orbits of the map except that he did
not characterize completely the set of periodic points. The increasing Lorenz maps ϕ were
studied earlier by Rand in [28], where he noticed, based on observations from [23], that
periods follow Sharkovsky’s order. In particular, [28, Theorem 4] is an analogue of our
Theorem3.1. In [2] the connection betweenβ-expansions and Sharkovsky’s orderi is given.
Recently, Cosper [18] proved a direct analogue of Sharkovsky’s Theorem in special families
of piecewise monotone maps (a truncated tent map family).

In the present paper we combine some old and more recent results on the relation
between unimodal and Lorenz maps, including a version of Sharkovsky’s Theorem. The
basic idea is to explore the relation between a unimodalmap f and symmetric Lorenzmaps
ϕ and ψ obtained by ‘flipping the right branch’ and ‘flipping the left branch’ of the graph
of f respectively, see Figure 1.

For increasing Lorenz maps ϕ we prove in Theorem 3.1 that Sharkovsky’s Theorem
holds with the exception of the fixed points, and for decreasing Lorenz maps ψ we prove
in Theorem 3.2 that Sharkovsky’s Theorem holds possibly except for periods 2r, r ≥ 1.

We can turn ϕ into a proper circle endomorphism (with unique rotation number
independent of x ∈ S1) by setting (see also Figure 3):

ϕ̄(x) =
{
ϕ(1) = f̃ (1), x ∈ [0, a]; where a < c is such that ϕ(a) = ϕ(1),
ϕ(x), otherwise.

In Proposition 5.1 we calculate the rotation number of the family of such maps, and prove
that in the irrational rotation number case the restriction to omega limit set is a minimal
homeomorphism. We use techniques developed primarily for unimodal interval maps.

Next, we also give an implementation of Sturmian shifts in intervalmaps. For every Stur-
mian shift we assign a unimodal map (basically a kneading sequence) so that the unimodal
map restricted to its omega limit set is conjugate to that Sturmian shift.

Maps ϕ̄, besides being interesting on their own, prove also to be very useful in surface
dynamics. Namely, knowledge of their dynamics can be related to special orientation pre-
serving planar embeddings of inverse limit spaces with bonding maps being f. In the last
section of the paper we connect the map ϕ̄ to the study of unimodal inverse limit spaces
represented as attractors of some planar homeomorphisms (this was initially done in [9]
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using a map conjugated to ϕ̄). In Theorem 6.1 we give a compete characterization of acces-
sible points of tent inverse limit spaces embedded in such a way. Then Corollary 6.1 gives
a partial answer to Problem 1 in [4] by giving an example of tent inverse limit space which
has uncountably many inhomogeneities with only countably infinitely many of them not
being endpoints.

2. Preliminaries

Let I := [0, 1] be the unit interval, and f : I→ I a symmetric unimodal map, i.e. given the
involution x̃ = 1− x, we assume that f (x̃) = f (x) for every x. This means that the critical
point c = 1

2 , and by an appropriate scaling, we can assume that f (c) = 1. For example,
fa(x) = 1− a(x− 1

2 )
2 with a ∈ (0, 4] is the logistic family in this scaling.

We can turn f into an (increasing) symmetric Lorenzmapϕ : I→ I by flipping the right
half of the graph vertically around c = 1

2 , see Figure 1, giving the following result:

ϕ(x) =
{
f (x) if x ∈ [0, c],
f̃ (x) if x ∈ (c, 1].

The choice ϕ(c) = f (c) = 1 is arbitrary, only made to be definite.
Then, ϕ is semi-conjugate to f : f ◦ ϕ = f ◦ f . In fact

ϕn(x) =
{
f n(x) if f nis increasing at x;
f̃ n(x) if f nis decreasing at x.

(1)

We can also flip the left branch of f and obtain ψ := ϕ̃ which is called a decreasing
symmetric Lorenz map. Then ψ̃(x) = ψ(x̃) for all x, and by induction

ψn(x) =
{
ϕ̃n(x) = ϕ̃n(x) if n is odd,
ϕn(x) if n iseven.

Suppose then ψn is continuous at x. Then (1) implies that

ψn(x) = f n(x) if and only if

{
f n is decreasing at x and n is odd,
f n is increasing at x and n is even,

and ψn(x) = f̃ n(x) otherwise.

3. Sharkovsky’s Theorem for Lorenzmaps

We can describe the dynamics of f using the standard symbolic dynamics with the alphabet
{0, ∗, 1}, where the symbols stand for the sets [0, c), {c} and (c, 1] respectively. It is also
enough to restrict the study to the dynamical core [f (0), 1], since points from [0, f (0)) will
be mapped to the core under f. The kneading invariant ν ∈ {0, ∗, 1}N is the itinerary of the
point 1 = f (c). Since the itinerarymap x �→ i(x) is monotone in the parity-lexicographical
order on {0, ∗, 1}N, the kneading invariant is maximal admissible sequence, i.e. i(x) ≤pl ν

for all x ∈ I. Also, i(x) ≥pl σ(ν) for all x ∈ [f (0), 1]. It can be shown that every itinerary for
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which every shift is in parity-lexicographical ordering between σ(ν) and ν can be realized
by a point in the dynamical core (see e.g. [25]).

Also, if anm-periodic point y is closest to c from all the points in its orbit, and i(f (y)) =
e1 . . . em, then σ n(e1 . . . em) ≤pl e1 . . . em for all n ≥ 1. As a corollary, e1 . . . em−1e′m (if
admissible) is periodic of period k = m or k = m/2, which we prove in the rest of
this paragraph. To prove that, assume that there is k ≥ 3 such that for j = m/k we
can write e1 . . . em−1e′m = (e1 . . . ej)k. Then,since e1 . . . em is maximal among its shifts,
e1 . . . e′j <pl e1 . . . ej, and thus #1(e1 . . . ej) is odd. But then e1 . . . eje1 . . . e′j >pl (e1 . . . ej)2,
so σ (k−2)j(e1 . . . em−1em) >pl e1 . . . em−1em, violating the parity-lexicographical shift-
maximality of e1 . . . em.

Lemma 3.1: Let f be a unimodal map with a periodic point x of period n. Then for every
m ≺ n, m > 1, there are periodic points y and y′ of f such that

(a) y has prime period m and f m is decreasing at y, and
(b) y′ has prime period m and f m is increasing at y′ or y′ has prime period m/2 and f m/2 is

decreasing at y′.

If f n is decreasing at x, then the statement holds for m = n as well.

Proof: By Sharkovsky’s Theorem, f has at least one periodic orbit of period m. Take the
m-periodic point y closest to c, so the itinerary e := i(f (y)) is maximal (w.r.t. the party-
lexicographical order ≤pl) among all admissible m-periodic itineraries. Find e′ by setting
e′i = 1− ei if ei �= ∗ and i = km, k ∈ N. Otherwise we set e′i = ei. Let us first show that e′ is
admissible. Let j ≥ 1 be the smallest integer such that ej �= νj. If j<m, then both e, e′ <pl ν.
Ifm ≤ j and #{1 ≤ i ≤ m : ei = 1} is odd, then e′ <pl e <pl ν. The remaining case is #{1 ≤
i ≤ m : ei = 1} is even andm ≤ j.

Assume that m = j. Thus e = ν1 . . . ν′m. To show that e′ = ν1 . . . νm is admissible,
assume that e′ >pl ν. Since #{1 ≤ i ≤ m : νi = 1} is odd, we have ν <pl σ

m(e′) = e′ <pl
σm(ν), which contradicts shift-maximality of ν. Thus, e′ is admissible in this case. Also, e′
cannot be periodic of periodm/2 since e1 . . . em−1e′m has an odd number of ones. It follows
that e <pl e′, which contradicts the assumption that e is the closest to ν amongm-periodic
itineraries, so this case is not possible.

Assume thatm< j. Thenσm(e) ≤pl σ
m(ν) but since the first symbol atwhichσm(e) = e

and σm(ν) differ is j−m, the parity argument andm-periodicity of e imply that σm(ν) >pl
ν, which contradicts the shift-maximality of ν. So this case cannot occur either.

We conclude that e′ <pl ν, and since it is shift-maximal, σ n(e′) <pl ν for every n ≥ 0.
We still have to argue that σ n(e′) >pl σ(ν) for every n ≥ 0. Assume there is n ≥ 0 such
that σ n(e′) <pl σ(ν) and take the smallest such n. Since m > 1, e′ starts with 1, and thus
n>0. Also, since n is the smallest such integer, σ n−1(e′) = 1σ n(e′). Then σ n(e′) <pl σ(ν)

implies that σ n−1(e′) = 1σ n(e′) >pl ν, which is a contradiction. We conclude that e′ is
admissible, i.e. realized by a point y′ in [f (0), 1].

Moreover, we also conclude that f m is decreasing in y and increasing in y′. From the
discussion preceding the statement of the lemma, we conclude that the prime period of y′
ism orm/2.
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If y′ has prime period m/2 = k, then e = e1 . . . eke1 . . . ek−1e′k and e′ = e1 . . . ek. Since
σ k(e) <pl e, we conclude that #{1 ≤ i ≤ k : ei = 1} is odd, from which is follows that f k is
decreasing in y′. �

For discontinuous intervalmaps, there are previous results regarding the forcing relation
between periods, see e.g. [3] which however do not give the following result.

Theorem 3.1: Symmetric increasing Lorenz maps ϕ satisfy Sharkovsky’s Theorem, except
for the fixed points.

Proof: We start the proof for the symmetric Lorenz map ϕ with two claims.

(1) We first show that if ϕ has a periodic point of prime period n ≥ 1, then f also has a
periodic point of prime period n, unless, possibly, n is a power of 2, and then f has
a periodic point of prime period n or n

2 .Let ϕ
n(x) = x and assume ϕk(x) �= x for all

k<n. Then the same holds for x̃. At exactly one of x and x̃, say at x, f n is increasing,
so f n(x) = x. Assume k<n is such that f k(x) = x and take the smallest such (so that
x has prime period k). If k is not a power of two, then, since k divides n, Sharkovsky’s
Theorem gives the existence of a periodic point of prime period n as well. So we only
have to consider the case that k = 2r.If f k is increasing at x, then ϕk(x) = f k(x) = x,
a contradiction. Thus f k must be decreasing at x. In that case f 2k is increasing at x,
and thus ϕ2k(x) = f 2k(x) = x, from which we conclude that n = 2k = 2r+1 and x is
a periodic point of f of prime period k = n

2 .
(2) Next we show that ifm>1 is such that f has anm-periodic point, then there exists an

m-periodic point of ϕ. Assume f m(x) = x and f k(x) �= x for all k<m. If f m is increas-
ing at x, then ϕm(x) = x. Assume that there is k<m such that ϕk(x) = x. Then f k
must be decreasing at x, and we get f 2k(x) = ϕ2k(x) = x, thusm = 2k. Now f k(x̃) =
f k(x) = ϕ̃k(x) = x̃, so f 2k(x) = f k(x̃) = x̃, but on the other hand f 2k(x) = f m(x) = x,
which gives a contradiction.The remaining case is when f m is decreasing at x. By
Lemma 3.1 and its proof, we find a point x′ such that f m(x′) = x′ and f m is increasing
at x′. If m is indeed the prime period of x′, then we can use the above argument to
conclude that x′ is m-periodic point of ϕ. Otherwise, the prime period of x′ is m/2
and f m/2 is decreasing in x′. But then ϕm/2(x′) = x̃′ and ϕm(x′) = x′, so x′ is periodic
for ϕ with prime periodm.However, ifm = 1, then e = 1, e′ = 0 and x′ lies in general
outside the core (and in fact outside I), so it is lost in the construction of ϕ. Indeed, ϕ
has a fixed point only if it comes from a ‘full’ unimodal map f (i.e. a unimodal map
that exhibits all possible itineraries of points, such as e.g. the quadratic Chebyshev
polynomial f (x) = 4x(1− x)).

To finish the proof, assume that ϕ has an n-periodic point. By the first part of the proof,
there exists an n-periodic point for f (or possibly an n/2-periodic point if n is a power of 2).
Sharkovsky’s Theorem implies that f has anm-periodic point for everym ≺ n. The second
part of the proof implies that there exists anm-periodic point of ϕ providedm �= 1. �

There are maps f with periodic points of period 2r and no other periods. If r is maximal
with this property, we say that f is of type 2r. If f has periodic points of all periods of the
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form 2r we say that f is of type 2∞. The union of these two is called type  2∞. If x is
a 2r-periodic point of a unimodal map f of type  2∞, then we say that x has the pattern
from the first period doubling cascade; itinerary of such point is the (shift of the) 2r-periodic
continuation of the Feigenbaum itinerary νF = νF1 νF2 νF3 . . . which equals

1.0.11.1010.10111011.1011101010111010.1011101010111011101110101 . . . (2)

where the dots indicate the powers of 2.
Studying the decreasing symmetric Lorenz maps ψ we can obtain a theorem similar to

Theorem 3.1.

Theorem 3.2: Decreasing symmetric Lorenz mapsψ satisfy Sharkovsky’s Theorem, possibly
except for periods 2r, r ≥ 1.

Proof: The proof for a decreasing symmetric Lorenz map ψ is similar as for increasing
Lorenz maps. We only need to repeat the two claims.

(1) Let ψn(x) = x and assume ψk(x) �= x for all k<n. Then the same holds for x̃. For
even n the proof is the same as for ϕ in Theorem 3.1, so assume that n is odd. At
exactly one of x and x̃, say at x, f n is decreasing, so f n(x) = x. Assume k is a divisor
of n is such that f k(x) = x. Then k and n/k are odd and f k is decreasing as well, so
ψk(x) = x, which is a contradiction.

(2) Assume that f has a n-periodic point and take m ≺ n. (We note that the claim does
not hold for m = n. Indeed, if n = m = 3 and the 3-periodic point is emerging in a
saddle node bifurcation, thenψ does not yet have a 3-periodic point.) By Lemma 3.1,
f has periodic points x of prime periodm, and ifm is not a power of two, then we can
take x orientation preserving as well as orientation reversing. Assume that f k(x) �= x
for all proper divisors k ofm.
• If m is odd, we take x orientation reversing, so that ψm(x) = x. Suppose that

j is a proper divisor of m such that ψ j(x) = x. Then f j(x) = x̃ because f j(x) �=
x by assumption. Also, x = ψm−j(ψ j(x)) = ψm−j(x) so we also conclude that
f m−j(x) = x̃. But then x = f m(x) = f m(x̃) = f m−j(f j(x̃)) = f m−j(x̃) = x̃, a con-
tradiction. Thereforem is the prime period of x for ψ .

• If m is even, we take x orientation preserving, so that ψm(x) = x. Analogously as
above we prove thatm is the prime period of x for ψ .

This shows that ψ satisfies Sharkovsky’s Theorem with the potential exception of peri-
odic points in the first period doubling cascade. For instance, if fa(x) = 1− a(x− 1

2 )
2 with

4 > a > aFeig (where aFeig is the Feigenbaum parameter, then ψ does not have a point of
prime period 2, despite the fact that it has periods n � 2. More generally, if fa is r−1 renor-
malizable of period 2 (so in contrast with Theorem 3.1 the final renormalization has period
2r−1), then ψ has no periodic point of period 2r. The map ψ always has a fixed point, so
we don’t need to make exceptions for fixed points. �
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4. Cutting times

We recall some notation fromHofbauer towers and kneading maps that we use later in the
paper; for more information on these topics, see e.g. [11, Chapter 6].

Recall that c denotes the critical point 1/2. For n ∈ N denote by cn := f n(c). We assume
that c2 < c (otherwise the dynamics of f is trivial).

Define inductively D1 := [c, c1], and

Dn+1 :=
{
[cn+1, c1] if c ∈ Dn;
f (Dn) if c /∈ Dn.

We say that n is a cutting time if c ∈ Dn. The cutting times are denoted by S0, S1, S2, . . .
(where S0 = 1 and S1 = 2). They were introduced in the late 1970s by Hofbauer [21]. The
difference between consecutive cutting times is again a cutting time (see e.g. Subsection 6.1
in [11]), so we can define the kneading map Q : N→ N ∪ {0} as

SQ(k) := Sk − Sk−1.

We call f long-branched if lim infn |Dn| > 0, which is equivalent to lim infk |DSk | > 0 and
also to lim supk Q(k) <∞.

A purely symbolic way of obtaining the cutting times is the following. Recall that we use
the itinerary map i for f (and also for ϕ) with codes 0 for [0, c) and 1 for (c, 1]. We will use
the modified kneading sequence ν = limx↗c i(x) = 10 · · · ∈ {0, 1}N, where we tradition-
ally omit the zero-th symbol. Note that if c is not periodic, ν = i(c1) and the modification
is only made so that the itineraries do not contain symbol ∗ (we take the smaller of the two
sequences in parity-lexicographical ordering).

We can split any sequence e ∈ {0, 1}N into maximal pieces (up to the last symbol) that
coincide with a prefix of ν. To this end, define

ρ : N→ N, ρ(n) = max{k > n : en+1en+2 . . . en+k−1is prefix of ν}. (3)

That is, the function ρ depends on e and ν, but we will suppress this dependence. When
we apply this for e = ν, we obtain

S0 = 1, Sk+1 = ρ(Sk),
or in other words Sk = ρk(1) for e = ν and k ≥ 0.

Define the closest precritical points ζ ∈ I as any point such that f n(ζ ) = c for some n ≥ 1
and f k(x) �= c for all k ≤ n and x ∈ (ζ , c). By symmetry, if ζ is a closest precritical point,
ζ̃ = 1− ζ is also a closest precritical point. If ζ ′ ∈ (ζ , c) is a closest precritical point of the
lowest n′ > n, then the itineraries of f (c) and f (x), x ∈ (ζ̃ ′, ζ̃ ) coincide for exactly n′ − 2
entries, and differ at entry n′ − 1. Hence n′ is a cutting time, say n′ = Sk′ for some k′ ≥ 1.
We use the notation ζ = ζk′ if n′ = Sk′ . That is

· · · < ζk < ζk+1 < · · · < c < · · · < ζ̃k+1 < ζ̃k < · · · f Sk(ζk) = f Sk(ζ̃k) = c. (4)

and

x ∈ ϒk := (ζk−1, ζk] ∪ [ζ̃k, ζ̃k−1) ⇒ i(f (x)) = ν1 . . . νSk−1ν′Sk . . . (5)
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Figure 2. The points ζSQ(k) < cSk−1 < ζSQ(k)−1 and their images under f SQ(k) .

Applying this to x = f m(c), we obtain that ρ(m)−m is a cutting time.
In particular,

f Sk−1(c) ∈ ϒQ(k) = (ζQ(k)−1, ζQ(k)] ∪ [ζ̃Q(k), ζ̃Q(k)−1), (6)

see Figure 2, and the larger Q(k), the closer f Sk−1(c) is to c.
Let κ = min{j > 1 : νj = 1}. Then we can define the co-cutting times as

Ŝ0 = κ , Ŝk+1 = ρ(Ŝk),

The cutting and co-cutting times are always disjoint sequences (see [13, Lemma 2]), and
{Ŝk} = ∅ if f is the full unimodal map (because then ν = 10000 . . . and κ is not defined).
Furthermore, there is a co-kneading map Q̂ : N→ N ∪ {0} such that

Ŝk = Ŝk−1 + SQ̂(k).

Proposition 4.1: Let f be a unimodal map with the kneading map Q. If Q(k)→∞, then
Q̂(k)→∞ and ω(c) is a minimal Cantor set.

Proof: In [12, Lemma 3.6 and Proposition 3.2] and [13, Lemma 4 and Proposition 2] it
was shown that Q(k)→∞ implies Q̂(k)→∞ and that c is persistently recurrent. This
property was introduced by Blokh and implies minimality of ω(c), see [7] and also [14,
Section 3]. �

In fact, lim supk Q(k) = ∞ implies that lim supk Q̂(k) = ∞, but not vice versa. If both
lim supk Q(k) <∞ and lim supk Q̂(k) <∞, then c is non-recurrent, but as we will see in
Section 6, there are maps where lim supk Q(k) < lim supk Q̂(k) = ∞.

5. Sturmian shifts

There aremultiple ways of defining Sturmian shifts and we take the one using the symbolic
dynamics of circle rotations.
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Definition 5.1: Let Rα : S1→ S1, x �→ x+ α mod 1, be the rotation over an irrational
angle α. Let β ∈ S1 and build the itinerary u = (un)n≥0 by

un =
{
1 if Rnα(x) ∈ [0,α),
0 if Rnα(x) /∈ [0,α).

(7)

Then u is called a rotational sequence. The minimal (and uniquely ergodic) shift space
obtained as Xα = {σ n(u) : n ∈ N} is the Sturmian shift of frequency α, and each x ∈ Xα is
called a Sturmian sequence.

The purpose of this section is to describe cases when unimodal maps restricted to their
critical omega-limit sets ω(c) are conjugate to Sturmian shift. There are in fact multiple
ways of choosing the kneading mapQ so that (ω(c), f ) is Sturmian. The simplest way is by
means of the Ostrowski numeration, see [26]. Indeed, let α ∈ I be some irrational number
and let pn/qn be the convergent of its continued fraction expansion. Thus q−1 = 0, q0 = 1
and qn = anqn−1 + qn−2. Take kn =

∑n
j=0 aj and then cutting times as follows:⎧⎪⎨⎪⎩

Sk = k+ 1 for 0 ≤ k ≤ a1,
Skn = qn for n ≥ 1,
Skn+a = aqn + qn−1 for 1 ≤ a ≤ an, n ≥ 1.

It is clear that Q(k)→∞ in this case, and the {Sk} interpolate between the numbers qn,
see also [16]. However, f : ω(c)→ ω(c) is in general not invertible, since c itself and/or
other points in the backward orbit of c have two preimages in ω(c), see also [15]. As such
(ω(c), f ) is conjugate to the one-sided Sturmian shift.

However, also when Q(k) is bounded (in fact also when Q(k) ≤ 1) there are examples
where (ω(c), f ) is Sturmian, see [12, Chapter III, 3.6]. Let ϕ : I→ I be an increasing sym-
metric Lorenz map as in previous sections. In addition to i, another way of coding orbits
of unimodal maps (used by Milnor & Thurston [25], Collet & Eckmann [17] and Derrida
et al. [19]) is as follows: set ϑ0(x) = +1 and for n ≥ 1,

ϑn(x) =
n−1∏
j=0
(−1)ij(x) =

{
+1 if f n is increasing at x;
−1 if f n is decreasing at x.

(8)

It follows that ϑ(f (x)) = σ(ϑ(x)) if i0(x) = 0 and ϑ(f (x)) = −σ(ϑ(x)) if i0(x) = 1. For
the itinerary iϕ of x ∈ I \⋃n

j=0 ϕ−j(c) under the function ϕ this means that

iϕn(x) = 0⇔

⎧⎪⎨⎪⎩
in(x) = 0 and ϑn(x) = +1,
or
in(x) = 1 and ϑn(x) = −1.

⇔ ϑn+1(x) = +1,

and

iϕn(x) = 1⇔

⎧⎪⎨⎪⎩
in(x) = 1 and ϑn(x) = +1,
or
in(x) = 0 and ϑn(x) = −1.

⇔ ϑn+1(x) = −1,

In other words, iϕn = (1− ϑn+1(x))/2. This gives iϕ ◦ ϕ(x) = σ ◦ iϕ(x). Also, if νϕ =
limx↗c iϕ(x) with the first symbol neglected, and defined ρϕ(n) = min{k > n : νϕk =
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ν
ϕ

k−n}, then we recover the cutting times as S0 = 1, Sk+1 = ρϕ(Sk). (The co-cutting times
can be recovered as Ŝ0 = κ = min{k ≥ 1 : νϕk = 0} and Ŝi+1 = min{k > Ŝi : ν

ϕ

k �= νϕk−Ŝi}.)
See the example in the proof of Proposition 5.1.

To each x ∈ I we can assign a rotation number by first assigning a lift� : R→ R to the
Lorenz map ϕ:

�(x) =

⎧⎪⎨⎪⎩
ϕ(x) if x ∈ [0, c], ϕ(c) = 1;
ϕ(x)+ 1 if x ∈ (c, 1);
�(x− n)+ n if x ∈ [n, n+ 1).

Then�(x) mod 1 = ϕ(x mod 1) and the rotation number is defined as

α(x) = lim sup
n→∞

�n(x)− x
n

, (9)

Since ��(x)� = �x� if and only if x mod 1 ∈ [0, c) and ��(x)� = �x� + 1 otherwise, we
obtain

α(x) = lim sup
n→∞

1
n
#{0 ≤ k < n : iϕk (x) = 1}

= lim sup
n→∞

1
n
#{1 ≤ k ≤ n : ϑk(x) = −1}. (10)

Next we turn ϕ into a proper circle endomorphism (with unique rotation number inde-
pendent of x ∈ S1) by setting:

ϕ̄(x) =
{
ϕ(1) = f̃ (1), x ∈ [0, a]; where a < c is such that ϕ(a) = ϕ(1),
ϕ(x), otherwise.

Also let b> c be such that ϕ(b) = a, see Figure 3.
The circle endomorphism ϕ̄ obtained from ϕ was already studied in the last section of

[12].

Figure 3. A stunted symmetric Lorenz map ϕ̄ as a circle endomorphism.
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Proposition 5.1: Assume that f is a unimodal map with cutting times {Sj}j≥0. Let b> c be
such that ϕ̄(b) = a, see Figure 3. Then the rotation number of the corresponding ϕ̄ equals

α =

⎧⎪⎪⎨⎪⎪⎩
k
Sk
∈

[
1
2
, 1

]
∩Q if k is minimal such that f Sk(c) ∈ (b̂, b),

lim
k→∞

k
Sk
∈

[
1
2
, 1

]
if no such k exists.

In the latter case, the kneading map Q(j) ≤ 1 for all j ∈ N, and if α /∈ Q, then f : ω(c)→
ω(c) is a minimal homeomorphism.

Proof: Recall that f (c) = 1 and assume that there is a minimal integer n ≥ 1 such that
ϕn(1) ∈ (c, b]. Then ϕ̄n+1(1) ∈ (0, a] and ϕ̄n+2(1) = ϕ̄(1) is periodic with period n+ 1.

Recall that b> c is such that ϕ̄(b) = a, so f (b) = ã > c, and f 2(b) = f (a) = ˜f 2(c) > c.
Therefore b ∈ (ζ̃2, ζ̃1) for closest precritical points ζ̃1 > ζ̃2 > c, see (4), and b̃ ∈ (ζ1, ζ2).
There are two possibilities:

• ϕn(1) = f n(1). In this case f n is increasing at 1 and thus n+ 1 = Sk is a cutting time.
• ϕn(1) = f̃ n(1). In this case f n is decreasing at 1 and again n+ 1 = Sk is a cutting time.

By minimality of k, f Sj(c) /∈ [b̃, b] \ {c} for all j< k, and hence the kneading sequence ν
of f consists of blocks 0 or 11. For example:

ν = 1. 0. 0. 1 1. 0. 1 1. 0. 1 1. 1 0 1 . . .

ϑ = +1 − 1 − 1 − 1 + 1− 1 − 1+ 1 − 1− 1+ 1 − 1 + 1+ 1− 1 . . .

νϕ = 1. 1. 1. 0 1. 1. 0 1. 1. 0 1. 0 0 1 . . .

where dots indicate cutting times and the bold symbol the position Sk. Since n+ 1 is the
period of ϕ̄(1), this shows that #{1 ≤ j ≤ Sk : ϑj = −1} = k, and in view of (10) we have
α = k/Sk.

If there is no such minimal n, i.e. ϕn(1) /∈ (b̃, b) for all n ≥ 1, then f n(1) /∈ (b̃, b) for
all n ≥ 1 (and in particular Q(j) ≤ 1) for all j ≥ 1. A counting argument similar to the
above shows that α = lim supk→∞ k/Sk = limk→∞ k/Sk. It is possible that α is rational,
e.g. for the logistic map fa(x) = 1− a(x− 1

2 )
2 with a = 3.5097. In this case, ν = (101)∞

and ϕ̄i(1) converges to an attracting orbit of period 3. Also for the tent map T(x) =
1− λ|x− 1

2 | with λ = 1
2 (1+

√
5), the critical orbit { 12 , 1, 34 − 1

4
√
5} has period three and

avoids [0, a].
If α /∈ Q, then ωϕ̄(c) is the Cantor set, disjoint from [0, a] and minimal w.r.t. the

action of ϕ̄. Under the semi-conjugacy f between f and ϕ (indeed f ◦ f = f ◦ ϕ), this
projects to a minimal map f : ωf (c)→ ωf (c). We will show that f : ωϕ(c)→ ωf (c) is in
fact a homeomorphism, from which it follows that f : ωf (c)→ ωf (c) is also a homeo-
morphism. Assume by contradiction that x < c < x̃ are points in ωϕ(c) such that f (x) =
f (x̃) = y ∈ ωf (c). Then, since f is the semi-conjugacy between ϕ and f, we must have
f (ϕn(x̃)) = f (ϕn(x)) = f n(y) for every n ∈ N. Note that ϕn(x̃) = ϕ̃n(x) for every n ∈ N,
and thusϕn(x̃) �= ϕn(x), unlessϕn(x) = c, and thus f n(x) = c. Since c is not periodic, there
exists N ∈ N such that ϕn(x̃) �= ϕn(x) for all n ≥ N, and thus f n(y) has two f -preimages
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in ωϕ(c). Since f : ωf (c)→ ωf (c) is minimal, for every ε > 0 there exists infinitely many
y′ ∈ orbf (y) which are ε-close to f 2(c) = f (1). For sufficiently small ε, an f -preimage of a
point ε-close to f (1) will be contained in [0, a]. Since every point in orbf (y) eventually has
both f -preimages in ωϕ(c), we conclude that ωϕ̄(c) ∩ [0, a] = ωϕ(c) ∩ [0, a] �= ∅, which is
a contradiction. �

We argued so far that there exist stunted Lorenz maps for which orbϕ̄(c) is a Cantor
set with dynamics similar to circle rotations (in fact to Denjoy circle maps) with irrational
rotation number, and that there are also unimodal maps with kneading map bounded by
1, such that f |ω(c) is semi-conjugate to a circle rotation, and in fact, the rotation number is
α = limk→∞ k/Sk. Therefore (ω(c), f ) represents a Sturmian shift.

In fact, every irrational rotation number (hence every Sturmian shift) can be real-
ized this way, as we can prove by studying this rotation number closer. Indeed, let α =
[0; a1, a2, a3, . . . ] be the continued fraction expansion of ρ, with convergents pi

qi . For the
irrational rotation Rα , the denominators qi are the times of closest returns of any point
x ∈ S1 to itself, and these returns occur alternatingly on the left and on the right. If we
assume that Rqiα (x) is to the right of x, and set Aqi = [x,Rqiα (x)], then the first iterate k such
that Rkα(Aqi) � x is k = qi+1 and Rqi+1α (x) is to the left of x.

For the map ϕ̄, the closest returns on the left indeed accumulate on c, but the right
neighbourhood [c, b) is the preimage of the plateau [0, a) and no further iterates of c enter
that region. Instead, returns on the left accumulate on b.

Translating this back to the unimodal map f with kneading sequence ν = ν1ν2ν3 . . .,
the closest returns on the left correspond to closest returns at co-cutting times (recall that
there are no cutting times Sj so that f Sj(c) ∈ (b̃, b)). If qi is such a co-cutting time, then
(recalling the function ρ from (3) and using the above argument), the Farey convergents
ρa(qi) = qi + aqi+1 are also the next co-cutting times for 1 ≤ a ≤ ai+1, and in particular,
ρai+1(qi) = qi+2.

The closest returns on the right correspond to cutting times, but this time f qi(c)
accumulate on b, and because f 3(b) = f 3(c), the itinerary of b is

i(b) = b1b2b3b4b5 · · · = 11ν3ν4ν5 . . . (11)

Therefore we need to consider the analogous function ρb(m) = min{n > m : bn �= bn−m},
and find that ρab(qi) = qi + aqi+1 for 1 ≤ a ≤ ai+1, and in particular, ρai+1b (qi) = qi+2.

For example, if ai ≡ 2, so the qis are the Pell numbers 2, 5, 12, 29, 70, 189, . . ., then we
obtain

ν = 10.1′1.1′1.0.11.11.0.11.11.1′1.0.11.11.0.11.11.1′1.0 . . .

where dots indicate cutting times and primes co-cutting times. The bold symbols indicate
the positions qi. In fact, for each i

νqi+1−qi+1 . . . νqi+1−1νqi+1 = ν1 . . . νqi−1νqior ν1 · · · νqi−1ν′qi for each even i ∈ N,

and therefore c has two limit itineraries limx↗c i(x) = 0ν and limx↘c i(x) = 1ν, but c has
only one preimage in ω(c).
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Figure 4. Constructing the outside and stunted Lorenz map for a tent map Tλ.

6. Outsidemaps and unimodal inverse limit spaces

Boyland, de Carvalho and Hall in [9, Section 3] present a different way of creating a cir-
cle endomorphism from a unimodal map. They call this the outside map B, and use it
to study the inverse limit space of the unimodal map as attractors of sphere homeomor-
phisms. Starting from a unimodal map f : I→ I such that the second branch is surjective
(i.e. f ([c, 1]) = I), they double the interval to a circle R/2Z = [0, 2]/0∼2, and let B map
the second branch onto [1, 2] by flipping this branch, and then extend the definition of
f on [1, 2− d] for the unique point d ∈ (c, 1] for which f (d) = f (0) to cover the interval
[0, f (0)]. The remaining interval [2− d, 2] is then mapped to the constant f (0). That is

B(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f (x) if x ∈ [0, c);
2− f (x) if x ∈ [c, 1);
f (2− x) if x ∈ [1, 2− d);
f (0) if x ∈ [2− d, 2),

see Figure 4. Let us carry this out for the family of cores of tent maps Tλ : I→ I,

Tλ =

⎧⎪⎪⎨⎪⎪⎩
λx+ 2− λ, x ∈

[
0,
λ− 1
λ

]
,

−λx+ λ, x ∈
[
λ− 1
λ

, 1
]
,

for all λ ∈ (1, 2].
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Then the map

ϕ̄(x) =

⎧⎪⎨⎪⎩
λ

2
if 0 ≤ x ≤ a = λ− 1

λ
;

λ

(
x− 1

2

)
mod 1 if a = λ− 1

λ
≤ x < 1,

on R/Z (12)

and the outside map

B(x) =

⎧⎪⎨⎪⎩
λ(x− 1)+ 2 mod 2 if 0 ≤ x <

2
λ
;

2− λ if
2
λ
≤ x < 2,

on R/2Z

are conjugate with conjugacyG : R/Z→ R/2Z, G(x) = 2(1− x) mod 2, i.e.G ◦ ϕ̄ = B ◦
G. But the conjugacy reverses orientation, so the rotation numbers are each others opposite,
α for ϕ̄ versus 1− α for B.

Outside map B was used in [9] to give a complete description of the prime end and
accessible points structure in unimodal inverse limits embedded in the plane as attractors
of an orientation-preserving homeomorphism of the plane (or the two-dimensional sphere
S2).

In the rest of the section we restate some results from [9] and relate them to the
established conjugacy between maps B and ϕ̄.

Recall that I denotes the unit interval [0, 1]. The inverse limit space with the bondingmap
g : I→ I is a subspace of the Hilbert cube IN0 defined by

lim←−(I, g) := {(x0, x1, x2, . . .) ∈ IN0 : g(xi+1) = xi, i ∈ N0}.

Equipped with the product topology, the space lim←−(I, g) is a continuum, i.e. compact and
connected metric space. Define the shift homeomorphism ĝ : lim←−(I, g)→ lim←−(I, g),

ĝ((x0, x1, . . .)) := (g(x0), x0, x1, . . .)for (x0, x1, . . .) ∈ lim←−(I, g).

There is a natural way to make lim←−(I, g) an attractor of an orientation preserving sphere
homeomorphism. Such embeddings are called Brown-Barge-Martin embeddings (abbre-
viated BBM embeddings), see [6] for the original construction, [8] for generalization of
the construction to parametrized families and [9] for the construction applied to uni-
modal inverse limits. As the outcome of the BBM embedding of lim←−(I, g), one obtains
an orientation-preserving homeomorphismH : S2→ S2 so thatH|lim←−(I,g) is topologically
conjugate to ĝ and for every x ∈ S2 \ {point}, and ω(x,H) is contained in lim←−(I, g).

In [9] the authors study in detail BBM embeddings of inverse limits of unimodal maps
satisfying certain (mild) conditions, which are in particular satisfied for the tentmap family
Tλ, λ ∈ (

√
2, 2]. For simplicity we state the following results for tentmaps only, noting that

they can be generalized to a much wider class of unimodal maps.
Fix the slope λ ∈ (√2, 2] for the tent map Tλ. Let B be the corresponding outside map.

Denote by Ŝ = lim←−{S
1,B}. Theorem 4.28 from [9] shows that there is a natural homeo-

morphism h between Ŝ and the circle P of prime ends of lim←−(I,Tλ). Then h conjugates the
shift homeomorphism B̂ of the outside map to the action ofH on P, so that the prime end
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rotation number of lim←−(I,Tλ) is equal to the rotation number (as defined in (9)) of B̂, see
[9, Lemma 4.30]. Finally, Corollary 4.36 in [9] gives that the prime end rotation number
of B̂ is equal to the rotation number of B. Since ϕ̄ and B are conjugate, the results above
follow analogously and by Proposition 5.1 we obtain that the prime end rotation number
of B̂ equals 1− α.

Proposition 6.1: Let Tλ be a tent map with slope λ ∈ (√2, 2] and let ϕ̄ be corresponding
stunted Lorenzmapwith rotation number α. Let lim←−([0, 1],Tλ) be embedded inS2 by a BBM
construction. Then the prime end rotation number of T̂λ on lim←−([0, 1],Tλ) equals 1− α.

Remark 6.1: In [9], the prime end rotation number is expressed in terms of the height
q(ν) of the kneading sequence of a unimodal map f (see the definition of height in e.g.
[9, Section 2.6]). Proposition 5.1 thus gives an algorithm to compute the height of the
kneading sequence in the following way: find the smallest n ∈ N such that cn ∈ (1− b, b),
and n is a cutting time n = Sk. Then the height equals 1− k/Sk. If no such n exists,
then the height equals 1− limk→∞ k/Sk. Recall that b> c is such that f 2(b) = ̂f 2(c), so
the itinerary of b is i(b) = 11ν3ν4ν5 . . ., see (11), where ν = i(f (c)) = 10ν3ν4ν5 . . . is
the kneading sequence. Hence, the previous condition can be expressed with symbols as
01ν3ν4ν5 . . . ≺ νnνn+1νn+2 . . . ≺ 11ν3ν4ν5 . . ., where ≺ denotes the parity-lexicographic
ordering on symbolic sequences.

Furthermore, [9] gives the complete characterization of accessible points the BBM
embeddings of lim←−(I,Tλ) using the outside map. We emphasize it here and connect it to
the stunted Lorenz map ϕ.

Let S : [0, 2]→ R2 be a circle parametrisation defined by S(t) = ( 12 + 1
2 cos(π +

tπ), 12 sin(π + tπ)) for t ∈ [0, 2]. Let τ : S([0, 2])→ I be the vertical projection, i.e.
τ((x, y)) = x for (x, y) ∈ S([0, 2]). Furthermore, let γ = (S(2/λ), S(2)). As before, let Ŝ =
lim←−{S([0, 2]),B}.

Proposition 6.2 (Theorem 4.28(d), Remark 4.15, Definition 4.12, Corollary 4.14 in
[9]): Let lim←−(I,Tλ) be embedded in R2 by an orientation-preserving BBM embedding.
Then (x0, x1, x2, . . .) ∈ lim←−(I,Tλ) is accessible if and only if there exists N ≥ 0 and y =
(y0, y1, y2, . . .) ∈ Ŝ such that yi �∈ γ for all i>N and such that xN+j = τ(yN+j) for all j ≥ 0.

Using the conjugacy of B and ϕ̄, we can state the previous theorem in terms of ϕ̄ directly.
We parametrize the circle above as T : I→ R2 as T(t) = ( 12 + 1

2 cos(π + 2tπ), 12 sin(π +
2tπ)) and let δ = (T(0),T(λ−1

λ
)). The vertical projection onto a horizontal diameter is

denoted by τ as above (that is actually τ ◦ G, where G is the conjugacy between ϕ̄ and B
and it is equal to the vertical projection). In particular, τ ◦ ϕ̄(x) = Tλ ◦ τ(x) for all x �∈ δ.

Theorem 6.1: Let Tλ be a tent map with slope λ ∈ (√2, 2] and let ϕ̄ be correspond-
ing stunted Lorenz map with rotation number α. Let lim←−(I,Tλ) be embedded in S2 by
an orientation-preserving BBM embedding. Let Ŝ = lim←−(S

1, ϕ̄). A point (x0, x1, x2, . . .) ∈
lim←−(I,Tλ) is accessible if and only if there exists N ≥ 0 and y = (y0, y1, y2, . . .) ∈ Ŝ such that
yi �∈ δ for all i>N and such that xN+j = τ(yN+j) for all j ≥ 0.
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We say that a point x = (x0, x1, . . .) ∈ lim←−(I,Tλ) is a folding point if xn ∈ ωTλ(c) for
every n ≥ 0. In the context of inverse limits on intervals this is equivalent to saying that x
has no neighbourhood homeomorphic to the Cantor set times an open interval (see [27]).
In the case when rotation number of ϕ̄ is irrational, Proposition 5.1 and its proof imply that
f : ωϕ(c)→ ωTλ(c) is a homeomorphism (recall that orbits of c under ϕ and ϕ̄ are the same
when the corresponding height of the tent map is irrational). From that and Theorem 6.1
we have the following:

Corollary 6.1: If λ ∈ (√2, 2] and the rotation number of ϕ̄ is irrational (i.e. the height of
the kneading sequence of Tλ is irrational), then every folding point of lim←−(I,Tλ) embedded in
R2 by the orientation-preserving BBM embedding is accessible.

Proof: We first note that τ : ωϕ̄(c)→ ωTλ(c) is well defined and bijective. The
first part follows since τ(limi→∞ ϕ̄ni(c)) = limi→∞ τ ◦ ϕ̄ni(c) = limi→∞ Tni

λ ◦ τ(c) =
limi→∞ Tni

λ (1) ∈ ωTλ(c), when limi→∞ ϕ̄ni(c) exists. Similar argument also shows that τ
is surjective. For the proof of injectivity, it is enough to note that τ(x) = τ(y) implies that
y = x̃ or y = x and apply the fact that Tλ : ωϕ̄(c)→ ωTλ(c) is a homeomorphism.

Now let (x0, x1, x2, . . .) ∈ lim←−(I,Tλ) be such that xi ∈ ωTλ(c) for every i ≥ 0. Then
ϕ̄(τ−1(xi)) = τ−1(Tλ(xi)) = τ−1(xi−1) for every i>0, so (τ−1(x0), τ−1(x1), τ−1(x2), . . .)
∈ lim←−(S

1, ϕ̄). We apply Theorem 6.1 to conclude that (x0, x1, x2, . . .) is accessible. �

Remark 6.2: Given a continuum X, we say that point x ∈ X is an endpoint if for every
subcontinua A,B ⊂ X such that x ∈ A ∩ B, we have A ⊂ B or B ⊂ A. In [5] it was shown
that if lim←−(I,Tλ) is embedded in the plane by an orientation-preserving BBM embedding,
and if ϕ̄ has irrational rotation number (i.e. the height of the kneading sequence of Tλ is
irrational), then all endpoints are accessible. Moreover, it was shown that there also exist
countablymany accessible non-end folding points. Corollary 6.11 in particular implies that
there are uncountably many endpoints and only countably many non-end folding point in
lim←−(I,Tλ). This partially answers Problem 1 in [4].

Let us discuss the irrational rotation number case in more details. If 1− α (and hence
α) is irrational, then Proposition 5.1 gives that Q(j) ≤ 1 for all j, and Tλ : ω(c)→ ω(c)
is a Cantor minimal homeomorphism conjugate to a Sturmian shift. This implies that
Ĥ induces Denjoy-like dynamics on the corresponding circle of prime ends P. In [5], a
detailed characterization of accessible points for BBM embeddings of tent inverse limit
spaces is given (there, also accessible endpoints and non-end folding points are distin-
guished), based solely on symbolic dynamics techniques from kneading theory. It follows
(see [5, Theorem 11.20]) that there is a Cantor set C ⊂ P corresponding to accessible fold-
ing points in lim←−(I,Tλ) uncountably many of which are endpoints and countably many are
non-end folding points. Furthermore, all endpoints are accessible. The remaining count-
ably infinitely many open arcs P \ C correspond to countably infinitely many open arcs
in different arc-components of lim←−(I,Tλ) (unions of all arcs containing some point from
lim←−(I,Tλ)) that are accessible at more than one point. Thus this planar continua are inter-
esting also from a topological perspective. A theorem of Mazurkiewicz [24] shows that for
every indecomposable planar continuum there are at most countably infinitely many arc-
components accessible at more than one point. Our examples confirm that it is possible to
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find planar continua indeed having countably infinitely many arc-components accessible
at more than one point. Furthermore, Tλ is long-branched since supj Q(j) = 1. Therefore,
all proper subcontinua of lim←−(I,Tλ) are arcs (see e.g. [10, Proposition 3]).

Thus, from the discussion in this section we have a complete understanding of topology
of lim←−(I,Tλ) as well as their orientation-preserving BBM planar embedding in the case
when the rotation number of ϕ̄ is irrational (that is, the height of the kneading sequence
of Tλ is irrational).

Note

1. Its statement was suggested to us by Boyland, de Carvalho, Hall through personal communica-
tion.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

AAwas supported by grant 2018/17585-5, São Paulo Research Foundation (FAPESP). HB gratefully
acknowledges the support of the FWF stand-alone grant number P31950-N45. JČ was supported by
the FWF Schrödinger Fellowship stand-alone project J 4276-N35 and University of Ostrava grant
IRP201824 ‘Complex topological structures’; Austrian Science Fund (J-4276,P31950-N45).

References

[1] V.S. Afraimovich, V.V. Bykov, and L.P. Shil’nikov, On structurally unstable attracting limit sets
of the Lorenz attractor type, Trudy Moskov. Mat. Obsch. 44 (1982), pp. 150–212.

[2] J.-P. Allouche, M. Clarke, and N. Sidorov, Periodic unique beta-expansions: The Sharkovski
ordering, Ergodic Theory Dynam. Syst. 29 (2009), pp. 1055–1074.

[3] L. Alsedà, J. Llibre, M. Misiurewicz, and C. Tresser, Periods and entropy for Lorenz maps, Ann.
Inst. Fourier 39 (1989), pp. 929–952.

[4] L. Alvin, A. Anušić, H. Bruin, J. Činč, Folding points of unimodal inverse limit spaces. Nonlin-
earity 33(1) (2020), pp. 224–248.

[5] A. Anušić, J. Činč,Accessible points of planar embeddings of tent inverse limit spaces. Diss. Math.
541 (2019), pp. 1–57.

[6] M. Barge and J. Martin, Construction of global attractors, Proc. Am. Math. Soc. 110 (1990), pp.
523–525.

[7] A. Blokh and L. Lyubich, Measurable dynamics of S-unimodal maps of the interval, Ann. Sci.
Ec. Norm. Sup. 24 (1991), pp. 545–573.

[8] P. Boyland, A. de Carvalho, and T. Hall, Inverse limits as attractors in parametrized families,
Bull. Lond. Math. Soc. 45(5) (2013), pp. 1075–1085.

[9] P. Boyland, A. de Carvalho, and T. Hall, Natural extensions of unimodal maps: Virtual
sphere homeomorphisms and prime ends of basin boundaries, Geom. Topol. (2017). preprint
arXiv:1704.06624, to appear in.

[10] K. Brucks and H. Bruin, Subcontinua of inverse limit spaces of unimodal maps, Fund. Math. 160
(1999), pp. 219–246.

[11] K. Brucks and H. Bruin, Topics from One-Dimensional Dynamics, London Mathematical
Society Student Texts 62, Cambridge University Press, 2004.

[12] H. Bruin, Invariant measures of interval maps, PhD-Thesis, University of Delft, 1994.
[13] H. Bruin, Combinatorics of the kneading map, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 5

(1995), pp. 1339–1349.



JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS 1191

[14] H. Bruin, Topological conditions for the existence of Cantor attractors, Trans. Amer. Math. Soc.
350 (1998), pp. 2229–2263.

[15] H. Bruin,Homeomorphic restrictions of unimodalmaps, Contemp.Math. 246 (1999), pp. 47–56.
[16] H. Bruin, G. Keller, and M. St. Pierre, Adding machines and wild attractors, Ergod. Th. Dyn.

Sys.17 (1997), pp. 1267–1287.
[17] P. Collet and J.-P. Eckmann, Iterated Maps of the Interval As Dynamical Systems, Birkhäuser,

Boston, 1980.
[18] D. Cosper, Periodic orbits of piecewise monotone maps, PhD.-thesis, Purdue University, May

2018.
[19] B. Derrida, A. Gervois, and Y. Pomeau, Iteration of endomorphisms on the real axis and

representation of numbers, Ann. Inst. H. Poincaré Sect. A (N.S.) 29 (1978), pp. 305–356.
[20] J. Guckenheimer, The strange, strange attractor, in The Hopf Bifurcation and its Applications, J.

E. Marsden and M. McCracken, eds., (Springer Lecture Notes in Applied Mathematics), New
York, 1976, pp. 368–381.

[21] F. Hofbauer, The topological entropy of a transformation x �→ ax(1− x), Monatsh. Math. 90
(1980), pp. 117–141.

[22] F. Hofbauer, Periodic points for piecewise monotonic transformation, Ergod. Th. Dyn. Sys. 5
(1985), pp. 237-–256.

[23] L. Jonker, Periodic orbits and kneading invariants, Proc. Lon. Math. Soc. 39(3) (1979), pp.
428–450.

[24] S. Mazurkiewicz, Un théorème sur l’accessibilité des continus indécomposables, Fund. Math. 14
(1929), pp. 271–276.

[25] J. Milnor and W. Thurston, On iterated maps of the interval: I, II, Preprint 1977. Published in
Lect. Notes in Math. 1342, Springer, Berlin New York, 1988, pp. 465–563.

[26] A. Ostrowski, Bemerkungen zur Theorie der diophantischen Approximationen, Hamb. Abh. 1
(1921), pp. 77–98.

[27] B. Raines, Inhomogeneities in non-hyperbolic one-dimensional invariant sets, Fund. Math. 182
(2004), pp. 241–268.

[28] D. Rand, The topological classification of Lorenz attractors, Math. Proc. Camb. Phil. Soc. 83
(1978), pp. 451–460.

[29] A. Sharkovsky, Coexistence of cycles of a continuous map of the line into itself, (Russian) Ukrain.
Math. Zh. 16 (1964), pp. 61–71.

[30] R.F.Williams, The structure of Lorenz attractors, Publ. Math. Inst. Hautes Études Sci. 50 (1979),
pp. 73–99.


	1. Introduction
	2. Preliminaries
	3. Sharkovsky's Theorem for Lorenz maps
	4. Cutting times
	5. Sturmian shifts
	6. Outside maps and unimodal inverse limit spaces
	Note
	Disclosure statement
	Funding
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [493.483 703.304]
>> setpagedevice


