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Abstract

In this thesis appropriate statistical methods to overcome two types of problems that occur during
parameter estimation in chemical engineering systems are studied. The first problem is having
too many parameters to estimate from limited available data, assuming that the model structureis
correct, while the second problem involves estimating unmeasured disturbances, assuming that
enough data are available for parameter estimation. In the first part of this thesis, a model is
developed to predict rates of undesirable reactions during the finishing stage of nylon 66
production. This model has too many parameters to estimate (56 unknown parameters) and not
having enough data to reliably estimating all of the parameters. Statistical techniques are used to
determine that 43 of 56 parameters should be estimated. The proposed model matches the data
well. In the second part of this thesis, techniques are proposed for estimating parameters in
Stochastic Differential Equations (SDES). SDESs are fundamental dynamic models that take into
account process disturbances and model mismatch. Three new approximate maximum likelihood
methods are developed for estimating parameters in SDE models. First, an Approximate
Expectation Maximization (AEM) algorithm is developed for estimating model parameters and
process disturbance intensities when measurement noise variance is known. Then, a Fully-
Laplace Approximation Expectation Maximization (FLAEM) algorithm is proposed for
simultaneous estimation of model parameters, process disturbance intensities and measurement
noise variances in nonlinear SDEs. Finally, a Laplace Approximation Maximum Likelihood
Estimation (LAMLE) agorithm is developed for estimating measurement noise variances aong
with model parameters and disturbance intensities in nonlinear SDEs. The effectiveness of the
proposed agorithms is compared with a maximum-likelihood based method. For the CSTR
examples studied, the proposed algorithms provide more accurate estimates for the parameters.
Additionally, it is shown that the performance of LAMLE is superior to the performance of

FLAEM. SDE models and associated parameter estimates obtained using the proposed



techniques will help engineers who implement on-line state estimation and process monitoring

schemes.
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Nomenclaturefor Chapter 2

a

[A]

[A]
[Almeas
[A2]
[BHMT]
[BHMT]
[C]

[C]
[CPK]
Ec

Ei

AH

AH,
AHg

J
J
ke
Ker
Ka

Kar

ki

kiO
(kLa)cr
(ka)w

empirical model parameter for Equation (d.5), mmol °°-kg®>

concentration of amine end groups, mmol-kg™

calculated concentration of basic end groups using parameter estimates,
concentration of amine and other basic end groups determined by titration,
concentration of secondary amine groups, mmol-kg™

concentration of bis(hexamethylene) triamine (BHMT), mmol-kg™
calculated concentration of bis(hexamethylene) triamine (BHMT) using
concentration of carboxylic acid end groups, mmol-kg™*

calculated concentration of carboxylic acid end groups using parameter
concentration of cyclopentanone, mmol-kg™

polycondensation activation energy , kJ-mol™

activation energy of reactions (b.2) to (b.6) and (b.8) to (b.10), (i=2, 3, 4, 5,
enthalpy of polycondensation reactions (a.1) and (a.8), kJ-mol™

enthalpy of reaction (a.2), kJ-mol™

enthalpy of reaction (a.6), kJ-mol™

counter used in objective function Equation (4)

objective function value, dimensionless

polycondensation rate constant, kg-mmol™*-h*

polycondensation rate constant at reference temperature (T,=549.15 K),
apparent polycondensation equilibrium constant at T,=549.15 K

apparent polycondensation equilibrium constant at reference temperature
rate constant for reactions (b.2), (b.3) and (b.4) (i=2, 3 and 4), h* and
rate constant of reactions (b.2), (b.3), (b.4) (i=2, 3 and 4), h™ and reactions
volumetric liquid-phase mass-transfer coefficient for cyclopentanone, h™
volumetric liquid-phase mass-transfer coefficient for water, h™

equilibrium constant of reaction (a.2)

equilibrium constant of reaction (a.6)

rate constant of the inverse of reaction (a.2), h™

rate constant of the inverse of reaction (a.6), kg-mmol™*-h™

concentration of amide links, mmol-kg™*

concentration of tertiary amide branch point, mmol-kg™

molecular weight of speciesi, mol-g™*

evolution rates for gaseous species (i=NH3 and i=CO,), mmol-kg™*-h
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N. caculated evolution rates for gaseous species (i=NH3z and i=CO;) using

n; number of measured values of speciesi

Pc critical pressure of water, kPa

Pw partial pressure of water in the gas phase, kPa

pst saturation pressure of water in the gas phase, kPa

[P244] concentration of pyridine 244 ends, mmol-kg™
P244int  intermediate product that resultsin P244sin hydrostate

R ideal gas constant, 8.3145x10°° kJ-mol ™ K™

R rate of reaction i, mmol-kg™*-h

Rm; rate of mass-transfer of speciesi (i=w (water) and i=CPK (cyclopentanone))
[SB1] concentration of Schiff base groups, mmol-kg™*

[SB2] concentration of Schiff base links, mmol-kg™*

[SB3] concentration of Schiff base branch points, mmol-kg™

[SE] concentration of stabilized end groups, mmol-kg™*

t time, h

T temperature, K

T critical temperature of water, 647.3 K

To reference temperature used in the Arrhenius expressions (Equation (d.6) and
T, reference temperature for polycondensation rate constant and equilibrium
[W] concentration of water in molten polymer, mmol-kg™*

Greek Letters

Yo activity coefficient for water in the nylon melt

Your activity coefficient for water in the nylon melt at T,=549.15 K

g standard deviation of measurements for species i, mmol-kg*

Subscripts

eq equilibrium

w water

0 initial value

Orun,i initial value at run number i (i=1to 6)
CO, carbon dioxide

NH; ammonia

CPK  cyclopentanone
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Nomenclaturefor Chapter 3

Abbreviations

AEM
AMLE
CSTR
CTSM
EKF
EM
IQR
MCMC
MIMO
MLE
SDE

Roman letters
a

b

Cs

Ca

Cro

Co

Coc
Cy

cov{.}
det

()
E/R

f

F

Fe

g

AHixn

|

jrand j2
Jaem
Jaem,csTR

approximate expectation maximization
approximate maximum likelihood estimation
continuous stirred tank reactor
continuous time stochastic modeling
extended Kalman filter

expectation maximization

interquartile range

Markov chain Monte Carlo

multi-input multi-output

maximum likelihood estimation
stochastic differential equation

CSTR model parameter relating heat-transfer coefficient to coolant flow
CSTR model exponent relating heat-transfer coefficient to coolant flow
number of B-spline coefficients for sth state trajectory

concentration of reactant A (kmol-m™)

feed concentration of reactant A (kmol-m™)

heat capacity of reactor contents (J-kg™-K™)

coolant heat capacity (J-kg*-K™)

constant in Equations (17) and (18)

covariance

determinant

expected value

activation energy divided by the ideal gas constant (K)

X-dimensional nonlinear mapping on the right-hand side of the SDE
reactant volumetric flow rate (m*min™)

coolant volumetric flow rate (m*-min™)

Y-dimensional vector of nonlinear mappings on the right hand side of
enthalpy of reaction (J-kg™-K™)

identity matrix

positive integers in Equation (5)

AEM objective function defined in Equations (17) and (18)

AEM objective function for CSTR model defined in Equation (25)
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JamLE AMLE objective function defined in Equation (11)

Ji AMLE AMLE objective function for CSTR model

JoAMLE Outer AMLE objective function for CSTR model

Kret kinetic rate constant at temperature T, (min™)

ke rate constant defined in Equation (22)

M order of B-spline basis functions

n number of measurements

Nc number of measurements for concentration of reactant A

Nr number of measurements for rth response

nr number of measurements for temperature

P number of unknown model parameters

p(.) probability density function

o} number of discretization points for SDE model (Equation (1))

dc number of discretization points for concentration SDE (Equation (21a))
Or number of discretization points for temperature SDE (Equation (21b))
Q diagonal power spectral density function

Qq vector of disturbance intensities as Qq=[Qy,...,Qx]

Qc process disturbance intensity for concentration (kmol?-m®-min™)
Qr process disturbance intensity for temperature (K*-min™)

Qs process disturbance intensity for state s

R, Cy) expected value defined in Equation (13)

2 measurement noise variance for T(0)

Sno covariance matrix for measured initial states Xg

t time (min)

to initial time (min)

t; times used for discretizing SDES (min)

t jth measurement time (min)

tmr) jth measurement time at for the rth response (min)

tq final time (min)

T temperature of reactor contents (K)

To reactant feed temperature (K)

Tin inlet temperature of coolant (K)

Tref reference temperature (K)

At sampling time used for discretizing SDEs and disturbances (min)
At sampling interval for the case where all states are measured frequently
u U-dimensional vector of input variables for SDE model

UA heat transfer coefficient defined in Equation (23)

Um stacked vector of input values at the measurement times

Xiv



Us sthiinput variable
volume of the reactor (m°)

X state vector

X dimension of state vector

Xo state vector at theinitial timeto

Xmo vector of measured values of initial conditions

Xm stacked vector of state values at measurement times

Xs sth state variable

Xq stacked vector of state values at discrete times

X~ B-spline approximation of the vector of state trajectories x

X_(t) time derivative for vector x-

Ve vector of concentration measurements

VT vector of temperature measurements

y Y-dimensional output vector

Y dimension of output vector

Ym vector of stacked measured values at the measurement times

Vr rth measured output

Zy2 (1—-a/2)th quantile value of the standard Gaussian distribution
Greek letters

a significance level for confidence intervals

B stacked vector of B-spline coefficients

Bs; Ith B-spline coefficient for sth state trgjectory

Bca first B-spline coefficient for concentration state trgectory

Bs vector of spline coefficients corresponding to the sth state trgjectory
y constant defined in Equation (24)

d(.) Dirac deltafunction

€ Y-dimensional vector of zero-mean random variables

€c measurement noise for concentration(kmol -m)

o measurement noise for temperature (K)

& normally distributed measurement noise for rth measured state

€m stacked vector of measurement noise values at measurement times

¢ vector of unknown parameters defined as Z=[8",x;,Q"]"

n(t) X-dimensional continuous zero-mean stationary white-noise process
Na(t) X-dimensional discrete zero-mean stationary white-noise process
Ne(t) continuous zero-mean stationary white-noise process for concentration
Nt(t) continuous zero-mean stationary white-noise process for temperature
0 vector of model parameters

XV



Subscripts

»w - — x

Superscripts

()
T

number of samples from the
density of reactor contents (kg- m™)
coolant density (kg- m™)

covariance matrix for measurement errors defined in Equation (3)
covariance matrix for state variables at the initial time

measurement noise variance for rth response

measurement noise variance for concentration

measurement noise variance for temperature

stacked vector of model and disturbance intensity parameters and the B-
vector of B-spline basis function for sth state trgjectory

Ith B-spline basis function for sth state trajectory

matrix of B-spline functions defined in Equation (8)

joint  probability distribution

index of times used for discretizing SDE

index of number of measurements

index of iterations used in the EM agorithm for estimating ¢

index for B-spline coefficients

index for response variable

index for state variables

subscript used to indicate smoothed state trajectories estimated using B-

index of Ith random value of state vector sampled from p(X,, Yy, [ Q)
transpose

XVi



Nomenclaturefor Chapter 4

Abbreviations
AEM
AE
AMLE
AMPL
CSTR
CTsM
EKF
EM
FLA
FLAEM
IQR
MCMC
MIMO
ML
MLE
ODE
SDE

Roman letters

a
b

cov{.}

approximate expectation maximization

algebraic equation

approximate maximum likelihood estimation
amodeling language for mathematical programming
continuous stirred tank reactor

continuous time stochastic modeling

extended Kaman filter

expectation maximization

fully Laplace approximation

fully Laplace approximation expectation maximization
interquartile range

Markov chain Monte Carlo

multi-input multi-output

maximum likelihood

maximum likelihood estimation

ordinary differential equation

stochastic differential equation

CSTR model parameter relating heat-transfer coefficient to coolant flow rate
CSTR model exponent relating hest-transfer coefficient to coolant flow rate
number of B-spline coefficients for sth state trajectory

concentration of reactant A (kmol-m™)

feed concentration of reactant A (kmol-m)

estimated state trgjectory corresponding to estimated B-splines coefficients GC
estimated state trgjectory corresponding to estimated B-splines coefficients éé

estimated state trgjectory corresponding to estimated B-splines coefficients ﬁé
heat capacity of reactor contents (J-kg™-K™)

coolant heat capacity (J-kg*-K™)

constant in Equation (4.A.1)

covariance
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det

E{}

determinant

sum of the squared relative errors defined in Equation (4.57)

expected value

activation energy divided by the ideal gas constant (K)

nonlinear function on the right-hand side of the SDE model for the rth state
X-dimensional nonlinear mapping on the right-hand side of the SDE model
reactant volumetric flow rate (m®min™)

coolant volumetric flow rate (m* min™®)

nonlinear functions on the right hand side of the rth output equation

Y-dimensional vector of nonlinear mappings on the right hand side of Equation

positive scalar function

matrix defined in Equation (4.A.26)
Hessian matrix defined in Equation (4.27)
Hessian matrix defined in Equation (4.29)
Hessian matrix defined in Equation (4.28)
Hessian matrix defined in Equation (4.48)
Hessian matrix defined in Equation (4.52)
Hessian matrix defined in Equation (4.50)
Hessian matrix defined in Equation (4.49)
Hessian matrix defined in Equation (4.53)
Hessian matrix defined in Equation (4.51)
Hessian matrix defined in Equation (4.38)
Hessian matrix defined in Equation (4.40)
Hessian matrix defined in Equation (4.39)
Hessian matrix defined in Equation (4.54)
Hessian matrix defined in Equation (4.56)
Hessian matrix defined in Equation (4.55)
Hessian matrix defined in Equation (4.A.12)
Hessian matrix defined in Equation (4.A.14)
Hessian matrix defined in Equation (4.A.13)
Hessian matrix defined in Equation (4.A.20)
Hessian matrix defined in Equation (4.A.22)
Hessian matrix defined in Equation (4.A.21)
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AH iy,
jrand j,
J

JamLE
JAEM ,CSTR

JamLECSTR

p()

Smo

to

enthalpy of reaction (J-kg*-K™)

positive integersin Equation (4.5)

objective function defined in Equation (4.A.15)
objective function defined in Equation (4.14)

AEM objective function for CSTR model defined in Equation (4.59)
AMLE objective function for CSTR model defined in Equation (4.38)

objective function defined in Equation (4.A.17)
objective function defined in Equation (4.A.16)
objective function defined in Equation (4.31)

objective function defined in Equation (4.39)
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Chapter 1

I ntroduction

1.1 Introduction

The goal of this thesisis to develop and test accurate and easy-to-use techniques for estimating
parameters in models of chemical engineering systems. Statistical methods are developed to
overcome two types of problems that commonly occur during parameter estimation in chemical
engineering models. The first problem occurs when complicated mechanistic models are
developed and there are too many parameters to estimate from limited available data.** In this
situation, we assume that the model structure is sufficiently complicated so that it could describe
the underlying process behaviour accurately, if only accurate parameter values were available.
The second problem involves parameter estimation in simplified dynamic models of chemical
processes where the model structure may be imperfect and where unmeasured disturbances can
influence the process behavior.*® In this situation, there is often a considerable amount of data
available for parameter estimation, but model imperfections and stochastic disturbances should
be taken into account.’

The model equations associated with the first type of problem are often complicated ordinary
differential equations (ODES) that are nonlinear in the model parameters.® As a result, the
objectives for the first part of the thesis are to test the effectiveness of recently developed
parameter ranking and selection methods using a detailed mathematical model for nylon 66
production containing 14 ODEs and 56 parameters.

In the second type of problem, the model equations tend to be simpler, but stochastic terms are

introduced on the right-hand side of the differential equations to account for disturbances and



model mismatch.*® The resulting equations are called stochastic differential equations (SDES).
Accounting for model mismatch and disturbances during parameter estimation can lead to
improved parameter estimates and model predictions. Knowledge about the magnitude of the
mismatch and disturbances, may be helpful when implementing dynamic process models on-line,
using extended Kalman filters or other state estimators.” Therefore, the objective for the second
part of this thesis is to propose practical methods for addressing difficulties that arise during
parameter estimation of nonlinear SDE models. Some of the benefits of the proposed methods
that may be attractive to developers of fundamental dynamic models are: i) simplicity of
implementation, ii) reliable estimates of model parameters, initial conditions and disturbance
intensities, iii) efficient handling of unknown initial states, iv) ability to handle unmeasured state
variables. In particular, estimates of disturbance intensities can provide modelers with
information about the degree of mismatch and the magnitude of unmeasured disturbancesin their
models. This information will be helpful when implementing on-line state and parameter
estimation schemes for process monitoring and control. Three proposed techniques are devel oped
to address computational and implementation issues that are common using existing methods for
parameter estimation in SDES. The proposed approaches are illustrated and tested using a
continuous stirred-tank reactor (CSTR) model with two stochastic differential equations and four

model parameters.®’

1.1.1 Problem Definition

Effective mathematical modeling for chemical engineering processes involves building a system
of equationsthat is sufficiently complex to be able to smulate physical reality, yet simple enough
to give real insight into the process.® In chemical engineering, fundamental models are derived
using material, energy and momentum balances, aong with chemical and physical principals

including thermodynamics, kinetics and transport phenomena.



Fundamental models require and lead to a better understanding of the process compared to
empirical models. Parameters in these models have physical meaning, which lead to a better
assessment and interpretation of system behaviour and can help to further process analysis.!
Fundamental dynamic models of chemical processes may involve the use of algebraic equations,
ODEs or partia differential equations (PDEs). These models contain a number of parameters
whose values are not known a priori. The determination of suitable values of model parametersis
the objective of parameter estimation.” Fundamental models have a wide variety of application.
They can be used for simulation, design and optimization of chemical processes, training of
operators, model predictive control, increasing the quality of products, improving process safety,
process scheduling and production planning, reducing costs and obtaining better understanding of
process behaviour.*® Therefore, accurate models and reliable parameter estimation techniques are
vital for chemical engineers.

All steps for constructing fundamental models of chemical engineering systems are challenging,
but perhaps the most difficult task is estimation of model parameters. Parameter estimation
difficulties grow with the size and complexity of the system.™® Chemical engineering models may
have many reactions, many kinetic parameters, and many mass-transfer and thermodynamic
constants. Consequently, models that can fully describe a chemica process are usually nonlinear
and complex and have many unknown parameters.’ Another challenge in modeling chemical
processes is that experiments and measurements are often limited due to cost or inherent inability
to measure certain variables. Performing further experiments is expensive and may not be
feasible! As a result, the number of data values for parameter estimation may be limited and
some of the states are not measured. Some of the parameters may have little influence on the
model predictions making them impossible to estimate while some of the parameters may have
correlated effects with other parameters.*™*? Additionally, it is sometimes not clear whether all of
the model parameters can be estimated reliably from the available data, due to problems with

parameter estimability and identifiability."** Thus, it is advisable to follow appropriate statistical



procedures to overcome these problems. Chou and Voit™® reviewed parameter estimation
techniques and their challenges and suggested methods for overcoming data-related issues,
model-related issues and mathematical issues occur during parameter estimation in complicated
models.

In chemical processes, external fluctuations (or disturbances) can influence process behaviour.
Theses external disturbances reflect the random character of the environment and of system
inputs. For example, variations in external temperature or in impurity levelsin feed streamsto a
continuous stirred tank reactor are examples of common disturbances. Additionally, many
chemical engineering processes are not fully understood and are too complex to be modeled in a
completely deterministic fashion. Imperfections in the structure of a mathematical model are
sometimes treated using stochastic disturbance terms.*® Often, a full fundamental model would be
too complex for the intended use and it would be too expensive to do al of the experiments
required to estimate al of the parameters that would appear in the corresponding model
equations. Sometimes model users would like their models to include only the most important
phenomena, since simple models sometimes give better predictions than complicated models**
and simple models are more portable and easy to use. Thus, many systems of practica interest to
chemical engineer are better modeled using simplified fundamental models, especialy models
that account for stochastic disturbances.

SDEs are differentia equations in which the influence of various random disturbances appears
explicitly.® To account for the effect of unmeasured disturbances, imperfections and model
mismatch, stochastic terms in ODEs are introduced. These disturbances can enter the model
equations nonlinearly, but additive linear disturbances are most widely used in models for
chemical processes.*

Consider the Multi-Input Multi-Output (MIMO) SDE model of the following form:

X(t) = f(x(t),u(t),0) + n(t) (1.1.8)



X(tg) =X (1.1.b)
Y(ty) = 9(X(tyy), ultyy),6) +€(tyy) (110

where X=[X,...,X] is an X-dimensional state vector, f=[f;,...,fy] is an X-dimensiona vector of
nonlinear mappings, U=[uy,...,uy] isaU-dimensional vector of input variables, 6=[0y,...,05] isa
P-dimensional vector of unknown parameters, y=[yi,...,\y] is a Y-dimensiona output vector
with Y<X . Y<X isthe case that some of the sates are not measured. Assume that each response
variable (r=1...Y) is measured n times during the set of dynamic experiments. The set of times at
which measurements are available for the rth response (r=1...Y) is denoted by t; (j = 1...n).
0=[ds,.--,0vy] is a Y-dimensional vector of nonlinear mappings and &=[gy,...,&] is a Y-
dimensional vector of zero-mean random variables. Assume that these measurement errors are

independent so that their covariance matrix is:
S = (1.2)

and n(t) is an X-dimensional continuous zero-mean stationary Gaussian white-noise process with
covariance matrix E{n(t)n(tx)}=Q d(t,-t1), where Q is the corresponding diagonal power spectral

density function with dimension X xX :

Q 0
Q=|: . : (1.3
0 - Q

The diagonal elements of Q are sometimes referred to as disturbance intensities (i.e.
Qa=[Qx...,Qx]".> &(.) is the Dirac delta function. A large disturbance intensity corresponds
either to large random shocks that influence the process or large mismatch between the true
process and the behavior of the differential equations. Note that the model (1.1) is different from
atraditional ODE model for a chemical process because it accounts for two types of noise: 1) the

stochastic disturbances indicated by n(t) and the traditional measurement noise indicated by



€(t,;), which appears in ODE models. The proposed methods in this thesis were developed

assuming that the covariance matrixes of measurement noise > and power spectral density
function Q are diagonal. However the proposed methods might also be used for cases where >
and Q are not diagonal since derivations of the proposed objective functions do not require the
matrixes ~ and Q to be diagonal. However, we have not performed any simulations to test
whether it would be difficult, in practice, to obtain reliable estimates of off-diagonal parameters
in these matrices. The proposed methods in this thesis were developed assuming that the
covariance matrixes of measurement noise > and power spectral density function Q are diagonal.
However the proposed methods might also be used for cases where = and Q are not diagonal
since derivations of the proposed objective functions do not require the matrixes = and Q to be
diagonal. However, we have not performed any simulations to test whether it would be difficult,
in practice, to obtain reliable estimates of off-diagonal parametersin these matrices.
In this thesis, parameter estimation techniques for continuous time SDE models (Equation 1) are
proposed. The reason for choosing continuous time models instead of discrete time modelsiis that
chemical engineering models appear in continuous form. Additionally, parameters in continuous
models have physical meaning. It is also easier to interpret the model terms and parameters in
continuous models.
When simulating processes described by Equation (1.1), it is common to use a discrete-time
white-noise process to approximate the continuous stochastic process n(t), where the
corresponding discrete process is a series of random step functions with a short sampling interval
At, and covariance matrix:*®

o S
E{n(j;,A)Nn(j,At)} = § At (14)

0 1 #

wherej; and j, are positive integers.



A typical discrete-time white-noise process is shown in Figure 1.1.° The continuous-time white-
noise process n(t) is the limiting case of a discrete-time white-noise process where At — 0. Since
the intensity of the model disturbance Q is not usually known a priori by the modeler, it should

be estimated along with the model parameters.
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Figure 1.1 Typical discrete stochastic process disturbance associated with a stochastic
energy balance, obtained using Q,= 4 K?min-1 and At= 0.5 min

The existence of a solution of an SDE is ensured when globally Lipschitz, linear growth and
boundedness conditions are satisfied. These assumptions are described in detail by Liptser'® and

Bishwal "’

An alternative structure for expressing SDEs is:***

dx = f (x(t), u(t), B)dt + Qdw (L.1d)



Since the stochastic variable W (t) has a mathematical interpretation (W (t) is a Wiener process),
SDEs are often written in the differential form shown in Equation 4. Mathematicians regard

white noise as the time derivative of a Wiener process (or Brownian motion).’

Denote Sy as a vector of the diagonal elements of the noise covariance matrix (i.e., S¢=[S 12

s21M). Let {=[0",Q],Z]]" be the vector of unknown parameters in the SDE model, which

includes the model parameters 6, along with disturbance intensities Q and the unknown noise
variance S. Information about the measurement noise variance is often available from repeated
measurements or from sensor suppliers, but knowledge about the size of the imperfections and

disturbances is not usualy available to modelers. In some of the SDE parameter estimation
studies performed in this thesis, =, will be assumed to be known a priori sothat {=[0",Q;]".

A survey of approaches to parameter estimation in dynamic models is presented below. This
review is divided into two parts. The first part provides a literature review of parameter
estimation in ODE models with too many parameters to estimate from limited data. The second

part discusses available approaches for parameter estimation in SDE models.

1.2 Literature Review

1.2.1 Selecting Parametersfor Estimation

When the number of data values available for parameter estimation is limited, modelers may face
estimability issues.™**® Model parameters are estimable if their values can be estimated uniquely
from the available data. Therefore, for complex models, a parameter estimability assessment can
be helpful for assessing whether al of the model parameters can be estimated from the available
data**® Simplifying the model by leaving some parameters at their initial values can resolve

estimabilty issues.™® Recently, statistical techniques have been developed to aid modelers in



selecting important parameters to estimate in complex models.>***%2' McLean and McAuley*
provide a comprehensive review of estimability and identifiability analysis techniques.

Estimability analysis'®*?? ranks parameters from the most important to the least important.
Parameters are ranked based on the influence of each parameter on the predicted model outputs,
correlation between the effects of parameters, and uncertainties in initial parameter values.™
Estimating too many parameters from the available data leads to poor model predictions due to
increased variance, while estimating too few parameters and leaving the remaining parameters at
their incorrect initial guesses leads to poor model predictions due to increased bias.”* A mean
square error-based (M SE) criterion was developed by Wu et al.>® to select an optimal number of
parameters to estimate to obtain the best tradeoff between bias and variance. Use of this

methodology will beillustrated using the ODE model for nylon 66 production in Chapter 2.

1.2.2 Parameter Estimation in SDE Models

In this section, the problem of parameter estimation in SDE models is described. When
estimating parameters in SDE models, it is common to have differential equations that are
sufficiently simple and data sets that are sufficiently rich in information so that al of the
parameters can be estimated. The difficulty in estimating the model parameters arises due to the

vector of stochastic errorsn(t) and the unknown disturbance intensities Qg.

A relatively ssimple approach to estimate parameters in nonlinear SDE models is based on
Extended Kalman Filters (EKFs).?”? Traditional Kaman filters combine process measurements
with dynamic model predictions for linear systems and track unmeasured states in the presence of
process disturbances and measurement noise.***! EK Fs approximate nonlinear models by a series
of updated linear models, and use traditional Kaman filter calculations for the linearized
models.”®** EKFs can fail to converge to satisfactory estimates of parameters and states when

the SDE mode is highly nonlinear and the measurement times are far apart.



Other more complicated methods for parameter estimation in SDEs using discrete observations
fall into two main categories. In the first category, a moment-matching method is used, while in
the second category an approximate maximum likelihood is used.* Moment-matching methods
do not depend on assumptions about the probability density functions of the measurements given
the parameters. A problem that is common with moment-matching estimators is that they require
calculation of higher-order momentsin order to be efficient. As aresult, the focusin thisthesisis
on the development and implementation of approximate ML methods.

Discretization of the SDE model is helpful when developing parameter estimation techniques for

SDE models using ML methods. Using an Euler approximation Equations (1.1.a) and (1.1.b)

become:
X(ty + At =X() = Xx(ti_y) + F(X(tp),uti1),0)At + ng (t_,)At (1.53)
X(to) =Xo (1.5b)

where Xx(t;) is the value of the state variable at q uniformly-spaced time pointst; , i=0,..,q and ngq

is a discrete white noise vector. The values of al X state variables at the q discretization times

can be stacked in a vector denoted by X, =[x(t,)",--,X(t,)"]". The stacked vector of

measurements at the measurement times is denoted by Y,_ =[y(t.,)",---,y(t,,)"]. The
corresponding state values, inputs and random erors at the measurement times are
X =[X(t) o X(t,,) "] andU =[u(t,,)", -, u(t,,)"]. Note that measurements and
states are assumed to be sampled at different times. Measurements are sampled at t,; (j = 1...n)
while states are sampled at t; (i=0,..,0).

Thelikelihood function of the parameters given the measurementsiis defined as™:

L(C1Yn) = p(Y, [0) (16)

10



In ML methods, the likelihood function of the parameters given the observed data L({]Y,,) is

maximized to estimate ¢, which contains the unknown model parameters 6, the measurement

noise variances Sy and disturbance intensities Qq:

Z:arg max L({|Y,,) (1.7
Z

ML estimators can result in biased estimates when data sets are small. ML techniques also have
several implementation challenges. A major challenge is that an appropriate expression for the

probability density function p(Y,, [{) in Equation (1.7) is difficult to derive when some of the

states are not measured (i.e., Y<X). When measurements are not available for one or more of the
state variables, ML estimation becomes more complicated because of the need to estimate the
unmeasured states,**

Numerous methods have been proposed for approximation of the likelihood function in SDE

models. Some of these techniques are: ssmulated maximum likelihood methods (such as Markov

Chain Monte Carlo (MCMC) techniques),*”*° expansion of the likelihood function using Hermite

41,42 43-45

polynomial basis functions,™ " solving the Fokker-Planck equation numerically™" and recursive
maximum likelihood parameter estimation using polynomial chaos theory.* Benefits and
drawbacks of these techniques are summarized by Lindstrom.* Simulated maximum likelihood
methods (SML) developed by Pederson* aim to estimate a probability density function by
simulation. Marchov Chain Monte Carlo (MCMC) methods are SML methods that numerically
approximate a probability density function by drawing samples from it.*"*® Severa MCMC
agorithms have been developed.****®*® The most popular one is the Metropolis-Hastings (M-H)
agorithm.>* A drawback of SML methods is that they are computationally expensive.

An approximate ML method that is computationally less expensive than MCMC methods was
proposed by Kristensen et a.* In Kristensen’s method, a Gaussian distribution is assumed for the

likelihood function and the mean and variance of the likelihood function are estimated using an

Extended Kaman Filter (EKF). Easy-to-use CTSM (continuous-time stochastic modeling)

11



software was developed based on Kristensen’s method and is used in simulation studies later in
this thesis.?’

Poyton et al.> developed an iterative principal differential analysis (iPDA) method to estimate
model parameters 8 in ODE models and later showed that these methods are appropriate for
SDES if the disturbance intensities and noise variances are known.”> iPDA uses B-splines to
approximate the trgectories for the measured and unmeasured states. In the first step of iPDA,
the B-spline coefficients B are estimated by fitting the B-splines to the observations using the

most recent estimate of 6 and the following objective function:

M0 203, ) =X 1+ D () = X () 1 L~ 1 )1

to

t
¢odx,

— XI[d—i[(_ f. (X_,0)]? dt
to

(18)
where | ,,...,| , are positive weighting factors. x_.(t) is the approximate sth state trajectory

computed from>**":

X (t) = CZ Bs @, (1) fors=1,....X (1.9
1=1

The subscript ~ is used throughout this thesis to indicate a state trajectory that is approximated
using B-splines.b | is a B-spline coefficient and f , (t) is the corresponding B-spline basis

function. In matrix form, Equation (1.9) is:

X_()=o(t)B (1.10)
where ®(t) isamatrix of spline functions:

oI(t) 0 ... 0 |
¢(t)=:0 q’?@_"' :0 (1.11)

0 0 ...o%(t)
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and

B,

B = (112

Bx
In the second step of iPDA, the model parameters 6 are estimated by minimizing the objective

function in Equation (1.13) using the most recent values of B:

dx,_ ’ K
o 0 1t tho[

dx, _
d? — . (%4_,0)]° dt

tq
min I_[
in 1, [[

to

(1.13)
iPDA iterates between the smoothing step (Equation (1.8) with the most recent values of 8) and
the estimation step (Equation (1.13) with the most recent values of B) until the solution
converges to good spline fits and good parameter values. Varziri et al.®> showed that the iterative
minimization of Equations (1.8) and (1.13) can be performed using a single step by
simultaneously minimizing objective function (1.8) using the joint vector of the mode
parameters and the B-spline coefficients as decision variables. The iPDA objective function in
Equation (1.8) contains model penalty terms in addition to the usual sum-of-squared-error terms.
The model penalty terms account for model mismatch and process disturbances. In addition to
controlling the smoothness of the spline functions, the penalty termsin Equation (1.8) ensure that
the fitted B-spline curve will approximate the behavior of the SDE.

The main difficulty of iPDA is determining appropriate values for the weighting factors, which

Poyton et a.* selected by trid and error. Varziri et a. *demonstrated that maximizing
P(X,, Yy [8) is equivalent to minimizing the iPDA objective function proposed by Poyton et

a.,® when model mismatch results from additive stochastic white-noise disturbance inputs.
Moreover, Varziri showed that the corresponding weighting factors in the iPDA objective

function should be;

13



S2

| g=—=2 114
o) (1.14)

When a particular state is not measured, the corresponding sum-of-squared-error term does not

appear in objective function (1.8) and avery large value of | _ is appropriate for the corresponding

model-based penalty term, because S r?‘l,s becomesinfinite. Using alarge weighting factor ensures

that the optimizer will select the spline coefficients so that the differential equation for the

unmeasured state is satisfied with only a small amount of error. For the measured states, the

values of | _from Equation (1.14) ensure an appropriate tradeoff between B-spline trgjectories

that match the data and that match the behavior of the differential equations. This extended iPDA
technique was referred to as approximate maximum likelihood estimation (AMLE) by Varziri et
al.® since they maximized an approximation to the likelihood function.

The main drawback of AMLE is that its application requires knowledge of the value of the
stochastic process disturbance intensities Qq4, which are not usually known to the modeler.
Varziri et a.® modified the formulation of AMLE using a technique developed by Heald and
Stark > for cases in which measurement-noise variances < 4 are known to the modeler but the
process disturbance intensities Qq are not known, and proposed a two-step optimization
algorithm to obtain 6 and Qg. In this algorithm, the inner optimization problem minimizes the
AMLE objective function with respect to the model parameters and B-spline coefficients using

an assumed value of Q4. An outer optimization problem selects Qg to ensure that the estimated

measurement noise variances s © are close to the known values s ? asfollows:

Qzargmin{srl(—gl)—l} +...+{§Y(—(3Y)—1} (1.15)

Q S, Sy

or equivaently:

Q =argmin{znlt(vm ~X_ Q)T (Y, — X, (Q)) + Trace(H™)] —I} (1.16)
Q
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where H isthe Hessian matrix of the AMLE objective function with respect to the state variables

evaluated a B and 6 obtained from the inner optimization and | is the identity matrix. The main
drawback of this method isthat it cannot be used for cases where some of the measurement noise
variances are unknown. Furthermore, objective function (1.15) was selected arbitrarily by Varziri
et al. to ensure that the estimated noise variances are close to the assumed noise variances. No
theoretical justification for Equation (1.15) was provided.

An early ML algorithm for parameter estimation in SDE models is the Expectation Maximization

(EM) algorithm proposed by Dempster et a.®. The idea underlying the EM algorithm is that

calculating the probability density function of the complete data p(X,,Y,, |{) is easier than

calculating the probability density function of observed data given the parameters p(Y ., | () . The

EM algorithm has two steps. In the first step, referred to as expectation or E step, the expected
value of the probability density of the complete data is estimated based on current values of the

parameters (from the kth iteration or the initial guessesif k=0):%!
R(G C) = ELIN[p(X ¢, Yo 1O Yin G} =

(1.17)
[IN[p(X 4, Yo 101P(X 1 Yo 8 dX

In Equation (1.17), X4 below the expectation symbol indicates that this expected value is
computed over all possible values of the discretized state variables.
In the second step, referred to as the maximization or M step, the expected value evaluated in the

first step is maximized using:

(s = arg max R, (118)
4

In linear cases with Gaussian noise, explicit recursive equations for computing the required

density functions have been developed.”> However, for nonlinear SDE models, no explicit

solutions for the E step and M step are available.®® Several approaches have been proposed by

researchers to approximate the E and M steps of the EM algorithm. For example, extended

15



Kalman filters (EKFs) have been used for approximating both the E and M steps and *
Sequential Monte Carlo (SMC) methods, also known as particle filter methods, have been used
for approximating the E step. 374950536769

SMC methods are effective parameter estimation tools that do not require assumptions about the
form of the density functions, but the number of mathematical operations required in each
optimization step for atypical SMC method is 8qn(X*+Y?).” The complexity of the optimization
problem increases rapidly as the number of states, measurements, and parameters increases.
Hence, the optimization procedure can be very slow and computationally prohibitive>*®*"™
Imtiaz et. al.” discuss some implementation issues for SMC methods and Kantas et al.”* present
an overview of a variety of SMC methods and discuss their advantages and disadvantages.
Recently, Chitralekha et a.” compared the performance of three SMC-based EM a gorithms: the
particle smoother, the unscented Kaman smoother and the extended Kalman smoother.
Linearization-based EKF methods for approximating the EM algorithm are beneficial because
they do not require MC sampling from probability density functions, but they can give biased

parameter estimates in situations where the nonlinearities are strong.*

1.2.3 Summary of Literature Review

In summary, one type of difficult parameter estimation problem encountered by chemica
engineers results from complicated mechanistic models with too many parameters and limited
available data. In these situations, statistical techniques have been developed to aid modelersin
selecting important parameters to estimate.! Techniques that have been developed for parameter

ranking***?

and for determining the appropriate number of parameters to estimate from the
ranked parameter list so that the best possible predictions can be obtained. These methods have
been used for a variety of chemical and biochemical process models, but they need further testing

on larger-scale practical models with >10 differential equations and ~50 parameters. Thisis one

of the objectives of the modeling and parameter estimation work described in Chapter 2.
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A second type of difficult parameter estimation problem occurs when stochastic terms are
included in differential equation models to account for possible modeling imperfections and
process disturbances. Currently, the most popular methods for estimating the parameters of these
SDE models are relatively simple EKF methods and more complex ML methods. For highly
nonlinear models, state and parameter estimation using EKFs may perform poorly due to bias and
lack of convergence. Maximum likelihood estimation (MLE) has been adopted because they can
provide asymptotically consistent and efficient estimates of the model parameters.®*® However,
mathematical expressions for the conditional density functions in ML agorithms typically
include high-dimensional integrals that are not amenable to anaytical simplifications. Hence, an
approach that approximates the high-dimensional integrals through an iterative Markov Chain
Monte Carlo (SMC) method is sometimes used. The difficulties of parameter estimation in SDE
models grow with the number of states and parameters in the system. None of the current ML
methods are straightforward, and even for systems of modest size. All can lead to problems with
slow algorithmic progress toward the minimum, lack of convergence, and computational
complexity.®**°%"™ The recently developed AMLE method of Varziri et al. uses B-spline basis
functions to approximate the state trgectories when performing approximate ML parameter
estimation. Extension of these methods to more difficult problems (i.e., when the noise variances
and disturbance intensities are unknown) is explored in Chapters 3 to 5.

The material in Chapter 2 has been published in Macromolecular Reaction Engineering and the
material in Chapter 3 has been accepted for publication in the Canadian Journal of Chemical
Engineering. The material in Chapter 4 has been submitted to Industria and Engineering
Chemistry Research and the material in Chapter 5 has been prepared for submission to a journal.
To keep each chapter self-contained and to keep the presentation in this thesis close to the
original manuscripts, some information repeated appears in multiple chapters. Most the repetition
is associated with the defining the SDE model equations and associated notation and in

presenting the CSTR model used in the simulation studies. Note that the abstracts for these
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chapters have been revised dlightly when compared with the original manuscripts in an effort to

better describe the links between the various chapters.
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Chapter 2

Kinetic Model for Non-Oxidative Thermal Degradation of Nylon 66

H. Karimi, M.A. Schaffer, K. B. McAuley

2.1 Abstract

In this section, the use of some traditional parameter estimation and selection techniques
areillustrated in a complex ODE model when there is insufficient data to estimate all the
parameters and unknown initial conditions. An improved kinetic model was devel oped
for thermal degradation of molten nylon 66 to illustrate and test estimation strategies for
estimating parameters in complicated models with too many parameters and limited data
available for parameter estimation. One objective of this modeling work was to
determine whether all of the parameters could be estimated from available data and if
not, to obtain the best possible estimates of the parameters that should be estimated.
Elimination of well-known or unimportant model parameters avoids numerical problems
during parameter estimation. Estimating too many parameters from the available data can
lead to poor model predictions due to increased variance. Estimating too few parameters,
and leaving the remaining parameters at their incorrect initial guesses, can lead to poor
model predictions due to increased bias. The proposed model, which describes the effect
of melt-phase water concentration on degradation, matches the data well with typical
errors of 6.1% and 2.9%, respectively, for amine ends (A) and carboxyl ends (C) and
4.3%, 27.2% and 29.4%, respectively, for evolution rates of CO,, NHj; and
cyclopentanone (CPK). This chapter has been published as a journa paper in

Macromolecular Reaction Engineering 6, 93-109, 2012.
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2.2 Introduction

Nylon 66 is an important thermoplastic polymer. Because of its physical properties such
as strength, toughness, stiffness, processability and resistance to heat, it has a wide range
of applications from resin to fiber and film.> Nylon 66, or poly(hexamethylene
adipamide), is produced from the condensation of adipic acid and hexamethylene
diamine. The tendency of adipic acid residue segments to cyclize is one of the most
important factors that causes thermal degradation in nylon polymerization reactors.?
Thermal degradation reactions are unwanted side reactions that result in changes in the
balance of reactive end groups, evolution of gaseous degradation products, and
branching, which can lead to gelation.These reactions tend to occur at the high
temperatures used during the final finishing stages of industrial nylon 66 production,
where high temperatures and low water concentrations are used to achieve high
molecular weight.? Degradation eventually affects final product quality by changing
important properties such as processability, dyeability, physical properties and colour of
the nylon product.* Note that this research is concerned with thermal degradation, rather
than oxidative degradation, because oxygen was carefully excluded from the lab-scale
reactor (see Figure 2.1) used to obtain the data*® for this model study and is excluded

from industrial nylon polymerization reactors.
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Figure 2.1 Simplified schematic diagram of polymerization/degradation reactor system.
Details concer ning temperatur e control, mixing and polymer sampling are provided by
Schaffer et al.®

For each run, approximately 1.8 kg of additive-free nylon 66 polymer pellets were used
as received from DuPont Canada with an amine end-group concentration of 58.8
mmol-kg*, and a carboxylic acid end-group concentration of 94.5 mmol-kg™. The pellets
were melted via simultaneous heating of the reactor walls and circulation of the
preheated mixture of nitrogen and steam through the reactor vessel for approximately 1
h. After the temperature in the center of the reactor had reached a value near 200 °C,
impeller drive was started with a set-point value of 20 rpm. After the melt temperature
reached the desired setpoint value (approximately 3 h), collection of polymer and gas
samples for subsequent analysis began. Temperatures were measured in two places. in

the center of the reactor vessal and at the reactor wall. The differences in these two
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measurements varied between 2 and 11 °C in different runs. The reported run
temperatures (see Table 2.4) are averages of these two temperatures. Steppan et a. ’
developed the only published model for the thermal degradation of nylon 66 and used
literature data for parameter estimation. They developed a minimum subset of the
degradation reactions, based on their knowledge at that time, and reactions suggested by
Wiloth ® to describe end-group concentration changes and the evolution of NH3 and CO,,
and then fitted their kinetic constants to data. Their mechanism, shown in Table 2.1,
accounts for a decrease in the concentration of carboxylic acid end groups and an
increase in amine end-group concentration with time, as well as polymer chain branching
and evolution of CO, and NHs. Although the model by Steppan et al.” is in agreement
with the data they used, it does not account for the formation of cyclopentanone and for
branches that result from amine end-group condensation (Reactions (a.7) and (a.8) in
Table 2.2). Pimentel and Giudici'! used Steppan’s kinetic scheme and rate constants to
develop a mathematical model for nylon 66 production in a two-phase continuous tubular
reactor, followed by a continuous stirred tank, and validated their model using industrial

data.
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Table 2.1 Thekinetic scheme proposed by Steppan et al.” to account for polyamidation and

thermal degradation in melt-phase nylon 66
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Table 2.2 The supplementary kinetic scheme for thermal degradation in melt phase nylon
66 wer e proposed by Schaffer® and McAuley.™
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In an effort to learn more about degradation reactions, Schaffer et a.* used the reactor
system in 2.1 to collect data for end-group concentrations, water content and branch
concentrations in molten nylon 66, as well as information about off-gas evolution rates.

Schaffer’ and McAuley™ used these data to develop a more comprehensive kinetic
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scheme for nylon 66 polycondensation under conditions of high temperatures and low
water concentrations, as shown in Table 2.2. Values for amidation rate constants were
determined from experiments involving nylon 612.° Nylon 612, which is produced using
dodecanoic acid in place of adipic acid, is more thermally stable than nylon 66. Reactions
(a2) to (a.5) in Table 2.1 can only occur in nylons that are produced using adipic acid.
From their nylon 612 data, Schaffer et al.> were unable to determine whether the order of
the polycondensation reaction was first-order with respect to carboxyl end-groups or
second-order as had been suggested by Mallon et a.*? Kinetic rate constants were fitted
twice, using the different assumptions about the reaction order. Schaffer’s data® could be
described using either assumption. Unfortunately, a second-order influence of carboxyl
ends on amidation rate was assumed in a subsequent nylon 66 degradation model.®
Subsequently, Zheng et al.® performed additional nylon 612 experiments, using polymer
samples with different relative concentrations of carboxyl and amine ends and
determined that the polycondensation reaction is first-order in carboxyl ends, rather than
second order. As a result, predictions and parameter estimates from Schaffer‘s model®
may be unreliable if applied at conditions differing greatly from those at which

Schaffer’s data were collected. Varziri et al.*®

recently performed an additional parameter
estimation study for nylon 612, using the kinetic data of Zheng et al.® and additional
reaction equilibrium data.**

Recently, Schaffer et al.* compared their nylon 66 degradation data with predictions from
Steppan’s model and found that there is a significant discrepancy between Steppan’s

model predictions and Schaffer’s degradation data. As a result, Schaffer et al. proposed

additional reactions to be considered in the overall reaction scheme, as shown in Table
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2.2 and Table 2.3. Table 2.2 provides reactions that were included in the origina model

by Schaffer.’

Table 2.3 Supplementary reactionsfor thermal degradation of nylon 66 in a melt phase
proposed by Schaffer et al.*

[ ke,
R—MH, + R—N= + HzD (ab.R)

A CPK SB1 w

D OB gD
- —_— =k Bt

R NH-j- o g v {GHIs a
s (GH)s N I I

[l 8] Q
8]

SB1 CPK P244int w

Reactions in Table 2.3 are additiona reactions required to explain the formation of
pyridine 244 ends, which were observed in the nylon 66 degradation products after
Schaffer’s initial degradation model had been developed.* We did not include one of the
reactions (SE + W — A + CPK + CO,) proposed by Schaffer et al.* in the current
mechanism because it is the sum of reactions (a.4) and (a.6). As a result of the large
number of reactions in Table 2.1, Table 2.2 and Table 2.3, a new model that properly
accounts for degradation of nylon 66 will contain a large number of kinetic parameters.
Data for estimating these parameters are available from six dynamic experiments that

were conducted using the conditions shown in Table 2.4.%
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Table 2.4 Experimental run conditions’

Run Temperature[°C] P, [kPa] Timeduration [h]
1 281 92 9.1
2 275 57 10.6
3 285 93 6.6
4 292 59 31
5 286 23 2
6 290 101 (lowered to 23 at 3.3 h) 45

Pw, in column three, is the partial pressure of water in a nitrogen/water vapour mixture
that Schaffer bubbled through the molten nylon. He used different temperatures and
moisture levels in the six experiments to investigate the influence of water and
temperature on degradation rates. A constant water partial pressure was used for the
entire duration of Runs 1 to 5. In Run 6, pure steam was fed at the beginning of the
experiment (P,=101 kPa) and then a lower water partial pressure was used for the

P18 gre not suitable for

remainder of the run. Literature data from earlier studi
parameter estimation with this full reaction scheme because key information, such as the
moisture level in the molten nylon is not provided in these data sets.

It is not clear whether al of the model parameters can be estimated reliably from the
available data. Recently, statistical techniques have been developed to aid modelers when
estimating parameters in complex models using limited data.*"* The objective of these
estimability analysis and parameter selection techniques is to aid the modeer in
determining which model parameters should be estimated from the available data, and
which parameters should be remain at their initial values. First, the model parameters are
ranked from most estimable to least estimable, using a sensitivity-based technique.*’*

Parameters that appear near the top of the ranked list are those that have the most

influence on predictions of the data. Parameters appear near the bottom of the list



because they have little influence on the model predictions, because their effects are
correlated with those of parameters that appear higher on the list, or because their values
are dready precisely known. Estimability analysis has been used successfully to rank
parameters in models for a number of different chemical and biological reaction
systems.22'28

In the current work, a mean-squared error criterion is used to determine the appropriate
number of parameters to estimate from the ranked list.®* Estimating too many
parameters from the available data can lead to poor model predictions due to increased
variance. Estimating too few parameters, and leaving the remaining parameters at their
incorrect initial guesses, can lead to poor model predictions due to increased bias.?® One
objective of the current modeling work is to determine whether all of the parameters can
be estimated from Schaffer’s* data and, if not, to obtain the best possible estimates of the
parameters that should be estimated.

In this work, a dynamic kinetic model is developed to explain Schaffer’s experimental
data, which were obtained at relatively high temperatures (275 to 292 °C) and low water
concentrations (10 to 80 mmol kg™).* Estimability analysis'’*®**" and a mean square
error-based (M SE) criterion™®?! are used to determine which parameters can be estimated
from the available data. Findly, the parameters and unknown initial conditions are
estimated and model predictions are compared with experimental data. The resulting
model will be a useful tool for engineers who wish to design improved equipment or

operating strategies for the final stages of nylon 66 production.
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2.3 Model Development

2.3.1 Reaction Pathways

Many chemical reactions have been described in the literature to explain the mechanism
of thermal degradation of nylon 66.>%** Inclusion of all or a substantia portion of these
proposed reactions in a kinetic model is not feasible because sufficient experimental data
are not available to estimate of all of the rate and equilibrium parameters that would be
required in such a complex model. We therefore adopt the goa of developing a
simplified, reasonable kinetic model that is capable of describing the experimental data
of Schaffer et a.*

In Tables 2.1, 2.2 and 2.3, convenient symbols are shown below the structural diagrams
for the chemical species that are considered in the model (e.g., C for carboxyl end, A for
amine end, L for amide link, W for water, SE for stabilized end, CPK for cyclopentanone
and SB1, SB2 and SB3, respectively, for Schiff base groups attached to one, two or three
chains).

The experimentally-observed phenomena to be accounted for by the model include:
decreases in carboxylic acid end-group concentrations with time; increases in amine end-
group concentrations with time; evolution of ammonia, carbon dioxide and
cyclopentanone; branching of the polymer resulting in 2,5-di(6-aminohexyl)
cyclopentantone and bis-hexamethylene triamine (BHMT) in the polymer hydrolysate,
and the formation of pyridine 244 ends. Note that the data set of Schaffer et al.” includes
measurements of gas evolution rates from samples collected over the course of each
experiment. End-group and branch point (BHMT only) concentration measurements are
also available from polymer samples collected at various times during each dynamic

experiment.
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The proposed model uses a reaction scheme that consists of reactions (a.1) to (a.4), (a.6)
to (a10), (a2.R), (a.6.R) and (a11) shown in Table 2.1 to Table 2.3. Reaction (a.5) in
Table 2.1 is not required, because it appears as two separate reactions ((a.9 and (a.10)) in
Table 2.2. Reaction (a.l) is the desired step-growth polycondensation reaction, which
consumes carboxyl ends and amine ends react to form amide links water. Reaction (a.2)
is acyclization reaction of the carboxylic acid end to form a stabilized end and water.
Reaction (a.3) is a similar reaction that occurs when a polymer chain is broken to form a
stabilized end an amide end. The stoichiometric coefficient of 2 associated with the
amide links in reaction (a.3) does not mean that two amide links actually react with each
other. Rather, it reflects the fact that two amide links (with molecular weight (MW) 113
g mol™) are consumed by reaction (a.3) and should be accounted for in the stoichiometry.
Reaction (a.4) is an intramolecular reaction wherein a stabilized end group forms a Schiff
base end and CO. is generated. The evolution of significant quantities of cyclopentanone,
which was not included in the Steppan model, is accounted for by reaction (a.6).
Hydrolysis of Schiff bases is a well-known reaction that has been studied previously.*
Branching reactions (a.7) and (a8), are included in the model to account for the
appreciable concentrations of BHMT detected in the hydrolyzed polymer samples.
BHMT is produced from the hydrolysis of both the secondary amine unit (A2) formed by
reaction (a.7) and the tertiary amide branch point (L2) formed in reaction (a.8). Reaction
(a.8) is areversible polycondensation reaction that leads to branch formation. Reactions
(a9) and (a.10) show a two-step branching process in which a Schiff base branch point
(SB3) isformed. Reaction (a.11) shows the production of an intermediate species, which

results in the formation of pyridine 244 ends. Note that Schaffer et a.* used GC-MS (gas
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chromatography combined with mass spectrometry) to detect hydrolysis products that are
consistent with SB3 branches and with Pyridine 244 ends in the polymer. Unfortunately,
no measured concentration values for these species are available for parameter
estimation. Rate expressions for the pertinent reactions are shown in Table 2.5. All
reactions are assumed to be elementary. Reactivities of functional groups are assumed to
be independent of the length of the molecule to which they are attached, in accordance

with Flory’s® equal reactivity hypothesis.

Table 2.5 Reaction rate expressions for the proposed model

3=kl 0a- M) 6)
R, - k{[c]_ [SEIZ[Gq\M j (b2)
Ry =k;[L] (b:3)
R, =k,[SE] (b.4)
R, - k{[ssl][vw —M] (09
R =k, [A]® (b.6)
R = k{[C][Aa —%J (b.7)
R, = k,[SB1] [A] (b.8)
Ry = kio[SB2] [A] (b.9)
R, = ky,[SB1] [CPK] (b.10)
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2.3.2 Simplifying Assumptions
In the development of the model equations in Tables 2.6 and 2.7, we assume that the
solubilities of NH3 and CO, are negligible in the molten polymer, and that each species
appears in the vapour phase as soon as it is produced. CPK, however, is able to
accumulate in the liquid phase where it can either be consumed in reactions (a.6.R) and

(a11) or it can diffuseinto the gas phase.

Table 2.6 Differential equationsfor melt-phase species concentration changes with time and

equationsfor evolution rates of degradation productsfor nylon 66

dAl_ op - (c1)
o - R

dlc]_ - (c2)
= R-R-R

[] _R_2R (c.3)
[] “R,~R,+R +R +R,~R,, (4
$=R3+R2_R4 ((c.5)
PR Ry Ry (6)
d[jBl] R-R =Ry +R, 0
d[SBZ] _R-R, (c.8)
d[§B3] R, (c.9)
da] o, (c.10)
a o

d[L2] (c.11)
dt =R

d[P244end] (c.12)
B =R,
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Mass-transfer expressions (d.9) and (d.10) in Table 2.7 are used to account for transfer of
both water and CPK from the molten polymer to the gas phase. In Equation (d.3) and
(d.4) the equilibrium water concentration in the polymer [W]e that would be in
equilibrium with the gas phase, is computed from the water partial pressure using a
correlation based on Flory-Huggins theory®’. Thermal degradation of the polymer is
assumed to have no effect on the equilibrium melt-phase water solubility. Since the gas
bubbles that are fed to the reactor contain only water and nitrogen, the concentration of
CPK in the gas phase is small. As aresult, we assume that [CPK] ¢ in Equation (d.10) is
zero.

Measurement of the amine end-group concentration [A] was performed by titration.
However, since the Schiff base species SB1 and the secondary amine species A2 are
basic groups that may also react with acid, we assume that [A]mess, the value of the amine
end-group concentration determined by titration, is actualy the sum
[A]+[SB1]+[A2]+[P244]. This assumption is supported by the work of Reimschuessel
and Dege®, Nissen et a.*® and Curran and Siggia®’ We assume that species SB2 and
SB3 that appear along polymer chains, rather than at the ends, do not influence the
titration results, so [SB2] and [SB3] are not included in the expression for [A]mes. We
further assume that SE groups are not titrated in either the acidic or basic end-group
analyses on the polymer samples. As a result the concentrations [SB2], [SB3] and [SE]
are predicted by the model, but do not directly influence any of the measurements used
for parameter fitting. The measured value of the concentration of BHMT in the
hydrolyzed polymer, [BHMT], is assumed to be equa to the sum [L2]+[A2], because

both of these species are expected to produce BHMT when the polymer is hydrolyzed.
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Table 2.7 Algebraic expressionsrequired in the model

Equation Source Equation Number
o1 Poling et al (d.1)
C
P - 7772041+145684 1 - 271042 1° 141336 1° Polingetd ® - (d2)
P, 1-1
Schaffer et al.** d.3
V. = exp[a.sgo - @} (d-3)
T
[ P Schaffereta.®  (d.4)
[W], =555%10 (ﬁj
Varziri et a3 (d.5)
1+a,/
Ka:Kar & exp _ﬂ i_i
Yoo /Yo R\T T,
E(1 1 Zheng et al.° (d.6)
k., =k, e&xp ——=| =——
R{T T,
AH. (1 1 Zheng et al.°® (d.7)
Koeg = Koego €XP| ——=2| ===
R \T T,
E(1 1 Schafferetal®  (d.8)
ki =k, exp| ——| =——=— || where i =2to 6 and 8t0 10
R\T T,
5
Ry =k wa ([\N] [Vv]eq ) Schaffer et al. (d.9)
Rncec = Kicpc @ ([CPK ]' [CPK ]eq ) (d10)
Neo, =Ry (d.112)
Ny, = Re+ R + R, (d.12)

The activation energy for secondary amide formation in reaction (a.9) is assumed to be

the same as that for tertiary amide formation in reaction (a.10). This approximation has
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been made to reduce the number of model parameters. The melt pool in the reactor is
assumed to be well-mixed at al times. Note that no polymer samples were taken during
the first 30 minutes of mixing in any experimental run, to ensure that this assumption
would be reasonable.

2.3.3Kinetic M odel

Table 2.6 provides the 14 ordinary differential equations (one for the melt-phase
concentration of each species tracked). Algebraic equations for evolution rates of CO»,
and NH3 are provided in Table 2.7, along with other expressions required to solve the
model equations. The reference temperature used in the Arrhenius expressions ((d.7) and
(d.8)) was chosen to be T,=558.15 K, which is the average temperature for the six
experimental runs in Table 2.4. Note that a different reference temperature T, used in
Equation (d.5) and (d.6) was set at 549.15 K, which was the average temperature that
Schaffer and Zheng used in their nylon 612 polycondensation studies.>®

2.3.4 Initial Conditions

In each experimental run, measured values of [A] and [C] for the first samples were
different than the corresponding measurements for the polymer pellets that were initially
fed to the reactor. This change indicates that significant thermal degradation and/or
polycondensation took place during the heating of the reactor vessel with the polymer
held under nitrogen. If only polycondensation and hydrolysis reactions occurred during
the heating period, with negligible thermal degradation, the stoichiometry of the system
would ensure that the difference between the end-group concentrations, [A]-[C], would
be the same as for the initial pellets. Since the value of [A]-[C] obtained for the first

sample varied significantly from run to run (i.e., from about —60 to 20 mmolkg™), it is
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apparent that degradation during the 3.6 to 4.9 h heat-up period for the various runs
should not be neglected.

We have assumed that the measured value of [A] from titration is actually the sum of
[A]+[SB1]+[A2]+ [P244], and that SE groups are not detected by titration. Since some
thermal degradation and/or polycondensation took place during the heat-up time in each
experiment, significant quantities SB1 and A2 may have been formed, and the measured
value of [A] by titration would be affected. Since the measured [BHMT] is assumed to be
equal to the sum [L2]+[A2], we can calculate the initial values of [L2] using:

[L2], =[BHMT], -[A2], (2.1)
Moreover, [L], can be calculated from a material balance as.

1
[I—]o = MW

L

- MW533[833]0 - MWAZ[AZ]O)

(106 - MWC[C]O - MWA[A]O - MWSE[SE]O - MWSBl[SBl]o - MWSBZ[S?’Z]O

(2.2)

Actua initia values of [A], [A2], [SE], [SB1], [SB2], [SB3] and [L2] for each
experimental run are unknown, and only the initial value of [C] can be specified with
confidence. Some of the unknown initial concentrations were therefore estimated as
additional parameters in the model. Efforts were made to estimate all of the unknown
initial conditions for [A], [SE], [SB1], [SB2] and [SB3] for each run. The initial value of
[C] was set at the first measured value and the initial value for [SB1] was calculated from
the initial measurement using:

[SBI =[Alness —[Alo —[P244], —[AZ], (2.3)
Initial concentrations of pyridine 244 ends and cyclopentanone dissolved in the polymer

phase were set to zero for al runs.
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2.4 Parameter Estimation

In addition to the initial conditions for [SE]o, [A2]o, [SB2]o, [SB3]o and [A]o for each
experimental run, the model parameters to be estimated are ke, Kao, Ec, @, and AH
which are common to nylon 66 and nylon 612 polymerization, and the following 21
parameters, which are related only to nylon 66 degradation: koo, Ez, Koego, AH2, Kao, Es,
Kao, Eas, Keo, Es, Keego, AHe, K70, E7, Koo, K100, Eo, K110, E11, (KLa)w/(kL@)cpk and (k a)w.

Since we have six experimental runs, the total number of the unknown parameters in the
system is 56. Instead of estimating the cyclopentanone mass-transfer coefficient (k a)cpk
directly, we decided to estimate the ratio (k. a)w/(k.a)cpk. Cyclopentanone is a larger
molecule than water, and should have a lower diffusivity in molten nylon 66, so it is
appropriate to set the lower bound for thisratio at unity.

Estimating the model parameters requires numerical solution of the ODEs in Table 2.6
each time the optimizer selects a new candidate set of parameter values. A fourth-order
Runge-K utta solver (ode45) in MATLAB™ was used to solve the differential equations.
The model parameters were estimated using the "Isgnonlin” optimizer in MATLAB™ to

find values that minimize a weighted sum of squared errors between the model

predictions and the experimental measurements:

NgHmT

J= Z[ ([A]mas.—[A])] +Z[ +([C, -[C1)P +Z[ 2([BHMTL—[Bl:”\/lT]i)]2

=L S¢ i< S Mt
Nco2 1 MNH3 Nepk ~ )
+ Z[—z(NCOZ,i cql)] + Z[ NH3,i o NH3 [ )] + Z[ 2 (RmCPKI Rm,cpK,i )]
j=1 2 co, j NH3 j CPK

(2.4)
Weighting values in the objective function were selected to account for uncertainties in

different types of measurements, and are provided in Table 2.8.



Table 2.8 Measurement uncertaintiesfor nylon 66 and nylon 612

Uncertainty M easured Unit Value % of largest
Symboal Response measur ement
O [ A mess mol Mg*  6.732 4

Oc [C] mol Mg*  11.325 5

OBHMT [BHMT] mol Mg*  2.3955 15

0co2 Ncoz mol Mg*  3.805 5

ONH3 Nz mol Mg*  4.065 15

Ocpk Recex mol Mg_l 11 10

Uncertainties were assumed to be 4% for [A], 5% for [C], 15% for [BHMT], 5% for the
CO, evolution rate, 15% for NH3 evolution rate and 10% for the CPK evolution rate,

based on prior knowledge about reproducibility for the different types of measurements.
For example, uncertainty of [A]mess, G5, Was set a 6.732, which is 0.04(168.3) because

168.3 mmol-kg™ is the maximum value of [A]mess.

The model parameters were estimated twice. In a preliminary estimation study, we used
the data shown in Figures 2.2 to 2.7 to estimate the 21 nylon 66 degradation parameters
and 30 initial concentrations with the five polycondensation parameters fixed at their
initial values. Next, we included all 56 parameters using the same nylon 66 degradation

data and the nylon 612 polycondensation data.*>®

When simulating the nylon 612
experiments, the reduced set of differential equations in Table 2.9 was used. Results are

described below.
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Figure 2.2 Comparison of model predictions and experimental datafor run #1 at 281°C
using final parameter estimatesfrom Table 2.10; ) Polymer properties: measured [A]i (*),
predicted [Al (—), measured [C] (A), predicted [C] (---), measured [BHMT] in
hydrolyzed polymer (e), predicted [BHMT] (——); b) Gasevolution rates. measured CO,
(*), predicted CO, (—-—"-), measured NH;3 (A ), predicted NH;3(---), measured CPK (o),
predicted CPK (—)
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Figure 2.3 Comparison of mode! predictions and experimental datafor run#2 at 275 C
using final parameter estimatesfrom Table 2.10; a) Polymer properties: measured [Al (*),
predicted [Ali (—), measured [C] (A), predicted [C] (---), measured [BHMT] in
hydrolyzed polymer (e), predicted [BHMT] (—-—":); b) Gasevolution rates. measured CO,
(*), predicted CO, (——), measured NH; (A ), predicted NH3(---), measured CPK (o),
predicted CPK (—)
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Figure 2.4 . Comparison of model predictions and experimental data for run # 3 at 285°C
using final parameter estimatesfrom Table 2.10; a) Polymer properties: measured [Al (*),
predicted [Ali (—), measured [C] (A), predicted [C] (---), measured [BHMT] in
hydrolyzed polymer (e), predicted [BHMT] (—-—":); b) Gasevolution rates. measured CO,
(*), predicted CO, (——), measured NH; (A ), predicted NH3(---), measured CPK (o),
predicted CPK (—)
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Figure 2.5 Comparison of mode! predictions and experimental data for run #4 at 292°C
using final parameter estimatesfrom Table 2.10; a) Polymer properties: measured [Al (*),
predicted [Ali (—), measured [C] (A), predicted [C] (---), measured [BHMT] in
hydrolyzed polymer (e), predicted [BHMT] (—-—":); b) Gasevolution rates. measured CO,
(*), predicted CO, (——), measured NH; (A ), predicted NH3(---), measured CPK (o),
predicted CPK (—)
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Figure 2.6 Comparison of mode! predictions and experimental data for run #5 at 286°C
using final parameter estimatesfrom Table 2; a) Polymer properties: measured [A]i (*),
predicted [Al (—), measured [C] (A), predicted [C] (---), measured [BHMT] in
hydrolyzed polymer (e), predicted [BHMT] (——-); b) Gasevolution rates. measured CO,
(*), predicted CO, (—-—"-), measured NH; (A ), predicted NH3(---), measured CPK (o),
predicted CPK (—)
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Figure 2.7 Comparison of model predictions and experimental data for run #6 at 290°C
using final parameter estimatesfrom Table 2.10; a) Polymer properties: measured [Aliq (*),
predicted [Aliq (=), measured [C] (A), predicted [C] (---), measured [BHMT] in hydrolyzed
polymer (e), predicted [BHMT] (=-=-); b) Gas evolution rates. measured CO, (*), predicted CO, (
—.=—.), measured NH3 (A ), predicted NH3(---), measured CPK (e), predicted CPK (=)
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Table 2.9 Differential equationsfor melt-phase species concentration changes with time and

equationsfor evolution rates of degradation productsfor nylon 612

M =—2R -R (el)
dt !

dc] _ R-R (e2)
dt

d[L

% R (e3)

W_g iR R, 4

M =R -R, (e.5)
dt !

d[L2] (e6)
a R

NNH3 =R (e'7)

2.4.1 Initial Parameter Guesses

The initial guesses in Table 2.10 were used to estimate the parameters. Varziri’s

estimation results for nylon 612 polycondensation were used as initial guesses for the

polycondensation parameters (keo, Kao, @, Eco and AH).™ Initial guesses for koo, Ea, Ko,

Es, Kao, Ea, Koo, Keeg, AHeg, K70, E7, Koo, Koo, Eo, (KLa)w/(kLa)crk and (k.a)w were obtained

from the prior modeling work of Schaffer,® which neglected the reactionsin Table 2.3. A

mass-transfer coefficient for water in molten nylon 612 obtained using the same reactor

system (Schaffer et a.%) was used as the initial guess for (k.a)w. The initiad value of

(kea)w/(k.a)cpk was set at 1.0. Guesses for the unknown initial concentrations of all

degraded ends were set to zero because we anticipated only a small level of degradation

at the beginning of our experiments.
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Table 2.10 Estimability ranking for preliminary and final studies, initial guesses, bounds,

parameter estimates and confidence intervalsfor thefinal study

Rank for

Final Estimate &

I';:nalll Rpgsergﬁt_?rst Preliminary Units lg:g Ilégtljvr?(; ggﬁr?é Approximate 95%
Study Confidence Intervals
1 Kito 1 Mg-molth?  1.00x107? 0 500.00x10%  58.18x10%+514.46x107
2 Kao 2 ht 2 0 500 0.67+0.42
3 ko 4 Mg-molth!  4.48x10* 0 500.00x10™ 2.47x10+0.42x10*
4 Kao 3 ht 1.58 0 500 0.90+0.79
5 Kao 5 ht 1.86x10°3 0 500.00x10° 2.29x10°+0.62x10°°
6 Keo 6 Mg-mol™* ht 4.32 0 500 10.39+4.09
7 [SElorunt 7 mol-Mg™* 0 0 60.5 5.85+18.85
8 Kgo 8 Mg-mol*h!  3.82x10° 0 500.00x10° 4.11x10%+1.33%x10°°
9 [SElorns 9 mol-Mg™ 0 0 104 68.55+55.26
10 [SElorn2 10 mol-Mg™ 0 0 455 25.28+47.13
11 K100 11 Mg-mol*h?  3.82x103 0 500.00x10°  10.20x10°+8.67x10°
12 [A2]oruns 12 mol-Mg™ 0 0 68.4 1.97+1.85
13 [SEloruna 13 mol-Mg™ 0 0 56 0.00+34.99
14 [A2]orun 1 14 mol-Mg™ 0 0 51.2 0.00+82.23
15 [A2]orun2 15 mol-Mg™ 0 0 54 2.95+1.73
16 [SElowns 16 mol-Mg™ 0 0 46.7 18.93+23.23
17 [A2]oruns 17 mol-Mg™ 0 0 415 1.97+2.05
18 E; 18 kJ mol 195.66 0 2092.5 119.53+17.75
19 K 2690 19 dimensionless 10 0 500 36.52+22.55
20 Es 20 kJ mol ™ 41.85 0 2092.5 109.36+51.34
21 E, 21 kJ mol ™ 92.39 0 2092.5 306.54+79.86
22 Kao dimensionless 36.61 13.62 91.93 20.53+20.98
23 [A2]orun3 22 mol-Mg™ 0 0 68.4 16.65+14.3
24 Es=E1o 23 kJ mol 187.28 0 2092.5 71.07+38.14
25 Ezo 24 kJ mol™ 110.45 0 2092.5 0.04+21.37
26 Kéego 25 dimensionless 10 0 500 0.37+3.38
27 (K a)w 26 ht 24.3 0 324 46.74+109.02
28 [Alowns 27 mol-Mg™ 68.4 34.2 68.4 55.17+13.75
29 [Alorna 28 mol-Mg™* 63 315 63 31.51+23.92
30 Keo kJ-mol ™ 0.013 0.005 0.03 0.023+0.01
31 [Alorn2 29 mol-Mg™* 54 27 54 44.96+12.53
32 [Alorunt 31 mol-Mg™* 51.2 25.6 51.2 36.74+80.60
33 [Alorns 30 mol-Mg™* 62.4 31.2 62.4 54.94+22.44
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Table 2.10. Continued, Estimability ranking for preliminary and final studies, initial

guesses, bounds, parameter estimates and confidenceintervalsfor thefinal study

Final
Rank

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

Parameter
Ranked List
E

[SB3Joruns
[Aloruns
a
AH,
(Kia)w/(K.a)
Ec
Ell
AH
[SElorunse
[SBZ]orun,1
[SBZ]orun.2
[SBZ]oruna
[SB2]oruns
[SBZ]oruns
[A2]orun 4
[A2]oruns
AHg
[SB3orun1
[SB3orun.2
[SB3oruns
[SB3oruns
[SB3oruns

Rank for
Preliminary
Study
32
33

34

35
36

37

38
39
40
41
42
43
44
45
46
47
48
49
50
51

Unit

kJ mol™
mol-Mg™
mol-Mg*
mol °5.Mg°®
kJ mol™
dimensionless
kJ mol™
kJ-mol™*
kJ-mol™
mol-Mg*
mol-Mg*
mol-Mg™
mol-Mg™
mol-Mg™
mol-Mg*
mol-Mg*
mol-Mg*
kJ-mol™*
mol-Mg™
mol-Mg™
mol-Mg*
mol-Mg*
mol-Mg*

Initial
Guess
110.45
0
415
0.286
41.85
1
45.9
41.85
41.85

O O O O O o o o

41.85

o O O O o

0

Lower Bound

20.75
0.085

-209

-209

O O O O O o o

-20

o

o O o o o

.25

.25

.25

Upper
Bound
2092.5

68.4
41.5
0.804
837
10
156.6
2092.5
837
50.5
51.2
54
63
41.5
62.4
63
62.4
837
51.2
54
63
41.5
62.4

Final Estimate &
Approximate 95%
Confidence
Intervals
1833.53+275.92

60.24+845.53
20.75+13.39
0.749+0.93
-124.39+92.86
1.11+10.84
62.65+122.45
398.01+85.10
-20.97+£18.41
50.47+38.07

Note that the initial concentration of carboxyl ends was not estimated, but was set at the

first measured value. Similarly, the initial concentration of amine ends is calculated from

the first value of [A]mess @nd the initial guesses for the other basic groups that influence

that titration measurement. Order-of-magnitude guesses are shown for all other



parameters (Koeg, AH2, Es, Keeq, AHe, K110 and Eip) because no published values were
available.

2.4.2 Boundsfor Parameter Estimates

Table 2.10 also provides lower and upper bounds that were used during parameter
estimation. Lower bounds for all parameters were set to zero, except for the
polycondensation parameters. For these parameters, the lower and upper bounds in Table
2.10 were obtained using approximate 95% confidence intervals reported by Varziri et
a.’® We set the lower and upper bounds at the initial value + twice the half-width of the
corresponding 95% confidence interval to ensure that parameters remained within a
reasonable range. We selected twice the half-width because Variziri’s confidence
intervals were obtained using linearization and might be overly conservative. The upper
and lower bounds for (k_a). were obtained based on values from the literature.**® Upper
bounds for the remaining parameters and initial guesses were selected based on our

judgment about physically reasonable values.

2.5 Results and Discussion
2.5.1 Simplifying the M odel using Estimabilty Analysis

Estimability analysis was used to rank the parameters from most estimable to least
estimable, as shown in Table 2.10. The resultsin the first two columns of Table 2.10 are
from our final parameter estimation study (obtained using the settings for nylon-66
degradation and nylon-612 polycondensation together). Ranking results in the third
column are from the preliminary study (obtained using nylon-66 experimental settings
alone). The rank of the various parameters depends on the influence of each parameter on

the predicted model outputs, correlation between the effects of parameters, and scaling
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factors used to reflect uncertainties in initial parameter values. When estimability
analysis was performed using the nylon 66 experimental settings alone (preliminary
study) 38 of the 51 parameters could be ranked. Attempts to rank additional parameters
resulted in numerical problems. When estimability analysis was performed using all of
the experimental settings (final study) 44 of the 56 parameters could be ranked before
numerical problems were encountered. Wu’s MSE-based criterion®* was used to
determine that estimating the top 38 parameters should give the best model predictions
for the preliminary study and the top 43 parameters should be estimated using all of the
data. The parameters that were not selected for estimation are the initial [A2] for runs 4
and 6, initial [SB3] for all runs except run 3, initial [SB2] for all runs except run 3 and
AHg. These inestimable parameters were left at their initial guesses shown in the fifth
column of Table 2.10.

ki1o was selected as the most estimable parameter because it involves degradation
products CPK and SB1 (see reaction (all)) and this parameter had a large initia
uncertainty. The next three parameters in the ranked list are kinetic parameters kyo, k7o,
and ko, Which also had large uncertainty values. These parameters influence the rates of
production of important degradation products (i.e.,, CO,, NHz, BHMT and SE). The
estimability ranking algorithm tends to rank parameters near the top of the list when they
have a large influence on model predictions and when their initial values are not well
known.*® The initiad concentrations for stabilized ends [SE], for the various runs are
among top parameters in the ranked list because they influence the rates of CO, and,
subsequently, NH3 production (see reaction (a.4)). Although activation energies for the

various reactions were assigned large uncertainties, they appear further down the list
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because their influence on the model predictionsis not as high compared to the influence
of the rate constant values at the reference temperature. Polycondensation parameters
(Keoy kaoy @, Ec and AH) appear further down the list because their initial uncertainties
were relatively small, since we had prior information about their values from previous
nylon 612 parameter estimation studies.®*

Results of the parameter ranking and selection methods that were used depend on the
initial parameters values and scaling factors employed.”®%* To test the robustness of the
ranking results in Table 2.10, we investigated the effects of changing the initial guesses
and scaling factors. The ranked list changed dlightly using different sets of reasonable
initial conditions (for example changing initial guesses randomly up and down by 10%).
However, the final parameters selected for estimation did not change by changing the
initial conditions and scaling factors over arange of reasonable values.

2.5.2 Parameter Estimation Results

Figure 2.8 shows the influence of the number of parameters estimated from the ranked
list on the objective function values from the preliminary and fina parameter estimation
studies. As expected, estimating more parameters from the ranked list resulted in a better
fit to the available data in both studies. Note that the final objective function value of J=
645 obtained from the final parameter estimation study (using all of the nylon 66 and 612
data) was lower than J=870 obtained from the preliminary study (using only the nylon 66
data), even though the number of terms in the objective function for the full parameter
estimation problem was larger (480 data points in the full study and 254 data points in
the preliminary study). This result indicates that there was considerable benefit to re-
estimating the polycondensation parameters ke, Ka, @, Eco and AH because of the

additional information about polycondensation kinetics in Schaffer’s nylon 66 data set.*
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Note that the fit to the nylon 612 polycondensation data®° (not shown) using the final

parameter estimates in Table 2.10 was similar to the fit using the initial parameter

values.t®

2000

Hp—_——

J 1500 +

1000

500

0 10 20 30 40

Number of parameters from the top of the ranked list

Figure 2.8 Influence on the number of parameters estimated from theranked list on the
objective function valuefor preliminary study, (A ), and final parameter estimation study,

(e).x indicates the number of parameters selected using Wu’s method **# (Wu, 2011)

As shown in Figure 2.8, in the full study no noticeable improvement was obtained when
44 parameters were estimated instead of 43, which is consistent with the selection of 43
parameters using Wu’s method.**** The objective function values in Figure 2.8 were

obtained by starting from the initial parameter values in Table 2.10, and estimating the
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top-ranked parameter ki1, then the top two parameters and so on. The optimization
procedure was sensitive to parameter initial guesses;, some other sets of initial guesses
resulted in convergence to local optima with higher objective function values than those
shown in Figure 2.8. Although the final parameter estimates in Table 2.10 give a good fit
to the data (see Figures 2.2 to 2.7), these estimation results may aso correspond to a
local minimum. A comprehensive search of the full parameter space would need to be
performed before concluding that the best possible parameter values have been obtained.

Approximate 95% confidence intervals for the true values of the parameters were
calculated using linearization methods,* and are reported in the final column of Table
2.10. Wide confidence intervals for some parameters were obtained because the data
provided little information about these parameters (i.e., the limited number of
experimental runs and lack of experimental data for the concentrations [A2], [SE], [SB1],
[SB2], [SB3] and [P244]). Also, the experimental data were collected within arelatively
narrow temperature range, complicating the estimation of activation energies. Note that
the 95% confidence intervals for four of the five polycondensation parameters (Ko, Keo,
E. and AH) are narrower than those obtained by Varziri et al.*® using the nylon 612 data
alone, because of the additional information provided by the nylon 66 data. The
confidence intervals in Table 2.10 are only approximations due to linearization and
because some of the typical |east-squares assumptions used to calculate them might not
be true. For example, we recognize that our model equations arise from simplifying
assumptions, independent variables (such as temperature) are not error-free, and
measurement errors within each run may not be independent. Also, the final parameter

estimates and confidence intervals in Table 2.10 are conditional on the values of the 8

59



parameters at the bottom of Table 2.10 that were not estimated. We recommend that
additional experiments should be performed if more accurate parameter estimates and
model predictions are required. Note that the estimate for equilibrium constant Koeqo iS
36.52, which indicates that the equilibrium for reaction (a.2) is far to the right and that
the reverse reaction (a.2.R) is not favourable.

The predictions of the proposed model are compared with the experimental data for
nylon 66 in Figures 2.2 through 2.7. Note that the same vertical-axis scaling was used for
al experimental runs to permit easy comparisons between runs. The model predictions
agree well with the mgority of the end-group and BHMT branch-point concentration
data. Although the fit to evolution rates of gaseous degradation products are not as good
as the fit to polymer property data, possibly due to sampling difficulties, the trends of the
model predictions for the gasous species are consistent with the data. Note that the poorer
fit to these gas evolution data was expected due to their larger measurement
uncertainties, which are shown in Table 2.8. In runs 1 to 3, the evolution rates for CO,,
NH3; and CPK were relativly low, as predicted. Higher evolution rates were measured
and predicted in runs 4 and 6, which were conducted at the highest temperatures (292 and
290 °C, respectively) where thermal degradation tends to occur. Run 5 also experienced
high gas evolution rates, as predicted, because this experiment was conducted at the
lowest water concentration (P,=23 kPa). Reactions (a.2.R) and (a.6) in Table 2.2 show
how keeping a desirable concentration of water in the molten nylon can reduce the
concentrations of stabilized ends and Schiff base ends that lead to branching. Although,
thefit for run 5in Figure 2.6 is not as good as that for other runs, the model does predict

a maximum in the CO, evolution rate, but the position of the maximum does not match

60



the model prediction well. Discrepancies between the model predictions and
measurements may result from imperfections in the model structure, measurement errors,
and fluctuations in reactor operating temperature and sparge-gas composition.

2.5.3 Prediction of Gelation Times

One of the potential uses of the proposed mode is the prediction of the time required for
gelation of nylon 66 due to crosslinking under different operating conditions. Jacobs and
Zimmerman®' state that gelation is predicted to occur when the concentration of
trifunctional branch pointsin the polymer exceeds a critical value of one-third the sum of
the end group concentrations. Since there are two types of trifunctional branch points and
five types of end groups considered in the present model, gelation would be predicted
when [SB3]+[L2] exceeds the vaue of ([A]+[C]+[SE]+[SB1]+[P244])/3.
Experimentally, gelation can be considered to have occurred when the polymer is no
longer completely soluble in 90% formic acid. Figure 2.9 shows that when the predicted
values of these quantities are plotted versus time for run 3, the predicted gelation timeis
6.8 h (the intersection for the two curves), which agrees well 6.9 hours, which is the
experimental gelation time for run 3 observed by Schaffer during this experiment.® Note
that Schaffer observed gelation after 4.9 hours for run 6, and that our model predicts
gelation after 4.8 hours (not shown). These results illustrate the utility of the proposed

model for predicting gelation using different experimental conditions.
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Figure 2.9 Model prediction of gd formation point for run #3, 2850C, predicted
([SB3]+[L2]) (-=-), predicted ([A]+[C]+[SE]+[SB1]+[P244])/3 (—).

2.6 Conclusion
In this work, an improved kinetic model for thermal degradation of molten nylon 66 was

developed. The reactions included in previous models™*

were augmented with
additional reactions that account for the influence of water on degradation rates, the
formation of cycopentanone and the formation of Schiff base ends.

Experimental data from dynamic experiments involving nylon 66* and nylon 612°° were

17,18

used to estimate the parameters. Estimability analysis 1921

and a MSE-criterion™" were
used to determine that 43 out of 56 model parameters and unknown initial concentrations
should be estimated to provide the best model predictions, given the limited data

available for parameter estimation. The model describes the experimental polymer

property data well, with typical errors of 6.1% for amine ends, 2.9% for carboxyl ends
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and 13.2% for BHMT branch points. Trends in the rates of evolution of gaseous
byproducts were predicted reasonably well, with typical errors of 4.3% for CO,, 27.2%
for NH3 and 29.4% for cyclopentanone. Although complete mechanistic accuracy in
terms of the set of chemical reactions and kinetic rate parameters used in the present
model cannot be claimed, the model is a useful tool for the prediction of the rate and
extent of thermal degradation under various process conditions of commercial interest.
This model can predict degradation rates during the fina stages of the nylon 66
production when water concentrations are low (10 to 80 mmol-kg™) and temperatures are
high (275 to 292°C), and can also predict the time required for gelation at different

experimental conditions.
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Chapter 3
An Approximate Expectation M aximization Algorithm for Estimating

Parametersin Nonlinear Dynamic M odels with Process Distur bances

3.1 Abstract

In chapter 2, a kinetic model that accounts for nylon 66 degradation reactions is developed. The
fit to the data for this model have some discrepancies indicating the existence of process
disturbances and model mismatch. The goal of the remaining chapters of thisthesisis to propose
parameter estimation techniques that take into account the process disturbances and model
mismatch. Stochastic terms are included in fundamental dynamic models of chemical processes
to account for disturbances, input uncertainties and model mismatch. The resulting equations are
caled stochastic differential equations (SDEs). An Approximate Expectation Maximization
(AEM) dgorithm using B-splines is developed for estimating parameters in SDE models when
the magnitude of the disturbances and model mismatch is unknown. The AEM method is
evaluated using a two-state nonlinear CSTR model. The proposed algorithm is compared with
two other maximum-likelihood-based methods (CTSM*? and Varziri’s extended AMLE?). For
the CSTR examples studied, the AEM algorithm provides more accurate estimates of model
parameters, unknown initial conditions and disturbance intensities. This chapter has been

accepted for publication as ajournal paper by Canadian Chemical Engineering Journal.
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3.2 Introduction

In chemical processes, external fluctuations or disturbances influence the system
inputs.*®> Often, simplified fundamental models are used because a detailed fundamental
model would be too complex for the intended use (e.g., on-line process monitoring or
control) or because it would be too expensive to do all of the experiments required to
estimate the large number of kinetic, thermodynamic and transport parameters that would
appear in detailed model equations. As a result, modelers develop models that include
only the most important phenomena, knowing that simple models sometimes give better
predictions than more complicated models™® and that simpler models are more portable
and easy to use.

Stochastic terms are added to ssimplified dynamic models to account for the effects of
unmeasured disturbances and model imperfections.®*'® Stochastic differential equations
(SDEs) are differential equations in which the influence of various random disturbances
appears explicitly.> These disturbances (also called system noise) can enter the model
equations nonlinearly, but additive linear disturbances are often used, especially when
disturbances arise from multiple sources.* Parameter estimation problem in SDE models
are usually addressed using probability density functions™ There are two main
categories for parameter estimation in SDE models based on discrete observations.? In
the first category, a moment-matching method is used, while in the second category
approximate maximum likelihood methods are used. Moment-matching estimators can
be difficult to use because they require the calculation of higher-order moments in order
to be efficient, and the appropriate order is difficult to determine.”> Maximum likelihood

methods are used widely because of their efficiency. In maximum likelihood estimation
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(MLE) methods, the likelihood function of the parameter vector given observed data is
maximized to estimate the unknown model and noise variance parameters.”® In the
presence of unmeasured states and missing observations, it is difficult to find a closed
form for the likelihood function.” Several techniques have been proposed for
approximating the likelihood function. Some of these techniques are: simulated
maximum likelihood methods (such as Markov Chain Monte Carlo (MCMC)
techniques),**® expansion of the likelihood function using Hermite polynomia basis

222 and recursive

functions,®?* solving the Fokker-Planck equation numericaly
maximum likelihood parameter estimation using polynomial chaos theory.? Benefits and
drawbacks of these techniques are summarized by Lindstrom.”* An approximate ML
method was proposed by Kristensen et al.” In Kristensen et al.’s method, a Gaussian
distribution is assumed for the likelihood function and the mean and variance of the
likelihood function are estimated using an Extended Kalman Filter (EKF). Easy-to-use
CTSM (continuous-time stochastic modeling) software was developed based on
Kristensen’s method and is used in a simulation study later in this chapter.!

Varziri et a. developed an approximate maximum likelihood estimation (AMLE) method
for estimating parameters in SDE models when disturbance intensities and noise variance
are known. Varziri et a.® extended AMLE for estimating disturbance intensities, based
on a technique developed by Heald and Stark.*® Although reasonable results were
obtained using this methodology, this technique uses a heuristic outer objective function

and may not be consistent with maximum likelihood estimates of the disturbance

intensities. It is unclear whether this methodology is robust to imperfect estimates of
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noise variances that must be provided by the user. The algorithm developed in the current
chapter builds on Varziri’s results.

A popular MLE-based algorithm for parameter estimation in SDE models is the
expectation maximization (EM) algorithm.*"* The EM algorithm is suitable for
situations where the likelihood function of the parameters given the measurements does
not have a closed form, but the probability density function of the measured data and
unmeasured states (i.e., the likelihood of the complete data) does have a closed form.®3*
In the first step of the EM algorithm (referred to as the Expectation step or E step), the
expected value of the likelihood of the complete data is determined using the
observations and the most recent estimates of the parameters. In the second step (referred
to as the Maximization step or M step), the expected value determined in the first step is
maximized with respect to the model and the variance parameters (i.e.,, the noise
variances and the disturbance intensities). These two steps are repeated until parameter
convergence is obtained.* The two steps of the EM algorithm have explicit recursive
solutions for linear systems with Gaussian noise,”” but they do not have explicit solutions
for nonlinear SDEs.”

Approximation techniques have been used to find closed-form expressions for the E and
M steps of the EM agorithm. For example, extended Kaman filters (EKFs) have been
used for approximating both the E and M steps.**** Markov Chain Monte Carlo (MCMC)
methods, also known as particle filter methods, have been used for approximating the E
Step.>#23 40 |n the MCMC methods, a probability density function is numerically
approximated by drawing samples from a target density function.’®** MCMC methods

are effective parameter estimation tools that do not require assumptions about the form of
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the density functions. A drawback of MCMC methods is that they can be
computationally expensive for models with a relatively large number of states and
parameters.®** The complexity of the optimization problem increases rapidly as the
number of states, measurements, and parameters increases. Imtiaz et. al.* discuss some
implementation issues for MCMC methods and Kantas et al.*® present an overview of a
variety of MCMC methods and discuss their advantages and disadvantages. Recently,
Chitralekha et a.* compared the performance of three EM algorithms: the particle
smoother, the unscented Kalman smoother and the extended Kaman smoother.
Linearization-based EKF methods for approximating the EM agorithm are beneficial
because they do not require MC sampling from probability density functions, but they
can give biased parameter estimates in situations where the nonlinearities are strong.*
Further details about the EM algorithm and its relationship to the AEM algorithm
proposed in this chapter are presented in section 2.3.

The goa of this research is to develop an easy-to-use Approximate Expectation
Maximization (AEM) method for estimating model parameters and disturbance
intensities in SDE models. Some of the benefits of the AEM method are: i) simplicity of
implementation, ii) reliable estimates of model parameters, initia conditions and
disturbance intensities, iii) efficient handling of unknown initial states, iv)ability to
handle unmeasured state variables. First, some notation and background information are
presented and a closed form for the E step of the EM algorithm is derived using B-spline
approximations for state trajectories. An objective function for the proposed AEM
method is determined, and the resulting AEM algorithm is illustrated using a two-state

nonlinear CSTR model with unknown disturbance intensities. Results obtained using the
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AEM method are compared to results obtained using CTSM* and extended AMLE
method.® It is shown that the proposed AEM method provides more accurate parameter
estimates and is less computationally intensive than the aternative methods for the

example studied.

3.3Preiminaries
3.3.1 Model and Notation

Consider the following Multi-Input Multi-Output (MIMO) model:

%(t) = f (x(t), u(t), 8) + n(t) (3.1.4)
X(to) =Xo (3.1.b)
y(tm r,j) = g(x(tm rj ),U(tm rj ),9) + s(tm rj ) (31C)

where x is an X-dimensiona state vector, f is an X-dimensional vector of nonlinear
mappings, u is a U-dimensional vector of input variables, 6 is a P-dimensional vector of
unknown parameters, n(t) is an X-dimensional continuous zero-mean stationary Gaussian
white-noise process with covariance matrix E{n(t)n(t2)}=Q d&(t>-t1), where Q is the

corresponding diagonal power spectral density function with dimension X xX :

Q -0
Q=i . i (4.2)
0 - Qy

The diagona elements of Q are sometimes referred to as disturbance intensities (i.e.
Qa=[Qx,...,Qx]").2 3() is the Dirac delta function, y is a Y-dimensiona output vector
with Y<X . Assume that the rth response variable (r=1...Y) is measured N, times during
the set of dynamic experiments. The set of times at which measurements are available for

the rth response (r=1...Y) is denoted by tm; (j = 1...N;). g isa Y-dimensiona vector of
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nonlinear mappings and € is a Y-dimensional vector of zero-mean random variables.

Assume that these measurement errors are independent so that their covariance matrix is:

(3.3)

Consider the vector Y., that contains all of the stacked measured values, where
Ym =[Y1(tmi) - Yiltming) - Yy (v ) Yy (v g )]" and
Xm =X (tme) - X Cmang) - Xy Emy )Xy Emy g )]" isacorresponding stacked vector

of state values at the measurement times, and U, and €, are corresponding stacked
vectors for the input variables and random errors:

Y, =0X,Un,0)+E, (3.4)

A continuous white noise process is defined as the limit of a discrete-time white-noise
sequence when the discretization interval At approaches zero. In simulations of
continuous stochastic processes, it is common to implement stochastic disturbances n(t)
using discrete-time white-noise sequences that are a series of random step functions with

ashort sampling interval At and covariance:***

2 =]
E{n(j:At)n(j A1)} = § At v (3.5)
0 1% 12

where j; and j, are positive integers.
Large values of the diagonal elements of Q correspond to large disturbances or

considerable model mismatch.
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Three situations can occur for initial conditions of state variables. The initial conditions
may be perfectly known, entirely unknown, or they may be measured. In cases where

initial conditions are measured, assume that their measured valuesx,, were sampled
from anormal distribution withE{x,,o} = X, and cov{X o} =S, -

Modelers often have knowledge about the accuracy of their measurements (i.e.,, S and
Sho), but do not have good knowledge about the magnitudes of the imperfections in their

material and energy balance models (i.e., values for the disturbance intensitiesin Q). Let

Z=[6T,X3,QdT]Tbe the vector of unknown parameters in the SDE model, which

includes the fundamental model parameters 6, along with unknown initial states and the
disturbance intensities. In this chapter, a method is proposed for estimating the model
parameters 6 and X, together with the disturbance intensities in Q in situations where a
good prior estimate of the measurement noise covariances S and Sy are available, either
from previous experiments or information available from the sensor manufacturer.

3.3.2 B-Spline Basis Functions

Any smooth function can be approximated to an arbitrary degree of accuracy using basis
functions such as B-splines.**® B-splines basis functions consist of Mth order (or (M-1)
degree) piecewise polynomials that are positive within M intervals and zero elsewhere.”

For example, the sth state of the multivariate stochastic system shown in Equation (3.1)

can be represented by alinear combination of cs B-splines:*>*

X_¢(t) = i Bsi @, (t) fors=1,....X (3.6)
=

where,, is a B-spline coefficient and ¢, (t) is the corresponding B-spline basis

function. In matrix form, Equation (3.6) is:

74



x_(t) = D(t)B (3.7)

where ®(t) is amatrix of spline functions:

ol() 0 ... 0

=0 920 0 (38)

0 0 ...o%®)]

and

B,
B=|:

3.9
B, (3.9)

A sufficient number of well-placed spline knots must be selected by the modeler to
obtain an accurate approximation for the state trajectory.® "

3.3.3 Approximate Maximum Likelihood Estimation (AMLE)
Algorithm

Varziri et a. proposed an approximate maximum likelihood estimation (AMLE)
method for estimating the parameters of the SDE models. When deriving this algorithm,
they discretized the SDE in Equation (3.1) using an Euler scheme:

X(t_y + At) = X(t) = X(t_y) + F(X(t_y),u(t;_;),0)At + ng (t;_; At (3.10a)
X(to) = Xq (3.10b)
where X(t;) is the value of the state variable at g uniformly-spaced time pointst; , i=0,..,q
and nq is a discrete white noise vector. Consider X, =[x" (t;)...x" (t,)]" as the stacked
vector of state values at discrete times. Varziri et al. used this discrete model and B-

spline basis functions to derive the following objective function for estimating

parameters in SDE models with known noise variances and disturbance intensities; >
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JAMLE =—In p(Ym’Xq~1Xm(tO) |9) :[Ym _g(xm-’Um’e)]T z_l[Ym _g(xm-’um’e)]

Te-1
+(Xmo = X<0) " Smo (Xmo = X<0)

tq
+ [ = (x-(),u(t),8)]T Q7 [X_ ()~ f (x_ (), u(t),B)]dt

to
(3.11)

The integral in Equation (3.11) is called an Ito stochastic integral. Since a discrete white
noise is used in simulations to approximate the continuous white noise, the Ito integral in
Equation (3.11) is approximated by:

Zq:[x(ti )= X(ti 1) —F (X(t; 1), u(t_1),8)A1T QAL X( ) — X(t; ) —F (X(t; _q),u(t 4),8)At]
I\/T/i]ere At is chosen as asmall value compare to the dynamic of system.

Because the B-spline expressions in Equation (3.7) can be readily integrated with respect
to time, the integrand in the third term on the right-hand side of Equation (3.11) becomes
an algebraic expression. As aresult, there is no need for numerical solution of differential
equations when estimating B and 8.°** Note that the initial states xo do not need to be

included as separate decision variables in the optimization because they are

approximated using x_,, which can be computed using the B-spline coefficients. When

no measurements are avalable for any of the initia state values, the
(Ximo = X-0) " Sk (X0 — X_o) term disappears from the objective function. If the initial
value of the sth state variable is not measured, but is perfectly known by the modeler,
this knowledge can be incorporated by fixing the first B-spline coefficient for the sth
state at the known value 1= X4(0).

A drawback of Varziri’s AMLE method is that it requires known values of the stochastic

disturbance intensities in Q when optimizing to find 8 and B.> To address this problem,
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Varziri et a.® extended their AMLE methodology, based on a technique developed by
Heald and Stark® for estimating parameters in time-series models with unknown noise
variance. Varziri et al.® proposed a two-step optimization algorithm where 8 and B are
determined in an inner loop, using the objective function in Equation (3.11) and an
assumed value of Q. In the second step (outer loop) Q is updated using the following

objective function assuming that 6 and B are known:®

: 62@Q) |7, . [8@) |

Q:argmin{l—zl—l} +...+{#—1} (3.12)
Q 0 Oy

where the true noise variance 01-2 (=1,...,Y) is assumed to be known and the estimate of

the noise variance from the data sz (=1,...,Y) is calculated using residuals between the

fitted splines and the data and the approximate Hessian for the AMLE objective
function.>*

3.34 EM Algorithm

In general, the likelihood function of the parameters given the measurements does not

have a closed form. However, using the Markov property of the states, the likelihood of
the complete data P(X,, Yr, |{) has aclosed form. In the kth iteration of the E step of the
EM algorithm, the expected value of the log-likelihood of the complete data is
determined, given the vector of complete measurements and values of the parameters ¢,

arising from the current (i.e., kth) parameter iteration:*

R(G.&) = ELIN[P(X g, You 1O11Yim i} (3.13)

In Equation (3.13), X4 below the expectation symbol indicates that this expected value is

computed over al possible values of the discretized state variables.
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In the M step of the EM agorithm (i.e., the maximization step), the expected value
determined in the first step is maximized to generate improved parameter estimates for

use in the next iteration:

(i =g max RC.2,) (3.14)

Wei and Tanner™ showed that the E step in the EM algorithm can be approximated as:

REE) =2 Y InlpX", Y, [2) (3.15)
1=1

where the superscript (1) is used to indicate the Ith random value of the state vector

sampled from p(Xg | Yr,0) ***. When computing R(C,{ ) in Equation (3.15), it is
possible to use v=1 (i.e., asingle term rather than a summation), if X, is replaced by

themode of pP(Xy, Y [Q): %

R, ~In[p(Xg), Yy 1.0)] (3.16)

where X’ isthe mode of p(Xq, Y, [0).

3.4 Development of the Proposed AEM Algorithm

In this section, a new Approximate Expectation Maximization (AEM) algorithm is
developed for estimating model parameters and process disturbance intensities. The
proposed algorithm uses B-spline basis functions in the approximation for the E-step of
the EM algorithm. The AEM a gorithm is derived by approximating the expectation step
of the EM algorithm using Equation (3.16). Appendix 3.A contains the derivation of a

closed-form expression for R({,,{) that is obtained using B-spline basis functions. We

first consider the case where there are no missing observations (i.e. al of the states are
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measured and measurements are taken frequently). As shown in Appendix 3.A, the

corresponding objective functioniis:

‘]AEM = [Ym _g(x ~m? Um !e)]T Z_:L[Ym - g(x ~-m? Um ,6)]
+ (Xmo = X-0) " Siap (X-mo = X_o) — NIN[det(Q)] (3.17)

+ [ @© = (- (1), u(r),8)]" Q*[x_ (1) —f (x_ (1), u(t), B)]cl

where n is the number of measurements. In the case where there are missing
observations, a closed form for Equation (3.16) is derived in Appendix 3.B, resulting in:

JAEM = [Ym - g(X~m ) Uie)]T Z_:LI:Ym - g(x~m ) Um’e)]
+ (Xm0 = X=0) " Smo(Xmo — X~0) — g In[det(Q)]

tq
+ X () = F (x_ (), u(t), )] QX (1) - F (x_(t), u(t), B)]ct

to
(3.18)

where

t, —t,
q=—
At

(3.19)

and At is the sampling time selected by the modeller for the discrete white noise
disturbances that are assumed to influence the process behavior. The value of At should
be small compared to the dynamics of the system. Note that the difference between
Equations (3.17) and (3.18) isin their third term. In the case where all measurements are

available nin[det(Q)] term appears in the objective function (Equation (3.17)). However, in

the case where there are missing observations qln[det(Q)] term appears in the objective

function (Equation (3.18)).
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Minimizing Jaem With respect to 6, Q and B provides approximate maximum likelihood

estimates for the model parameters 6 and the disturbance intensities Q:

6,Q,B=argmind g, (3.20)
0,Q,B

Note that spline coefficients B can be added to the parameter vector { since other

nuisance parameters (i.e, measurement noise variances and process disturbance

intensities) are incorporated.

3.5 llustrative Example: Nonlinear Two-State CSTR M odel

In this section, the SDE model for a CSTR is used to illustrate the use of the AEM
objective function (Equation (3.18)) for parameter estimation. Simulations are used to
compare parameter estimation results obtained from the proposed AEM algorithm to
results obtained from the extended AMLE method® and from CTSM software'. The SDE

model is atwo-state CSTR example from Marlin® with additional stochastic disturbance

terms;®

d(;‘;“) =S G0 -Ca) -k T+ (3:219)
% - @(ro () ~T(0) +UAT(®) ~To(0) + ok (TA)CAD +hy (1) (3.21b)
Yo (tm1j) =Caltmy;) +&c(tmj) (3.21c)
Yr(tmej) =T (mej) +€1(tne) (3.21d)

where C, is the concentration of reactant A and T is the temperature. The rate constant

for the exothermic reactioniis;
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El1 1
ki (T) =K ex{_ﬁ(?_ﬂﬂ (3.22)

UA is a heat transfer coefficient that depends on the cooling water flow rate and heat

capacity:
a.F b+1
UAF,) = c - (3.23)
aF,
Vpcp F.+
2pccpc

and gisrelated to the enthalpy of reaction:

_ (_AH rxn)
GC

g (3.24)

Theinitial steady-state values of the states are Ca(0)= 1.569 kmol-m™ and T(0)=341.37
K. To illustrate the methodology, Ca(0) is assumed to be perfectly known, while T(0) is
measured with known variance of S? =5.0 K°. As aresult, the unknown true value of the
initial temperature is T(0)=341.37 K, but initial temperature measurements deviate from
this value. The AEM, extended AMLE and CTSM algorithms are used to estimate the
model parameters 0 =[k,y,E/R,a,b]" and disturbance intensities Qc and Qr. When
AEM and extended AMLE are used for parameter estimation, an estimate of the initial
temperature T(0) is determined from the B-spline coefficients.

The model inputs are the feed flow rate F, the inlet concentration Cao, the inlet
temperature Ty, the coolant inlet temperature T, and the flow rate of coolant to the

cooling coil Fc. The known constants for this CSTR model, provided by Marlin>* are

shown in Table 3.1.
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Table3.1 Model constants *®

Model Constants Value Units
Cp 4186.8 JkgtK?
Coc 4186.8 JkgtK?
Tref 350 K
v 1 m°
p 1000 kg-m™
AHixn -544.154x10° J-kmol™
02 4x10 kmol?-m™®
02 0.64 K?

During the dynamic experiments, the concentration Ca is measured nc times and the

temperature T is measured ny times. ec (t,,;) j=L1..nc and g, (t,,;) j=L1..n; are
the corresponding white-noise sequences with variances ¢2 and o2, respectively. We

aso assumethatn., Ny, €. and & are independent. The ODE45 solver in MATLAB™

was used to generate simulated data affected by Gaussian measurement errors and
stochastic process disturbances, using the input variable trajectories shown in Figure 3.1.
The duration of each simulation is 64 min. These same input trajectories were used by
Varziri et a.>** when testing their AMLE algorithm. Simulated data were generated
using the true parameter values from Marlin®* shown in Table 3.2. Measurement noise

variances g2 and o7, provided in Table 3.3, are assumed to be known, whereas process

disturbance intensities Qc and Qr are unknown.
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Table 3.2 Estimates and 95% Confidenceintervalsfor AEM parameter estimates from one

of the 100 M onte Carlo ssmulations

True Initial Guess Estimate+ 95% Confidence
Parameter Unit Value Interval
Kief min? 0.461 0.293 0.436+ 0.007
(E/R)/ 10° K 8.3301 4.2012 8.1504 + 0.0952
a/10° 1.678 3.236 1.568+ 0.239
b 0.500 0.760 0.494+ 0.054
T(0) K 341.38 347.12 342.24+0.43
Qc kmol?-m° 0.010 0.015 0.010+ 0.0009
Qr K2min™ 4.0 6.1 4.8+0.01

The random process disturbances (see Figure 3.2) were generated using a discrete white-
noise process with a sampling interval At=0.5 min which is approximately 10 times

smaller than the dominant time constant of the CSTR system.

Q

( 2m|n1)

N
l_l'l :

_1 0 I I I I I I
0 10 20 30 40 50 60

t (min)

Figure 3.1. Typical discrete stochastic process disturbances obtained using Q=4
K2.mintand At= 0.5 min
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The AEM objective function for estimating parameters in the CSTR mode is:

J AEM ,CTS?

L (0 -T.0)?

+
Qi

zz(yc(tml,) Caltus ) 45 i(yT(tmz,j)—T_amz,,-))z

C j=1 j=1

+0c IN(Qc) + a7 IN(Qy)

53

1 f(olc:é\E 1 F \Et) (Cao(t) = Co (1) + K (T_(1))C (t)] dt +

| (dz t(t) FO 1 1) -T.) ~UAT. (0 ~T. (0] -k, (T_(©))C. (t)) "

(3.25)

< 15F T T T T T T
£
]
“ _'—l
o 0.5k ! ! ! ! r -
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t (min)
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g 22F I_ -
E 2
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Figure 3.2 Input trajectories for nonlinear CSTR™



In Equation (3.25), qc = gr =128 are the number of discrete random shocks used to
generate the disturbance sequences. Note that the discrete white noise is added before
solving the dynamic equations of concentration and temperature. The final term on the
right-hand side appears because the initial temperature T(0) is assumed to be unknown in
this example and must be approximated using T-(0). Since Ca(0) is perfectly known,
there is no corresponding concentration term in Equation (3.25) and the corresponding
first spline coefficient B.1 is set at 1.569 and is not used as a decision variable by the
optimizer.

For comparison, the corresponding extended AMLE objective function®* used to
estimate the model parameters and B-spline coefficients when Q¢ and Qr are assumed
knownis:

1 "C 1 T
Jl,AMLE=—ZZ(Yc(tm],j)—CA~(tij))2+S—22(YT(tm2,j)—T~(tm2,j))2
C j=1 T j=1

, (0 -T_(0))°
S?
1 JC-'(dCAJt) F(t)

—

2
(Cao(t) =Ca-(0)) + Kk (l'~(t))CA~(t)] dt+

2
é (dT ®_ F<t) —= (To(t) = T (1)) ~UATT_(t) = Tin ()] — 0, (T- (t))CA~<t>]

(3.26)
The only differences between the AEM and AMLE objective functions are the two
logarithm terms that appear in Equation (3.25). The outer objective function used for

estimating Qc and Qr in the extended AMLE method is:®
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1 [& 0%J )
Jomme =—— (yc (tml,j)_CA~(tm1,j))2+Trac (%) Y-
noZ| S 02C2.
i (3.27)
1 | & > 0°J| AMLE \ 1
+nT0T2 jzz‘i(yT(th,j)_-L(tmz,j)) +Trace[(W) -1

Estimating the parameter vector [k.,E/R,a,b,Q.,Q;]" using extended AMLE

required a two-step optimization procedure wherein k., E/R, a, b and the B-spline
coefficients were estimated in an inner loop using assumed values of Q¢ and Q. Updated

values of Q¢ and Qr were estimated in an outer loop using objective function (3.27). The
outer objective function contains the Hessians 023, gye/0Be and 023, e /B2

where 3¢ and Bt are vectors of B-spline coefficients that correspond to approximate state
trajectories Ca- and T-, respectively. These Hessians were computed using the “gjh”
function in IPOPT.

The AEM and extended AMLE optimization problems were solved using the 1POPT
optimization code from Wachter and Biegler™ with model information provided using
AMPL™ *® The outer loop of the extended AMLE algorithm was optimized using the
“Isgnonlin” function in MATLAB™. Termination tolerances for Isgqnonlin were set at
10" for changes in the value of the objective function and at 10°® for parameter values.
The maximum numbers of iterations and function evaluations were set to 1000 and 2000,
respectively. Default values of optimization settings in IPOPT were used when
optimizing objective functions (3.25) and (3.26). Reducing the tolerances used in
Isgnonlin and IPOPT by a factor of 10 did not produce significant changes (i.e., in the
first three significant figures) in the estimated parameter values. 4™ order (cubic) B-

splines were used in both the AEM and AMLE parameter estimation studies with one
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knot at every sampling interval used to generate the disturbances. This knot placement
frequency was chosen based on results from a preliminary study involving several single-
state SDE models.>” Estimates for the complete vector of parameters  were obtained for
different sets of ssmulated data under several different scenarios, as shown in Table 3.3.
In each scenario, parameter estimation problems were repeated 100 times with 100
different sets of random initial guesses for the parameters (chosen from a uniform
distribution between 50% and 150% of their true values). Different random sequences for
Gaussian process disturbances and measurement noise variables were used to generate
the 100 data sets. To compare the quality of the parameter estimates obtained in the
different scenarios, medians and interquartile ranges (IQRs) are reported in Table 3.3
when parameters are estimated using the ssimulated data sets and corresponding initial
guesses.

In scenario A (the base case scenario) C, and T were measured once every 0.5 min, so
that 128 concentration measurements and 128 temperature measurements are available
for parameter estimation. Estimated trgectories (Ca-and T-) for one of the simulated data
sets are shown in Figure 3.3, along with the true state trgjectories and the corresponding
data values when AEM is used for parameter estimation. As expected, the estimated state

trgectories follow the true trgjectories closely.
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Table 3.3 True parameter values, median values and 1QRsfor the estimates based on 100

Monte Carlorunsfor different scenarios.

Par ameter ke« (E/R/10° a/10° b T(0) Qc Qr
Unit min* K K kmol?>m®-min?  K2min?
TrueValue 0.461 8.3301 1.678 0500 341.38 0.010 4.0
Scenario
A AEM Median 0.432 8.2308 1502 0497 342.32 0.009 4.9
IQR 0.020 0.2062 0.465 0.104 1.21 0.004 14
AMLE Median 0.420 8.1931 1.315 0,512 34242 0.056 24.2
IQR 0.024 0.2394 0.545 0.118 1.33 0.615 40.2
CTSM  Median 0.460 8.2800 1575 0.508 341.00 0.092 15
IQR 0.015 0.1650 0.625 0.131 1.00 0.011 0.4
B AEM Median 0.440 8.2949 1589 0483 342.29 0.003 38
IQR 0.026 0.2777 0.618 0.146 1.16 0.003 0.9
AMLE Median 0.432 8.3071 1558 0478 342.39 0.009 9.4
IQR 0.037 0.3313 0.676 0.132 1.36 0.134 11.0
C AEM Median 0.444 8.2548 1589 0.493 342.26 0.003 4.0
IQR 0.020 0.1819 0.349 0.073 1.18 0.002 0.4
AMLE Median 0.428 8.2344 1442 0509 342.37 0.021 8.7
IQR 0.025 0.2148 0.364 0.096 1.37 0.869 9.6
D AEM Median 0.437 8.1891 1561 0484 34297 0.005 3.7
IQR 0.022 0.2187 0.560 0.126 1.64 0.005 0.7
AMLE Median 0.423 8.1709 1.392 0501 343.06 0.018 13.3
IQR 0.030 0.2998 0.645 0.132 1.76 0.251 14.9
E AEM Median 0.436 8.2525 1581 0507 343.31 0.010 51
IQR 0.024 0.2481 0.603 0.157 2.12 0.009 21.3
AMLE Median 0415 8.1952 1.276 0527 34353 0.487 38.5
IQR 0.023 0.2797 0.518 0.145 2.70 1.326 77.1
F AEM Median 0.427 8.1984 1500 0.498 342.36 0.012 6.6
IQR 0.023 0.2508 0.530 0.112 1.64 0.006 2.8
AMLE Median 0413 8.1601 1.262 0535 343.59 0.633 44.4
IQR 0.027 0.2829 0.530 0.168 2.97 4.700 151.2
G AEM Median 0.416 8.3696 1541 0.469 34231 - 5.3
IQR 0.042 0.4701 0.978 0.225 131 - 21
AMLE Median 0.397 8.3023 1323 0.500 342.49 - 25.5
IQR 0.053 0.5391 0.859 0.212 1.36 - 324
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Figure 3.3 Measured, true, and predicted concentration and temper ature responses for the
AEM method in scenario A, using simulated data from one of the 100 Monte Carlo
simulations. Corresponding initial guesses and parameter estimatesare provided in Table 3
(» simulated data, ----- response with true parameters and true stochastic noise, _ AEM

r esponse)

Approximate confidence intervals for the corresponding parameters are provided in
Table 3.2. The model parameter and disturbance intensity estimates from the AEM
algorithm should be asymptotically Gaussian with covariance equal to the inverse of the
Hessian matrix,® due to the central limit theorem. Thus, assuming that the data set is
sufficiently large, approximate 100(1-a)% confidence intervals can be determined by
approximating the covariance matrix using the Hessian evaluated at the estimates of

parameters and B-spline coefficients:**

=+ Q,Z\/diag(azJAEM Jo?) Y (3.28)

1
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where t=[{",B"]" is a stacked vector of model parameters, disturbance intensities and B-
spline coefficients. Note that Varziri et a. used a similar method to obtain approximate

confidence intervals for k., ,E/R,a,band T(0) from the extended AMLE algorithm.

However, they were not able to obtain approximate confidence intervals for Qc and Qy
because these disturbance intensity parameters were estimated using their outer objective
function (Equation (3.27)), which was not derived using Maximum Likelihood methods.
The capability to generate approximate confidence intervals for disturbance intensities is
one of the benefits of the AEM algorithm compared to extended AMLE.

Box plots summarizing the parameter estimates from al 100 Monte Carlo simulations
are shown in Figures 3.4 and 3.5 to provide a comparison of the effectiveness of AEM,
extended AMLE and CTSM methods for the base case (scenario A) estimation problem.
Default values of optimization settings were used when implementing the CTSM
software. Use of CTSM requires upper bounds and lower bounds for all of the
parameters. Lower bounds of parameters were set at zero and upper bounds were set at
10 times the true parameter values. Using CTSM, successful parameter estimation was
only obtained for 36 of the 100 Monte Carlo cases attempted; the CTSM box plots in
Figures 3.4 and 3.5 (and the medians and IQRs in Table 3.3) were constructed using only
these 36 sets of parameter values. The remaining 64 estimation attempts experienced
convergence failures. Several repeated CTSM parameter estimation attempts with revised
tolerances and convergence settings did not result in improved convergence. However,
when improved initial guesses (between 75 and 100% of the true values) were used, a

higher success rate was obtained. Both the AEM and extended AMLE agorithms
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converged for al of the 100 Monte Carlo cases attempted, and the corresponding results
are shown in Figures 3.4 and 5.

In scenario A, the AEM algorithm converged to the neighbourhood of the true parameter
values using 80 of the 100 simulated data sets. For the remaining 20 data sets, the
algorithm converged to parameter estimates with noticeably larger values of Qc and Qr,
which correspond to outlier in the box plots in Figure 3.5. These results do not seem be
caused by convergence to local minima, because re-starting the parameter estimation at
the true values rather than the random initial guesses for these data sets resulted in the
same large estimates of Qc and Q. When extended AMLE was used for parameter
estimation, these was neglligible bias in the model parameter estimates (k.¢, E/R, a, b and
T(0)), but the estimates of Q¢ and Qr were biased toward large values. Also, the IQRs for
estimates of Q¢ and Qy obtained using extended AMLE are very wide when compared
with those obtained using AEM and CTSM (e.g., for Qc, the IQR is 0.004 for AEM,
which is much smaller than 0.615 for extended AMLE and 0.011 for CTSM). The CTSM

estimates of Q¢ and Qr have more bias than the estimates obtained using AEM.
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Figure 3.5 Box-plotsfor disturbance intensity estimates obtained using the AEM method,
extended AMLE method and CTSM in scenario A. The dashed horizontal lines show the
true values used to generate the smulated data.

Note that parameter estimation using CTSM was not studied for the other scenarios in
Table 3.3 because of the convergence difficulties encountered for scenario A. On
average, each parameter estimation conducted using AEM required approximately 0.2
min of computation time on a laptop computer with Intel® Core™ 2, Duo CPU, 1.86
GHz, 296 GB of RAM, which is about 5 times faster than each extended AMLE
parameter estimation. The typical computation time for each parameter estimation that
converged using CTSM was 3 min.

Scenario B in Table 3.3 was used to study the influence of worse initial guesses on the

qguality of the parameter estimates. Using initia guesses that were chosen randomly
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between 50% and 800% of the true parameter values had no significant influence on the
majority of the AEM parameter estimation results. Note, however, that 11 sets of
simulated data resulted in convergence to local minima when the worse initial guesses
were specified, leading to large IQRs and larger median values for the estimates of Q¢
and Qr. The extended AMLE parameter estimates in scenario B have larger variability
and are even more biased than those obtained using the good initial valuesin scenario A.
The results obtained using AEM are significantly better than those obtained using
AMLE.

In scenario C in Table 3.3, Ca and T were measured less frequently than in scenario A,
(i.e., only 64 concentration measurements and 64 temperature measurements instead of
128 for scenario A). As expected, the parameter estimates have larger variability due to
the smaller data set in scenario C (e.g., the IQR for k¢ increases from 0.020 to 0.026
min™ using AEM and from 0.024 to 0.037 using extended AMLE). The Q¢ estimates
obtained from AEM in scenario C are more biased toward small values than they werein
scenario A. Conversely, the extended AMLE estimates for Q¢ and Qr appear to be better
than in scenario A when the smaller data set is used. The reason for this behaviour is
unclear. In both scenarios A and C, the AEM estimates of Q¢ and Qy are better than the
corresponding extended AMLE estimates.

In scenario D the values of Q¢ and Qy used to generate the simulated data were decreased
to the half of their original values (i.e., Qc =0.005 (kmol.m®)%-min™ and Qr =2 K% min™)
used in scenario A. The base case number of measurements (128) was used when
estimating the parameters. Because the disturbances are smaller, improved estimates of

parameters k.«, E/R, a, b and T(0) are obtained using both AEM and extended AMLE, as
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expected. However, the estimates for Qc and Qr are dlightly worse from AEM than when
the larger disturbances were used, presumably because it is more difficult to accurately
detect the influence of the disturbances relative to the measurement noise. The AEM
estimates of Q¢ and Qr are better than the corresponding AMLE estimates in scenario D.
In scenario E the known true measurement noise variances were increased to twice as
their original values (i.e., 62 = 8x10™ kmol>m® and ¢2 = 12.8x10™ K?), with all other
settings held at those from scenario A. These new true values were used in objective
functions (3.25) and (3.26) when estimating the parameters. As expected, using larger
noise variances resulted in dightly worse parameter estimates from both AEM and
AMLE. Also, the AEM estimates for Qc and Qr became dlightly worse than in the
scenario A. The AEM estimates for Qc and Qy in scenario E are better than the
corresponding AMLE estimates.

Scenario F was used to investigate the robustness of the AEM and AMLE algorithms to

imperfect knowledge about the measurement noise variances ¢2 and oZ. In this

scenario, the modeler believes ¢2 and ¢} to be twice their respective true values and

uses this incorrect assumption in the objective functions. The AEM estimates of the
model parameters ki, E/R, @, b and T(0) are nearly the same as those obtained using the
base case scenario (scenario A), but the estimates of Q¢ and Qr tend to be larger and
more biased than in the base case. The corresponding extended AMLE parameter
estimates in scenario F are more biased and have alarger variability than those obtained
using the base case. The simulation results from scenario F suggest that AEM is more

robust than AMLE to imperfect knowledge about measurement noise variances.
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We also attempted to use the AEM agorithm for a more-difficult parameter estimation
problem (scenario G) wherein parameters were estimated using only the temperature
measurements, with the concentration as an unmeasured state. The estimation worked
well if Qc was assumed known (results shown in Table 3.3), but poor estimates were
obtained for Qc when both of the disturbance intensities were estimated together using
the limited data (not shown).

The results in Table 3.3 and Figures 3.4 and 3.5 reveal that the AEM parameter
estimation algorithm was more effective than extended AMLE for the CSTR example
studied. Although AEM did encounter some difficulties with convergence to loca
minima, the parameter values obtained are more reliable than those from extended
AMLE and CTSM. Because AEM uses a single objective function to estimate the model
parameters and disturbance intensities, computation times tend to be shorter than for
extended AMLE. Results in Table 3.3 suggest that AEM is more robust than extended
AMLE to imperfect knowledge about noise variances and that AEM has superior
performance when there are unmeasured state variables.

One shortcoming of the AEM method compared to more complex MCMC-based MLE
algorithms®* is that AEM introduces additional approximations when computing the
likelihood function. The main approximations correspond to using only the mode rather
than many particles and using B-spline approximations for the state trgjectories in the
expectation step of the EM algorithm. These approximations save computational effort,
but may cause some of the bias observed in Figure 3.5 (a and d). The bias may also be
due to the limited number of data points used for parameter estimation. Since maximum

likelihood methods only result in unbiased parameters in the limit when the data size
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goes to infinity, it will be important to compare AEM with MCMC methods.”®> AEM
should require considerably less computation time than MCMC-based EM techniques
since AEM does not require drawing samples from high-dimensional and complex
probability density functions.® The current AEM method was developed assuming the
measurement noise variance is perfectly known. It will be beneficial to develop more
advanced approximate maximum likelihood methods that can estimate measurement
noise variances along with disturbance intensities, for situations where the modeler has

rich dynamic data, but limited knowledge of measurement noise.

3.6 Summary and Conclusions

A method for estimating parameters and process disturbance intensities in nonlinear SDE
modelsis proposed. This approximate maximum likelihood method is an extension of the
AMLE method previously proposed by Varziri et a.>* The new Approximate
Expectation Maximization (AEM) objective function permits modelers to estimate
process disturbance intensities along with the model parameters. The AEM method
efficiently approximates the expectation step of the EM agorithm using B-spline state
traectories.

A two-state nonlinear CSTR model with stochastic disturbances and measurement noise
was used to test the AEM methodology. Four fundamental model parameters, an initia
state and two process disturbance intensities were estimated. Parameter and disturbance
intensity estimates were compared with those from Extended AMLE and the CTSM
software of Kristensen using smulated data. The resulting AEM parameter estimates are

less biased and more precise than the corresponding estimates obtained using Extended
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AMLE and CTSM. For the example studied, AEM is also more robust to poor initial
guesses than AMLE and CTSM. AEM performed relatively well using imperfect
knowledge about measurement noise variances and when only one of the states was
measured.
The AEM method was easier to set up and converged faster than extended AMLE
because the AEM method does not require successive optimizations using inner and
outer objective functions. Since the model parameters and disturbance intensities are
estimated using a common Maximum Likelihood objective function, it is relatively easy
to obtain approximate confidence intervals for disturbance intensities using AEM.
Some of the benefits of the AEM method that may be attractive to devel opers of dynamic
models are: 1) simplicity of implementation, ii) reliable estimates of model parameters,
initial conditions and disturbance intensities, iii) efficient handling of unknown initia
states, iv)ability to handle unmeasured state variables. In particular, estimates of
disturbance intensities can provide modelers with information about the degree of
mismatch and the magnitude of unmeasured disturbances in their ssimplified models. This
information will be helpful when implementing on-line state and parameter estimation
schemes for process monitoring and control, because the assumptions about
measurement errors and process disturbances are consistent with assumptions used in
Kaman filtering.®*

In future, it will be desirable to extend the AEM algorithm so that unknown
measurement noise variances can be estimated when sufficient data are available, and to
test the AEM methodology using larger-scale estimation problems. It will aso be

important to compare AEM results with those from recently developed MLE-based
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methods that use MCMC techniques for parameter estimation in stochastic differential
equation models.*** |t is expected that AEM computation times will be significantly
lower than the times required using MCMC methods, particularly for larger-scale
problems, because AEM does not require sampling from high dimensional probability
density functions. It will be interesting to determine whether the additional B-spline and
mode approximations used to develop AEM will result in any significant degradation in
the quality of parameter estimates when compared with MCMC methods. In future, it

will be desirable to investigate the convergence of AEM algorithm.
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Chapter 4
An Approximate Expectation M aximization Algorithm for Estimating
Parameters, Noise Variances and Stochastic Disturbance I ntensitiesin

Nonlinear Dynamic Models

4.1 Abstract

In Chapter 3, AEM was developed for estimating model parameters and disturbance
intensities for nonlinear dynamic systems that are described by Stochastic Differential
Equations (SDEs), assuming measurement noise variances are known. In this chapter, an
algorithm is proposed for simultaneous estimation of model parameters, process
disturbance intensities and measurement noise variances for SDE models. The proposed
Fully-Laplace Approximation Expectation Maximization (FLAEM) algorithm uses an
iterative approach wherein, in the first step, the model parameters are estimated using the
Approximate Maximum Likelihood Estimation (AMLE) objective function developed by
Varziri et a.}, assuming disturbance intensities and noise variances are known. In the
second step, process disturbance intensities and measurement noise variance estimates
are updated using expressions that rely on the Fully-Laplace Approximation (FLA) in the
Expectation Maximization (EM) algorithm. The proposed FLAEM method is illustrated
using a nonlinear two-state Continuous Stirred Tank Reactor (CSTR) example. The
effectiveness of the FLAEM agorithm is compared with a maximum-likelihood based

method proposed by Kristensen et al.? For the CSTR example studied, FLAEM provides
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more accurate parameter estimates and is more robust to poorly known initial guesses of
parameters and to smaller data sets. This chapter has been submitted as ajournal paper to

Industrial Engineering and Chemistry Research.

4.2 Introduction

Many chemical processes are modeled using ordinary differential equations (ODES) or
algebraic equations (AEs) arising from fundamental laws of physics and chemistry.>®
However, some chemical engineering processes are better modeled using stochastic
differential equations (SDEs) that account for possible modeling imperfections and
stochastic process disturbances.>® Stochastic terms that are included in SDE models can
result in improved model predictions due to decreased bias in parameter estimates.®’
Parameter estimates obtained using SDE models are suitable for on-line process
monitoring applications because SDE models account for measurement errors and
stochastic process disturbance, the two types of random errors that are accounted for by
Extended Kalman Filters (EKFs) and related state estimators.®®

A common method for estimating parameters in SDEs is the maximum likelihood
estimation method via the expectation maximization (EM) agorithm.’*** The EM
algorithm is summarized in section 2.4 of this chapter. In nonlinear systems, the EM
algorithm becomes difficult to use because of problems related to the finding the required
expected value of the likelihood of the parameters given the states and measurements.*>*>
Approximation methods have been used to simplify the expectation and maximization
steps of the EM algorithm. Some of these methods involve: using an EKF,***® Markov
Chain Monte Carlo (MCMC) methods that are also known as particle filter methods **

152026 and approximations using spline-based methods.*?" Linearization-based EKF
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methods are computationally attractive, but can give biased parameter estimates when
there are strong nonlinearities in the system.” MCMC methods are asymptotically
efficient and consistent and do not require assumptions about the form of the density
function.” When MCMC methods are used, the required probability density functions
are approximated by drawing samples from a target density function.** MCMC methods
tend to be computationally intensive because alarge number of particles may be required
to obtain good approximations, especially when the number of states and parameters is
large.®®* An overview of MCMC techniques and some implementation issues are
presented by Kantas et a.*' and Imtiaz et. al.*

Varziri et a.' developed an Approximate Maximum Likelihood Estimation (AMLE)
method for estimating model parameters in SDEs when both the process disturbance
intensity and the measurement noise variance are known. Because modelers often have
poor knowledge about the magnitudes of their model mismatch and the size of the
stochastic disturbances that will be encountered, Varziri et al.* extended their algorithm
for estimating stochastic disturbance intensity along with model parameters. They
assumed that measurement noise variances are known and used this variance information
in a somewhat arbitrary objective function to estimate the disturbance intensities. In our
recent work,?” we derived a more rigorous method for estimating disturbance intensities
using an Approximate Expectation Maximization (AEM) objective function.
Unfortunately, this AEM methodology requires the measurement variances to be known
by the modeler.

In this chapter, we propose a computationally efficient algorithm that can be used to

estimate unknown noise variances along with the model parameters and disturbance
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intensities. This technique relies on the Fully-Laplace Approximation (FLA) for
approximating the multidimensional integrals of the likelihood function required in the
EM algorithm. *** Previously, the FLA has also been used for approximating posterior
moments and marginal densities™ and for approximating posterior distributions in
Bayesian methods.** The FLA has also has been used for joint modeling of survival and
longitudinal data via the EM algorithm,* for estimating *" parameters in generalized
linear latent variable models® and for parameter estimation in nonlinear mixed-effects
models.*® To our knowledge, the FLA has not been used until now for parameter
estimation in SDE models. Details regarding the FLA are provided in section 2.5.

The remainder of this chapter is organized as follows. First, necessary notation and
background information are presented. Next, the EM agorithm and FLA are presented
and the FLAEM algorithm is developed. The FLAEM algorithm is then tested using a
stochastic nonlinear CSTR simulation study. The estimation results obtained using the
FLAEM algorithm are compared with results obtained using the ML-based Continuous-
Time Stochastic Modeling (CTSM) method proposed by Kristensen et al.* Finaly, the
performance of FLAEM is tested for the simpler situation when measurement noise
variances are known and the FLAEM results are shown to be superior to both CTSM and

AEM.

4.3 Preliminaries
4.3.1 SDE Model and Notation

In this chapter, we illustrate the proposed parameter estimation method using a Multi-

Input Multi-Output (MIMO) nonlinear SDE mode! of the following form:
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x(t) =f (x(t),u(t),0) + n(t) (4.1.9)
X(to) =Xo (4.1.b)
Y(tmr i) =9, ;) Ut ),0) +€(tn, ;) (4.1.0)
where x € R* is the vector of state variables, t istime, f:R* xRY xR” > RX isa
vector of nonlinear mappings, U € R” is the vector of input variables and 0 € R” is the

vector of unknown model parameters, n(t) € R*is a continuous zero-mean stationary

Gaussian white-noise process with covariance matrix E{n(t,)n" (t2)} = Q3(t>-t1), where Q

isadiagonal power spectral density matrix with dimension X xX:
Q 0

Q=|: . : (4.2)
0 - Qy

and 3(.) is the Dirac delta function.” The diagonal elements of Q are referred to as

disturbance intensities (i.e., Qq=[Qx,...,Qx]"). In Equation (4.1.c ,y € R" is vector of

measured output variables. Measurement times for the rth response (r=1...Y) are denoted

by tmr; = 1...N;) and N, is the number of measurements of rth response variable.

ge R"is a vector of nonlinear mappings and € R’ is the zero-mean random

measurement error. Assume that errors in measurements made at any sampling time tp

( = 1...N;) areindependent so that their covariance matrix is:
S=|: (4.3)

In some dynamic models, the initial conditions, x,, for the state variables are poorly

known because they have some associated measurement noise. We assume that the
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measurements for initial conditions of the state variables are contained in vector X, and
that these measurements are normally distributed with meanE{x,} =X, and
COV{X mo} = S -

Consider a vector Y, that contains al of the stacked measured values:

Ym =[Y1ltmi) - Yaltmong) - Yy tmy ) Yy tmyong N

Similarly, X =[%(tm)--- X (g ng) -+ Xy (Emy ) - Xy (tmy Ny )]T is astacked vector of

state values at the measurement times, and U,,, and €, are corresponding stacked vectors
for the input variables and random errors:

Yo =9X,,Uy,,0)+€, (4.9)

In Equation (4.1), a discrete-time white-noise sequence is used to approximate and
implement the continuous stochastic disturbances n(t), where the corresponding discrete
process is a series of random step functions with a sampling interval At and

covariance: "%

2 =
E{n(j:A0NT (joAL)} =1 At 1o (4.5)
0 j1# o

where j; and j, are positive integers corresponding to the times at which the independent

random shocks occur.

Denote Sy as the diagonal elements of the covariance matrix (i.e., S¢=[02,...,02]"). Let

(= [GT,xg,Q(T,, Z(T,]T be the vector of unknown parameters in the SDE model, which

includes the model parameters 6 and the unknown initial conditions, aong with

disturbance intensities Q and the unknown noise variances S. To simplify the notation,
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derivations in this chapter are developed assuming that n measurements are available for
each response. However, a derivation for the more general case where N, measurements

are available for the rth response is also shown in Appendix 3.A.

4.3.2 B-Spline Basis Functions

B-splines basis functions are used to approximate continuous functions and variables.
Mth order B-splines basis functions are piecewise polynomials that are positive within M
intervals and zero elsewhere.***

The sth state of the SDE model in Equation (4.1) can be approximated by a linear

combination of cs B-splines:*-**

X_¢(t) = i Bs @ (1) fors=1,....X (4.6)
=

where B, is a B-spline coefficient and ¢, (t) is the corresponding B-spline basis
function. The subscript ~ is used to indicate that the state trajectories are being
approximated using empirical spline curves. In matrix form, Equation (4.6) is:

X_(t) = P(t)B 4.7)

where ®(t) isamatrix of spline functions:

I 0 .. 0

o0 P20 O (48)
_6 6 ....(p?(t)_

and
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B

B=|:
(4.9
Bx
where 35 is the vector containing cs B-spline coefficients for the sth state trgjectory:
Bs=[bs,1,---,bs,cs]T for s=1,...,.X (4.10)

An advantage of using B-spline basis functions for approximating the state variables in

dynamic modelsisthat they can be easily differentiated with respect to time:
Cs

X_s(t) =D B9, (1) for s=1,...,.X (4.11)
=1

where ¢, (t) is a simple polynomial expression. As a result, B-splines can be used to
convert differential equations to algebraic equations.**** For example, when B-spline
approximations are used, Equation (4.1.a) becomes:

b (t)B =f (P (t)B,u(t),0) + n(t) (4.12)

4.3.3 Approximate Maximum Likelihood Estimation (AMLE)
Algorithm

Varziri et a.! discretized the SDE in Equation (4.1) to develop an AMLE method for
estimating model parameters 6 in SDE models. The discretized form of Equation (4.1)

using an Euler approximationis:

X(t_y +At) = X(t) = X(4_) + F (X(t_y),u(t;_y),8)At + Ny (t,_)At (4.13.9)
X(tg) = Xq (4.13.b)
where X(t;) is the value of the state variable at g uniformly-spaced time pointst; , i=0,..,q

and ny(t_,) isthe discrete-time white-noise process at g uniformly-spaced time points

ti.1. Consider X, = [XT (to), X" (ty)....x" (tq)]T as the stacked vector of state values at the
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discrete times. Varziri et al.! assumed that Q and = and perfectly known and derived the
following analytical expresson for the likelihood —Inp(Yn,,X,[6), while
approximating state trajectories by B-spline basis functions:*
Iamie =—INP(Ym . Xq-18) =[Ym =9(Xm~,Um.8)]" Z Y —9(Xm-~,Up 6]
+ (Xm0 =X=0) " S0 (Xmo —X~0)
t
+ f[ut) ~f (x-(0),u(),8)]" QX () ~f (x- (1), u(t), )] dit
° (4.14)
X_(t) and itstime derivative X_(t) in Equation (4.14) result in an objective function that
depends explicitly on the B-spline coefficients B and model parameters 6. Optimal
approximate maximum likelihood estimates for the model parameters 6 can be
determined by finding values of 8 and B that minimize Jawce.* In the current chapter, this
AMLE objective function is used as part of a more complicated algorithm for estimating
unknown values of 8, B, Xo, Q and S. This new algorithm is useful for estimating
parameters when the modeler does not have prior knowledge of Q and S.

4.3.4 EM Algorithm

In the EM algorithm, the expected value of the log likelihood of the complete data, given
the vector of measurements and values of the parameters Zk arising from the current (i.e.,

kth) parameter iteration is calculated in the first step (referred to as the expectation step

or E step): 124>

R@ &)= EQNLP(Yim, Xq 101 Y, &icd =100 p(Yim, Xq [ Y, D1P(Xq | Yim L) dXq
qa

(4.15)
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Note that the integral in Equation (4.15) is a multidimensional integral with respect to
each element of the state vector and that Zk contains estimates of 6, Q and S from the

previous (kth) iteration. In the second step (referred to as the maximization step or M

step), this expected value is maximized with respect to ;124>

o =argmax R (4.16)
Z

Iteration between these two steps continues until convergence is obtained.

4.3.5 Fully-L aplace Approximation

The FLA of theratio of two related multidimensional integralsis:***>4

1/2
de{—aZy 0 }

axox' | .

d *00d .
[600 ey (0}dx  Jexpy "x0)dx ool @)y @)
X:X* ]

[exply (0}dx ) [exply (0}dx i de{M

oxox"

(4.17)

where G(x) isapositive scalar function, y (X) is ascalar function and:

y "(X) =In[G()] +y (x) (4.18)

In Equation (4.17), ¥ and {* are vectorsthat maximize | and |, respectively.

4.4 Development of the FLAEM Algorithm
In this section, an algorithm for estimating the measurement variances S and the process
intensities Q along with the model parameters 6 and initial conditions X, is devel oped.

Define:
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t
Z = f(xa) —F(x(1), u(t), 8)) (X(t) — F (x(t), u(t),8)) T dt (4.19)

to
S=(Ym ~9(Xm:Um 8)(Ym ~9(Xm,Upm )" (4.20)
It is shown in Appendix 3.A that, when 8 is assumed to be known, the estimates of the

disturbance intensity Q and the noise variance X at the k+1th iteration are:

Qk+1=%E{Z|Ym,Qk,zk} (4.21)

1
zk+1:EE{S|Ym!Qk!Zk} (422)
The expectations of Z and Sconditional on Yy, Q, and X, are given by:*

[Z p(Ym.Xq %) dXq

E(ZYm,Qk.Zk) = [P0V Xq 120X (4.23)

[Sp(Ym.Xq 12k)dXq
[ p(Ym,Xq12)dXq

E(S|Ym Qk:2Zk) = (4.24)

The FLA can be used for calculating the ratios of integrals in Equations (4.23) and
(4.24). After substituting the expressions for E(Z|Y,,,Qx,Zy) and E(S|Y,,Qk,Zy)
obtained from the FLA into Equations (4.23) and (4.24), expressions for estimating Q

and S are (See Appendix 4.A for derivation):
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1/2
0 _1f det(Hp)
k+1 q[det(Hé)J

1 ~ ] -
eXp{—E(Ym - g(X%m , Um,ek))Tzkl(Ym - g(X%m U, 6))

t
f(i’& (t) - f (K2 (), u(t), B, ))(XZ (1) - (RZ (1), u(t),8,))" dt
to
1tq . :

- [ GE O G2 0),u),8,))T QR RE ()~ (X2 (1), u(t), 8,)) it

to
# (Vo = 9% U i) 22V =X U, B4)
+% [ (- ()~ (% (0),u(©),8,))T QR (X~ () ~F (X (V),u(t). 8, ) d}

to

(4.25)

1(det(HB)

1/2
_ Yo —g(XS U 0.)(Ym —g(XS U0
k1 = det(HS)] (Ym —9(XZm: U 80)) (Y —9(X 2, Upy, O

&XP=— (Yrm ~9(X S, U B0) 22V ~ (XS, Upn 81)

—{f&?(t)—f(ii’(t),u(t),ek))TQ'kl(i§(t)—f(ﬁ(t),u(t),ek»dt
0

+%(Ym — (X U BN T Z (Yo = 9K s U 81))

+%:Jg(5”<~(t)—f(f(._(t),u(t),Bk))TQ[}(;L(t)—f(f<~(t)au(t)’9k))dt}
0

(4.26)

In Equations (4.25) and (4.26), the Hessian matricesHg, H3 and H5 are defined as:

2
Hg = 0" JamLE

T 4.27
oBoB' |5_g (4.27)
%%
HE = - (4.28)
BB’ |5_gz
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aZJ S
. (4.29)
0BB' |, s

S
HB =
JamLe In Equation (4.27) is Varziri’s AMLE objective function defined in Equation
(4.14). J%and J°in Equations (4.28) and (4.29) are:

t tq
32 =—Inf (x, () - f,(x_©,u(),8,))" dt —...~In [ (X (1) - f, (x_(t),u(t),8,))* dt
to to

1 }
+§(Ym _g(X~m’Um1ek))Tzkl(Ym _g(X~m’Um7ek))

+%f(x~(t) —F(x_(0),u(t),8,))"Q; (x_ (1) = f (x_(t), u(t).8,)) dt

(4.30)
Np
N —InY [Vi(tmej) - gl(x~(tm],j)ay(tm],j)’ek)]z —.
i-1
Ny
~In > [y (tmy, 1) = Oy (X~ (tmy, .Y (tmy., ). 81017
i-1
# (Y =90 U BT Zi (Yo~ 60X, U 81)
tq
+% I(X~(t) —F (X2 (1), u(t),8)) T Qi (X (1) — F (x_ (1), u(t),8))) dlt
to
(4.31)

B,BZand BS are vectors of spline coefficients that minimize Jame, JZandJ>,

respectively and X _ j(% and X° arethe corresponding estimated state trajectories.
As shown in Chart 1, an iterative method can be used for estimating all of the parameters
(6, Q, Z and B). Note that the estimate for Xq is X-o, which can be computed from the

estimated spline coefficients. The first step of the FLAEM algorithm isto initialize all of
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the parameters (6, Q, Z and B). The second step is to minimize the AMLE objective

function (Equation (4.14)) with respect to 6 and B to find 6 and B, usi ng the fixed

values of Qand X from their most recent updates. The third step is to minimize

Equations (4.30) and (4.31) with respect to B to find BZand B, using the fixed values

of 8, Qand X from their most recent updates. The fourth step is to update Q and =

from Equations (25) and (26), using the most recent values of é,é ,I§Z and BS. The

FLAEM algorithm iterates between steps two, three and four until convergence is

obtained.

Note that the vector of spline coefficients B (i.e., (= [9T , Q(T, , Z(Tj , BT]T) was not added to
the parameter vector { before deriving Equations (4.25) and (4.26). If B is included in the

parameter vector, conditions required for approximating the integrals in Equations (4.23) and

(4.24) does not hold anymore 3%
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Chart 1.The FLAEM agorithm

Step 1: Initialized, Q, Zand B

l

Step 2: Using the most recent estimatesof Q and 2 :

find O, B tominimize JamLe (Equation (A.14)) and determine H 5

A 4

Step 3: Using the most recent estimatesof 8, Q and X :

a) find BZ tominimize JZ (Equation (A.30)) and determine Hé

b) find BS tominimize J5 (Equation (A.31)) and determineH 3

N

Step 4: Using the most recent values of é , é , éz and éS:
update Q and Z according to Equations (A.25) and (A.26)

Are convergence criteria met?

No

Yes

End
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4.4 |llustrative Simulation Study: Nonlinear CSTR Stochastic M odel
In this section, a two-state nonlinear CSTR model > is used to illustrate the application of
the FLAEM algorithm for parameter estimation in SDES. The two SDEs that describe

dynamic changes in the concentration of reactant A and reactor temperature are:

dCa(t) _ F(t)

at Y (Caot) —Ca(t)) =k (T())Ca(t) +h (1) (4.32.9)
A T 000 - T(0) + UATO - Tin(0) + 9k (TOICA® +hr ) (4.32b)
yC(th,j):CA(th,j)+£C(th,j) for ] :1...nc (432C)
Y1 (T, ) =TT, ) +e7tmr ) for j=1..n (4.32.d)
Ca(0)=1.569 kmol.m (4.32.¢)
T(0)=341.37 K (4.32.1)
where

E(1 1
kr (T) = kref eXF{——R(? _ﬂJJ (433)
b+1
UAFR) = (439
Vpcp(FC + a j
2pccpc
y= EBH0n) (4.35)
pc,

In Equations (4.32.a) and (4.32.b):
E{hc(ti)hc (t)} =Qcd(ti —t;) (4.36)

E{hr (t)hr (t;)} = Qrd (& - t;) (4.37)
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In Equations (4.32.c) and (4.32.d), ec(tnc,j) i=L1..nc and er(ty7 ;) J=1..n; are

Gaussian measurement errors with variancess(z; and STZ. The concentration Ca is
measured nc times and the temperature T is measured ny times using equally-spaced
sampling intervals. We assume thatn., ny, & and & are independent. The model

inputs are: the feed flow rate F, the inlet concentration Cpo, the inlet temperature Ty, the
coolant inlet temperature T, and the flow rate of coolant to the cooling coil, F.. The

known constants for this CSTR model are given in Table 4.1.°

Table4.1 Model constants’

Model Constants Value Units

Cp 4186.8 JkgtK*
Coc 4186.8 JkgtK™*
Tret 350 K

v 1 m>

P 1000 kg-m™
AHix, -544.154x10° J-kmol ™

The handling of known and unknown initial conditions is illustrated in this example by

assuming that the initial concentration Ca(0) is perfectly known and the initia
temperature T(0) is unknown, but has been measured with a variance of S2=5.0 K2,

Since the true vaue of the initial temperature T(0) is unknown, it must be estimated.

However, T(0) does not need to be included explicitly in the list of optimizer decision

120



variables because the temperature trgectory is computed using the B-spline basis
functions so that T(0) correspondsto Br 3. Since Ca(0) is perfectly known, the first spline
coefficient fc 1 must be fixed at 1.569 kmol-m™.

The model parameters to be estimated are kinetic parameters k.« and E/R, and heat-
transfer parameters a and b. In vector form, 8cqrr =[k/«,E/R &, b]". In the majority

of the situations studied in this chapter, the disturbance intensities Q¢ (for the material

balance SDE) and Qy (for the energy balance SDE) and the measurement noise variances

S é and STZ are assumed to be unknown. As aresult, the complete vector of parameters
to be estimated islcsrr =[Kef - E/Ra,0,Qc,Qr,53,52]". In a few simulations,

however, the case wheres 2 and st are perfectly known is aso considered to permit

comparisons of the FLAEM algorithm with our previously developed AEM technique.
The CSTR model (Equation (4.32)) was simulated in MATLAB using the “ode45”
solver. The duration of each simulated experiment is 64 minutes. The corresponding
input trajectories are shown in Figure 4.1.%%

The stochastic white noise terms (nc(t) and nr(t)) were simulated using band-limited
white-noise blocks with a sample time of 0.5 minutes, which is approximately 10 times
smaller than the dominant time constant of the CSTR system. Simulated data affected by

Gaussian measurement errors and stochastic process disturbances were generated using

the true parameter values from Marlin® shown in Table 4.2
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Figure4.1 Input trajectoriesfor nonlinear CSTR*

The appropriate objective function for estimating the model parameters 6¢csrr and the B-

spline coefficients in the CSTR moddl is:
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-
Z(YT (tmT,j)_T~(tmT,j))2

1 nc
JAMLECSTR :TZ(yC(th i)—Ca-(tmc, J))2+ >
Sck j=1 STk j=1

. (0 -T-(0)

<2
nC ,
+Qik tj (dcg{ 05y (CAO(t)_CA~(t))+kr(T~(t))CA~(t)j dts
’ 0
t
1 7 dT_(t) F(t) )
e t{ [ =0 _F( (To(t)—T~(t))—UA[T_,(t)—Tin(t)]_g<r(-|-(t))CA~(t)) N

(4.38)
The third term on the right-hand side penalizes deviations of the estimated initia
temperature from the corresponding measurement. Note that there is no similar term for
the initial concentration, because it is assumed to be perfectly known by the modeler. The
first step of the FLAEM agorithm is to initialize al parameters. In the second step,
JamLecstr 1S minimized with respect to the model parameters Ocstrr and spline
coefficients Bcsrr, assuming that the disturbance intensities and noise variances are

known:

OcstrR:Bestr = a@gmin Jamiecstr (4.39)
BcsTrR.Bestr

where Bestr=[Bc,B1]"
The appropriate objective functions for the third step of the FLAEM algorithm for the

CSTR moded are;
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nc 2
s =l [ (9620 FO 00 -co )+ L0 0] a1
to

tn-l- 2
-t | (T0OFO (10 7. 0) -UAT- 0 T (0] -0 (L0)Co- 0| )

1
st

Z(yc(tmc,j)_CA~(th,j))2+

t

o
3 Z()’T(tmT,j)—T~(tmT,j))Z
j=

=1

+
S
o M

1
_2

C
1 (ch._(t)
Q

2
- _F\Et) (cAo(t>—cA~(t>)+erL(t))CAJt)] dt

+

O'—‘-—3| S —

1M AT E() ?
o ( B —T(To<t)—T~(t))—UA[T~(t>—Tm(t)]—g<rcr~(t>>cA~(t>j dt

(4.40)

nc n
I&str = —In[Z(yC (tme,j) — CA~(th,j))2] - |n[Z(YT (tmT,j)_T~(tmT,j))2]

j=1 j=1

—

ng Ny
=23 (Ve ltme, 1) = Ca e P + =53 (V1 et ) =Ty )F
Sc j=1 ST j=1
1 e dCa-(t) F(t) 2
- | & (Cao() ~Ca- )+ K (T-O)Co-()]
to
nT 2
1 o | (T0F (100 -7 0) - UAT- 0~ T 0] -9 (L 0)C- (0| o
to

(4.41)
In the third step, J&srand Jisrr are minimized with respect to spline coefficients

Bcsrr assuming that the complete parameter vector {csrr IS known:

Bisrr =argmindésrr (4.42)
Bcstr

B =argminJs 4.43

CsTR =aQ CSTR (4.43)
Bcstr
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In the fourth step, Qc, Qr, s 2 and s 2 are updated:

1/2

Qc k+1 é[%} eXp[JéSTR‘CA/i 27 ‘]AMLE,CSTR‘éA~ + ] (4.44)
det(h ) T2

S & kit =% %%Z; exp[JSstr ‘é/i 3s TJamLECSTRG, 7 ] (4.45)
det(h ) 12

QT,k+1:% %Hg; exp[‘]CZ:STR‘éi,_ﬂz _JAMLE,CSTR‘(‘:A~’-|:~] (4.46)
de(H 12

STz,k+1 Z% %Hg; exp[ I Estr ‘é§~ 35 _JAMLE,CSTR‘C“:A~ s ] (4.47)

where q =128 is the number of discrete random shocks used to generate the disturbance

sequenc&e.éA~, T, éi._, TZ, éﬁ._ and T> are estimated state trajectories
corresponding to estimated B-splines coefficients Bc,fr.BZ, BZ.pS and B3,
z

respectively. In Equations (44)-(47) Hessian matrixes HBC, H%C, Hg’c, HBT, Hat

and H[?T are defined as:

Hpe =Hpg cstr:nc) (4.48)
Hpr =Hpg csrr (e +1:07) (4.49)
HZ. =H3Z 1:nc) 4,50
sc =HB,cstr(A: Nc (4.50)
Hir =HE 1: 451
g7 =HB cstr (Nc +1:ny) (4.51)
Hie =Hj corr (L Ne) 4,52
sc =Hp,cstr(A: Nc (4.52)
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HEr = H3 csr (Ne +1:ny) (4.53)

where the notation 1:n¢ indicates columns 1 to nc of the Hessian matrix and

02J
Hg cotr = CST$ | (4.54)
aBCSTRaBCSTR‘B:é
242
2 04J
Hg cstr = IR (4.55)
OBcstrOBCsTR |g_g2
24S
s 04J
HE cstr = IR (4.56)
OBcstrOBesTR[g_gs

IPOPT* was used as a solver to optimize objective functions in Equations (4.38), (4.40)
and (4.41). AMPL™ “ was used to define the model for the IPOPT solver. Optimization
settings in IPOPT were set at their default values. 4" order (cubic) B-splines were used
for simulation studies in this chapter. Several different choices for placement of the
spline knots were studied and the corresponding results are presented below. To
determine the integrals in Equations (4.38), (4.40) and (4.41), five Gaussian quadrature
points were used between every two knots. The “gjh” function in IPOPT was used to
determine the required Hessian matrixes.

The iterative procedure in Chart 1 was used for estimating the parameter vector
lctsr =Kt \E/R,2,b,Qc,Qr,s &,52]". Inthe first step, the parameter vector {crer

and B-spline coefficients are initialized. In the second step, the objective function in

Equation (4.38) is minimized with respect to Ocstr and Besrr, using the most recent

values of QC,QT,sé and s%. In the third step, Equations (4.40) and (4.41) are

minimized with respect to BZsrr and B3gg to find BZgr and Bsrr , respectively,
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using the most recent values of Qz,Qr,s é and s T2 . In the fourth step, updated values of
Qc, Qr, s é ands T2 are calculated using Equations (44)-(47), using the most recent

values of Bcsrr, Bisrr, Bierr and Bisrg . In step 4 of the FLAEM algorithm,

estimates of the disturbance and noise parameters were considered to have converged

when the change in the sum of the squared relative errors e(k) is less than 10 where:

e(k)=(QC,k_QC,k—l)2+(QT,k_QT,k—l)Z_l_(S é,k —25 c2:,k—1)2+(3T2,k —2'5T2,k—1)2 (4.7)

Qc .k Qrk SC.k STk

4.5 Results and Discussions

The FLAEM method was tested using simulated data for 10 different scenarios. In each
scenario, 100 simulation runs were performed using different initial parameter guesses
and different Gaussian random noise sequences for the disturbances and measurement
errors. The initial guesses of the eight parameters in { were chosen randomly between
50% and 150% of the corresponding true values, using uniform probability distributions.
The quality of the parameter estimates in different scenarios was compared by
determining medians and interquartile ranges (IQRs) for the 100 parameter estimates in
each scenario. These medians and IQRs are shown in Table 4.2.

Scenarios 1 and 2 in Table 4.2 were used to study the influence of B-spline knot
placement on the quality of parameter estimates obtained using FLAEM. 128
temperature measurements and 128 concentration measurements (once every 0.5
minutes) were available in these simulation studies

In Scenario 1, 128 equally-spaced B-spline knots (one at each measurement time) were

used, while in Scenario 2, 256 equally-spaced knots were used for FLAEM algorithm.
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For comparison, the parameter vector { was aso estimated using an ML-based method
proposed by Kristensen et a.* In Kristensen’s method, a Gaussian distribution is
assumed for the likelihood function and the mean and variance of the likelihood function
are estimated using an EKF.? When CTSM was used to estimate parameters, default
values of optimization settings were used. Note that the CTSM software requires
parameter bounds be specified by the user. The lower bounds of parameters were set at
zero and upper bounds were set at 10 times the true parameter values. Parameter bounds
are optional using FLAEM and none were specified when generating the results in this
chapter. The CTSM results when there are 128 temperature measurements and 128
concentration measurements are shown at the top of Table 4.2. Twenty-seven simulated
data sets encountered convergence faillures when using CTSM, wherein the optimizer
selected intermediate parameter values where the differential equations could not be
solved. Box plots for parameter estimates obtained from the 73 remaining simulated data
setsusing CTSM and all 100 data sets for FLAEM for Scenarios 1 and 2 are compared in
Figures 4.2 and 4.3. These boxplots correspond to the medians and 1QRs in the top three

rowsin Table 4.2.
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Table4.2 True parameter values, median values and | QRsfor the estimates using 100 Monte Carlo runsfor different scenarios.

Par ameter e (E/RV10° &/10° b TO)  Qc Qr 2 )
c T
Unit min™ K K kmol>m®mint  K%min? kmol>m® K*
TrueValue 0.461 8.3301 1678 050 341.38 0.010 4.0 4x1074 0.640
Scenario
1 CTSM Median 0.464 8.3300 1562 052 341.36 0.095 0.6 0.00000 1.026
IQR 0.016 0.2243 0518 011 1.05 0.008 1.3 0.00000 0.339
FLAEM Median 0.429 8.2130 1448 050 341.30 0.009 4.1 0.00037 0.660
IQR 0.017 0.2061 0424 0.09 1.08 0.006 1.8 0.00018 0.256
2 FLAEM Median 0.444 8.3164 1.603 0.49 341.30 0.011 4.0 0.00036 0.637
IQR 0.016 0.2265 0472 009 110 0.004 1.7 0.00019 0.349
3 FLAEM Median 0.431 8.2283 1484 0.49 341.27 0.010 55 0.00024 0.523
IQR 0.019 0.2273 0504 011 1.08 0.005 2.6 0.00042 0.432
4 FLAEM Median 0.430 8.2958 1490 0.49 341.27 0.007 4.0 0.00031 0.538
IQR 0.025 0.3233 0501 013 104 0.004 14 0.00022 0.349
5 FLAEM Median 0.405 7.9246 1405 0.49 341.27 0.006 4.0 0.00028 0.411
IQR 0.048 0.5480 0870 019 104 0.003 15 0.00036 0.436
6 FLAEM Median 0.432 8.1928 1490 050 341.30 0.005 2.0 0.00037 0.651
IQR 0.015 0.1801 0325 0.08 1.05 0.002 0.9 0.00009 0.159
7 FLAEM Median 0.411 8.0218 1.217 054 341.25 0.022 8.1 0.00037 0.658
IQR 0.076 1.1953 0929 028 1.07 0.010 35 0.00017 0.323
8 FLAEM Median 0.429 8.2298 1424 051 341.31 0.010 3.7 0.00019 0.324
IQR 0.015 0.1856 0432 0.09 0.79 0.005 1.0 0.00010 0.161
9 FLAEM Median 0.431 8.1717 1485 050 341.25 0.008 4.0 0.00059 1.052
IQR 0.019 0.2152 0504 012 149 0.003 1.2 0.00042 0.431
10 FLAEM Median 0.398 8.2634 1459 047 341.27 0.009 8.1 0.00041 0.654
IQR 0.046 0.7269 0909 023 1.18 0.015 4.7 0.00035 0.612
11 FLAEM Median 0.431 8.2286 1450 050 341.30 0.009 4.6
IQR 0.018 0.2407 0435 0.09 1.05 0.003 1.1
AEM Median 0.432 8.2308 1502 050 342.32 0.009 4.9
IQR 0.020 0.2062 0465 010 121 0.004 14
CTSM Median 0.460 8.2800 1575 051 341.00 0.092 15
IQR 0.015 0.1650 0625 013 1.00 0.011 04
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Figure4.2. Box-plotsfor estimates of model parametersusing the CTSM and FLAEM

methodsin Scenarios 1 and 2. The dashed horizontal lines show the true values used to
gener ate the smulated data.
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Figure 4.3 Box-plotsfor disturbanceintensity estimates obtained using the CTSM and
FLAEM in Scenarios 1 and 2. The dashed horizontal lines show the true values used to
generate the simulated data.

The estimates of model parameters obtained using CTSM appeared to be unbiased while
the estimates of Qc, QT,sé and st obtained using CTSM were noticeably biased. For

example, most of the estimates of séobtained using CTSM are nearly zero. The

accuracy of the estimates of the model parameters (k.«, E/R, a and b) obtained using

CTSM are similar to those obtained using FLAEM in both scenarios 1 and 2. However,




the estimates of noise parameters Qc, QT,sé and ST2 obtained from FLAEM are less

biased than those obtained using CTSM. In fact, no noticeable bias can be observed for
any of the model or noise parameters in Scenario 1 (see Figures 4.2 and 4.3), except for
some minor biasin k.. The parameter estimation results for one of the simulation studies
obtained using FLAMLE (i.e., the first smulated data set) for Scenario 1 are shown in
Table 4.3. The results in Figures 4.2 and 4.3 indicate that using 128 spline knots was
sufficient and that using additional knots (i.e., 256 knots in Scenario 2) resulted in no
improvement in parameter precision (see IQR vauesin Table 4.2).

Average parameter estimation times for a typical simulated data set are ~3 min for
Scenario 1 using FLAEM and ~3 min for CTSM, using a laptop computer with Intel®
Core™ 2, Duo CPU, 1.86 GHz. The predicted responses obtained using the FLAEM
algorithm for one simulated data set and the corresponding parameter estimates from
Scenario 1 are compared with the true responses in Figure 4.4. As expected, the state

tragjectories from the estimated spline coefficients are close to the true trgjectories. The

estimated noise parameters for thisrun are Qc =0.012 kmol%m®.min?, &; = 3.7 K2 min’

', $2=37x10" kmol>m®and §2=0.770 K,
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Figure4.4. Measured, true, and predicted concentration and temperature responsesfor the
FLAEM method in Scenario 1, using simulated data from one of the 100 M onte Carlo
simulations. (» simulated data, ----- response with true parameters and true stochastic noise,
__ FLAEM response)

Point estimates and approximate confidence intervals for the corresponding model

parameters are shown in the final column of Table 4.3. These confidence intervals were

determined from:>°>*

Bz, ,2\/diag(62J e 126607 (4.58)

Note that corresponding confidence intervals for Qc, QT,sé and stare not shown.

When FLAEM is used for parameter estimation, numerical values for the elements of the
Hessian GZJAM,_E/%@GT are available from IPOPT, assuming that Qc, Qr,s & and s%
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are known. Since estimates of Qc, Qr, s é and s % are updated using Equations (4.44) to

(4.47), Hessian information for these parametersis not available.

Table 4.3 Estimates and 95% Confidenceintervalsfor LAMLE parameter estimatesfrom

one of the 100 M onte Carlo simulations

Parameter Unit TrueValue Estimate+ 95% ConfidenceInterval
Kees min™ 0.435 0.434+0.019
(E/R)/ 10° K 8.2487 8.2403+ 0.243
al10° 1.678 1.860+ 0.755
b 0.50 0.42+0.15
T(0) K 341.38 341.03+1.02

For al of the remaining scenarios shown in Table 4.2, 128 equally spaced B-spline knots
were used for approximating the concentration and temperature trajectories. Scenario 3in
Table 4.2 was used to study the robustness of the FLAEM agorithm to poorer initial
guesses of parameters. In Scenario 3, the initial guesses were chosen randomly between
50% and 400% of the true parameter values. Using worse initial guesses had only a small
influence on the FLAEM parameter estimation results. The estimates have larger
variability than those obtained using the good initial valuesin Scenario 1. Note that some
simulated data sets resulted in convergence to loca minima when the worse initid
guesses were used, leading to larger IQR values for parameter estimates. 67 of 100
attempts to estimate the parameters in this scenario using CTSM failed (results not
shown) suggesting that the use of CTSM requires good values of initial guesses to obtain
convergence.
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Scenarios 4 and 5 in Table 4.2 were used to investigate the influence of a smaller number
of measurements on the quality of the parameter estimates obtained using FLAEM. In
Scenario 4, 64 equally-spaced concentration measurements and 64 equally-spaced
temperature measurements were available for parameter estimation from the simulated
data sets. Knot placement and initial parameter guesses were identical to Scenario 1. As
expected, the medians and IQRs for parameter estimates are worse than those in Scenario
1 due to the smaller data sets. CTSM could not provide parameter estimates for any of
these data sets, indicating that the use of CTSM requires a relatively larger number of
measurements compared to FLAEM. Parameter estimations using CTSM were not
attempted for most of the remaining scenariosin Table 4.2.

In Scenario 5, only 22 concentration measurements and 22 temperature measurements
were available for parameter estimation. Despite this smaller number of measurements,
the estimates of the parameters are still quite good, but the estimates have larger
variability than those in Scenarios 1 and 4. Note that the estimates of k¢ and Qc are
dlightly biased in this scenario. These biases might be related to: i) the finite number of
data values used for parameter estimation, which can lead to bias in any ML-based

method; ii) approximating the likelihood function L(8]Y,,) = p(Y, |8) by the likelihood

L®|Ym,Xq)=pP(Ym,Xq0) in Equation (4.38); iii) the use of the FLA when

developing expressions for estimating Qc, Qr, sé and st in Step 4 of the FLAEM

algorithm or iv) approximating the state trajectories using B-splines.
Scenarios 6 and 7 were used to study the influence of larger and smaller disturbance
intensities on the quality of the parameter estimates. In Scenarios 6 and 7, the values of

Qc and Qr were changed to the 50% and 200% of their values from Scenario 1,
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respectively (i.e., true values of Qc are 0.005 and 0.02 kmol?-m™® min™ respectively, and
true values of Qr are 2.0 and 8.0 K?min™, respectively). The number of measurements
and all of the other settings were the same as those in Scenario 1. As expected, in
Scenario 6, the widths of the IQRs for al parameters are smaller than those obtained in
Scenario 1 because smaller stochastic disturbances were encountered. Since larger
disturbances occurred in Scenario 7, wider IQRs were obtained in this scenario.

Scenarios 8 and 9 were studied to examine the influence of small and large measurement

noise variances on the effectiveness of FLAEM. The true values of the measurement
noise variances sé and ST2 were changed to 50% and 200% of their values from

Scenario 1. All other settings are the same as those in Scenariol. Since smaller
measurement noise variances were used in Scenario 8, smaller IQR values were obtained
for parameter estimates. Similarly, in Scenario 9 wider 1IQRs were obtained for the
parameters due to the noisier data.

In Scenario 10, parameters were estimated using only the temperature measurements,

with the concentration as an unmeasured state. All other settings were held at those from
Scenario 1. s & was not estimated because no concentration data were obtained and the

corresponding terms did not appear in the objective functions. On average, parameter
estimates have larger variability than those in Scenario 1 because fewer data values were

available.

In Scenario 11, the values of sé and st are assumed to be perfectly known to permit

comparisons of the FLAEM algorithm with our previously developed AEM technique.
The knot placements, number of measurements and initial parameter guesses are the

same as those in Scenario 1. The AEM objective function for estimating the model
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parameters Brsr = [k« »E/R,a,b]" and disturbance intensities Qc and Qrin the CSTR
model is:

-
iz (yT (tmT,j)_T~(tmT,j))2

1 nc
JAEM CTSR :_ZZ(yC(th,j)_CA~(th,j))2+ 5
S¢ j=a1 ST j=1

_ 2
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t
1 "CdCa(t) F() 2
+Q—c t.([( (?t Y (CAO(t)_CA~(t))+kr(T~(t))CA..(t)J dt+

1 AT t F® 2
‘ol (10 FO (1,0 7. 0) ~UAT. 0~ Ti(0]- 06 (T 0)Ca (0| a1
(4.59)

The AEM objective function is similar to the AMLE objective function in Equation
(4.38) but it has two additional terms qIn(Q:) and gIn(Qy) . This objective function can

be used for estimating model parameters and disturbance intensities in a single step.
Attempts were also made to estimate the parameters using CTSM. As expected, the
parameter estimates obtained from FLAEM and AEM have negligible bias. However, the
AEM parameter estimates in this scenario have dlightly larger variability than those
obtained using FLAEM. Recall that FLAEM uses the FLA for approximating the E step
of the EM agorithm. As explained in our previous work, AEM uses the mode of the
expected value of the E step in the EM agorithm.?” The results from this case study
suggest that FLAEM uses a better approximation. Using CTSM, successful parameter
estimation was only obtained for 36 of the 100 Monte Carlo cases attempted for this
scenario. The remaining 64 cases experienced convergence difficulties due to parameter

values that made numerical solution of the differential equations unstable. As shown in
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Table 4.2, the 36 CTSM estimates of Qc and Qr have more bias than the estimates
obtained using FLAEM and AEM.

In summary, the results in Table 4.2 and Figures 4.2 and 4.3 suggest that the FLAEM
parameter estimates are less biased and more accurate than corresponding estimates
obtained using CTSM for the CSTR example studied. Since the FLAEM agorithm is an
approximate MLE method, some bias in parameter estimates was expected in situations
involving sparse data sets. Some of the minor bias observed in Figures 4.2 and 4.3 and
also Table 4.2 may also be due to the B-spline approximations and the FLA. Since
computationally intensve MCMC-based MLE techniques are asymptotically efficient
and consistent estimators that do not make B-spline or fully-Laplace approximations, we
recommend that the performance of the FLAEM algorithm should be compared to several
MCMC methods. The FLAEM computational times encountered in the CSTR examples
in this chapter are modest (~ 3 minutes using a laptop computer with Intel® Core™ 2,
Duo CPU, 1.86 GHz.) and are expected to be significantly shorter than the corresponding
MCMC computing times. The relative computational benefits of the FLAEM a gorithm
are expected to become more important for larger-scale problems, because FLAEM does
not require the drawing of numerous samples from high-dimensional probability density
functions.>® As a result, the performance of FLAEM and MCMC should be compared
using a larger-scale example problem than the illustrative CSTR problem used in the

current chapter.
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4.6 Conclusions

In this paper, the Fully-Laplace-Approximation Expectation Maximization (FLAEM)
algorithm is presented for estimating parameters, stochastic disturbance intensities and
measurement noise variances for nonlinear stochastic differential equation (SDE) models.
In the first stage of the FLAEM agorithm, model parameters 6 are estimated by
minimizing Varziri’s AMLE objective function, assuming that the disturbance and noise
parameters are known.! In the second stage, disturbance intensities and noise variance
estimates are updated. The expressions used to obtain these noise parameters were
derived by approximating the E-step of the EM algorithm using the FLA and B-spline
basis functions. The proposed FLAEM algorithm iterates between these two stages until
convergence is obtained. The effectiveness of the FLAEM agorithm was tested using a
two-state nonlinear stochastic CSTR model. The FLAEM algorithm showed good
performance for estimating model parameters, disturbance intensities and measurement
noise variances and was more robust than CTSM, which uses a classical ML-based
method®, particularly when the number of measurements was relatively small or when
initial guesses of parameters were relatively poor. For the cases where CTSM was able to
converge, the resulting parameter values tended to be less accurate than the
corresponding parameter estimates from FLAEM. Although the FLAEM agorithm was
developed for situations where model parameters, disturbance intensities and noise
variances must al be estimated from the data, a few simulations were aso performed
assuming that noise variances were known. These simulation results suggest that FLAEM
performs better than our previous AEM algorithm. Implementation of the FLAEM

algorithm isrelatively easy. The user must supply information about the knot location for
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the B-spline basis functions, along with the initial parameter guesses. If the user is not
certain about the number of knots that are required, additional knots can be added until
the resulting parameter estimates and estimated state trgectories do not change
appreciably when additional knots are used.

In future, it will be important to test the FLAEM a gorithm using larger-scale parameter
estimation problems and to compare FLAEM results with MLE-based methods that use
Markov Chain Monte Carlo (MCMC) algorithms for parameter estimation.***>2>3

It will also be interesting to investigate whether other potential approximations (e.g., a
L aplace approximation™ for the likelihood function) can lead to further improvements in
parameter estimates without resorting to computationaly intensive MCMC-based
techniques. In future, it will be desirable to investigate the convergence of FLAEM

algorithm.
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Chapter 5
A Maximum-Likelihood Method for Estimating Parameters, Stochastic
Disturbance I ntensities and M easurement Noise Variances in Nonlinear

Dynamic M odels with Process Disturbances

5.1 Abstract

An improved approximate maximum likelihood algorithm is developed for estimating
measurement noise variances along with model parameters and disturbance intensities in
nonlinear stochastic differential equation (SDE) models. This algorithm uses a Laplace
approximation and B-spline basis functions for approximating the likelihood function of
the parameters given the measurements. The resulting Laplace approximation maximum
likelihood estimation (LAMLE) algorithm is tested using a nonlinear continuous stirred
tank reactor (CSTR) model. Estimation results for four model parameters, two process
disturbance intensities and two measurement noise variances are obtained using LAMLE
and are compared with results from two other maximum-likelihood-based methods, the
continuous-time stochastic method (CTSM) of Kristensen and Madsen * and the Fully
L aplace Approximation Estimation Method (FLAEM).? Parameter estimations using 100
simulated data sets reveal that the LAMLE estimation results tend to be more precise and
less biased than corresponding estimates obtained using CTSM and FLAEM.

This chapter will be submitted as a journal paper to Computers and Chemical

Engineering Journal.
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5.2 Introduction

Fundamental models based on mass and energy balances are imperfect representations of
process behavior due to simplifying assumptions and approximations that ignore complex
interactions.> Model uncertainties may also arise from random disturbances associated
with feed streams and the environment conditions.*> As a result, some modelers add
stochastic termsto their dynamic fundamental models to account for model mismatch and
process disturbances, resulting in systems of stochastic differential equations (SDEs).®’
Parameter estimation in these models is difficult because two different sources of
uncertainty are accounted for: i) stochastic process disturbances and ii) measurement
noise. Maximum Likelihood (ML) methods are commonly used to estimate model
parameters and uncertainty parameters in these systems.®® ML methods provide reliable
asymptotically unbiased parameter estimates for SDE models.” ML methods maximize
the likelihood function of the unknown model and uncertainty parameters given the
measurements.” When some states are unmeasured, a closed form for this likelihood
function is difficult to derive since it implicitly depends on the values of the state
variables®!® Severa different approximation methods have been developed to find a
closed form for the likelihood function so that parameters can be estimated in SDE
models. For example, ssmulated maximum likelihood (SML) methods such as Markov
Chain Monte Carlo (MCMC) techniques'®™® estimate the likelihood function by drawing
samples from a target density function. MCMC methods do not require assumptions
about the form of the density function. Benefits and drawbacks of MCMC methods are
summarized by Imtiaz et. . and Kantas et al.’. Other techniques that can be used for

approximating the likelihood function are: Hermite expansions,®?' solution of the
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Fokker-Planck equation®*? and polynomia chaos.** Comprehensive reviews of these
techniques are given by Lindstrom® and Hurn et al.*® Unfortunately, the aforementioned
methods are computationally demanding especially when the dimension of the model and
or the number of parametersincreases.>*"*"#

Varziri et d.” developed a computationally efficient Approximate Maximum Likelihood
Estimation (AMLE) method for estimating parameters in SDE models when disturbance
intensities and noise variances are known. This technique was developed by finding a
closed form for the likelihood function of the parameters given the joint vector of
measurements and states, using B-spline basis functions to approximate the state
trajectories.”® The AMLE methodology has been extended so that unknown disturbance
intensities can be estimated along with the model parameters in cases where the
measurement noise variances are known.>®

Linearization-based ML methods have also been used for approximating the likelihood
function. For example, an extended Kalman filter (EKF) is used for approximating the
likelihood function in the CTSM software developed by Kristensen et al.** Although
linearization-based techniques are computationally efficient, parameter estimates from
these methods can be biased when strong nonlinearities are present in the model.**

In ML methods, a closed form for the likelihood function (i.e., the probability density
function of measurements given the parameters) can be found by integrating the
likelihood of the complete data over all of the values of states, where the complete datais
a joint vector of the measurements and the states. Calculating this multidimensional
1032

integral is challenging, particularly when the number of state variables is large.

Multidimensiona integrals can be approximated using a second-order Taylor series
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expansion, known as the Laplace Approximation (LA).*** The LA has been used for
approximating the likelihood of mixed agebraic models that contain deterministic and
stochastic components®™*? and for approximating posterior density functions in Bayesian
estimation.”* Heald and Stark® developed an iterative ML algorithm based on the LA to
estimate the magnitude of the dynamic noise (i.e., the process disturbance intensity) and
the measurement noise variance in nonlinear time-series models. To our knowledge, the
LA has never been used for estimation of model and disturbance parametersin SDES.

Recently, we developed an Approximate Expectation Maximization (AEM) agorithm?
that provides disturbance intensity estimates that are more accurate than those obtained
using AMLE® and CTSM." Unlike AMLE, the AEM algorithm uses a single ML -based
objective function for simultaneous estimation of model parameters and disturbance
intensities. One shortcoming of the AEM and AMLE methods is that these agorithms
require measurement noise variances to be known a priori. More recently, we developed
a Fully-Laplace-Approximation Expectation Maximization (FLAEM) agorithm for
simultaneous estimation of model parameter, process disturbance intensities and
unknown measurement noise variances in SDE models. In the first stage of thisiterative
algorithm, model parameters are estimated using Varziri’s AMLE objective function,®
assuming that the disturbance intensities and measurement noise variances are known. In
the second stage, disturbance intensity and noise variance estimates are updated. The
expressions used to update the disturbance intensities and noise variances were derived
using the FLA and B-spline basis functions. The FLAEM agorithm iterates between the
two steps until convergence is obtained. Additional details about AMLE, AEM and

FLAEM methods are provided in Sections 5.3 and 5.4.
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The goals of this chapter are to develop a new Laplace Approximation Maximum
Likelihood Estimation (LAMLE) algorithm that makes use of the LA for integrating the
likelihood function of the parameters given the complete data, and to test this algorithm
using a simple nonlinear two-state SDE model. First, necessary notation and background
information are introduced. Next, the objective function for the LAMLE algorithm is
derived. The proposed methodology is then tested using a CSTR model and results are
compared with those from CTSM and FLAEM.*® Advantages and limitations of the three
methods are discussed, revealing that the proposed LAMLE method is computationally
effective and provides more accurate estimates than CTSM and FLAEM for the CSTR

example studied.

5.3 Préiminaries
5.3.1 Model and Notation

Consider a Multi-Input Multi-output (MIMO) nonlinear SDE model of the following

form:

X(t) =f (x(t),u(t),8) + n(t) (5.L)
X(ty) = X (5.1.b)
Y(tmr i) =9ty ) Ut ).0) +&(ty, ;) (5.1.c)

where x e R* is the X-dimensional vector of state variables, t istime, UeR" isthe U-
dimensional vector of input variables, 8 € R” is the P-dimensional vector of unknown
model parameters, f:R*xRYxR"” - R* is an X-dimensiona nonlinear mapping,
y € R” isthe Y-dimensional vector of measured outputsand € € R" is the Y-dimensional

zero-mean measurement error with adiagonal covariance matrix S:
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=] - (5.2

Measurement errors for rth response at different times tm; (j = 1...N,) are assumed to be
independent. N; is the number of measurements for rth response. n(t) is a continuous
zero-mean stationary Gaussian  white-noise process with covariance matrix

E{n(ty)n(t2)} = Qd(t-t1), where Q is the process disturbance intensity matrix for n(t):

Q -0
Q= . : (5.3)
0 - Qy

which is also referred to as the power spectral density matrix, and d(.) is the Dirac delta
function.*” In cases where the vector of initial conditions is measured and is not perfectly
known, measurements for the initial conditions are assumed to have a normal distribution
with mean E{ X,,,o} = Xo and cov{Xo} = Sy, Which isdiagonal.

The parameters that usually require estimation in the SDE model in Equation (5.1) are the
model parameters 0, the process disturbance intensity Q and the measurement noise
variance S. Sometimes modelers may know S from information about the measurement
device or from replicate measurements, in which case S would not require estimation.
Modelers usually do not know the magnitude of the stochastic error terms (i.e.,, Q) in
their model. Throughout this chapter, the vector of stacked measurements for the model

in Equation (5.1) iswritten using the notation

Yoo = [Yaltnan) - Yaltman, ) Yy (v ) o Yy (v )] - AlSO
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X =[X(tn) - Xy (g, ) - Xy (y 1) - Xy (Ey ., )] IS the stacked vector of state values

at the measurement times. Uy, and €, are corresponding stacked vectors for the input
variables and random errors:

Y., =0(X,,U,,0)+¢E (5.4)
Denote Qq as the vector of diagona elements of Q (i.e., Qs=[Q1,...,Qx]"). Also denote Sy

as the diagonal elements of the covariance matrix (i.e, Sg¢=[0?,...,02]"). Let

Z=[8",x;,Q, .Z1]1" denote the vector of model parameters, unknown initial states,

disturbance intensities and measurement noise variances in the SDE model that should be
estimated. To simplify the notation, derivations in this chapter are developed assuming n
measurements are available for each response. However, derivations for the case where
N measurements are available for the rth response are also shown in Appendix 5.C.

5.3.2 Spline Basis Functions

Discrete data can be smoothed using basis functions that are continuous functions of
time. B-spline functions are a common and effective choice of basis function due to their
compact support and piecewise definitions.”®* Mth order B-splines are positive within M
intervals and are zero elsewhere.® Throughout this paper the subscript ~ is used to
indicate states approximated by B-spline basis functions. A linear combination of B-

splines can be used to approximate states of the SDE model in Equation (5.1):

X, ()= B.,0, ) for s1,...,X (5.5)
=1

where X5 is the sth state trajectory for the SDE model shown in Equation (5.1), cs is the

number of B-spline basis functions for the sth state, b, isathe Ith B-spline coefficient

for the sth state and ¢, (t) is the corresponding B-spline basis function. In matrix form:
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X_(t) = D(t)B (5.6)

where P(t)isamatrix of spline functions:

oI() 0 ... 0
o@)=0 P00 57
_6 0 ....(pi(t)_
and
B,
B=|: (5.8)
Bx
where 35 is the vector containing cs B-spline coefficients for the sth state:
Bs=[bss,....bgc 1" for s=1,....X (5.9)

5.3.3 Approximate Maximum Likelihood Estimation (AMLE)
Algorithm

Varziri et a.” discretized the SDE in Equation (5.1) to develop their AMLE objective
function for estimating the model parameters 6 in SDE models. The discretized form of
Equation (5.1) using an Euler approximation is:

X(t g+ At) =X(t) = X(tj 1)+ (X(ti 1), uti 1), B)At + ng (t; ) At (5.10a)

X(ty) = X, (5.10b)

where x(t;) is the vector of state variables at g+1 uniformly-spaced discrete time points t; ,

i=0,..,0. nyis adiscrete white-noise process that can be used to approximate continuous-
time white noise using a small sampling interval At. Consider X, =[x (t),...,x" (t,)]" @

the stacked vector of state values at the discrete times. Varziri et a.* developed a closed

form expression for —In p(Yy,,X_4 |8) using B-splines to represent state trgjectories

154



and used it to develop the following objective function for estimating 8, assuming Q and
S are known:®
Iamie =[Ym =9 - U BT 7Y = 9(X i~ Upm . 8)] + (Ximo = X=0) " S (X — X0)
t
+ f[ut) —f(x_(0),u(),0)] T QX (t) - f (x_ (), u(t),B)] dt

to
(5.11)

wherein the state trgjectories in x(t) are approximated by B-spline basis functions.

5.3.4 Laplace Approximation

The LA® is used for approximating integrals of Gaussian joint density functions of the
form J eP®dx.” The LA is based on a second-order Taylor series expansion of p(x)

about its mode (% ):*

y ~T[ 0%p .
ePMdx ~ eP® [exp ) L (x -0 2P| (x—%)ldx 5.12
| Jop S (x-%) . R( ) (5.12)

or equivalently taking the natural algorithm of (5.12) and solving the integral, the LA is:

A~ 1 —azp
In [eP®dx ~ p(X) — =Indet
J PR3 HaxaxT}-

J+%di m(x)In(2p) (5.13)

where x is a vector of random variables and X is the vector of random variable values

that maximizes p(x). The accuracy of Laplace approximation is on the order of [dim(x)] ™.
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5.4 Development of the L aplace Approximation Maximum Likelihood Estimation
Method
In this section, a Laplace Approximation Maximum Likelihood Estimation (LAMLE)
algorithm is developed for estimating the model parameters 6, the process disturbance
intensities Q and the measurement noise variances S in SDE models of the form shown
in Equation (5.1). The likelihood function of the parameters given the measurements (i.e.,
L®|Yy)=p(Yy10)) can be obtained by integrating the likelihood function of the
complete datap(X,,Y,, [{) over the vector of possible values for the state variables
X'

P(Ym 1) = [ P(Xq, Ym [Qd X, (5.14)
The following closed form expression was derived in our previous work:?
P(Xq. Yim 12) = Cyldet(Z)] " exp{—%[vm ~9(Xm U O Z7 Yy = 9%, U B}

1
< [det(S, )] 2 exp[—%(xmo —X0) TS (Ximo — Xo)]

_q tq
x[det(Q)] 2 eXp{—f[X(t) —f(x(t), u(t),0)]" QX(t) - f (x(t),u(t),8)] dt}
to

(5.15)
where C; is a constant.
Theintegral in Equation (5.14) is amulti-dimensional integral (over all possible values of

the state variables at the discrete times) that can be difficult to evaluate unless

approximations are made. Using the LA to find aclosed form for —Inp(Y,, |{) gives:
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Joamee =[Ym =Xy Upn 01T Z 7Y = 9(X _, U, 8)] + N det(Z)]
+ (X=mo = X0) " Smo (X=mo — Xo) + A IN[det(Q)]

I
+ j [X_(t) = (x~ (), u(t),0)] T QX (t) — f (x~(t),u(t),8)] dt + In[det(H x )]

to
(5.16)
as shown in the derivation in Appendix 5.A. In Equation (5.16), Hx- is the Hessian

matrix of —In p(X, Y [{) With respect to X evaluated at Xq-

_ 9°Inp(Xq,Ym 19)|
Xa XgXg |

(5.17)

Xq =Xq~
The optimal values of the model parameters 0, the disturbance intensities Q, the noise

variances S and the B-spline coefficients B can be found by minimizing J amLe:

Z; é =arg min ‘]LAMLE (5.18)

An analytical expression for the Hessian matrix in Equation (5.16) is difficult to obtain.
Severa approximations have been used to avoid complex Hessian expressions.***>*' The
method of Heald and Stark, which was developed for determining noise parameters in
time-series models, is particularly attractive due to its simplicity and accuracy. In the
current chapter, this methodology is adapted for use in SDE models. The corresponding
derivation is shown in Appendix 5.B.
Taking the derivative of J amLe With respect to Q and S and setting them to zero results
in the following useful expressions for updating estimates of Q and S (See Appendix 5.B
for derivations):
iy
Qi = (r(WHZWT)Z ™) [x(t) —f (x(t),u(t),B)] T [X(t) ~ F (x(t), u(t), B)]dlt (5.19)
to

K
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and

% =Y =0 U B)] [V —0(X Uy O]+ (WHEWT)I | (5.20)
where ¥ is:
Volow) o) .. ol (5.21)

and Hp isthe Hessian matrix with respect to the B-spline coefficients:

_ 8‘J AMLE

H. = 5.22
®  oBoBT (5.22)

As shown in Chart 1, the first step of the proposed LAMLE algorithm involves
minimizing JamLe in Equation (5.11) to estimate 6 and B, using initial guesses for Q and
S. In the second step, the estimated values of 6 and B from the first stage are used to
calculate updated values of Q and S from Equations (5.19) and (5.20). Iteration between
these two steps continues until convergence is obtained. It is common for optimization
software to automatically report numerical values of the Hessian matrix with respect to

the decision variables (e.g., when the LAMLE algorithm is implemented using
AMPL™#2 and IPOPT®, the Hessian matrix H is reported by the “jgh” function in
IPOPT after each iteration). Thus, there is no need for analytical calculation of the
required Hessian matrix using the proposed LAMLE method.

Note that the vector of spline coefficients B (i.e., {=[8", Q(T, : Z(Tj ,BT1") was not added to

the parameter vector { before deriving a closed form for the likelihood function L({|Y,y,) . If

B is included in the parameter vector, conditions required for approximating the integra in

Equation (5.14) does not hold anymore.®*
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Chart 1.The LAMLE agorithm

Step 1: Initialize 6, xg, Q, Sand B

y

A 4

Step 2: Using the most recent estimates of Q and S:
find © andB to minimize Jamie(Equation (5.11)) and get Hg

A 4

Step 3: Using the most recent values of §and B
update Q and S according to Equations (5.19) and (5.20)

Step 4: Are convergence
criteriamet?

No

Yes

End
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5.5 lllustrative Example: Nonlinear Two-State CSTR M odel

In this section, parameters in a two-state nonlinear CSTR model® with stochastic
disturbance terms™ are estimated to illustrate the use of the proposed LAMLE algorithm.
Parameter estimation results obtained using LAMLE method are also compared with
those obtained from CTSM! and FLAEM®. The two SDEs, which describe dynamic

changes in the concentration of reactant A and the reactor temperature are:

20 _FO €00 -ca) -k T0ICA0 +he® (523
D020 10 -TO)+UATO-Tea) 1k TOICO+1 0 (5231)
Ye(tmyj) =Caltmyj) +ec(tmy;)  for j=1..nc (5.23.0)
Y1 (tme) =T (Cme;) + &1 (tnej) for j=1..n; (5.23.d)
Ca(0)=1.569 (kmol.m™®) (5.23.€)
T(0)=341.37 (K) (5.23f)

where k; is the reaction rate constant:

El1 1
K (T) = Kres eXF{ﬁ(; ﬂ}} (5.24)

UA is aheat transfer coefficient:

aF b+1
UA(F) = . g (5.25)
Vpc,| Fo+-—°
2pccpc
and gis:
y= % (5.26)
p

160



In Equations (5.23.a) and (5.23.b):
E{hc (tihc(t))} =Qcd(ti —t;) (5.27)
E{hr (t)hy (t;)} =Qrd(t; —t;) (5.28)

In Equations (5.23.c) and (5.23.d), ec (tp;) j=1...nc and ey (ty) j=1..ny arewhite

noise sequences with variancessé and sTZ, respectively. The concentration Cp is
measured nc times and the temperature T is measured ny times at equally spaced sample
times. We assumethatn., Ny, €. and & areindependent. The model inputs are: the feed

flow rate F, the inlet concentration Cpp, the inlet temperature Ty, the coolant inlet
temperature T, and the flow rate of coolant to the cooling coil, Fc. The known constants

for this CSTR model are shown in Table 5.1.%

Table5.1 Mode constants™

Model Constants Value Units

Co 4186.8 JkghK™*
Coc 4186.8 JkgtK™*
Tret 350 K

Y, 1 m>

P 1000 kg-m™
AHix, -544.154x10° J-kmol™
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Simulated experiments with measurement noise and stochastic disturbances were

performed using the “ode45” solver in MATLAB™ and the input trajectories shown in

Figure5.1.
FI"\ 15F T T T T T T ]
£
E qp—
“e
: 0.5k T t t t t ! ]
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(?A T T ] ] ] T
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Figure5.1 Input trajectories for nonlinear CSTR*

In the simulations, the continuous white noise disturbances were approximated using

discrete white noise sequences with a sampling interval of At=0.5 min which is
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approximately 10 times smaller than the dominant time constant of the CSTR system. To
illustrate the handling of initial conditions that are perfectly known and also measured

initial conditions, it is assumed that the initial concentration Ca(0) is perfectly known, but
theinitial temperature T(0) is measured with a known variance of SZ=5.0 K2. Since the

true value of the initial temperature is unknown, it must be estimated. But there is no
need to include T(O) explicitly in the list of decision variables selected by the optimizer
because T(0) can be calculated from the estimated B-spline coefficients for the
temperature trajectory. The perfectly known value Ca(0)=1.569 kmol.m™ can be enforced

by setting the corresponding first spline coefficient Bc; =1.569.* We assume that
measurement noise variances s & ,sZ and process disturbance intensities Q. ,Q; are
unknown so that the complete list of parameters that needs to be estimated includes the

model parametersBesrr =[k., E/ R a,b]", the disturbance intensities Qc, Qr, the

measurement noise variances s é st and the B-spline coefficients B (except for Bc ).

The true values of parameters, which were used to generate the simulated data, are shown

at thetop of Table5.2.
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Table5.2 True parameter values, median values and | QRsfor the estimates based on 100 Monte Carlo runsfor different scenarios.

Parameter ke  (E/R/10°  a10° b T(O) Qc Qr sé s 2
Unit min™t K K kmol-m®-min™ KZmin® kmol-m® K?
TrueValue 0.461 8.3301 1.678 050 341.38 0.010 4.0 4x10 0.64
Scenario
| CTSM Median 0.464 8.3300 1560 052 341.36 0.095 0.6 0.00000 1.03
IQR 0.016 0.2240 0520 011 1.05 0.008 13 0.00000 0.34
FLAEM Median 0.429 8.2130 1448 050 341.30 0.009 4.1 0.00037 0.66
IQR 0.017 0.2061 0.424  0.09 1.08 0.006 1.8 0.00018 0.26
LAMLE Median 0.434 8.2420 1536 050 342.07 0.013 10.7 0.00050 0.86
IQR 0.020 0.2175 0.458 0.09 0.91 0.003 2.2 0.00022 0.29
1 FLAEM Median 0.444 8.3164 1.603 049 341.30 0.011 4.0 0.00036 0.64
IQR 0.016 0.2265 0.472 0.09 1.10 0.004 17 0.00019 0.35
LAMLE Median 0.444 8.3102 1598 049 341.67 0.011 6.3 0.00039 0.63
IQR 0.022 0.2275 0.480 0.09 0.86 0.003 14 0.00014 0.16
11 FLAEM Median 0.449 8.3090 1.657 049 341.30 0.010 4.3 0.00041 0.63
IQR 0.020 0.2547 0.489 0.09 1.12 0.005 2.0 0.00018 0.32
LAMLE Median 0.448 8.3273 1652 049 341.30 0.010 51 0.00039 0.64
IQR 0.021 0.2403 0.493 0.10 1.07 0.003 11 0.00011 0.16
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Table 5.2 Continued, True parameter values, median values and | QRsfor the estimates based on 100 Monte Carlo runsfor different

scenarios.
Parameter ke (E/RV10°  a&10° b T(O) Qc Qr sé s 2
Unit min™t K K kmol-m®-min™ KZmin™ kmol-m™® K?
TrueValue 0.461 8.3301 1678 050 341.38 0.010 4.0 4x10 0.64
Scenario
v FLAEM Median 0.448 8.3402 1527 050 341.20 0.004 21 0.00008 0.16
IQR 0.025 0.2576 0.696 0.16 1.15 0.002 0.8 0.00013 0.20
LAMLE Median 0.449 8.3311 1626 050 341.29 0.010 5.2 0.00040 0.60
IQR 0.021 0.2506 0470 0.0 1.08 0.003 1.0 0.00001 0.16
\% FLAEM Median 0.447 8.3240 1523 050 341.26 0.009 4.0 0.00037 0.65
IQR 0.020 0.2308 0.620 0.14 1.06 0.005 2.3 0.00019 0.32
LAMLE Median 0.450 8.3406 1577 050 341.27 0.010 5.7 0.00037 0.62
IQR 0.022 0.2206 0.648 0.14 1.06 0.004 12 0.00012 0.17
VI FLAEM Median 0.439 8.2012 1512 050 341.27 0.009 4.1 0.00043 0.63
IQR 0.046 0.5383 0822 0.17 1.06 0.005 2.0 0.00020 0.31
LAMLE Median 0.449 8.3702 1540 050 341.27 0.009 10.2 0.00037 0.61
IQR 0.051 0.5393 0.932 0.16 1.07 0.003 25 0.00016 0.21
VIl FLAEM Median 0.448 8.2883 1526 051 34131 0.005 21 0.00038 0.67
IQR 0.015 0.2035 0.296 0.07 1.07 0.003 0.9 0.00018 0.32
LAMLE Median 0.450 8.3246 1567 050 341.30 0.005 3.8 0.00036 0.61
IQR 0.017 0.1860 0.323 0.07 1.06 0.001 0.7 0.00013 0.12
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Table 5.2 Continued, True parameter values, median values and | QRsfor the estimates based on 100 Monte Carlo runsfor different

scenarios.
Par ameter Kees (E/IR/10°  a/10° b T(0) Qc Qr
Unit min™t K K kmol*-m®-min™* KZmin™ kmol®-m® K?
TrueValue 0.461 8.3301 1678 050 341.38 0.010 4.0 4x10* 0.64
Scenario
VI FLAEM Median 0.445 8.3152 1639 048 341.28 0.017 6.2 0.00036 0.57
IQR 0.023 0.4083 0.658 0.16 112 0.008 3.8 0.00025 0.42
LAMLE Median 0.447 8.3294 1657 047 34130 0.024 8.2 0.00037 0.66
IQR 0.022 0.3636 0664 0.14 1.14 0.016 2.2 0.00012 0.18
IX FLAEM Median 0.448 8.3414 1622 049 341.32 0.009 3.8 0.00020 0.35
IQR 0.017 0.1947 0.458 0.09 0.77 0.004 1.9 0.00010 0.17
LAMLE Median 0.448 8.3409 1631 049 341.32 0.010 4.9 0.00020 0.32
IQR 0.018 0.2201 0457 0.09 0.79 0.003 1.0 0.00006 0.09
X FLAEM Median 0.448 8.2810 1610 050 341.26 0.009 3.7 0.00079 1.36
IQR 0.020 0.2371 0538 0.11 1.44 0.005 2.0 0.00039 0.69
LAMLE Median 0.447 8.2784 1651 049 341.27 0.010 5.4 0.00074 1.25
IQR 0.024 0.2512 0583 0.12 1.45 0.003 13 0.00024 0.30
Xl FLAEM Median 0.436 8.5984 1707 047 341.27 0.001 6.4 0.23
IQR 0.055 0.3768 0912 020 117 0.001 2.8 0.15
LAMLE Median 0.442 8.6068 1708 047 341.27 0.002 5.0 0.70
IQR 0.052 0.4320 0965 021 1.15 0.002 1.7 0.28
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The objective function used by LAMLE for estimating the model parameters 6 and the B-
spline coefficients in the CSTR moddl is:
nr

1 & 1
JAMLECSTR =—5— <2 (yc(tij)—CA~(tij))2+TZ(yT(tm2,j)—T~(tm2,j)>2
ScCk j=1 STk j=1

N (Tin(0) — T_(0))?
S?

tq

0

Qth'[
q

2
=2l ED e, -Ca )+ ke (T (t>>CA~<t>) dt+

—

5
(dT ®) _

2
= F (t) (To(t) = T- (1)) —~UAT_(t) — Tein(t)] - g (T-(t))C- (t)] dt

Ktg
(5.29)

The associated expressions for updating disturbance intensities Qc, Qr and measurement
noise variancess &, ST2 in the CSTR model are:

nc B
Y (Caltmc, i)~ Ca-ltme, P +tr(H ™)
s&n="" - (5.30)

. 2
Jg(dCA~ (t) _ F\Et) (CAO(t) —Ca- )+ kr (T- (t))CA~ (t)) dt
t

. dt -

Qe = 5.31
C k+1 %tr(HC—l)
Sck

nc

Z(T(tmT,j)_T~(tmle))2+tl’(HT_l)
S‘Ig,k+1: = o (5.32)

tq ,

I[ dT&t(t) _ ':\50 (To(t) = T_ (1)) —UA(T_(t) — Tgin (1)) — &K, 9(T- (t))C s~ (t)j dt
QT, +1= %

- i tr(Hy %)
STk
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(5.33)

where Hc and Ht are Hessian matrixes:

BEN
H c= AML;E,CSTR (534)
oBe
BEN|
H 7= AM LIZE,CSTR (5.35)
oBT

In Equations (5.42) and (5.43), Bc and Bt are the B-spline coefficients corresponding to
the estimated state trgjectories Ca- and T-, respectively. Hessians were computed using
the “gjh” function in IPOPT. *“ghj” compute Hessians using a second order difference.
Objective function (5.29) was optimized using the IPOPT solver™ with model
information provided by AMPL™. > Optimization settings in IPOPT were set at their
default values. Default values for CTSM optimization settings were also employed when
CTSM was used to estimate the parameters. For all simulation studies, cubic (4™ order)

B-splines were used.

Estimating the parameter vector {csrr =[K.E/Rab,Qc,Qr,5&,52]" using
LAMLE required a two-step procedure wherein k¢, E/R, a b and the B-spline
coefficients were estimated by optimizing objective function 29 using assumed values of
Qc ,Qr, s & ands Z. Updated values of Qc, Qr, s @ ands 2 were then calculated using

Equations (5.30) to (5.33). These two steps were repeated until convergence was
obtained.
Estimates of the disturbance and noise parameters were deemed to have converged when

the change in the relative error e(k) was less than 10° where (k) is defined as:
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Qck —Qcka Qrk —Qrxa S PCk =S ko S Mk =S ATk
e(k) = () + ()2 +( - )2+ (E—)?
Qc k Qrx S Ck STk

(5.53)
Convergence failure was noted when the maximum numbers of iterations reached 1000.
The parameter vector { was estimated under a variety of scenarios. Each scenario was
repeated 100 times using 100 simulated data sets. These data sets were generated using
different sets of initial guesses and random sequences for the Gaussian process
disturbances and measurement noise. Medians and interquartile ranges (IQRs) for the
parameter estimates from the various scenarios were calculated and are shown in Table
5.2. Initial guesses for the parameter values were selected randomly from uniform
distributions between 50% and 150% of their true values.
Scenarios I, 11 and |11 were studied to compare the LAMLE results with those obtained
using FLAEM and CTSM, and to show the effect of B-spline knot placement on the
quality of parameter estimates obtained using LAMLE and FLAEM. In the simulated
experiments used in scenarios I, 1l and Ill, 128 measurements were available for
concentration and 128 measurements were available for temperature (once every 0.5
minutes), but different B-spline knot placement sequences were used to implement
LAMLE and FLAEM. Use of the CTSM method does not require B-spline knots, so the
CTSM results at the top of Table 5.2 can be compared with the LAMLE and FLAEM
results from all four scenarios. Upper bounds and lower bounds must be set for all of
parameters when CTSM is used. The lower bounds for the parameters were set at zero
and the upper bounds were set at 10 times the true parameter values.
Scenario | was implemented using 128 equally spaced B-spline knots (one at each

measurement time). Additional spline knots were used to construct the state trajectories
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in scenarios Il and 111. In scenario I, 256 equally spaced knots were used for the B-spline
basis functions (one knot at each measurement time and one additional knot between
every two measurements). The results in Table 5.2 confirm that the LAMLE parameter
estimates for scenario |l are better than those in scenario |. For example, the median for
Qr obtained from LAMLE decreased from 10.7 K%min™ in scenario | to a value of 6.3
KZmin™ in Scenario 11, which is much closer to the true value of 4.0 K%min™ used to
generate the simulated data sets. Also, the width of the IQR for Qr obtained from
LAMLE decreased from 2.2 K%min™ to 1.4 K*min™. Note that the widths of the IQRs

obtained using FLAEM are larger than those obtained using LAMLE in both Scenarios |

and Il. For example, ST2 has an IQR of 0.159 K?for Scenario Il using LAMLE, whereas

the corresponding IQR from FLAEM is 0.349 K2,
In Scenario 111, 384 knots were used to construct the state trajectories (one knot at each

measurement time and two knots between). LAMLE and FLAEM results from Scenario

[l are dlightly better than those from Scenarios | and |1, especialy for Qr andst. No

noticeable bias can be observed for any of the model or noise parameters in this scenario
(see the boxplots in Figures 5.2 and 5.3). When additional knots were used (not shown),
there was no significant improvement compared to the results in Scenario I11. As aresult,
for al of the additional scenarios shown in Table 5.2, the knot placement settings from
Scenario 111 were used. Typica estimation times for a simulated data set are ~1.2 min for
Scenario Il in LAMLE, ~3 min for FLAEM and 3 min for CTSM, using a laptop
computer with Intel® Core™ 2, Duo CPU, 1.86 GHz.

Box plots for parameter estimates obtained using CTSM, FLAEM and LAMLE for

scenario 111 are shown in Figures 5.2 and 5.3 to compare the effectiveness of the three
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methods. Convergence was obtained for only 73 of the 100 sets of simulated data and
corresponding initial parameter guesses using CTSM. As aresult, the CTSM box plotsin
Figures 5.2 and 5.3 (and the medians and IQR widths in Table 5.2) are based on these 73
sets of parameter estimates. Changing the optimization settings used in CTSM was not
effective in solving this problem. All 100 sets of simulated data were used in the
boxplots and IQRs obtained using FLAEM and LAMLE. When CTSM was used for

parameter estimation, the estimates of model parameters were unbiased. However,

estimates of noise parameters Qc, Qr,s é and s% are biased as shown in Figures 5.3 a),

d), g) and ). In particular, the estimates of sé tend to be very close to zero, so it is

difficult to see the corresponding box on the box plot. The estimates of the model

parameters obtained using LAMLE and FLAEM are unbiased and of similar quality, but
the estimates for Qc, QT,sé and st obtained using FLAEM have more variability than

those obtained using LAMLE. This is true for al three scenarios. Note that the
distributions of the parameter estimates are broad and somewhat asymmetric.

Figure 5.4 shows the true tragjectories of concentration and temperature from one of the
simulated experiments, along with the corresponding measurements and estimated state
tragjectories (Ca- and T-) obtained using LAMLE and the settings for Scenario I1l. The
estimated state trajectories are close to the true state trgectories because the model
parameter estimates converged to the neighbourhood of the corresponding true values, as

shown in Table5.2.
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Figure 5.2 Box-plotsfor estimates of model parametersusing CTSM, the LAMLE and
FLAEM methodsin scenario |. Thered dashed horizontal lines show the true values used to
generate the simulated data.
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Figure5.4 Measured, true, and predicted concentration and temper atureresponsesfor the
LAMLE method in scenario | using simulated data. Corresponding initial guesses and
parameter estimates are provided in Table 5.2 (» simulated data, ----- response with true
parameter valuesand true stochastic noise, __ predicted responseusing LAMLE
parameter values)

Scenario 1V in Table 5.2 was used to investigate the robustness of the LAMLE and
FLAEM algorithms to poorer initial guesses of the parameters. In this scenario, the initial
guesses were selected randomly from a uniform distribution between 50% and 450% of
the true values. The simulated data sets and the LAMLE and FLAEM settings in scenario
IV are identical to those in scenario I11. IQRs for LAMLE parameter estimates in this
scenario are similar to those in scenario 11, indicating that using worse initial guesses did
not have a significant influence on the quality of the LAMLE parameter estimates.
Parameter estimation attempts using CTSM with these poorer initial guesses resulted in

numerous convergence failures, indicating that use of CTSM requires good initial values
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for the parameters. The FLAEM parameter estimates for Qc, QT,sé and s% are biased.

On average, the FLAEM parameter estimates have larger variability and are much more
biased than those obtained using the good initial values in Scenario 111, because FLAEM
converged to an undesirable local minimum for 32 out of 100 of the sets of poor initial
guesses. These simulate on results suggest that LAMLE may be less prone than FLAEM
to convergence to local minimawhen poor initial guesses are used.

Scenarios V and VI in Table 5.2 were used to study the influence of smaller data sets on
the quality of the parameter estimates. In scenario V, 64 measurement for concentration
and 64 measurements for temperature are available (once every minute). All of the
LAMLE and FLAEM settings (i.e., knot placement, optimizer tolerances and initial

parameter guesses) were the same as for Scenario |11 (e.g., one knot every 0.33 minutes).
The median estimates for ke, @, Qrs& and s obtained from LAMLE are dlightly

worse than those for Scenario I1l. As expected, the IQRs for the LAMLE parameter
estimates are dlightly wider than those in Scenario Ill. Attempts to estimate parameters
using the reduced number of measurementsin CTSM failed dueto lack of convergencein
al 100 attempts, suggesting successful use of CTSM requires relatively larger data sets

than when LAMLE is used. The quality of the model parameter estimates obtained from

LAMLE is nearly the same as for FLAEM. However, the widths of IQRs for Qc, QT,sé

and s T2 obtained using FLAEM are noticeably larger than those obtained using LAMLE.

In scenario VI, Ca and T were measured even less frequently than in scenario V (only 22
equally-spaced concentration measurements and 22 temperature measurements are

available for each dynamic experiment). As expected, the LAMLE parameter estimates
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for Scenario VI have larger variability and are more biased than the corresponding
parameter estimates in scenarios |11 and V due to the smaller data sets used. However,
LAMLE parameter estimates from Scenario VI are still reasonably accurate. Note that
bias in estimates of parameters using arelatively small number of observationsis awell-
known problem for all ML-based techniques.” CTSM could not provide parameter
estimates for this scenario. As aresult, use of CTSM was not attempted for the remaining
scenarios in Table 5.2. The LAMLE estimates of Qr for Scenario VI are biased and are

worse, on average, than the corresponding FLAEM estimates. However, the LAMLE

estimates of Qc, s & and s% from Scenario VI are better than the corresponding FLAEM

estimates.

In scenarios VII and VIII, the values of Qc and Qr were changed to the haf of their
values from Scenario 111 (i.e., Qc =0.005 kmol? m® min™ and Qr =2 K? min™) and twice
their values, respectively, to examine the influence of small and large stochastic
disturbances on the effectiveness of LAMLE and FLAEM. The numbers of
measurements and all other settings are the same as those in Scenario I11. Since smaller
disturbances were used, smaller IQR values for all of the parameter estimates were
obtained in Scenario VII. In scenario VIII wider IQRs were obtained for al parameters,
as expected. No noticeable bias was observed for any of the parameters, except for Qr
obtained from LAMLE in Scenario VIII (i.e., the median estimate was 3.8 and the true
value was 2.0 K2-min™). Obtaining accurate estimates for disturbance intensities may be
more difficult when the size of the stochastic disturbances becomes small, relative to the
measurement noise. In both scenarios VII and VIII, the parameter estimates obtained
from FLAEM have larger variability than those obtained using LAMLE.
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In scenarios I X and X, the measurement noise variances were changed to half of the true
values in Scenario Il (i.e., & = 2x10* kmol>m® and ¢2 = 0.32x10™ K?) and double
the values in Scenario Il1, respectively, when generating the simulated data. All other
settings were held constant at those for Scenario I1l. As expected, using data with less
noise led to narrower 1QRs for the parameter estimates. Larger noise variances led to
wider IQRs. No problems with bias were detected using either FLAEM or LAMLE.

Parameter estimates obtained using LAMLE (Scenario I11) and one of the ssmulated data
sets (see Figure 5.4) are shown in Table 5.3 along with approximate confidence intervals.

These confidence intervals were obtained from:*>>°

02 22,/ i00(0%) e /1 20%) |, (554)

Table 5.3 Estimates and 95% Confidenceintervalsfor LAMLE parameter estimatesfrom

one of the 100 M onte Carlo simulations

Parameter Unit TrueValue Initial Estimate® 95%
Keet min’ 0.461 0.320 0.444+0.036
(E/R)/ 10° K 8.3301 6.8877 8.2351+0.456
a/10° 1.678 2.316 1.157+0.831
b 0.50 0.487 0.621+0.25
T(0) K 341.38 344.68 340.08+1.43
QC kmol?-m®-min™ 0.010 0.009 0.009
QT K2 min? 40 2.717 45
o2 kmol%-m® 4x10 0.0003 0.0003
02 K? 0.64 0.861 0.61

Note that these approximate confidence intervals are conditional on the values of the

estimated noise parameters. Also note, that no confidence intervals for Qc, QT,sé and
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S T2 are shown. In theory, it would be possible to obtain confidence intervals for al of the

model and noise parameters from:

{+ Zalz\/diag(azJLAMLE /512)_12 (5.55)

However, it is very difficult to obtain appropriate numerical or analytical values for the
corresponding Hessian in Equation (5.55) because second derivatives of objective
function (5.16) with respect to the model parameters would be required. Problems arise
due to the complexity of the In(det(Hy-)) term. Recall that the LAMLE method does not
require the optimizer to use objective function (5.16). Rather, this optimization problem
is solved by optimization of objective function (5.10) and iterative updating of the noise
parameters using expressions (5.19) and (5.20). As aresult, the overall Hessian required
in Equation (5.55) cannot be obtained automatically from the optimizer.

In Scenario XI, parameters were estimated using only the temperature measurements,
with concentration unmeasured. The knot placements, number of measurements and
initial parameter guesses for LAMLE and FLAEM are the same as those in Scenario I11.

Since no concentration data were obtained, the sum of the squared error terms for
concentration and nq Insé term do not appear in the LAMLE and FLAEM objective

functions. Biased estimates were obtained for Q¢ from LAMLE, but estimates for all

other parameters are unbiased. As expected, IQRs are wider than in scenario lll.

Estimates for ki, Qc, Qrands T2 obtained from FLAEM have noticeable bias. In generad,

the results obtained using LAMLE are significantly better than those obtained using

FLAEM in this situation where one of the states is unmeasured.

178



In summary, resultsin Table 5.2 and Figures 5.2 and 5.3 show that the proposed LAMLE
method provides more accurate and reliable parameter estimates than FLAEM and
CTSM for the CSTR example studied. Because LAMLE requires optimization of asingle
objective function, its computation times is shorter than for FLAEM which requires
optimization of three objective functions. Results in Table 5.2 suggest that LAMLE is
more robust than FLAEM in sSituations involving poor initial parameter guesses or
unmeasured state variables. These promising results using LAMLE suggest that using the
LA to approximate the likelihood function provides adequate accuracy for estimating
parameters. It is recommended that the proposed LAMLE method should be tested on
larger-scale parameter estimation problems and that the performance of LAMLE should
be compared with MCM C-based methods. The computation time for LAMLE is expected
to be significantly lower since MCMC techniques can require large numbers of particles

to approximate high-dimensiona probability density functions.?”*

5.6 Conclusions

A method is proposed for estimating model parameters, process disturbance intensities
and measurement variances in stochastic differential equation (SDE) models. The
proposed method uses the Laplace Approximation (LA) to approximate the likelihood
function and B-spline basis functions to approximate the state trgjectories. The proposed
Laplace Approximation Maximum Likelihood Estimation (LAMLE) method is tested
using a two-state nonlinear CSTR model with 8 unknown parameters (i.e., a kinetic rate
constant, an activation energy, two heat-transfer parameters, two stochastic disturbance

intensities and two measurement noise variances). The parameter estimates obtained
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using LAMLE compared favourably with estimates obtained using a two competing
approximate maximum likelihood methods: i) the continuous time stochastic modeling
(CTSM) method of Kristensen,® which relies on linearization-based Kalman filtering
techniques, ii) fully Laplace approximation expectation maximization (FLAEM) method.
The LAMLE parameter estimates were less biased and more accurate than corresponding
estimates obtained using CTSM and FLAEM. LAMLE did not experience any of the
convergence difficulties faced by CTSM when relatively poor initial parameter guesses
were used and when measurement data were relatively sparse. LAMLE is aso more
robust to poor initial guesses than FLAEM. For the example studied, LAMLE is more
efficient for the cases where there are unmeasured states than FLAEM and CTSM. The
LAMLE method was easier to implement and converged faster than the FLAEM method
since LAMLE requires optimizing one objective function rather than optimizing three
objective functions required in FLAME. In future, it will be advantageous if the LAMLE
algorithm can be extended to account for a wider range of estimation problems involving
prior knowledge about some or al of the parameters. In future, it will be desirable to

investigate the convergence of LAMLE agorithm.
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Conclusions

Chapter 6

6.1 Summary

In this thesis, appropriate statistical methods to overcome two types of problems that
occur during parameter estimation in chemical engineering models were studied. The first
problem is having too many parameters to estimate from limited data while assuming that
the model structureis correct. The second problem is estimating unmeasured disturbances
and model parameters when the data are sufficient to estimate al of the parameters. In
the first part of this thesis, a model for non-oxidative thermal degradation of nylon 66
was developed and used to illustrate the first problem and to test statistical methods that
had recently been developed by other students in our research group. In the second part
of this thesis, new techniques were proposed for estimating parameters in nonlinear
dynamic models with process disturbances and model mismatch. These new techniques
were tested and compared with literature methods using a nonlinear two-state SDE model
for aCSTR.

In Chapter 2, an improved kinetic model was developed for thermal degradation of
molten nylon 66.* This nylon 66 degradation model was developed in cooperation with a
previous Ph.D. student, Mark Schaffer who performed the experiments that were used in
parameter estimation. Schaffer had developed an earlier version of the model as part of
his Ph.D. thesis? but he was unable to obtain reliable parameter estimates so that he could
adequately test the model predictions. Like many other fundamental models of chemical
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processes, this model had too many parameters to estimate using the available data set,
even though Schaffer had done a large number of dynamic experiments. At the time
when the model was developed, some of the current tools did not exist to determine
which parameters and how many parameters should be estimated using the data. My
objective in this modeling work was to use the recently developed tools to determine
which parameters could be estimated from Schaffer’s data and to obtain the best possible
estimates of the parameters. Using these parameter estimates, the quality of the model
predictions was assessed and some of Schaffer’s assumptions and the corresponding
model equations were revised to achieve a better match between the data and the model.
The nylon degradation model contains 14 ordinary differential equations (ODES). Total
number of the unknown parameters and unknown initial conditions in the system is 56.
Estimability analysis** was used to rank the parameters from most estimable to least
estimable and a mean-squared error criterion was used to determine the appropriate
number of parameters to estimate from the ranked list.>® When estimability analysis was
performed 44 of the 56 parameters could be ranked before numerical problems were
encountered. Wu’s MSE-based criterion®® was used to determine that the top 43
parameters should be estimated using the data to provide the best model predictions,
given the limited data available for parameter estimation. Predictions from this revised
model agree well with the experimental data. The resulting degradation model will assist
industrial nylon producers in selection of operation conditions and design of improved
equipment. The fit between the data and the model predictions showed some minor
discrepancies which may indicate the existence of model mismatch or unmodelled

process disturbances.
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After this initial parameter estimation study for the ODE model, three algorithms were
developed for estimating model parameters, process disturbance intensities and
measurement noise variances in nonlinear SDE models. The three corresponding
objective functions for parameter estimation can be used in cases when measurement-
noise variance is known, but process-disturbance intensities are not known. Two of these
objective functions can also be used for the more complicated situation when the
measurement noise variances are aso unknown. Some of the benefits of the proposed
methods that may be attractive to developers of fundamental dynamic models are: i)
simplicity of implementation, ii) reliable estimates of model parameters, initial conditions
and disturbance intensities, iii) efficient handling of unknown initial states, iv) ability to
handle unmeasured state variables. In particular, estimates of disturbance intensities can
provide modelers with information about the degree of mismatch and the magnitude of
unmeasured disturbances in their models. This information will be helpful when
implementing on-line state and parameter estimation schemes for process monitoring and
control.”®

In Chapter 3, an Approximate Expectation Maximization (AEM) method for estimating
parameters and process disturbance intensities in nonlinear SDE models was proposed for
situations where measurement noise variances are known. The AEM method
approximates the expectation step of the EM agorithm using B-spline state tragjectories.
The effectiveness of the AEM algorithm was tested using a two-state nonlinear stochastic
CSTR model. Parameter estimates were compared with those from Extended AMLE® and
the CTSM software of Kristensen, which relies on a linearization-based maximum

likelihood method. For the CSTR example studied, the resulting AEM parameter
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estimates are less biased, more precise and more robust to poor initial parameter guesses
than those obtained using Extended AMLE and CTSM. The AEM method was easier to
set up and converged faster than extended AMLE. Approximate confidence intervals for
model parameters and disturbance intensities were determined by approximating the
covariance matrix using the Hessian evaluated at the estimates of the parameters and the
B-spline coefficients.

In Chapter 4, a Fully-Laplace-Approximation Expectation Maximization (FLAEM)
algorithm was developed for parameter estimation in SDE models. In the first stage of
this iterative algorithm, model parameters are estimated using Varziri’s AMLE objective
function, assuming that the disturbance intensities and measurement noise variances are
known. In the second stage, disturbance intensity and noise variance estimates are
updated. The expressions used to update disturbance intensities and noise variances were
derived by approximating the E step of the EM algorithm using the FLA and B-spline
basis functions. The FLAEM agorithm iterates between these two steps until
convergence is obtained. The FLAEM methodology was tested using the two-state
nonlinear CSTR model. More accurate estimates for model parameters, disturbance
intensities and measurement noise variances were obtained using FLAEM when
compared with CTSM, particularly when the number of measurements was relatively
small or when initial guesses of parameters were relatively poor.

In Chapter 5, an even better approximate maximum likelihood algorithm was devel oped
for approximating model parameters, process disturbance intensities and measurement
variances in nonlinear SDE models. The proposed Laplace Approximation Maximum

Likelihood Estimation (LAMLE) method uses the Laplace Approximation (LA) and B-
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spline basis functions to approximate the likelihood function of the parameters given the
measurements. The LAMLE method was tested using the CSTR model, revealing that
LAMLE parameter estimates are more accurate and less biased than corresponding
estimates obtained using CTSM and FLAEM.

The case studies conducted in this thesis suggest that AEM, FLAEM and especially
LAMLE are potentially appealing parameter estimation algorithms that should be further
studied and tested for more complicated problems. Note that AEM, FLAEM and LAMLE
circumvent potential problems associated with finding a closed form for the likelihood
function at the expense of solving a large nonlinear programming problem. Fast and
efficient nonlinear programming solvers such as IPOPT™ are essential for the successful

implementation of these algorithms, especially for larger problems.

6.2 Recommendation for Future Work

1. In Chapter 2, a model for non-oxidative therma degradation of nylon 66 was
developed assuming that the model structure is perfect. The fit to the data showed some
discrepancies indicating the possible existence of model mismatch or process
disturbances. In future, modeling errors and process disturbances could be considered
during parameter estimation in the nylon 66 model to improve the model predictions.
This type of analysis would require additional experimental data. In particular, replicate
experiments would be useful for assessing whether nonstationary disturbances should be
included in some of the differential equations.

2. The AEM, FLAEM and LAMLE techniques were tested successfully using a CSTR

case study in Chapters 3-5. In future, it will be desirable to test the proposed

191



methodologies using larger-scale dynamic models with a larger number of states and
parameters.

3. It will aso be important to compare AEM, FLAEM and LAMLE results with those
from recently developed MLE-based methods that use MCMC techniques for parameter
estimation in SDE models.™"* It is expected that computation times for the proposed
methods in this thesis will be significantly lower than the times required using MCMC
methods, particularly for larger-scale problems, because the proposed methods do not
require sampling from high dimensional probability density functions. It will be
important to determine whether the additional B-spline and mode approximations used to
develop the proposed methods result in any significant degradation in the quality of
parameter estimates when compared with MCMC methods.

4. In chemica engineering applications, usually some prior information about the
parameters is available. In many cases, modelers have some physical insights about
physically realistic values of the parameters. In future, it will be advantageous to extend
the FLAEM or LAMLE agorithm to account for prior knowledge about some or all of
the parameters. Box and Draper™ introduced the use of Bayesian methods for estimating
the parameters of chemical engineering models to include prior knowledge of parameters.
In genera, in the Bayesian method, the approximate conditional density function of the

parameters given the measured data p({|Y,,) is maximized to estimate the unknown

parameters. The conditional density function of the parameters given the observed data

P(C] Yy iscalled aposterior density function. The posterior density function is:**

p(y) = PV 1O PE) 6.1)
p(y)
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The numerator on the right-hand side is the product of the ML probability density
function p(Y,, |{)and the prior distribution of the parameters p(7) . The denominator,

which ensures that the posterior integrates to unity, does not depend on the parameter

values. The prior density function p(¢) represents knowledge about the possible values
of ( before the data that will be used for parameter estimation have been observed. The

prior probability is very important when very little observation data are available and
must restrict the parameters to meaningful values.

5. It is suggested to test the proposed methods for estimating the parameters in SDE
models that contain additional unmeasured states to account for non-stationary
disturbances and to develop statistical methods to assess when and where non-stationary

disturbances should be included to improve the quality of model predictions.

6. Obtaining approximate confidence intervals for model parameters and process
disturbances for the AEM method was discussed in Chapter 3. When FLAEM and
LAMLE are used, the corresponding approximate confidence intervals are conditional on
the estimated values of the disturbance intensities and measurement noise variances. In
future, it will be important to develop approaches for determining inference regions for
all of the noise and model parameter estimates obtained from FLAEM and LAMLE.

7. In future it will be advantageous to investigate the convergence of the proposed
methods.

8. It is recommended to show the predictive performance of the proposed methods for

predicting state trajectories based on infinite horizon predictions.
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Appendix 3.A Derivation of the AEM Objective Function with Frequent

M easur ements

In this section, the AEM objective function is developed for the system shown in
Equation (3.1), where S is known and Q is unknown. First, we consider the case where
al states are measured frequently compared with the dynamics of the system so that
Equation (3.1) can be approximated using the following Euler approximation:

X(ty o + Aty) = X(t;) = X(ty ) + T (X(ty 1), Uty ), B)AL + g ()AL, (3.A.1a)
X(tg) = Xq (3.A.1b)
where X(tn) contains the values of the state variable at the measurement times ty ,
j=0,..,n and Aty is the sampling interval. Appendix 3.B considers the case where
measurements are available further apart in time and when some states may be
unmeasured.

To keep the notation simple, assume that measurements are available at n equally-spaced

sampletimesty; (j=1,...,n) for al outputs:

Ym :[yT(tml)---yT (tmn)]T :[yl(tml)---yl(tmn)---yY (tml)---yY (tmn)]T
X =[XT (1) X" )] =D (tms) - X (tn) - Xy () Xy ()]

First, we find aclosed form expression for p(Y,,, X, Xm (to) [ Q) -
By the law of total conditional probability, the density function p(Y,,, X, Xm (o) Q)

can be decomposed to:

P(Y s X Xim (t0) [ Q) = P(Yin [ X3 X (£0):0) P(K i s X () [€) (3A.2)
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Jazwinski* showed that the stochastic process {x(t;), i<g+1} generated in Equation
(3.10a) isaMarkov Process. Thus, by the Markov property of the states p(X,, |{) can be

written as; #6472

p(X,n 1) =] | POXCtry) [X(try 2).0) (3A.39)
-1

When x(tp) is approximated using a measurement at time zero, the following probability

expression applies:

P(X iy X (1) 12) = P (1) 12) [ T P(X(tey ) 1X(trj 1), 0) (3.A.3b)

=L

From Equation (3.A.18) p(X(t,;) |X(t,_).) hasamultivariate Gaussian distribution:*

1 1

DXty [ X(tri2),0) = %Zp[olet(cz)]_2 Aty

exp{_%[x(tmj ) = X(tri 1) —f (X{tj_1), Ultryj_1).0) At] ' Q Aty ™

X [X(tmj) - X(tmj ) f (X(tmj —1)lu(tmj 1),0)Aty]}

(3.A.4)
Assuming a Gaussian distribution for initial measured state x,,, (t,) gives:
ot
PO 1)1 = 2 = 4y 10)” S0 0] @A

where x, isthe vector of initial conditions for the state variables and xmo is a vector of
multivariate normal random variables with mean E{X o} =X, and co{ X0} =Sno-

Substituting Equations (3.A.4) and (3.A.5) into Equation (3.A.3b):
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1
P(Xm Xm (to) () = 20
1 1
ﬁ%p[det(Q)] 2 Aty 2 exp{—%[X(tmj ) = X(trj 1) — F (X(tmj-2)s Uty 1),8) Aty

" tat, [X(trry ) = Xty 1) = F (X(tpy 1) Uty 1),8) Aty ]}

1 -
&P (Xmo = X0)" S0 (Xm0 ~ X0)]

(3.A.6)

From Equation (3.1¢) p(Y,, | X, Xm (t),0) hasamultivariate Gaussian distribution:

1 _% 1 T -1
B(Y, X X 0.0 = [T o PR lo ) O =y 2
G0 Uty ). 8) = Yty )T}

(3A.7)

Substituting Equations (3.A.6) and (3.A.7) into Equation (3.A.1), gives:

1
n 1 - 1 _
P(Yim X Xm (to) 10) = ng[det(zn 2 exp{~ 2 [9(x(trj Uty 8) = ¥ try Nzl

1

det(S, )] 2
[0ty Uty ). 8) =Y ()] %

1 -
&xXp[— = (Xmo ~X0)' S0 (Xm0~ Xo0)]
1

n 1 2At
y H o [det(Q)] <Aty
= Qlat, ' x [X(ty ) = X(tmj—1) —f (Xt ), U(tmj_1), 6) At ]}

1
2 eXp{—%[X(tmj ) = X(tmj—1) — f (X(try 1), Ultmj 1), B) AT

(3.A.8)
Taking the negative natural logarithm of Equation (3.A.8) and collecting the constant

termsinto asingle term C;:
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=In p(Yim, Xy Xim (to) 10) =

Cy+ il[g(x(tmj Utry),0) =Yt )] Z 7 [GX by » Uty ), 8) =Yty )]

+ (xn:; —%0)" S0 (Xmo —Xo) + NIN[det(Q)]

+ il[x(tmj ) = X(tj—1) = (X(trj—0), Ultj_1), )AL T Q7 Aty ™

x [Jx_(tmj ) = X(tj 1) —F (X(tj 1), Uty 1), 0) Aty]

((3A.9)

Let
Jaem =—INPY i, X Xm (1) [ -C4. (3.A.10)

Since At,,, issmall, the last term in Equation (3.A.9) can be approximated by an integral:

Jaem = Zn:[g(x(tmj Uty ),8) =Yty )T Z G (X by Uty ), 8) =Y ()]

j=1
+ (Xm0 =X0) " S (Ximo = Xo) + NIN[det(Q)] (3.A.11)

I
+ J[X(t) —f (x(t),u(t),8)]" Q7'[x(t) - (x(t),u(t),8)]ckt
to
Approximating the states of the system using B-spline basis functions gives:

Jnem = LI (try Uty ),0) =Yty 1T 7YX (g Uty ), 8) = ()]
=

+ (Xrmo = X-0) " Sio (Xmmo — X0) + NIN[det(Q)] (3A.12)

+ [ @) —F O (0,u0),0)]" QX (1) —F (x_ (1), u(t), 8)]dt

In order to use Equation (3.16), the mode of J g, With respect to states should be found:

Naew _ (3A.13)
X
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Since B-splines are used to represent the states, and the continuous state trajectory is

directly related to the B-spline coefficients, the mode value of J,g,, occurs where

Hnem _ 0 (3.A.14)
oB

Thus, finding the mode of J g, With respect to states is equal to minimizing J gy With
respect to the B-spline coefficients. Minimizing Equation (3.A.11) with respect to the
parameters ensuresthat X, isat the mode of J,gy -

‘]AEM = (Ym - g(Xm~ ’ Um ’e))T Z71(Ym - g(Xm~ ’ Um ’e))
+ (Xmo = X-0) " Smo(Xmo —X-0) — NIN[det(Q)] (3.17)

+ [ () —f ( (0),u(t),0)]T QX (1)~ (x_ (1), u(t), B)]ct

Thus, using B-spline basis functions to represent state trgectories eliminates the
expectation step of the EM agorithm. Equation (3.17) is the corresponding overall AEM
objective function that should be minimized by selecting appropriate values of 6, Q and

B.

Appendix 3.B Derivation of the AEM Objective Function with Missing Data

In this section, an AEM objective function is developed for the system shown in Equation
(3.1) for the more complicated case where measurements are only available at longer
sampling intervals or not all states are measured at the same times. The situation where
some states are not measured at all is also considered.

An Euler scheme with a short discretization interval At, which is shorter than the
measurement intervals, is used for discrete-time approximation of the SDE model in

Equation (3.1) (shown in Equation (3.10a). First, we find a closed form for
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P(Y s X g Xm (to) 1), Where the subscripts g and m indicate that we are interested in

values of the state variables at q discrete times, but measurements are available at only
some of these times.

By the law of total conditional probability, the density function p(Y,,X,.xy, (t,) [{) can
be decomposed to:**’

P(Y i X g Xm (1) 10 = P(Y iy [ X g2 X (80),0) P(X g X (t6) [0) (3.B.1)

By the Markov property of the states, p(X,, X, (to) |2) can bewritten as:**"

q
P(X g Xm (to) [0) = PO (o) 12) [ T POX(t) IX(ti1).0) (3B.2)
i=1

From Equation (3.108) p(x(t;) | x(t; ;),{) hasaGaussian distribution:*

1 1

pX(t) [X(5-1).0) = %zp[det@ﬂ_zm_z

1 1
exp{—%[x(ti)—x(ti_l)—f(x(ti_l),uai_l),e)mﬂQ‘Zm‘z

x[X() =X (1) = (X(ti_1),u(ti_1),0)At]}
(3B.3)

Assume a Gaussian distribution for the initial measurements of the state variables:*

1

2
POt (10)10) =12l 0 0)" 5t )] 384

where X, isamultivariate normal random variable corresponding to the measurements
of the state variables at the initial time to, with mean E{X o} = X, and co{ X0} =Sy -

Substituting Equations (3.B.3) and (3.B.4) into Equation (3.B.2):
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1
2
P(X g Xpn (1) 1) =%exp{—é(xmo—xofsﬁo(xm—xo>] x
1 1

ﬁ%[det(Q)]z At 2 expf —%[X(ti ) —X(t_y) = (x(ti_y),u(t ), G)At]T Q_lAt_l

XX () = X( ) — F (X(t ), u(ty_4), 0)At]}
(3.B.5)

From Equation (3.1), p(Y,, | X4, X (t,),{) hasamultivariate Gaussian distribution:***

n

det(= -= Uty ),8) = ()T
DY [X 0 X (1)) = 1—H—[ (2)] 2 exp{ [g(X( u(t,),8) —y(t,)]

Z_l[g(X(tmj ’ u(tmj )! e) - y(tmj )]}

(3.B.6)

Substituting Equations (3.B.5) and (3.B.6) into Equation (3.B.1), gives:

1

P(Ym, Xq: Xm (to) [) = H F[da(i)] 2<-3‘><F>{——[QI(X(th Ultry),8) =Y (tm)]"
1

- det(S,)] 2
= Gty Uty ), 8) = Y ()1} X%

1 _
exp[— 5 (Xmo — Xo)T Smlo(xmo —Xo)]
1 1

[ 7 0O 28 2 X S (0 (4 2) (12,0, 2. 00"

QAT [X(t) - X(ti_g) — F (X(t_1), Ut 1), 6)At]}
(3.B.7)

Taking the negative natura logarithm of Equation (3.B.7) and collecting the constant
termsinto asingle term C; gives:
~Inp(Xq, Y X (t) 19 = Cy + (Y =9(X 1y, U, 8) T Z7(Y —9(X 1, Uy 6))
+ (Xm0 = X0) " So (Xm0 = Xo) + alIn[det(Q)]
28 X)) 00,).O)8Q
=

x[X(t) —x(ti_g) —F(X(t 1), u(t;_1),0)At]
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(3.B8.8)

Since At issmall, the last term in Equation (3.B.8) can be written as:

q
DXt = x(t_g) —F (X(4_g), u(t; _1),0)ATQTIAL Y X(t ) — X(ti 1) —F (X(ti_1), u(t _y),8)At]
i=1

tq
= JIX() - (x(t),u(t),8)]" Q7 Tx(t) —f (x(t),u(t), B)]cl
to

(3.B.9)
Let

Jaem =—INP(Xy, Y, Xm (te) [0 -C4 (3.20)
Substituting Equation (3.B.9) into Equation (3.B.8):

'JAEM = [Ym - g(xm ) Um ’e)]T Z71[Ym - g(xm ) Um 76)]
+ (Xmo =X=0) " Smo(Xmo —X0) +qIn[det(Q)] (3.B.10)

+ I[X(t) —f (x(0),u(t),8)]" QHx(t) —f (x(t),u(t),8)]ct
to

Using B-splines to represent the states:

JAEM = (Ym - g(x ~m> Um 19))T Z_l(Ym - g(x~m , Um ’e))
+ (Xmo = X~0)" Siao (Ximo —X~0) + qlIn[det(Q)]

lg
+ J.[X~ (£) —F (x_(t),u(t),8)] Q7 [X_(t) —f (x_(t),u(t),0)]dt
to (3.18)
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Appendix 4.A Derivations

In this appendix, equations for updating process intensities in Q and measurement noise
variances in S are developed when 6 is assumed to be known. These equations are
derived by approximating the E step of the EM agorithm using the FLA and using B-
spline basis functions to approximate the state trgjectories. Note that the corresponding
spline coefficients are also assumed to be known because they are estimated along with 6.

The likelihood function of complete data p(Y,,X, [{) has aclosed form, which was

derived in our previous work:?’

n

P(Ym: X 10) = Cldet(2)] 2 exp{—%[vm ~9(Xms Ums 81" Z Y = 9(X i, U, 81}

1
<[det(So)] 2 4Pl (o = X0)T S Xm0~ )]

_a tq
x[det(Q)] 2 eXp{—% I[X(t) —f (x(t), u(t), 8)]" Q' x(t) - f (x(t), u(t), B)] d t}
to

(4.A.1)

where C; is a constant.

Taking the negative natural logarithm of Equation (4.A.1) gives the likelihood:

—In p(Yp, Xq 10) = —InCl+2In[det(Z)]
+ Y = 90m: U O Z Yoy ~9(Xpy, U )]

1 1 _
+§|n[d9t(smo)]+§(xmo_XO)TSmlo(Xmo_Xo)

lq
+ Jinfdet(@)1+2 [1%(0~ (x(0,u(0, " Q Yx(O ~F (x(),u(D), BN ot
to

(4.A.2)
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Substituting the log likelihood of the complete data from Equation (4.A.2) into the E-step

of the EM algorithm (Equation (4.15)) gives:

E{Inp(Ym:Xq 10 [ Ym Q. Z¢} = %E{ [-2InCy + (Y —9(Xpm, Up ,6) T 27
(Ym _g(xmlum’e))

+In[det(Sy0)] + (X —Xo) " Smo (o — Xo)

lq

+ ()~ (x(1),u(t).8) T Q7 (x(t) —F (x(D), u(t), 8)) it
to

+nin(det(=)) + qIn(det(@))] | Yy, Qx. X}

(4.A.3)

Taking the partial derivative of Equation (4.A.3) with respect to Q gives:

I
2 BN P(Yor X4 101 Yo Qi 5} = B [ (601 (x0),u00,6) Q"0

to

< (K0 = (x(0),0(0).8) 1+ Q] Yin, Qu i
(4.A.9)
Note that development of Equation (4.A.4) relies on the following expressions for the

derivative of the determinant of a matrix:>

dIn(det@)) _

-1
o Q (4.A5)

Setting the right-hand side of Equation (4.A.4) to zero and rearranging to solve for Q,

gives the following expression for Q:

I
Q ZéE{I (X(t) = (x(t), u(t), ) (x(t) — f (x(t),u(t),0)) " dt | Yo, Qi, =i} (4.A.6)

to
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Similarly, setting the partial derivative of Equation (4.A.3) with respect to S to zero and

solving for S gives:

2 :%E{[(Ym ~9(Xm Um O)(Ym =9 m Um0 T 11 Y, Qi i} (4A.7)
Recall that:
tq
Z = [ (x(t) ~F(x(t), u(), 8)) (x(t) ~ F (x(t),u(t), 8)) " dit (4.19)
to
S=(Ym —9Xm U O)(Ym —9(X 1 Up,0)) " (4.20)

Using the definition for Z and S from Equations (4.19) and (4.20) into Equations (4.A.6)
and (4.A.7), the estimates of the disturbance intensity Q and the noise variance Z at the

k+1th iteration are:

Qk+1:§E{Z|Ym1Qk1Zk} (4.21)

1
zk+1:EE{S|Ym1lezk} (422)

To egtimate Qy,; and X, , from Equations (4.21) and (4.22) expressions for
E{Z|Yy, Q. 2y} and E{S|Y,,Qx,Z} should be obtained for use in the kth iteration.

These expectations are given by:*®

[Z p(Ym.Xq %) dXq
[ p(Ym Xq 1%)dXq

E(Z|Ym,Qk.Zk) = (4.23)

[Sp(Ym.Xq 12k)dXq
E(S|Y,Qn,2Z,)=
(S1Ym,Qx,Zk) '[ A NIATS

(4.24)
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Substituting p(Yp,Xq 1¢¢) from Equation (4.A.1) into Equations (4.A.21) and (4.22)

and simplifying to remove the constants C,, the second, the fourth, the fifth and the six

termsin Equation (4.A.1) gives:

E(Z|Ym, Q. Zk) =

tg
_f (X(t) - (x(t),u(t), ) (x(t) -  (x(t),u(t),0)) " dt

to
1
@AYo ~ 60X, U BT Yin = 00K, U 80T} (X
tq ol
xp{— [[X(0) ~F (<),u®, 81" %[O ~F (X(O.u(D), 8 T}

to

-1
exp{-[ Y, —g(xm,um,ek)ﬂzz[vm —g(Xm U, 8,01}

dXx
1Q* d

tg
eXP{—I[X(t)—f(X(t),U(t),ek)] T[X(t)—f(X(t),U(t),ek)]}dt

to

(4.A.8)

E(S|Ym,Qk: Zk) =

[Ym = 9(Xim: U, 8101 Yim = 9(X s U, 81T
-1
[ &XP{1Yim = 00%m: U BT = [V~ 00X, U BT X

- Q—l
2

tq
exp{ [ [X(t) —F (x(t), u(t), Bi)]"

to

[X(t) =T (x(t), u(t), 8,)] d }

1
exp{ Y~ I(Xrm: U 801" ZZ[Ym —9(Xm: U, 801}

o dX
2

[X(t) = (x(t), u(t), 8,)] d}

'q
exp{ [ [x(t) = (x(t), u(t), B, )"

to

(4.A.9)
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Note that xo is assumed to be known because it is estimated from B-spline coefficients.
B-spline coefficients are estimated along with 8. As a result, the fifth term in Equation
(4.A.1) is constant. Since 0 is assumed to be known, the FLA can be used to approximate

theintegralsin Equations A.8 and A.9:

) 1/21q .
EZ | Vi Qu Z) = (%] [ 620 -1 &2 0,u(),8,)
R to

(X% () ~f (%* (1), u(t), 8,))" dt

&XPl— (Y - 90XE, U 80)T Zi(Vm - 9K, U B1)

'q
- [ G2 0-F6E0.u0.80) QFEZO -1, u, B dt

to
2 (Vi =0, U, 810) Z2(Yim =6, U, 81)

1tq . .

+5 J RO -FXO,u).80)TQREO TR, u(D). 8) dt

to

(4.A.10)

det(Hy)
det(H3)

E(S| Y Qi k) =[ T/z(vm = g(X3 Um 80)(Ym = 9(X 5 U, 8))
XP{ 2 (Ym = X3, Unn 80) Z(Yon ~ 9K, U 810)
—%T&Sa)—f(%S(t),u(t),ek»TQ'kl(iS(t)—f(ﬁs(t),u(o,ek»dt
to
# 2 YV =9, U B0) 2V~ 6(Kim, U 81)

tq . .
+% [ @~ (%), u®,8)T QR (1) - (1), u(t).8,)) d}
to

(4.A.11)
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where

5% (4.A.12)
OXqdXq |,
q q
8237
HZ = . (4.A.13)
X 40X g o7
q=Xq
0%J°%
HS = - (4.A.14)
OX 40X ¢ (o oKS

3,37 and J° iy Equations (4.A.12), (4.A.13) and (4.A.14) are defined in Equations

(4.A.15), (4.A.16) and (4.A.17).

J :(Ym _g(xm’Um1ek))Tz-kl(Ym _g(xm’Um’ek))

" . (4.A.15)
+I(X(t)—f(X(t),U(t),9k)) Qy (x(t) = f(x(t),u(t),0,)) dt
3% =10 [ (-, (0~ L0, U0,8,))* dt —...~In (%, - f (x0),u,0,))
1

+E(Ym _g(Xm’Um’ek))Tzl-(].(Ym _g(xm’Um’ek))

+%jl(x(t) = F(x(t),u(t),8,)) " Qy (X(t) — F(x(t), u(t),8,)) dt

(4.A.16)
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N1
3% ==InY [Yiltma )~ GX(tm )Y (tma )81 .
j=1

Ny
- an[yY(th,j )= Oy Xty ;)Y tmy, ).01)1°
=) (4.A.17)

1 )
+5 (Y ~9(%m s Um 8 T Z1 (Y = 9(Xm, U, 81))

lq
+§ [ () = (x(0),u(0),840) T QI k() — F (x(1), (). B )) ot
to

Using B-spline basis functions for representing state tragjectories in Equations (4.A.10)

and (4.A.11) gives:

det(H ) 1/ th
E(zwm,zk){ det(H;)} [0 -FRE@),u).0))KZ 1)~ (K2 (1),u(t) By) " dt
X~ to

exp{—%(vm ~g(XZm Um0 T Zid (Yo —9(XZm, Unm, 84))
tq

—% [ &2~ (R 0.u().8)) T Qi (RE (1) —F (RZ (1), u(t),B,)) dit
to

+%«Ym 9K U ) T Z2 (Vi = 9K U 81)

tq . .
+2 [ G- .u0.80) QRO - R-O.UW.8)
to

(4.A.18)
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/12
E(S| Yim. Q) = (%T (Yo = 9(XZ0, U B) (Yo = 9(X 3, U B40)) T
XP=— (Y = I, U 80)T 23V~ 9(X S U 81)
_%zjq(fé(t)—f(fé(t),u(t),ek))TQ'kl(i§(t)—f(>?§(t),U(t),9k))dt
0
+ (=9 U B0) 22 (Y~ K, U 1)

tq . .
+§ [ o -FR-(0).u().8,)T Q- (1) ~F (R-(1),u(t).8,)) dt}
to

(4.A.19)

where H; , H £ and H; aredefined in Equations (4.A.20), (4.A.21) and (4.A.22):

2
H, =2 . (4.A.20)
T XOXT| .
Xq=X~q
212
HZ :LT (4.A.21)
XaXaly 52
21S
HY :LT (4.A.22)
XaXaly 3

The AMPL software used to implement the AMLE algorithm provides Hg the Hessian
matrix with respect to B. The relationship between H,- (i.e., the Hessian matrix with
respect to Xq-) and Hg (i.e., the Hessian matrix with respect to B) is derived below.

Using the chain rule for partia derivatives to find the partial derivative of JamLe

(Equation (4.14)) with respect to matrix of B-spline basis functions B gives:
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0IamLe _ Pamie X-(to)  dame X-(4) . . dJamLe X~ (tq) (4.A.23)
0B ox_(t;) OB  ox_() B x_(ty) 0B

Finding partial derivatives from Equation (4.7):

OX_(t;)

= = d(t;) (4.A.24)

Substituting partial derivatives from Equation (4.A.24) into Equation (4.A.23) gives:

&JAMLE _ &JAMLE (D(to) n a‘JAMLE q)(tl) + +M¢(tq) (4A25)
oB x_(to) ox_(ty) X~ (tg)
Let
J
G = Hame (4.A.26)
oB

Using the chain rule for finding the partial derivatives of G:

ox_(t
G _ G xX.(tg), G ox() ., G (tq) (4A.27)
oB ox_(tg) oB ox_(t;) 0B ox_(t;) 0B

Substituting partial derivatives from Equation (4.A.24) into Equation (4.A.27):

6L__6 P(ty) + oG P(t)+---+ oG
0B  ox_(ty) oxX_(ty) oX_(tg)

d(tq) (4.A.28)
Substituting G from Equations (4.A.26) and (4.A.25) into Equations (4.A.28) gives the
second derivative of JawLe With respect to the spline coefficients:

2
ﬁz 0 ‘JAM#E - 0 [8‘JAMLE q’(to)+Mq’(t1)+"'+Mq’(tq)]¢(to)+
oB  oBoB OX_(tg) Ox_(tg) ox-(ty) ox_(tg)

0 A amMLE 0JamLE OJAMLE
8x~(t1)[ 8X~(t0)¢(t0)+8x~(tl) D) + +—6X~(tq)¢(tq)]¢(t1)+ +

0 OJAMLE OJAMLE OJAMLE
() ox-(to) T e (i) T ot Pl

(4.A.29)
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Simplifying Equation (4.A.29) gives:

02J 0] 02J
—AMLE — o (t, AMLE T (to) + D (ty) AMLE T (1) +
oBoB OX_(tg)ox_(t) OX_(tg)ox_(ty)

d(ty) aZJAMLE D(ty) + P(tp) aZJAMLE D(ty) + P(t )MCDTG )
" 0x_(to)x L (tg) ° Vo oxit) Vo ()ox' ()

0% IamLE T 0% IamLE T
+o+ D(ty) = D (tg)+---+P(ty) —=—@ (tg)
OX_(t)0x~ (tg) OX-(tg)ox~(to)

0% T 02J T
+D(ty) AMLE o' (ty) +--+ D(t,) AMLE o' (t,,)
OX_(tg)ox~(t) OX_(tq)ox~(tg)

(4.A.30)
In matrix form, Equation (4.A.30) becomes:
82‘]AMLE az‘JAMLE 82JAMLE
op? oB10B BB,
82‘]AMLE 82‘JAMLE 62‘JAMLE
OB ,0B; op2 BodBe, |=[Ot) D(t) ... D(ty)]x
82‘]AMLE 62‘JAMLE 62'JAMLE
0Be B1 B B, B2,
82‘]AMLE 62‘]AMLE aZ‘JAMLE
OX_ (tg)ox 1 (t) ox_(tg)oxL (t,) X (tg)ox L (ty)
2 2 2 cD(tl)
0 ‘]AMLE 0 ‘]AMLE 0 ‘]AMLE (D('[z)
OX_ (to)oxT (ty) ox_(t)oxT (ty) ox-(t)ox1(ty) %[ .
‘ ' ®(tq)
2 2 2
0 ‘]AMLE 0 JAMLE 0 ‘]AMLE
X~ (tq)ax L (to) Ox_(tq)ox1 (ty) X~ (tq)ox L (tq)
(4.A.31)
or equivalently:
Hg=WTH, ¥ (4.A.32)
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where W is amatrix of B-spline basis functions defined as.
Y=low) o) ... ol (4.A.33)
and Hg isthe Hessian matrix with respect to B-spline basis functions :

Hg = aJAMLTE (4.A.34)
oBoB

Theratio of two Hessian matrixesis:

Hg _ WIH, W (4.A.35)
HE WTH; W

Since W' and W are constants:

Hy- _He (4.A.36)

HY H

own

Thus, in Equations (4.A.18) and (4.A.19), the Hessian matrices with respect to B can be

used instead of the Hessian matrices with respect to X _ so that:

1/2t
_ 1{ det(Hp) { ez £ (%2 ONEZ (1) —f (R 0.0 d
Qk1 q(det(Hé)J t{(h(t) (XZ (), u(t),8,))(X= (t) —f (X=(t),u(t),6y)) " dt

l ~ R ~
exp{= (Y ~g(XZm U 8 )) T (Y = 9(XZm, U 81))

tq . .
—% (B2 -F 62 0,u0,00)T QA O (Z.u@®) 8 )l
to
+§(Ym ~0(X e U 010) =AY = 0K U 84)
1tq A ~ T A~-1/A ~
+2 [ G0 -1 .00.80) QRO R_O.U0.8)d
to

(4.25)
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1(da045)

1/2
_ v S v S T
zk+1_ﬁ det(HS)] (Ym _g(X~m’Um’ek))(Ym _g(x~m’Um'ek))

exp{—%(vm ~9(XZm, U 8) " Zi (Yo = 9(X i U 84))
tq

—% J6EM -1 G3M),u®,8))T QM) ~F (X2, u(t),8,)) dit
to

+ 2 YV =9 U 810) Z(Yim = 9Ky, U 81)

tq N .
#2 [ G -1 0,u0,80) QRO ~F X ©.u(0),80)dt
to

(4.26)
In Equations (4.25) and (4.26), the HessiansHg, H5 and H5 are defined as;
2
Hy = 9" JaMLE o
T .
oBaB' |, 4
023
HE = - (4.28)
oBOB' | _57
0235
HE =——= (4.29)
BB |, _as

Jamie in Equation (4.27) is Varziri’s AMLE objective function defined in Equation

(4.14). IZandIZip Equations (4.28) and (4.29) are defined in Equations (4.30) and

(4.3).
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37 = (40 - (< (0,U0,8,)2dt—..~In [, (0 - T (x_(0,u(0),6,))?
+§(Ym ~g(X U, 80) ZE(Ys 09X U, 6,))

+%f(x~(t) —F(x_(0),u(t),8,))" Q; (x_(t) = f (x_(t), u(t),8,)) dt

(4.30)
Ny
35 =103 [Ya(tma ;) 91 (X (trma )Y tima, )11
=1
Ny
—...—InZ[yY(tmy,j)— Oy (X-(th,j)7y(th,j)lek)]2
j=1
+2 (=00, U 80) Z2(Yim =X -, U 84)
tg
+% f(fh(t) —f (X_(t),u(t),8,)) " Qi (X~ (1) —f (X_(t),u(t),By))dt
to
(4.31)

A

andB ,BSand B? are spline coefficients that maximize Jamie, J%andJS, respectively.
oS

X_ X2 and %% are the corresponding approximated state trajectories. Equations 25 and

26 can then be used to update Q and Z, using the most recent estimates of the model
parameters 6 and spline coefficients B.

For the case where the number of measurements for the rth response is N;, an expression

similar to Equation (4.25) for updating the rth measurement noise variance s ,2 Is:
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det(H Nr
Sr21k+1_Ni{ ( Br)J eXp{InZ[Yr(tmr,j)_gr()A(S(tmr,j)’y(tm],j)ﬁk)]z_
r J:

det(HF )

Ny 'q
S Y e )= G (e, )Yt ). 8P~ [ (30—, (63, u(®),8,0)° dit
25 fz,k j=1 2Qk t

+

Ny tq
=3 e, )= 0 Rl )Yl 80+ [ G 0 (% 00,802t
28r1k j=1 Qk to

(4.A.37)

where
Hg =Hg(Nr4+1:N;) (4.A.38)
£ —HE : 4.A.39
HE =HE(N, ;1 +1:N,) (4.A.39)
Hy =HB(N,;+1:N 4.A.40
B = B(Nrg+1:Ny) (4.A.40)

Note that other Equations do not change for this case.
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Appendix 5.A Derivation of the LAMLE Objective Function (Equation (5.23))

In this section, an approximate closed form for p(Y,, |{) isderived using the LA and B-
spline basis functions. The likelihood function L({|Y,,) = P(Yy |{) can be evaluated by

integrating p(X,, Y, 1{) over al possible values of X *:

P(Ym Q) = [ P(Xq. Ym 10dX, (5.14)
A closed formfor p(Xq,Yy, [{) wasfound in our previous work (see Equation (5.15)).
Taking the negative natural logarithm of Equation (5.15) gives:

—Inp(Xq, Ym 10 ==InCy + nIn[det(Z)] +[ Yy = 9K, U, 01T Z 7Y, —9(Xy, Upyn 6]
+In[det(S;0)] + (Xmo = X0) " S0 (Ximo — Xo)
tq
+qIn[det(Q)] + [[X(t) —f (x(t),u(t), )" Q'[x(t) — (x(t), u(t), B)] dt
t
i (5.A.1)

Let

31 =-Inp(Xq,Ym [0 +InCy (5.A.2)

Substituting p(X, Y |{) from Equation (5.15) into Equation (5.14):

P(Yim 12) = [ Colc(E)] " &XP{~ 2 [Yim = IXm U BT = Yo = g%, U )]}
1
<[det(Sy)] 2 &XPL= (o ~X0) " S (Xm0~ Xo)]

_a I
x[det(Q)] 2 eXID{—I[X(t) —f(x(t),u(t),0)]" QX(t) —f (x(t),u(t),8)l dt} d X,
to

(5.A.3)

Using the LA:
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q+1

INp(Y 19 =In[ p(Xg, Ym [QdXq =Inp(Xg, Ypy IZ)——lndet(Hx)+ In(2p)
(5.A.4)

where )A(q is evaluated from:

X, =agmax p(Xq,Ym I0) (5.A5)

X
q

and Hy isthe Hessian matrix of —In p(Xg,Yy, [{) with respect to Xq evaluated at 5(q :

INp(Xq, Y 10 %
oX X g
q

(5.A.6)

X

Substituting —In p(X4,Yn, [{) from Equation (5.A.1) into Equation (5.A.2) and
substituting Xq with )A(q ;

~INP(Yr 10 =Co +[Ym = 9K, U 81" Z Y —9(X Uy, )] + N det(2)]
+(Xmo = X0) " So (Xmo — Xo) + aln[det(Q)]

t
IR0~ R0,u0,8)17 QK (KO, ) O]t + In(et(H, )

to
(5.A.7)
where C, is a constant.
Substituting B-spline expressions for X ., , x(t) and X(t) gives:

~In p(Yim 10 = Co+[Ym =X <y U, 1" Z Y1 —=9(X -, Upn, )] + NlIn(det(Z)]
+ (X=mo = X0) " Smo(X-mo — Xo) + G In(det(Q))

Ig
+ I[X~(t) —f(x_(),u(t), 8)]" QY x_(t) - (x_(1), u(t), 8)] dt +In(det(H,_))

to

(5.A.8)
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where

‘. = 8)(8‘]81)(1— (5.A.9)
T IXg=X-q
Minimizing
JiamLe=-Inp(Ym [0 -C, (5.A.10)

with respect to B and { ensures that the resulting values of X -, X_(t) and x_(t)
correspond to the mode of p(X,,Yn, [{) with respect to all possible values of the states,
whichisrequired for the LA to bevaid. Minimizing

I amLe = NIN[Ae(E)] +[ Y = 9(X -, U BT 7Y =9(X 1, Upy ,6)]

+(X=mo = X0) " Smo (X-mo —Xo) +alIn[det(Q)]

t
+ f[ﬁh(t) —F(x_(£),u(t),8)] Q7' [X- (1) - (x_(t),u(t),0)] dt + In[det(H )]

to

(5.16)
also ensures that the values of 8,x,,Q and X contained in {are at approximate ML

estimates. The problem with this approach is that an analytical expression for H, would

be difficult to derive, especially when the number of states becomes large. An iterative

method involving Equations (5.19) and (5.20) can be used to address this problem.

Appendix 5.B Derivation of Equations (5.19) and (5.20)

Taking partial derivatives of J auLe in Equation (5.16) respect to Q and S gives:
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'q
“g\%= Q"= [[%-(®) —f (x-(©),u(t), )T QY x- (1) ~F (x_(t), u(t),8)] dt Q~*
to

oH, -
oQ

+r(HL )

(5.8.1)
O AMLE _ e-1 Te-1 1 1 OH,
T—nz +[Ym_g(x~mlum!e)] > [Ym_g(><~m7LJm’e)]Z +tr(Hx~E)
(5.8.2)

Note that development of Equations (5.B.1) and (5.B.2) relies on the following

expressions for the derivative of the determinant of a matrix:>®

odet(Q) 1
20 =det(Q) Q (5.B.3)
aln[det(Hx~)] :tr(H-l 8HX~ (584)
aQ Q -

Theintegra term in J auie (Equation (5.16)) can be approximated as.
'q

J X)) = F (<), u(t), B)T QTX() ~ f (x(t), u(®), B)] dt =

to

Zq: [X(t42) = X(t) —f (X(t), u(t;), B)A] T QAL [X(ti.q) —X() — F (X(t), u(t;), )At]
i=0

(5.B.5)
Substituting Equation (5.B.5) into Equation (5.A.1), the likelihood function of the

complete data for adiscrete SDE systemiis:
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Jg =—Inp(Xy, Y [Q) =INCg+ nin[det(Z)]
+[Ym _g(xm’ Um’e)]TZ_l[Ym _g(xm1 Um , e)]
+ IN[det(S;0)] + IN[(Xmo = X(t0)) " Smo(Xmo — X0)] + 4 IN[det(Q)]

+i[x(ti+1)—x(ti)—f(x(ti),u(ti),e)At]TQ‘lAt‘l[x(tm)—x(ti)—f(x(ti>,u(ti),e)At]

i=0
(5.B.6)

For convenience, define z and h as:

W =X(t 1) = X(t;) — (x(t ), u(t;),B)At (5B.7)

h=w'Q w (5.B.8)

The second derivation of the symmetric quadratic matrix form h with respect to x(t;) is:*

0w oW T 1, OW 5B.9
8x(ti)8xT(ti)+2(5X(ti)) N (aX(ti)) 589

a°h

— =W’ Q' ®I
oy e e

where ® isthe Kronecker product.

The second derivative of Jy (Equation (5.B.6)) with respect to Xm(to) is:

023y |
- (o)X (to)|

= 2[(X~(ty) — X~ (to) — f (X~ (to), U(to), ©)AD) ' QT @ 1At ™

Xm0=XmO-~
(O Cm(t0) ). 08, | 01 (). UG )
OX 1 00%m (to) OXm (to)
«Q At (-l — of (Xm~(to), U(to), G)At))
6Xm (tO)
(5.8.10)

The second derivative of Jy with respect to x(t;) where 1<i<g-1lis:
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2
8x(t?)8i<_qf e QAL+ 2([x(t10) - ()~ (x- (t),u(t)). B)A] QT @ At ™

O A, | A () () B)A ¢

o(—

ax_(t; )ox (t) y+ a4 X~ (t)
a1 of (x_(tj),u(t;),8)At)
xQ At (-1 - X_(t) )

(5.B.11)
Note that for times when no measurements are available, the first term on the right-hand
side of Equation (5.B.11) disappears.
Taking the second derivative of Jy with respect to x(t,) gives:

0%J4

— - -d =510 at? 5.B.12
OX(tg)ox " (tq) +Q ( )

X=X~

The second derivativeof Jy for i=#j and j# j+1where 1<i<g-lis:

2
I PR (5.8.13)
ox(t;)ox" (t;) .
where 0 isthe XxX zero matrix.
The second derivative of J; with respect to x(t;) and x(ti+1) where 1<i<g-1lis:
2 . .
Pa | HKE)N0)8) Ty 5814

X(t, )X ()], ox(t;)

Equations (5.B.10), (5.B.11), (5.B.12), (5.B.13) and (5.B.14) show that the hessian matrix
has the following form:
H =>"+Q'D (5.B.15)

X_
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where |y is an identity matrix, D is a function of f and its derivatives and

X_(tg)yers X~ (tg) s U(to),s U(ty),8 AN AL:
D = D(f, X~ (tg)srrss X~ (tg),U(to) s U(tg ), 6,AL)

Taking the derivative of Equation (5.B.15) with respect to Q gives:

OH,
Q

=-DQ?

Rearranging Equation (5.B.15) to solve for D gives:
D=[H, -Z7]Q

Substituting Equation (5.B.18) into Equation (5.B.17) gives:

Mo s
8Q _[_ x~+ ]Q

Substituting Equation (5.B.19) into Equation (5.B.1) gives:

G_Jggw = Q™ - [0 1 (x(8) u(D)B)]TQ?[X(V) (x(1). (D), et

+tr(HZ [-H, +Z71Q™)

Simplifying Equation (5.B.20) gives:

t
&1?% —qQt- f[xa) —f (x(t),u(t),8)] T Q2[x(t) - (x(t), u(t),0)]dlt

to
—gQ t+r(HL)= Q™

Setting Equation (5.B.21) equal to zero and solving for Q gives:

t
Q =(tr(H;E)Z‘l)‘lf[xa)—f(x(t),ua),e)]Tl[xa)—f(x(t),u(t),e)]dt

to

Taking the derivative of Equation (5.B.15) with respect to 2 :
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(5.B.18)
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(5.8.20)
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azh =37 (5.B.23)

Substituting Equation (5.B.23) into Equation (5.B.2) and simplifying gives:

0J - - - N -
LAMLE _ n5 1 [Y, —g(X U O T =Y —9(X oy, Uy )1 = tr (H3L )= 72

0z
(5.B.24)
Setting Equation (5.B.24) equal to zero and solving for  gives:
= =Y =00 Uy O LY = 9K U, O] +tr(H )1 | (5.8.25)

The Hessian matrix in Equations (5.16), (5.B.22) and (5.B.25) are with respect to state
variables. However, IPOPT (and some other types of optimization software) reports the
Hessian matrix with respect to the decision variables, which include the B-spline
coefficients. The relationship between Hy- (i.e., the Hessian matrix with respect to Xq-
and Hg (i.e., the Hessian matrix with respect to B) is derived below.

Using the chain rule for partial derivatives to find the partial derivative of J; with respect

to matrix of B-spline basis functions B gives:

0y _ 03y OXm-(to) , 01 ox(4) 83y OX-(tg)

(5.B.26)
0B  Oxy-(tg) 0B ox_(t;) 0B ox_(t;) 0B
Finding partial derivatives from Equation (5.6):
ox~(t;)
2=V ot 5.B.27
=) (58.27)

Substituting partial derivatives from Equation (5.B.27) into Equation (5.B.26) gives:

e L S WAL PS5 WL S o (5.B.28)
OB OXm-(to) X~ (ty) X~ (tg)
Let
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o

= 5.B.29
B ( )
Using the chain rule for finding the partial derivatives of G:
ox_(t

0G_ G  pm-(to), 0G 0x-(), G (tg) (5.8.30)
0B  Ox,-(tg) 0B ox_(t1) oB ox_(t;) 0B

Substituting partial derivatives from Equation (5.B.27) into Equation (5.B.30):

oG oG oG oG

— = O(tg) + — < P(t) +-+ d(ty) (5.B.31)
0B 0Xpy-(to) oX_(ty) ox_(tg)

Substituting G from Equations (5.B.28) and (5.B.29) into Equation (5.B.31) gives the

second derivative of J; with respect to the spline coefficients:

Z_g ) a(;;;; - axm?(to) [axjil(to) o) +%(1t1)cp(tl) +m+%(tq)(D(tq)](b(to) '
axitl) [axjfl(to) () + ax(i‘](ltl) D(ty) +---+ axé,\](tq) D(t)]P(ty) +---+
ax._a(tq) [6)([?1“0) o)+ ax(ij(ltl) Plares axa._J(tq) Pl
(5B.32)

Simplifying Equation (5.B.32) gives:

2 2 2
Th o) — B 0Tt +0) B 0T (1) +
oBoB OXm~(tg) X m~(to) OXm~(tg)ox~(ty)
0% BN
+®(ty) L D(ty) + P(to) L

NP
X (to)ox] (tq) ot () WP o' (t)

AX_(ty)ox . (ty)
2
+oo+ D(tg) 0"

X (t)oxL (t)

OT(0) +++ Og) ——
OX_(tq) X m-(to)

DT (t,)++P(ty) G T(t,)
q Vox_(toxlty)

o (ty)
0%J,
P (ty)x " (1)

(5.B.33)
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In matrix form, Equation (5.B.31) becomes:

023, 0%y, 023, |
o7 OB10B; PB10Bcg
023, 9%y, 023,
BBy B5 | BalBe, |=[0t) Oty ... O(tg)x
0%J, 0%J, 0%J,
_chsaﬁl 63036[32 GBESJ
023, 023, 023,
X~ (t0)Xm~(to) X~ (to)xL (t,) OXm-(to)ox . (tq)
02J, 02J, 023,
X~ (to)OX L (1) OX_ (ty)oxT (t) X~ (ty)ax L (t)
0%J, 0%J, 0%J,
X (tq) A%~ (to) X~ (tq)OXL (ty) X (tq) XL (tq)

Or equivalently:

H,=WTH, ¥

which can be solved to giveH§<l~ ;

Hyt =WHaw'

d(t)
y d(ty)

D(ty)

(5.B.34)

(5.B.35)

(5.B.36)

During the parameter estimation process, the spline coefficients 3s will change, but the

spline function @g(t) are fixed functions.

Substituting H §(1~ from Equation (5.B.36) into Equations (5.B.22) and (5.B.25) gives:

t
Q =(tr(wHéwT)Z‘l)‘lf[xm—f(x(t),u(t),e)]Tl[X(t)—f(x(t),u(t),e)ldt

to
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S = n—l{[\(rn —9(X 1 Uy O T 1Yy —9(X _ iy, U, B)] +tr (WHEW ) } (5.20)
Appendix 5.C Derivation of LAMLE Objective Function when there are Different
Numbersof Measurementsfor Different Responses
In this section, LAMLE objective function (Equation (5.16)) and Equations (5.19) and
(5.20) are modified for the case where the number of measurements for the rth response

iSN;.
LAMLE objective function for the case where N, measurements are available for the rth
responseis.

Jiamee = Ne IS )+ Ny NG ) +[Ym =X Um 81T Z Y —9(X i, U ,0)]

+In[det(S o)1 + IN[(Xino = X0) " S Ximo —Xo)]
l

+qln[det(Q)] + [[x(t) —F (x(t),u(t),8) T Q {x(t) —f (x(t),u(t).B)] it
to

(5.C.1)

The equation for obtaining Q (Equation (5.19)) does not change in this case. An
expression for obtaining the rth measurement noise variance sr2 is developed in the
following.

Taking partia derivatives of J amLe (Equation (5.C.1)) with respect to s rzgives:

Nyp
> altma, ) — 91X~ (tm 1, i), Y(tma, ;). 0017
Aame - NS Ftr(HL oH x~)
os? s? (s7)° " os?

(5.C.2)

Taking the derivative of Equation (5.C.2) with respect to s r2 gives:
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= (5.C.3
os? (5P
Substituting Equation (5.C.3) into Equation (5.C.2) gives:
NI‘
N \ DL e, 1) = 9 (X (tmr, ), YCEmr, ), 0)1 .
LAMLE r_ =l 1
S - tr(Hy.) (5.C4)
os? sf (s75)° s5?
Setting Equation (5.C.4) equal to zero and solving for s rz gives:
2 v 2
Sy = Nr(Z[yr (tmr,j)_gr(X~(tmr,j)ay(tij)1e)] +tI’(H;(1~))_1 (5.C.5)

j=1
Finally, substituting H;(l~ from Equation (5.B.36) into Equation (5.C.5) gives an

expression for estimating the measurement noise variance for the rth response:

Ny
s =N Q1Y iy, i) = 9 (X=(tinr, ), Y (e, ). 0)1° +tr (WHEWT )™ (5.C.6)
j=1

229



