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ABSTRACT
We present an exact dipole solitary wave solution in a mutual modulation form of bright and dark 
solitons for a higher-order nonlinear Schrödinger equation with third- and fourth-order dispersion 
in metamaterials (MMs) using an ansatz method. Based on the Drude model, the formation 
conditions, existence regions and propagation properties are discussed. The results reveal that the 
solitary wave may exist in a few parameter regions of MMs, different from those in optical fibres, and 
its propagation properties can be controlled by adjusting the frequency of incident waves in each 
existence region.

1. Introduction

Solitons are regarded as ideal information carriers in 
optical communication systems due to their properties 
of keeping their shapes during propagation (1, 2). In fibre 
optics, solitons have been extensively studied in theory 
and experiments (3–5). Families of nonlinear Schrödinger 
equations (NLSEs) are well-known models for studying 
soliton propagation from different viewpoints. Seeking 
new exact soliton solutions for various generalized NLSEs 
remains a highly active research topic in the literature. For 
example, efficient ansatz approaches have been used to 
derive various exact solitons, including bright, dark and 
combined solitary wave solutions (6–15). In particular, 
new types of combined solitary wave solutions  for sev-
eral higher-order NLSEs (HNLSEs) have been reported, 
obtained using an ansatz comprising the sum of bright 
and dark solitary waves (9–12). Another interesting 
ansatz, involving the product of bright and dark solitary 
waves, has also been adopted to describe the propagation 
of dark-type optical pulses with finite width background 
(13). Related solutions, such as the so-called dark-in-the-
bright and dipole solitons, are now known for HNLSEs 
with non-Kerr nonlinearity and third-order dispersion 
(TOD) (14, 15).

Alongside optical fibres research, metamaterials (MMs) 
attract considerable interest due to their unique and 

technologically exploitable electromagnetic properties. 
Many potential applications have been proposed in the 
fields of applied electromagnetism and optics, including 
superlenses, invisibility cloaks and omnidirectional filters. 
Most recently, much attention has been paid to ultrashort 
pulse propagation in MMs (16–29) with theoretical  models 
establishing (16–19) that dispersive permeability plays 
an important role in the formation of solitary waves. The 
existences of bright and dark gap solitons supported by 
negative-index MMs have also been predicted. Moreover, 
bright, dark (grey), combined and chirped solitary wave 
solutions of generalized NLSEs with higher-order nonlin-
ear effects in MMs have been derived (24–29). To the best 
of our knowledge, dipole solutions for MMs have not yet 
been investigated.

In this paper, we investigate a generalized NLSE rel-
evant to MMs with Kerr nonlinearity and higher-order 
dispersion. An exact dipole solitary wave solution is found 
from an ansatz method, and the formation conditions 
and existence regions are discussed in the context of the 
Drude model. Our results show that MM dipole solutions 
are markedly different from those in optical fibres. For 
instance, they can exist in a few regions of parameter space 
where the higher-order dispersion is not completely com-
pensated, and the solitary wave properties are adjustable 
by tuning the frequency of incident waves.
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in fibres, one may encounter steepening at either the lead-
ing or trailing edges in MMs. Therefore, it is necessary 
to investigate the formation and propagation of various 
solitons in MMs.

For weak nonlinearity and instantaneous MMs, the 
SS and the quintic contributions may be neglected. Thus, 
Equation (1) may be simplified to the following normal-
ized form:

 

Here, U = E
/
E0, � = Z

/
LD and � = T

/
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malized electric field amplitude, propagation distance and 
time, respectively, where LD = T2
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self-focusing or self-defocusing nonlinearity and N is the 
order of solitons. In MMs, the dispersive dielectric per-
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ωpm are the respective electric and magnetic plasma fre-
quencies, while γe and γm quantify the electric and mag-
netic losses. It should be pointed out that losses in MMs 
(which originate from the intrinsic absorption, scattering 
and the resonant nature of the magnetic response) are 
inevitably important (17, 30). However, measures can 
be taken to reduce or compensate dissipation, such as 
improving fabrication methods, introducing materials 
with optical gain and using optical parametric amplifica-
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2. Theoretical model and dipole solitary wave 
solution

In homogeneous nonlinear MMs, the propagation of 
ultrashort pulses can be described by a HNLSE with TOD, 
a cubic-quintic nonlinearity and self-steepening (SS)  
(17–19). As the pulses become narrower in time, fourth-or-
der dispersion (FOD) should also be taken into account. 
The theoretical model of ultrashort pulse propagation in 
MMs can then be written as (17–19).

 

where E(Z,T) is the complex envelope of the elec-
tric field, Z and T represent the propagation dis-
tance and time in a retarded frame. The parameters 
�0 = �2

0�0�
(3)�

(
�0

)/(
2k0

)
    and   � = �0

/(
2k0

)
  describe the 

Kerr and pseudo-quintic nonlinearities, respectively, while 
s1 = 1

/
�0 − 1

/(
k0vg

)
+ �[��(�)]∕(��)∕[��(�)]|�=�0
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. The dispersive permit-

tivity and permeability of the MM are determined by 
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the group velocity of the pulse, k0 = n
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It should be noted that Equation (1) has the same form 

as the model for ultrashort pulse propagation in fibres (1). 
However, the two are of different physical significance, 
which stems from the distinct electromagnetic charac-
teristics of MMs and fibres. The former has a dispersive 
permeability and a potentially negative refractive index, 
while the latter has a constant permeability and exhibits 
only positive refraction. Hence, the coefficients parame-
terizing Equation (1) are directly related to the magnetic 
properties of the system. It has been demonstrated that 
dispersive permeability plays a key role in the propaga-
tion of pulses in MMs (17–27). For instance, the pseudo- 
quintic term may enhance the cubic nonlinear response in 
MMs, whereas it typically weakens the cubic nonlinearity 
in fibres. The SS effect is also different in MM and fibre 
contexts: while the trailing edge of a pulse tends to steepen 
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MMs are the same as those in self-defocusing MMs. The 
dependencies of these four key parameters on ϖ are pre-
sented in Figure 1 for ωp = 0.8, �pe = 1.3673 × 1016 Hz, 
� (3) = 10−10 esu, T0 = 50 fs and s = 0.2. On the one hand, 
it is clear that β2 and b4 can be either positive or negative 
in the negative-index region (ϖ < 0.8), and they are always 
negative in the positive-index region (ϖ > 1.0). On the 
other hand, b3 is always positive in both negative- and 
positive-index regions. As mentioned in Refs. (17–19), 
the model coefficients directly related to ɛ(ω) and μ(ω) 
can be tailored by engineering the unit-cell structure of 
MMs, which implies more possibilities for the existence 
of wider classes of solitary wave (17).

To seek dipole solitary waves of Equation (2), we adopt 
an ansatz of the form (13–15):

 

where �, Ω, χ and κ represent the amplitude, frequency 
shift, inverse group velocity and wavenumber of the 
solution, respectively. η and ξ are related to the inverse 
pulse widths of the dark and bright components of the 
dipole. The intensity of solitary wave (3) is in the form 
|U(�, �)|2 = �2 tanh

2
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2
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. Sub-

stituting Equation (3) into (2) and setting the coefficients 
of independent terms equal to zero, we can obtain a set 
of compatible equations. By solving these equations, we 
find Equation (2) has the solitary wave solution as follows:
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Dipole solitary wave (4) is an inter-modula-
tion of bright and dark components with the 
same pulse width and velocity. Its intensity is 
|U(�, �)|2 = 5�4b4

/
b1 tanh

2
[
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]
sech2
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, exhibiting a characteristic M-shape or dipole-type inten-
sity distribution. It can be seen from Equations (4) and 
(5a) that the conditions b1b4 > 0 and b23 − 2b2b4 > 0 must 
always be satisfied, which means that the formation of 
the solitary wave depends strongly upon different com-
binations of dispersion and nonlinearity. Moreover, the 
solution parameters η, Ω, χ and κ depend only on the 
dispersive properties embodied by b2, b3 and b4 and are 
independent of the nonlinearity [b1 influences only the 
existence regions of the solitary wave (4)]. By combin-
ing Figure 1 with the existence conditions, it is easy to 
show that when TOD and FOD are neglected, there are 
no regions of parameter space for either self-focusing or 
self-defocusing nonlinear MMs wherein dipole solitary 
wave (4) may reside. For finite higher-order dispersion, 
we find the solution can exist: (i) in the normal-GVD 
regime of self-focusing negative-index MMs and (ii) in all 
dispersion regimes of self-defocusing positive- and neg-
ative-index MMs. Table 1 shows the existence regions of 
solution (4) with the corresponding normalized frequency 
ranges in self-focusing and self-defocusing MMs. It can 
clearly be seen that the existence regions are quite differ-
ent from those of bright or dark solitary waves in MMs 
(26, 27). Moreover, when compared with similar solutions 
in conventional materials (13–15), the MM dipole solitary 
wave may exist in additional regions of parameter space. 
A further distinction is that solution (4) in different exist-
ence regions possesses different parameters η, χ, Ω and κ 
because the model parameters b2, b3 and b4 in Equation 
(2) vary with the normalized frequency ϖ. Figure 2 illus-
trates variations of parameters η, χ, Ω and κ with ϖ in 
different existence regions. By comparing the plots in 
Figure 2, it is easy to see that in all allowed regions, the 

(5b)� = b3
(
b23 − 3b2b4

)/
3b24,

(5c)� =
(
2b43 − 8b2b

2
3b4 + 33b22b

2
4

)/
50b34.

Figure 1. curves of n, β2, b3 and b4 vs. ϖ in self-focusing MMs for 
ωp = 0.8, here β2 in units of 10

/
c�

pe
.

Table 1. existence regions of the solitary wave (4) in self-focusing 
and self-defocusing MMs.

 
b1 = sgn

[
�0
]

 b2 = sgn
[
�2
] existence regions and ϖ 

ranges
Ⅰ 1 1  

𝜛 ∈ [0.746, 0.799] n < 0

Ⅱ −1 −1 𝜛 ∈ [0.677, 0.745] n < 0 
1

Ⅲ −1 −1  
𝜛 ∈ [1.000, 1.171] n > 0
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� = b33
/
3b24  and  � = b43

/
25b34. This means that the balance 

between TOD, FOD and Kerr nonlinearity can support the for-
mation of a dipole solitary wave in self-defocusing MMs when 
the GVD is compensated.

Figure 3 presents a set of simulations showing 
the evolution of dipole solitary wave (4) in different 
existence regions for fixed ϖ. Here, we take the fol-
lowing parameter values in Figure 3(a) normal-GVD 
regime of self-focusing negative-index MMs, b1  =  1, 
b2 = 1 and ϖ = 0.766 corresponding to b3 = 8.962 and 
b4 = 8.429; (b) anomalous-GVD regime of self-defocus-
ing negative-index MMs, b1 = –1, b2 = −1 and ϖ = 0.678 
corresponding to b3 = 3.629 and b4 = −5.967; (c) nor-
mal-GVD regime of self-defocusing negative-index 
MMs, b1  =  −1, b2  =  1 and ϖ  =  0.713 corresponding 
to b3 = 25.083 and b4 = −21.413; (d) anomalous-GVD 
regime of self-defocusing positive-index MMs, b1 = −1, 
b2  =  −1 and ϖ  =  1.070 corresponding to b3  =  4.975, 
b4 = −4.263. It should be pointed out that all adopted 
model parameters satisfy the existence conditions, 

frequency shift Ω increases with ϖ while the wavenumber 
κ decreases. However, the behaviour of the inverse pulse 
width η and the inverse wave velocity χ with ϖ is nearly 
opposite in self-focusing and self-defocusing nonlinear 
MMs. Conversely, as ϖ increases, both η and χ decrease in 
self-focusing negative-index MMs [see Figure 2(a)] while 
they increase in both negative- and positive-index regions 
of self-defocusing MMs [see Figures 2(b) and (c)]. This 
means that we can control the properties of dipole solitary 
waves in self-focusing and self-defocusing nonlinear MMs 
by changing the frequency of incident waves.

It should be noted that χ and κ in Figure 2(b) exhibit reso-
nance-type behaviour at ϖ = 0.707. The reason for this behaviour 
is that in the negative-index regime, frequency ϖ = 0.707 cor-
responds to the zero-GVD point (where β2 crosses from being 
negative to positive). The higher-order dispersion parameters 
b3 = �3

/||�2||T0  and b4 = �4
/||�2||T

2
0 are then strongly peaked 

at that point, as shown in Figure 1. According to Equations 
(5a–c), the special case of b2 = 0 solution (4) has the following 
parameters: �2 = 9b43

/
5b1b

3
4, �

2 = 3b23
/
5b24, Ω = −b3

/
b4, 

(a) (b)

(c)

Figure 2. curves of the parameters η, Ω, χ and κ of the solitary wave (4) vs. ϖ in (a) normal-GVd regime of self-focusing negative-index 
MMs; in (b) negative- and (c) positive-index regions of self-defocusing MMs, respectively.
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Finally, we consider the stability of dipole solitary 
waves under perturbations. As examples, we investigate 
numerically the propagation of dipole solitary waves 
in the normal-GVD regime of self-focusing negative- 
index MMs and in the anomalous-GVD regime of self- 
defocusing negative-index MMs. It can be seen from 
Figures 4(a) and (b) that under 5% pulse width fluctuation, 
the solitary waves remain stable after propagating over 20 
dispersion lengths. Under 10% of random noise pertur-
bation,  the dipole solitary waves in these two existence 
regions can still keep their initial shapes after propagating 
over 20 dispersion lengths except for a small deviation 
around the bipolar peaks and the backgrounds, as shown 
in Figures 4(c) and (d). The detailed stability analysis for 
the dipole solitary waves in all existence regions is now 
under further investigation.

and the corresponding normalized frequencies are 
located in the existence ranges shown in Table 1. All 
the amplitudes of the solitary waves remain at the same 
value of 0.25 in Figure 3 because of the normalization 
|U |2 ⟶ |U |2

/
�2. It can also be seen from Figure 3 that 

in different existence regions, the solitary waves have 
different pulse widths and velocities for fixed ϖ, which 
are in agreement with the curves of Figure 2. The results 
show that mutual balancing between Kerr nonlinearity, 
GVD, TOD and FOD gives rise to the formation of the 
dipole solitary wave. In particular, the Kerr effect only 
influences the existence regions, while dispersion not 
only plays a role in the existence regions, but also influ-
ences the characteristics of propagating solitary waves. 
All the analytical predictions are verified by numerical 
simulations in each case, as shown in the insets.

(a) (b)

(c) (d)

Figure 3. evolutions of the solitary waves (4) (a) in normal-GVd regime of self-focusing negative-index MMs; in (b) anomalous- and 
(c) normal-GVd regimes of self-defocusing negative-index MMs; (d) in anomalous-GVd regime of self-defocusing positive-index MMs. 
Here, the intensities of the solitary wave are normalized by |U|2

/
�2, and the corresponding b3 and b4 are shown in the text. numerical 

confirmations (red circles) of the exact solutions (black solid line) are shown in the insets, respectively.
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the solitary wave. The propagation properties can also be 
controlled by adjusting the frequency of incident waves. 
Finally, as examples, we investigated numerically the sta-
bility of the new dipole solitary wave in negative-index 
regimes involving normal-GVD with self-focusing non-
linearity, and anomalous-GVD with self-defocusing non-
linearity. The obtained results are useful for understanding 
how combined solitary wave dynamics and they might 
provide a basis for finding further novel forms of solitary 
waves in MMs.
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3. Conclusion

In conclusion, we have considered a generalized NLSE 
with TOD and FOD for describing ultrashort pulse prop-
agation in weakly nonlinear MMs, and an exact dipole 
solitary wave solution has been derived using an ansatz 
method. With reference to the Drude model, we have 
identified and discussed the existence regions of the new 
dipole solitary wave in MMs, which are much broader 
than those typically encountered in optical fibre systems. 
It has been found that the new wave can exist in nor-
mal-GVD regime of self-focusing negative-index MMs, in 
anomalous- and normal-GVD regimes of self-defocusing 
negative-index MMs, and in the anomalous-GVD regime 
of self-defocusing positive-index MMs. Furthermore, we 
have investigated the parameter variations of the solitary 
wave with normalized frequency in each existence region. 
The results show that Kerr nonlinearity only influences 
the existence regions, while GVD, TOD and FOD influ-
ence both the existence regions and the characteristics of 

(a) (b)

(c) (d)

Figure 4. numerical evolutions of the solitary wave (4) under (a) 5% pulse width fluctuation and (c) 10% random noise perturbation in 
normal-GVd regime of self-focusing negative-index MMs b1 = 1, b2 = 1 and ϖ = 0.777 corresponding to b3 = 12.014 and b4 = 24.506; 
(b), (d) are those in anomalous-GVd regime of self-defocusing negative-index MMs b1 = −1, b2 = −1 and ϖ = 0.685 corresponding to 
b3 = 5.071 and b4 = −7.591, respectively. the insets in (a) and (b) show the comparisons of numerical simulation (red circle) and exact 
pulse (black solid line) after propagating 20 dispersion lengths.
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