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Abstract

In this thesis appropriate statistical methods to overcome two types of problems that occur during

parameter estimation in chemical engineering systems are studied. The first problem is having

too many parameters to estimate from limited available data, assuming that the model structure is

correct, while the second problem involves estimating unmeasured disturbances, assuming that

enough data are available for parameter estimation. In the first part of this thesis, a model is

developed to predict rates of undesirable reactions during the finishing stage of nylon 66

production. This model has too many parameters to estimate (56 unknown parameters) and not

having enough data to reliably estimating all of the parameters. Statistical techniques are used to

determine that 43 of 56 parameters should be estimated. The proposed model matches the data

well. In the second part of this thesis, techniques are proposed for estimating parameters in

Stochastic Differential Equations (SDEs). SDEs are fundamental dynamic models that take into

account process disturbances and model mismatch. Three new approximate maximum likelihood

methods are developed for estimating parameters in SDE models. First, an Approximate

Expectation Maximization (AEM) algorithm is developed for estimating model parameters and

process disturbance intensities when measurement noise variance is known. Then, a Fully-

Laplace Approximation Expectation Maximization (FLAEM) algorithm is proposed for

simultaneous estimation of model parameters, process disturbance intensities and measurement

noise variances in nonlinear SDEs. Finally, a Laplace Approximation Maximum Likelihood

Estimation (LAMLE) algorithm is developed for estimating measurement noise variances along

with model parameters and disturbance intensities in nonlinear SDEs. The effectiveness of the

proposed algorithms is compared with a maximum-likelihood based method. For the CSTR

examples studied, the proposed algorithms provide more accurate estimates for the parameters.

Additionally, it is shown that the performance of LAMLE is superior to the performance of

FLAEM. SDE models and associated parameter estimates obtained using the proposed
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techniques will help engineers who implement on-line state estimation and process monitoring

schemes.
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0x state vector at the initial time t0

xm0 vector of measured values of initial conditions

Xm stacked vector of state values at measurement times
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βs,l lth B-spline coefficient for sth state trajectory

βc,1 first B-spline coefficient for concentration state trajectory

βs vector of spline coefficients corresponding to the sth state trajectory

γ constant defined in Equation (24)

δ (.) Dirac delta function
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Tε measurement noise for temperature (K)

εr normally distributed measurement noise for rth  measured state
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ζ vector of unknown parameters defined as TTTT ],,[ Qxθζ 0
η(t) X-dimensional continuous zero-mean stationary white-noise process

ηd(t) X-dimensional discrete zero-mean stationary white-noise process

ηC(t) continuous zero-mean stationary white-noise process for concentration

SDE
ηT(t) continuous zero-mean stationary white-noise process for temperature

SDE
θ vector of model parameters
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ρc coolant density (kg· m-3)

Σ covariance matrix for measurement errors defined in Equation  (3)

Sm0 covariance matrix for state variables at the initial time
2
rσ measurement noise variance for rth response
2
Cσ measurement noise variance for concentration
2
Tσ measurement noise variance for temperature

τ stacked vector of model and disturbance intensity parameters and the B-

spline coefficients τ=[ζT,ΒT]T)(tsφ vector of B-spline  basis function for sth state trajectory
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)(tΦ matrix of B-spline functions defined in Equation (8)

Subscripts
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T transpose
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e sum of the squared relative errors defined in Equation (4.57)

E{.} expected value

E/R activation energy divided by the ideal gas constant (K)

fr nonlinear function on the right-hand side of the SDE model for the rth state

f X-dimensional nonlinear mapping on the right-hand side of the SDE model

(Equation (4.1.a))
F reactant volumetric flow rate (m3·min-1)

Fc coolant volumetric flow rate (m3·min-1)
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Hessian matrix defined in Equation (4.27)
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S
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Z
BH
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S
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S
TβH

Z
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S
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S
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Z
xH ˆ

~xH ˆ
S

~xH ˆ
Z

~xH ˆ
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ΔHrxn enthalpy of reaction (J·kg-1·K-1)
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JAEM,CSTR AEM objective function for CSTR model defined in Equation (4.59)
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objective function defined in Equation (4.39)

objective function defined in Equation (4.30)

objective function defined in Equation (4.40)

kref kinetic rate constant at temperature Tref (min-1)

kr rate constant defined in Equation (4.33)

L likelihood function

M order of B-spline basis functions

n number of measurements

nC number of measurements for concentration of reactant A

Nr number of measurements for rth response

nT number of measurements for temperature

P number of unknown model parameters

p(.) probability density function

q number of discretization points for SDE model (Equation (4.13)

Q diagonal power spectral density matrix

Qd vector of disturbance intensities as Qd=[Q1,…,QX]T

QC process disturbance intensity for concentration (kmol2·m-6·min-1)
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Chapter 1

Introduction

1.1 Introduction

The goal of this thesis is to develop and test accurate and easy-to-use techniques for estimating

parameters in models of chemical engineering systems. Statistical methods are developed to

overcome two types of problems that commonly occur during parameter estimation in chemical

engineering models. The first problem occurs when complicated mechanistic models are

developed and there are too many parameters to estimate from limited available data.1-3 In this

situation, we assume that the model structure is sufficiently complicated so that it could describe

the underlying process behaviour accurately, if only accurate parameter values were available.

The second problem involves parameter estimation in simplified dynamic models of chemical

processes where the model structure may be imperfect and where unmeasured disturbances can

influence the process behavior.4,5 In this situation, there is often a considerable amount of data

available for parameter estimation, but model imperfections and stochastic disturbances should

be taken into account.5

The model equations associated with the first type of problem are often complicated ordinary

differential equations (ODEs) that are nonlinear in the model parameters.1,6 As a result, the

objectives for the first part of the thesis are to test the effectiveness of recently developed

parameter ranking and selection methods using a detailed mathematical model for nylon 66

production containing 14 ODEs and 56 parameters.

In the second type of problem, the model equations tend to be simpler, but stochastic terms are

introduced on the right-hand side of the differential equations to account for disturbances and
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model mismatch.4,5 The resulting equations are called stochastic differential equations (SDEs).

Accounting for model mismatch and disturbances during parameter estimation can lead to

improved parameter estimates and model predictions. Knowledge about the magnitude of the

mismatch and disturbances, may be helpful when implementing dynamic process models on-line,

using extended Kalman filters or other state estimators.4 Therefore, the objective for the second

part of this thesis is to propose practical methods for addressing difficulties that arise during

parameter estimation of nonlinear SDE models. Some of the benefits of the proposed methods

that may be attractive to developers of fundamental dynamic models are: i) simplicity of

implementation, ii) reliable estimates of model parameters, initial conditions and disturbance

intensities, iii) efficient handling of unknown initial states, iv) ability to handle unmeasured state

variables. In particular, estimates of disturbance intensities can provide modelers with

information about the degree of mismatch and the magnitude of unmeasured disturbances in their

models. This information will be helpful when implementing on-line state and parameter

estimation schemes for process monitoring and control. Three proposed techniques are developed

to address computational and implementation issues that are common using existing methods for

parameter estimation in SDEs. The proposed approaches are illustrated and tested using a

continuous stirred-tank reactor (CSTR) model with two stochastic differential equations and four

model parameters.5,7

1.1.1 Problem Definition

Effective mathematical modeling for chemical engineering processes involves building a system

of equations that is sufficiently complex to be able to simulate physical reality, yet simple enough

to give real insight into the process.1,8 In chemical engineering, fundamental models are derived

using material, energy and momentum balances, along with chemical and physical principals

including thermodynamics, kinetics and transport phenomena.
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Fundamental models require and lead to a better understanding of the process compared to

empirical models. Parameters in these models have physical meaning, which lead to a better

assessment and interpretation of system behaviour and can help to further process analysis.1

Fundamental dynamic models of chemical processes may involve the use of algebraic equations,

ODEs or partial differential equations (PDEs). These models contain a number of parameters

whose values are not known a priori. The determination of suitable values of model parameters is

the objective of parameter estimation.9 Fundamental models have a wide variety of application.

They can be used for simulation, design and optimization of chemical processes, training of

operators, model predictive control, increasing the quality of products, improving process safety,

process scheduling and production planning, reducing costs and obtaining better understanding of

process behaviour.1,6 Therefore, accurate models and reliable parameter estimation techniques are

vital for chemical engineers.

All steps for constructing fundamental models of chemical engineering systems are challenging,

but perhaps the most difficult task is estimation of model parameters. Parameter estimation

difficulties grow with the size and complexity of the system.10 Chemical engineering models may

have many reactions, many kinetic parameters, and many mass-transfer and thermodynamic

constants. Consequently, models that can fully describe a chemical process are usually nonlinear

and complex and have many unknown parameters.1 Another challenge in modeling chemical

processes is that experiments and measurements are often limited due to cost or inherent inability

to measure certain variables. Performing further experiments is expensive and may not be

feasible.1 As a result, the number of data values for parameter estimation may be limited and

some of the states are not measured. Some of the parameters may have little influence on the

model predictions making them impossible to estimate while some of the parameters may have

correlated effects with other parameters.11,12 Additionally, it is sometimes not clear whether all of

the model parameters can be estimated reliably from the available data, due to problems with

parameter estimability and identifiability.1,12 Thus, it is advisable to follow appropriate statistical
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procedures to overcome these problems. Chou and Voit10 reviewed parameter estimation

techniques and their challenges and suggested methods for overcoming data-related issues,

model-related issues and mathematical issues occur during parameter estimation in complicated

models.

In chemical processes, external fluctuations (or disturbances) can influence process behaviour.

Theses external disturbances reflect the random character of the environment and of system

inputs. For example, variations in external temperature or in impurity levels in feed streams to a

continuous stirred tank reactor are examples of common disturbances. Additionally, many

chemical engineering processes are not fully understood and are too complex to be modeled in a

completely deterministic fashion. Imperfections in the structure of a mathematical model are

sometimes treated using stochastic disturbance terms.13 Often, a full fundamental model would be

too complex for the intended use and it would be too expensive to do all of the experiments

required to estimate all of the parameters that would appear in the corresponding model

equations. Sometimes model users would like their models to include only the most important

phenomena, since simple models sometimes give better predictions than complicated models2,12

and simple models are more portable and easy to use. Thus, many systems of practical interest to

chemical engineer are better modeled using simplified fundamental models, especially models

that account for stochastic disturbances.

SDEs are differential equations in which the influence of various random disturbances appears

explicitly.8 To account for the effect of unmeasured disturbances, imperfections and model

mismatch, stochastic terms in ODEs are introduced. These disturbances can enter the model

equations nonlinearly, but additive linear disturbances are most widely used in models for

chemical processes.14

Consider the Multi-Input Multi-Output (MIMO) SDE model of the following form:

)()),(),(()( tttt ηθuxfx  (1.1.a)
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00 )( xx t (1.1.b)

)()),()()( mjmjmjmj tttt εθu,g(xy 
(1.1.c)

where x=[x1,…,xX] is an X-dimensional state vector, f=[f1,…,fX]  is an X-dimensional vector of

nonlinear mappings, u=[u1,…,uU] is a U-dimensional vector of input variables, θ=[θ1,…,θP] is a

P-dimensional vector of unknown parameters, y=[y1,…,yY]  is a Y-dimensional output vector

with YX . Y<X is the case that some of the sates are not measured. Assume that each response

variable (r=1…Y) is measured n times during the set of dynamic experiments. The set of times at

which measurements are available for the rth response (r=1…Y) is denoted by tmj (j = 1…n).

g=[g1,…,gY]  is a Y-dimensional vector of nonlinear mappings and ε=[ε1,…,εY]  is a Y-

dimensional vector of zero-mean random variables. Assume that these measurement errors are

independent so that their covariance matrix is:
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and η(t) is an X-dimensional continuous zero-mean stationary Gaussian white-noise process with

covariance matrix E{η(t1)η(t2)}=Q δ(t2-t1), where Q is the corresponding diagonal power spectral

density function with dimension X ×X :
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The diagonal elements of Q are sometimes referred to as disturbance intensities (i.e.

Qd=[Q1,…,QX]T).5 δ(.) is the Dirac delta function. A large disturbance intensity corresponds

either to large random shocks that influence the process or large mismatch between the true

process and the behavior of the differential equations. Note that the model (1.1) is different from

a traditional ODE model for a chemical process because it accounts for two types of noise: 1) the

stochastic disturbances indicated by η(t) and the traditional measurement noise indicated by
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)( mjtε , which appears in ODE models. The proposed methods in this thesis were developed

assuming that the covariance matrixes of measurement noise Σ and power spectral density

function Q are diagonal. However the proposed methods might also be used for cases where Σ

and Q are not diagonal since derivations of the proposed objective functions do not require the

matrixes Σ and Q to be diagonal. However, we have not performed any simulations to test

whether it would be difficult, in practice, to obtain reliable estimates of off-diagonal parameters

in these matrices. The proposed methods in this thesis were developed assuming that the

covariance matrixes of measurement noise Σ and power spectral density function Q are diagonal.

However the proposed methods might also be used for cases where Σ and Q are not diagonal

since derivations of the proposed objective functions do not require the matrixes Σ and Q to be

diagonal. However, we have not performed any simulations to test whether it would be difficult,

in practice, to obtain reliable estimates of off-diagonal parameters in these matrices.

In this thesis, parameter estimation techniques for continuous time SDE models (Equation 1) are

proposed. The reason for choosing continuous time models instead of discrete time models is that

chemical engineering models appear in continuous form. Additionally, parameters in continuous

models have physical meaning. It is also easier to interpret the model terms and parameters in

continuous models.

When simulating processes described by Equation (1.1), it is common to use a discrete-time

white-noise process to approximate the continuous stochastic process η(t), where the

corresponding discrete process is a series of random step functions with a short sampling interval

Δt, and covariance matrix:15
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21
21

0
)}()(E{

jj

jj
ttjtj

Q
ηη (1.4)

where j1 and j2 are positive integers.
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A typical discrete-time white-noise process is shown in Figure 1.1.5 The continuous-time white-

noise process η(t) is the limiting case of a discrete-time white-noise process where Δt →0. Since

the intensity of the model disturbance Q is not usually known a priori by the modeler, it should

be estimated along with the model parameters.

Figure 1.1 Typical discrete stochastic process disturbance associated with a stochastic

energy balance, obtained using Q1= 4 K2min-1 and Δt= 0.5 min

The existence of a solution of an SDE is ensured when globally Lipschitz, linear growth and

boundedness conditions are satisfied. These assumptions are described in detail by Liptser16 and

Bishwal.17

An alternative structure for expressing SDEs is:16,17
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Since the stochastic variable W(t) has a mathematical interpretation (W(t) is a Wiener process),

SDEs are often written in the differential form shown in Equation 4.16,17 Mathematicians regard

white noise as the time derivative of a Wiener process (or Brownian motion).17

Denote d as a vector of the diagonal elements of the noise covariance matrix (i.e., d=[ 2
1 ,…,

2
Y ]T). Let TTTT ],,[ dd ΣQθζ  be the vector of unknown parameters in the SDE model, which

includes the model parameters θ, along with disturbance intensities Q and the unknown noise

variance . Information about the measurement noise variance is often available from repeated

measurements or from sensor suppliers, but knowledge about the size of the imperfections and

disturbances is not usually available to modelers.  In some of the SDE parameter estimation

studies performed in this thesis, dΣ will be assumed to be known a priori so that TTT ],[ dQθζ  .

A survey of approaches to parameter estimation in dynamic models is presented below.  This

review is divided into two parts. The first part provides a literature review of parameter

estimation in ODE models with too many parameters to estimate from limited data. The second

part discusses available approaches for parameter estimation in SDE models.

1.2 Literature Review

1.2.1 Selecting Parameters for Estimation

When the number of data values available for parameter estimation is limited, modelers may face

estimability issues.1,10,18 Model parameters are estimable if their values can be estimated uniquely

from the available data. Therefore, for complex models, a parameter estimability assessment can

be helpful for assessing whether all of the model parameters can be estimated from the available

data.1-3,19 Simplifying the model by leaving some parameters at their initial values can resolve

estimabilty issues.1,10 Recently, statistical techniques have been developed to aid modelers in
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selecting important parameters to estimate in complex models.2,3,11,20,21 McLean and McAuley1

provide a comprehensive review of estimability and identifiability analysis techniques.

Estimability analysis10-12,22-26 ranks parameters from the most important to the least important.

Parameters are ranked based on the influence of each parameter on the predicted model outputs,

correlation between the effects of parameters, and uncertainties in initial parameter values.11

Estimating too many parameters from the available data leads to poor model predictions due to

increased variance, while estimating too few parameters and leaving the remaining parameters at

their incorrect initial guesses leads to poor model predictions due to increased bias.2,3 A mean

square error-based (MSE) criterion was developed by Wu et al.2,3 to select an optimal number of

parameters to estimate to obtain the best tradeoff between bias and variance. Use of this

methodology will be illustrated using the ODE model for nylon 66 production in Chapter 2.

1.2.2 Parameter Estimation in SDE Models

In this section, the problem of parameter estimation in SDE models is described. When

estimating parameters in SDE models, it is common to have differential equations that are

sufficiently simple and data sets that are sufficiently rich in information so that all of the

parameters can be estimated.  The difficulty in estimating the model parameters arises due to the

vector of stochastic errors )(tη and the unknown disturbance intensities Qd.

A relatively simple approach to estimate parameters in nonlinear SDE models is based on

Extended Kalman Filters (EKFs).27-29 Traditional Kalman filters combine process measurements

with dynamic model predictions for linear systems and track unmeasured states in the presence of

process disturbances and measurement noise.30,31 EKFs approximate nonlinear models by a series

of updated linear models, and use traditional Kalman filter calculations for the linearized

models.28,29 EKFs can fail to converge to satisfactory estimates of parameters and states when

the SDE model is highly nonlinear and the measurement times are far apart.32
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Other more complicated methods for parameter estimation in SDEs using discrete observations

fall into two main categories.33 In the first category, a moment-matching method is used, while in

the second category an approximate maximum likelihood is used.34 Moment-matching methods

do not depend on assumptions about the probability density functions of the measurements given

the parameters. A problem that is common with moment-matching estimators is that they require

calculation of higher-order moments in order to be efficient. As a result, the focus in this thesis is

on the development and implementation of approximate ML methods.

Discretization of the SDE model is helpful when developing parameter estimation techniques for

SDE models using ML methods.  Using an Euler approximation Equations (1.1.a) and (1.1.b)

become:

tttttftttt iiiiii Δ)(Δ)),(),(()()()Δ( 11111   dηθuxxxx (1.5a)

00 )( xx t (1.5b)

where x(ti) is the value of the state variable at q uniformly-spaced time points ti , i=0,..,q and ηd

is a discrete white noise vector. The values of all X state variables at the q discretization times

can be stacked in a vector denoted by TT
q

T tt ])()([ 1 x,,xXq  . The stacked vector of

measurements at the measurement times is denoted by ])()([ 1
T

mn
T

m tt y,,yYm  . The

corresponding state values, inputs and random errors at the measurement times are

])()([ 1
T

mn
T

m tt x,,xX m  and ])()([ 1
T

mn
T

m tt u,,uU m  . Note that measurements and

states are assumed to be sampled at different times. Measurements are sampled at tmj (j = 1…n)

while states are sampled at ti (i=0,..,q).

The likelihood function of the parameters given the measurements is defined as35:

)|()( ζYY|ζ mm pL  (1.6)
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In ML methods, the likelihood function of the parameters given the observed data )( mY|ζL is

maximized to estimate ζ, which contains the unknown model parameters θ, the measurement

noise variances d and disturbance intensities Qd:

)(maxˆ
m

ζ
Y|ζζ Lrga (1.7)

ML estimators can result in biased estimates when data sets are small. ML techniques also have

several implementation challenges. A major challenge is that an appropriate expression for the

probability density function )|( ζYmp in Equation (1.7) is difficult to derive when some of the

states are not measured (i.e., Y<X). When measurements are not available for one or more of the

state variables, ML estimation becomes more complicated because of the need to estimate the

unmeasured states.35,36

Numerous methods have been proposed for approximation of the likelihood function in SDE

models. Some of these techniques are: simulated maximum likelihood methods (such as Markov

Chain Monte Carlo (MCMC) techniques),37-40 expansion of the likelihood function using Hermite

polynomial basis functions,41,42 solving the Fokker-Planck equation numerically43-45 and recursive

maximum likelihood parameter estimation using polynomial chaos theory.46 Benefits and

drawbacks of these techniques are summarized by Lindstrom.34 Simulated maximum likelihood

methods (SML) developed by Pederson47 aim to estimate a probability density function by

simulation. Marchov Chain Monte Carlo (MCMC) methods are SML methods that numerically

approximate a probability density function by drawing samples from it.37,38 Several MCMC

algorithms have been developed.37-39,48-53 The most popular one is the Metropolis-Hastings (M-H)

algorithm.54 A drawback of SML methods is that they are computationally expensive.

An approximate ML method that is computationally less expensive than MCMC methods was

proposed by Kristensen et al.55 In Kristensen’s method, a Gaussian distribution is assumed for the

likelihood function and the mean and variance of the likelihood function are estimated using an

Extended Kalman Filter (EKF). Easy-to-use CTSM (continuous-time stochastic modeling)
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software was developed based on Kristensen’s method and is used in simulation studies later in

this thesis.27

Poyton et al.56 developed an iterative principal differential analysis (iPDA) method to estimate

model parameters θ in ODE models and later showed that these methods are appropriate for

SDES if the disturbance intensities and noise variances are known.5 iPDA uses B-splines to

approximate the trajectories for the measured and unmeasured states. In the first step of iPDA,

the B-spline coefficients β are estimated by fitting the B-splines to the observations using the

most recent estimate of θ and the following objective function:

txf
dt

dx

txf
dt

dx
txtytxty

q

q

t

t

XX
X

X

t

t

n

j
miYmiY

n

j
mimi

d)],([

d)],([)]()([)]()([min

0

0

2
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2
~11
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1

1

2
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1

2
~11


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θ
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







(1.8)

where 1 ,…, Y are  positive weighting factors. )(~ tx s is the approximate sth state trajectory

computed from56,57:





sc

l
lslss tφβtx

1
,,~ )()( for s=1,…,X (1.9)

The subscript ~ is used throughout this thesis to indicate a state trajectory that is approximated

using B-splines. ls , is a B-spline coefficient and )(, tls is the corresponding B-spline basis

function. In matrix form, Equation (1.9) is:

ΒΦx ~ )()( tt  (1.10)

where )(tΦ is a matrix of spline functions:
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and


















X

1

β

β
Β  (1.12)

In the second step of iPDA, the model parameters θ are estimated by minimizing the objective

function in Equation (1.13) using the most recent values of :

txf
dt

dx
txf

dt

dx qq t

t

XX
X

X

t

t

d)],([d)],([min
00

2
~

~2
~11

~1
1   θθ

θ
 

(1.13)

iPDA iterates between the smoothing step (Equation (1.8) with the most recent values of θ) and

the estimation  step (Equation (1.13) with the most recent values of ) until the solution

converges to good spline fits and good parameter values. Varziri et al.5 showed that the iterative

minimization of Equations (1.8) and (1.13) can be performed using a single step by

simultaneously minimizing objective function (1.8) using the joint vector of the model

parameters and the B-spline coefficients as decision variables. The iPDA objective function in

Equation (1.8) contains model penalty terms in addition to the usual sum-of-squared-error terms.

The model penalty terms account for model mismatch and process disturbances. In addition to

controlling the smoothness of the spline functions, the penalty terms in Equation (1.8) ensure that

the fitted B-spline curve will approximate the behavior of the SDE.

The main difficulty of iPDA is determining appropriate values for the weighting factors, which

Poyton et al.56 selected by trial and error. Varziri et al. 5demonstrated that maximizing

)|( θY,X mqp is equivalent to minimizing the iPDA objective function proposed by Poyton et

al.,56 when model mismatch results from additive stochastic white-noise disturbance inputs.

Moreover, Varziri showed that the corresponding weighting factors in the iPDA objective

function should be:
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s

sm
s Q

2
,

  (1.14)

When a particular state is not measured, the corresponding sum-of-squared-error term does not

appear in objective function (1.8) and a very large value of s is appropriate for the corresponding

model-based penalty term, because 2
,sm becomes infinite. Using a large weighting factor ensures

that the optimizer will select the spline coefficients so that the differential equation for the

unmeasured state is satisfied with only a small amount of error.  For the measured states, the

values of s from Equation (1.14) ensure an appropriate tradeoff between B-spline trajectories

that match the data and that match the behavior of the differential equations. This extended iPDA

technique was referred to as approximate maximum likelihood estimation (AMLE) by Varziri et

al.5 since they maximized an approximation to the likelihood function.

The main drawback of AMLE is that its application requires knowledge of the value of the

stochastic process disturbance intensities Qd, which are not usually known to the modeler.

Varziri et al.58 modified the formulation of AMLE using a technique developed by Heald and

Stark 59 for cases in which measurement-noise variances Σ d are known to the modeler but the

process disturbance intensities Qd are not known, and proposed a two-step optimization

algorithm to obtain θ and Qd. In this algorithm, the inner optimization problem minimizes the

AMLE objective function with respect to the model parameters and B-spline coefficients using

an assumed value of Qd. An outer optimization problem selects Qd to ensure that the estimated

measurement noise variances 2ˆ r are close to the known values 2
r as follows:
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or equivalently:
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where H is the Hessian matrix of the AMLE objective function with respect to the state variables

evaluated at B̂ and θ̂ obtained from the inner optimization and I is the identity matrix. The main

drawback of this method is that it cannot be used for cases where some of the measurement noise

variances are unknown. Furthermore, objective function (1.15) was selected arbitrarily by Varziri

et al. to ensure that the estimated noise variances are close to the assumed noise variances.  No

theoretical justification for Equation (1.15) was provided.

An early ML algorithm for parameter estimation in SDE models is the Expectation Maximization

(EM) algorithm proposed by Dempster et al.60. The idea underlying the EM algorithm is that

calculating the probability density function of the complete data )|,( ζYX mqp is easier than

calculating the probability density function of observed data given the parameters )|( ζYmp . The

EM algorithm has two steps. In the first step, referred to as expectation or E step, the expected

value of the probability density of the complete data is estimated based on current values of the

parameters (from the kth iteration or the initial guesses if k=0):61

qmqmq

mmqX

Xζ,YXζYX

ζYζYXζζ
q

d)|()]|,(ln[

},|)]|,({ln[),(





k

kk

pp

pER
(1.17)

In Equation (1.17), Xq below the expectation symbol indicates that this expected value is

computed over all possible values of the discretized state variables.

In the second step, referred to as the maximization or M step, the expected value evaluated in the

first step is maximized using:

),(maxargˆ
1 kk R ζζζ

ζ
 (1.18)

In linear cases with Gaussian noise, explicit recursive equations for computing the required

density functions have been developed.62 However, for nonlinear SDE models, no explicit

solutions for the E step and M step are available.50 Several approaches have been proposed by

researchers to approximate the E and M steps of the EM algorithm. For example, extended
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Kalman filters (EKFs) have been used for approximating both the E and M steps and 63-66

Sequential Monte Carlo (SMC) methods, also known as particle filter methods, have been used

for approximating the E step.37,49,50,53,67-69

SMC methods are effective parameter estimation tools that do not require assumptions about the

form of the density functions, but the number of mathematical operations required in each

optimization step for a typical SMC method is 8qn(X3+Y3).48 The complexity of the optimization

problem increases rapidly as the number of states, measurements, and parameters increases.

Hence, the optimization procedure can be very slow and computationally prohibitive.50,69,70

Imtiaz et. al.71 discuss some implementation issues for SMC methods and Kantas et al.72 present

an overview of a variety of SMC methods and discuss their advantages and disadvantages.

Recently, Chitralekha et al.73 compared the performance of three SMC-based EM algorithms: the

particle smoother, the unscented Kalman smoother and the extended Kalman smoother.

Linearization-based EKF methods for approximating the EM algorithm are beneficial because

they do not require MC sampling from probability density functions, but they can give biased

parameter estimates in situations where the nonlinearities are strong.32

1.2.3 Summary of Literature Review

In summary, one type of difficult parameter estimation problem encountered by chemical

engineers results from complicated mechanistic models with too many parameters and limited

available data.  In these situations, statistical techniques have been developed to aid modelers in

selecting important parameters to estimate.1 Techniques that have been developed for parameter

ranking11,12 and for determining the appropriate number of parameters to estimate from the

ranked parameter list so that the best possible predictions can be obtained. These methods have

been used for a variety of chemical and biochemical process models, but they need further testing

on larger-scale practical models with >10 differential equations and ~50 parameters.  This is one

of the objectives of the modeling and parameter estimation work described in Chapter 2.
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A second type of difficult parameter estimation problem occurs when stochastic terms are

included in differential equation models to account for possible modeling imperfections and

process disturbances. Currently, the most popular methods for estimating the parameters of these

SDE models are relatively simple EKF methods and more complex ML methods. For highly

nonlinear models, state and parameter estimation using EKFs may perform poorly due to bias and

lack of convergence. Maximum likelihood estimation (MLE) has been adopted because they can

provide asymptotically consistent and efficient estimates of the model parameters.36 However,

mathematical expressions for the conditional density functions in ML algorithms typically

include high-dimensional integrals that are not amenable to analytical simplifications. Hence, an

approach that approximates the high-dimensional integrals through an iterative Markov Chain

Monte Carlo (SMC) method is sometimes used. The difficulties of parameter estimation in SDE

models grow with the number of states and parameters in the system. None of the current ML

methods are straightforward, and even for systems of modest size. All can lead to problems with

slow algorithmic progress toward the minimum, lack of convergence, and computational

complexity.36,48-50,71 The recently developed AMLE method of Varziri et al. uses B-spline basis

functions to approximate the state trajectories when performing approximate ML parameter

estimation. Extension of these methods to more difficult problems (i.e., when the noise variances

and disturbance intensities are unknown) is explored in Chapters 3 to 5.

The material in Chapter 2 has been published in Macromolecular Reaction Engineering and the

material in Chapter 3 has been accepted for publication in the Canadian Journal of Chemical

Engineering. The material in Chapter 4 has been submitted to Industrial and Engineering

Chemistry Research and the material in Chapter 5 has been prepared for submission to a journal.

To keep each chapter self-contained and to keep the presentation in this thesis close to the

original manuscripts, some information repeated appears in multiple chapters. Most the repetition

is associated with the defining the SDE model equations and associated notation and in

presenting the CSTR model used in the simulation studies. Note that the abstracts for these
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chapters have been revised slightly when compared with the original manuscripts in an effort to

better describe the links between the various chapters.
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Chapter 2

Kinetic Model for Non-Oxidative Thermal Degradation of Nylon 66

H. Karimi, M.A. Schaffer, K. B. McAuley

2.1 Abstract

In this section, the use of some traditional parameter estimation and selection techniques

are illustrated in a complex ODE model when there is insufficient data to estimate all the

parameters and unknown initial conditions. An improved kinetic model was developed

for thermal degradation of molten nylon 66 to illustrate and test estimation strategies for

estimating parameters in complicated models with too many parameters and limited data

available for parameter estimation. One objective of this modeling work was to

determine whether all of the parameters could be estimated from available data and if

not, to obtain the best possible estimates of the parameters that should be estimated.

Elimination of well-known or unimportant model parameters avoids numerical problems

during parameter estimation. Estimating too many parameters from the available data can

lead to poor model predictions due to increased variance. Estimating too few parameters,

and leaving the remaining parameters at their incorrect initial guesses, can lead to poor

model predictions due to increased bias. The proposed model, which describes the effect

of melt-phase water concentration on degradation, matches the data well with typical

errors of 6.1% and 2.9%, respectively, for amine ends (A) and carboxyl ends (C) and

4.3%, 27.2% and 29.4%, respectively, for evolution rates of CO2, NH3 and

cyclopentanone (CPK). This chapter has been published as a journal paper in

Macromolecular Reaction Engineering 6, 93-109, 2012.
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2.2 Introduction

Nylon 66 is an important thermoplastic polymer. Because of its physical properties such

as strength, toughness, stiffness, processability and resistance to heat, it has a wide range

of applications from resin to fiber and film.1 Nylon 66, or poly(hexamethylene

adipamide), is produced from the condensation of adipic acid and hexamethylene

diamine. The tendency of adipic acid residue segments to cyclize is one of the most

important factors that causes thermal degradation in nylon polymerization reactors.2

Thermal degradation reactions are unwanted side reactions that result in changes in the

balance of reactive end groups, evolution of gaseous degradation products, and

branching, which can lead to gelation.These reactions tend to occur at the high

temperatures used during the final finishing stages of industrial nylon 66 production,

where high temperatures and low water concentrations are used to achieve high

molecular weight.2 Degradation eventually affects final product quality by changing

important properties such as processability, dyeability, physical properties and colour of

the nylon product.1 Note that this research is concerned with thermal degradation, rather

than oxidative degradation, because oxygen was carefully excluded from the lab-scale

reactor (see Figure 2.1) used to obtain the data4-6 for this model study and is excluded

from industrial nylon polymerization reactors.
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Figure 2.1 Simplified schematic diagram of polymerization/degradation reactor system.

Details concerning temperature control, mixing and polymer sampling are provided by

Schaffer et al.3

For each run, approximately 1.8 kg of additive-free nylon 66 polymer pellets were used

as received from DuPont Canada with an amine end-group concentration of 58.8

mmol·kg-1, and a carboxylic acid end-group concentration of 94.5 mmol·kg-1. The pellets

were melted via simultaneous heating of the reactor walls and circulation of the

preheated mixture of nitrogen and steam through the reactor vessel for approximately 1

h. After the temperature in the center of the reactor had reached a value near 200 °C,

impeller drive was started with a set-point value of 20 rpm. After the melt temperature

reached the desired setpoint value (approximately 3 h), collection of polymer and gas

samples for subsequent analysis began.  Temperatures were measured in two places: in

the center of the reactor vessel and at the reactor wall.  The differences in these two
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measurements varied between 2 and 11 ˚C in different runs. The reported run

temperatures (see Table 2.4) are averages of these two temperatures. Steppan et al. 7

developed the only published model for the thermal degradation of nylon 66 and used

literature data for parameter estimation. They developed a minimum subset of the

degradation reactions, based on their knowledge at that time, and reactions suggested by

Wiloth 8 to describe end-group concentration changes and the evolution of NH3 and CO2,

and then fitted their kinetic constants to data. Their mechanism, shown in Table 2.1,

accounts for a decrease in the concentration of carboxylic acid end groups and an

increase in amine end-group concentration with time, as well as polymer chain branching

and evolution of CO2 and NH3. Although the model by Steppan et al.7 is in agreement

with the data they used, it does not account for the formation of cyclopentanone and for

branches that result from amine end-group condensation (Reactions (a.7) and (a.8) in

Table 2.2). Pimentel and Giudici11 used Steppan’s kinetic scheme and rate constants to

develop a mathematical model for nylon 66 production in a two-phase continuous tubular

reactor, followed by a continuous stirred tank, and validated their model using industrial

data.
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Table 2.1 The kinetic scheme proposed by Steppan et al.7 to account for polyamidation and

thermal degradation in melt-phase nylon 66

(a.1)

C A L                            W

(a.2)

C                                                          SE                W

(a.3)

2L SE                         A

(a.4)

SE                                      SB1                  CO2

(a.5)

SB1 2A SB3            2NH3

.
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Table 2.2 The supplementary kinetic scheme for thermal degradation in melt phase nylon

66 were proposed by Schaffer9 and McAuley.10

(a.6)

SB1 W                             A                   CPK

(a.7)

A                       A                                   A2                    NH3

(a.8)

C                       A2 L2                      W

(a.9)

SB1                       A                                       SB2             NH3

(a.10)

SB2                      A SB3                NH3

(a.2.R)

SE                W                                           C

In an effort to learn more about degradation reactions, Schaffer et al.4 used the reactor

system in 2.1 to collect data for end-group concentrations, water content and branch

concentrations in molten nylon 66, as well as information about off-gas evolution rates.

Schaffer9 and McAuley10 used these data to develop a more comprehensive kinetic
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scheme for nylon 66 polycondensation under conditions of high temperatures and low

water concentrations, as shown in Table 2.2. Values for amidation rate constants were

determined from experiments involving nylon 612.5 Nylon 612, which is produced using

dodecanoic acid in place of adipic acid, is more thermally stable than nylon 66. Reactions

(a.2) to (a.5) in Table 2.1 can only occur in nylons that are produced using adipic acid.

From their nylon 612 data, Schaffer et al.5 were unable to determine whether the order of

the polycondensation reaction was first-order with respect to carboxyl end-groups or

second-order as had been suggested by Mallon et al.12 Kinetic rate constants were fitted

twice, using the different assumptions about the reaction order. Schaffer’s data5 could be

described using either assumption. Unfortunately, a second-order influence of carboxyl

ends on amidation rate was assumed in a subsequent nylon 66 degradation model.9

Subsequently, Zheng et al.6 performed additional nylon 612 experiments, using polymer

samples with different relative concentrations of carboxyl and amine ends and

determined that the polycondensation reaction is first-order in carboxyl ends, rather than

second order. As a result, predictions and parameter estimates from Schaffer‘s model9

may be unreliable if applied at conditions differing greatly from those at which

Schaffer’s data were collected. Varziri et al.13 recently performed an additional parameter

estimation study for nylon 612, using the kinetic data of Zheng et al.6 and additional

reaction equilibrium data.14

Recently, Schaffer et al.4 compared their nylon 66 degradation data with predictions from

Steppan’s model and found that there is a significant discrepancy between Steppan’s

model predictions and Schaffer’s degradation data. As a result, Schaffer et al. proposed

additional reactions to be considered in the overall reaction scheme, as shown in Table
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2.2 and Table 2.3. Table 2.2 provides reactions that were included in the original model

by Schaffer.9

Table 2.3 Supplementary reactions for thermal degradation of nylon 66 in a melt phase

proposed by Schaffer et al.4

(a.6.R)

A                    CPK                        SB1                    W

(a.11)

SB1                        CPK                                   P244int            W

Reactions in Table 2.3 are additional reactions required to explain the formation of

pyridine 244 ends, which were observed in the nylon 66 degradation products after

Schaffer’s initial degradation model had been developed.4 We did not include one of the

reactions (SE + W  A + CPK + CO2) proposed by Schaffer et al.4 in the current

mechanism because it is the sum of reactions (a.4) and (a.6). As a result of the large

number of reactions in Table 2.1, Table 2.2 and Table 2.3, a new model that properly

accounts for degradation of nylon 66 will contain a large number of kinetic parameters.

Data for estimating these parameters are available from six dynamic experiments that

were conducted using the conditions shown in Table 2.4.4
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Table 2.4 Experimental run conditions4

Run Temperature [˚C] Pw [kPa] Time duration [h]
1 281 92 9.1
2 275 57 10.6
3 285 93 6.6
4 292 59 3.1
5 286 23 2
6 290 101 (lowered to 23 at 3.3 h) 4.5

Pw, in column three, is the partial pressure of water in a nitrogen/water vapour mixture

that Schaffer bubbled through the molten nylon. He used different temperatures and

moisture levels in the six experiments to investigate the influence of water and

temperature on degradation rates. A constant water partial pressure was used for the

entire duration of Runs 1 to 5. In Run 6, pure steam was fed at the beginning of the

experiment (Pw=101 kPa) and then a lower water partial pressure was used for the

remainder of the run. Literature data from earlier studies8,15,16 are not suitable for

parameter estimation with this full reaction scheme because key information, such as the

moisture level in the molten nylon is not provided in these data sets.

It is not clear whether all of the model parameters can be estimated reliably from the

available data. Recently, statistical techniques have been developed to aid modelers when

estimating parameters in complex models using limited data.17-21 The objective of these

estimability analysis and parameter selection techniques is to aid the modeler in

determining which model parameters should be estimated from the available data, and

which parameters should be remain at their initial values. First, the model parameters are

ranked from most estimable to least estimable, using a sensitivity-based technique.17,18

Parameters that appear near the top of the ranked list are those that have the most

influence on predictions of the data. Parameters appear near the bottom of the list
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because they have little influence on the model predictions, because their effects are

correlated with those of parameters that appear higher on the list, or because their values

are already precisely known. Estimability analysis has been used successfully to rank

parameters in models for a number of different chemical and biological reaction

systems.22-28

In the current work, a mean-squared error criterion is used to determine the appropriate

number of parameters to estimate from the ranked list.19,21 Estimating too many

parameters from the available data can lead to poor model predictions due to increased

variance. Estimating too few parameters, and leaving the remaining parameters at their

incorrect initial guesses, can lead to poor model predictions due to increased bias.20 One

objective of the current modeling work is to determine whether all of the parameters can

be estimated from Schaffer’s4 data and, if not, to obtain the best possible estimates of the

parameters that should be estimated.

In this work, a dynamic kinetic model is developed to explain Schaffer’s experimental

data, which were obtained at relatively high temperatures (275 to 292 ˚C) and low water

concentrations (10 to 80 mmol kg-1).4 Estimability analysis17,18,27 and a mean square

error-based (MSE) criterion19,21 are used to determine which parameters can be estimated

from the available data. Finally, the parameters and unknown initial conditions are

estimated and model predictions are compared with experimental data. The resulting

model will be a useful tool for engineers who wish to design improved equipment or

operating strategies for the final stages of nylon 66 production.
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2.3 Model Development

2.3.1 Reaction Pathways

Many chemical reactions have been described in the literature to explain the mechanism

of thermal degradation of nylon 66.2,29,30 Inclusion of all or a substantial portion of these

proposed reactions in a kinetic model is not feasible because sufficient experimental data

are not available to estimate of all of the rate and equilibrium parameters that would be

required in such a complex model. We therefore adopt the goal of developing a

simplified, reasonable kinetic model that is capable of describing the experimental data

of Schaffer et al.4

In Tables 2.1, 2.2 and 2.3, convenient symbols are shown below the structural diagrams

for the chemical species that are considered in the model (e.g., C for carboxyl end, A for

amine end, L for amide link, W for water, SE for stabilized end, CPK for cyclopentanone

and SB1, SB2 and SB3, respectively, for Schiff base groups attached to one, two or three

chains).

The experimentally-observed phenomena to be accounted for by the model include:

decreases in carboxylic acid end-group concentrations with time; increases in amine end-

group concentrations with time; evolution of ammonia, carbon dioxide and

cyclopentanone; branching of the polymer resulting in 2,5-di(6-aminohexyl)

cyclopentantone and bis-hexamethylene triamine (BHMT) in the polymer hydrolysate,

and the formation of pyridine 244 ends. Note that the data set of Schaffer et al.4 includes

measurements of gas evolution rates from samples collected over the course of each

experiment.  End-group and branch point (BHMT only) concentration measurements are

also available from polymer samples collected at various times during each dynamic

experiment.
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The proposed model uses a reaction scheme that consists of reactions (a.1) to (a.4), (a.6)

to (a.10), (a.2.R), (a.6.R) and (a.11) shown in Table 2.1 to Table 2.3. Reaction (a.5) in

Table 2.1 is not required, because it appears as two separate reactions ((a.9 and (a.10)) in

Table 2.2. Reaction (a.1) is the desired step-growth polycondensation reaction, which

consumes carboxyl ends and amine ends react to form amide links water. Reaction (a.2)

is a cyclization reaction of the carboxylic acid end to form a stabilized end and water.

Reaction (a.3) is a similar reaction that occurs when a polymer chain is broken to form a

stabilized end an amide end. The stoichiometric coefficient of 2 associated with the

amide links in reaction (a.3) does not mean that two amide links actually react with each

other. Rather, it reflects the fact that two amide links (with molecular weight (MW) 113

g mol-1) are consumed by reaction (a.3) and should be accounted for in the stoichiometry.

Reaction (a.4) is an intramolecular reaction wherein a stabilized end group forms a Schiff

base end and CO2 is generated. The evolution of significant quantities of cyclopentanone,

which was not included in the Steppan model, is accounted for by reaction (a.6).

Hydrolysis of Schiff bases is a well-known reaction that has been studied previously.31

Branching reactions (a.7) and (a.8), are included in the model to account for the

appreciable concentrations of BHMT detected in the hydrolyzed polymer samples.

BHMT is produced from the hydrolysis of both the secondary amine unit (A2) formed by

reaction (a.7) and the tertiary amide branch point (L2) formed in reaction (a.8). Reaction

(a.8) is a reversible polycondensation reaction that leads to branch formation. Reactions

(a.9) and (a.10) show a two-step branching process in which a Schiff base branch point

(SB3) is formed. Reaction (a.11) shows the production of an intermediate species, which

results in the formation of pyridine 244 ends. Note that Schaffer et al.4 used GC-MS (gas
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chromatography combined with mass spectrometry) to detect hydrolysis products that are

consistent with SB3 branches and with Pyridine 244 ends in the polymer. Unfortunately,

no measured concentration values for these species are available for parameter

estimation. Rate expressions for the pertinent reactions are shown in Table 2.5. All

reactions are assumed to be elementary. Reactivities of functional groups are assumed to

be independent of the length of the molecule to which they are attached, in accordance

with Flory’s32 equal reactivity hypothesis.

Table 2.5 Reaction rate expressions for the proposed model

       







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





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eqK

[SE][W]
CkR

2
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(b.2)

 LkR 33  (b.3)
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     
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
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(b.7)

   ASBkR 199  (b.8)

   ASBkR 21010  (b.9)

   CPKSBkR 11111  (b.10)



39

2.3.2 Simplifying Assumptions

In the development of the model equations in Tables 2.6 and 2.7, we assume that the

solubilities of NH3 and CO2 are negligible in the molten polymer, and that each species

appears in the vapour phase as soon as it is produced. CPK, however, is able to

accumulate in the liquid phase where it can either be consumed in reactions (a.6.R) and

(a.11) or it can diffuse into the gas phase.

Table 2.6 Differential equations for melt-phase species concentration changes with time and

equations for evolution rates of degradation products for nylon 66

 
172 RR

dt

Ad
 (c.1)

 
182 RRR

dt

Cd
 (c.2)

 
31 2RR

dt

Ld
 (c.3)

 
m,WRRRRRR

dt

Wd
 111862

(c.4)

 
423 RRR

dt

SEd
 ((c.5)

 
m,CPKRRR

dt

CPKd
 116

(c.6)

 
41096

1
RRRR

dt

SBd
 (c.7)

 
109
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dt
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 
10

3
R

dt

SBd
 (c.9)

 
87
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dt

Ad
 (c.10)

 
8

2
R

dt

Ld
 (c.11)

 
11

244
R

dt

endPd
 (c.12)
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Mass-transfer expressions (d.9) and (d.10) in Table 2.7 are used to account for transfer of

both water and CPK from the molten polymer to the gas phase. In Equation (d.3) and

(d.4) the equilibrium water concentration in the polymer [W]eq that would be in

equilibrium with the gas phase, is computed from the water partial pressure using a

correlation based on Flory-Huggins theory34. Thermal degradation of the polymer is

assumed to have no effect on the equilibrium melt-phase water solubility. Since the gas

bubbles that are fed to the reactor contain only water and nitrogen, the concentration of

CPK in the gas phase is small. As a result, we assume that [CPK]eq in Equation (d.10 ) is

zero.

Measurement of the amine end-group concentration [A] was performed by titration.

However, since the Schiff base species SB1 and the secondary amine species A2 are

basic groups that may also react with acid, we assume that [A]meas, the value of the amine

end-group concentration determined by titration, is actually the sum

[A]+[SB1]+[A2]+[P244]. This assumption is supported by the work of Reimschuessel

and Dege35, Nissen et al.36 and Curran and Siggia.37 We assume that species SB2 and

SB3 that appear along polymer chains, rather than at the ends, do not influence the

titration results, so [SB2] and [SB3] are not included in the expression for [A]meas. We

further assume that SE groups are not titrated in either the acidic or basic end-group

analyses on the polymer samples. As a result the concentrations [SB2], [SB3] and [SE]

are predicted by the model, but do not directly influence any of the measurements used

for parameter fitting. The measured value of the concentration of BHMT in the

hydrolyzed polymer, [BHMT], is assumed to be equal to the sum [L2]+[A2], because

both of these species are expected to produce BHMT when the polymer is hydrolyzed.
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Table 2.7 Algebraic expressions required in the model

Equation Source Equation Number

CT

T
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Schaffer et al.5 (d.9)

    )CPK-CPK(akR eqL,CPKm,CPK 
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42
RNCO  (d.11)

71093
RRRN NH  (d.12)

The activation energy for secondary amide formation in reaction (a.9) is assumed to be

the same as that for tertiary amide formation in reaction (a.10). This approximation has
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been made to reduce the number of model parameters. The melt pool in the reactor is

assumed to be well-mixed at all times. Note that no polymer samples were taken during

the first 30 minutes of mixing in any experimental run, to ensure that this assumption

would be reasonable.

2.3.3 Kinetic Model

Table 2.6 provides the 14 ordinary differential equations (one for the melt-phase

concentration of each species tracked). Algebraic equations for evolution rates of CO2

and NH3 are provided in Table 2.7, along with other expressions required to solve the

model equations. The reference temperature used in the Arrhenius expressions ((d.7) and

(d.8)) was chosen to be To=558.15 K, which is the average temperature for the six

experimental runs in Table 2.4. Note that a different reference temperature Tr used in

Equation (d.5) and (d.6) was set at 549.15 K, which was the average temperature that

Schaffer and Zheng used in their nylon 612 polycondensation studies.5,6

2.3.4 Initial Conditions

In each experimental run, measured values of [A] and [C] for the first samples were

different than the corresponding measurements for the polymer pellets that were initially

fed to the reactor. This change indicates that significant thermal degradation and/or

polycondensation took place during the heating of the reactor vessel with the polymer

held under nitrogen. If only polycondensation and hydrolysis reactions occurred during

the heating period, with negligible thermal degradation, the stoichiometry of the system

would ensure that the difference between the end-group concentrations, [A]-[C], would

be the same as for the initial pellets.  Since the value of [A]-[C] obtained for the first

sample varied significantly from run to run (i.e., from about –60 to 20 mmolkg-1), it is
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apparent that degradation during the 3.6 to 4.9 h heat-up period for the various runs

should not be neglected.

We have assumed that the measured value of [A] from titration is actually the sum of

[A]+[SB1]+[A2]+ [P244], and that SE groups are not detected by titration. Since some

thermal degradation and/or polycondensation took place during the heat-up time in each

experiment, significant quantities SB1 and A2 may have been formed, and the measured

value of [A] by titration would be affected. Since the measured [BHMT] is assumed to be

equal to the sum [L2]+[A2], we can calculate the initial values of [L2] using:

000 ]2[][]2[ ABHMTL  (2.1)

Moreover, [L]o can be calculated from a material balance as:

)]2[]3[

]2[]1[][][][10(
1

][

0203

0201000
6

0

AMWSBMW

SBMWSBMWSEMWAMWCMW
MW

L

ASB

SBSBSEAC
L





(2.2)

Actual initial values of [A], [A2], [SE], [SB1], [SB2], [SB3] and [L2] for each

experimental run are unknown, and only the initial value of [C] can be specified with

confidence. Some of the unknown initial concentrations were therefore estimated as

additional parameters in the model. Efforts were made to estimate all of the unknown

initial conditions for [A], [SE], [SB1], [SB2] and [SB3] for each run. The initial value of

[C] was set at the first measured value and the initial value for [SB1] was calculated from

the initial measurement using:

0000 ]2[]244[][][]1[ APAASB meas  (2.3)

Initial concentrations of pyridine 244 ends and cyclopentanone dissolved in the polymer

phase were set to zero for all runs.
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2.4 Parameter Estimation

In addition to the initial conditions for [SE]0, [A2]0, [SB2]0, [SB3]0 and [A]0 for each

experimental run, the model parameters to be estimated are kco, Kao, Ec, a, and ΔH ,

which are common to nylon 66 and nylon 612 polymerization, and the following 21

parameters, which are related only to nylon 66 degradation: k2o, E2, K2eqo, ΔH2, k3o, E3,

k4o, E4, k6o, E6, K6eqo, ΔH6, k7o, E7, k9o, k10o, E9, k11o, E11, (kLa)w/(kLa)CPK and (kLa)w.

Since we have six experimental runs, the total number of the unknown parameters in the

system is 56. Instead of estimating the cyclopentanone mass-transfer coefficient (kLa)CPK

directly, we decided to estimate the ratio (kLa)w/(kLa)CPK. Cyclopentanone is a larger

molecule than water, and should have a lower diffusivity in molten nylon 66, so it is

appropriate to set the lower bound for this ratio at unity.

Estimating the model parameters requires numerical solution of the ODEs in Table 2.6

each time the optimizer selects a new candidate set of parameter values. A fourth-order

Runge-Kutta solver (ode45) in MATLABTM was used to solve the differential equations.

The model parameters were estimated using the "lsqnonlin" optimizer in MATLABTM to

find values that minimize a weighted sum of squared errors between the model

predictions and the experimental measurements:
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Weighting values in the objective function were selected to account for uncertainties in

different types of measurements, and are provided in Table 2.8.
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Table 2.8 Measurement uncertainties for nylon 66 and nylon 612

Uncertainty

Symbol

Measured

Response

Unit Value % of largest

measurement

σA [A]meas mol Mg-1 6.732 4

σC [C] mol Mg-1 11.325 5

σBHMT [BHMT] mol Mg-1 2.3955 15

σCO2 NCO2 mol Mg-1 3.805 5

σNH3 NNH3 mol Mg-1 4.065 15

σCPK RCPK mol Mg-1 1.1 10

Uncertainties were assumed to be 4% for [A], 5% for [C], 15% for [BHMT], 5% for the

CO2 evolution rate, 15% for NH3 evolution rate and 10% for the CPK evolution rate,

based on prior knowledge about reproducibility for the different types of measurements.

For example, uncertainty of [A]meas, A , was set at 6.732, which is 0.04(168.3) because

168.3 mmol·kg-1 is the maximum value of [A]meas.

The model parameters were estimated twice. In a preliminary estimation study, we used

the data shown in Figures 2.2 to 2.7 to estimate the 21 nylon 66 degradation parameters

and 30 initial concentrations with the five polycondensation parameters fixed at their

initial values. Next, we included all 56 parameters using the same nylon 66 degradation

data and the nylon 612 polycondensation data.4,5,6 When simulating the nylon 612

experiments, the reduced set of differential equations in Table 2.9 was used. Results are

described below.
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Figure 2.2 Comparison of model predictions and experimental data for run # 1 at 281˚C
using final parameter estimates from Table 2.10; ) Polymer properties: measured [A]tot (*),

predicted [A]tot (━), measured [C] (▲), predicted [C] (╍╍), measured [BHMT] in
hydrolyzed polymer (●), predicted [BHMT] (━·━·); b) Gas evolution rates: measured CO2

(*), predicted CO2 (━·━·), measured NH3 (▲), predicted NH3 (╍╍), measured CPK (●),
predicted CPK (━)
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Figure 2.3 Comparison of model predictions and experimental data for run # 2 at 275˚C
using final parameter estimates from Table 2.10; a) Polymer properties: measured [A]tot (*),
predicted [A]tot (━), measured [C] (▲), predicted [C] (╍╍), measured [BHMT] in
hydrolyzed polymer (●), predicted [BHMT] (━·━·); b) Gas evolution rates: measured CO2

(*), predicted CO2 (━·━·), measured NH3 (▲), predicted NH3 (╍╍), measured CPK (●),
predicted CPK (━)
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Figure 2.4 . Comparison of model predictions and experimental data for run # 3 at 285˚C
using final parameter estimates from Table 2.10; a) Polymer properties: measured [A]tot (*),
predicted [A]tot (━), measured [C] (▲), predicted [C] (╍╍), measured [BHMT] in
hydrolyzed polymer (●), predicted [BHMT] (━·━·); b) Gas evolution rates: measured CO2

(*), predicted CO2 (━·━·), measured NH3 (▲), predicted NH3 (╍╍), measured CPK (●),
predicted CPK (━)
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Figure 2.5 Comparison of model predictions and experimental data for run # 4 at 292˚C
using final parameter estimates from Table 2.10; a) Polymer properties: measured [A]tot (*),
predicted [A]tot (━), measured [C] (▲), predicted [C] (╍╍), measured [BHMT] in
hydrolyzed polymer (●), predicted [BHMT] (━·━·); b) Gas evolution rates: measured CO2

(*), predicted CO2 (━·━·), measured NH3 (▲), predicted NH3 (╍╍), measured CPK (●),
predicted CPK (━)
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Figure 2.6 Comparison of model predictions and experimental data for run # 5 at 286˚C
using final parameter estimates from Table 2; a) Polymer properties: measured [A]tot (*),
predicted [A]tot (━), measured [C] (▲), predicted [C] (╍╍), measured [BHMT] in
hydrolyzed polymer (●), predicted [BHMT] (━·━·); b) Gas evolution rates: measured CO2

(*), predicted CO2 (━·━·), measured NH3 (▲), predicted NH3 (╍╍), measured CPK (●),
predicted CPK (━)
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Figure 2.7 Comparison of model predictions and experimental data for run # 6 at 290˚C
using final parameter estimates from Table 2.10; a) Polymer properties: measured [A]tot (*),
predicted [A]tot (━), measured [C] (▲), predicted [C] (╍╍), measured [BHMT] in hydrolyzed
polymer (●), predicted [BHMT] (━·━·); b) Gas evolution rates: measured CO2 (*), predicted CO2 (
━·━·), measured NH3 (▲), predicted NH3 (╍╍), measured CPK (●), predicted CPK (━)
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Table 2.9 Differential equations for melt-phase species concentration changes with time and

equations for evolution rates of degradation products for nylon 612

 
172 RR

dt

Ad
 (e.1)

 
18 RR

dt

Cd
 (e.2)

 
1R

dt

Ld
 (e.3)

 
m,WRRR

dt

Wd
 18

(e.4)

 
87

2
RR

dt

Ad
 (e.5)

 
8

2
R

dt

Ld
 (e.6)

73
RNNH  (e.7)

2.4.1 Initial Parameter Guesses

The initial guesses in Table 2.10 were used to estimate the parameters. Varziri’s

estimation results for nylon 612 polycondensation were used as initial guesses for the

polycondensation parameters (kco, Kao, a, ECo and ΔH).13 Initial guesses for k2o, E2, k3o,

E3, k4o, E4, k6o, K6eq, ΔH6, k7o, E7, k9o, k10o, E9, (kLa)w/(kLa)CPK and (kLa)w were obtained

from the prior modeling work of Schaffer,9 which neglected the reactions in Table 2.3. A

mass-transfer coefficient for water in molten nylon 612 obtained using the same reactor

system (Schaffer et al.5) was used as the initial guess for (kLa)w. The initial value of

(kLa)w/(kLa)CPK was set at 1.0. Guesses for the unknown initial concentrations of all

degraded ends were set to zero because we anticipated only a small level of degradation

at the beginning of our experiments.
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Table 2.10 Estimability ranking for preliminary and final studies, initial guesses, bounds,

parameter estimates and confidence intervals for the final study

Final
Rank

Parameter
Ranked List

Rank for
Preliminary

Study
Units

Initial
Guess

Lower
Bound

Upper
Bound

Final Estimate &
Approximate 95%

Confidence Intervals
1 k11o 1 Mg·mol-1 h-1 1.00×10-2 0 500.00×10-2 58.18×10-2±514.46×10-2

2 k4o 2 h-1 2 0 500 0.67±0.42

3 k7o 4 Mg·mol-1 h-1 4.48×10-4 0 500.00×10-4 2.47×10-4±0.42×10-4

4 k2o 3 h-1 1.58 0 500 0.90±0.79

5 k3o 5 h-1 1.86×10-3 0 500.00×10-3 2.29×10-3±0.62×10-3

6 k6o 6 Mg·mol-1 h-1 4.32 0 500 10.39±4.09

7 [SE]0run,1 7 mol·Mg-1 0 0 60.5 5.85±18.85

8 k9o 8 Mg·mol-1 h-1 3.82×10-3 0 500.00×10-3 4.11×10-3±1.33×10-3

9 [SE]0run,5 9 mol·Mg-1 0 0 104 68.55±55.26

10 [SE]0run,2 10 mol·Mg-1 0 0 45.5 25.28±47.13

11 k10o 11 Mg·mol-1 h-1 3.82×10-3 0 500.00×10-3 10.20×10-3±8.67×10-3

12 [A2]0run,3 12 mol·Mg-1 0 0 68.4 1.97±1.85

13 [SE]0run,4 13 mol·Mg-1 0 0 56 0.00±34.99

14 [A2]0run,1 14 mol·Mg-1 0 0 51.2 0.00±82.23

15 [A2]0run,2 15 mol·Mg-1 0 0 54 2.95±1.73

16 [SE]0run,3 16 mol·Mg-1 0 0 46.7 18.93±23.23

17 [A2]0run,5 17 mol·Mg-1 0 0 41.5 1.97±2.05

18 E7 18 kJ mol-1 195.66 0 2092.5 119.53±17.75

19 K2eqo 19 dimensionless 10 0 500 36.52±22.55

20 E6 20 kJ mol-1 41.85 0 2092.5 109.36±51.34

21 E4 21 kJ mol-1 92.39 0 2092.5 306.54±79.86

22 Kao dimensionless 36.61 13.62 91.93 20.53±20.98

23 [A2]0run,3 22 mol·Mg-1 0 0 68.4 16.65±14.3

24 E9=E10 23 kJ mol-1 187.28 0 2092.5 71.07±38.14

25 E3o 24 kJ mol-1 110.45 0 2092.5 0.04±21.37

26 K6eqo 25 dimensionless 10 0 500 0.37±3.38

27 (KLa)w 26 h-1 24.3 0 324 46.74±109.02

28 [A]0run,3 27 mol·Mg-1 68.4 34.2 68.4 55.17±13.75

29 [A]0run,4 28 mol·Mg-1 63 31.5 63 31.51±23.92

30 kco kJ·mol-1 0.013 0.005 0.03 0.023±0.01

31 [A]0run,2 29 mol·Mg-1 54 27 54 44.96±12.53

32 [A]0run,1 31 mol·Mg-1 51.2 25.6 51.2 36.74±80.60

33 [A]0run,6 30 mol·Mg-1 62.4 31.2 62.4 54.94±22.44
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Table 2.10. Continued, Estimability ranking for preliminary and final studies, initial

guesses, bounds, parameter estimates and confidence intervals for the final study

Final
Rank

Parameter
Ranked List

Rank for
Preliminary

Study

Unit

Initial
Guess Lower Bound

Upper
Bound

Final Estimate &
Approximate 95%

Confidence
Intervals

34 E2 32 kJ mol-1 110.45 0 2092.5 1833.53±275.92

35 [SB3]0run,3 33 mol·Mg-1 0 0 68.4 60.24±845.53

36 [A]0run,5 34 mol·Mg-1 41.5 20.75 41.5 20.75±13.39

37 a mol-0.5·Mg0.5 0.286 0.085 0.804 0.749±0.93

38 ΔH2 35 kJ mol-1 41.85 -209.25 837 -124.39±92.86

39 (KLa)w/(KLa)

CPK

36 dimensionless 1 1 10 1.11±10.84

40 Ec kJ mol-1 45.9 0 156.6 62.65±122.45

41 E11 37 kJ·mol-1 41.85 0 2092.5 398.01±85.10

42 ΔH kJ·mol-1 41.85 -209.25 837 -20.97±18.41

43 [SE]0run,6 38 mol·Mg-1 0 0 50.5 50.47±38.07

44 [SB2]0run,1 39 mol·Mg-1 0 0 51.2

45 [SB2]0run,2 40 mol·Mg-1 0 0 54

46 [SB2]0run,4 41 mol·Mg-1 0 0 63

47 [SB2]0run,5 42 mol·Mg-1 0 0 41.5

48 [SB2]0run,6 43 mol·Mg-1 0 0 62.4

49 [A2]0run,4 44 mol·Mg-1 0 0 63

50 [A2]0run,6 45 mol·Mg-1 0 0 62.4

51 ΔH6 46 kJ·mol-1 41.85 -209.25 837

52 [SB3]0run,1 47 mol·Mg-1 0 0 51.2

53 [SB3]0run,2 48 mol·Mg-1 0 0 54

54 [SB3]0run,4 49 mol·Mg-1 0 0 63

55 [SB3]0run,5 50 mol·Mg-1 0 0 41.5

56 [SB3]0run,6 51 mol·Mg-1 0 0 62.4

Note that the initial concentration of carboxyl ends was not estimated, but was set at the

first measured value. Similarly, the initial concentration of amine ends is calculated from

the first value of [A]meas and the initial guesses for the other basic groups that influence

that titration measurement. Order-of-magnitude guesses are shown for all other
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parameters (K2eq, ΔH2, E6, K6eq, ΔH6, k11o and E11) because no published values were

available.

2.4.2 Bounds for Parameter Estimates

Table 2.10 also provides lower and upper bounds that were used during parameter

estimation. Lower bounds for all parameters were set to zero, except for the

polycondensation parameters. For these parameters, the lower and upper bounds in Table

2.10 were obtained using approximate 95% confidence intervals reported by Varziri et

al.13 We set the lower and upper bounds at the initial value ± twice the half-width of the

corresponding 95% confidence interval to ensure that parameters remained within a

reasonable range. We selected twice the half-width because Variziri’s confidence

intervals were obtained using linearization and might be overly conservative. The upper

and lower bounds for (kLa)w were obtained based on values from the literature.38,39 Upper

bounds for the remaining parameters and initial guesses were selected based on our

judgment about physically reasonable values.

2.5 Results and Discussion

2.5.1 Simplifying the Model using Estimabilty Analysis

Estimability analysis was used to rank the parameters from most estimable to least

estimable, as shown in Table 2.10. The results in the first two columns of Table 2.10 are

from our final parameter estimation study (obtained using the settings for nylon-66

degradation and nylon-612 polycondensation together). Ranking results in the third

column are from the preliminary study (obtained using nylon-66 experimental settings

alone). The rank of the various parameters depends on the influence of each parameter on

the predicted model outputs, correlation between the effects of parameters, and scaling
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factors used to reflect uncertainties in initial parameter values. When estimability

analysis was performed using the nylon 66 experimental settings alone (preliminary

study) 38 of the 51 parameters could be ranked. Attempts to rank additional parameters

resulted in numerical problems. When estimability analysis was performed using all of

the experimental settings (final study) 44 of the 56 parameters could be ranked before

numerical problems were encountered. Wu’s MSE-based criterion21,19 was used to

determine that estimating the top 38 parameters should give the best model predictions

for the preliminary study and the top 43 parameters should be estimated using all of the

data. The parameters that were not selected for estimation are the initial [A2] for runs 4

and 6, initial [SB3] for all runs except run 3, initial [SB2] for all runs except run 3 and

ΔH6. These inestimable parameters were left at their initial guesses shown in the fifth

column of Table 2.10.

k11o was selected as the most estimable parameter because it involves degradation

products CPK and SB1 (see reaction (a.11)) and this parameter had a large initial

uncertainty. The next three parameters in the ranked list are kinetic parameters k4o, k7o,

and k2o, which also had large uncertainty values. These parameters influence the rates of

production of important degradation products (i.e., CO2, NH3, BHMT and SE). The

estimability ranking algorithm tends to rank parameters near the top of the list when they

have a large influence on model predictions and when their initial values are not well

known.18 The initial concentrations for stabilized ends [SE]0 for the various runs are

among top parameters in the ranked list because they influence the rates of CO2 and,

subsequently, NH3 production (see reaction (a.4)). Although activation energies for the

various reactions were assigned large uncertainties, they appear further down the list
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because their influence on the model predictions is not as high compared to the influence

of the rate constant values at the reference temperature.  Polycondensation parameters

(kco, kao, a, Ec and ΔH) appear further down the list because their initial uncertainties

were relatively small, since we had prior information about their values from previous

nylon 612 parameter estimation studies.6,13

Results of the parameter ranking and selection methods that were used depend on the

initial parameters values and scaling factors employed.20,21 To test the robustness of the

ranking results in Table 2.10, we investigated the effects of changing the initial guesses

and scaling factors. The ranked list changed slightly using different sets of reasonable

initial conditions (for example changing initial guesses randomly up and down by 10%).

However, the final parameters selected for estimation did not change by changing the

initial conditions and scaling factors over a range of reasonable values.

2.5.2 Parameter Estimation Results

Figure 2.8 shows the influence of the number of parameters estimated from the ranked

list on the objective function values from the preliminary and final parameter estimation

studies. As expected, estimating more parameters from the ranked list resulted in a better

fit to the available data in both studies. Note that the final objective function value of J=

645 obtained from the final parameter estimation study (using all of the nylon 66 and 612

data) was lower than J=870 obtained from the preliminary study (using only the nylon 66

data), even though the number of terms in the objective function for the full parameter

estimation problem was larger (480 data points in the full study and 254 data points in

the preliminary study). This result indicates that there was considerable benefit to re-

estimating the polycondensation parameters kco, Kao, a, Eco and ΔH because of the

additional information about polycondensation kinetics in Schaffer’s nylon 66 data set.4
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Note that the fit to the nylon 612 polycondensation data6,5 (not shown) using the final

parameter estimates in Table 2.10 was similar to the fit using the initial parameter

values.13

Figure 2.8 Influence on the number of parameters estimated from the ranked list on the

objective function value for preliminary study, (▲), and final parameter estimation study,

(●).× indicates the number of parameters selected using Wu’s method 19,21 (Wu, 2011)

As shown in Figure 2.8, in the full study no noticeable improvement was obtained when

44 parameters were estimated instead of 43, which is consistent with the selection of 43

parameters using Wu’s method.19,21 The objective function values in Figure 2.8 were

obtained by starting from the initial parameter values in Table 2.10, and estimating the
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top-ranked parameter k11o, then the top two parameters and so on. The optimization

procedure was sensitive to parameter initial guesses; some other sets of initial guesses

resulted in convergence to local optima with higher objective function values than those

shown in Figure 2.8. Although the final parameter estimates in Table 2.10 give a good fit

to the data (see Figures 2.2 to 2.7), these estimation results may also correspond to a

local minimum. A comprehensive search of the full parameter space would need to be

performed before concluding that the best possible parameter values have been obtained.

Approximate 95% confidence intervals for the true values of the parameters were

calculated using linearization methods,40 and are reported in the final column of Table

2.10. Wide confidence intervals for some parameters were obtained because the data

provided little information about these parameters (i.e., the limited number of

experimental runs and lack of experimental data for the concentrations [A2], [SE], [SB1],

[SB2], [SB3] and [P244]). Also, the experimental data were collected within a relatively

narrow temperature range, complicating the estimation of activation energies. Note that

the 95% confidence intervals for four of the five polycondensation parameters (Kao, kco,

Ec and ΔH) are narrower than those obtained by Varziri et al.13 using the nylon 612 data

alone, because of the additional information provided by the nylon 66 data. The

confidence intervals in Table 2.10 are only approximations due to linearization and

because some of the typical least-squares assumptions used to calculate them might not

be true. For example, we recognize that our model equations arise from simplifying

assumptions, independent variables (such as temperature) are not error-free, and

measurement errors within each run may not be independent. Also, the final parameter

estimates and confidence intervals in Table 2.10 are conditional on the values of the 8
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parameters at the bottom of Table 2.10 that were not estimated. We recommend that

additional experiments should be performed if more accurate parameter estimates and

model predictions are required. Note that the estimate for equilibrium constant K2eqo is

36.52, which indicates that the equilibrium for reaction (a.2) is far to the right and that

the reverse reaction (a.2.R) is not favourable.

The predictions of the proposed model are compared with the experimental data for

nylon 66 in Figures 2.2 through 2.7. Note that the same vertical-axis scaling was used for

all experimental runs to permit easy comparisons between runs. The model predictions

agree well with the majority of the end-group and BHMT branch-point concentration

data. Although the fit to evolution rates of gaseous degradation products are not as good

as the fit to polymer property data, possibly due to sampling difficulties, the trends of the

model predictions for the gasous species are consistent with the data. Note that the poorer

fit to these gas evolution data was expected due to their larger measurement

uncertainties, which are shown in Table 2.8. In runs 1 to 3, the evolution rates for CO2,

NH3 and CPK were relativly low, as predicted. Higher evolution rates were measured

and predicted in runs 4 and 6, which were conducted at the highest temperatures (292 and

290 ˚C, respectively) where thermal degradation tends to occur. Run 5 also experienced

high gas evolution rates, as predicted, because this experiment was conducted at the

lowest water concentration (Pw=23 kPa).  Reactions (a.2.R) and (a.6) in Table 2.2 show

how keeping a desirable concentration of water in the molten nylon can reduce the

concentrations of stabilized ends and Schiff base ends that lead to branching. Although,

the fit for run 5 in Figure 2.6 is not as good as that for other runs, the model does predict

a maximum in the CO2 evolution rate, but the position of the maximum does not match
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the model prediction well. Discrepancies between the model predictions and

measurements may result from imperfections in the model structure, measurement errors,

and fluctuations in reactor operating temperature and sparge-gas composition.

2.5.3 Prediction of Gelation Times

One of the potential uses of the proposed model is the prediction of the time required for

gelation of nylon 66 due to crosslinking under different operating conditions. Jacobs and

Zimmerman41 state that gelation is predicted to occur when the concentration of

trifunctional branch points in the polymer exceeds a critical value of one-third the sum of

the end group concentrations. Since there are two types of trifunctional branch points and

five types of end groups considered in the present model, gelation would be predicted

when [SB3]+[L2] exceeds the value of ([A]+[C]+[SE]+[SB1]+[P244])/3.

Experimentally, gelation can be considered to have occurred when the polymer is no

longer completely soluble in 90% formic acid. Figure 2.9 shows that when the predicted

values of these quantities are plotted versus time for run 3, the predicted gelation time is

6.8 h (the intersection for the two curves), which agrees well 6.9 hours, which is the

experimental gelation time for run 3 observed by Schaffer during this experiment.9 Note

that Schaffer observed gelation after 4.9 hours for run 6, and that our model predicts

gelation after 4.8 hours (not shown). These results illustrate the utility of the proposed

model for predicting gelation using different experimental conditions.
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Figure 2.9 Model prediction of gel formation point for run #3, 285oC, predicted
([SB3]+[L2]) (╍╍), predicted ([A]+[C]+[SE]+[SB1]+[P244])/3 (━━).

2.6 Conclusion

In this work, an improved kinetic model for thermal degradation of molten nylon 66 was

developed. The reactions included in previous models7,9,10 were augmented with

additional reactions that account for the influence of water on degradation rates, the

formation of cycopentanone and the formation of Schiff base ends.

Experimental data from dynamic experiments involving nylon 664 and nylon 6125,6 were

used to estimate the parameters. Estimability analysis17,18 and a MSE-criterion19,21 were

used to determine that 43 out of 56 model parameters and unknown initial concentrations

should be estimated to provide the best model predictions, given the limited data

available for parameter estimation. The model describes the experimental polymer

property data well, with typical errors of 6.1% for amine ends, 2.9% for carboxyl ends
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and 13.2% for BHMT branch points. Trends in the rates of evolution of gaseous

byproducts were predicted reasonably well, with typical errors of 4.3% for CO2, 27.2%

for NH3 and 29.4% for cyclopentanone. Although complete mechanistic accuracy in

terms of the set of chemical reactions and kinetic rate parameters used in the present

model cannot be claimed, the model is a useful tool for the prediction of the rate and

extent of thermal degradation under various process conditions of commercial interest.

This model can predict degradation rates during the final stages of the nylon 66

production when water concentrations are low (10 to 80 mmol·kg-1) and temperatures are

high (275 to 292˚C), and can also predict the time required for gelation at different

experimental conditions.
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Chapter 3

An Approximate Expectation Maximization Algorithm for Estimating

Parameters in Nonlinear Dynamic Models with Process Disturbances

3.1 Abstract

In chapter 2, a kinetic model that accounts for nylon 66 degradation reactions is developed. The

fit to the data for this model have some discrepancies indicating the existence of process

disturbances and model mismatch. The goal of the remaining chapters of this thesis is to propose

parameter estimation techniques that take into account the process disturbances and model

mismatch. Stochastic terms are included in fundamental dynamic models of chemical processes

to account for disturbances, input uncertainties and model mismatch. The resulting equations are

called stochastic differential equations (SDEs). An Approximate Expectation Maximization

(AEM) algorithm using B-splines is developed for estimating parameters in SDE models when

the magnitude of the disturbances and model mismatch is unknown. The AEM method is

evaluated using a two-state nonlinear CSTR model. The proposed algorithm is compared with

two other maximum-likelihood-based methods (CTSM1.2 and Varziri’s extended AMLE3). For

the CSTR examples studied, the AEM algorithm provides more accurate estimates of model

parameters, unknown initial conditions and disturbance intensities. This chapter has been

accepted for publication as a journal paper by Canadian Chemical Engineering Journal.
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3.2 Introduction

In chemical processes, external fluctuations or disturbances influence the system

inputs.4,5 Often, simplified fundamental models are used because a detailed fundamental

model would be too complex for the intended use (e.g., on-line process monitoring or

control) or because it would be too expensive to do all of the experiments required to

estimate the large number of kinetic, thermodynamic and transport parameters that would

appear in detailed model equations. As a result, modelers develop models that include

only the most important phenomena, knowing that simple models sometimes give better

predictions than more complicated models6-8 and that simpler models are more portable

and easy to use.

Stochastic terms are added to simplified dynamic models to account for the effects of

unmeasured disturbances and model imperfections.9,10 Stochastic differential equations

(SDEs) are differential equations in which the influence of various random disturbances

appears explicitly.5 These disturbances (also called system noise) can enter the model

equations nonlinearly, but additive linear disturbances are often used, especially when

disturbances arise from multiple sources.4 Parameter estimation problem in SDE models

are usually addressed using probability density functions.11 There are two main

categories for parameter estimation in SDE models based on discrete observations.12 In

the first category, a moment-matching method is used, while in the second category

approximate maximum likelihood methods are used. Moment-matching estimators can

be difficult to use because they require the calculation of higher-order moments in order

to be efficient, and the appropriate order is difficult to determine.12 Maximum likelihood

methods are used widely because of their efficiency. In maximum likelihood estimation
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(MLE) methods, the likelihood function of the parameter vector given observed data is

maximized to estimate the unknown model and noise variance parameters.13 In the

presence of unmeasured states and missing observations, it is difficult to find a closed

form for the likelihood function.14 Several techniques have been proposed for

approximating the likelihood function. Some of these techniques are: simulated

maximum likelihood methods (such as Markov Chain Monte Carlo (MCMC)

techniques),14-19 expansion of the likelihood function using Hermite polynomial basis

functions,20,21 solving the Fokker-Planck equation numerically22-24 and recursive

maximum likelihood parameter estimation using polynomial chaos theory.25 Benefits and

drawbacks of these techniques are summarized by Lindstrom.12 An approximate ML

method was proposed by Kristensen et al.2 In Kristensen et al.’s method, a Gaussian

distribution is assumed for the likelihood function and the mean and variance of the

likelihood function are estimated using an Extended Kalman Filter (EKF). Easy-to-use

CTSM (continuous-time stochastic modeling) software was developed based on

Kristensen’s method and is used in a simulation study later in this chapter.1

Varziri et al. developed an approximate maximum likelihood estimation (AMLE) method

for estimating parameters in SDE models when disturbance intensities and noise variance

are known. Varziri et al.3 extended AMLE for estimating disturbance intensities, based

on a technique developed by Heald and Stark.26 Although reasonable results were

obtained using this methodology, this technique uses a heuristic outer objective function

and may not be consistent with maximum likelihood estimates of the disturbance

intensities. It is unclear whether this methodology is robust to imperfect estimates of



70

noise variances that must be provided by the user. The algorithm developed in the current

chapter builds on Varziri’s results.

A popular MLE-based algorithm for parameter estimation in SDE models is the

expectation maximization (EM) algorithm.27-29 The EM algorithm is suitable for

situations where the likelihood function of the parameters given the measurements does

not have a closed form, but the probability density function of the measured data and

unmeasured states (i.e., the likelihood of the complete data) does have a closed form.30,31

In the first step of the EM algorithm (referred to as the Expectation step or E step), the

expected value of the likelihood of the complete data is determined using the

observations and the most recent estimates of the parameters. In the second step (referred

to as the Maximization step or M step), the expected value determined in the first step is

maximized with respect to the model and the variance parameters (i.e., the noise

variances and the disturbance intensities). These two steps are repeated until parameter

convergence is obtained.32 The two steps of the EM algorithm have explicit recursive

solutions for linear systems with Gaussian noise,27 but they do not have explicit solutions

for nonlinear SDEs.29

Approximation techniques have been used to find closed-form expressions for the E and

M steps of the EM algorithm. For example, extended Kalman filters (EKFs) have been

used for approximating both the E and M steps.33-36 Markov Chain Monte Carlo (MCMC)

methods, also known as particle filter methods, have been used for approximating the E

step.15,28,29,37-40 In the MCMC methods, a probability density function is numerically

approximated by drawing samples from a target density function.18,14 MCMC methods

are effective parameter estimation tools that do not require assumptions about the form of



71

the density functions. A drawback of MCMC methods is that they can be

computationally expensive for models with a relatively large number of states and

parameters.29,40,41 The complexity of the optimization problem increases rapidly as the

number of states, measurements, and parameters increases. Imtiaz et. al.42 discuss some

implementation issues for MCMC methods and Kantas et al.43 present an overview of a

variety of MCMC methods and discuss their advantages and disadvantages. Recently,

Chitralekha et al.44 compared the performance of three EM algorithms: the particle

smoother, the unscented Kalman smoother and the extended Kalman smoother.

Linearization-based EKF methods for approximating the EM algorithm are beneficial

because they do not require MC sampling from probability density functions, but they

can give biased parameter estimates in situations where the nonlinearities are strong.45

Further details about the EM algorithm and its relationship to the AEM algorithm

proposed in this chapter are presented in section 2.3.

The goal of this research is to develop an easy-to-use Approximate Expectation

Maximization (AEM) method for estimating model parameters and disturbance

intensities in SDE models. Some of the benefits of the AEM method are: i) simplicity of

implementation, ii) reliable estimates of model parameters, initial conditions and

disturbance intensities, iii) efficient handling of unknown initial states, iv)ability to

handle unmeasured state variables. First, some notation and background information are

presented and a closed form for the E step of the EM algorithm is derived using B-spline

approximations for state trajectories. An objective function for the proposed AEM

method is determined, and the resulting AEM algorithm is illustrated using a two-state

nonlinear CSTR model with unknown disturbance intensities. Results obtained using the
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AEM method are compared to results obtained using CTSM1 and extended AMLE

method.3 It is shown that the proposed AEM method provides more accurate parameter

estimates and is less computationally intensive than the alternative methods for the

example studied.

3.3 Preliminaries

3.3.1 Model and Notation

Consider the following Multi-Input Multi-Output (MIMO) model:

)()),(),(()( tttt ηθuxfx  (3.1.a)

00 )( xx t (3.1.b)

)()),()()( ,,,, jrmjrmjrmjrm tttt εθu,g(xy  (3.1.c)

where x is an X-dimensional state vector, f is an X-dimensional vector of nonlinear

mappings, u is a U-dimensional vector of input variables, θ is a P-dimensional vector of

unknown parameters, η(t) is an X-dimensional continuous zero-mean stationary Gaussian

white-noise process with covariance matrix E{η(t1)η(t2)}=Q δ(t2-t1), where Q is the

corresponding diagonal power spectral density function with dimension X ×X :
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The diagonal elements of Q are sometimes referred to as disturbance intensities (i.e.

Qd=[Q1,…,QX]T).3 δ(.) is the Dirac delta function, y is a Y-dimensional output vector

with YX . Assume that the rth response variable (r=1…Y) is measured Nr times during

the set of dynamic experiments. The set of times at which measurements are available for

the rth response (r=1…Y) is denoted by tm r,j (j = 1…Nr). g is a Y-dimensional vector of



73

nonlinear mappings and ε is a Y-dimensional vector of zero-mean random variables.

Assume that these measurement errors are independent so that their covariance matrix is:
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Consider the vector Ym that contains all of the stacked measured values, where

T
NYmYYmYNmm Y

tytytyty )]()()()([ ,1,,111,11 1
mY and

T
NYmYYmYNmm Y

txtxtxtx )]()()()([ ,1,,111,11 1
mX is a corresponding stacked vector

of state values at the measurement times, and Um and εm are corresponding stacked

vectors for the input variables and random errors:

mmmm εθ)UXgY  ,,( (3.4)

A continuous white noise process is defined as the limit of a discrete-time white-noise

sequence when the discretization interval Δt approaches zero. In simulations of

continuous stochastic processes, it is common to implement stochastic disturbances η(t)

using discrete-time white-noise sequences that are a series of random step functions with

a short sampling interval Δt and covariance:46,47
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where j1 and j2 are positive integers.

Large values of the diagonal elements of Q correspond to large disturbances or

considerable model mismatch.
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Three situations can occur for initial conditions of state variables. The initial conditions

may be perfectly known, entirely unknown, or they may be measured. In cases where

initial conditions are measured, assume that their measured values 0mx were sampled

from a normal distribution with 00}E{ xx m and 00}cov{ mm Sx  .

Modelers often have knowledge about the accuracy of their measurements (i.e.,  and

Sm0), but do not have good knowledge about the magnitudes of the imperfections in their

material and energy balance models (i.e., values for the disturbance intensities in Q). Let

TTT
0

T ],,[ dQxθζ  be the vector of unknown parameters in the SDE model, which

includes the fundamental model parameters θ, along with unknown initial states and the

disturbance intensities. In this chapter, a method is proposed for estimating the model

parameters θ and x0 together with the disturbance intensities in Q in situations where a

good prior estimate of the measurement noise covariances  and Sm0 are available, either

from previous experiments or information available from the sensor manufacturer.

3.3.2 B-Spline Basis Functions

Any smooth function can be approximated to an arbitrary degree of accuracy using basis

functions such as B-splines.33,48 B-splines basis functions consist of Mth order (or (M-1)

degree) piecewise polynomials that are positive within M intervals and zero elsewhere.49

For example, the sth state of the multivariate stochastic system shown in Equation (3.1)

can be represented by a linear combination of cs B-splines:50,51





sc

l
lslss tφβtx

1
,,~ )()( for s=1,…,X (3.6)

where lsβ , is a B-spline coefficient and )(, tφ ls is the corresponding B-spline basis

function. In matrix form, Equation (3.6) is:
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ΒΦx~ )()( tt  (3.7)

where )(tΦ is a matrix of spline functions:
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and
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A sufficient number of well-placed spline knots must be selected by the modeler to

obtain an accurate approximation for the state trajectory.50,51

3.3.3 Approximate Maximum Likelihood Estimation (AMLE)

Algorithm

Varziri et al.52 proposed an approximate maximum likelihood estimation (AMLE)

method for estimating the parameters of the SDE models. When deriving this algorithm,

they discretized the SDE in Equation (3.1) using an Euler scheme:

tttttftttt iiiiii Δ)(Δ)),(),(()()()Δ( 11111   dηθuxxxx (3.10a)

00 )( xx t (3.10b)

where x(ti) is the value of the state variable at q uniformly-spaced time points ti , i=0,..,q

and ηd is a discrete white noise vector. Consider TTT
q xxX )]()([ 0 qtt  as the stacked

vector of state values at discrete times. Varziri et al. used this discrete model and B-

spline basis functions to derive the following objective function for estimating

parameters in SDE models with known noise variances and disturbance intensities:52
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The integral in Equation (3.11) is called an Ito stochastic integral. Since a discrete white

noise is used in simulations to approximate the continuous white noise, the Ito integral in

Equation (3.11) is approximated by:

])),(),(()()([])),(),(()()([ 111
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111 ttttttttttt iiii

q

i

T
iiii ΔθuxfxxΔQΔθuxfxx 
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 

where t is chosen as a small value compare to the dynamic of system.

Because the B-spline expressions in Equation (3.7) can be readily integrated with respect

to time, the integrand in the third term on the right-hand side of Equation (3.11) becomes

an algebraic expression. As a result, there is no need for numerical solution of differential

equations when estimating B and θ.50,52 Note that the initial states x0 do not need to be

included as separate decision variables in the optimization because they are

approximated using 0~x , which can be computed using the B-spline coefficients. When

no measurements are available for any of the initial state values, the

)()( 0~0
1
00~0 xxSxx  

mm
T

m term disappears from the objective function.  If the initial

value of the sth state variable is not measured, but is perfectly known by the modeler,

this knowledge can be incorporated by fixing the first B-spline coefficient for the sth

state at the known value βs,1= xs(0).

A drawback of Varziri’s AMLE method is that it requires known values of the stochastic

disturbance intensities in Q when optimizing to find θ and B.52 To address this problem,
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Varziri et al.3 extended their AMLE methodology, based on a technique developed by

Heald and Stark26 for estimating parameters in time-series models with unknown noise

variance. Varziri et al.3 proposed a two-step optimization algorithm where θ and B are

determined in an inner loop, using the objective function in Equation (3.11) and an

assumed value of Q. In the second step (outer loop) Q is updated using the following

objective function assuming that θ and B are known:3
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where the true noise variance 2
jσ (j=1,…,Y) is assumed to be known and the estimate of

the noise variance from the data 2ˆ jσ (j=1,…,Y) is calculated using residuals between the

fitted splines and the data and the approximate Hessian for the AMLE objective

function.3,26

3.3.4 EM Algorithm

In general, the likelihood function of the parameters given the measurements does not

have a closed form. However, using the Markov property of the states, the likelihood of

the complete data )|,( ζYX mqp has a closed form. In the kth iteration of the E step of the

EM algorithm, the expected value of the log-likelihood of the complete data is

determined, given the vector of complete measurements and values of the parameters kζ

arising from the current (i.e., kth) parameter iteration:32

},|)]|,({ln[E),( kk pR ζYζYXζζ mmq
Xq
 (3.13)

In Equation (3.13), Xq below the expectation symbol indicates that this expected value is

computed over all possible values of the discretized state variables.
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In the M step of the EM algorithm (i.e., the maximization step), the expected value

determined in the first step is maximized to generate improved parameter estimates for

use in the next iteration:

),(maxargˆ
1 kk R ζζζ

ζ
 (3.14)

Wei and Tanner53 showed that the E step in the EM algorithm can be approximated as:
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where the superscript (l) is used to indicate the lth random value of the state vector

sampled from )|( ζ,YX mqp 14,35. When computing )( kζζ,R in Equation (3.15), it is

possible to use v=1 (i.e., a single term rather than a summation), if )(l
qX is replaced by

the mode of )|,( ζYX mqp : 35

)]|,,(ln[),( )1( ζYXζζ mqpR k  (3.16)

where )1(
qX is the mode of )|,( ζYX mqp .

3.4 Development of the Proposed AEM Algorithm

In this section, a new Approximate Expectation Maximization (AEM) algorithm is

developed for estimating model parameters and process disturbance intensities. The

proposed algorithm uses B-spline basis functions in the approximation for the E-step of

the EM algorithm. The AEM algorithm is derived by approximating the expectation step

of the EM algorithm using Equation (3.16). Appendix 3.A contains the derivation of a

closed-form expression for ),( ζζkR that is obtained using B-spline basis functions. We

first consider the case where there are no missing observations (i.e. all of the states are
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measured and measurements are taken frequently). As shown in Appendix 3.A, the

corresponding objective function is:
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where n is the number of measurements. In the case where there are missing

observations, a closed form for Equation (3.16) is derived in Appendix 3.B, resulting in:
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where

t

tt
q q

Δ
0 (3.19)

and Δt is the sampling time selected by the modeller for the discrete white noise

disturbances that are assumed to influence the process behavior. The value of Δt should

be small compared to the dynamics of the system. Note that the difference between

Equations (3.17) and (3.18) is in their third term. In the case where all measurements are

available )]ln[det(Qn term appears in the objective function (Equation (3.17)). However, in

the case where there are missing observations )]ln[det(Qq term appears in the objective

function (Equation (3.18)).
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Minimizing JAEM with respect to θ, Q and B provides approximate maximum likelihood

estimates for the model parameters θ and the disturbance intensities Q:

AEMminargˆˆˆ J
BQ,θ,

B,Q,θ  (3.20)

Note that spline coefficients B can be added to the parameter vector ζ since other

nuisance parameters (i.e., measurement noise variances and process disturbance

intensities) are incorporated.

3.5 Illustrative Example: Nonlinear Two-State CSTR Model

In this section, the SDE model for a CSTR is used to illustrate the use of the AEM

objective function (Equation (3.18)) for parameter estimation. Simulations are used to

compare parameter estimation results obtained from the proposed AEM algorithm to

results obtained from the extended AMLE method3 and from CTSM software1. The SDE

model is a two-state CSTR example from Marlin54 with additional stochastic disturbance

terms:3

)()())(())()((
)(

d

)(d
0 tηtCtTktCtC

V

tF

t

tC
CArAA

A  (3.21a)

)()())(())()(())()((
)(

d

)(d
0 ttCtTktTtTUAtTtT

V

tF

t

tT
TArin   (3.21b)

)()()( ,1,1,1 jmCjmAjmC tεtCty  (3.21c)

)()()( ,1,1,1 jmTjmjmT tεtTty  (3.21d)

where CA is the concentration of reactant A and T is the temperature. The rate constant

for the exothermic reaction is:
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UA is a heat transfer coefficient that depends on the cooling water flow rate and heat

capacity:
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and  is related to the enthalpy of reaction:

p

rxn

c

H




)( 
 (3.24)

The initial steady-state values of the states are CA(0)= 1.569 kmol·m-3 and T(0)=341.37

K. To illustrate the methodology, CA(0) is assumed to be perfectly known, while T(0) is

measured with known variance of 2
TS =5.0 K2. As a result, the unknown true value of the

initial temperature is T(0)=341.37 K, but initial temperature measurements deviate from

this value. The AEM, extended AMLE and CTSM algorithms are used to estimate the

model parameters T
ref baREk ],,/,[θ and disturbance intensities QC and QT. When

AEM and extended AMLE are used for parameter estimation, an estimate of the initial

temperature T(0) is determined from the B-spline coefficients.

The model inputs are the feed flow rate F, the inlet concentration CA0, the inlet

temperature T0, the coolant inlet temperature Tin and the flow rate of coolant to the

cooling coil Fc. The known constants for this CSTR model, provided by Marlin54 are

shown in Table 3.1.
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Table 3.1 Model constants 45

Model Constants Value Units

cp 4186.8 J·kg-1·K-1

cpc 4186.8 J·kg-1·K-1

Tref 350 K

V 1 m3

ρ 1000 kg·m-3

ΔHrxn -544.154×103 J·kmol-1

2
Cσ 4×10 -4 kmol2·m-6

2
Tσ 0.64 K2

During the dynamic experiments, the concentration CA is measured nC times and the

temperature T is measured nT times. )( ,1 jmC tε Cnj 1 and )( ,2 jmT tε Tnj 1 are

the corresponding white-noise sequences with variances 2
Cσ and 2

Tσ , respectively. We

also assume that Cη , Tη , Cε and Tε are independent. The ODE45 solver in MATLAB™

was used to generate simulated data affected by Gaussian measurement errors and

stochastic process disturbances, using the input variable trajectories shown in Figure 3.1.

The duration of each simulation is 64 min. These same input trajectories were used by

Varziri et al.3,52 when testing their AMLE algorithm. Simulated data were generated

using the true parameter values from Marlin54 shown in Table 3.2. Measurement noise

variances 2
Cσ and 2

Tσ , provided in Table 3.3, are assumed to be known, whereas process

disturbance intensities QC and QT are unknown.
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Table 3.2 Estimates and 95% Confidence intervals for AEM parameter estimates from one

of the 100 Monte Carlo simulations

Parameter Unit

True

Value

Initial Guess Estimate  95% Confidence

Interval

kref min-1 0.461 0.293 0.436  0.007
(E/R)/ 103 K 8.3301 4.2012 8.1504  0.0952

a/106 1.678 3.236 1.568  0.239

b 0.500 0.760 0.494  0.054

T(0) K 341.38 347.12 342.24  0.43

QC kmol2·m-

6·min-1

0.010 0.015 0.010  0.0009

QT K2·min-1 4.0 6.1 4.8  0.01

The random process disturbances (see Figure 3.2) were generated using a discrete white-

noise process with a sampling interval Δt=0.5 min which is approximately 10 times

smaller than the dominant time constant of the CSTR system.

Figure 3.1. Typical discrete stochastic process disturbances obtained using Q= 4
K2·min-1 and Δt= 0.5 min
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The AEM objective function for estimating parameters in the CSTR model is:
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Figure 3.2 Input trajectories for nonlinear CSTR50
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In Equation (3.25), qC = qT =128 are the number of discrete random shocks used to

generate the disturbance sequences. Note that the discrete white noise is added before

solving the dynamic equations of concentration and temperature. The final term on the

right-hand side appears because the initial temperature T(0) is assumed to be unknown in

this example and must be approximated using T~(0). Since CA(0) is perfectly known,

there is no corresponding concentration term in Equation (3.25) and the corresponding

first spline coefficient βc,1 is set at 1.569 and is not used as a decision variable by the

optimizer.

For comparison, the corresponding extended AMLE objective function52 used to

estimate the model parameters and B-spline coefficients when QC and QT are assumed

known is:
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(3.26)

The only differences between the AEM and AMLE objective functions are the two

logarithm terms that appear in Equation (3.25). The outer objective function used for

estimating QC and QT in the extended AMLE method is:3
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Estimating the parameter vector T
TCref QQbaREk ],,,,/,[ using extended AMLE

required a two-step optimization procedure wherein kref, E/R, a, b and the B-spline

coefficients were estimated in an inner loop using assumed values of QC and QT. Updated

values of QC and QT were estimated in an outer loop using objective function (3.27). The

outer objective function contains the Hessians 2
,

2 / CAMLEIJ β and 2
,

2 / TAMLEIJ β

where βC and βT are vectors of B-spline coefficients that correspond to approximate state

trajectories CA~ and T~, respectively. These Hessians were computed using the “gjh”

function in IPOPT.

The AEM and extended AMLE optimization problems were solved using the IPOPT

optimization code from Wachter and Biegler55 with model information provided using

AMPL™.56 The outer loop of the extended AMLE algorithm was optimized using the

“lsqnonlin” function in MATLABTM. Termination tolerances for lsqnonlin were set at

10-3 for changes in the value of the objective function and at 10-6 for parameter values.

The maximum numbers of iterations and function evaluations were set to 1000 and 2000,

respectively. Default values of optimization settings in IPOPT were used when

optimizing objective functions (3.25) and (3.26). Reducing the tolerances used in

lsqnonlin and IPOPT by a factor of 10 did not produce significant changes (i.e., in the

first three significant figures) in the estimated parameter values. 4th order (cubic) B-

splines were used in both the AEM and AMLE parameter estimation studies with one
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knot at every sampling interval used to generate the disturbances. This knot placement

frequency was chosen based on results from a preliminary study involving several single-

state SDE models.57 Estimates for the complete vector of parameters ζ were obtained for

different sets of simulated data under several different scenarios, as shown in Table 3.3.

In each scenario, parameter estimation problems were repeated 100 times with 100

different sets of random initial guesses for the parameters (chosen from a uniform

distribution between 50% and 150% of their true values). Different random sequences for

Gaussian process disturbances and measurement noise variables were used to generate

the 100 data sets. To compare the quality of the parameter estimates obtained in the

different scenarios, medians and interquartile ranges (IQRs) are reported in Table 3.3

when parameters are estimated using the simulated data sets and corresponding initial

guesses.

In scenario A (the base case scenario) CA and T were measured once every 0.5 min, so

that 128 concentration measurements and 128 temperature measurements are available

for parameter estimation. Estimated trajectories (CA~ and T~) for one of the simulated data

sets are shown in Figure 3.3, along with the true state trajectories and the corresponding

data values when AEM is used for parameter estimation. As expected, the estimated state

trajectories follow the true trajectories closely.
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Table 3.3 True parameter values, median values and IQRs for the estimates based on 100

Monte Carlo runs for different scenarios.

Parameter kref (E/R)/ 103 a/106 b T(0) QC QT

Unit min-1 K K kmol2·m-6·min-1 K2·min-1

True Value 0.461 8.3301 1.678 0.500 341.38 0.010 4.0

Scenario
A AEM Median 0.432 8.2308 1.502 0.497 342.32 0.009 4.9

IQR 0.020 0.2062 0.465 0.104 1.21 0.004 1.4

AMLE Median 0.420 8.1931 1.315 0.512 342.42 0.056 24.2

IQR 0.024 0.2394 0.545 0.118 1.33 0.615 40.2

CTSM Median 0.460 8.2800 1.575 0.508 341.00 0.092 1.5

IQR 0.015 0.1650 0.625 0.131 1.00 0.011 0.4

B AEM Median 0.440 8.2949 1.589 0.483 342.29 0.003 3.8
IQR 0.026 0.2777 0.618 0.146 1.16 0.003 0.9

AMLE Median 0.432 8.3071 1.558 0.478 342.39 0.009 9.4

IQR 0.037 0.3313 0.676 0.132 1.36 0.134 11.0

C AEM Median 0.444 8.2548 1.589 0.493 342.26 0.003 4.0
IQR 0.020 0.1819 0.349 0.073 1.18 0.002 0.4

AMLE Median 0.428 8.2344 1.442 0.509 342.37 0.021 8.7

IQR 0.025 0.2148 0.364 0.096 1.37 0.869 9.6

D AEM Median 0.437 8.1891 1.561 0.484 342.97 0.005 3.7
IQR 0.022 0.2187 0.560 0.126 1.64 0.005 0.7

AMLE Median 0.423 8.1709 1.392 0.501 343.06 0.018 13.3

IQR 0.030 0.2998 0.645 0.132 1.76 0.251 14.9

E AEM Median 0.436 8.2525 1.581 0.507 343.31 0.010 5.1
IQR 0.024 0.2481 0.603 0.157 2.12 0.009 21.3

AMLE Median 0.415 8.1952 1.276 0.527 343.53 0.487 38.5

IQR 0.023 0.2797 0.518 0.145 2.70 1.326 77.1

F AEM Median 0.427 8.1984 1.500 0.498 342.36 0.012 6.6
IQR 0.023 0.2508 0.530 0.112 1.64 0.006 2.8

AMLE Median 0.413 8.1601 1.262 0.535 343.59 0.633 44.4

IQR 0.027 0.2829 0.530 0.168 2.97 4.700 151.2

G AEM Median 0.416 8.3696 1.541 0.469 342.31 - 5.3
IQR 0.042 0.4701 0.978 0.225 1.31 - 2.1

AMLE Median 0.397 8.3023 1.323 0.500 342.49 - 25.5

IQR 0.053 0.5391 0.859 0.212 1.36 - 32.4
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Figure 3.3 Measured, true, and predicted concentration and temperature responses for the
AEM method in scenario A, using simulated data from one of the 100 Monte Carlo
simulations. Corresponding initial guesses and parameter estimates are provided in Table 3
(• simulated data, ----- response with true parameters and true stochastic noise, ___AEM
response)

Approximate confidence intervals for the corresponding parameters are provided in

Table 3.2. The model parameter and disturbance intensity estimates from the AEM

algorithm should be asymptotically Gaussian with covariance equal to the inverse of the

Hessian matrix,58 due to the central limit theorem. Thus, assuming that the data set is

sufficiently large, approximate 100(1-α)% confidence intervals can be determined by

approximating the covariance matrix using the Hessian evaluated at the estimates of

parameters and B-spline coefficients:52,58-60
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where τ=[ζT,ΒT]T is a stacked vector of model parameters, disturbance intensities and B-

spline coefficients. Note that Varziri et al. used a similar method to obtain approximate

confidence intervals for baREk ref ,,/, and T(0) from the extended AMLE algorithm.

However, they were not able to obtain approximate confidence intervals for QC and QT

because these disturbance intensity parameters were estimated using their outer objective

function (Equation (3.27)), which was not derived using Maximum Likelihood methods.

The capability to generate approximate confidence intervals for disturbance intensities is

one of the benefits of the AEM algorithm compared to extended AMLE.

Box plots summarizing the parameter estimates from all 100 Monte Carlo simulations

are shown in Figures 3.4 and 3.5 to provide a comparison of the effectiveness of AEM,

extended AMLE and CTSM methods for the base case (scenario A) estimation problem.

Default values of optimization settings were used when implementing the CTSM

software. Use of CTSM requires upper bounds and lower bounds for all of the

parameters. Lower bounds of parameters were set at zero and upper bounds were set at

10 times the true parameter values. Using CTSM, successful parameter estimation was

only obtained for 36 of the 100 Monte Carlo cases attempted; the CTSM box plots in

Figures 3.4 and 3.5 (and the medians and IQRs in Table 3.3) were constructed using only

these 36 sets of parameter values. The remaining 64 estimation attempts experienced

convergence failures. Several repeated CTSM parameter estimation attempts with revised

tolerances and convergence settings did not result in improved convergence. However,

when improved initial guesses (between 75 and 100% of the true values) were used, a

higher success rate was obtained. Both the AEM and extended AMLE algorithms
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converged for all of the 100 Monte Carlo cases attempted, and the corresponding results

are shown in Figures 3.4 and 5.

In scenario A, the AEM algorithm converged to the neighbourhood of the true parameter

values using 80 of the 100 simulated data sets. For the remaining 20 data sets, the

algorithm converged to parameter estimates with noticeably larger values of QC and QT,

which correspond to outlier in the box plots in Figure 3.5. These results do not seem be

caused by convergence to local minima, because re-starting the parameter estimation at

the true values rather than the random initial guesses for these data sets resulted in the

same large estimates of QC and QT.  When extended AMLE was used for parameter

estimation, these was negligible bias in the model parameter estimates (kref, E/R, a, b and

T(0)), but the estimates of QC and QT were biased toward large values. Also, the IQRs for

estimates of QC and QT obtained using extended AMLE are very wide when compared

with those obtained using AEM and CTSM (e.g., for QC, the IQR is 0.004 for AEM,

which is much smaller than 0.615 for extended AMLE and 0.011 for CTSM). The CTSM

estimates of QC and QT have more bias than the estimates obtained using AEM.
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Figure 3.4 Box-plots for estimates of model parameters using the AEM method extended
AMLE method and CTSM in scenario A. The dashed horizontal lines show the true values
used to generate the simulated data.
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Figure 3.5 Box-plots for disturbance intensity estimates obtained using the AEM method,
extended AMLE method and CTSM in scenario A. The dashed horizontal lines show the
true values used to generate the simulated data.
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between 50% and 800% of the true parameter values had no significant influence on the

majority of the AEM parameter estimation results. Note, however, that 11 sets of

simulated data resulted in convergence to local minima when the worse initial guesses

were specified, leading to large IQRs and larger median values for the estimates of QC

and QT. The extended AMLE parameter estimates in scenario B have larger variability

and are even more biased than those obtained using the good initial values in scenario A.

The results obtained using AEM are significantly better than those obtained using

AMLE.

In scenario C in Table 3.3, CA and T were measured less frequently than in scenario A,

(i.e., only 64 concentration measurements and 64 temperature measurements instead of

128 for scenario A). As expected, the parameter estimates have larger variability due to

the smaller data set in scenario C (e.g., the IQR for kref increases from 0.020 to 0.026

min-1 using AEM and from 0.024 to 0.037 using extended AMLE). The QC estimates

obtained from AEM in scenario C are more biased toward small values than they were in

scenario A. Conversely, the extended AMLE estimates for QC and QT appear to be better

than in scenario A when the smaller data set is used.  The reason for this behaviour is

unclear. In both scenarios A and C, the AEM estimates of QC and QT are better than the

corresponding extended AMLE estimates.

In scenario D the values of QC and QT used to generate the simulated data were decreased

to the half of their original values (i.e., QC =0.005 (kmol.m-3)2·min-1 and QT =2 K2·min-1)

used in scenario A. The base case number of measurements (128) was used when

estimating the parameters.  Because the disturbances are smaller, improved estimates of

parameters kref, E/R, a, b and T(0) are obtained using both AEM and extended AMLE, as
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expected. However, the estimates for QC and QT are slightly worse from AEM than when

the larger disturbances were used, presumably because it is more difficult to accurately

detect the influence of the disturbances relative to the measurement noise. The AEM

estimates of QC and QT are better than the corresponding AMLE estimates in scenario D.

In scenario E the known true measurement noise variances were increased to twice as

their original values (i.e., 2
Cσ = 8×10-4 kmol2·m-6 and 2

Tσ = 12.8×10-1 K2), with all other

settings held at those from scenario A. These new true values were used in objective

functions (3.25) and (3.26) when estimating the parameters. As expected, using larger

noise variances resulted in slightly worse parameter estimates from both AEM and

AMLE. Also, the AEM estimates for QC and QT became slightly worse than in the

scenario A. The AEM estimates for QC and QT in scenario E are better than the

corresponding AMLE estimates.

Scenario F was used to investigate the robustness of the AEM and AMLE algorithms to

imperfect knowledge about the measurement noise variances 2
Cσ and 2

Tσ . In this

scenario, the modeler believes 2
Cσ and 2

Tσ to be twice their respective true values and

uses this incorrect assumption in the objective functions. The AEM estimates of the

model parameters kref, E/R, a, b and T(0) are nearly the same as those obtained using the

base case scenario (scenario A), but the estimates of QC and QT tend to be larger and

more biased than in the base case. The corresponding extended AMLE parameter

estimates in scenario F are more biased and have a larger variability than those obtained

using the base case. The simulation results from scenario F suggest that AEM is more

robust than AMLE to imperfect knowledge about measurement noise variances.
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We also attempted to use the AEM algorithm for a more-difficult parameter estimation

problem (scenario G) wherein parameters were estimated using only the temperature

measurements, with the concentration as an unmeasured state. The estimation worked

well if QC was assumed known (results shown in Table 3.3), but poor estimates were

obtained for QC when both of the disturbance intensities were estimated together using

the limited data (not shown).

The results in Table 3.3 and Figures 3.4 and 3.5 reveal that the AEM parameter

estimation algorithm was more effective than extended AMLE for the CSTR example

studied. Although AEM did encounter some difficulties with convergence to local

minima, the parameter values obtained are more reliable than those from extended

AMLE and CTSM. Because AEM uses a single objective function to estimate the model

parameters and disturbance intensities, computation times tend to be shorter than for

extended AMLE. Results in Table 3.3 suggest that AEM is more robust than extended

AMLE to imperfect knowledge about noise variances and that AEM has superior

performance when there are unmeasured state variables.

One shortcoming of the AEM method compared to more complex MCMC-based MLE

algorithms38,39,48 is that AEM introduces additional approximations when computing the

likelihood function. The main approximations correspond to using only the mode rather

than many particles and using B-spline approximations for the state trajectories in the

expectation step of the EM algorithm. These approximations save computational effort,

but may cause some of the bias observed in Figure 3.5 (a and d). The bias may also be

due to the limited number of data points used for parameter estimation. Since maximum

likelihood methods only result in unbiased parameters in the limit when the data size
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goes to infinity, it will be important to compare AEM with MCMC methods.13 AEM

should require considerably less computation time than MCMC-based EM techniques

since AEM does not require drawing samples from high-dimensional and complex

probability density functions.18 The current AEM method was developed assuming the

measurement noise variance is perfectly known. It will be beneficial to develop more

advanced approximate maximum likelihood methods that can estimate measurement

noise variances along with disturbance intensities, for situations where the modeler has

rich dynamic data, but limited knowledge of measurement noise.

3.6 Summary and Conclusions

A method for estimating parameters and process disturbance intensities in nonlinear SDE

models is proposed. This approximate maximum likelihood method is an extension of the

AMLE method previously proposed by Varziri et al.3,52 The new Approximate

Expectation Maximization (AEM) objective function permits modelers to estimate

process disturbance intensities along with the model parameters. The AEM method

efficiently approximates the expectation step of the EM algorithm using B-spline state

trajectories.

A two-state nonlinear CSTR model with stochastic disturbances and measurement noise

was used to test the AEM methodology. Four fundamental model parameters, an initial

state and two process disturbance intensities were estimated. Parameter and disturbance

intensity estimates were compared with those from Extended AMLE and the CTSM

software of Kristensen using simulated data. The resulting AEM parameter estimates are

less biased and more precise than the corresponding estimates obtained using Extended
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AMLE and CTSM. For the example studied, AEM is also more robust to poor initial

guesses than AMLE and CTSM. AEM performed relatively well using imperfect

knowledge about measurement noise variances and when only one of the states was

measured.

The AEM method was easier to set up and converged faster than extended AMLE

because the AEM method does not require successive optimizations using inner and

outer objective functions.  Since the model parameters and disturbance intensities are

estimated using a common Maximum Likelihood objective function, it is relatively easy

to obtain approximate confidence intervals for disturbance intensities using AEM.

Some of the benefits of the AEM method that may be attractive to developers of dynamic

models are: i) simplicity of implementation, ii) reliable estimates of model parameters,

initial conditions and disturbance intensities, iii) efficient handling of unknown initial

states, iv)ability to handle unmeasured state variables. In particular, estimates of

disturbance intensities can provide modelers with information about the degree of

mismatch and the magnitude of unmeasured disturbances in their simplified models. This

information will be helpful when implementing on-line state and parameter estimation

schemes for process monitoring and control, because the assumptions about

measurement errors and process disturbances are consistent with assumptions used in

Kalman filtering.61

In future, it will be desirable to extend the AEM algorithm so that unknown

measurement noise variances can be estimated when sufficient data are available, and to

test the AEM methodology using larger-scale estimation problems. It will also be

important to compare AEM results with those from recently developed MLE-based
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methods that use MCMC techniques for parameter estimation in stochastic differential

equation models.35,38,39 It is expected that AEM computation times will be significantly

lower than the times required using MCMC methods, particularly for larger-scale

problems, because AEM does not require sampling from high dimensional probability

density functions. It will be interesting to determine whether the additional B-spline and

mode approximations used to develop AEM will result in any significant degradation in

the quality of parameter estimates when compared with MCMC methods. In future, it

will be desirable to investigate the convergence of AEM algorithm.
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Chapter 4

An Approximate Expectation Maximization Algorithm for Estimating

Parameters, Noise Variances and Stochastic Disturbance Intensities in

Nonlinear Dynamic Models

4.1 Abstract

In Chapter 3, AEM was developed for estimating model parameters and disturbance

intensities for nonlinear dynamic systems that are described by Stochastic Differential

Equations (SDEs), assuming measurement noise variances are known. In this chapter, an

algorithm is proposed for simultaneous estimation of model parameters, process

disturbance intensities and measurement noise variances for SDE models. The proposed

Fully-Laplace Approximation Expectation Maximization (FLAEM) algorithm uses an

iterative approach wherein, in the first step, the model parameters are estimated using the

Approximate Maximum Likelihood Estimation (AMLE) objective function developed by

Varziri et al.1, assuming disturbance intensities and noise variances are known. In the

second step, process disturbance intensities and measurement noise variance estimates

are updated using expressions that rely on the Fully-Laplace Approximation (FLA) in the

Expectation Maximization (EM) algorithm. The proposed FLAEM method is illustrated

using a nonlinear two-state Continuous Stirred Tank Reactor (CSTR) example. The

effectiveness of the FLAEM algorithm is compared with a maximum-likelihood based

method proposed by Kristensen et al.2 For the CSTR example studied, FLAEM provides
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more accurate parameter estimates and is more robust to poorly known initial guesses of

parameters and to smaller data sets. This chapter has been submitted as a journal paper to

Industrial Engineering and Chemistry Research.

4.2 Introduction

Many chemical processes are modeled using ordinary differential equations (ODEs) or

algebraic equations (AEs) arising from fundamental laws of physics and chemistry.3-5

However, some chemical engineering processes are better modeled using stochastic

differential equations (SDEs) that account for possible modeling imperfections and

stochastic process disturbances.3,6 Stochastic terms that are included in SDE models can

result in improved model predictions due to decreased bias in parameter estimates.3,7

Parameter estimates obtained using SDE models are suitable for on-line process

monitoring applications because SDE models account for measurement errors and

stochastic process disturbance, the two types of random errors that are accounted for by

Extended Kalman Filters (EKFs) and related state estimators.8,9

A common method for estimating parameters in SDEs is the maximum likelihood

estimation method via the expectation maximization (EM) algorithm.10-14 The EM

algorithm is summarized in section 2.4 of this chapter. In nonlinear systems, the EM

algorithm becomes difficult to use because of problems related to the finding the required

expected value of the likelihood of the parameters given the states and measurements.13,15

Approximation methods have been used to simplify the expectation and maximization

steps of the EM algorithm. Some of these methods involve: using an EKF,16-19 Markov

Chain Monte Carlo (MCMC) methods that are also known as particle filter methods 13-

15,20-26 and approximations using spline-based methods.1,27 Linearization-based EKF
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methods are computationally attractive, but can give biased parameter estimates when

there are strong nonlinearities in the system.28 MCMC methods are asymptotically

efficient and consistent and do not require assumptions about the form of the density

function.29 When MCMC methods are used, the required probability density functions

are approximated by drawing samples from a target density function.30 MCMC methods

tend to be computationally intensive because a large number of particles may be required

to obtain good approximations, especially when the number of states and parameters is

large.15,24 An overview of MCMC techniques and some implementation issues are

presented by Kantas et al.31 and Imtiaz et. al.32

Varziri et al.1 developed an Approximate Maximum Likelihood Estimation (AMLE)

method for estimating model parameters in SDEs when both the process disturbance

intensity and the measurement noise variance are known. Because modelers often have

poor knowledge about the magnitudes of their model mismatch and the size of the

stochastic disturbances that will be encountered, Varziri et al.33 extended their algorithm

for estimating stochastic disturbance intensity along with model parameters. They

assumed that measurement noise variances are known and used this variance information

in a somewhat arbitrary objective function to estimate the disturbance intensities. In our

recent work,27 we derived a more rigorous method for estimating disturbance intensities

using an Approximate Expectation Maximization (AEM) objective function.

Unfortunately, this AEM methodology requires the measurement variances to be known

by the modeler.

In this chapter, we propose a computationally efficient algorithm that can be used to

estimate unknown noise variances along with the model parameters and disturbance
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intensities. This technique relies on the Fully-Laplace Approximation (FLA) for

approximating the multidimensional integrals of the likelihood function required in the

EM algorithm. 34,35 Previously, the FLA has also been used for approximating posterior

moments and marginal densities35 and for approximating posterior distributions in

Bayesian methods.34 The FLA has also has been used for joint modeling of survival and

longitudinal data via the EM algorithm,36 for estimating 37 parameters in generalized

linear latent variable models37 and for parameter estimation in nonlinear mixed-effects

models.38 To our knowledge, the FLA has not been used until now for parameter

estimation in SDE models. Details regarding the FLA are provided in section 2.5.

The remainder of this chapter is organized as follows. First, necessary notation and

background information are presented. Next, the EM algorithm and FLA are presented

and the FLAEM algorithm is developed. The FLAEM algorithm is then tested using a

stochastic nonlinear CSTR simulation study. The estimation results obtained using the

FLAEM algorithm are compared with results obtained using the ML-based Continuous-

Time Stochastic Modeling (CTSM) method proposed by Kristensen et al.39 Finally, the

performance of FLAEM is tested for the simpler situation when measurement noise

variances are known and the FLAEM results are shown to be superior to both CTSM and

AEM.

4.3 Preliminaries

4.3.1 SDE Model and Notation

In this chapter, we illustrate the proposed parameter estimation method using a Multi-

Input Multi-Output (MIMO) nonlinear SDE model of the following form:
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)()),(),(()( tttt ηθuxfx  (4.1.a)

00 )( xx t (4.1.b)

)()),()()( ,,,, jrmjrmjrmjrm tttt εθu,g(xy  (4.1.c)

where XRx is the vector of state variables, t is time, XPUX RRRR :f is a

vector of nonlinear mappings, URu is the vector of input variables and PRθ is the

vector of unknown model parameters, XRt )(η is a continuous zero-mean stationary

Gaussian white-noise process with covariance matrix E{η(t1)ηT(t2)}= Qδ(t2-t1), where Q

is a diagonal power spectral density matrix with dimension X ×X :
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and δ(.) is the Dirac delta function.7 The diagonal elements of Q are referred to as

disturbance intensities (i.e., Qd=[Q1,…,QX]T). In Equation (4.1.c , YRy is vector of

measured output variables. Measurement times for the rth response (r=1…Y) are denoted

by tm r,j (j = 1…Nr) and Nr is the number of measurements of rth response variable.

YRg is a vector of nonlinear mappings and YRε is the zero-mean random

measurement error. Assume that errors in measurements made at any sampling time tm r,j

(j = 1…Nr) are independent so that their covariance matrix is:
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In some dynamic models, the initial conditions, 0x , for the state variables are poorly

known because they have some associated measurement noise. We assume that the
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measurements for initial conditions of the state variables are contained in vector 0mx and

that these measurements are normally distributed with mean 00}{ xxE m and

00}cov{ mm Sx  .

Consider a vector Ym that contains all of the stacked measured values:

T
,1,,111,11 )]()()()([

1 YNYmYYmYNmm tytytyty mY .

Similarly, T
,1,,111,11 )]()()()([

1 YNYmYYmYNmm txtxtxtx mX is a stacked vector of

state values at the measurement times, and Um and εm are corresponding stacked vectors

for the input variables and random errors:

mmmm εθ)UXgY  ,,( (4.4)

In Equation (4.1), a discrete-time white-noise sequence is used to approximate and

implement the continuous stochastic disturbances η(t), where the corresponding discrete

process is a series of random step functions with a sampling interval Δt and

covariance:7,40
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where j1 and j2 are positive integers corresponding to the times at which the independent

random shocks occur.

Denote d as the diagonal elements of the covariance matrix (i.e., d=[ 2
1σ ,…, 2

Yσ ]T). Let

TTTTT ],,,[ dd0 ΣQxθζ  be the vector of unknown parameters in the SDE model, which

includes the model parameters θ and the unknown initial conditions, along with

disturbance intensities Q and the unknown noise variances . To simplify the notation,
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derivations in this chapter are developed assuming that n measurements are available for

each response. However, a derivation for the more general case where Nr measurements

are available for the rth response is also shown in Appendix 3.A.

4.3.2 B-Spline Basis Functions

B-splines basis functions are used to approximate continuous functions and variables.

Mth order B-splines basis functions are piecewise polynomials that are positive within M

intervals and zero elsewhere.41-43

The sth state of the SDE model in Equation (4.1) can be approximated by a linear

combination of cs B-splines:41,44


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
sc

l
lslss tφβtx

1
,,~ )()( for s=1,…,X (4.6)

where lsβ , is a B-spline coefficient and )(, tφ ls is the corresponding B-spline basis

function. The subscript ~ is used to indicate that the state trajectories are being

approximated using empirical spline curves. In matrix form, Equation (4.6) is:

ΒΦx~ )()( tt  (4.7)

where )(tΦ is a matrix of spline functions:
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and
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where βs is the vector containing cs B-spline coefficients for the sth state trajectory:

T
,1, ],,[

scsss  β for s=1,…,X (4.10)

An advantage of using B-spline basis functions for approximating the state variables in

dynamic models is that they can be easily differentiated with respect to time:





sc

l
lslss tφβtx

1
,,~ )()(  for s=1,…,X (4.11)

where )(, tφ ls is a simple polynomial expression. As a result, B-splines can be used to

convert differential equations to algebraic equations.41,44 For example, when B-spline

approximations are used, Equation (4.1.a) becomes:

)()),(,)(()( tttt ηθuΒΦfΒΦ  (4.12)

4.3.3 Approximate Maximum Likelihood Estimation (AMLE)

Algorithm

Varziri et al.1 discretized the SDE in Equation (4.1) to develop an AMLE method for

estimating model parameters θ in SDE models. The discretized form of Equation (4.1)

using an Euler approximation is:

tttttftttt iiiiii Δ)(Δ)),(),(()()()Δ( 11111   dηθuxxxx (4.13.a)

00 )( xx t (4.13.b)

where x(ti) is the value of the state variable at q uniformly-spaced time points ti , i=0,..,q

and )( 1itdη is the discrete-time white-noise process at q uniformly-spaced time points

ti-1. Consider TT
1

T
0

T )](,)(),([ qttt xxxXq  as the stacked vector of state values at the
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discrete times. Varziri et al.1 assumed that Q and Σ and perfectly known and derived the

following analytical expression for the likelihood θ)XY qm |,(ln p , while

approximating state trajectories by B-spline basis functions:1

ttttttt

pJ

qt

t

mmm

d)]),(),(()([)]),(),(()([

)()(

)],,([)],,([|,(ln

0

1T

0~0
1
0

T
0~0

1T
AMLE

θuxfxQθuxfx

xxSxx

θUXgYΣθUXgYθ)XY

~~~~

m~mmm~mm~qm







 







(4.14)

)(~ tx and its time derivative )(~ tx in Equation (4.14) result in an objective function that

depends explicitly on the B-spline coefficients Β and model parameters θ. Optimal

approximate maximum likelihood estimates for the model parameters θ can be

determined by finding values of θ and Β that minimize JAMLE.1 In the current chapter, this

AMLE objective function is used as part of a more complicated algorithm for estimating

unknown values of θ, Β, x0, Q and .  This new algorithm is useful for estimating

parameters when the modeler does not have prior knowledge of Q and .

4.3.4 EM Algorithm

In the EM algorithm, the expected value of the log likelihood of the complete data, given

the vector of measurements and values of the parameters kζ̂ arising from the current (i.e.,

kth) parameter iteration is calculated in the first step (referred to as the expectation step

or E step):12,45,46

qmqmqmmqm
X

XζYXζYXYζYζXYζζ
q

d)ˆ,|()],|,(ln[}ˆ,|)]|,({ln[E)ˆ,( kkk pppR 

(4.15)
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Note that the integral in Equation (4.15) is a multidimensional integral with respect to

each element of the state vector and that kζ̂ contains estimates of θ, Q and  from the

previous (kth) iteration. In the second step (referred to as the maximization step or M

step), this expected value is maximized with respect to ζ:12,45,46

)ˆ,(maxargˆ
1 kk R ζζζ

ζ
 (4.16)

Iteration between these two steps continues until convergence is obtained.

4.3.5 Fully-Laplace Approximation

The FLA of the ratio of two related multidimensional integrals is:34,35,47
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where G(χ) is a positive scalar function, )(χ is a scalar function and:

)()](ln[)( χχχ   G
(4.18)

In Equation (4.17), χ̂ and *χ̂ are vectors that maximize ψ and ψ*, respectively.

4.4 Development of the FLAEM Algorithm

In this section, an algorithm for estimating the measurement variances  and the process

intensities Q along with the model parameters θ and initial conditions x0 is developed.

Define:
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T)),,())(,,(( θUXgYθUXgY mmmmmm S (4.20)

It is shown in Appendix 3.A that, when θ is assumed to be known, the estimates of the

disturbance intensity Q and the noise variance Σ at the k+1th iteration are:
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1 kkk Z
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ΣQYQ m (4.21)
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The expectations of Z and S conditional on mY , kQ and kΣ are given by:38
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The FLA can be used for calculating the ratios of integrals in Equations (4.23) and

(4.24). After substituting the expressions for ),,|E( kkZ ΣQYm and ),,|E( kkS ΣQYm

obtained from the FLA into Equations (4.23) and (4.24), expressions for estimating Q

and  are (See Appendix 4.A for derivation):
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In Equations (4.25) and (4.26), the Hessian matrices BH , S
BH and Z

BH are defined as:
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(4.27)
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AMLEJ in Equation (4.27) is Varziri’s AMLE objective function defined in Equation

(4.14). ZJ~ and SJ~ in Equations (4.28) and (4.29) are:
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B̂ , ZB̂ and SB̂ are vectors of spline coefficients that minimize JAMLE, ZJ~ and SJ~ ,

respectively and ~x̂ ,
Z
~x̂ and S

~x̂ are the corresponding estimated state trajectories.

As shown in Chart 1, an iterative method can be used for estimating all of the parameters

(θ, Q , Σ and B). Note that the estimate for x0 is x~0, which can be computed from the

estimated spline coefficients. The first step of the FLAEM algorithm is to initialize all of
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the parameters (θ, Q , Σ and B). The second step is to minimize the AMLE objective

function (Equation (4.14)) with respect to θ and B to find θ̂ and B̂ , using the fixed

values of Q and Σ from their most recent updates. The third step is to minimize

Equations (4.30) and (4.31) with respect to B to find ZB̂ and SB̂ , using the fixed values

of θ, Q and Σ from their  most recent updates. The fourth step is to update Q and Σ

from Equations (25) and (26), using the most recent values of θ̂ , B̂ , ZB̂ and SB̂ . The

FLAEM algorithm iterates between steps two, three and four until convergence is

obtained.

Note that the vector of spline coefficients B (i.e., TTTTT ],,,[ ΒΣQθζ dd ) was not added to

the parameter vector ζ before deriving Equations (4.25) and (4.26). If B is included in the

parameter vector, conditions required for approximating the integrals in Equations (4.23) and

(4.24) does not hold anymore.34,45,37
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Chart 1.The FLAEM algorithm

Step 3: Using the most recent estimates of θ, Q and Σ :

a) find
ZB̂ to minimize

ZJ~ (Equation (A.30)) and determine
Z
BH

b) find
SB̂ to minimize

SJ~ (Equation (A.31)) and determine
S
BH

Step 4: Using the most recent values of θ̂ , B̂ , ZB̂ and
SB̂ :

update Q and Σ according to Equations (A.25) and (A.26)

End

Step 1: Initialize θ, Q , Σ and B

Yes

Are convergence criteria met?

Step 2: Using the most recent estimates of Q and Σ :

find θ̂ , B̂ to minimize AMLEJ (Equation (A.14)) and determine BH

No
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4.4 Illustrative Simulation Study: Nonlinear CSTR Stochastic Model

In this section, a two-state nonlinear CSTR model1,5 is used to illustrate the application of

the FLAEM algorithm for parameter estimation in SDEs. The two SDEs that describe

dynamic changes in the concentration of reactant A and reactor temperature are:

)()())(())()((
)(

d
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0 ttCtTktCtC

V
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t

tC
CArAA

A  (4.32.a)
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)()()( ,,, jCmCjCmAjCmC tεtCty  for Cnj 1 (4.32.c)

)()()( ,,, jTmTjTmjTmT tεtTty  for Tnj 1 (4.32.d)

CA(0)=1.569 kmol.m-3 (4.32.e)

T(0)=341.37 K                                                                                                           (4.32.f)
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p
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Hγ )Δ(

 (4.35)

In Equations (4.32.a) and (4.32.b):

)()}()(E{ jiCjCiC ttQtt   (4.36)

)()}()(E{ jiTjTiT ttQtt   (4.37)
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In Equations (4.32.c) and (4.32.d), )( , jCmC t Cnj 1 and )( , jTmT t Tnj 1 are

Gaussian measurement errors with variances 2
C and 2

T . The concentration CA is

measured nC times and the temperature T is measured nT times using equally-spaced

sampling intervals. We assume that Cη , Tη , Cε and Tε are independent. The model

inputs are: the feed flow rate F, the inlet concentration CA0, the inlet temperature T0, the

coolant inlet temperature Tin and the flow rate of coolant to the cooling coil, Fc. The

known constants for this CSTR model are given in Table 4.1.5

Table 4.1 Model constants5

Model Constants Value Units

cp 4186.8 J·kg-1·K-1

cpc 4186.8 J·kg-1·K-1

Tref 350 K

V 1 m3

ρ 1000 kg·m-3

ΔHrxn -544.154×103 J·kmol-1

The handling of known and unknown initial conditions is illustrated in this example by

assuming that the initial concentration CA(0) is perfectly known and the initial

temperature T(0) is unknown, but has been measured with a variance of 2
TS =5.0 K2.

Since the true value of the initial temperature T(0) is unknown, it must be estimated.

However, T(0) does not need to be included explicitly in the list of optimizer decision
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variables because the temperature trajectory is computed using the B-spline basis

functions so that T(0) corresponds to βT,1.  Since CA(0) is perfectly known, the first spline

coefficient βC,1 must be fixed at 1.569 kmol·m-3.

The model parameters to be estimated are kinetic parameters kref and E/R, and heat-

transfer parameters a and b. In vector form, T
ref baREk ],,/,[CSTR θ .  In the majority

of the situations studied in this chapter, the disturbance intensities QC (for the material

balance SDE) and QT (for the energy balance SDE) and the measurement noise variances

2
C and 2

T are assumed to be unknown. As a result, the complete vector of parameters

to be estimated is T
TCTCref QQbaREk ],,,,,,/,[ 22

CSTR ζ . In a few simulations,

however, the case where 2
C and 2

T are perfectly known is also considered to permit

comparisons of the FLAEM algorithm with our previously developed AEM technique.

The CSTR model (Equation (4.32)) was simulated in MATLAB using the “ode45”

solver. The duration of each simulated experiment is 64 minutes. The corresponding

input trajectories are shown in Figure 4.1.1,44

The stochastic white noise terms (ηC(t) and ηT(t)) were simulated using band-limited

white-noise blocks with a sample time of 0.5 minutes, which is approximately 10 times

smaller than the dominant time constant of the CSTR system. Simulated data affected by

Gaussian measurement errors and stochastic process disturbances were generated using

the true parameter values from Marlin5 shown in Table 4.2
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Figure 4.1 Input trajectories for nonlinear CSTR44

The appropriate objective function for estimating the model parameters θCSTR and the B-

spline coefficients in the CSTR model is:
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(4.38)

The third term on the right-hand side penalizes deviations of the estimated initial

temperature from the corresponding measurement. Note that there is no similar term for

the initial concentration, because it is assumed to be perfectly known by the modeler. The

first step of the FLAEM algorithm is to initialize all parameters.  In the second step,

JAMLE,CSTR is minimized with respect to the model parameters θCSTR and spline

coefficients BCSTR, assuming that the disturbance intensities and noise variances are

known:

CSTRAMLE,CSTRCSTR
CSTRCSTR

minargˆˆ J,
,Bθ

Bθ  (4.39)

where BCSTR=[βC,βT]T

The appropriate objective functions for the third step of the FLAEM algorithm for the

CSTR model are:
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In the third step, ZJCSTR and SJCSTR are minimized with respect to spline coefficients

BCSTR assuming that the complete parameter vector ζCSTR is known:

ZZ JCSTRCSTR
CSTR

minargˆ
B

B  (4.42)

SS JCSTRCSTR
CSTR

minargˆ
B

B  (4.43)
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In the fourth step, QC, QT, 2
C and 2

T are updated:
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where q =128 is the number of discrete random shocks used to generate the disturbance

sequences. ~
ˆ

AC , ~̂T , Z
AC ~

ˆ , ZT~̂ , S
AC ~

ˆ and ST~̂ are estimated state trajectories

corresponding to estimated B-splines coefficients Cβ̂ , Tβ̂ , Z
Cβ̂ , Z

Tβ̂ , S
Cβ̂ and S

Tβ̂ ,

respectively. In Equations (44)-(47) Hessian matrixes CβH , Z
CβH , S

CβH , TβH , Z
TβH

and S
TβH are defined as:

):1(CSTR CC nB,β HH  (4.48)

):1(CSTR TCT nn  B,β HH (4.49)

):1(CSTR C
ZZ

C nB,β HH  (4.50)

):1(CSTR TC
ZZ

T nn  B,β HH (4.51)

):1(CSTR C
SS

C nB,β HH  (4.52)
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):1(CSTR TC
SS

T nn  B,β HH (4.53)

where the notation 1:nC indicates columns 1 to nC of the Hessian matrix and
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B,
BB

H
ˆ

T
CSTRCSTR
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IPOPT48 was used as a solver to optimize objective functions in Equations (4.38), (4.40)

and (4.41). AMPL™ 49 was used to define the model for the IPOPT solver. Optimization

settings in IPOPT were set at their default values. 4th order (cubic) B-splines were used

for simulation studies in this chapter. Several different choices for placement of the

spline knots were studied and the corresponding results are presented below. To

determine the integrals in Equations (4.38), (4.40) and (4.41), five Gaussian quadrature

points were used between every two knots. The “gjh” function in IPOPT was used to

determine the required Hessian matrixes.

The iterative procedure in Chart 1 was used for estimating the parameter vector

T22
CTSR ],,,,,,/,[ TCTCref QQbaREk ζ . In the first step, the parameter vector CTSRζ

and B-spline coefficients are initialized. In the second step, the objective function in

Equation (4.38) is minimized with respect to θCSTR and BCSTR, using the most recent

values of 2,, CTC QQ  and 2
T . In the third step, Equations (4.40) and (4.41) are

minimized with respect to Z
CSTRB and S

CSTRB to find Z
CSTRB̂ and S

CSTRB̂ , respectively,
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using the most recent values of 2,, CTC QQ  and 2
T . In the fourth step, updated values of

QC, QT, 2
C and 2

T are calculated using Equations (44)-(47), using the most recent

values of CSTRθ̂ , S
CSTRB̂ , Z

CSTRB̂ and S
CSTRB̂ . In step 4 of the FLAEM algorithm,

estimates of the disturbance and noise parameters were considered to have converged

when the change in the sum of the squared relative errors e(k) is less than 10-3 where:

2
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2
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2
,

2
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4.5 Results and Discussions

The FLAEM method was tested using simulated data for 10 different scenarios. In each

scenario, 100 simulation runs were performed using different initial parameter guesses

and different Gaussian random noise sequences for the disturbances and measurement

errors. The initial guesses of the eight parameters in ζ were chosen randomly between

50% and 150% of the corresponding true values, using uniform probability distributions.

The quality of the parameter estimates in different scenarios was compared by

determining medians and interquartile ranges (IQRs) for the 100 parameter estimates in

each scenario. These medians and IQRs are shown in Table 4.2.

Scenarios 1 and 2 in Table 4.2 were used to study the influence of B-spline knot

placement on the quality of parameter estimates obtained using FLAEM. 128

temperature measurements and 128 concentration measurements (once every 0.5

minutes) were available in these simulation studies

In Scenario 1, 128 equally-spaced B-spline knots (one at each measurement time) were

used, while in Scenario 2, 256 equally-spaced knots were used for FLAEM algorithm.
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For comparison, the parameter vector ζ was also estimated using an ML-based method

proposed by Kristensen et al.39 In Kristensen’s method, a Gaussian distribution is

assumed for the likelihood function and the mean and variance of the likelihood function

are estimated using an EKF.2 When CTSM was used to estimate parameters, default

values of optimization settings were used. Note that the CTSM software requires

parameter bounds be specified by the user. The lower bounds of parameters were set at

zero and upper bounds were set at 10 times the true parameter values. Parameter bounds

are optional using FLAEM and none were specified when generating the results in this

chapter. The CTSM results when there are 128 temperature measurements and 128

concentration measurements are shown at the top of Table 4.2. Twenty-seven simulated

data sets encountered convergence failures when using CTSM, wherein the optimizer

selected intermediate parameter values where the differential equations could not be

solved. Box plots for parameter estimates obtained from the 73 remaining simulated data

sets using CTSM and all 100 data sets for FLAEM for Scenarios 1 and 2 are compared in

Figures 4.2 and 4.3. These boxplots correspond to the medians and IQRs in the top three

rows in Table 4.2.

.
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Table 4.2 True parameter values, median values and IQRs for the estimates using 100 Monte Carlo runs for different scenarios.

Parameter kref (E/R)/ 103 a/106 b T(0) QC QT 2
Cσ 2

Tσ
Unit min-1 K K kmol2·m-6·min-1 K2·min-1 kmol2·m-6 K2

True Value 0.461 8.3301 1.678 0.50 341.38 0.010 4.0 4×10 -4 0.640
Scenario

1 CTSM Median 0.464 8.3300 1.562 0.52 341.36 0.095 0.6 0.00000 1.026
IQR 0.016 0.2243 0.518 0.11 1.05 0.008 1.3 0.00000 0.339

FLAEM Median 0.429 8.2130 1.448 0.50 341.30 0.009 4.1 0.00037 0.660
IQR 0.017 0.2061 0.424 0.09 1.08 0.006 1.8 0.00018 0.256

2 FLAEM Median 0.444 8.3164 1.603 0.49 341.30 0.011 4.0 0.00036 0.637
IQR 0.016 0.2265 0.472 0.09 1.10 0.004 1.7 0.00019 0.349

3 FLAEM Median 0.431 8.2283 1.484 0.49 341.27 0.010 5.5 0.00024 0.523
IQR 0.019 0.2273 0.504 0.11 1.08 0.005 2.6 0.00042 0.432

4 FLAEM Median 0.430 8.2958 1.490 0.49 341.27 0.007 4.0 0.00031 0.538
IQR 0.025 0.3233 0.501 0.13 1.04 0.004 1.4 0.00022 0.349

5 FLAEM Median 0.405 7.9246 1.405 0.49 341.27 0.006 4.0 0.00028 0.411
IQR 0.048 0.5480 0.870 0.19 1.04 0.003 1.5 0.00036 0.436

6 FLAEM Median 0.432 8.1928 1.490 0.50 341.30 0.005 2.0 0.00037 0.651
IQR 0.015 0.1801 0.325 0.08 1.05 0.002 0.9 0.00009 0.159

7 FLAEM Median 0.411 8.0218 1.217 0.54 341.25 0.022 8.1 0.00037 0.658
IQR 0.076 1.1953 0.929 0.28 1.07 0.010 3.5 0.00017 0.323

8 FLAEM Median 0.429 8.2298 1.424 0.51 341.31 0.010 3.7 0.00019 0.324
IQR 0.015 0.1856 0.432 0.09 0.79 0.005 1.0 0.00010 0.161

9 FLAEM Median 0.431 8.1717 1.485 0.50 341.25 0.008 4.0 0.00059 1.052
IQR 0.019 0.2152 0.504 0.12 1.49 0.003 1.2 0.00042 0.431

10 FLAEM Median 0.398 8.2634 1.459 0.47 341.27 0.009 8.1 0.00041 0.654
IQR 0.046 0.7269 0.909 0.23 1.18 0.015 4.7 0.00035 0.612

11 FLAEM Median 0.431 8.2286 1.450 0.50 341.30 0.009 4.6
IQR 0.018 0.2407 0.435 0.09 1.05 0.003 1.1

AEM Median 0.432 8.2308 1.502 0.50 342.32 0.009 4.9
IQR 0.020 0.2062 0.465 0.10 1.21 0.004 1.4

CTSM Median 0.460 8.2800 1.575 0.51 341.00 0.092 1.5
IQR 0.015 0.1650 0.625 0.13 1.00 0.011 0.4
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Figure 4.2. Box-plots for estimates of model parameters using the CTSM and FLAEM
methods in Scenarios 1 and 2. The dashed horizontal lines show the true values used to
generate the simulated data.
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Figure 4.3 Box-plots for disturbance intensity estimates obtained using the CTSM and
FLAEM in Scenarios 1 and 2. The dashed horizontal lines show the true values used to
generate the simulated data.
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the estimates of noise parameters QC, QT, 2
C and 2

T obtained from FLAEM are less

biased than those obtained using CTSM. In fact, no noticeable bias can be observed for

any of the model or noise parameters in Scenario 1 (see Figures 4.2 and 4.3), except for

some minor bias in kref. The parameter estimation results for one of the simulation studies

obtained using FLAMLE (i.e., the first simulated data set) for Scenario 1 are shown in

Table 4.3. The results in Figures 4.2 and 4.3 indicate that using 128 spline knots was

sufficient and that using additional knots (i.e., 256 knots in Scenario 2) resulted in no

improvement in parameter precision (see IQR values in Table 4.2).

Average parameter estimation times for a typical simulated data set are ~3 min for

Scenario 1 using FLAEM and ~3 min for CTSM, using a laptop computer with Intel®

Core™ 2, Duo CPU, 1.86 GHz. The predicted responses obtained using the FLAEM

algorithm for one simulated data set and the corresponding parameter estimates from

Scenario 1 are compared with the true responses in Figure 4.4. As expected, the state

trajectories from the estimated spline coefficients are close to the true trajectories. The

estimated noise parameters for this run are CQ̂ =0.012 kmol2·m-6·min-1, TQ̂ = 3.7 K2·min-

1, 2ˆC = 3.7×10-4 kmol2·m-6 and 2ˆT = 0.770 K2.
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Figure 4.4. Measured, true, and predicted concentration and temperature responses for the
FLAEM method in Scenario 1, using simulated data from one of the 100 Monte Carlo
simulations. (• simulated data, ----- response with true parameters and true stochastic noise,
___FLAEM response)
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are known.  Since estimates of QC, QT, 2
C and 2

T are updated using Equations (4.44) to

(4.47), Hessian information for these parameters is not available.

Table 4.3 Estimates and 95% Confidence intervals for LAMLE parameter estimates from

one of the 100 Monte Carlo simulations

Parameter Unit True Value Estimate 95% Confidence Interval

kref min-1 0.435 0.434 0.019

(E/R)/ 103 K 8.2487 8.2403 0.243

a/106 1.678 1.860 0.755

b 0.50 0.42 0.15

T(0) K 341.38 341.03 1.02

For all of the remaining scenarios shown in Table 4.2, 128 equally spaced B-spline knots

were used for approximating the concentration and temperature trajectories. Scenario 3 in

Table 4.2 was used to study the robustness of the FLAEM algorithm to poorer initial

guesses of parameters. In Scenario 3, the initial guesses were chosen randomly between

50% and 400% of the true parameter values. Using worse initial guesses had only a small

influence on the FLAEM parameter estimation results. The estimates have larger

variability than those obtained using the good initial values in Scenario 1. Note that some

simulated data sets resulted in convergence to local minima when the worse initial

guesses were used, leading to larger IQR values for parameter estimates. 67 of 100

attempts to estimate the parameters in this scenario using CTSM failed (results not

shown) suggesting that the use of CTSM requires good values of initial guesses to obtain

convergence.
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Scenarios 4 and 5 in Table 4.2 were used to investigate the influence of a smaller number

of measurements on the quality of the parameter estimates obtained using FLAEM. In

Scenario 4, 64 equally-spaced concentration measurements and 64 equally-spaced

temperature measurements were available for parameter estimation from the simulated

data sets. Knot placement and initial parameter guesses were identical to Scenario 1. As

expected, the medians and IQRs for parameter estimates are worse than those in Scenario

1 due to the smaller data sets.  CTSM could not provide parameter estimates for any of

these data sets, indicating that the use of CTSM requires a relatively larger number of

measurements compared to FLAEM. Parameter estimations using CTSM were not

attempted for most of the remaining scenarios in Table 4.2.

In Scenario 5, only 22 concentration measurements and 22 temperature measurements

were available for parameter estimation. Despite this smaller number of measurements,

the estimates of the parameters are still quite good, but the estimates have larger

variability than those in Scenarios 1 and 4. Note that the estimates of kref and QC are

slightly biased in this scenario. These biases might be related to: i) the finite number of

data values used for parameter estimation, which can lead to bias in any ML-based

method; ii) approximating the likelihood function θ)YYθ mm |()|( pL  by the likelihood

)|,(),|( θXYXYθ qmqm pL  in Equation (4.38); iii) the use of the FLA when

developing expressions for estimating QC, QT, 2
C and 2

T in Step 4 of the FLAEM

algorithm or iv) approximating the state trajectories using B-splines.

Scenarios 6 and 7 were used to study the influence of larger and smaller disturbance

intensities on the quality of the parameter estimates. In Scenarios 6 and 7, the values of

QC and QT were changed to the 50% and 200% of their values from Scenario 1,
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respectively (i.e., true values of QC are 0.005 and 0.02 kmol2·m-6 min-1 respectively, and

true values of QT are 2.0 and 8.0 K2·min-1, respectively). The number of measurements

and all of the other settings were the same as those in Scenario 1.  As expected, in

Scenario 6, the widths of the IQRs for all parameters are smaller than those obtained in

Scenario 1 because smaller stochastic disturbances were encountered. Since larger

disturbances occurred in Scenario 7, wider IQRs were obtained in this scenario.

Scenarios 8 and 9 were studied to examine the influence of small and large measurement

noise variances on the effectiveness of FLAEM.  The true values of the measurement

noise variances 2
C and 2

T were changed to 50% and 200% of their values from

Scenario 1. All other settings are the same as those in Scenario1. Since smaller

measurement noise variances were used in Scenario 8, smaller IQR values were obtained

for parameter estimates.  Similarly, in Scenario 9 wider IQRs were obtained for the

parameters due to the noisier data.

In Scenario 10, parameters were estimated using only the temperature measurements,

with the concentration as an unmeasured state.  All other settings were held at those from

Scenario 1. 2
C was not estimated because no concentration data were obtained and the

corresponding terms did not appear in the objective functions.  On average, parameter

estimates have larger variability than those in Scenario 1 because fewer data values were

available.

In Scenario 11, the values of 2
C and 2

T are assumed to be perfectly known to permit

comparisons of the FLAEM algorithm with our previously developed AEM technique.

The knot placements, number of measurements and initial parameter guesses are the

same as those in Scenario 1. The AEM objective function for estimating the model
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parameters T
ref baREk ],,/,[CTSR θ and disturbance intensities QC and QT in the CSTR

model is:
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(4.59)

The AEM objective function is similar to the AMLE objective function in Equation

(4.38) but it has two additional terms )ln( CQq and )ln( TQq . This objective function can

be used for estimating model parameters and disturbance intensities in a single step.

Attempts were also made to estimate the parameters using CTSM. As expected, the

parameter estimates obtained from FLAEM and AEM have negligible bias. However, the

AEM parameter estimates in this scenario have slightly larger variability than those

obtained using FLAEM. Recall that FLAEM uses the FLA for approximating the E step

of the EM algorithm. As explained in our previous work, AEM uses the mode of the

expected value of the E step in the EM algorithm.27 The results from this case study

suggest that FLAEM uses a better approximation. Using CTSM, successful parameter

estimation was only obtained for 36 of the 100 Monte Carlo cases attempted for this

scenario. The remaining 64 cases experienced convergence difficulties due to parameter

values that made numerical solution of the differential equations unstable.  As shown in
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Table 4.2, the 36 CTSM estimates of QC and QT have more bias than the estimates

obtained using FLAEM and AEM.

In summary, the results in Table 4.2 and Figures 4.2 and 4.3 suggest that the FLAEM

parameter estimates are less biased and more accurate than corresponding estimates

obtained using CTSM for the CSTR example studied.  Since the FLAEM algorithm is an

approximate MLE method, some bias in parameter estimates was expected in situations

involving sparse data sets. Some of the minor bias observed in Figures 4.2 and 4.3 and

also Table 4.2 may also be due to the B-spline approximations and the FLA. Since

computationally intensive MCMC-based MLE techniques are asymptotically efficient

and consistent estimators that do not make B-spline or fully-Laplace approximations, we

recommend that the performance of the FLAEM algorithm should be compared to several

MCMC methods. The FLAEM computational times encountered in the CSTR examples

in this chapter are modest (~ 3 minutes using a laptop computer with Intel® Core™ 2,

Duo CPU, 1.86 GHz.) and are expected to be significantly shorter than the corresponding

MCMC computing times. The relative computational benefits of the FLAEM algorithm

are expected to become more important for larger-scale problems, because FLAEM does

not require the drawing of numerous samples from high-dimensional probability density

functions.52 As a result, the performance of FLAEM and MCMC should be compared

using a larger-scale example problem than the illustrative CSTR problem used in the

current chapter.



139

4.6 Conclusions

In this paper, the Fully-Laplace-Approximation Expectation Maximization (FLAEM)

algorithm is presented for estimating parameters, stochastic disturbance intensities and

measurement noise variances for nonlinear stochastic differential equation (SDE) models.

In the first stage of the FLAEM algorithm, model parameters θ are estimated by

minimizing Varziri’s AMLE objective function, assuming that the disturbance and noise

parameters are known.1 In the second stage, disturbance intensities and noise variance

estimates are updated. The expressions used to obtain these noise parameters were

derived by approximating the E-step of the EM algorithm using the FLA and B-spline

basis functions. The proposed FLAEM algorithm iterates between these two stages until

convergence is obtained. The effectiveness of the FLAEM algorithm was tested using a

two-state nonlinear stochastic CSTR model. The FLAEM algorithm showed good

performance for estimating model parameters, disturbance intensities and measurement

noise variances and was more robust than CTSM, which uses a classical ML-based

method39, particularly when the number of measurements was relatively small or when

initial guesses of parameters were relatively poor. For the cases where CTSM was able to

converge, the resulting parameter values tended to be less accurate than the

corresponding parameter estimates from FLAEM. Although the FLAEM algorithm was

developed for situations where model parameters, disturbance intensities and noise

variances must all be estimated from the data, a few simulations were also performed

assuming that noise variances were known. These simulation results suggest that FLAEM

performs better than our previous AEM algorithm. Implementation of the FLAEM

algorithm is relatively easy. The user must supply information about the knot location for
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the B-spline basis functions, along with the initial parameter guesses.  If the user is not

certain about the number of knots that are required, additional knots can be added until

the resulting parameter estimates and estimated state trajectories do not change

appreciably when additional knots are used.

In future, it will be important to test the FLAEM algorithm using larger-scale parameter

estimation problems and to compare FLAEM results with MLE-based methods that use

Markov Chain Monte Carlo (MCMC) algorithms for parameter estimation.13-15,26,53

It will also be interesting to investigate whether other potential approximations (e.g., a

Laplace approximation54 for the likelihood function) can lead to further improvements in

parameter estimates without resorting to computationally intensive MCMC-based

techniques. In future, it will be desirable to investigate the convergence of FLAEM

algorithm.
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Chapter 5

A Maximum-Likelihood Method for Estimating Parameters, Stochastic

Disturbance Intensities and Measurement Noise Variances in Nonlinear

Dynamic Models with Process Disturbances

5.1 Abstract

An improved approximate maximum likelihood algorithm is developed for estimating

measurement noise variances along with model parameters and disturbance intensities in

nonlinear stochastic differential equation (SDE) models. This algorithm uses a Laplace

approximation and B-spline basis functions for approximating the likelihood function of

the parameters given the measurements. The resulting Laplace approximation maximum

likelihood estimation (LAMLE) algorithm is tested using a nonlinear continuous stirred

tank reactor (CSTR) model. Estimation results for four model parameters, two process

disturbance intensities and two measurement noise variances are obtained using LAMLE

and are compared with results from two other maximum-likelihood-based methods, the

continuous-time stochastic method (CTSM) of Kristensen and Madsen 1 and the Fully

Laplace Approximation Estimation Method (FLAEM).2 Parameter estimations using 100

simulated data sets reveal that the LAMLE estimation results tend to be more precise and

less biased than corresponding estimates obtained using CTSM and FLAEM.

This chapter will be submitted as a journal paper to Computers and Chemical

Engineering Journal.
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5.2 Introduction

Fundamental models based on mass and energy balances are imperfect representations of

process behavior due to simplifying assumptions and approximations that ignore complex

interactions.3 Model uncertainties may also arise from random disturbances associated

with feed streams and the environment conditions.4,5 As a result, some modelers add

stochastic terms to their dynamic fundamental models to account for model mismatch and

process disturbances, resulting in systems of stochastic differential equations (SDEs).6,7

Parameter estimation in these models is difficult because two different sources of

uncertainty are accounted for: i) stochastic process disturbances and ii) measurement

noise. Maximum Likelihood (ML) methods are commonly used to estimate model

parameters and uncertainty parameters in these systems.8,9 ML methods provide reliable

asymptotically unbiased parameter estimates for SDE models.9 ML methods maximize

the likelihood function of the unknown model and uncertainty parameters given the

measurements.9 When some states are unmeasured, a closed form for this likelihood

function is difficult to derive since it implicitly depends on the values of the state

variables.9,10 Several different approximation methods have been developed to find a

closed form for the likelihood function so that parameters can be estimated in SDE

models. For example, simulated maximum likelihood (SML) methods such as Markov

Chain Monte Carlo (MCMC) techniques10-18 estimate the likelihood function by drawing

samples from a target density function. MCMC methods do not require assumptions

about the form of the density function. Benefits and drawbacks of MCMC methods are

summarized by Imtiaz et. al.19 and Kantas et al.18. Other techniques that can be used for

approximating the likelihood function are: Hermite expansions,20,21 solution of the
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Fokker-Planck equation22,23 and polynomial chaos.24 Comprehensive reviews of these

techniques are given by Lindstrom25 and Hurn et al.26 Unfortunately, the aforementioned

methods are computationally demanding especially when the dimension of the model and

or the number of parameters increases.15,17,27,28

Varziri et al.29 developed a computationally efficient Approximate Maximum Likelihood

Estimation (AMLE) method for estimating parameters in SDE models when disturbance

intensities and noise variances are known. This technique was developed by finding a

closed form for the likelihood function of the parameters given the joint vector of

measurements and states, using B-spline basis functions to approximate the state

trajectories.29 The AMLE methodology has been extended so that unknown disturbance

intensities can be estimated along with the model parameters in cases where the

measurement noise variances are known.2,30

Linearization-based ML methods have also been used for approximating the likelihood

function. For example, an extended Kalman filter (EKF) is used for approximating the

likelihood function in the CTSM software developed by Kristensen et al.31 Although

linearization-based techniques are computationally efficient, parameter estimates from

these methods can be biased when strong nonlinearities are present in the model.11

In ML methods, a closed form for the likelihood function (i.e., the probability density

function of measurements given the parameters) can be found by integrating the

likelihood of the complete data over all of the values of states, where the complete data is

a joint vector of the measurements and the states. Calculating this multidimensional

integral is challenging, particularly when the number of state variables is large.10,32

Multidimensional integrals can be approximated using a second-order Taylor series
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expansion, known as the Laplace Approximation (LA).33,34 The LA has been used for

approximating the likelihood of mixed algebraic models that contain deterministic and

stochastic components35-42 and for approximating posterior density functions in Bayesian

estimation.43,44 Heald and Stark45 developed an iterative ML algorithm based on the LA to

estimate the magnitude of the dynamic noise (i.e., the process disturbance intensity) and

the measurement noise variance in nonlinear time-series models. To our knowledge, the

LA has never been used for estimation of model and disturbance parameters in SDEs.

Recently, we developed an Approximate Expectation Maximization (AEM) algorithm2

that provides disturbance intensity estimates that are more accurate than those obtained

using AMLE30 and CTSM.1 Unlike AMLE, the AEM algorithm uses a single ML-based

objective function for simultaneous estimation of model parameters and disturbance

intensities. One shortcoming of the AEM and AMLE methods is that these algorithms

require measurement noise variances to be known a priori. More recently, we developed

a Fully-Laplace-Approximation Expectation Maximization (FLAEM) algorithm for

simultaneous estimation of model parameter, process disturbance intensities and

unknown measurement noise variances in SDE models.  In the first stage of this iterative

algorithm, model parameters are estimated using Varziri’s AMLE objective function,29

assuming that the disturbance intensities and measurement noise variances are known. In

the second stage, disturbance intensity and noise variance estimates are updated. The

expressions used to update the disturbance intensities and noise variances were derived

using the FLA and B-spline basis functions. The FLAEM algorithm iterates between the

two steps until convergence is obtained. Additional details about AMLE, AEM and

FLAEM methods are provided in Sections 5.3 and 5.4.
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The goals of this chapter are to develop a new Laplace Approximation Maximum

Likelihood Estimation (LAMLE) algorithm that makes use of the LA for integrating the

likelihood function of the parameters given the complete data, and to test this algorithm

using a simple nonlinear two-state SDE model. First, necessary notation and background

information are introduced. Next, the objective function for the LAMLE algorithm is

derived. The proposed methodology is then tested using a CSTR model and results are

compared with those from CTSM and FLAEM.46 Advantages and limitations of the three

methods are discussed, revealing that the proposed LAMLE method is computationally

effective and provides more accurate estimates than CTSM and FLAEM for the CSTR

example studied.

5.3 Preliminaries

5.3.1 Model and Notation

Consider a Multi-Input Multi-output (MIMO) nonlinear SDE model of the following

form:

)()),(),(()( tttt ηθuxfx  (5.1.a)

00 )( xx t (5.1.b)

)()),()()( ,,,, jrmjrmjrmjrm tttt εθu,g(xy  (5.1.c)

where XRx is the X-dimensional vector of state variables, t is time, URu is the U-

dimensional vector of input variables, PRθ is the P-dimensional vector of unknown

model parameters, XPUX RRRR: f is an X-dimensional nonlinear mapping,

YRy is the Y-dimensional vector of measured outputs and YRε is the Y-dimensional

zero-mean measurement error with a diagonal covariance matrix :
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Measurement errors for rth response at different times tm r,j (j = 1…Nr) are assumed to be

independent. Nr is the number of measurements for rth response. η(t) is a continuous

zero-mean stationary Gaussian white-noise process with covariance matrix

E{η(t1)η(t2)}= Qδ(t2-t1), where Q is the process disturbance intensity matrix for η(t):
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which is also referred to as the power spectral density matrix, and δ(.) is the Dirac delta

function.47 In cases where the vector of initial conditions is measured and is not perfectly

known, measurements for the initial conditions are assumed to have a normal distribution

with mean 00}E{ xxm  and 00}cov{ mm Sx  , which is diagonal.

The parameters that usually require estimation in the SDE model in Equation (5.1) are the

model parameters θ, the process disturbance intensity Q and the measurement noise

variance . Sometimes modelers may know  from information about the measurement

device or from replicate measurements, in which case  would not require estimation.

Modelers usually do not know the magnitude of the stochastic error terms (i.e., Q) in

their model. Throughout this chapter, the vector of stacked measurements for the model

in Equation (5.1) is written using the notation

T
,1,,111,11 )]()()()([

1 YNYmYYmYNmm tytytyty mY . Also
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T
,1,,111,11 )]()()()([

1 YNYmYYmYNmm txtxtxtx mX is the stacked vector of state values

at the measurement times. Um and εm are corresponding stacked vectors for the input

variables and random errors:

mmmm εθ)UXgY  ,,( (5.4)

Denote Qd as the vector of diagonal elements of Q (i.e., Qd=[Q1,…,QX]T). Also denote d

as the diagonal elements of the covariance matrix (i.e., d=[ 2
1σ ,…, 2

Yσ ]T). Let

TTT
0

T ],,,[ T
dd ΣQxθζ  denote the vector of model parameters, unknown initial states,

disturbance intensities and measurement noise variances in the SDE model that should be

estimated. To simplify the notation, derivations in this chapter are developed assuming n

measurements are available for each response. However, derivations for the case where

Nr measurements are available for the rth response are also shown in Appendix 5.C.

5.3.2 Spline Basis Functions

Discrete data can be smoothed using basis functions that are continuous functions of

time. B-spline functions are a common and effective choice of basis function due to their

compact support and piecewise definitions.48,49 Mth order B-splines are positive within M

intervals and are zero elsewhere.50 Throughout this paper the subscript ~ is used to

indicate states approximated by B-spline basis functions. A linear combination of B-

splines can be used to approximate states of the SDE model in Equation (5.1):





sc

l
lslss tφβtx

1
,,~ )()( for s=1,…,X (5.5)

where x~s is the sth state trajectory for the SDE model shown in Equation (5.1), cs is the

number of  B-spline basis functions for the sth state, ls , is a the lth B-spline coefficient

for the sth state and )(, tφ ls is the corresponding B-spline basis function. In matrix form:
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ΒΦx~ )()( tt  (5.6)

where )(tΦ is a matrix of spline functions:
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and
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where βs is the vector containing cs B-spline coefficients for the sth state:

T
,1, ],,[

scsss  β for s=1,…,X (5.9)

5.3.3 Approximate Maximum Likelihood Estimation (AMLE)

Algorithm

Varziri et al.29 discretized the SDE in Equation (5.1) to develop their AMLE objective

function for estimating the model parameters θ in SDE models. The discretized form of

Equation (5.1) using an Euler approximation is:

ttttttttt iiiiii   )()),(),(()()()( 11111 dηθuxfxxx (5.10a)

00 )( xx t (5.10b)

where x(ti) is the vector of state variables at q+1 uniformly-spaced discrete time points ti ,

i=0,..,q. dη is a discrete white-noise process that can be used to approximate continuous-

time white noise using a small sampling interval Δt. Consider TT
0

T )](,),([ qtt xxXq  as

the stacked vector of state values at the discrete times. Varziri et al.30 developed a closed

form expression for θ)XY q~m |,(ln p using B-splines to represent state trajectories
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and used it to develop the following objective function for estimating θ, assuming Q and

 are known:30

ttttttt
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wherein the state trajectories in x(t) are approximated by B-spline basis functions.

5.3.4 Laplace Approximation

The LA33 is used for approximating integrals of Gaussian joint density functions of the

form  xx de )(p .42 The LA is based on a second-order Taylor series expansion of p(x)

about its mode ( x̂ ):33
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or equivalently taking the natural algorithm of (5.12) and solving the integral, the LA is:
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where x is a vector of random variables and x̂ is the vector of random variable values

that maximizes p(x). The accuracy of Laplace approximation is on the order of [dim(x)]-1.
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5.4 Development of the Laplace Approximation Maximum Likelihood Estimation

Method

In this section, a Laplace Approximation Maximum Likelihood Estimation (LAMLE)

algorithm is developed for estimating the model parameters θ, the process disturbance

intensities Q and the measurement noise variances  in SDE models of the form shown

in Equation (5.1). The likelihood function of the parameters given the measurements (i.e.,

)|()|( θYYθ mm pL  ) can be obtained by integrating the likelihood function of the

complete data )|,( ζYX mqp over the vector of possible values for the state variables

Xq:16

 qmqm XζYXζY d)|,()|( pp (5.14)

The following closed form expression was derived in our previous work:2
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where C1 is a constant.

The integral in Equation (5.14) is a multi-dimensional integral (over all possible values of

the state variables at the discrete times) that can be difficult to evaluate unless

approximations are made. Using the LA to find a closed form for )|(ln ζYmp gives:
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as shown in the derivation in Appendix 5.A. In Equation (5.16), HX~ is the Hessian

matrix of )|,(ln ζYX mqp with respect to Xq evaluated at Xq~

~qq

q

XXqq
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The optimal values of the model parameters θ, the disturbance intensities Q, the noise

variances  and the B-spline coefficients B can be found by minimizing JLAMLE:

LAMLEminargˆˆ J
Bζ,

B,ζ  (5.18)

An analytical expression for the Hessian matrix in Equation (5.16) is difficult to obtain.

Several approximations have been used to avoid complex Hessian expressions.41,45,51 The

method of Heald and Stark, which was developed for determining noise parameters in

time-series models, is particularly attractive due to its simplicity and accuracy. In the

current chapter, this methodology is adapted for use in SDE models. The corresponding

derivation is shown in Appendix 5.B.

Taking the derivative of JLAMLE with respect to Q and  and setting them to zero results

in the following useful expressions for updating estimates of Q and  (See Appendix 5.B

for derivations):
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where Ψ is:

 T21 )()()( qttt ΦΦΦΨ  (5.21)

and HB is the Hessian matrix with respect to the B-spline coefficients:

TBB
H B 


 AMLEJ

(5.22)

As shown in Chart 1, the first step of the proposed LAMLE algorithm involves

minimizing JAMLE in Equation (5.11) to estimate θ and Β, using initial guesses for Q and

. In the second step, the estimated values of θ and Β from the first stage are used to

calculate updated values of Q and  from Equations (5.19) and (5.20). Iteration between

these two steps continues until convergence is obtained. It is common for optimization

software to automatically report numerical values of the Hessian matrix with respect to

the decision variables (e.g., when the LAMLE algorithm is implemented using

AMPLTM,52 and IPOPT53, the Hessian matrix ΒH is reported by the “jgh” function in

IPOPT after each iteration). Thus, there is no need for analytical calculation of the

required Hessian matrix using the proposed LAMLE method.

Note that the vector of spline coefficients B (i.e., TTTTT ],,,[ ΒΣQθζ dd ) was not added to

the parameter vector ζ before deriving a closed form for the likelihood function )( mY|ζL . If

B is included in the parameter vector, conditions required for approximating the integral in

Equation (5.14) does not hold anymore.33,42
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Chart 1.The LAMLE algorithm

Step 3: Using the most recent values of θ̂ and B̂
update Q and  according to Equations (5.19) and (5.20)

End

No

Step 4: Are convergence
criteria met?

Step 2: Using the most recent estimates of Q and :

find θ̂ and B̂ to minimize JAMLE(Equation (5.11)) and get BH

Step 1: Initialize θ, x0, Q,  and B

Yes
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5.5 Illustrative Example: Nonlinear Two-State CSTR Model

In this section, parameters in a two-state nonlinear CSTR model54 with stochastic

disturbance terms29 are estimated to illustrate the use of the proposed LAMLE algorithm.

Parameter estimation results obtained using LAMLE method are also compared with

those obtained from CTSM1 and FLAEM46. The two SDEs, which describe dynamic

changes in the concentration of reactant A and the reactor temperature are:

)()())(())()((
)(

d

)(d
0 ttCtTktCtC

V

tF

t

tC
CArAA

A  (5.23.a)

)()())(())()(())()((
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d

)(d
0 tηtCtTkγtTtTUAtTtT

V

tF

t

tT
TArcin  (5.23.b)

)()()( ,1,1,1 jmCjmAjmC tεtCty  for Cnj 1 (5.23.c)

)()()( ,1,1,1 jmTjmjmT tεtTty  for Tnj 1 (5.23.d)

CA(0)=1.569 (kmol.m-3) (5.23.e)

T(0)=341.37 (K)                                                                                                        (5.23.f)

where kr is the reaction rate constant:
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UA is a heat transfer coefficient:
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and  is:

p

rxn

cρ
Hγ )Δ(

 (5.26)
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In Equations (5.23.a) and (5.23.b):

)()}()({ jiCjCiC ttQttE   (5.27)

)()}()({ jiTjTiT ttQttE   (5.28)

In Equations (5.23.c) and (5.23.d), )( mjC t Cnj 1 and )( mjT t Tnj 1 are white

noise sequences with variances 2
C and 2

T , respectively. The concentration CA is

measured nC times and the temperature T is measured nT times at equally spaced sample

times. We assume that Cη , Tη , Cε and Tε are independent. The model inputs are: the feed

flow rate F, the inlet concentration CA0, the inlet temperature T0, the coolant inlet

temperature Tcin and the flow rate of coolant to the cooling coil, Fc. The known constants

for this CSTR model are shown in Table 5.1.54

Table 5.1 Model constants54

Model Constants Value Units

cp 4186.8 J·kg-1·K-1

cpc 4186.8 J·kg-1·K-1

Tref 350 K

V 1 m3

ρ 1000 kg·m-3

ΔHrxn -544.154×103 J·kmol-1
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Simulated experiments with measurement noise and stochastic disturbances were

performed using the “ode45” solver in MATLAB™ and the input trajectories shown in

Figure 5.1.

Figure 5.1 Input trajectories for nonlinear CSTR49

In the simulations, the continuous white noise disturbances were approximated using

discrete white noise sequences with a sampling interval of Δt=0.5 min which is
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approximately 10 times smaller than the dominant time constant of the CSTR system. To

illustrate the handling of initial conditions that are perfectly known and also measured

initial conditions, it is assumed that the initial concentration CA(0) is perfectly known, but

the initial temperature T(0)  is measured with a known variance of 2
TS =5.0 K2. Since the

true value of the initial temperature is unknown, it must be estimated.  But there is no

need to include T(0) explicitly in the list of decision variables selected by the optimizer

because T(0) can be calculated from the estimated B-spline coefficients for the

temperature trajectory. The perfectly known value CA(0)=1.569 kmol.m-3 can be enforced

by setting the corresponding first spline coefficient βC,1 =1.569.29 We assume that

measurement noise variances 2
C , 2

T and process disturbance intensities CQ , TQ are

unknown so that the complete list of parameters that  needs to be estimated includes the

model parameters T
ref baREk ],,/,[CSTR θ , the disturbance intensities QC, QT, the

measurement noise variances 2
C , 2

T and the B-spline coefficients  (except for βC,1).

The true values of parameters, which were used to generate the simulated data, are shown

at the top of Table 5.2.
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Table 5.2 True parameter values, median values and IQRs for the estimates based on 100 Monte Carlo runs for different scenarios.

Parameter kref (E/R)/ 103 a/106 b T(0) QC QT
2
C 2

T

Unit min-1 K K kmol2·m-6·min-1 K2·min-1 kmol2·m-6 K2

True Value 0.461 8.3301 1.678 0.50 341.38 0.010 4.0 4×10 -4 0.64

Scenario

I CTSM Median 0.464 8.3300 1.560 0.52 341.36 0.095 0.6 0.00000 1.03

IQR 0.016 0.2240 0.520 0.11 1.05 0.008 1.3 0.00000 0.34

FLAEM Median 0.429 8.2130 1.448 0.50 341.30 0.009 4.1 0.00037 0.66

IQR 0.017 0.2061 0.424 0.09 1.08 0.006 1.8 0.00018 0.26

LAMLE Median 0.434 8.2420 1.536 0.50 342.07 0.013 10.7 0.00050 0.86

IQR 0.020 0.2175 0.458 0.09 0.91 0.003 2.2 0.00022 0.29

II FLAEM Median 0.444 8.3164 1.603 0.49 341.30 0.011 4.0 0.00036 0.64

IQR 0.016 0.2265 0.472 0.09 1.10 0.004 1.7 0.00019 0.35

LAMLE Median 0.444 8.3102 1.598 0.49 341.67 0.011 6.3 0.00039 0.63

IQR 0.022 0.2275 0.480 0.09 0.86 0.003 1.4 0.00014 0.16

III FLAEM Median 0.449 8.3090 1.657 0.49 341.30 0.010 4.3 0.00041 0.63

IQR 0.020 0.2547 0.489 0.09 1.12 0.005 2.0 0.00018 0.32

LAMLE Median 0.448 8.3273 1.652 0.49 341.30 0.010 5.1 0.00039 0.64

IQR 0.021 0.2403 0.493 0.10 1.07 0.003 1.1 0.00011 0.16
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Table 5.2 Continued, True parameter values, median values and IQRs for the estimates based on 100 Monte Carlo runs for different

scenarios.

Parameter kref (E/R)/ 103 a/106 b T(0) QC QT
2
C 2

T

Unit min-1 K K kmol2·m-6·min-1 K2·min-1 kmol2·m-6 K2

True Value 0.461 8.3301 1.678 0.50 341.38 0.010 4.0 4×10 -4 0.64

Scenario

IV FLAEM Median 0.448 8.3402 1.527 0.50 341.20 0.004 2.1 0.00008 0.16

IQR 0.025 0.2576 0.696 0.16 1.15 0.002 0.8 0.00013 0.20

LAMLE Median 0.449 8.3311 1.626 0.50 341.29 0.010 5.2 0.00040 0.60

IQR 0.021 0.2506 0.470 0.10 1.08 0.003 1.0 0.00001 0.16

V FLAEM Median 0.447 8.3240 1.523 0.50 341.26 0.009 4.0 0.00037 0.65

IQR 0.020 0.2308 0.620 0.14 1.06 0.005 2.3 0.00019 0.32

LAMLE Median 0.450 8.3406 1.577 0.50 341.27 0.010 5.7 0.00037 0.62

IQR 0.022 0.2206 0.648 0.14 1.06 0.004 1.2 0.00012 0.17

VI FLAEM Median 0.439 8.2012 1.512 0.50 341.27 0.009 4.1 0.00043 0.63

IQR 0.046 0.5383 0.822 0.17 1.06 0.005 2.0 0.00020 0.31

LAMLE Median 0.449 8.3702 1.540 0.50 341.27 0.009 10.2 0.00037 0.61

IQR 0.051 0.5393 0.932 0.16 1.07 0.003 2.5 0.00016 0.21

VII FLAEM Median 0.448 8.2883 1.526 0.51 341.31 0.005 2.1 0.00038 0.67

IQR 0.015 0.2035 0.296 0.07 1.07 0.003 0.9 0.00018 0.32

LAMLE Median 0.450 8.3246 1.567 0.50 341.30 0.005 3.8 0.00036 0.61

IQR 0.017 0.1860 0.323 0.07 1.06 0.001 0.7 0.00013 0.12
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Table 5.2 Continued, True parameter values, median values and IQRs for the estimates based on 100 Monte Carlo runs for different

scenarios.

Parameter kref (E/R)/ 103 a/106 b T(0) QC QT

Unit min-1 K K kmol2·m-6·min-1 K2·min-1 kmol2·m-6 K2

True Value 0.461 8.3301 1.678 0.50 341.38 0.010 4.0 4×10 -4 0.64

Scenario

VII FLAEM Median 0.445 8.3152 1.639 0.48 341.28 0.017 6.2 0.00036 0.57

IQR 0.023 0.4083 0.658 0.16 1.12 0.008 3.8 0.00025 0.42

LAMLE Median 0.447 8.3294 1.657 0.47 341.30 0.024 8.2 0.00037 0.66

IQR 0.022 0.3636 0.664 0.14 1.14 0.016 2.2 0.00012 0.18

IX FLAEM Median 0.448 8.3414 1.622 0.49 341.32 0.009 3.8 0.00020 0.35

IQR 0.017 0.1947 0.458 0.09 0.77 0.004 1.9 0.00010 0.17

LAMLE Median 0.448 8.3409 1.631 0.49 341.32 0.010 4.9 0.00020 0.32

IQR 0.018 0.2201 0.457 0.09 0.79 0.003 1.0 0.00006 0.09

X FLAEM Median 0.448 8.2810 1.610 0.50 341.26 0.009 3.7 0.00079 1.36

IQR 0.020 0.2371 0.538 0.11 1.44 0.005 2.0 0.00039 0.69

LAMLE Median 0.447 8.2784 1.651 0.49 341.27 0.010 5.4 0.00074 1.25

IQR 0.024 0.2512 0.583 0.12 1.45 0.003 1.3 0.00024 0.30

XI FLAEM Median 0.436 8.5984 1.707 0.47 341.27 0.001 6.4 0.23

IQR 0.055 0.3768 0.912 0.20 1.17 0.001 2.8 0.15

LAMLE Median 0.442 8.6068 1.708 0.47 341.27 0.002 5.0 0.70

IQR 0.052 0.4320 0.965 0.21 1.15 0.002 1.7 0.28
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The objective function used by LAMLE for estimating the model parameters θ and the B-

spline coefficients in the CSTR model is:
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The associated expressions for updating disturbance intensities QC, QT and measurement

noise variances 2
C , 2

T in the CSTR model are:
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(5.33)

where HC and HT are Hessian matrixes:
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In Equations (5.42) and (5.43), βC and βT are the B-spline coefficients corresponding to

the estimated state trajectories CA~ and T~, respectively. Hessians were computed using

the “gjh” function in IPOPT. “ghj” compute Hessians using a second order difference.

Objective function (5.29) was optimized using the IPOPT solver53 with model

information provided by AMPL™.52 Optimization settings in IPOPT were set at their

default values. Default values for CTSM optimization settings were also employed when

CTSM was used to estimate the parameters. For all simulation studies, cubic (4th order)

B-splines were used.

Estimating the parameter vector T
TCTCref QQbaREk ],,,,,,/,[ 22

CSTR ζ using

LAMLE required a two-step procedure wherein kref, E/R, a, b and the B-spline

coefficients were estimated by optimizing objective function 29 using assumed values of

QC ,QT, 2
C and 2

T . Updated values of QC, QT, 2
C and 2

T were then calculated using

Equations (5.30) to (5.33). These two steps were repeated until convergence was

obtained.

Estimates of the disturbance and noise parameters were deemed to have converged when

the change in the relative error e(k) was less than 10-3 where e(k)  is defined as:
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Convergence failure was noted when the maximum numbers of iterations reached 1000.

The parameter vector ζ was estimated under a variety of scenarios. Each scenario was

repeated 100 times using 100 simulated data sets. These data sets were generated using

different sets of initial guesses and random sequences for the Gaussian process

disturbances and measurement noise. Medians and interquartile ranges (IQRs) for the

parameter estimates from the various scenarios were calculated and are shown in Table

5.2. Initial guesses for the parameter values were selected randomly from uniform

distributions between 50% and 150% of their true values.

Scenarios I, II and III were studied to compare the LAMLE results with those obtained

using FLAEM and CTSM, and to show the effect of B-spline knot placement on the

quality of parameter estimates obtained using LAMLE and FLAEM. In the simulated

experiments used in scenarios I, II and III, 128 measurements were available for

concentration and 128 measurements were available for temperature (once every 0.5

minutes), but different B-spline knot placement sequences were used to implement

LAMLE and FLAEM.  Use of the CTSM method does not require B-spline knots, so the

CTSM results at the top of Table 5.2 can be compared with the LAMLE and FLAEM

results from all four scenarios. Upper bounds and lower bounds must be set for all of

parameters when CTSM is used. The lower bounds for the parameters were set at zero

and the upper bounds were set at 10 times the true parameter values.

Scenario I was implemented using 128 equally spaced B-spline knots (one at each

measurement time). Additional spline knots were used to construct the state trajectories
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in scenarios II and III. In scenario II, 256 equally spaced knots were used for the B-spline

basis functions (one knot at each measurement time and one additional knot between

every two measurements). The results in Table 5.2 confirm that the LAMLE parameter

estimates for scenario II are better than those in scenario I. For example, the median for

QT obtained from LAMLE decreased from 10.7 K2·min-1 in scenario I to a value of 6.3

K2·min-1 in Scenario II, which is much closer to the true value of 4.0 K2·min-1 used to

generate the simulated data sets. Also, the width of the IQR for QT obtained from

LAMLE decreased from 2.2 K2·min-1 to 1.4 K2·min-1. Note that the widths of the IQRs

obtained using FLAEM are larger than those obtained using LAMLE in both Scenarios I

and II.  For example, 2
T has an IQR of 0.159 K2 for Scenario II using LAMLE, whereas

the corresponding IQR from FLAEM is 0.349 K2.

In Scenario III, 384 knots were used to construct the state trajectories (one knot at each

measurement time and two knots between).  LAMLE and FLAEM results from Scenario

III are slightly better than those from Scenarios I and II, especially for QT and 2
T . No

noticeable bias can be observed for any of the model or noise parameters in this scenario

(see the boxplots in Figures 5.2 and 5.3). When additional knots were used (not shown),

there was no significant improvement compared to the results in Scenario III. As a result,

for all of the additional scenarios shown in Table 5.2, the knot placement settings from

Scenario III were used. Typical estimation times for a simulated data set are ~1.2 min for

Scenario III in LAMLE, ~3 min for FLAEM and 3 min for CTSM, using a laptop

computer with Intel® Core™ 2, Duo CPU, 1.86 GHz.

Box plots for parameter estimates obtained using CTSM, FLAEM and LAMLE for

scenario III are shown in Figures 5.2 and 5.3 to compare the effectiveness of the three
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methods.  Convergence was obtained for only 73 of the 100 sets of simulated data and

corresponding initial parameter guesses using CTSM. As a result, the CTSM box plots in

Figures 5.2 and 5.3 (and the medians and IQR widths in Table 5.2) are based on these 73

sets of parameter estimates.  Changing the optimization settings used in CTSM was not

effective in solving this problem.  All 100 sets of simulated data were used in the

boxplots and IQRs obtained using FLAEM and LAMLE. When CTSM was used for

parameter estimation, the estimates of model parameters were unbiased. However,

estimates of noise parameters QC, QT, 2
C and 2

T are biased as shown in Figures 5.3 a),

d), g) and j).  In particular, the estimates of 2
C tend to be very close to zero, so it is

difficult to see the corresponding box on the box plot. The estimates of the model

parameters obtained using LAMLE and FLAEM are unbiased and of similar quality, but

the estimates for QC, QT, 2
C and 2

T obtained using FLAEM have more variability than

those obtained using LAMLE. This is true for all three scenarios. Note that the

distributions of the parameter estimates are broad and somewhat asymmetric.

Figure 5.4 shows the true trajectories of concentration and temperature from one of the

simulated experiments, along with the corresponding measurements and estimated state

trajectories (CA~ and T~) obtained using LAMLE and the settings for Scenario III.  The

estimated state trajectories are close to the true state trajectories because the model

parameter estimates converged to the neighbourhood of the corresponding true values, as

shown in Table 5.2.
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Figure 5.2 Box-plots for estimates of model parameters using CTSM, the LAMLE and
FLAEM methods in scenario I. The red dashed horizontal lines show the true values used to
generate the simulated data.
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Figure 5.3 Box-plots for disturbance intensity estimates obtained using the CTSM, the
LAMLE and FLAEM methods in scenario III. The red dashed horizontal lines show the
true values used to generate the simulated data.
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Figure 5.4 Measured, true, and predicted concentration and temperature responses for the
LAMLE method in scenario I using simulated data. Corresponding initial guesses and

parameter estimates are provided in Table 5.2 (• simulated data, ----- response with true
parameter values and true stochastic noise, ___predicted response using LAMLE

parameter values)

Scenario IV in Table 5.2 was used to investigate the robustness of the LAMLE and

FLAEM algorithms to poorer initial guesses of the parameters. In this scenario, the initial

guesses were selected randomly from a uniform distribution between 50% and 450% of

the true values. The simulated data sets and the LAMLE and FLAEM settings in scenario

IV are identical to those in scenario III. IQRs for LAMLE parameter estimates in this

scenario are similar to those in scenario III, indicating that using worse initial guesses did

not have a significant influence on the quality of the LAMLE parameter estimates.

Parameter estimation attempts using CTSM with these poorer initial guesses resulted in

numerous convergence failures, indicating that use of CTSM requires good initial values
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for the parameters. The FLAEM parameter estimates for QC, QT, 2
C and 2

T are biased.

On average, the FLAEM parameter estimates have larger variability and are much more

biased than those obtained using the good initial values in Scenario III, because FLAEM

converged to an undesirable local minimum for 32 out of 100 of the sets of poor initial

guesses. These simulate on results suggest that LAMLE may be less prone than FLAEM

to convergence to local minima when poor initial guesses are used.

Scenarios V and VI in Table 5.2 were used to study the influence of smaller data sets on

the quality of the parameter estimates. In scenario V, 64 measurement for concentration

and 64 measurements for temperature are available (once every minute). All of the

LAMLE and FLAEM settings (i.e., knot placement, optimizer tolerances and initial

parameter guesses) were the same as for Scenario III (e.g., one knot every 0.33 minutes).

The median estimates for kref, a, QT, 2
C and 2

T obtained from LAMLE are slightly

worse than those for Scenario III. As expected, the IQRs for the LAMLE parameter

estimates are slightly wider than those in Scenario III. Attempts to estimate parameters

using the reduced number of measurements in CTSM failed due to lack of convergence in

all 100 attempts, suggesting successful use of CTSM requires relatively larger data sets

than when LAMLE is used. The quality of the model parameter estimates obtained from

LAMLE is nearly the same as for FLAEM. However, the widths of IQRs for QC, QT, 2
C

and 2
T obtained using FLAEM are noticeably larger than those obtained using LAMLE.

In scenario VI, CA and T were measured even less frequently than in scenario V (only 22

equally-spaced concentration measurements and 22 temperature measurements are

available for each dynamic experiment). As expected, the LAMLE parameter estimates
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for Scenario VI have larger variability and are more biased than the corresponding

parameter estimates in scenarios III and V due to the smaller data sets used. However,

LAMLE parameter estimates from Scenario VI are still reasonably accurate. Note that

bias in estimates of parameters using a relatively small number of observations is a well-

known problem for all ML-based techniques.9 CTSM could not provide parameter

estimates for this scenario. As a result, use of CTSM was not attempted for the remaining

scenarios in Table 5.2.  The LAMLE estimates of QT for Scenario VI are biased and are

worse, on average, than the corresponding FLAEM estimates. However, the LAMLE

estimates of QC, 2
C and 2

T from Scenario VI are better than the corresponding FLAEM

estimates.

In scenarios VII and VIII, the values of QC and QT were changed to the half of their

values from Scenario III (i.e., QC =0.005 kmol2 m-6 min-1 and QT =2 K2 min-1) and twice

their values, respectively, to examine the influence of small and large stochastic

disturbances on the effectiveness of LAMLE and FLAEM. The numbers of

measurements and all other settings are the same as those in Scenario III. Since smaller

disturbances were used, smaller IQR values for all of the parameter estimates were

obtained in Scenario VII. In scenario VIII wider IQRs were obtained for all parameters,

as expected. No noticeable bias was observed for any of the parameters, except for QT

obtained from LAMLE in Scenario VIII (i.e., the median estimate was 3.8 and the true

value was 2.0 K2·min-1). Obtaining accurate estimates for disturbance intensities may be

more difficult when the size of the stochastic disturbances becomes small, relative to the

measurement noise. In both scenarios VII and VIII, the parameter estimates obtained

from FLAEM have larger variability than those obtained using LAMLE.
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In scenarios IX and X, the measurement noise variances were changed to half of the true

values in Scenario III (i.e., 2
Cσ = 2×10-4 kmol2·m-6 and 2

Tσ = 0.32×10-1 K2) and double

the values in Scenario III, respectively, when generating the simulated data. All other

settings were held constant at those for Scenario III.  As expected, using data with less

noise led to narrower IQRs for the parameter estimates.  Larger noise variances led to

wider IQRs. No problems with bias were detected using either FLAEM or LAMLE.

Parameter estimates obtained using LAMLE (Scenario III) and one of the simulated data

sets (see Figure 5.4) are shown in Table 5.3 along with approximate confidence intervals.

These confidence intervals were obtained from:55,56

ζ
2θθ

ˆ
12

2/ )/diag(ˆ  AMLEJz (5.54)

Table 5.3 Estimates and 95% Confidence intervals for LAMLE parameter estimates from

one of the 100 Monte Carlo simulations

Parameter Unit True Value Initial

Guess

Estimate 95%

Confidence Interval
kref min-1 0.461 0.320 0.444 0.036

(E/R)/ 103 K 8.3301 6.8877 8.2351 0.456

a/106 1.678 2.316 1.157 0.831

b 0.50 0.487 0.62 0.25

T(0) K 341.38 344.68 340.08 1.43

QC kmol2·m-6·min-1 0.010 0.009 0.009

QT K2·min-1 4.0 2.717 4.5

2
Cσ kmol2·m-6 4×10 -4 0.0003 0.0003

2
Tσ K2 0.64 0.861 0.61

Note that these approximate confidence intervals are conditional on the values of the

estimated noise parameters. Also note, that no confidence intervals for QC, QT, 2
C and
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2
T are shown. In theory, it would be possible to obtain confidence intervals for all of the

model and noise parameters from:

ζ
2ζζ

ˆ
12

2/ )/diag(ˆ  LAMLEJz (5.55)

However, it is very difficult to obtain appropriate numerical or analytical values for the

corresponding Hessian in Equation (5.55) because second derivatives of objective

function (5.16) with respect to the model parameters would be required.  Problems arise

due to the complexity of the ln(det(Hx~)) term.  Recall that the LAMLE method does not

require the optimizer to use objective function (5.16).  Rather, this optimization problem

is solved by optimization of objective function (5.10) and iterative updating of the noise

parameters using expressions (5.19) and (5.20).  As a result, the overall Hessian required

in Equation (5.55) cannot be obtained automatically from the optimizer.

In Scenario XI, parameters were estimated using only the temperature measurements,

with concentration unmeasured. The knot placements, number of measurements and

initial parameter guesses for LAMLE and FLAEM are the same as those in Scenario III.

Since no concentration data were obtained, the sum of the squared error terms for

concentration and 2ln CCn  term do not appear in the LAMLE and FLAEM objective

functions. Biased estimates were obtained for QC from LAMLE, but estimates for all

other parameters are unbiased. As expected, IQRs are wider than in scenario III.

Estimates for kref, QC, QT and 2
T obtained from FLAEM have noticeable bias. In general,

the results obtained using LAMLE are significantly better than those obtained using

FLAEM in this situation where one of the states is unmeasured.
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In summary, results in Table 5.2 and Figures 5.2 and 5.3 show that the proposed LAMLE

method provides more accurate and reliable parameter estimates than FLAEM and

CTSM for the CSTR example studied. Because LAMLE requires optimization of a single

objective function, its computation times is shorter than for FLAEM which requires

optimization of three objective functions. Results in Table 5.2 suggest that LAMLE is

more robust than FLAEM in situations involving poor initial parameter guesses or

unmeasured state variables. These promising results using LAMLE suggest that using the

LA to approximate the likelihood function provides adequate accuracy for estimating

parameters. It is recommended that the proposed LAMLE method should be tested on

larger-scale parameter estimation problems and that the performance of LAMLE should

be compared with MCMC-based methods. The computation time for LAMLE is expected

to be significantly lower since MCMC techniques can require large numbers of particles

to approximate high-dimensional probability density functions.27,57

5.6 Conclusions

A method is proposed for estimating model parameters, process disturbance intensities

and measurement variances in stochastic differential equation (SDE) models. The

proposed method uses the Laplace Approximation (LA) to approximate the likelihood

function and B-spline basis functions to approximate the state trajectories. The proposed

Laplace Approximation Maximum Likelihood Estimation (LAMLE) method is tested

using a two-state nonlinear CSTR model with 8 unknown parameters (i.e., a kinetic rate

constant, an activation energy, two heat-transfer parameters, two stochastic disturbance

intensities and two measurement noise variances). The parameter estimates obtained
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using LAMLE compared favourably with estimates obtained using a two competing

approximate maximum likelihood methods: i) the continuous time stochastic modeling

(CTSM) method of Kristensen,1 which relies on linearization-based Kalman filtering

techniques, ii) fully Laplace approximation expectation maximization (FLAEM) method.

The LAMLE parameter estimates were less biased and more accurate than corresponding

estimates obtained using CTSM and FLAEM. LAMLE did not experience any of the

convergence difficulties faced by CTSM when relatively poor initial parameter guesses

were used and when measurement data were relatively sparse. LAMLE is also more

robust to poor initial guesses than FLAEM. For the example studied, LAMLE is more

efficient for the cases where there are unmeasured states than FLAEM and CTSM. The

LAMLE method was easier to implement and converged faster than the FLAEM method

since LAMLE requires optimizing one objective function rather than optimizing three

objective functions required in FLAME. In future, it will be advantageous if the LAMLE

algorithm can be extended to account for a wider range of estimation problems involving

prior knowledge about some or all of the parameters. In future, it will be desirable to

investigate the convergence of LAMLE algorithm.
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Conclusions

Chapter 6

6.1 Summary

In this thesis, appropriate statistical methods to overcome two types of problems that

occur during parameter estimation in chemical engineering models were studied. The first

problem is having too many parameters to estimate from limited data while assuming that

the model structure is correct. The second problem is estimating unmeasured disturbances

and model parameters when the data are sufficient to estimate all of the parameters.  In

the first part of this thesis, a model for non-oxidative thermal degradation of nylon 66

was developed and used to illustrate the first problem and to test statistical methods that

had recently been developed by other students in our research group.  In the second part

of this thesis, new techniques were proposed for estimating parameters in nonlinear

dynamic models with process disturbances and model mismatch.  These new techniques

were tested and compared with literature methods using a nonlinear two-state SDE model

for a CSTR.

In Chapter 2, an improved kinetic model was developed for thermal degradation of

molten nylon 66.1 This nylon 66 degradation model was developed in cooperation with a

previous Ph.D. student, Mark Schaffer who performed the experiments that were used in

parameter estimation. Schaffer had developed an earlier version of the model as part of

his Ph.D. thesis2 but he was unable to obtain reliable parameter estimates so that he could

adequately test the model predictions.  Like many other fundamental models of chemical
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processes, this model had too many parameters to estimate using the available data set,

even though Schaffer had done a large number of dynamic experiments.  At the time

when the model was developed, some of the current tools did not exist to determine

which parameters and how many parameters should be estimated using the data.  My

objective in this modeling work was to use the recently developed tools to determine

which parameters could be estimated from Schaffer’s data and to obtain the best possible

estimates of the parameters. Using these parameter estimates, the quality of the model

predictions was assessed and some of Schaffer’s assumptions and the corresponding

model equations were revised to achieve a better match between the data and the model.

The nylon degradation model contains 14 ordinary differential equations (ODEs). Total

number of the unknown parameters and unknown initial conditions in the system is 56.

Estimability analysis3,4 was  used to rank the parameters from most estimable to least

estimable and a mean-squared error criterion was used to determine the appropriate

number of parameters to estimate from the ranked list.5,6 When estimability analysis was

performed 44 of the 56 parameters could be ranked before numerical problems were

encountered. Wu’s MSE-based criterion5,6 was used to determine that the top 43

parameters should be estimated using the data to provide the best model predictions,

given the limited data available for parameter estimation. Predictions from this revised

model agree well with the experimental data. The resulting degradation model will assist

industrial nylon producers in selection of operation conditions and design of improved

equipment. The fit between the data and the model predictions showed some minor

discrepancies which may indicate the existence of model mismatch or unmodelled

process disturbances.
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After this initial parameter estimation study for the ODE model, three algorithms were

developed for estimating model parameters, process disturbance intensities and

measurement noise variances in nonlinear SDE models. The three corresponding

objective functions for parameter estimation can be used in cases when measurement-

noise variance is known, but process-disturbance intensities are not known.  Two of these

objective functions can also be used for the more complicated situation when the

measurement noise variances are also unknown. Some of the benefits of the proposed

methods that may be attractive to developers of fundamental dynamic models are: i)

simplicity of implementation, ii) reliable estimates of model parameters, initial conditions

and disturbance intensities, iii) efficient handling of unknown initial states, iv) ability to

handle unmeasured state variables. In particular, estimates of disturbance intensities can

provide modelers with information about the degree of mismatch and the magnitude of

unmeasured disturbances in their models. This information will be helpful when

implementing on-line state and parameter estimation schemes for process monitoring and

control.7,8

In Chapter 3, an Approximate Expectation Maximization (AEM) method for estimating

parameters and process disturbance intensities in nonlinear SDE models was proposed for

situations where measurement noise variances are known. The AEM method

approximates the expectation step of the EM algorithm using B-spline state trajectories.

The effectiveness of the AEM algorithm was tested using a two-state nonlinear stochastic

CSTR model. Parameter estimates were compared with those from Extended AMLE9 and

the CTSM software of Kristensen, which relies on a linearization-based maximum

likelihood method. For the CSTR example studied, the resulting AEM parameter
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estimates are less biased, more precise and more robust to poor initial parameter guesses

than those obtained using Extended AMLE and CTSM. The AEM method was easier to

set up and converged faster than extended AMLE. Approximate confidence intervals for

model parameters and disturbance intensities were determined by approximating the

covariance matrix using the Hessian evaluated at the estimates of the parameters and the

B-spline coefficients.

In Chapter 4, a Fully-Laplace-Approximation Expectation Maximization (FLAEM)

algorithm was developed for parameter estimation in SDE models.  In the first stage of

this iterative algorithm, model parameters are estimated using Varziri’s AMLE objective

function, assuming that the disturbance intensities and measurement noise variances are

known. In the second stage, disturbance intensity and noise variance estimates are

updated. The expressions used to update disturbance intensities and noise variances were

derived by approximating the E step of the EM algorithm using the FLA and B-spline

basis functions. The FLAEM algorithm iterates between these two steps until

convergence is obtained. The FLAEM methodology was tested using the two-state

nonlinear CSTR model. More accurate estimates for model parameters, disturbance

intensities and measurement noise variances were obtained using FLAEM when

compared with CTSM, particularly when the number of measurements was relatively

small or when initial guesses of parameters were relatively poor.

In Chapter 5, an even better approximate maximum likelihood algorithm was developed

for approximating model parameters, process disturbance intensities and measurement

variances in nonlinear SDE models. The proposed Laplace Approximation Maximum

Likelihood Estimation (LAMLE) method uses the Laplace Approximation (LA) and B-
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spline basis functions to approximate the likelihood function of the parameters given the

measurements. The LAMLE method was tested using the CSTR model, revealing that

LAMLE parameter estimates are more accurate and less biased than corresponding

estimates obtained using CTSM and FLAEM.

The case studies conducted in this thesis suggest that AEM, FLAEM and especially

LAMLE are potentially appealing parameter estimation algorithms that should be further

studied and tested for more complicated problems. Note that AEM, FLAEM and LAMLE

circumvent potential problems associated with finding a closed form for the likelihood

function at the expense of solving a large nonlinear programming problem. Fast and

efficient nonlinear programming solvers such as IPOPT10 are essential for the successful

implementation of these algorithms, especially for larger problems.

6.2 Recommendation for Future Work

1. In Chapter 2, a model for non-oxidative thermal degradation of nylon 66 was

developed assuming that the model structure is perfect. The fit to the data showed some

discrepancies indicating the possible existence of model mismatch or process

disturbances. In future, modeling errors and process disturbances could be considered

during parameter estimation in the nylon 66 model to improve the model predictions.

This type of analysis would require additional experimental data. In particular, replicate

experiments would be useful for assessing whether nonstationary disturbances should be

included in some of the differential equations.

2. The AEM, FLAEM and LAMLE techniques were tested successfully using a CSTR

case study in Chapters 3-5. In future, it will be desirable to test the proposed
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methodologies using larger-scale dynamic models with a larger number of states and

parameters.

3. It will also be important to compare AEM, FLAEM and LAMLE results with those

from recently developed MLE-based methods that use MCMC techniques for parameter

estimation in SDE models.11,12 It is expected that computation times for the proposed

methods in this thesis will be significantly lower than the times required using MCMC

methods, particularly for larger-scale problems, because the proposed methods do not

require sampling from high dimensional probability density functions. It will be

important to determine whether the additional B-spline and mode approximations used to

develop the proposed methods result in any significant degradation in the quality of

parameter estimates when compared with MCMC methods.

4. In chemical engineering applications, usually some prior information about the

parameters is available. In many cases, modelers have some physical insights about

physically realistic values of the parameters. In future, it will be advantageous to extend

the FLAEM or LAMLE algorithm to account for prior knowledge about some or all of

the parameters. Box and Draper13 introduced the use of Bayesian methods for estimating

the parameters of chemical engineering models to include prior knowledge of parameters.

In general, in the Bayesian method, the approximate conditional density function of the

parameters given the measured data )|( mp Yζ is maximized to estimate the unknown

parameters. The conditional density function of the parameters given the observed data

)|( mp Yζ is called a posterior density function. The posterior density function is:14

)(

)()|(
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y
ζζy

yζ
p

pp
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The numerator on the right-hand side is the product of the ML probability density

function )|( ζYmp and the prior distribution of the parameters )(ζp . The denominator,

which ensures that the posterior integrates to unity, does not depend on the parameter

values. The prior density function )(ζp represents knowledge about the possible values

of ζ before the data that will be used for parameter estimation have been observed. The

prior probability is very important when very little observation data are available and

must restrict the parameters to meaningful values.

5. It is suggested to test the proposed methods for estimating the parameters in SDE

models that contain additional unmeasured states to account for non-stationary

disturbances and to develop statistical methods to assess when and where non-stationary

disturbances should be included to improve the quality of model predictions.

6. Obtaining approximate confidence intervals for model parameters and process

disturbances for the AEM method was discussed in Chapter 3. When FLAEM and

LAMLE are used, the corresponding approximate confidence intervals are conditional on

the estimated values of the disturbance intensities and measurement noise variances.  In

future, it will be important to develop approaches for determining inference regions for

all of the noise and model parameter estimates obtained from FLAEM and LAMLE.

7.  In future it will be advantageous to investigate the convergence of the proposed

methods.

8. It is recommended to show the predictive performance of the proposed methods for

predicting state trajectories based on infinite horizon predictions.
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Appendix 3.A Derivation of the AEM Objective Function with Frequent

Measurements

In this section, the AEM objective function is developed for the system shown in

Equation (3.1), where  is known and Q is unknown. First, we consider the case where

all states are measured frequently compared with the dynamics of the system so that

Equation (3.1) can be approximated using the following Euler approximation:

mmjmmjmjmjmjmmj ttttttttt   )()),(),(()()()( 11111 dηθuxfxxx (3.A.1a)

00 )( xx t (3.A.1b)

where x(tmj) contains the values of the state variable at the measurement times tmj ,

j=0,..,n and Δtm is the sampling interval. Appendix 3.B considers the case where

measurements are available further apart in time and when some states may be

unmeasured.

To keep the notation simple, assume that measurements are available at n equally-spaced

sample times tmj (j=1,…,n) for all outputs:

T
nmYmYnmm

T
nmm tytytytytt )]()()()([)]()([ 1111

T
1

T   yyYm

T
nmYmYnmm

T
nmm txtxtxtxtt )]()()()([)]()([ 1111

T
1

T   xxXm

First, we find a closed form expression for )|)(,( 0 ζx,XY mmm tp .

By the law of total conditional probability, the density function )|)(,( 0 ζx,XY mmm tp

can be decomposed to:

)|)(()),(|())(,( 000 ζx,Xζx,XYζ|x,XY mmmmmmmm tptptp  (3.A.2)
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Jazwinski46 showed that the stochastic process {x(ti), i<q+1} generated in Equation

(3.10a) is a Markov Process. Thus, by the Markov property of the states )|( ζXmp can be

written as:46,47,52





n

j
mjmj ttpp

1
1 )),(|)(()|( ζxxζXm (3.A.3a)

When x(t0) is approximated using a measurement at time zero, the following probability

expression applies:





n

j
mjmj ttptptp

1
100 )),(|)(()|)(()|)(,( ζxxζxζxX mmm (3.A.3b)

From Equation (3.A.1a) )),(|)(( 1 ζxx mjmj ttp has a multivariate Gaussian distribution:52
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(3.A.4)

Assuming a Gaussian distribution for initial measured state )( 0tmx gives:
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where 0x is the vector of initial conditions for the state variables and xm0 is a vector of

multivariate normal random variables with mean 00}E{ xx m and 00}{ mSxc mov .

Substituting Equations (3.A.4) and (3.A.5) into Equation (3.A.3b):
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From Equation (3.1c) ζ)x,XY mmm ),(|( 0tp has a multivariate Gaussian distribution:
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Substituting Equations (3.A.6) and (3.A.7) into Equation (3.A.1), gives:
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(3.A.8)

Taking the negative natural logarithm of Equation (3.A.8) and collecting the constant

terms into a single term C1:



199

]Δ)),(),(()()([

Δ])),(),(()()([

)]ln[det()()(

)]()),(([)]()),(([

|)(,,(ln

111

11

1
111

00
1
000

1

1
1

0

mmjmjmjmj

m

n

j

T
mjmjmjmj

mm
T

m

n

j
mjmjmj

T
mjmjmj

ttttt

tttttt

n

ttttttC

tp

θuxfxx

QΔθuxfxx

QxxSxx

yθu,g(xΣyθu,g(x

ζ)xXY mmm




























((3.A.9)

Let

10AEM |)(,,(ln CtpJ -ζ)xXY mmm (3.A.10)

Since mtΔ is small, the last term in Equation (3.A.9) can be approximated by an integral:
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Approximating the states of the system using B-spline basis functions gives:
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(3.A.12)

In order to use Equation (3.16), the mode of AEMJ with respect to states should be found:

0AEM 



mX
J

(3.A.13)
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Since B-splines are used to represent the states, and the continuous state trajectory is

directly related to the B-spline coefficients, the mode value of AEMJ occurs where

0AEM 



Β
J

(3.A.14)

Thus, finding the mode of AEMJ with respect to states is equal to minimizing AEMJ with

respect to the B-spline coefficients. Minimizing Equation (3.A.11) with respect to the

parameters ensures that ~mX is at the mode of AEMJ .
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(3.17)

Thus, using B-spline basis functions to represent state trajectories eliminates the

expectation step of the EM algorithm. Equation (3.17) is the corresponding overall AEM

objective function that should be minimized by selecting appropriate values of θ, Q and

Β.

Appendix 3.B Derivation of the AEM Objective Function with Missing Data

In this section, an AEM objective function is developed for the system shown in Equation

(3.1) for the more complicated case where measurements are only available at longer

sampling intervals or not all states are measured at the same times. The situation where

some states are not measured at all is also considered.

An Euler scheme with a short discretization interval Δt, which is shorter than the

measurement intervals, is used for discrete-time approximation of the SDE model in

Equation (3.1) (shown in Equation (3.10a)). First, we find a closed form for
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)|)(,( 0 ζxX,Y mqm tp , where the subscripts q and m indicate that we are interested in

values of the state variables at q discrete times, but measurements are available at only

some of these times.

By the law of total conditional probability, the density function )|)(,( 0 ζxX,Y mqm tp can

be decomposed to:46,47

)|)(,()),(,|())(( 000 ζxXζxXYζ|x,X,Y mqmqmmqm tptptp  (3.B.1)

By the Markov property of the states, )|)(,( 0 ζxX mq tp can be written as:46,47
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From Equation (3.10a) )),(|)(( 1 ζxx ii ttp has a Gaussian distribution:52
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Assume a Gaussian distribution for the initial measurements of the state variables:46
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where 0mx is a multivariate normal random variable corresponding to the measurements

of the state variables at the initial time t0, with mean 00}E{ xx m and m0Sxc }{ 0mov .

Substituting Equations (3.B.3) and (3.B.4) into Equation (3.B.2):
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From Equation (3.1c), )),(,|( 0 ζxXY mqm tp has a multivariate Gaussian distribution:47,52
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Substituting Equations (3.B.5) and (3.B.6) into Equation (3.B.1), gives:
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Taking the negative natural logarithm of Equation (3.B.7) and collecting the constant

terms into a single term C1 gives:
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(3.B.8)

Since Δt is small, the last term in Equation (3.B.8) can be written as:
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Let

10AEM |)(,(ln CtpJ -ζ)xY,X mmq (3.20)

Substituting Equation (3.B.9) into Equation (3.B.8):
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Using B-splines to represent the states:
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Appendix 4.A Derivations

In this appendix, equations for updating process intensities in Q and measurement noise

variances in  are developed when θ is assumed to be known. These equations are

derived by approximating the E step of the EM algorithm using the FLA and using B-

spline basis functions to approximate the state trajectories. Note that the corresponding

spline coefficients are also assumed to be known because they are estimated along with θ.

The likelihood function of complete data )|,( ζXY qmp has a closed form, which was

derived in our previous work:27
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where C1 is a constant.

Taking the negative natural logarithm of Equation (4.A.1) gives the likelihood:
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Substituting the log likelihood of the complete data from Equation (4.A.2) into the E-step

of the EM algorithm (Equation (4.15)) gives:
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Taking the partial derivative of Equation (4.A.3) with respect to Q gives:
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Note that development of Equation (4.A.4) relies on the following expressions for the

derivative of the determinant of a matrix:55
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Setting the right-hand side of Equation (4.A.4) to zero and rearranging to solve for Q,

gives the following expression for Q:
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Similarly, setting the partial derivative of Equation (4.A.3) with respect to  to zero and

solving for  gives:
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Recall that:
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Using the definition for Z and S from Equations (4.19) and (4.20) into Equations (4.A.6)

and (4.A.7), the estimates of the disturbance intensity Q and the noise variance Σ at the

k+1th iteration are:
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To estimate 1kQ and 1kΣ from Equations (4.21) and (4.22) expressions for

},,|E{ kkZ ΣQYm and },,|E{ kkS ΣQYm should be obtained for use in the kth iteration.

These expectations are given by:38
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Substituting )|,( kp ζXY qm from Equation (4.A.1) into Equations (4.A.21) and (4.22)

and simplifying to remove the constants C1, the second, the fourth, the fifth and the six

terms in Equation (4.A.1) gives:
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Note that x0 is assumed to be known because it is estimated from B-spline coefficients.

B-spline coefficients are estimated along with θ. As a result, the fifth term in Equation

(4.A.1) is constant. Since θ is assumed to be known, the FLA can be used to approximate

the integrals in Equations A.8 and A.9:
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where

qq XXqq
x XX

H
ˆ

T

2

ˆ







J
(4.A.12)

Z

Z
Z J

qq XXqq
x

XX
H

ˆ
T

2

ˆ





 (4.A.13)

S

S
S J

qq XXqq
x

XX
H

ˆ
T

2

ˆ





 (4.A.14)

J, ZJ and SJ in Equations (4.A.12), (4.A.13) and (4.A.14) are defined in Equations

(4.A.15), (4.A.16) and (4.A.17).
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Using B-spline basis functions for representing state trajectories in Equations (4.A.10)

and (4.A.11) gives:
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where
~xH ˆ , Z

~xH ˆ and S
~xH ˆ are defined in Equations (4.A.20), (4.A.21) and (4.A.22):
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The AMPL software used to implement the AMLE algorithm provides BH the Hessian

matrix with respect to B. The relationship between Hx~ (i.e., the Hessian matrix with

respect to Xq~) and HB (i.e., the Hessian matrix with respect to B) is derived below.

Using the chain rule for partial derivatives to find the partial derivative of JAMLE

(Equation (4.14)) with respect to matrix of B-spline basis functions B gives:
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Finding partial derivatives from Equation (4.7):
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Substituting partial derivatives from Equation (4.A.24) into Equation (4.A.23) gives:
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Using the chain rule for finding the partial derivatives of G:

B

x

x
G

B
x

x
G

B
x

x
G

B
G
























 )(

)(

)(

)(

)(

)(
~

~

1~

1~

0~

0~

q

q

t

t

t

t

t

t
 (4.A.27)

Substituting partial derivatives from Equation (4.A.24) into Equation (4.A.27):
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Substituting G from Equations (4.A.26) and (4.A.25) into Equations (4.A.28) gives the

second derivative of JAMLE with respect to the spline coefficients:
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Simplifying Equation (4.A.29) gives:
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In matrix form, Equation (4.A.30) becomes:

 

























































































































































)(

)(

)(

)()()()()()(

)()()()()()(

)()()()()()(

)()()(

2

1

T
~~

AMLE
2

1
T
~~

AMLE
2

0
T

~

AMLE
2

T
~1~

AMLE
2

1
T
~1~

AMLE
2

1
T
~0~

AMLE
2

T
~0~

AMLE
2

1
T
~0~

AMLE
2

0
T

0~

AMLE
2

21

2
AMLE

2

2

AMLE
2

1

AMLE
2

2

AMLE
2

2
2

AMLE
2

12

AMLE
2

1

AMLE
2

21

AMLE
2

2
1

AMLE
2

q

qqqq

q

q

q

ccc

c

c

t

t

t

tt

J

tt

J

tt

J

tt

J

tt

J

tt

J

tt

J

tt

J

tt

J

ttt

JJJ

JJJ

JJJ

sss

s

s

Φ

Φ
Φ

xxxxxx

xxxxxx

xxxxxx

ΦΦΦ

βββββ

βββββ

βββββ

~

~





















(4.A.31)

or equivalently:

ΨHΨH ~xΒ
T (4.A.32)
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where Ψ is  a matrix of B-spline basis functions defined as.

 T21 )()()( qttt ΦΦΦΨ  (4.A.33)

and HB is the Hessian matrix with respect to B-spline basis functions :

T
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H B
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J (4.A.34)

The ratio of two Hessian matrixes is:
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Since TΨ and Ψ are constants:
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(4.A.36)

Thus, in Equations (4.A.18) and (4.A.19), the Hessian matrices with respect to B can be

used instead of the Hessian matrices with respect to q~X so that:
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In Equations (4.25) and (4.26), the Hessians BH , Z
BH and S

BH are defined as:
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(4.29)

AMLEJ in Equation (4.27) is Varziri’s AMLE objective function defined in Equation

(4.14). ZJ~ and SJ~ in Equations (4.28) and (4.29) are defined in Equations (4.30) and

(4.31).
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and B̂ , SB̂ and ZB̂ are spline coefficients that maximize JAMLE, ZJ~ and SJ~ , respectively.

~x̂ ,
S
~x̂ and Z

~x̂ are the corresponding approximated state trajectories.  Equations 25 and

26 can then be used to update Q and Σ , using the most recent estimates of the model

parameters θ and spline coefficients B.

For the case where the number of measurements for the rth response is Nr, an expression

similar to Equation (4.25) for updating the rth measurement noise variance 2
r is:
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where

):1( 1 rr NN
r

 Bβ HH (4.A.38)

):1( 1 rr
ZZ NN

r
 Bβ HH (4.A.39)

):1( 1 rr
SS NN

r
 Bβ HH (4.A.40)

Note that other Equations do not change for this case.
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Appendix 5.A Derivation of the LAMLE Objective Function (Equation (5.23 ))

In this section, an approximate closed form for )|( ζYmp is derived using the LA and B-

spline basis functions. The likelihood function )|()|( ζYYζ mm pL  can be evaluated by

integrating )|,( ζYX mqp over all possible values of Xq
16:

 qmqm XζYXζY dpp )|,()|( (5.14)

A closed form for )|,( ζYX mqp was found in our previous work (see Equation (5.15)).

Taking the negative natural logarithm of Equation (5.15) gives:
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Let

11 ln)|,(ln CpJ  ζYX mq (5.A.2)

Substituting )|,( ζYX mqp from Equation (5.15) into Equation (5.14):
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(5.A.3)

Using the LA:
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where qX̂ is evaluated from:

)|(maxargˆ ζY,XX mq
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and Hx is the Hessian matrix of )|,(ln ζYX mqp with respect to Xq evaluated at
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Substituting )|,(ln ζYX mqp from Equation (5.A.1) into Equation (5.A.2) and

substituting Xq with
q

X̂ :
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where C2 is a constant.

Substituting B-spline expressions for mX̂ , )(ˆ tx and )(ˆ tx gives:
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where
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Minimizing

2LAMLE )|(ln CpJ  ζYm (5.A.10)

with respect to  and ζ ensures that the resulting values of ~mX , )(t~x and )(t~x

correspond to the mode of )|,( ζYX mqp with respect to all possible values of the states,

which is required for the LA to be valid.  Minimizing
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also ensures that the values of Qxθ ,, 0 and Σ contained in ζ are at approximate ML

estimates. The problem with this approach is that an analytical expression for
~xH would

be difficult to derive, especially when the number of states becomes large. An iterative

method involving Equations (5.19) and (5.20) can be used to address this problem.

Appendix 5.B Derivation of Equations (5.19) and (5.20)

Taking partial derivatives of JLAMLE in Equation (5.16) respect to Q and  gives:
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Note that development of Equations (5.B.1) and (5.B.2) relies on the following

expressions for the derivative of the determinant of a matrix:58
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The integral term in JLAMLE (Equation (5.16)) can be approximated as:
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Substituting Equation (5.B.5) into Equation (5.A.1), the likelihood function of the

complete data for a discrete SDE system is:
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For convenience, define z and h as:

ttttt iiii   )),(),(()()( 1 θuxfxxw (5.B.7)

wQwh 1T  (5.B.8)

The second derivation of the symmetric quadratic matrix form h with respect to x(ti) is:58
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where  is the Kronecker product.

The second derivative of dJ (Equation (5.B.6)) with respect to xm(t0) is:
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The second derivative of dJ with respect to x(ti) where 1≤i≤q-1is:
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Note that for times when no measurements are available, the first term on the right-hand

side of Equation (5.B.11) disappears.

Taking the second derivative of dJ with respect to x(tq) gives:
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The second derivative of dJ for ji  and 1 jj where 1≤i≤q-1is:
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where 0 is the X×X zero matrix.

The second derivative of dJ with respect to x(ti) and x(ti+1) where 1≤i≤q-1is:
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Equations (5.B.10), (5.B.11), (5.B.12), (5.B.13) and (5.B.14) show that the hessian matrix

has the following form:

DQΣH
~x

11   (5.B.15)
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where IH is an identity matrix, D is a function of f and its derivatives and

)(),...,( ~0~ qtt xx , θuu ),(),...,( 0 qtt and t :

),),(),...,(),(),...,(,( 0~0~ ttttt qq  θuuxxfDD (5.B.16)

Taking the derivative of Equation (5.B.15) with respect to Q gives:
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
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Q

H
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(5.B.17)

Rearranging Equation (5.B.15) to solve for D gives:

QΣHD
~x ][ 1 (5.B.18)

Substituting Equation (5.B.18) into Equation (5.B.17) gives:
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Substituting Equation (5.B.19) into Equation (5.B.1) gives:
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Simplifying Equation (5.B.20) gives:
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Setting Equation (5.B.21) equal to zero and solving for Q gives:
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T111 θuxfxIθuxfxΣHQ
~x    (5.B.22)

Taking the derivative of Equation (5.B.15) with respect to Σ :
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(5.B.23)

Substituting Equation (5.B.23) into Equation (5.B.2) and simplifying gives:
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Setting Equation (5.B.24) equal to zero and solving for Σ gives:
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~xmm~mmm~m )(],,([],,([ 1T1   trn (5.B.25)

The Hessian matrix in Equations (5.16), (5.B.22) and (5.B.25) are with respect to state

variables. However, IPOPT (and some other types of optimization software) reports the

Hessian matrix with respect to the decision variables, which include the B-spline

coefficients. The relationship between Hx~ (i.e., the Hessian matrix with respect to Xq~)

and HB (i.e., the Hessian matrix with respect to B) is derived below.

Using the chain rule for partial derivatives to find the partial derivative of J1 with respect

to matrix of B-spline basis functions B gives:
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Finding partial derivatives from Equation (5.6):
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Substituting partial derivatives from Equation (5.B.27) into Equation (5.B.26) gives:
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Let
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B
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Using the chain rule for finding the partial derivatives of G:
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Substituting partial derivatives from Equation (5.B.27) into Equation (5.B.30):
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Substituting G from Equations (5.B.28) and (5.B.29) into Equation (5.B.31) gives the

second derivative of J1 with respect to the spline coefficients:
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Simplifying Equation (5.B.32) gives:
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In matrix form, Equation (5.B.31) becomes:
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Or equivalently:

ΨHΨH ~XΒ
T (5.B.35)

which can be solved to give 1
~XH :

T-11 ΨΨHH BX~
 (5.B.36)

During the parameter estimation process, the spline coefficients βs will change, but the

spline function )(tsφ are fixed functions.

Substituting 1
~XH from Equation (5.B.36) into Equations (5.B.22) and (5.B.25) gives:
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T11T1- θuxfxIθuxfxΣΨΨHQ B    (5.19)
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 IΨΨHθ)UXgYIθ)UXgYΣ Bmm~mmm~m )(],,([],,([ T1-T1 trn   (5.20)

Appendix 5.C Derivation of LAMLE Objective Function when there are Different

Numbers of Measurements for Different Responses

In this section, LAMLE objective function (Equation (5.16)) and Equations (5.19) and

(5.20) are modified for the case where the number of measurements for the rth response

is Nr.

LAMLE objective function for the case where Nr measurements are available for the rth

response is:
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The equation for obtaining Q (Equation (5.19)) does not change in this case. An

expression for obtaining the rth measurement noise variance 2
r is developed in the

following.

Taking partial derivatives of JLAMLE (Equation (5.C.1)) with respect to 2
r gives:
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(5.C.2)

Taking the derivative of Equation (5.C.2) with respect to 2
r gives:
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Substituting Equation (5.C.3) into Equation (5.C.2) gives:

)(
)(

1

)(

)]),(),(()([
1-

2222
1

2
,,,

22 ~x

~

H

θyx

tr

ttgty
NJ

rr

N

j
jrmjrmrjrmr

r

r

r

LAMLE

r











 (5.C.4)

Setting Equation (5.C.4) equal to zero and solving for 2
r gives:
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Finally, substituting -1
~xH from Equation (5.B.36) into Equation (5.C.5) gives an

expression for estimating the measurement noise variance for the rth response:
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