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ABSTRACT
For the delayed logistic equation xn+1 = axn(1− xn−1) it is well
known that the nontrivial fixed point is locally stable for 1 < a ≤ 2,
and unstable for a> 2. We prove that for 1 < a ≤ 2 the fixed point
is globally stable; in the sense that it is locally stable and attracts
all points of S, where S contains those (x0, x1) ∈ R

2+, for which the
sequence {xn} ⊆ R+. The proof is a combination of analytical and
reliable numerical methods.
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1. Introduction

One of the most studied nonlinear maps is the logistic map

[0, 1] � x �→ ax(1− x) ∈ R,

with parameter a>0. For 0 < a ≤ 1, it is well known (see eg [8]) that x=0 is the unique
fixed point in [0, 1], and it is globally stable (ie stable and attracts all points in [0, 1]). For
1 < a ≤ 3, there is a nontrivial fixed point x∗ = 1− (1/a) which is stable and attracts all
points in (0, 1). At a=3 a period doubling (flip) bifurcation takes place, and the fixed point
x∗ becomes unstable for a>3. As a increases, there is a sequence of bifurcation points, and
for some larger value of a, chaotic behaviour can be shown.

In 1968, Maynard Smith [13] considered the ‘delayed’ version

xk+1 = axk(1− xk−1)

of the logistic difference equation. This is natural in the context of population models: the
size of the subsequent generation of the population depends not only on the size in the
previous year, but also on the size of the two-year earlier population.

Introducing yk = xk+1, the second-order difference equation is equivalent to

(xn+1, yn+1) = Fa(xn, yn)

with

Fa : R2 � (x, y) �→ (y, ay(1− x)) ∈ R
2. (1)
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We study the map Fa for those (x, y) ∈ R2+ = [0,∞)× [0,∞) for which all iterates of Fa
remain in R2+, ie Fka(x, y) ∈ R2+, for every k ∈ N. Here Fka denotes the k-fold iteration of
Fa, ie F0a = id, Fka = Fa(Fk−1a ), k ∈ N. As we will see, for 0 < a ≤ 2 the set

S0 = S0(a) =
{
(x, y) ∈ R

2 : 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; ay(1− x) ≤ 1
}

is positively invariant under Fa, that is, Fa(S0) ⊆ S0.
For 0 < a ≤ 1, we have S0 = [0, 1]× [0, 1], the only fixed point in S0 is (0, 0), which

is locally stable and Fka(x, y)→ (0, 0) as k→∞, for every (x, y) ∈ S0. For a>1, the non-
trivial fixed point (A,A) ∈ S0 with A = 1− (1/a) appears, which is locally asymptotically
stable for a ∈ (1, 2), and it is unstable for a>2. A Neimark–Sacker bifurcation takes place
at a=2 [see eg in 9 Example 4.3] and for a>2, a close to 2, there is a stable invariant curve.
As we increase a, the size of the invariant curve is getting larger; at about a=2.27, the curve
touches the x-axis, and complicated dynamics occurs. For profound numerical studies, see
[1, 7].

The aim of this paper is to show that, for 1 < a ≤ 2, the nontrivial fixed point (A,A) is
globally stable in the sense that (A,A) is locally stable, and for each (x, y) in

S = S(a) = {(x, y) ∈ R
2 : 0 ≤ x < 1; 0 < y < 1; ay(1− x) < 1

}
,

Fka(x, y)→ (A,A) as k→∞. Consequently, the local stability of (A,A) implies its global
stability. For similar results on the global stability of other delayed difference equations, the
reader is referred for example to [3–5, 10, 11].

We emphasize that we prove the stability even in the critical parameter value a=2.
However, we do not consider the case a>2. According to numerical studies [1, 7 see],
the invariant curve is globally stable for parameter a>2 close to the critical value 2.

For a ≤ 2 the proof of the global stability is a combination of analytical and computer-
aided tools. It is based on the method in [3, 4]. We elaborate the analytical part such that
it can be easily applied to similar models. Furthermore, a quite important aim is to have a
clear picture of the method in order to be able to prove similar results for higher dimen-
sional models, for example, the 3-dimensional logistic map xn+1 = axn(1− xn−2), where
further difficulties arise.

With analytical tools we construct an attracting neighbourhood N around the non-
trivial fixed point (A,A). Then we show that every (x0, y0) ∈ S \N will eventually step
into N , that is, there exist an n ∈ N, such that (xn, yn) ∈ N , where (xn, yn) = Fna (x0, y0).
So these points are also in the region of attraction of the fixed point (A,A). We use a
computer, applying reliable numerical methods, to show the second step. In this context,
reliablemeans, we use interval arithmetic tools to control every occurring numerical error;
consequently, the method is suitable to prove mathematical statements [see eg 14].

In Section 3, for smaller parameter values a, ie for a ∈ (1.5, 1.95] we use the linearized
map to construct the attracting neighbourhood N . However, as we will see it later, this
neighbourhood shrinks to the fixed point as a tends to critical value 2. Therefore, for
parameter values a close to 2 this neighbourhood is not big enough for computer use in
the second part of the method. Thus we need another approach to construct an attracting
neighbourhoodN . In Section 4, for these parameter values a close to 2, we use the normal
form of the Neimark–Sacker bifurcation.More precisely, with smooth and invertiblemaps,
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we transformmap (1) into its normal form; hereby we obtain an attracting neighbourhood
N around the fixed point (A,A), whose size is independent of the parameter a ∈ [1.95, 2].

Since we need the size of the constructed neighbourhoodN for computer use, it is not
enough to determine only the lower order terms during the normal form transformation,
like we would do in a regular bifurcation analysis. These lower order terms only assure
the existence of such a sufficiently small neighbourhood, whose size is not explicitly deter-
mined by them. Therefore, it is essential during the transformation to trace the higher
order terms and to estimate them as well as possible, in order to obtain a sufficiently big
neighbourhoodN , since the computer method is more and more compute-intensive and
time-consuming, as we get closer to the fixed point.

In Section 5, we consider those points, which lie outside the attracting neighbourhood,
ie the points of S \N . We cover S with finitely many small squares. Considering these
squares as vertices of a graph, we introduce a directed graph, which, to a certain extent,
describes the behaviour of map (1) on these squares. Therefore we convert the problem
of examining infinitely many points into a finite graph problem, which can be handled
by computer. To construct the edges of the graph we use reliable numerical methods in
order to handle the rounding errors of the computer. We show with the help of this graph
that every point from S enters the neighbourhoodN constructed before. With this we will
prove our main result:

Theorem 1.1: For all a ∈ (1, 2] the fixed point (A,A) is locally asymptotically stable, and
limn→∞ Fna (x, y) = (A,A) for every (x, y) ∈ S, where A = 1− (1/a).

2. Preliminaries

Throughout the article R+, N and N0 denote the nonnegative real numbers, the positive
integers and nonnegative integers, respectively.

In this section, we study the dynamics of map (1) for a>0 in the positive quadrant.
Introduce the following sets (see Figure 1):

S = {(x, y) ∈ R
2 : 0 ≤ x < 1, 0 < y < 1, ay(1− x) < 1

}
,

T0 =
{
(x, 0) ∈ R

2 : x ≥ 0
} ∪ {(1, y) ∈ R

2 : y > 0
} ∪ {(x, 1) ∈ R

2 : 0 ≤ x < 1
}

∪ {(x, y) ∈ R
2 : ay(1− x) = 1, 0 ≤ x ≤ A

}
,

T1 =
{
(x, y) ∈ R

2 : x ≥ 0, 0 < y < 1, ay(1− x) > 1
}
,

T2 =
{
(x, y) ∈ R

2 : 0 ≤ x < 1, y > 1
}
,

T3 =
{
(x, y) ∈ R

2 : x > 1, y > 0
}
.

Clearly,R2+ = S ∪ T0 ∪ T1 ∪ T2 ∪ T3; furthermore, S = [0, 1)× (0, 1) and T1 = ∅ for a ∈
(0, 1].

Proposition 2.1: For all a > 0, we have

F4a(T0) = {(0, 0)} , Fa(T1) ⊆ T2, Fa(T2) ⊆ T3, Fa(T3) ∩R
2
+ = ∅,

and furthermore, if a ∈ (0, 2] then Fa(S) ⊆ S.
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Figure 1. The subdivision of the positive quadrant.

Proof: From the definition of Fa it is obvious that F4a(T0) = {(0, 0)}. It is also straightfor-
ward to check the relations Fa(T1) ⊆ T2, Fa(T2) ⊆ T3 and Fa(T3) ∩R2+ = ∅.

If a ∈ (0, 2] and (x, y) ∈ S, then 0< y<1, 0 < ay(1− x) < 1 and

a2y(1− x)(1− y) ≤ 4(1− x) max
0≤y≤1

y(1− y) ≤ 1,

therefore Fa(S) ⊆ S. �

Consequently, in the rest of the paper we can assume (x, y) ∈ S. For small a, the dynam-
ics in S is quite simple. The following statement easily follows from the monotonicity of
{xn}∞n=0 for 0 < a ≤ 1.

Proposition 2.2: If a ∈ (0, 1], then lim
k→∞

Fka(x, y)→ (0, 0) for all (x, y) ∈ [0, 1]2.

For a ∈ (1, 2], we divide the positive quadrant into four subsets with lines x=A, y=A,
and introduce the following sets:

S1 = {(x, y) ∈ S : x ≤ A, y < A},
S2 = {(x, y) ∈ S : x < A, A ≤ y},
S3 = {(x, y) ∈ S : A ≤ x, A < y},
S4 = {(x, y) ∈ S : A < x, y ≤ A}.

Clearly S =⋃4
i=1 Si ∪ {(A,A)}. Introduce the notation tn = (xn, yn) = Fna (x0, y0).

Proposition 2.3: For every t0 = (x0, y0) ∈ S and a ∈ (1, 2] the sequence {tn}∞n=0, defined by
tn+1 = (xn+1, yn+1) = Fa(xn, yn), fulfils one of the following cases:

• limn→∞ tn = (A,A),
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Figure 2. The dynamics in S.

• the sequence {tn}∞n=0 goes around the fixed point along the cycle S1→ S2→ S3→ S4→
S1; and in the course of one cycle, there can be more than one elements of the sequence in
both S1 and S3, but the number of these elements are finite.

Proof: The transitions between the aforementioned subsets are the following (see
Figure 2):

• For t0 ∈ S1 we obtain x1 < A, therefore S1→ {S1, S2}. That is, t1 ∈ S1 or t1 ∈ S2.
• For t0 ∈ S2: x1 ≥ A and y1 = ay0(1− x0) > aA(1− A) = A, so S2→ S3.
• For t0 ∈ S3: x1 > A, so S3→ {S3, S4}.
• For t0 ∈ S4: x1 ≤ A and y1 = ay0(1− x0) > aA(1− A) = A, so S4→ S1.

We obtain there is a cycle S1→ S2→ S3→ S4→ S1. But during a cycle the points of
the sequence can spend more time in S1 or S3, possibly, the sequence can stay in S1 or S3
forever. We only need to show that, if a sequence gets stuck in S1 or S3, then it converges
to the fixed point (A,A).

Notice that yn+1 ≥ yn as long as xn ≤ A, and similarly, xn ≥ A implies yn+1 ≤ yn.
According to this, as long as tn ∈ S1 ∪ S2, the sequence {yn} = {xn+1} increases, until the
sequence {tn} steps into S3. Similarly, as long as tn ∈ S3 ∪ S4, the sequence {yn} = {xn+1}
decreases, until the sequence {tn} steps into S1. Consequently, if a sequence {tn} stays in
S1 for all large n, we gain a monotonically increasing, bounded sequence {xn}, which con-
verges to B ≤ A. Taking the limit of both sides of xn+1 = axn(1− xn−1), we obtain B=A,
and consequently t0 is in the region of attraction of (A,A). Similarly, if a sequence gets
stuck in S3, it also converges to (A,A). �
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Now we assume 1 < a ≤ 3
2 and show that for every t0 ∈ S the sequence {tn} converges

to the nontrivial fixed point (A,A). Combining this fact with the local asymptotic stability
of the fixed point (see at the beginning of the following section), Theorem 1.1 is proved for
these parameter values.

Proposition 2.4: If a ∈ (1, 32 ], then limn→∞ Fna (x0, y0) = (A,A) for every (x0, y0) ∈ S.

Proof: It is clear fromProposition 2.3, we only need to consider the casewhen the sequence
{tn} = {(xn, yn)} goes around the fixed point, not getting stuck in S1 or S3. It means that
there exist subsequences nk andmk, such that

tnk , tnk+1, . . . , tmk−2 ∈ S1; tmk−1 ∈ S2; tmk , tmk+1, . . . , tnk+1−2 ∈ S3; tnk+1−1 ∈ S4

for all k ≥ 0. Clearly nk + 2 ≤ mk ≤ nk+1 − 2 also holds. Without loss of generality, we
can assume t0 ∈ S1.

Now, consider the sequence {sn}, where s0 = 0 and sn = f n(s0)with the function f (x) =
a(a− 1)(1− x)2. Denote by {hn} and {gn} the even and odd indexed subsequences of {sn},
ie hn = s2n and gn = s2n+1. Furthermore introduce the following subsets of S:

Hk = {(x, y) ∈ S : hk ≤ x, y} and Gk = {(x, y) ∈ S : x, y ≤ gk}.
Clearly,H0 = S.

It is easy to see that, if tnk ∈ Hk then tnk , tnk+1, . . . , tmk ∈ Hk and because of the
inequality

ymk = aymk−1(1− xmk−1) = a2ymk−2(1− xmk−2)(1− xmk−1) ≤ a2A(1− hk)2 = gk,

tnk , tnk+1, . . . , tmk ∈ Gk also holds. Similarly, tmk , tmk+1, . . . , tnk+1 ∈ Gk ∩Hk+1 provided
that tmk ∈ Gk. It follows from the construction that Hk+1 ⊆ Hk and Gk+1 ⊆ Gk. Conse-
quently {hn} is increasing and bounded above by A, so limn→∞ hn = h∞ ≤ A. Similarly
{gn} is decreasing and bounded below by A, so limn→∞ gn = g∞ ≥ A. Therefore, we only
need to show that h∞ = g∞ = A.

It is clear that h∞ and g∞ need to be fixed points of f2(x) = f (f (x)). Observe that
f2(A) = A, f ′2(A) = 4(a− 1)2. Consequently 0 < f ′2(A) ≤ 1 for 1 < a ≤ 3

2 . Furthermore,
for 0< x<A

f ′′2 (x) = 4a2(1− a)2(3f (x)− 1) > 0

since f (x) > A ≥ 1
3 .We can conclude thatA is the only solution of f2(x) = x in the interval

(0,A], so limn→∞ hn = A. From the definition of gn, it is clear, limn→∞ gn = A, too. �

In the rest of the paper, we assume a ∈ ( 32 , 2]. For these parameter values, the above
argument does not guarantee convergence for every t ∈ S, but we show it is enough to
consider a subset of S later on.

Proposition 2.5: For every a ∈ ( 32 , 2] the set

S̃ = {(x, y) ∈ S : x, y ∈ [0.072, 0.8]
}

is invariant, ie F(S̃) ⊆ S̃. Furthermore, for every t ∈ S, there exists N = N(t), such that for
every n > N, Fn(t) ∈ S̃.
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Proof: Using the arguments and notations of the previous proposition, we can assume t0 ∈
S1 and the sequence {tn} = {(xn, yn)} goes around the fixed point. We need to show that
ym0 ≤ 4

5 and yn1 ≥ 0.072. Since y1 = ay0(1− x0) ≤ ay0 = ax1 follows from (x0, y0) ∈ S,
we can also assume that y ≤ ax for every t ∈ S.

For ym0 we have to find the maximum of a2y(1− y)(1− x) assuming (x, y) ∈ S1 and
y ≤ ax. Since y(1− y) is increasing on [0,A] we are looking for the maximum of f (x) =
a3x(1− ax)(1− x) on [0, Aa ] and g(x) = (a− 1)(1− x) on [Aa ,A]. The maxima of g(x)
and f (x) are 3

4 and
4

3
√
3
, respectively, so ym0 ≤ 4

5 .
Similarly, for every a ∈ [1.5, 2] we are looking for the minimum of a2y(1− y)(1− x)

on S3, assuming x, y ≤ 4
5 . It is easy to see that this is 0.072. �

We apply this proposition in the computer-assisted part of the proof, since it is useful to
exclude a small neighbourhood of the trivial fixed point (0, 0), as we see it later. For more
general results on absorbing sets like S̃, the reader is referred to [6].

3. Attracting neighbourhood with linearization

In this section using the linearization of map (1), for a fixed parameter a ∈ ( 32 , 2), we give
a neighbourhoodN (a) around (A,A), which is inside the region of attraction of this fixed
point, ie limn→∞ Fna (x0, y0) = (A,A) for every (x0, y0) ∈ N (a).

Introducing the new variables u= x−A and v= y−A, map (1) can be written in the
following form: (

u
v

)
�→ J(a)

(
u
v

)
+ fa(u, v), (2)

where

J(a) =
(

0 1
1− a 1

)
, fa(u, v) =

(
0
−auv

)

For a ∈ ( 32 ; 2] the eigenvalues of J(a) are λ := λ1(a) = λ2(a) = (1+ i
√
4a− 5)/2 and

the corresponding eigenvectors are q1,2(a) = (1, λ1,2(a)). It is easy to see, that |λi(a)| < 1
for a ∈ (1, 2), i=1,2, |λi(2)| = 1 and |λi(a)| > 1 for a>2, where i=1,2. Introduce the
notation q = q(a) = q1(a) and denote by p = p(a) the eigenvector of the transposed
matrix JT(a) corresponding to λ(a), normalized to 〈p, q〉 = 1, where 〈(a1, a2), (b1, b2)〉 =∑2

i=1 āibi, (a1, a2), (b1, b2) ∈ C2. We obtain p̄ = d(λ− 1, 1), where d = d(a) = (2λ(a)−
1)−1.

Introduce the vector U = (u, v)T and the complex variable z = 〈p,U〉. The variable U
can also be expressed by z:

(
u
v

)
= U = q(a)z + q(a)z̄ =

(
z + z̄

λ(a)z + λ(a)z̄

)
.

Moreover, map (2) can be written in the following form:

z �→ 〈p(a), J(a)U + fa(U)〉 = λ(a)z + d(a)ga(z),
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where ga : C→ R is the following

ga(z) = ga(z, z̄) = −a(z + z̄)
(
λ(a)z + λ(a)z̄

)
.

At first we use the map

z �→ λ(a)z + d(a)ga(z) := G(z) (3)

without further transformation to constructN (a).

Proposition 3.1: For every a ∈ ( 32 , 2) define ε(a) by

ε(a) =
√
4a− 5

(
1−√a− 1

)
a
(
2
√
a− 1+ 1

) ·
√
4a− 5√
a+ 1

.

Then the set

N (a) = {(x, y) ∈ S : |x− A|, |y− A| ≤ ε(a)
}

is in the region of attraction of the fixed point (A,A) of Fa.

Proof: Atfirstwe show, there exists a ζ0 > 0, such that |Ga(z)| < |z| for every 0 < |z| < ζ0.
If such a ζ0 exists, it is clear that the open ballB◦ζ0 around the origin is invariant andwe show
that every point of B◦ζ0 tends to the origin. Let z0 be an arbitrary point from B◦ζ0 and con-
sider the nonnegative, strictly decreasing sequence {|zn|}∞n=0, where zn+1 = Ga(zn). This
sequence can converge only to a fixed point of the continuous map r �→ max|ζ |=r |Ga(ζ )|,
which is, inside B◦ζ0 , solely r=0.

Estimate the right-hand side of map (3). Using |λ(a)| = √a− 1, |d(a)| = 1/(
√
4a− 5)

and |ga(z)| ≤ a(2|λ(a)| + 1)|z|2 = a(2
√
a− 1+ 1)|z|2, we obtain

|λ(a)z + d(a)ga(z)| ≤ |z|
(√

a− 1+ a(2
√
a− 1+ 1)√
4a− 5

|z|
)

< |z|,

for every z �= 0, provided |z| < ζ0 := (
√
4a− 5(1−√a− 1))/(a(2

√
a− 1+ 1)).

To obtain an estimation of the real variables u and v, we use the expression z =
〈p(a),U〉 = d((λ− 1)u+ v). Supposing |u|, |v| ≤ δ, we obtain

|z| ≤ |d||(λ− 1)u+ v| = |d|
√
4a− 5

4
u2 +

(
v − u

2

)2 ≤ δ

√
a+ 1√
4a− 5

,

therefore, if δ ≤ ζ0(
√
4a− 5)/(

√
a+ 1), then |z| ≤ ζ0. Set ε(a)=ζ0(

√
4a− 5)/(

√
a+ 1).

Then points, whose coordinates satisfy |u|, |v| ≤ ε(a), are in the region of attraction of the
fixed point. �

It is easy to see the set N shrinks to the fixed point (A,A) as a tends to 2, since
lima→2 ε(a) = 0. Consequently, close to the critical parameter value, the neighbourhood,
obtained by linearization, is not suitable for reliable numericalmethods. In fact, the smaller
the neighbourhood, the less efficient, and more time-consuming the numerical part of
the proof. Furthermore, the linearization does not provide an attractive neighbourhood
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at the critical parameter value a=2; therefore, we need another approach to construct a
neighbourhoodN for parameter values close to 2.

In the subsequent section, we use the normal form of the Neimark–Sacker bifurcation
and create a neighbourhood whose size is independent of a. Actually, the first method with
the linearization become rather compute-intensive at about the parameter range (1.99, 2),
but we will use the second technique with the normal form in a bigger parameter range,
namely for a ∈ (1.95, 2]. The normal form technique provides a significantly larger neigh-
bourhood than the first method can do for parameters close to the critical value, so the
second method is more efficient even for a ∈ (1.95, 1.99], too.

4. Transforming to normal form

In this section, first, we give a general method to construct an attractive neighbour-
hood around a fixed point, which undergoes a supercritical Neimark–Sacker bifurcation
at a0. This neighbourhood is suitable for parameters close to the critical value a0, ie for
a ∈ [a0 − β0, a0] with some fixed β0 > 0. We follow the steps of finding the normal form
of the Neimark–Sacker bifurcation, according to Kuznetsov [9].

Suppose, we have a map

x �→ Fa(x), (4)

where x ∈ R2, Fa is smooth and a ∈ R is the parameter. Furthermore, we have a fixed
point x̃ = x̃(a), which undergoes a supercritical Neimark–Sacker bifurcation at a0. Fix
some β0 > 0. According to Kuznetsov, if |λ(a)| < 1 for all a ∈ [a0 − β0, a0), then map (4)
can be transformed into the following form:

z �→ G(z) = λ(a)z + G2(z, a), (5)

where z ∈ C, and G2 is smooth (cf. Section 3).
We can write the smooth G(z) as a formal Taylor series in two complex variables (z and

z̄):

G(z) = λ(a)z +
4∑

k+l=2

gkl
k! l!

zkz̄l + R1,

where gkl = gkl(a) and R1 = R1(z, z̄, a) = O(|z|5). Then, with smooth and invertible func-
tions, we transform map (5) into the normal form of the bifurcation:

w �→ λ(a)w+ c1(a)w2w+ R2, (6)

where R2 = R2(w,w, a) = O(|w|4). If we show that there exists ρ0 > 0, such that for every
0 < |w| < ρ0 and a ∈ [a0 − β0, a0] the following holds:∣∣λ(a)w+ c1(a)w2w+ R2

∣∣ < |w|, (7)

then we obtain that Bρ0 = {w ∈ C : |w| < ρ0} is in the region of attraction of the fixed
point 0 of map (6). Since |λ| ≤ 1 for a ≤ a0, and the bifurcation is supercritical, ie
�c1(a0)/λ(a0) < 0, it is easy to see that inequality (7) holds for all sufficiently small ρ0
and β0.
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Our aim is to obtain an explicit value for ρ0 assuming β0 is given. Furthermore, ρ0 needs
to be as big as possible, because of the computer-assisted part of the proof. Consequently,
the estimation of the higher order terms (R2) is the most essential part of the method,
just like in the linearized case. Note that, in the end, we need to derive a {z : |z| < ε}-type
neighbourhood, related to original map (5).

To obtain the normal form, we look for a smooth invertible function h : C→ C in a
neighbourhood of 0 ∈ C which transforms map (5) with the new coordinate w = h−1(z)
into the following form:

w �→ h−1(G(h(w))) = λ(a)w+ c1(a)w2w+ R2. (8)

According to Kuznetsov [9], such a function can be found in the form:

h(w) = w+ h20
2
w2 + h11ww+ h02

2
w2 + h30

6
w3 + h12

2
ww2 + h03

6
w3, (9)

where hij = hij(a). To this transformation, we need the non-resonance condition

(
λ(a0)
|λ(a0)|

)k
�= 1, where k ∈ 1, 2, 3, 4.

Clearly, h has an inverse in a small neighbourhood of 0 ∈ C, and h−1 can be written in the
following form:

h−1(z) = h−10 (z)+ R3, (10)

where

h−10 (z) = z +
∑

2≤k+l≤4
h̃klzkz̄l,

R3 = R3(z, z̄, a) = O(|z|5) and h̃kl = h̃kl(a). The coefficient h̃kl can be obtained by substi-
tutingw = h−1(z) into z = h(w) and equating the coefficients of the same type up to fourth
order. The hij was obtained in a similar manner: we need to choose the coefficients so that
the second- and third-order terms (apart from w2w) of h−1(G(h(w))) are eliminated. The
formulas can be found in the Appendix. Notice that hkl and consequently h̃kl depend only
on the at most third-order terms of G.

First, we will give a finite-order polynomial estimation on the functions G, h and h−1:

|h(w)| ≤ |w| + h2|w|2 + h3|w|3,
|G(z)| ≤ |z| + g2|z|2 + g3|z|3 + g4|z|4 + R10|z|5,∣∣h−1(z)∣∣ ≤ |z| + h̃2|z|2 + h̃3|z|3 + h̃4|z|4 + R30|z|5,

where the coefficients are independent of a. With them we can give an estimation on R2,
ie the higher order terms of the composition h−1(G(h(w))). Clearly the Taylor expansion
of h is finite, but generally the other two Taylor expansions have infinitely many terms.
So the at least fifth-order terms are estimated in R10|z|5 and R30|z|5. For the lower order
terms, we have explicit formulae, and they could be estimated by interval arithmetic. As
for the higher order terms, it is essential to be able to say how large can be the moduli of
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Figure 3. The size of the domains of h, G and h−1 provided that |w| < ρ0.

h(w), G(h(w)) and h−1(G(h(w))) in (8) if |w| < ρ0 is assumed, since the estimation of the
remaining terms of a Taylor expansion highly depends on the size of the neighbourhood
on which it needs to be valid. The radii ρ1, ρ2 and ρ3 must be chosen so that h(Bρ0) ⊆ Bρ1 ,
G(Bρ1) ⊆ Bρ2 and h−1(Bρ2) ⊆ Bρ3 (see Figure 3) ; consequently, during the study ofG and
h−1 we can assume that the domains are in Bρ1 and Bρ2 , respectively.

After gaining an estimation on R2, we show that inequality (7) holds for |w| ∈ (0, ρ0].
From this result a neighbourhood in the z-plane can easily be obtained: the set Bε =
{z ∈ C : |z| ≤ ε} is inside the attractive neighbourhood of the fixed point of map (5) if
h−1(Bε) ⊆ Bρ0 , ie Bε is mapped inside the region of attraction of map (6).

Here, we emphasize that for our calculations the only thing we need to know is the at
most fourth-order terms of the functionG(z) and an R10|z|5–type estimation of the at least
fifth-order terms of G(z).

Until this point in the section, we described the method for a general Fa(x). Now, we
turn our attention to the specific Fa(x, y) = (y, ay(1− x)) from (1).

The main results of this section are the following two propositions. We prove only
Proposition 4.2 as the whole argument can be repeated to get an attracting neighbour-
hood when only a ∈ [1.95, 2] is assumed. The differences appear only in concrete values
in the given estimations. Details of Proposition 4.1 can be found on our website [12].

Proposition 4.1: For all fixed a ∈ [1.95, 2], the set {z ∈ C : |z| ≤ 0.013} belongs to the basin
of attraction of the fixed point 0 of G(z).

Proposition 4.2: For all fixed a ∈ [1.995, 2], the set {z ∈ C : |z| ≤ 0.014} belongs to the
basin of attraction of the fixed point 0 of G(z).

Proof: Throughout the proof we suppose a ∈ [a0 − β0, a0], where β0 = 0.005 and a0 = 2.
In our calculations, we use symbolic computation and built-in interval arithmetic tools of
Wolfram Mathematica v. 11. �

4.1. Estimation of the lower order terms in G, h and h−1

Throughout this section, we need an estimation of the coefficients of the lower order terms
in G, h and h−1, such that these estimations are independent of a ∈ [1.995, 2]. We use
interval arithmetic tools to compute them for a ∈ [1.995, 2].
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In our particular case, the function G(z) can be written in the following form:

G(z) = λ(a)z +
∑
k+l=2

gkl
k! l!

zkz̄l,

since G has only at most second-order terms. Furthermore, we use (9) and (10). We look
for constants satisfying the following inequalities:

g2 ≥ max
a∈[a0−β0,a0]

( |g20|
2
+ |g11| + |g02|2

)
,

h2 ≥ max
a∈[a0−β0,a0]

( |h20|
2
+ |h11| + |h02|2

)
,

h3 ≥ max
a∈[a0−β0,a0]

( |h30|
6
+ |h12|

2
+ |h03|

6

)
,

h̃n ≥ max
a∈[a0−β0,a0]

⎛
⎝∑

i+j=n
|h̃ij|

⎞
⎠ ,

where n=2,3,4. With interval arithmetic it can be shown that g2 = 3.47, h2 = 2.9, h3 =
4.7, h̃2 = h2 = 2.9, h̃3 = 8.2 and h̃4 = 30 fulfil the requirements. From the definition of
these constants, we obtain the following estimations:

|h(w)| ≤ hmax(|w|) := |w| + h2|w|2 + h3|w|3,
|G(z)| ≤ Gmax(|z|) := |z| + g2|z|2,∣∣h−10 (z)

∣∣ ≤ h̃max
0 (|z|) := |z| + h̃2|z|2 + h̃3|z|3 + h̃4|z|4,∣∣h−1(z)∣∣ ≤ h̃max(|z|) := |z| + h̃2|z|2 + h̃3|z|3 + h̃4|z|4 + R30|z|5, (11)

if in the last equation R30 satisfies |R3| ≤ R30|z|5. We will determine R30 later.
From the definition of h2 and h3, we also obtain

|w| − h2|w|2 − h3|w|3 ≤ |h(w)|. (12)

Consequently, assuming |w| ≤ ρ, we can make the following estimation:

|w| ≤ η(ρ)|h(w)|, (13)

with

η(ρ) := 1
1− h2ρ − h3ρ2 .

We choose ρ0 = 0.015, ρ1 = hmax(ρ0), ρ2 = Gmax(ρ1) and from (12) it is clear that Bρ2

cannot be mapped outside of the circle with radius 0.018; consequently, this value is a
suitable choice for ρ3.
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4.2. The domain of h and h−1

Now, we show that h is injective in B1/9 ⊆ C, and h−1 is defined on B1/16. Let z ∈ C,
a ∈ [1.995, 2] be fixed and denote Ha,z : C � w �→ w+ z − h(w) ∈ C. With this notation
Ha,z = w if and only if h(w) = z.

|Ha,z(w1)−Ha,z(w2)| = |w1 − h(w1)− w2 + h(w2)|
≤ |w1 − w2|

(
h2(|w1| + |w2|)+ h3

(|w1|2 + |w1| · |w2| + |w2|2
) )

.

If |w| ≤ δ1 and |z| ≤ δ2, then

|Ha,z(w1)−Ha,z(w2)| ≤ |w1 − w2|
(
2δ1h2 + 3δ21h3

)
and

|Ha,z(w)| ≤ δ2 + δ21h2 + δ31h3.

Choosing δ1 = 1
9 and δ2 = 1

16 the mapHa,z is a contraction mapping B1/9 into itself. Con-
sequently, for every z ∈ B1/16 there exists only onew = w(z) ∈ B1/9 such that h(w(z)) = z,
ie h−1 is defined on B1/16.

It is clear that ρ0, ρ3 < δ1 and ρ1, ρ2 < δ2, where ρ0, ρ1, ρ2, ρ3 were chosen at the end
of the previous subsection.

4.3. The estimation of the higher order terms in h−1

Now, we turn our attention to the estimation of R3 in (10), which consists of the fifth
and higher order terms of h−1. We need an estimation |R3(z)| < R30|z|5, assuming |z| ≤
ρ2. But first, we give an estimation of type |R3(h(w))| < C|w|5, assuming |w| ≤ ρ3 (see
Figure 3). Using the definition of h−10 and h, it follows from (10) that

R3(h(w)) = w− h−10 (h(w)) =
∑

5≤k+l≤12
rkl3 (a)wkwl,

since it is a 12th-order polynomial of w and w, which has only 5th and higher order terms.
Consider the composition

R̃3(|w|) = h̃max
0

(
hmax(|w|)) = 12∑

j=5
rj3|w|j

of the real functions hmax, h̃max
0 . It is clear that

∑
k+l=j |rkl3 | ≤ rj3 holds for 5 ≤ j ≤ 12.

Consequently,

|R3(h(w))| ≤
∑

5≤k+l≤12

∣∣∣rkl3 (a)
∣∣∣ |w|k+l ≤ ∑

5≤j≤12
rj3|w|j ≤

∑
5≤j≤12

rj3ρ
j−5
3 |w|5,

assuming |w| ≤ ρ3. Using (13), we gain |w| < η(ρ3)|z|, and
|R3(z)| ≤

∑
5≤j≤12

rj3ρ
j−5
3 (η(ρ3))

5|z|5 ≤ 1070|z|5,

therefore, R30 = 1070 is a suitable choice.
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4.4. The estimation of the higher order terms in the normal form

Now we turn our attention to R2, which estimates the at least fourth-order terms of
h−1(G(h(w))). To obtain a better estimation, we handle the fourth-order terms (R24) and
the higher order ones (R25) separately. Set R2(w) = R24(w)+ R25(w).

The fourth-order coefficients rkl2 (a) (where k+l=4) of h−1(G(h(w))) can be calculated
explicitly; the formulae of |rkl2 (a)| can be found in Appendix. With interval arithmetic, it
can be shown that

∑
k+l=4 |rkl2 (a)| ≤ 40; consequently, |R24(w)| ≤ 40|w|4.

As for the higher order terms, we use hmax,Gmax and h̃max (from (11)), similarly to the
estimation of R3. Consider the composition

R̃2 (|w|) = h̃max(Gmax(hmax(|w|))) =
30∑
j=1

rj2|w|j.

It is clear that for |w| ≤ ρ0 the following holds:

|R25(w)| ≤
30∑
k=5

rk2(|w|)ρk−4
0 |w|4 ≤ 90|w|4.

Combining these two results, for |w| ≤ ρ0, we obtain

|R2(w)| ≤ |R24(w)| + |R25(w)| ≤ 130|w|4,

and consequently R20 = 130.

4.5. The attracting neighbourhood

Now, with our previous estimation on R2 we can finish our proof. Since∣∣λ(a)w+ c1(a)w2w+ R2
∣∣ ≤ |w| (∣∣|λ| + c̃1|w|2

∣∣+ R20|w|3
)
,

where c̃1 = |λ(a)|/λ(a)c1(a) and λ = λ(a), we only need to prove∣∣|λ| + c̃1|w|2
∣∣+ R20|w|3 < 1 (14)

for every |w| ≤ ρ0 and a ∈ [a0 − β0, a0].
To this end, we show that the following inequality holds with a suitable R4 > 0:∣∣|λ| + c̃1|w|2

∣∣ ≤ |λ| + (�c̃1)|w|2 + R4|w|3,

or equivalently

0 ≤ 2R4|λ| − (�c̃1)2|w| + 2R4(�c̃1)|w|2 + R24|w|3, (15)

for every |w| ≤ ρ0 and a ∈ [a0 − β0, a0]. For a ∈ [a0 − β0, a0] we can make the following
estimationswith interval arithmetic on the coefficients in (15) depending on a:�c̃1 and�c̃1
are negative, |�c̃1| ≤ 2.1, |�c̃1| ≤ 3.5 and |λ| ≥ 0.99. From this it is clear that for |w| ≤ ρ0
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the choice R4 = 0.1 will be suitable. Therefore, the left-hand side of inequality (14) can be
written in the following form:∣∣|λ| + c̃1|w|2

∣∣+ R20|w|3 ≤
(|λ| + �c̃1|w|2)+ (R4 + R20)|w|3

≤ 1+ (�c̃1 + (R4 + R20)|w|
)|w|2,

which is less than 1, provided

|w| < −�c̃1
R4 + R20

.

Using the fact that |�c̃1| ≥ 2, we obtain (−�c̃1)/(R4 + R20) > ρ0; therefore, inequal-
ity (14) holds for every |w| < ρ0. From |h−1a (z)| < hmax

inv (|z|), inequality |z| < εG := 0.014
implies |w| = |h−1(z)| < ρ0, so the proof of Proposition 4.2 is complete.

To obtain a neighbourhood in the real coordinate system (u, v) we use z = 〈p(a),U〉,
just like in the linearized case. Note that the set {z ∈ C : |z| ≤ εG}will be transformed into
an ellipse-shaped neighbourhood in the uv-plane.

5. Graph representation

In the computer-assisted part, we follow the method in [4]. In this section (for 3
2 < a ≤ 2)

we associate map (1) with a directed graph, which reflects the behaviour of the map up to a
given resolution. Therefore, we can derive the properties of our dynamical system through
the study of this graph. More precisely our aim is to show with the help of this graph that
every point of S \N enters the attracting neighbourhoodN of the nontrivial fixed point
constructed in the previous sections.

Let D be a subset of Rn. A set S is called a cover of D, if the elements of S are subsets
of Rn and ∪s∈Ss ⊃ D. Let a map f : Df ⊆ Rn→ Rn, a subset D ⊆ Df and a cover S of D
be given. The directed graphG(V ,E) is called a graph representation of f onDwith respect
to S, if there exists a bijection i : V → S, such that the following implication is true for
all u, v ∈ V :

f (i(u) ∩ D) ∩ i(v) ∩ D �= ∅ ⇒ (u, v) ∈ E.

The meaning of the implication in the previous definition is the following. If we can get
withmap f from an element s1 of the cover to another (possibly the same) element s2 of it, ie
there exists x ∈ s1 and y ∈ s2 such that f (x) = y, then there is an edge between the vertices
corresponding to the two sets, more precisely (u, v) ∈ E for s1 = i(u) and s2 = i(v). The
reverse implication is not necessarily true, namely if there is a directed edge between the
vertices u and v, it is not sure there exists x ∈ s1 such that f (x) ∈ s2, where s1 and s2 are the
corresponding sets to u and v.

It is easy to see the implication above can be reformulated as follows. For every u ∈ V

f (i(u) ∩ D) ⊆
⋃

v∈Ku

i(v) ∩ D, (16)

where Ku denotes the set of vertices, into which there is an edge from u in graph G. So the
sets corresponding to vertices in Ku need to form a cover of the image of i(u). From this it
can be seen the graph representation can be regarded as some kind of upper estimation of
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the original map f. The finer the cover is, the better the graph representation approximates
the map. Therefore, if we would like to determine the possible location of the image of a
point P ∈ Rn under f, we can do it with the help of the graph, since f (P) ∈ ∪v∈Kui(v) ∩ D
for P ∈ i(u). This means iterating f the point P can move forward only along the edges, ie
it can move from an element of the cover to another one only if there is an edge between
the two vertices corresponding to them. Consequently, we can draw conclusions regarding
the possible location of the iterates of a point studying only the graph. In the following we
take the liberty to handle the elements of the cover as vertices and vice versa, omitting the
use of i.

The construction of the graph representation in our case is the following. For a fixed
k ∈ N we divide the unit square [0, 1]× [0, 1] parallel to the sides into 2k × 2k pieces of
small closed squares with side length r = 2−k. According to Proposition 2.5 we only need
to consider the squares lying in [ 1

16 ,
7
8 ]

2. The cover S of S consists of these sets. The small
squares correspond to the vertices of the graph. As for the edges, for every small square s
we construct a rectangle with reliable numerical methods which contains f (s). If the rect-
angle intersects the small square s2, then there is an edge from s to s2. It is clear that this
construction satisfies relation (16). Note that we considered only that part of the rectangle
obtained by the numerical method, which lies inside the square [ 1

16 ,
7
8 ]

2, but this is not a
restriction, since the studied set S̃ is invariant under map (1), so getting out of the unit
square is only the consequence of the numerical method and the ‘upper estimation’ nature
of the graph representation. Note also that instead of map (1) we use the second iterate
of it, since the formula is still compact enough not to cause big overestimation in interval
arithmetic, and it considerably speeds up the calculations.

In this paper, we suppose a graph is always finite. A graph is strongly connected if there
are uv and vu (directed) paths for every u �= v vertices of the graph. We use the following
decomposition of a directed graph [see 2].

Proposition 5.1: The vertices of a directed graph can be classified, and the classes can be
ordered such that

• the subgraphs spanned by the classes are strongly connected, and
• for every directed edge between these classes, the class of the tail of this edge precedes the

class of the head of it;

moreover, the partition above is unique.

The aforementioned classes are called the strongly connected components (SCC) of the
graph. A strongly connected component is called non-essential, if it consists of one vertex
without a loop. Otherwise, we call it essential.

From the graph representation and from Proposition 5.1, it is clear what happens to an
arbitrary point of S during the iterations. Starting from a small square containing this point
it moves to an other (possibly the same) small square along a directed edge. If we are not in
an essential SCC, we step out of this small square not returning to here afterwards because
of the ordering of the SCCs. If we are in an essential SCC, it can happen that the point stays
here forever, or the point steps out of this SCC, but in this case it cannot return to this SCC
anymore.
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Since during the partition we obtain finitely many small squares, and consequently, the
graph is finite; it is straightforward that for every point of S there exists an essential strongly
connected component, which the point enters during the iteration and never leaves it. So
it is true for every x ∈ S that it enters an essential SCC with finitely many steps and stays
here afterwards ; therefore, we only need to study the essential SCCs.

Our aim is to show that those essential SCCs, in which the points of S can get stuck, are
in the attracting neighbourhood N of the fixed point (A,A), which neighbourhood was
constructed analytically in the previous sections. It is important to note that, it is possible
for some essential SCC that none of the points of S can get stuck here. Actually, this would
be the case close to the trivial fixed point (0, 0), since it is a saddle; that shows the necessity
of Proposition 2.5 and S̃.

As a next step, we refine the partition as follows. We divide the small squares into
four smaller squares that have a side length half as long as before, determine their images
with reliable numerical methods and construct the SCCs again. Because of the proper-
ties of interval arithmetic (inclusion isotonicity: I1 ⊆ I2 ⇒ F(I1) ⊆ F(I2), where F is the
interval-extension of f, [see 14]), if there is an edge between two new small squares, then
there must be an edge between their predecessors with the same orientation. We come
to the conclusion that during the refinement, an essential SCC can arise only from a for-
mer essential SCC ; therefore, it is really enough to trace merely the essential SCCs. Note
that, with the refinements the graph representation becomes a more and more accurate
approximation of the represented map, so an essential SCC can fall apart into smaller
pieces, and it even can happen that none of the small squares born from a former essential
SCC compose a new essential SCC, ie this cycle in the graph is only the consequence of
the ‘upper estimation’ nature of the graph representation. We continue these refinement
steps, until all the remaining SCCs are inside the region of attraction of the fixed point
obtained in the previous section. If it occurs in finitely many steps, our main theorem is
proven.

Finally, instead of checking after every refinement, whether the remaining SCCs are
in the analytically constructed attracting neighbourhood N , we can remove all the small
squares lying entirely inN before the first refinement. In that case for a fixed a, the main
theorem will be proved, if the set of the new SCCs will be empty after a refinement. We
show the correctness of this method.

• If we erase a vertex which is a non-essential SCC, it has no effect at all compared to our
former method (when checking after every refinement).

• If we remove a whole essential SCC, it also has no substantial effect, because during the
checking it always would be in the attracting neighbourhood.

• The only significant change happens when we erase only a proper subgraph of an essen-
tial SCC. Consider such an SCC and colour blue the vertices we want to remove (and
do not remove them yet). Delete the directed edges stemming from a blue vertex, then
form the SCCs (referred to as new SCCs later on) of the new graph and order them such
that the blue vertices are at the end of the ordering. (It can be done, since there are no
edges from coloured to uncoloured vertices.)
(i) An uncoloured vertex can be in a new essential SCC; in that case they remain under

study after the removal of the blue vertices, just as they would be in the original
method.
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Algorithm Proving the global stability of (A,A) for the logistic map

1: procedure Log2d
2: V ← the initial partition r = 2−10
3: E← the edges construct them with reliable num. method
4: C← SCC of directed graph(V ,E)
5: remove the nonessential SCCs from V
6: remove the SCC at the origin from V if possible
7: remove the initial attracting neighbourhood from V
8: repeat
9: V ← refine(V) r← r/2
10: E← the edges
11: C← SCC of directed graph(V ,E)
12: remove the nonessential SCCs from V
13: until |B1| = ∅
14: end procedure

(ii) However, if an uncoloured vertex is a non-essential SCC it will be erased (as we
keep only the essential SSCs), unlike in the method without deleting the vertices of
the attracting neighbourhood, but this is not a problem because every point of this
vertex enters a new SCC or a blue vertex (because of the ordering) in finitely many
steps, so this vertex really can be deleted.

Note that the aforementioned method can be regarded as a proof, since the graph prob-
lems are finite, so the computer can work on them punctually, moreover the method used
during the construction of edges was executed with reliable numerical methods, therefore
if we have sufficiently much time, then we could reconstruct by hands the parts which were
executed by the computer, and we would come to the same conclusion, if our estimation is
as good as the computer’s.

The program code and the outputs can be found on the link [12].

6. Completion of the proof

In the previous sections, we obtained an attracting neighbourhood and then a method to
prove the global stability of the nontrivial fixed point for a fixed a ∈ [1.5, 2]. In this section,
we show how to modify our method to handle not only a single value of [1.5, 2] but a small
subinterval of that, instead.

Let [a] = [a−, a+] ⊆ [1.5, 2] be a fixed small interval. First, we need a new attracting
neighbourhood N ([a]), such that for every a ∈ [a], the attracting neighbourhood N (a)
contains this set, ie ∩a∈[a]N (a) ⊃ N ([a]). To this end, we need to take into consideration
the displacement of the fixed point and the change in the size of the neighbourhood. Sec-
ondly, during the construction of the edges of the graph representation the number a have
to be replaced by the interval [a], since (1) and consequently its second iterate depends on
a. So while studying the image of a small square k1, we need to study it for every a ∈ [a], ie
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Table 1. The partition of the parameter range.

Parameter Size of slices Shape ofN Parameters ofN
I1 [1.5, 1.95] 2−10 Rectangle 7 · 10−3
I2 [1.95, 1.995] 2−13 Ellipse εG = 0.0138
I3 [1.995, 2] 2−16 Ellipse εG = 0.0146

we take a set of small squares during the estimation of the image set such that they cover
f 2a (k1) for every a ∈ [a].

We divide the interval [1.5, 2] into subintervals I1 = [1.5, 1.95], I2 = [1.95, 1.995] and
I3 = [1.995, 2], then divide further these intervals into smaller subintervals with length
2−10, 2−13, and 2−16 respectively (see Table 1).

For small intervals in I1 we use the linearized map and the square-shaped neighbour-
hoods with side length 2ε(a) (Proposition 3.1). It is easy to see the size of this set and
the location of the fixed point also change as a changes. However, it can be shown that
ε(a) ≥ 0.007 for every a ∈ [1, 1.95], so considering this value fixed, we need to handle
only the displacement of the fixed point.

For small intervals in I2 and I3 we use the bifurcation normal form; therefore, the size
of the ellipse-shaped neighbourhood is fixed (Propositions 4.1 and 4.2), so we only need
to consider the displacement of the fixed point.

7. The algorithm

During the calculation of edges of the graph representation, we use the second iterate of
original map (1): (

x0
y0

)
�→
(
x2
y2

)
=
(

ay0(1− x0)
a2y0(1− x0)(1− y0)

)
. (17)

Regarding the examined parameter domain [a−, a+] and the sides [x−i , x
+
i ] and [y−i , y

+
i ]

of the squares as intervals, simply, we could use interval arithmetic tools, such as IntLab
to compute the image of a small square. However, the map is quite simple, so we can
accelerate this method as follows. Notice that x−2 = a−y−0 (1− x+0 ), so we only need to
force the computer to use a downward rounding in order to guarantee that the obtained
below estimation is really not larger than the possible first coordinates of the image of
any point from the initial square. Similarly, we can estimate x+2 , but at this time we use
upward rounding. As for the y−2 and y+2 , remark that instead of y−0 (1− y+0 ) in y−2 we can
usemin{y−0 (1− y−0 ), y+0 (1− y+0 )} because y0 denotes the same number in expression (17),
and the function x(1− x) is monotone on intervals which do not contain 1

2 in the interior
(and it is fulfilled in the partition). In y+2 we replace the minimum by maximum, after that
we proceed just like in the case of x2.

We implemented our program in MATLAB, and used the built-in digraph function to
construct the directed graph from the edge list and the conncomp function to divide the
graph into strongly connected components.

Now, we can run our algorithmwith parameters summarized in Table 1. As an example,
for the parameter slice [2− 61

213 , 2− 60
213 ] we show the evolution of the remaining SCCs

during the first 4 iterations on Figure 4.
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Figure 4. The remaining vertices for [a] = [2− 61
213

, 2− 60
213

]. (a) Before the first refinement, (b) after 2
refinements and (c) after 4 refinements.

The program ran successfully ; therefore, we established the nontrivial fixed point that is
globally attracting for a ∈ [1.5, 2]. Combining this with Proposition 2.4 and the asymptotic
stability for a ∈ (1, 2] the proof of Theorem 1.1 is completed.
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Appendix. The formulae of the coefficients

λ(a) = 1
2
+ 1

2
i
√
4a− 5

g20(a) = −a+ i√
4a− 5

, g11(a) = ia√
4a− 5

, g02(a) = a+ i√
4a− 5

h20(a) = 4a
4a− 5+ i

√
4a− 5

, h11(a) = 4ia
√
4a− 5

(−i+√4a− 5
)2 ,

h02(a) =
a
(
i− 1√

4a−5
)

i− ia+√4a− 5
,

h30(a) = − 12ia2

−2 (5i+√4a− 5
)+ a

(
13i−√4a− 5+ 2a

(−2i+√4a− 5
))

h12(a) =
16a2

(
2− 2i

√
4a− 5+ a

(−5+ 2a−√4a− 5
))

√
4a− 5

(−i+√4a− 5
)4 (−7i− 3

√
4a− 5+ a

(
7i− ia+ 2

√
4a− 5

))
h03(a) =

96a2
(−2+ a+ i

√
4a− 5

) (
a− 1+ i

√
4a− 5

)−1
√
4a− 5

(
1+ i
√
4a− 5

) (
12i(a− 1)− 7

√
4a− 5+

√
(4a− 5)3

)

h̃20(a) = −h20
2

, h̃11(a) = −h11, h̃02(a) = −h02
2

h̃30(a) = 1
6
(
3h220 − h30 + 3h11h̄02

)
h̃21(a) = 1

2
(
3h11h20 + h02h̄02 + 2h11h̄11

)
h̃12(a) = 1

2
(
2h211 − h12 + h02h20 + 2h02h̄11 + h11h̄20

)
h̃03(a) = 1

6
(
3h02h11 − h03 + 3h02h̄20

)
h̃40(a) = 1

24
(− 15h320 + 10h20h30 − 30h11h20h̄02 − 3h02h̄202 + 4h11h̄03 − 12h11h̄02h̄11

)
h̃31(a) = 1

6
(− 15h11h220 + 4h11h30 − 12h211h̄02 + 3h12h̄02 − 6h02h20h̄02 + h02h̄03

− 12h11h20h̄11 − 6h02h̄02h̄11 − 6h11h̄211 + 3h11h̄12 − 3h11h̄02h̄20
)

h̃22(a) = 1
4
(− 12h211h20 + 3h12h20 − 3h02h220 + h02h30 + h03h̄02 − 9h02h11h̄02

− 12h211h̄11 + 4h12h̄11 − 6h02h20h̄11 − 6h02h̄211 + 2h02h̄12 − 3h11h20h̄20

− 3h02h̄02h̄20 − 6h11h̄11h̄20
)

h̃13(a) = 1
6
(− 6h311 + 6h11h12 + h03h20 − 9h02h11h20 − 3h202h̄02 + 3h03h̄11

− 18h02h11h̄11 − 6h211h̄20 + 3h12h̄20 − 3h02h20h̄20 − 12h02h̄11h̄20

− 3h11h̄220 + h11h̄30
)

h̃04(a) = 1
24
(
4h03h11 − 12h02h211 + 6h02h12 − 3h202h20 − 12h202h̄11 + 6h03h̄20

− 18h02h11h̄20 − 15h02h̄220 + 4h02h̄30
)
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∣∣r402 (a)
∣∣ = a3

√
1+ a+ 4

9(−5+4a) + 54−10a(3+a)
9(−9+a(12+(−5+a)a))

4+ a(−6+ a+ a2)
∣∣r312 (a)

∣∣
= a3
√
4− 6a+ 21a2 − 242a3 + 741a4 − 1035a5 + 824a6 − 426a7 + 148a8 − 32a9 + 4a10

(−1+ a)2(−5+ 4a)
√

(−1+ a)(1+ a)(−4+ a(2+ a))(−9+ a(12+ (−5+ a)a))

∣∣r222 (a)
∣∣ = a3

√
1+ 2a+ 10a2 + 6a3 + 220a4 − 434a5 + 222a6 − 20a7 + a8√−5+ 4a(−1+ a)3(1+ a)(−4+ a(2+ a))∣∣r132 (a)

∣∣ = a3
(− 256+ 64a+ 1676a2 − 2498a3 − 95a4 + 2796a5

− 2219a6 + 187a7 + 730a8 − 550a9 + 200a10 − 40a11 + 4a12
) 1
2

(
(−1+ a)

5
2 (−5+ 4a)(−4+ a(2+ a))

√
(1+ a)(−9+ a(12+ (−5+ a)a))

)−1
∣∣r042 (a)

∣∣ = a3
√−11+ a(−6+ a(27+ a(−17+ 4a)))

(−4+ a(2+ a))
√

(−1+ a)(−5+ 4a)(−9+ a(12+ (−5+ a)a))
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