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ABSTRACT

Interior permanent magnet synchronous motor (IPMSM) has been widely used

in hybrid electric vehicles (HEVs) since the high power density and efficiency. However,

the primary drawback of IPMSM is the demagnetization phenomenon caused by

the permanent magnets. Modeling of the demagnetization fault are important in

developing and designing a protection system for the traction on HEVs, thus, an

efficient and accurate IPMSM model for demagnetization fault simulation is necessary.

By using the conventional dq0 IPMSM model, the current indicators of demagnetization

fault are affected by noise which will cause inaccuracy of the simulation. For this

reason, a dynamic phasors model of IPMSM is presented in this thesis. In this

thesis, firstly, the dynamic phasors model of IPMSM is verified by using small-signal

transient analysis for its stability. Secondly, the time-domain transient simulations

of positive sequence currents are shown and compared to the conventional dq0 model

with demagnetization fault.
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CHAPTER 1. INTRODUCTION

1.1. Overview

Hybrid electric vehicles (HEVs) have proved themselves to be the most compa-

rable economical choice with better performance than the conventional combustion

engine vehicles throughout the years. The electric motor is one of the main technolo-

gies in designing an HEV system.

Different electric machines determine the differences of the traction applications

in electric vehicles. DC motor has been well used since a couple of decades ago [1],

because of its characteristics of easy control. However, the reliability of the brushes

on DC motor is the main problem for being used in HEV system. Nowadays, the

Brushless DC motor (BLDC), Induction motor (IM), Permanent Magnet Synchronous

Motor (PMSM) and Switched Reluctance Motor (SRM) have been developed since

the advent of the powerful switching devices. And these motors are well served in

different traction systems of most electric vehicle for different purposes. Each type of

motor has its own advantages and disadvantages as shown in Table 1 [2–5].

Table 1. Comparison of different electric motors

Machine Type Advantages Disadvantages
Brushless DC Motor High reliability High cost
(BLDC) High speed-torque characteristics Low speed range
Induction Motor High speed range low power density
(IM) High reliability Low efficiency

Low cost Large size
PM Synchronous High power density and small size Limited speed range
Motor (PMSM) High efficiency High cost
Switched High speed-torque characteristics High torque ripples
Reluctance Motor High reliability Low power density
(SRM) Low cost Low efficiency

1



1.2. Thesis Motivation

A PMSM is the first choice for the HEV system, because of the high torque

density and efficiency and the relatively smaller size compare to the IM and SRM.

Also, as the name indicates, the rotor of permanent magnet synchronous motor is

made by permanent magnets, such as samarium cobalt, used for exciting the magnetic

field of the motor. Instead of the rotor coils in induction machine, the PMSM so that

has the smaller size than IM and SRM. The PMSM has better efficiency because

of the absence of the rotor winding, and the PMSM also has good efficiency at low

speed, which is one of the most important features for the HEV system.

However, due to the permanent magnets in the rotor, this also causes some

drawbacks. The rotor may be affected for many reasons that cause demagnetization.

For example, when the motor runs above the rated speed, the high temperature

will cause the demagnetization of permanent magnets in the rotor. Additionally,

the failure of cooling system, and the aging of the magnets will also cause the

demagnetization faults. Demagnetization of permanent magnets may significantly

reduce the output torque, the efficiency of the PMSM, and even cause the irretrievable

demagnetization. During the development of HEV traction system, the modeling

of PMSM and simulation are the important parts. Thus, a reliable and efficiency

modeling system is necessary, which could help in preventing damage of the motor,

lengthen the lifespan, and reduce maintenance.

There has been much research to detect the demagnetization fault in permanent

magnet synchronous motor. The most well-known one is the motor current signature

analysis (MCSA) [6–11]. This method is based on fast Fourier transform (FFT)

analyzing the stator current frequency spectrum according to

fdemag = fs

(
1± k

P

)
k = 1, 2, 3, ... (1)

2



where fdemag and fs are the rotor fault and fundamental frequency components, P is

the number of pole pairs. Specific harmonics in the stator current spectrum can be

detected as a specific type of fault. However, this method can be used when the motor

is operating continuously in a nonstationary state. Discrete Fourier transform does

not have the information about time [12]. Shout-time Fourier transform (STFT) can

be applied to overcome the drawback between time and frequency. The limitations

of selecting a suitable window size may cause an inconsistent treatment of different

current frequencies [13,14]. Therefore, it is difficult to detect the fault with very slow

changes.

Time-frequency analysis such as wavelet transform [15–17] and also Hilbert-

Huang transform (HHT) [18] were presented to solve these problems. However, the

current spectrum indications may be covered by signal noise and the torque ripples.

The limitations of these frequency analysis based methods are effected much by the

spectrum caused by the current noise.

To inject a signal into the motor is one the method to detect the PM demagne-

tization [19]. The signal is injected to the motor only when the motor is at standstill.

The machine model-based methods detect the positive/negative sequence currents

[20], or monitoring the zero sequence voltage [21]. These indicators are sensitive to

machine faults and also have lower cost. However, the indicators (positive/negative

sequence currents, etc.) are affected by torque ripples and current noise, which will

affect the accuracy. Thus it is very important to be able to accurately and efficiently

model PMSM in electric vehicle system simulations.

Although there are several modeling of PMSM and IM by using dynamic phasors

model [22–24], none of the models presented in the literature take into account of

demagnetization fault modeling and effect to the traction system, and where the

modeling and simulation of the traction systems are the vital step in developing

3



electric vehicles. To summarize, the main motivations of this research for designing

a new online modeling system are:

• Find a model that can be used for significantly fast simulations of transient

when demagnetization fault occurs;

• Model the motor conditions in both stationary and nonstationary situations,

and monitor the effect of demagnetization fault to the PMSM;

• Increase the sensitivity and accuracy of the fault detections;

• Reduce the cost, and shorten the calculation speed.

In the next section of this chapter, permanent magnet materials and different

types of PMSM are presented.

1.3. Permanent Magnet Materials

The modern permanent magnets started to be considered to develop the PM

field excitation in the 1950s [25]. Various materials, such as Alnico-5, ferrites, samarium-

cobalt, and neodymium-boron-iron are developed as permanent magnets of the PM

machines. In the present, the PM machines are widely used in industry because of

the well development of the high quality of permanent magnet materials.

Figure 1. is a typical curve of a permanent magnet material, this curve is one

of the material samples, different materials have different slope of the curve.

4
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Figure 1. B-H characteristics of permanent magnets

Br is the remanence of the permanent magnet material, which is the flux density

at zero excitation, Hc is coercivity which is the negative field strength that brings the

remanence to zero, and the slope of the curve is called permeability. From Figure 1.,

the flux density at zero excitation is known as remnant flux density Br, and when the

machine is operation around the knee point, the flux density will go to zero. If the

external excitation acting against the magnet is removed, and the operation point is

above the knee point, the magnet will recover along the B-H curve back to Br [26].
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1.4. Operating Point of the PMSM

To simulate the demagnetization fault of PMSM, we need to find out the

relationship between the field strength and the flux density that the permanent

magnet has. Firstly, we need to find the operating point on the demagnetization

fault on the magnet.

From Ampere’s law, the permeance coefficient line is shown in equation [27–29]

Bm = µo
Ag
lgAm

(−Hmlm +NaIa) (2)

where µ is the permeability of air, Hm and Hg are magnetic field strengths in magnet

and air, respectively, and lm and lg are the length of the magnet and air gap. Na is

the number of armature coil turns and Ia is the armature current. This line is shown

in Figure 2. The demagnetization curve shown in Figure 1. can be approximated as

Bm = Br + µoµrHm (3)

where µoµr is the slope of the demagnetization curve in Figure 2.

6
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Figure 2. Demagnetization curve and operating point

From permeance coefficient line equation (2), for operating an electric machine,

the current is less than zero. Thus, the permeance coefficient line (dash line) in

Figure 2. moves to the left, so that the flux density is reduced. This operation is

called demagnetization. If the permeance coefficient line moves over the knee point of

the demagnetization curve (solid line), the permanent magnet is irreversible damaged.

For this reason, the online monitoring of the permanent magnets demagnetization is

necessary in most of the applications.
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1.5. Interior Permanent Magnet Synchronous Motor (IPMSM)

With the development of permanent magnet materials and the techniques of

driving an electric machine, the usage of the PMSM has rapidly increased in many

areas, especially in the applications of electric vehicle because of the advantages in

efficiency and size.

The PMSM has a three-phase stator winding, and a rotor with permanent

magnets for field excitation. Normally, the PMSM is the name of surface-mounted

permanent magnet synchronous motor (SPMSM), where the permanent magnets are

attached at the surface of the rotor. In this type of motor, the rotation speed is

limited in order to keep the permanent magnets attached on the surface. For this

reason, in the present, most of HEV systems are using interior permanent magnet

synchronous motor (IPMSM) in the traction systems.

This type of motor has permanent magnets inside of the rotor and has the

same operating principal as SPMSM. And there are also several types of IPMSM in

structures, and each one has its own advantages. Figure 3. shows the basic rotor

structures of SPMSM and one of the rotor structures of IPMSM.

8



(a) (b)

Figure 3. The rotor structures of (a) SPMSM and (b) IPMSM [26]

The parameters of structure (a) and (b) shown in Figure 3. are used as conven-

tional PMSM and IPMSM respectively in Chapter 5 for modeling and comparison.
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CHAPTER 2. CONCEPT OF DYNAMIC PHASORS

The concept of phasors is based on the property that a periodic time-domain

waveform x(τ) with period T, that is x(τ) = x(τ −T ), can be expressed as a complex

Fourier series of the form

x(τ) =
∞∑

k=−∞

Xk · ejkωsτ (4)

where ωs = 2π/T and Xk is the kth Fourier coefficient in complex form. In this

case, since x(τ) is periodic, the Fourier coefficient Xk are time invariant and can be

expressed as

Xk =
1

T

∫ t

t−T
x(τ)e−jkωsτdτ (5)

2.1. Single Phase Systems

To generalize equations (4, 5) to accommodate arbitrary, nearly periodic types

of waveforms. We need to use the property mentioned in [30], where the Fourier

coefficients are allowed to vary with time. Considering a window of length T for the

waveform of interest, and viewing that waveform to be periodic with a duration of

T, such that a Fourier analysis of the waveform x(τ) can be performed. The time

evolution of the Fourier coefficients can be calculated as the window of length T.

Now for any time-domain waveform x(τ) with period T can be represented on

the interval τ ∈ (t− T, t] using a Fourier series of the form

x(τ) =
∞∑

k=−∞

Xk · ejkωsτ (6)

where these Fourier coefficients are functions of time since the interval under consid-

eration slides as a function of time. So that the kth coefficient at time t is determined
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by the following averaging operation

Xk =
1

T

∫ t

t−T
x(τ)e−jkωsτdτ = 〈x〉k (t) (7)

Some useful properties of the Fourier coefficients that will be used in later

chapters. When original waveforms x(τ) are complex-valued, the phasor

Xk = 〈x〉− k = 〈x∗〉k (8)

where * is the complex conjugate. In the case where x(τ) is real valued, the equation

is reduced to Xk = X∗k

The time derivative for the kth Fourier coefficient can be obtained by differen-

tiating equation (4) with respect to time.This key property can be expressed as

dXk

dt
=

〈
dx

dt

〉
k

− jkωsXk (9)

2.2. PolyPhase Systems

The goal in this chapter is to implement the dynamic phasors concept to 3-phase

Permanent Magnet Synchronous Motor, so that we need to extend the dynamic phasor

concept to include polyphase systems. We begin by using the method symmetrical

components which allows a set of unbalanced phasors to be expressed as the sum of

n symmetrical sets of balanced phasors. In this thesis, we consider three phase (a-

b-c) case. Therefore, the phasors representing an unbalanced three-phase set can be

expressed in three terms, (1) balanced set of phasors with an abc sequence (positive

sequence), (2) balanced set of phasors with an acb sequence (negative sequence), and

(3) a set of three equal phasors (zero sequence). Figure 4. gives the illustration of

the tree sets of balanced sequence components.
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Xc,p
Xb,p

Xa,p

Xb,n

Xc,n

Xa,n

Xa,0

Xb,0

Xc,0

(a) (b) (c)

Figure 4. (a). Positive (b). Negative (c). Zero sequence components

The transformation is introduced following the standard notation, α = ej(2π/3);

then α2 = α∗. Then a time-domain waveform can be written as
xa

xb

xc

 =


1 1 1

α2 α 1

α α2 1



Xa,p

Xa,n

Xa,0

 (10)

where α2 = ej(4π/3) = e−j(2π/3). The inverse transformation is given as follows


Xa,p

Xa,n

Xa,0

 = 1/3


1 1 1

α2 α 1

α α2 1



xa

xb

xc

 (11)

Using the transformation in equation (10) and extending the single phase dy-

namic phasors principles outlined in Section 2.1 to the polyphase system, we can
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express three phase time domain dynamic phasors equation


xa

xb

xc

 (τ) =
∞∑

k=−∞

ejkωsτM


Xp,k

Xn,k

X0,k

 (t) (12)

the Fourier coefficients in equation (12) are


Xp,k

Xn,k

X0,k

 (t) =
1

T

t∫
t−T

e−jkωsτM−1


xa

xb

xc

 (τ)dτ =


〈x〉p,k

〈x〉n,k

〈x〉0,k

 (t) (13)

The Fourier coefficients in equation (13) represent the dynamic phasors of the

positive-sequence Xp,k, negative-sequence Xn,k and zero-sequence X0,k components of

the time varying signals represented in equation (12)

After applying the same properties mentioned in Section 2.1 for the single phase

dynamic phasors, the polyphase equation (12) is a vector form for the three-phase

case. The coefficients in (12) are

d

dt


Xp,k

Xn,k

X0,k

 (t) = M−1


〈
d
dt
xa(τ)

〉
k〈

d
dt
xb(τ)

〉
k〈

d
dt
xc(τ)

〉
k

 (t)− jkωs


Xp,k

Xn,k

X0,k

 (t) (14)

We also have the relationship between balanced sequence components shown as


〈x〉p,k

〈x〉n,k

〈x〉0,k

 =


〈x∗〉∗p,−k

〈x∗〉∗n,−k

〈x∗〉∗0,−k

 (t)− jkωs


Xp,k

Xn,k

X0,k

 (t) (15)
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2.3. Dynamic Phasors and Complex Space Vectors

The method of symmetrical components has been used to analyze unbalanced

operation of symmetrical electric machines. For the complex space vectors, there is a

transformation of the three-phase variables to a stationary complex reference frame,

which combine the qd equations into a single complex expression. That is, since the

qd axes are orthogonal, it is

−→
f qds = fqs − jfds (16)

this equation can be used for instantaneous phasor, so that equation (16) is important

in deriving the dynamic phasors system in the next chapter.

It is common to introduce the concept of complex space vectors. The stator

consists of three sinusoidally currents that are 120◦ apart from one another. Then we

can have a relationship shown as [31]

−→x (t)qds =
2

3
(xa(t) + αxb(t) + α∗xc(t)) (17)

The α in equation (17) is the same as that in the previous section, which is

α = ej(2π/3). Since stator current phasor have the same magnitude and 120◦ apart

from one another, we have

ias + ibs + ics = 0 (18)

when zero-sequence is zero, the phase current can be represented as

−→
i abcs = ias −

1

2
(ibs + ics) + j

√
3

2
(ibs − ics) = ias + j

√
3

2
(ibs − ics) (19)
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From equation (19), there is a simple inverse transformation

ias = R(
−→
i abcs) (20)

ibs = R(α∗
−→
i abcs) (21)

ics = R(α
−→
i abcs) (22)

(23)

where R denotes the real part of a complex number.

From equation (6, 19), we can implement the dynamic phasors concept to

express to complex space vectors [31], then we can get

−→x (τ) =
2√
3

∞∑
k=−∞

ejkωsτXp,k(τ) (24)

In equation (19) the variable ’x’ was specified to stator current in this thesis.

Since all phase quantities are real-value, we have Xp,−k = X∗n,k. When zero-sequence

components are zero, and −→x represents the information about positive and negative

sequence quantities. In this thesis, k = ±1

−→x (τ) = Xp,k(τ)ejωsτ +X∗n,k(τ)e−jωsτ (25)
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CHAPTER 3. DYNAMIC PHASORS MODEL OF IPMSM

3.1. Dynamic Modeling of Permanent Magnet Synchronous Machines

The Permanent Magnet Synchronous Machine is consisted of two parts, stator

with supplied source, and a rotor with only permanent magnets. The dynamic model

of the permanent magnet synchronous machine (IPMSM) is derived using a two-

phase motor in direct and quadrature axes. The magnets are modeled as a constant

current source, concentrating all its flux linkages along only one axis. In this thesis,

the inductance versus rotor position is assumed to be sinusoidal, and the saturation

and parameter changes are neglected. A two-phase IPMSM stator with windings and

rotor with PMs is shown in Figure. It is assumed that the q-axis leads the d-axis.

The transient voltage equivalent circuit can be defined in d-q axes in the rotor

reference frames,

vd = Rsid + pLdid − ωλq

vq = Rsiq + pLqiq + ωλd

(26)

The stator and rotor flux linkages in rotor reference frames are defined as

λq = Lqiq (27)

λd = Ldid + λm (28)

where λq, λd are the flux linkage in the d-q axes, λm is the rotor magnets flux linkages,

and p is the operation of d
dt

.

Base on the stator equations, the equivalent circuit of IPMSM can be derived

and shown as Fig.5. The equivalent circuits are

• Dynamic stator q-axis equivalent circuit

• Dynamic stator d-axis equivalent circuit
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ωλq

ωλd

Rs Ls

Lm Rm Im

Lm

LsRs

Vd

Vq

+

-

+

-

+

+ -

-

Figure 5. Equivalent circuit of dq0 model of IPMSM

In this thesis, the core losses are not the most concern, so that the core losses

are neglected in these equivalent circuits.

In the equivalent model of IPMSM, the rotor magnet can be considered as

a loop of constant current source like the excitation on an induction motor rotor.

This provides a way to relate the calculation of the demagnetization current for the

magnet. In the first chapter, the flux linkage is proved to be proportional to the

demagnetization of the PMs, thus, the current source here in the equivalent is also

proportional to the demagnetization. Then in the process of simulation, the different

demagnetization faults can be generated by changing the value λm. The equivalent
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current source is derived as [32]

Im =
4
√

2

3π

PBrlm
µoµrNa

sinβ (29)

where β is one-half of the magnet arc.

The electromagnetic torque as a function of the flux linkages is defined as

Te =
3

2

P

2

1

Lq
[ρλm + (1− ρ)λd]λq =

3

2

P

2
[λdiq − λqid] (30)

where the saliency ratio is defined as

ρ =
Lq
Ld

(31)

The negative sign in equation (30) shows that the d-axis current produces a

counter torque to the machine.

The electromechanical dynamic equation is given by

Te = J
dωm
dt

+ Tl +Bω (32)

where,

ω is the mechanical rotor speed,

J is the moment of inertia of the load and machine combined, B is the friction

coefficient of the load and the machine, and Tl is the load torque.

3.2. Dynamic Phasors Model of IPMSM

Now we have all the basic knowledge of IPMSM and dynamic phasors procedures

prepared in previous sections, we need to derive the IPMSM model into dynamic

phasors model. The dq0 axes model of permanent magnet synchronous machine is

defined in equation (27). And space vector dynamic model in the rotor coordinate
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frame can be derived by using equation (16). Then we can get [31]

−→v s = −→v q − j−→v d

= (Rs +
Ld + Lq

2
(jω

P

2
+
d

dt
))
−→
i s +

Lq − Ld
2

(jω
P

2
+
d

dt
)
−→
i ∗s + ω

P

2
λm (33)

J
d

dt
ω =

2P

8

j

2
(Lq − Ld)((

−→
i s)

2 − (
−→
i ∗s)

2) +
2P

8
λ(
−→
i s +

−→
i ∗s)−Bω − Tl

where the subscript s corresponds to stator quantities and the superscript r corre-

sponds to rotor reference frame.

The dynamic phasors model of permanent magnet synchronous machine can

be developed by applying equation (9, 25) to the complex space vector model in

equation (33). Since the zero sequence quantities are zero, there are only positive

and negative sequence present. Then we can get the dynamic phasors model in the

following equation systems (34), (35). Since the torque ripple caused by unbalanced

conditions, both dc component of the rotor speed Ω0 and the second order harmonic

rotor speed Ω2 are considered.

Vp = (Rs +
Ld + Lq

2
(jΩ0

P

2
+
d

dt
))Ip +

3j

2
Ω∗2
P

2

Lq − Ld
2

In

+
Lq − Ld

2
(
j

2
Ω0
P

2
+
d

dt
)I∗p − jΩ2

P

2

Ld + Lq
2

I∗n + Ω0
P

2
λm (34)

Vn = (Rs +
Ld + Lq

2
(jΩ0

P

2
+
d

dt
))In −

j

2
Ω2
P

2

Lq − Ld
2

Ip

− jΩ2
P

2

Lq + Ld
2

I∗p + Ω2
P

2
λm

The mechanical equation can be expressed for PMSM in terms of dynamic

phasors as shown below.

J
d

dt
Ω0 =

3P

j8
(
Lq − Ld

2
((Ip)

2 − (I∗p )2)) +
3P

j8
λm(Ip + I∗p )−BΩ0 − Tl (35)

J
d

dt
Ω2 =

3P

j8
((Lq + Ld)I

∗
pIn + λmIn)− (B + j2JΩ0

P

2
)Ω2
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From equations above, each equation are coupled and there are λm terms in each

equation except the fundamental speed dynamic equation (Ω0) in equation (35). And

the permanent flux linkage is proportional to the magnetic strength as mentioned in

previous chapter. This means that this dynamic phasors model of IPMSM has the

direct relationship with permanent magnet flux linkage, so that this model allows us

to observe the system when demagnetization fault happens. We now have all the

dynamic phasors equations needed in order to implement to the model to IPMSM

demagnetization fault detections. We can see in dynamic phasors model (34),35),

these are all nonlinear equations, some of the terms are the products of two current

variables or a current variable and rotor speed. To check the stability of the system

when demagnetization fault appears, we need to use eigenvalue analysis method.

However, the nonlinear dynamic equations cannot be directly used, the small signal

transient analysis is used here and will be introduced in detail in the next chapter.
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CHAPTER 4. EIGENVALUE ANALYSIS

The dynamic phasors model of permanent magnet synchronous machine given in

(34), (35) give the dynamic equations of the entire motor-load system. These dynamic

equations are nonlinear, which is not directly applicable for eigenvalue analysis. They

have to be linearized around an operating point by using perturbation techniques [9].

The ideal model to get the linearized model is the one with steady-state operating-

state variables. By using these steady-state operating-state values as dc value, and

plus a small signal perturbation, we can get the linearized variables.

The voltage, current, torque and rotor speed in their steady state are denoted

in vo, io, To, andωo, and the perturbed increments are demoted by a δ. Then all the

variables after perturbation are

vq = vqo + δvq (36)

vd = vdo + δvd (37)

iq = iqo + δiq (38)

id = ido + δid (39)

T = To + δT (40)

ω = ωo + δω (41)

By substituting from equations (36) to equations (34, 35), by neglecting the

second-order terms, and by canceling the steady-state terms on both right and left

hand sides of the equations, the small signal dynamic equations can be obtained.

After linearizing the dynamic phasors model by using small signal method, we

can get a linearized model with seven equations. Including both real and image parts
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of positive sequence voltage, negative sequence voltage and second-order harmonic ro-

tor speed, and only one equation for fundamental rotor speed since this variable is the

only real value. All the including variables are denoted as Re(Ip), Im(Ip),Re(In), Im(In),

Ω0,Re(Ω2) and Im(Ω2), respectively.

−Lq
d

dt
δRe(Ip) =RsδRe(Ip) + (k2 − k3)Ω0oδIm(Ip) + (k1 + k3)Im(Ω2o)δRe(In)

− (k1 + k3)Re(Ω2o)δIm(In) + ((k2 − k3)Im(Ipo) +
P

2
λ)δΩ0

− (k1 + k3)Im(Ino)δRe(Ω2) + (k1 + k3)Re(Ino)δIm(Ω2)−Re(Vpo)

−Ld
d

dt
δIm(Ip) =(k2 + k3)Ω0oδRe(Ip) +RsδIm(Ip) + (k1 − k3)Re(Ω2o)δRe(In)

+ (k1 − k3)Im(Ω2o)δIm(In) + (k2 + k3)Re(Ipo)δΩ0o

+ (k1 − k3)Re(Ino)δRe(Ω2) + (k1 − k3)Im(Ino)δIm(Ω2)− Im(Vpo)

−k4
2

d

dt
δRe(In) =(k2 + k3)Im(Ω2o)δRe(Ip) + (k2 − k3)Re(Ω2o)δIm(Ip)

+RsδRe(In)− k3Ω0oδIm(In)− k3Im(Ino)δΩ0 + ((k2 − k3)Im(Ipo)

+
P

2
λ)δRe(Ω2) + (k2 + k3)Re(Ipo)δIm(Ω2)−Re(Vn)

−k4
2

d

dt
δIm(In) =− (k2 + k3)Re(Ω2o)δRe(Ip) + (k2 − k3)Im(Ω2o)δIm(Ip)

+ k3Ω0oδRe(In) + +RsδIm(In) + k3Re(Ino)δΩ0

− (k2 + k3)Re(Ipo))δRe(Ω2) + ((k2 − k3)Im(Ipo) +
P

2
λ)δIm(Ω2)

− Im(Vno)− Im(Vn)

J
d

dt
δΩ0 =k6Im(Ipo)δRe(Ip) + k5Re(Ipo)δIm(Ip)−BδΩ0
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J
d

dt
δRe(Ω2) =k6Im(Ino)δRe(Ip)− k6Re(Ino)δIm(Ip)− k6Im(Ipo)δRe(In)

+ (k6Re(Ipo) +
3P

8
λ)δIm(In) + JPIm(Ω2o)δΩ0 −BδRe(Ω2)

+ JPΩ0oδIm(Ω2)

J
d

dt
δIm(Ω2) =− k6Re(Ino)δRe(Ip)− k6Im(Ino)δIm(Ip)− (k6Re(Ipo) +

3P

8
λ)δRe(In)

− k6Im(Ipo)δIm(In)− JPRe(Ω2o)δΩ0 −BδIm(Ω2)− JPΩ0oδRe(Ω2)

(42)

Now the nonlinear systems (34, 35) are linearized by reducing the order of the

dynamic equations to equations (42). To find the eigenvalue of this small signal

system, we need to cast the equation system (42) into state-space form gives

px = Ax+Bu (43)

where

x =

[
δRe(Ip) δIm(Ip) δRe(In) δIm(In) δΩ0 δRe(Ω2) δIm(Ω2)

]T
(44)

u =

[
δRe(Vp) δIm(Vp) δRe(Vn) δIm(Vn) δTl 0 0

]T
(45)

and system matrix A = U−1M , B = U−1W
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U =



−k7 0 −k8 0 0 0 0

0 −k7 0 k8 0 0 0

0 0 −k7 0 0 0 0

0 0 0 −k7 0 0 0

0 0 0 0 J 0 0

0 0 0 0 0 J 0

0 0 0 0 0 0 J



(46)

M =


M11 M12 M13

M21 M22 M23

M31 M32 M33

 (47)

where,

M11 =

 Rs (k2 − k3)Ω0o

(k2 + k3)Ω0o Rs


M12 =

 (k1 + k3)Im(Ω2o) −(k1 + k3)Re(Ω2o)

(k1 − k3)Re(Ω2o) (k1 − k3)Im(Ω2o)


M13 =

 (k2 − k3)Im(Ipo) + P
2
λ −(k1 + k3)Im(Ino) (k1 + k3)Re(Ino)

(k2 + k3)Re(Ip) (k1 − k3)Re(In) (k1 − k3)Im(In)


M21 =

 (k2 + k3)Im(Ω2o) (k2 − k3)Re(Ω2o)

−(k2 + k3)Re(Ω2o) (k2 − k3)Im(Ω2o)


M22 =

 Rs −k3Ω0o

k3Ω0o Rs


M23 =

 −k3Im(Ino) (k2 − k3)Im(Ipo) + P
2
λ (k2 + k3)Re(Ipo)

k3Re(Ino) −(k2 + k3)Re(Ipo) (k2 − k3)Im(Ipo) + P
2
λ


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M31 =


k5Im(Ipo) k5Re(Ipo)

k6Im(Ino) −k6Re(Ino)

−k6Re(Ino) −(k6Re(Ipo) + 3P
8
λ)



M32 =


0 0

−k6Im(Ipo) k6Re(Ipo) + 3P
8
λ

−(k6Re(Ipo) + 3P
8
λ) −k6Im(Ipo)



M33 =


−B 0 0

JPIm(Ω2o) −B JPΩ0o

−JPRe(Ω2o) −JPΩ0o −B


and,

W = diag

[
1 1 1 1 1 0 0

]
where

k1 =
3

2

P

2

Lq − Ld
2

, k2 =
1

2

P

2

Lq − Ld
2

, k3 =
P

2

Lq + Ld
2

k4 =
Lq + Ld

2
, k5 =

3P

2

Lq − Ld
2

, k6 =
3P

8
k4

k7 =
k4
2

k8 =
Lq − Ld

2

Base on the system matrix A, it is apparent that the IPMSM dynamic phasors

model has seven eigenvalues. In the system matrix A, the magnet flux linkage can

be changed to simulate the demagnetization fault since the proportional relationship

with the magnetic strength. The parameters been used are shown in Table 2.
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Table 2. Rated parameters of IPMSM

Parameters Values

Volt. (V) 285

Rs(Ω) 1.4

Ld(mH) 5.7

Lq(mH) 9

Lm(mH) 154.6

Pole pairs 6

J (kg.m2) 0.0012

B 0.1

The eigenvalue analysis has been done on different rating of demagnetizations.

The eigenvalues of IPMSM dynamic model at both full-load and no-load operating

points are shown in Table 3.
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Table 3. The eigenvalues on different demagnetization percentages

Mag. percentage % eigenvalues (full-load) eigenvalues (no-load)

100% λ1,2 −37.2± i1852.5 −28.4± i1879.4

λ3,4 −145.4± i926.6 −151.9± i928.5

λ5,6 −246.0± i885.2 −248.8± i883.5

λ7 −8.4 −8.3

80 % λ1,2 −30.0± i1851.6 −22.0± i1880.9

λ3,4 −148.5± i927.6 −154.4± i929.2

λ5,6 −250.0± i883.8 −252.7± i880.6

λ7 −8.4 −8.4

70% λ1,2 −26.8± i1850.8 −18.7± i1882.4

λ3,4 −149.5± i928.0 −155.5± i929.2

λ5,6 −251.9± i883.0 −254.6± i878.4

λ7 −8.4 −8.4

60% λ1,2 −23.2± i1846.4 −17.0± i1883.4

λ3,4 −150.0± i929.7 −156.2± i926.4

λ5,6 −254.3± i883.1 −255.3± i876.2

λ7 −8.5 −8.5

50% λ1,2 447.8± i1242.9 312.5± i1455.7

λ3,4 −660.4± i839.7 −523.6± i920.8

λ5,6 −164.0± i681.0 −179.4± i782.9

λ7 −91.9 −73.9

From these group of eigenvalues, the eigenvalues λ1,2 correspond to the second

harmonic rotor speed Ω2, and λ7 correspond to the fundamental rotor speed Ω0,

where λ3,4 and λ5,6 are positive sequence and negative sequence currents. It shows
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that the permanent magnets demagnetization has the effect to all the eigenvalues

when the machine runs in stable range. From 40% to 50% demagnetization, the

machine becomes unstable since the first pairs of eigenvalues λ1,2 are positive. For

detail representation, the eigenvalues of the 2nd order harmonic rotor speed Ω2 of

IPMSM between 40% and 50% are plotted in Fig. 6. The demagnetization changes

the machine system, which is system matrix A. In this case, the eigenvalues are

plotted out by changing the system matrix A, and keep the system input the same,

which is the operating point at the stable situation.
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Figure 6. Eigenvalues correspond to 2nd order harmonic speed (λ1,2)
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The eigenvalues λ1,2 move to positive side along with the demagnetization per-

centage increase. It is important to note that between 43% to 44% demagnetizations,

the eigenvalue trace is discontinued. The system goes to unstable at this moment.

Above 44% demagnetization, the system goes to unstable as eigenvalue trace shows

in Figure 6.

The eigenvalues λ3...7 are remained negative between 40% to 50% demagnetiza-

tion of the permanent magnets. For more clear showing in the figures, the eigenvalues

correspond to the demagnetization less than 40% are neglected in Figure 7.,8. The

details of the eigenvalues are shown in the following figures.
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Figure 7. Eigenvalues correspond to positive sequence current (λ3,4)
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Eigenvalues λ3,4 move towards positive side of the x-axis because of the demag-

netization fault, and the eigenvalue traces are smooth between these points.
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Figure 8. Eigenvalues correspond to negative sequence current (λ5,6)

Eigenvalues λ5,6 move towards positive side of the x-axis because of the demag-

netization fault.

For detail representations, the eigenvalues of both healthy and faulted machine

are plotted in Figure 9.,10. and 11., for different loading from no-load to full-load.

In the entire range of loading conditions, the eigenvalues are almost proportional

effected. From 56% demagnetization, the eigenvalues shows that the system runs

unstably. From no-load to full-load conditions, the eigenvalues move to positive side
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to x-axis.

−40 −38 −36 −34 −32 −30 −28
−2000

−1500

−1000

−500

0

500

1000

1500

2000

Real Part

Im
ag

. P
ar

t

noload

Figure 9. 2nd order harmonic speed (λ1,2) from no-load to full-load condition
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Figure 10. Positive sequence current (λ3,4) from no-load to full-load condition
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Figure 11. Negative sequence current (λ5,6) from no-load to full-load condition
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CHAPTER 5. RESULTS

The permanent magnet synchronous machine dynamic model was presented in

Chapter 3, and was also verified the stability during the fault by using the eigenvalue

analysis in Chapter 4. In this chapter, the performance of detecting the demagne-

tization faults using IPMSM dynamic phasors model will be shown. And also the

comparison of dynamic phasors model and the conventional dq0 model will be given

in section (4.2). A series of simulations are implemented to verify the dynamic phasors

model represents the considerable results. In this chapter, the comparison between

dq0 model and dynamic phasors model will be represented in different conditions,

and the advantages of

• 1. faster calculation

• 2. less noise, more accuracy for detections

will be shown in details in the following sections.

5.1. Demagnetization Fault Modeling in Dynamic Phasors Model

The IPMSM dynamic phasors model was presented as equation (34), (35) in

Chapter 3. This system has seven state variables (Re(Ip), Im(Ip),Re(In), Im(In),Ω0,

Re(Ω2) and Im(Ω2)). The simulation begins at time t=0s when a rated voltage 285V

is applied to the motor with initial rotor speed runs at 326 rad/s. The following figures

are the dynamic time domain plot of these seven state variables when the IPMSM

is running at the stationary condition (constant speed). Figure 12. shows the motor

runs at 326.5 rad/s. By using the same machine parameters as shown in Table 1, the

IPMSM dynamic phasors model is simulated as following. Since the positive/negative

sequence currents are sensitive to the motor faults, thus the analysis of Ip, In can shows

the faults significantly. This chapter will be more focus on observing the positive and

negative sequence values.
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Figure 12. Fundamental rotor speed Ω0 in dynamic phasors model
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Figure 13. Complex value of positive and negative sequence current

Figure 13. shows both positive and negative sequence current are stabled in

balanced condition, the negative sequence current is almost zero, since the supply
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voltage is three-phase balanced. 2nd order harmonic speed Ω2 is shown in Figure 14.
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Figure 14. 2nd order harmonic speed Ω1,2 in dynamic phasors model

The 2nd order harmonic speed is zero since the output torque ripples are small

during the stationary situation. This IPMSM dynamic phasors model is well verified
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by both time domain transient and also eigenvalues analysis in previous chapter.

Now it is the point that we need to use this dynamic phasors model to detect the

demagnetization faults.

To simulate the uniform demagnetization, we can proportionally decrease the

permanent magnets flux linkage λm. In the following figures, the demagnetization

fault of IPMSM appeared at t=0.1s to t=0.15s, the positive sequence current Ip has

obvious changes at this moment. The field excitation reduced, that means the back

EMF in the stator winding are reduced, so that the three-phase stator current will

increase. In the meantime, the positive sequence current will increase, as shown in

Figure 15. Although the Im(Ip) is decreased during the demagnetization fault, the

magnitude of total positive sequence current is increased. The negative sequence

current is around zero at this moment because of the motor runs balanced.
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Figure 15. Positive and negative sequence current with 20% demagnetization fault

Also, in Figure 15.,the negative sequence current is shown as zero. Although

the uniform demagnetization fault happens, the motor still runs balanced. In the
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same reason, the 2nd order harmonic speed Ω1,2 have very small transient start from

t=0.1s because of the little ripples caused by demagnetization fault, and it is shown

in Figure 16.
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Figure 16. 2nd order harmonic speed with 20% demagnetization fault
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Figure 17. shows the fundamental rotor speed affected by the demagnetization

fault. Once the demagnetization fault occurs, the load torque still the same, the field

excitation of the rotor is decreased, thus, the electromagnetic torque decreased where

the rotor speed decreased. The demagnetization occurs from t=0.1s to t=0.15s, the

fundamental rotor speed decreases 6% in this region. After the fault cleared, the

motor runs back to the rated speed at 326 rad/s.
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Figure 17. Fundamental rotor speed Ω0 with 20% demagnetization fault

In the figures shown above, all the state variables are shown to observe the effect

on the demagnetization faults, and all the values are shown reasonable curves. In Fig-

ure 18., the positive sequence currents are compared under 20%,40% demagnetization

faults. The demagnetization faults happened at t=0.1s. As mentioned before, the

armature current increased due to the demagnetization fault.
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Figure 18. Comparison of Re(Ip) between 20%, 40% demagnetization and healthy

Figure 19. shows the transients of negative current under 20%,40% demagne-

tization faults, as expected, the negative current has very little change due to the

uniform demagnetization.
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Figure 19. Comparison of Im(Ip) between 20%, 40% demagnetization and healthy

Figure 20. shows the transients of rotor speed Ω0 under different demagne-

tization fault levels at t=0.1s. The rotor speed is decreased more when higher

level demagnetization fault occurs. 40% demagnetization causes 14% lost of the

fundamental rotor speed, where 20% demagnetization causes 6% speed lost.

It need to be noted, in the simulation of dynamic phasors model system, there

is no controller designed for it, so that the negative sequence current might goes to

unstable with very large percentage of demagnetization.
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Figure 20. 20%, 40% demagnetization and healthy rotor speed Ω0 comparison

All the figures above in this section gave reasonable results, due to the reduction

of field excitation, the rotor speed decreased and same as the armature currents.

Negative sequence current shows very little effect because the motor is still running

balanced. Since there is no feedback loop control system in the dynamic phasors

model, thus with a very large demagnetization fault or any large disturbance, the

result values may goes to unstable. However, the positive sequence current a the

most stabilized one.

5.2. The Effects of Grounded Faults to the Dynamic Phasors Model

Grounded fault is also one of the major faults in power systems, there are two

main kinds of grounded faults, three-phase grounded fault and single phase grounded.

These two faults are also simulated to in dynamic phasors model in the following

figures.
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Figure 21. Positive and negative sequence currents with three-phase grounded

The positive sequence current decreased due to the lack of supply power, and

negative sequence current is around zero under balanced situation. In Figure 22. a
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single phase grounded fault occurs between t=0.1s to t=0.13s.
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Figure 22. Positive and negative sequence currents with single-phase grounded
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5.3. Comparison of Conventional IPMSM and Dynamic Phasors Model

To compare the conventional IPMSM and dynamic phasors models, the rotor

frame dq0 model (26) is used as conventional IPMSM model. By using Park’s

transform, the three-phase (abc) current output can obtained. Substituting the three-

phase current into equation (10), the positive and negative sequence currents can

be obtained. As before, the positive and negative sequence currents are shown in

stationary situation as in Figure 23. It can be seen the noise of the conventional

model is larger than the dynamic phasors model, this may affect the accuracy when

modeling the demagnetization faults due to the inaccuracy of the indicators.
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Figure 23. Positive and negative sequence currents of conventional IPMSM model
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This IPMSM model is running at 325.5 rad/s with full-loaded, and the rotor

speed is shown in Figure 24.
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Figure 24. Rotor speed of conventional IPMSM model

To compare the conventional and dynamic phasors models, the positive sequence

current will be first considered. From t=0.1s to t=0.15s, the motor has a 20%

demagnetization fault. Figure 25. shows the comparison between the real part of both

positive sequence currents. In Figure 25., the positive sequence current of dynamic

phasors model is very close to conventional IPMSM model. We can see the current

at stationary condition (before t=0.1s), both currents are around 9.5A, and after the

fault occurs (after t=0.1), the currents settle down to 11.8A. This comparison shows

that the dynamic phasors model consists to the conventional model with less noise,

and the clear transient.
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Figure 25. Positive sequence current. (a). Conventional. (b). Dynamic phasors

model

We can see the conventional model in Figure 25(a)., the current values have

almost 50% noise, this may cause the inaccuracy of motor fault detection, and the

dynamic phasors model in Figure 25(b). shows clear change and less noise. The

negative sequence current in both models are around zero, so the plots of negative

sequence currents are neglected here. Since the conventional model been used in this

thesis has a speed controller to ensure the motor runs in stationary condition, thus

the effects caused by demagnetization fault can not be found from rotor speed.
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One more important feature of dynamic phasors model, the simulation time

by using MATLAB is shorter than conventional dq0 models. For the simulation of

Figure 25., the conventional models cost 5.67s to finish the simulation, but in dynamic

phasors model, the simulation time is only 0.22s. This is the significant increasing of

efficiency in modeling and simulating in all the systems.
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CHAPTER 6. CONCLUSION

6.1. Summary of Contributions

The modeling and simulation of HEV traction system is one of the most impor-

tant procedures in developing the HEV systems. Nowadays, the usages of interior

permanent magnet synchronous motor in electric vehicles are increasing rapidly.

However, the demagnetization is one of the major concerns in designing the traction

systems. The objective of this thesis is to analyze the effects of demagnetization fault

of implemented interior permanent magnet synchronous motor by using dynamic

phasors model. The main contributions provided by this thesis are listed below.

• The theory and key properties of dynamic phasors are outlined and explained,

and the IPMSM dynamic phasors model is derived from complex space vector

IPMSM model.

• Based on the operating point theory of the IPMSM, an effective method for

modeling the demagnetization fault is proposed. This demagnetization fault

model is used in both conventional model and dynamic phasors model.

• The dynamic phasors model of IPMSM is verified the stability by using small-

signal analysis, and the eigenvalues of both faulted and healthy motors are

shown and compared.

• The time domain transients of dynamic phasors model are shown, additionally,

the model transients with demagnetization fault are compared to the conven-

tional IPMSM model.

The proposed dynamic phasors model has shown the advantage on shortening

computing time over the conventional IPMSM model from 5.67s to 0.22s in one certain

case, and the signals of dynamic phasors model are more suitable for fault detection
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since the indicators should be highly reliable. Additionally, the analysis in this thesis

shows high accuracy and efficiency of dynamic phasors model. The major effects of

demagnetization fault appear to the positive sequence current are reasonable. The

negative sequence current has transients once the motor runs out of the balanced.

The fundamental rotor speed Ω0 is also showing the rotor speed correct when the

torque ripples is small (2nd order harmonic speed is around zero). To protect the

IPMSM from demagnetization, it is important to keep rotor speed and load under

the rated values, or the high armature current will cause the demagnetization since

the high temperature.

6.2. Future Work

The purpose of this thesis is to provide an initial starting point for research

into modeling the effects of demagnetization fault in interior permanent magnet syn-

chronous motor using the dynamic phasors model. There are many other directions

can be involved by using dynamic phasors models.

• In this thesis, the dynamic phasors model neglects the effect of flux linkage

saturation and also the core losses. By considering these two components may

improve the accuracy to the reality permanent magnet synchronous motor.

• The influence of temperature on the permanent magnet is also neglected, but

there is an approximately expression as [33]

Br(T ) = Br(T0)[1 + ∆B(T − T0)] (48)

where T is the magnet operation temperature, T0 is the preferred temperature,

Br(T0) is the remanence at T0, and ∆B is the reversible temperature coefficient.

By considering about the influence of temperature of the magnet will as well

improve the accuracy to the IPMSM in reality.
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• Eccentricity fault is also one of the major problems in IPMSM, and it is not

easy to be found by many of the detection methods. Eccentricity in a machine is

a condition of uneven air-gap between the stator and the rotor, this may cause

the contact of stator and rotor [34]. The eccentricity fault looks very similar to

demagnetization fault by using MCSA method. The patterns of the spectrum

are similar to each other during these two faults. Thus, to be more powerful

in modeling and simulating the faults of IPMSM, the ability to distinguish

eccentricity and demagnetization must be included.
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