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ABSTRACT

Studying the translation equation F(s + t, x) = F(s, F(t, x)), s, t ∈ C,
for Ft(x) = F(t, x) = ∑

ν≥1 cν(t)x
ν , t ∈ C, or the associated system of

cocycle equations in rings of formal power series it is well known that
the coefficient functions of their solutions are polynomials in additive
and generalized exponential functions. Replacing these functions
by indeterminates we obtain formal functional equations. Applying
formal differentiation operators to these formal equations we obtain
different types of formal differential equations. They can be solved in
order to get explicit representations of the coefficient functions. In the
present paper we consider iteration groups of type II, i.e. solutions of
the translation equation of the form F(t, x) = x+∑n≥k cn(t)x

n, t ∈ C,
where k ≥ 2 and ck : C → C is an additive function different from
0. They correspond to formal iteration groups G(y, x) ∈ (C[y])[[x]]
of type II, which turn out to be the Lie–Gröbner series LGy(x) =∑

n≥0
1
n!Dn(x)yn. Here the Lie–Gröbner operator D is defined by

D(f (x)) = f ′(x)H(x) for f ∈ C[[x]] where H is the formal generator
of G. Using this particular form of the formal iteration group G we are
able to find short proofs and elegant representations of the solutions
of the cocycle equations. In connection with the second cocycle
equation we study the generalized Lie–Gröbner operator D(f ) =(∑k−1

j=1 −κjxj
)
f (x) + f ′(x)H(x), f ∈ C[[x]], where κ1, . . . , κk−1 ∈ C

are given. It yields the corresponding generalized Lie–Gröbner series
LGy(x) = ∑

n≥0
1
n!Dn(x)yn which appears in the presentation of the

solution of the second cocycle equation.
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1. Introduction

In [4] we have introduced the method of ‘formal functional equations’ to solve the
translation equation (and the associated system of cocycle equations) in rings of formal
power series overC in the case of iteration groups of type I. In [5–7] we applied thismethod
also for the translation equation and the associated cocycle equations in rings of formal
power series over C in the case of iteration groups of type II. Formal functional equations
in connection with the translation equation were also studied by D. Gronau [10,11]. Now
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we will show that for iteration groups of type II the method of Lie–Gröbner series allows
to present some elegant proofs.

Let C[[x]] be the ring of formal power series f (x) = ∑
ν≥0 cνx

ν over C in the indeter-
minate x. For a detailed introduction to formal power series we refer the reader to [1] and
[16]. Together with addition + and multiplication · the set C[[x]] forms a commutative
ring. If f �= 0, then the order of f is defined as ord (f ) = min{n ≥ 0 | cn �= 0}. Moreover,
ord (0) = ∞. The composition ◦ of formal series is defined as follows: Let f , g ∈ C[[x]],
ord (g) ≥ 1, then (f ◦ g)(x) is f (g(x)) = ∑

n≥0 cν[g(x)]ν . This series converges with
respect to the order topology in C[[x]]. Consider

� = {f ∈ C[[x]] | f (x) = c1x + . . . , c1 �= 0} = {f ∈ C[[x]] | ord (f ) = 1}

then (�, ◦) is the group of all invertible formal power series (with respect to ◦).
We consider the translation equation

F(s + t, x) = F
(
s, F(t, x)

)
, s, t ∈ C, (T)

for Ft(x) = F(t, x) = ∑
ν≥1 cν(t)x

ν ∈ �, t ∈ C. (Cf. the introduction of [4] for the
motivation to study (T) and basic results on its solutions (Ft)t∈C.) A family (Ft)t∈C which
satisfies (T) is called iteration group, and neglecting the trivial iteration group, there are
two types of such groups, namely iteration groups of type I where the coefficient c1 is a
generalized exponential function different from 1, and iteration groups of type II, where
c1 = 1.

It is known that for each iteration group of type II there exists an integer k ≥ 2 such
that

F(t, x) = x +
∑
n≥k

cn(t)xn, t ∈ C,

where ck : C → C is an additive function different from 0. A family (Ft)t∈C is an iteration
group of type II, if and only if the system

cn(s + t) = cn(s)+ cn(s), k ≤ n ≤ 2k − 2,
c2k−1(s + t) = c2k−1(s)+ c2k−1(t)+ kck(s)ck(t)
c2k(s + t) = c2k(s)+ c2k(t)+ kck(s)ck+1(t)+ (k + 1)ck+1(s)ck(t)
cn(s + t) = cn(s)+ cn(t)+ kck(s)cn−(k−1)(t)

+ (
n − (k − 1)

)
cn−(k−1)(s)ck(t)

+ P̃n
(
ck(s), . . . , cn−k(s), ck(t), . . . , cn−k(t)

)
, n > 2k, (1)

is satisfied for all s, t ∈ C, where P̃n are universal polynomials which are linear in
ck(s), . . . , cn−k(s). Comparing coefficients in cν(s + t) = cν(t + s), ν ≥ 2k, we can prove
that there exists a sequence of polynomials (Pn)n≥k so that

cn(s) = Pn(ck(s)), ∀s ∈ C, n ≥ k,

and
F(s, x) = x + ck(s)xk +

∑
n>k

Pn(ck(s))xn, s ∈ C.
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According to (1) these polynomials must satisfy

Pn(ck(s)+ ck(t)) = Pn(ck(s + t)) = cn(s + t)
= Pn(ck(s))+ Pn(ck(t))+ kck(s)Pn−(k−1)(ck(t))

+ (
n − (k − 1)

)
Pn−(k−1)(ck(s))ck(t)

+ P̃n
(
ck(s), . . . , Pn−k(ck(s)), ck(t), . . . , Pn−k(ck(t))

)
, (2)

for all s, t ∈ C and n ≥ k, where Pj = 0 for j < k and P̃j = 0 for j ≤ 2k.
Since the image of ck contains infinitelymany elements we can prove for any polynomial

Q(x, y) ∈ C[x, y] thatQ(ck(s), ck(t)) = 0 for all s, t ∈ C impliesQ = 0. From (2) we obtain
by replacing ck(s) and ck(t) by independent variables y, z, that

Pn(y + z) = Pn(y)+ Pn(z)+ kyPn−(k−1)(z)+ (
n − (k − 1)

)
Pn−(k−1)(y)z

+ P̃n
(
y, . . . , Pn−k(y), z, . . . , Pn−k(z)

)
(3)

for all n ≥ k.
Writing G(y, x) = x + yxk +∑

n≥k+1 Pn(y)x
n ∈ (C[y])[[x]] we deduce from (3) that G

satisfies the formal translation equation of type II

G(y + z, x) = G(y,G(z, x)) (Tform)

in (C[y, z])[[x]]. We call G(y, x) a formal iteration group of type II. It also satisfies the
condition

G(0, x) = x. (B)

Iteration groups of type II and formal iteration groups of this type are related in the
following way.
Theorem 1: F(s, x) = x + ck(s)xk +∑

n>k Pn(ck(s))x
n is a solution of (T) if and only if

G(y, x) = x + yxk +∑
n>k Pn(y)x

n is a solution of (Tform) and (B).
For formal series f (x),H(x) ∈ C[[x]] consider the differential operator

D : C[[x]] → C[[x]], D(f ) := f ′(x)H(x).

Iterative powers of D are defined as

Dn(f ) =
{
f if n = 0,
D(Dn−1(f )) if n > 0.

All operators Dn are linear, thus for f1, f2 ∈ C[[x]] and c1, c2 ∈ C we have

Dn(c1f1 + c2f2
) = c1Dn(f1)+ c2Dn(f2), n ≥ 0,

and moreover D satisfies the product rule

D(f1 · f2) = D(f1)f2 + f1D(f2),
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and more general

Dn(f1 · f2) =
n∑

j=0

(
n
j

)
Dj(f1)Dn−j(f2), n ≥ 0.

The Lie–Gröbner series of f = f (x) ∈ C[[x]] is the series

LG(f ) := LGy(f ) :=
∑
n≥0

1
n!D

n(f (x))yn ∈ C[[x, y]].

For a detailed introduction to Lie–Gröbner series see [8] or [9, chapter 1]. The operator
LG is linear and multiplicative which means that

LG
(
c1f1 + c2f2

) = c1LG(f1)+ c2LG(f2)

and

LG
(
f1f2
) = LG(f1)LG(f2)

hold true for all f1, f2 ∈ C[[x]] and c1, c2 ∈ C.
For k ∈ N and f (x) = ∑

n≥0 cnx
n ∈ C[[x]] let fk(x) = ∑k

n=0 cnx
n ∈ C[x]. Then

LG(fk(x)) = LG
( k∑
n=0

cnxn
)

=
k∑

n=0

cnLG(x)n = fk(LG(x)).

Since f is the limit of fk with respect to the order topology we obtain the Commutation
Theorem (cf. [8, Satz 7 (Vertauschungssatz)] or [9, Theorem 6 (Commutation Theorem)
p. 17]).
Theorem 2: For any power series f (x) ∈ C[[x]] we have

LG(f (x)) = f (LG(x)). (4)

We note that Lie–Gröbner-series in the context of iteration groups have already been
used by St. Scheinberg [22] and also by L. Reich and J. Schwaiger in [21].

2. Formal iteration groups of type II are Lie–Gröbner series

In order to determine all formal iteration groups of type II we are looking for relations
between the solutions G(y, x) of (Tform) and the formal generator H(x) of G defined by

∂

∂y
G(y, x)|y=0 = xk +

∑
n>k

hnxn = H(x).

Here hk = 1. (Notice that in the situation of an analytic iteration group the coefficient of
xk in H(x)may be different from 1.)
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Differentiation of (Tform) with respect to z together with the mixed chain rule and
putting z = 0 yields

∂

∂y
G(y, x) = H(x)

∂

∂x
G(y, x). (PDform)

In other words ∂
∂yG(y, x) = D(G(y, x)), where D(f (x)) := H(x) ∂

∂x f (x) as above, f ∈
C[[x]].

Since the solutions of (Tform) are elements of (C[y])[[x]] it is possible to write them in
the form

G(y, x) =
∑
n≥0

φn(x)yn ∈ (C[[x]])[[y]].

This allows us to rewrite (PDform) and (B) as

∑
n≥1

nφn(x)yn−1 =
∑
n≥0

D(φn(x))yn (5)

φ0(x) = x. (6)

(5) is satisfied if and only if

φn+1(x) = 1
n + 1

D(φn(x)) (5n)

holds true for all n ≥ 0.
By induction we derive from (5n) that

φ0(x) = D0(x)
0! and φn(x) = Dn(x)

n! , n ≥ 1.

Thus

G(y, x) =
∑
n≥0

φn(x)yn =
∑
n≥0

1
n!D

n(x)yn = LGy(x),

where

D : C[[x]] → C[[x]], D(f (x)) := H(x)f ′(x)

is the Lie–Gröbner operator.
Theorem 3:

(1) If G is a solution of (Tform) and (B), then it is a solution of (PDform), whence it is
the Lie–Gröbner series LGy(x) where H is the formal generator of G.

(2) For any generator H(x) = xk +∑
n>k hnx

n, k ≥ 2, the unique solution G(y, x) =
LGy(x) of (5) and (6) is a solution of (Tform) and (B).
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Proof: The first assertion is proved above. Now we show thatG(y, x) = LGy(x) is a formal
iteration group of type II:

G(y,G(z, x)) =
∑
n≥0

1
n!y

nDn
(∑
ν≥0

1
ν!z

νDν(x)
)

=
∑
n≥0

∑
ν≥0

1
n!

1
ν!y

nzνDn+ν(x)

=
∑
N≥0

N∑
n=0

1
N !

N !
n!(N − n)!y

nzN−nDN (x)

=
∑
N≥0

1
N !
( N∑
n=0

(
N
n

)
ynzN−n

)
DN (x) =

∑
N≥0

1
N ! (y + z)NDN (x)

= G(y + z, x).

In other words the composition of two Lie–Gröbner series is again a Lie–Gröbner series.

LGy(LGz(x)) = LGy+z(x) (7)

Let G(y, x) be a formal iteration group of type II with formal generator H(x). Since
G(y, x) = LGy(x) we get as an immediate consequence of the Commutation Theorem
(Theorem 2) the Commutation Theorem for iteration groups of type II.
Theorem 4: Let G(y, x) be a formal iteration group of type II. Then for any power series
K(x) of order at least 1 we have

G(y,K(x)) = K(G(y, x)). (8)

Remark 5: LetH be the formal generator of the formal iteration groupG of type II. Since
H(x) = D(x) we obtain

H(G(y, x)) = D(LGy(x)) =
∑
n≥0

1
n!D

n+1(x)yn = ∂

∂y
LGy(x) = ∂

∂y
G(y, x).

Moreover

H(x)
∂

∂x
LGy(x) = D(LGy(x)) =

∑
n≥0

1
n!D

n+1(x)yn =
∑
n≥0

1
n!D

n(H(x))yn

= LGy(H(x)) = H(LGy(x)).

Thus
H(x)

∂

∂x
G(y, x) = H(G(y, x)),

or equivalently
∂

∂x
LGy(x) = H(LGy(x))

H(x)
.
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Remark 6: The general idea of formal functional equations and Lie–Gröbner series is the
following: We start with a functional equation like the translation equation or the cocycle
equations (introduced later). From these equations we determine formal equations by
replacing independent values by independent variables. In order to solve these formal
equations we derive by purely algebraic differentiation and by applying mixed chain rules
some differential equations, which we are able to solve. After reordering the summands
of a solution we derive a representation as a (generalized) Lie–Gröbner series. Finally we
prove that this (generalized) Lie–Gröbner series is a solution of the formal equation we
wanted to solve.

This ideawill be applied to the first and second cocycle equations. In connectionwith the
problem of a covariant embedding of the linear functional equation ϕ(p(x)) = a(x)ϕ(x)+
b(x) with respect to an iteration group (F(t, x))t∈C (cf. [2,3]) we have to solve the two
cocycle equations

α(s + t, x) = α(s, x)α
(
t, F(s, x)

)
, s, t ∈ C, (Co1)

β(s + t, x) = β(s, x)α
(
t, F(s, x)

)+ β
(
t, F(s, x)

)
, s, t ∈ C, (Co2)

under the boundary conditions

α(0, x) = 1, β(0, x) = 0,

for
α(s, x) =

∑
n≥0

αn(s)xn, β(s, x) =
∑
n≥0

βn(s)xn.

These cocycle equations appear also in other settings, see e.g. [12,13,15,20], or [14].

3. The first cocycle equation

We study the first cocycle equation

α(s + t, x) = α(s, x)α
(
t, F(s, x)

)
, s, t ∈ C, (Co1)

for
α(t, x) =

∑
n≥0

αn(t)xn, t ∈ C,

under the boundary condition

α(0, x) = 1 (B1)

where (Ft)t∈C is an iteration group of type II. Then α0 is a generalized exponential function
and α̂(t, x) := α(t,x)

α0(t) is also a solution of (Co1). By substitution into the logarithmic series
we obtain that γ (t, x) := log (α̂(t, x)) = ∑

n≥1 γn(t)x
n is a solution of

γ (s + t, x) = γ (s, x)+ γ
(
t, F(s, x)

)
(Co1log)

satisfying γ (0, x) = 0, if and only α̂(t, x) is a solution of (Co1) and (B1).
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By comparing coefficients it is easy to prove
Lemma 7: Let F(t, x) = x +∑

n≥k Pn(ck(t))x
n be an iteration group of type II, then each

coefficient function γn(t) of a solution γ of (Co1log) is a polynomial P̂n(ck(t)), t ∈ C.
Moreover for all s, t ∈ C we have

∑
n≥1

P̂n(ck(s)+ ck(t))xn =
∑
n≥1

P̂n(ck(s))xn +
∑
n≥1

P̂n(ck(t))

⎡
⎣x +

∑
r≥k

Pr(ck(s))xr
⎤
⎦
n

.

Replacing ck(s) and ck(t) by independent variables y, z, we obtain the formal first cocycle
equation in (C[y, z])[[x]]

�(y + z, x) = �(y, x)+ �
(
z,G(y, x)

)
(Co1form)

for
�(y, x) =

∑
n≥1

P̂n(y)xn ∈ (C[y])[[x]]

together with

�(0, x) = 0 (B1′)

where G(y, x) = x + yxk +∑
n>k Pn(y)x

n is a formal iteration group of type II.
As a consequence we easily obtain

Theorem 8: Let ck �= 0 be an additive function. Then γ (s, x) = ∑
n≥1 P̃n(ck(s))x

n is a
solution of (Co1log) satisfying γ (0, x) = 0 if and only if �(y, x) = ∑

n≥1 P̃n(y)x
n is a

solution of (Co1form) satisfying (B1′).
Differentiation of (Co1form) with respect to z together with the mixed chain rule and

putting z = 0 yields

∂

∂y
�(y, x) = K(x)+ H(x)

∂

∂x
�(y, x), (Co1PD)

where K(x) := ∂
∂y�(y, x)|y=0 and H(x) is the formal generator of the formal iteration

group G(y, x). We call K the generator of the solution � of (Co1form).
Thus ∂

∂y�(y, x) = K(x)+ D(�(y, x)), where D(f (x)) := H(x) ∂
∂x f (x).

Since the solution of (Co1form) is an element of (C[y])[[x]] it is possible to write it in
the form

�(y, x) =
∑
n≥1

ψn(x)yn ∈ (C[[x]])[[y]].

This allows us to rewrite (Co1PD) as∑
n≥1

nψn(x)yn−1 = K(x)+
∑
n≥1

D(ψn(x))yn. (9)

(9) is satisfied if and only if
ψ1(x) = K(x)
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and

ψn(x) = 1
n
H(x)ψ ′

n−1(x) (5n)

holds true for all n ≥ 2.
By induction we prove that the unique solution of (9) with ((B1′)) is

�(y, x) =
∑
n≥1

1
n!D

n−1(K(x))yn, (10)

whereD : C[[x]] → C[[x]],D(f (x)) := H(x)f ′(x). This is a generalization of a Lie–Gröbner
series.

If�(x) ∈ C[[x]] is a formal series, so that ϕ(x) = �′(x), then we introduce

∫ z

y
ϕ(ξ) dξ := �(z)−�(y).

Given ϕ ∈ C[[x]], the series �(x) = ∫ x
0 ϕ(ξ) dξ is the unique primitive of ϕ satisfying

�(0) = 0.
Since

∫ y

0
LGξ (x) dξ =

∫ y

0

∑
n≥0

1
n!D

n(x)ξn dξ =
∑
n≥0

1
(n + 1)!D

n(x)yn+1

=
∑
n≥1

1
n!D

n−1(x)yn

we obtain

�(y, x) =
∫ y

0
LGξ (K(x)) dξ.

Theorem 9:

(1) If � is a solution of (Co1form) and (B1′) with given generator K, then it is a solution
of (Co1PD). Thus it has a representation of the form (10) where D(f ) = f ′H and H
is the formal generator of the iteration group G.

(2) Let G be a formal iteration group of type II with formal generator H. For any series
K(x) of order at least 1 the unique solution�(y, x) of (Co1PD) and (B1′) is a solution
of (Co1form).

Proof: The first assertion is clear. The proof of the second assertion is based on the
Commutation Theorem for iteration groups of type II (Theorem 4).
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Let x, y, z be distinct indeterminates.

�(y, x)+ �(z,G(y, x)) =
∫ y

0
LGξ (K(x)) dξ +

∫ z

0
LGξ (K(G(y, x))) dξ

(8)=
∫ y

0
LGξ (K(x)) dξ +

∫ z

0
LGξ (LGy(K(x))) dξ

(7)=
∫ y

0
LGξ (K(x)) dξ +

∫ z

0
LGξ+y(K(x)) dξ

=
∫ y

0
LGξ (K(x)) dξ +

∫ y+z

y
LGη(K(x)) dη

=
∫ y+z

0
LGξ (K(x)) dξ = �(y + z, x).

It is obvious that �(0, x) = 0.

Theorem 10: For each generator K(x) = ∑
n≥1 κnx

n ∈ C[[x]] there exists a solution α of
(Co1) and (B1) so that

α(s, x) = α0(s)
E(G(ck(s), x))

E(x)

k−1∏
j=1

exp
(
κj

∫ y

0
[G(σ , x)]jdσ |y=ck(s)

)
,

where α0 is a generalized exponential function, E(x) = 1 + . . . ∈ C[[x]], ck an additive
function and G(y, x) a formal iteration group of type II.

Moreover, each solution of (Co1) and (B1) is of this form.

Proof: Let K1(x) = ∑k−1
j=1 κjx

j and K2(x) = ∑
j≥k κjx

j. According to (10) we have

�(y, x) =
∑
n≥1

1
n!D

n−1(K1(x)+ K2(x)
)
yn

=
∑
n≥1

1
n!
(
Dn−1(K1(x))+ Dn−1(K2(x))

)
yn

=
∑
n≥1

1
n!D

n−1(K1(x))yn +
∑
n≥1

1
n!D

n−1(K2(x))yn.

Since the order of K2 is at least k, H is a divisor of K2, thus there exists K̃2 ∈ C[[x]] so that
K2 = HK̃2. Then there is a unique K̂2 so that K̂ ′

2(x) = K̃2(x) and K̂2(0) = 0. Therefore
K2(x) = D(K̂2(x)) and

∑
n≥1

1
n!D

n−1(K2(x))yn =
∑
n≥1

1
n!D

n(K̂2(x))yn

= LGy(K̂2(x))− K̂2(x)
(8)= K̂2(G(y, x))− K̂2(x).
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Moreover

∑
n≥1

1
n!D

n−1(K1(x))yn =
∫ y

0
LGξ (K1(x)) dξ

(4)=
∫ y

0
K1(LGξ (x)) dξ

=
∫ y

0

k−1∑
j=1

κj[LGξ (x)]j dξ (8)=
k−1∑
j=1

κj

∫ y

0
[G(ξ , x)]j dξ.

Consequently,

�(y, x) =
k−1∑
j=1

κj

∫ y

0
[G(ξ , x)]j dξ + K̂2(G(y, x))− K̂2(x).

Let E(x) = exp (K̂2(x)) = 1 + . . ., and

P(y, x) = exp

⎛
⎝k−1∑

j=1

κj

∫ y

0
[G(ξ , x)]j dξ

⎞
⎠ =

k−1∏
j=1

exp
(
κj

∫ y

0
[G(ξ , x)]j dξ

)
,

then

exp (�(y, x)) = P(y, x)
E(G(y, x))

E(x)

and

α(s, x) = α0(s)P(ck(s), x)
E(G(ck(s), x))

E(x)
.

We note in passing that each of the three factors of α(s, x) is a solution of (Co1) and
(B1), thus they are units in C[[x]]. Moreover P(y, x) and E(G(y,x))

E(x) satisfy

F(y + z, x) = F(y, x)F(z,G(y, x)) together with F(0, x) = 1 (Co1form′)

which follows from (Co1form) and (B1′).
Let

P̃(y, x) = 1
P(y, x)

= exp

⎛
⎝k−1∑

j=1

−κj
∫ y

0
[G(ξ , x)]j dξ

⎞
⎠ ,

then P̃(0, x) = 1 and

∂

∂y
P̃(y, x) = P̃(y, x)

∂

∂y

⎛
⎝k−1∑

j=1

−κj
∫ y

0
[G(ξ , x)]j dξ

⎞
⎠

= P̃(y, x)
k−1∑
j=1

−κj[G(y, x)]j.
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Therefore (
∂

∂y
P̃(y, x)

) ∣∣∣
y=0

=
k−1∑
j=1

−κjxj. (11)

By construction the coefficients of xn in P(y, x) and P̃(y, x) are polynomials in y.

4. The second cocycle equation

Let (Ft)t∈C be an iteration group of type II, F(t, x) = G(ck(t), x), where G(y, x) is a formal
iteration group of type II, ck �= 0 an additive function, and α a solution of (Co1) and (B1),
then we study the second cocycle equation

β(s + t, x) = β(s, x)α
(
t, F(s, x)

)+ β
(
t, F(s, x)

)
, s, t ∈ C, (Co2)

for
β(s, x) =

∑
n≥0

βn(s)xn

under the boundary condition

β(0, x) = 0. (B2)

Using the particular form of α given in Theorem 10 we study

�(s, x) = β(s, x)
E(x)α(s, x)

= β(s, x)
α0(s)E

(
G(ck(s), x)

)
P(ck(s), x)

, s ∈ C. (12)

Theorem 11: The series β satisfies (Co2) and (B2) if and only if� satisfies

�(0, x) = 0 (B2′)

and

�(s + t, x) = �(s, x)+ 1
α0(s)

P̃(ck(s), x)�
(
t,G(ck(s), x)

)
, s, t ∈ C. (Co2′)

Obviously, �(s, x) depends on the non-trivial additive function ck and on the general-
ized exponential function α0. We write�(s, x) = ∑

n≥0�n(s)xn.
In [7] we distinguish four cases which cover all possible choices of P(y, x).

(1) α0 �= 1.
(2) α0 = 1 and κ1 = · · · = κr−1 = 0 where either r < k − 1 and κr �= 0, or r = k − 1

and κk−1 �∈ N0, then P(U , x) = 1 + κrUxr + . . ..
(3) α0 = 1 and κ1 = · · · = κk−1 = 0, then P(y, x) = 1. In this situation �0 can be an

arbitrary additive mapping.
(4) α0 = 1, κ1 = · · · = κk−2 = 0, and κk−1 = n1 ∈ N, then P(U , x) = 1 + n1Uxk−1 +

. . .. In this situation an additional additive function can occur in�j for j ≥ n1.

In each case we determine a formal equation from (Co2′) by replacing independent values
ck(s), ck(t), s, t ∈ C by indeterminates U and V . If α0 �= 1, then the independent values



JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS 713

ck(s), ck(t),α0(s),α0(t), s, t ∈ C are replaced by indeterminates U ,V , S and T (cf. [4,
Lemma 16.6]). If the additionally occurring additive function A is not a scalar multiple
of ck, then A and ck are linearly independent, and according to [7, Lemma 2] the values
ck(s), ck(t),A(s),A(t), s, t ∈ C can be replaced by four indeterminates U ,V , σ , τ . These
four formal equations are combined in

R(ST ,U + V , σ + τ , x) = R(S,U , σ , x)+ SλP̃(U , x)R(T ,V , τ ,G(U , x)) (Co2form)

which we want to solve under the boundary condition

R(1, 0, 0, x) = 0, (B2′′)

where R(S,U , σ , x) ∈ (C[S,U , σ ])[[x]] and λ ∈ {0, 1}.
LetH be the generator of the formal iteration groupG of type II of order k, and consider

P̃(U , x) = exp

⎛
⎝k−1∑

j=1

−κj
∫ U

0
[G(ξ , x)]j dξ

⎞
⎠

for some κ1, . . . , κk−1 ∈ C. Then for any f ∈ C[[x]] we have from (PDform), (B) and (11)
that

∂

∂U
(
P̃(U , x)f (G(U , x))

) ∣∣∣
U=0

=
(
∂

∂U
P̃(U , x)

)
f (G(U , x))

∣∣∣
U=0

+ P̃(U , x)f ′(G(U , x))
∂

∂U
G(U , x)

∣∣∣
U=0

=
⎛
⎝k−1∑

j=1

−κjxj
⎞
⎠ f (x)+ f ′(x)H(x)

since f ′(G(U , x)) ∂
∂U G(U , x) = f ′(G(U , x))H(x) ∂

∂xG(U , x) = H(x) ∂
∂x f (G(U , x)). If we

consider the generalized Lie–Gröbner operator

D : C[[x]] → C[[x]], D(f (x)) := Dy(f (x)) :=
(k−1∑
j=1

−κjxj
)
f (x)+ f ′(x)H(x)

then D(f (x)) =
(∑k−1

j=1 −κjxj
)
f (x)+ D(f (x)) and

∂

∂U
(
P̃(U , x)f (G(U , x))

) ∣∣∣
U=0

= D(f ). (13)

If κ1 = · · · = κk−1 = 0, then D = D.
The next two technical lemmata are easy to prove.

Lemma 12: For f1, f2 ∈ C[[x]], c1, c2 ∈ C we have

D(c1f1 + c2f2) = c1D(f1)+ c2D(f2),
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and

D(f1f2) = D(f1)f2 + f1f ′
2H = D(f2)f1 + f2f ′

1H
= D(f1)f2 + f1D(f2) = D(f2)f1 + f2D(f1)

=
(k−1∑
j=1

−κjxj
)
f1(x)f2(x)+ D(f1(x)f2(x)).

Lemma 13: For f ∈ C[[x]] we have

D(P̃(U , x)f (G(U , x))
) = ∂

∂U
(
P̃(U , x)f (G(U , x))

)
.

We also mention the following rule for the generalized Lie–Gröbner operator D:
Lemma 14: Let f (x) ∈ C[[x]]. For n ≥ 0 we have

P̃(V , x)Dn
z (f (z))

∣∣
z=G(V ,x) = ∂n

∂Vn

(
P̃(V , x)f (G(V , x))

)
.

Proof: By induction we prove the assertion together with the claim that the series
Dn

z (f (z))|z=G(V ,x) is of the form f̂ (G(V , x)) for some f̂ ∈ C[[x]]. For n = 0 the assertions
are obvious. Assume that the assertions hold true for n ≥ 0. Then Dn

z (f (z))|z=G(V ,x) =
f̂ (G(V , x)) for some f̂ ∈ C[[x]] and

Dn+1
z (f (z))

∣∣
z=G(V ,x) = Dz(Dn

z (f (z)))
∣∣
z=G(V ,x) = Dz(f̂ (z))

∣∣
z=G(V ,x)

=
⎛
⎝k−1∑

j=0

−κjzj f̂ (z)+ H(z)f̂ ′(z)

⎞
⎠∣∣∣

z=G(V ,x)

=
⎛
⎝k−1∑

j=0

−κj[G(V , x)]j f̂ (G(V , x))+ H(G(V , x))f̂ ′(G(V , x))

⎞
⎠ .

Multiplying this by P̃(V , x) and using H(G(V , x)) = ∂
∂V G(V , x) we obtain

(
∂

∂V
P̃(V , x)

)
f̂ (G(V , x))+ P̃(V , x)

∂

∂V
f̂ (G(V , x))

= ∂

∂V
(
P̃(V , x)f̂ (G(V , x))

)
= ∂

∂V

(
∂n

∂Vn P̃(V , x)f (G(V , x))
)

=
(
∂n+1

∂Vn+1 P̃(V , x)f (G(V , x))
)
.
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Let

LG(x) := LGy(x) :=
∑
n≥0

1
n!D

n(x)yn

be the generalized Lie–Gröbner series for the generalized Lie–Gröbner operator D.
Now we prove a generalization of the Commutation Theorem (Theorem 2).

Theorem 15: For f ∈ C[[x]] we have

LGU (f (x)) = P̃(U , x)f (G(U , x)) = P̃(U , x)f (LGU (x)).

Proof: We prove that both

�(U , x) = LGU (f (x)) and �(U , x) = P̃(U , x)f (G(U , x))

satisfy
∂

∂U
R(U , x) = D(R(U , x)) and R(0, x) = f (x) (14)

and (14) has a unique solution. Simple computations show that

∂

∂U
�(U , x) =

∑
n≥1

n
n!D

n(f (x))Un−1 =
∑
n≥0

1
n!D

n+1(f (x))Un

= D(LG(f (x))) = D(�(U , x))

and�(0, x) = f (x). By Lemma 13 we have

D(�(U , x)) = D(P̃(U , x)f (G(U , x))
) = ∂

∂U
(
P̃(U , x)f (G(U , x))

) = ∂

∂U
�(U , x)

and�(0, x) = f (x).
Now we write R(U , x) = ∑

n≥0 Rn(x)U
n. If it is a solution of (14), then R0(x) = f (x),

and ∑
n≥1

nRn(x)Un−1 = D
⎛
⎝∑

n≥0

Rn(x)Un

⎞
⎠ .

Therefore
nRn(x) = D(Rn−1(x)), n ≥ 1,

and by induction we obtain

Rn(x) = 1
n!D

n(f (x)), n ≥ 1,

and R is uniquely determined by (14). The uniqueness would also follow from (the formal
part of) a uniqueness theorem for parameter dependent differential equations in the
complex domain.
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Lemma 16: For f , f1, f2 ∈ C[[x]], c1, c2 ∈ C we have

LG(c1f1 + c2f2) = c1LG(f1)+ c2LG(f2)

and
LGU (LGV (f )) = LGU+V (f ).

Proof: The first assertion is trivial. Concerning the second we apply Theorem 15 obtaining

LGU (LGV (f (x))) = P̃(U , x)LGV (f (G(U , x)))
= P̃(U , x)P̃(V ,G(U , x))f (G(U ,G(V , x)))
= P̃(U + V , x)f (G(U + V , x)) = LGU+V (f (x))

what follows from (Co1form′) for P̃ and (Tform) for G.

An immediate consequence of Lemma 13 and Theorem 15 is
Corollary 17: For f ∈ C[[x]] we have

D(LGU (f )
) = ∂

∂U
(LGU (f )

)
.

In general, the generalized Lie–Gröbner operator LG is not multiplicative. To be more
precise:
Theorem 18: The generalized Lie–Gröbner operator LG is multiplicative if and only if all
the coefficients of P̃(U , x) vanish, i.e. κ1 = · · · = κk−1 = 0.

Proof: According to Theorem 15 we have LG(x2) = P̃(U , x)[G(U , x)]2 and [LG(x)]2 =
[P̃(U , x)G(U , x)]2. If LG is multiplicative, then P̃(U , x) = 1 what is equivalent to κ1 =
· · · = κk−1 = 0.

Conversely, if κ1 = · · · = κk−1 = 0, then the generalized operator LG coincides with
the Lie–Gröbner operator LG which is multiplicative.

The next Lemma describes a relation between a series f and its image D(f ). Its proof is
straight forward.
Lemma 19: For f1, f2 ∈ C[[x]] we have

D(f1) = f2 ⇐⇒ ∂

∂U
LGU (f1) = LGU (f2) ⇐⇒ LGU (f1)− f1 =

∫ U

0
LGξ (f2) dξ.

Lemma 20: For f ∈ C[[x]] the following assertions are equivalent.

1: D(f ) = 0, 2:
∂

∂U
(
P̃(U , x)f (G(U , x))

) = 0, 3:
∂

∂U
LGU (f (x)) = 0,

4: D(LG(f )) = 0, 5: LG(f )− f = 0.

Proof: The second and third assertion are equivalent by Theorem 15, the third and
fourth according to Corollary 17. Due to formula (13) D(f (x)) = 0 is equivalent to



JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS 717

∂
∂V
(
P̃(V , x)f (G(V , x))

) ∣∣
V=0 = 0. Replacing x by G(U , x) we obtain from (Co1form′) for

P̃ and (Tform) for G that

0 = ∂

∂V

(
P̃
(
V ,G(U , x)

)
f
(
G(V ,G(U , x))

))∣∣∣
V=0

= ∂

∂V

(
P̃(U + V , x)

P̃(U , x)
f
(
G(U + V , x)

)) ∣∣∣
V=0

= 1
P̃(U , x)

∂

∂U
(
P̃(U , x)f

(
G(U , x)

))

and the assertion follows since P̃(U , x) �= 0.
Conversely, assume that ∂

∂U LGU (f (x)) = 0, then

0 = ∂

∂U

∑
n≥0

1
n!D

n(f (x))Un =
∑
n≥1

n
n!D

n(f (x))Un−1 =
∑
n≥0

1
n!D

n+1(f (x))Un

and consequently Dj(f ) = 0 for all j ≥ 1. Consequently the first four assertions are
equivalent.

If D(f ) = 0, then Dn(f ) = 0 for n ≥ 1, thus LGU (f ) − f = ∑
n≥1

1
n!Dn(f )Un = 0. If

conversely LG(f )− f = 0, then necessarily D(f ) = 0.

In order to get detailed information on the coefficient functions of a solution of
(Co2form) we deduce the following differential equations from the second cocycle equa-
tion. By differentiating (Co2form) with respect to S (U and σ ) and setting S = 1, U = 0,
and σ = 0 we get

T
∂

∂T
R(T ,V , τ , x) = N1(x)+ λR(T ,V , τ , x), (Co2PD1)

∂

∂V
R(T ,V , τ , x) = N2(x)+ D(R(T ,V , τ , x)), (Co2PD2)

∂

∂τ
R(T ,V , τ , x) = N3(x), (Co2PD3)

where

N1(x) = ∂

∂S
R(S, 0, 0, x)|S=1, N2(x) = ∂

∂U
R(1,U , 0, x)|U=0,

and

N3(x) = ∂

∂σ
R(1, 0, σ , x)|σ=0

are the three generators of R.
We consider a solution R(S,Uσ , x) of (Co2form) as an element of (C[S, σ ])[[U , x]], and

write it in the form
R(S,Uσ , x) =

∑
n≥0

Rn(S, σ , x)Un

with Rn(S, σ , x) ∈ (C[S, σ ])[[x]].
First we study the situation λ = 0.
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Theorem 21: Let λ = 0.

(1) If R is a solution of (Co2form) and (B2′′), then R satisfies the three equations
(Co2PD1)–(Co2PD3), and is of the form

R(S,U , σ , x) = σN3(x)+
∑
n≥1

1
n!D

n−1(N2(x))Un.

This is a generalization of a generalized Lie–Gröbner series. Moreover the generators
must satisfy the conditions N1 = 0 and D(N3(x)) = 0.

(2) If N1 = 0,D(N3(x)) = 0, then the system consisting of (Co2PD1)–(Co2PD3), (B2′′)
has a unique solution,

R(S,U , σ , x) = σN3(x)+
∫ U

0
LGξ (N2(x)) dξ

which is the substitution of N2 into a primitive of a generalized Lie–Gröbner series.
Moreover this solution satisfies (Co2form).

Proof: If R satisfies (Co2form) and ( B2′′) then also the three differential equations. From
(Co2PD3)we deduceR(S,U , σ , x) = σN3(x)+R̃(S,U , x). Using this in (Co2PD1)we have
S ∂
∂S R̃(S,U , x) = N1(x). Since the left hand side is a multiple of S whereas the right hand

side does not depend on S it follows thatN1 = 0. Consequently R̃(S,U , x) does not depend
on S, R̃(S,U , x) = R̂(U , x), and R(S,U , σ , x) = σN3(x) + R̂(U , x). From (Co2PD2) we
get

∂

∂U
R̂(U , x) = N2(x)+ D(σN3(x)+ R̂(U , x)).

If we introduce coefficient functions of R̂, R̂(U , x) = ∑
n≥0 R̂n(x)U

n, the power series R
satisfies ∑

n≥1

nR̂n(x)Un−1 = N2(x)+ σD(N3(x))+
∑
n≥0

D(R̂n(x))Un.

From the boundary condition (B2′′) it follows that R̂0(x) = 0, so also R̂′
0(x) = 0. Therefore,

we get
R̂1(x) = N2(x)+ σD(N3(x)).

The left hand side does not depend on σ , whence R̂1(x) = N2(x) and D(N3(x)) =
0. Therefore 2R̂2(x) = D(R̂1(x)) = D(N2(x)), and by induction we derive nR̂n(x) =
D(R̂n−1(x)) = D( 1

(n−1)!Dn−2(N2(x))) and consequently

R̂n(x) = 1
n!D

n−1(N2(x)), n ≥ 1.

Now we prove the second assertion. If R(S,U , σ , x) is a solution of the three formal
differential equations and the boundary condition, then from λ = 0, N1(x) = 0 and
(Co2PD1) we obtain that R(S,U , σ , x) is of the form R̃(U , σ , x). Moreover, (Co2PD3)
implies that it is of the form σN3(x)+ R̂(U , x), where R̂(U , x) = ∑

n≥0 R̂n(U)x
n still must

be determined. FromR(1, 0, 0, x) = 0 it follows that R̂0(x) = 0. Comparing the coefficients
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of Uj in (Co2PD2) we determine by induction that R̂n(x) = 1
n!Dn−1(N2(x)) for n ≥ 1.

Therefore, the solution R(S,U , σ , x) is uniquely determined as

R(S,U , σ , x) = σN3(x)+
∑
n≥1

1
n!D

n−1(N2(x))Un

= σN3(x)+
∫ U

0

∑
n≥0

1
n!D

n(N2(x))ξn dξ

= σN3(x)+
∫ U

0
LGξ (N2(x)) dξ.

Using this form in (Co2form) we obtain

R(ST ,U + V , σ + τ , x) = (σ + τ)N3(x)+
∫ U+V

0
LGξ (N2(x)) dξ.

Computing R(S,U , σ , x)+ P̃(U , x)R(T ,V , τ ,G(U , x)) we obtain

σN3(x)+
∫ U

0
LGξ (N2(x)) dξ + P̃(U , x)

(
τN3(G(U , x))+

∫ V

0
LGξ (N2(G(U , x))) dξ

)
.

According to Lemma 20 from D(N3(x)) = 0 it follows ∂
∂U (P̃(U , x)N3(G(U , x))) = 0,

thus P̃(U , x)N3(G(U , x)) does not depend on U and

P̃(U , x)N3(G(U , x)) = P̃(0, x)N3(G(0, x)) = N3(x).

Consequently, σN3(x)+ P̃(U , x)τN3(G(U , x)) = (σ + τ)N3(x).
Sine P̃(U , x) satisfies (Co1form′), G satisfies (Tform) and according to Theorem 15 we

derive

P̃(U , x)
∫ V

0
LGξ (N2(G(U , x))) dξ =

∫ V

0
P̃(U , x)P̃(ξ ,G(U , x))N2(G(ξ ,G(U , x))) dξ

=
∫ V

0
P̃(U + ξ , x)N2(G(U + ξ , x)) dξ

=
∫ U+V

U
P̃(η, x)N2(G(η, x)) dη

=
∫ U+V

U
P̃(η, x)N2(LGη(x)) dη

=
∫ U+V

U
LGη(N2(x)) dη
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and
∫ U

0
LGξ (N2(x)) dξ + P̃(U , x)

∫ V

0
LGξ (N2(G(U , x))) dξ

=
∫ U

0
LGξ (N2(x)) dξ +

∫ U+V

U
LGξ (N2(x)) dξ

=
∫ U+V

0
LGξ (N2(x)) dξ

what finishes the proof.

For λ = 1 we obtain the following
Theorem 22: Let λ = 1.

(1) If R is a solution of (Co2form) and (B2′′), then R satisfies the three Equations
(Co2PD1)–(Co2PD3), and is of the form

R(S,U , σ , x) = S
∑
n≥0

1
n!D

n(N1(x))Un − N1(x) = SLGU (N1(x))− N1(x).

Moreover the generators must satisfy D(N1(x)) = N2(x) and N3 = 0.
(2) If N3 = 0, D(N1(x)) = N2(x), then the system consisting of (Co2PD1)–(Co2PD3),

(B2′′) has a unique solution of the form given above. Moreover this solution satisfies
(Co2form).

Proof: From (Co2PD3) we deduce R(S,U , σ , x) = σN3(x) + R̃(S,U , x). Using this in
(Co2PD1) we have S ∂

∂S R̃(S,U , x) = N1(x) + σN3(x) + R̃(S,U , x), or equivalently
S ∂
∂S R̃(S,U , x) − N1(x) − R̃(S,U , x) = σN3(x). Since the right hand side is a multiple

of σ whereas the left hand side does not depend on σ it follows thatN3 = 0. Consequently
S ∂
∂S R̃(S,U , x) = N1(x) + R̃(S,U , x). Writing R̃(S,U , x) as

∑
n≥0 R̃n(U , x)Sn necessarily

R0(U , x) = −N1(x) and N1(x) + R̃(S,U , x) = ∑
n≥1 R̃n(U , x)Sn. From the equation

above we deduce
∑

n≥1 (n − 1)R̃n(U , x)Sn = 0 which means that R̃n(U , x) = 0 for
n ≥ 2. Consequently R(S,U , σ , x) = −N1(x) + SR̃1(U , x) where still R̃1(U , x) must be
determined. Therefore we now represent it as

∑
n≥0 R̂n(x)U

n.
From (Co2PD2) we get

S
∂

∂U
R̃1(U , x) = N2(x)+ D(− N1(x)+ SR̃1(U , x)).

This means

S
∑
n≥1

nR̂n(x)Un−1 = N2(x)− D(N1(x))+ S
∑
n≥0

D(R̂n(x))Un.

Thus N2(x) = D(N1(x)) since these terms do not depend on S. From the boundary
condition (B2′′) it follows that R̂0(x) = N1(x). Moreover, nR̂n(x) = D(R̂n−1(x)) and by
induction we derive
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R̂n(x) = 1
n!D

n(N1(x)) = 1
n!D

n−1(N2(x)), n ≥ 1.

Now we prove the second assertion. If R(S,U , σ , x) is a solution of the three formal
differential equations and the boundary condition, then from N3 = 0 and (Co2PD3) we
get R(S,U , σ , x) = R̃(S,U , x). Due to λ = 1 and (Co2PD1) it follows that R̃(S,U , x) =
−N1(x) + S

∑
n≥0 R̂n(x)U

n, where R̂n(x), n ≥ 0, still must be determined. From
R(1, 0, 0, x) = 0 we get R̂0(x) = N1(x) and (Co2PD2) becomes

S
∑
n≥1

nR̂n(x)Un−1 = N2(x)+ D(− N1(x))+ S
∑
n≥0

D(R̂n(x))Un.

Comparing the coefficients of S0 wederive thatN2(x) = D(N1(x)).Moreover, by induction
we obtain that R̂n(x) = 1

n!Dn(N1(x)) for n ≥ 0. Therefore, the solution R(S,U , σ , x) is
uniquely determined as

R(S,U , σ , x) = S
∑
n≥0

1
n!D

n(N1(x))Un − N1(x) = SLGU (N1(x))− N1(x).

Since P̃(U , x) satisfies (Co1form′),G satisfies (Tform) and according to Theorem 15 we
derive

R(S,U , σ , x)+ SP̃(U , x)R(T ,V , τ ,G(U , x))
= SP̃(U , x)N1(G(U , x))− N1(x)+ SP̃(U , x)

(
TP̃(V ,G(U , x))N1(G(V ,G(U , x)))

− N1(G(U , x))
)

= −N1(x)+ STP̃(U , x)P̃(V ,G(U , x))N1(G(U + V , x))
= STP̃(U + V , x)N1(G(U + V , x))− N1(x)
= STLGU+V (N1(x))− N1(x)
= R(ST ,U + V , σ + τ , x),

whence R satisfies (Co2form).

In a similar way by differentiation of (Co2form) with respect to T (V and τ ) and
substituting T = 1, V = 0, and τ = 0 we obtain another system of differential equations,
namely

S
∂

∂S
R(S,U , σ , x) = SλLG(N1(x)), (Co2D1)

∂

∂U
R(S,U , σ , x) = SλLG(N2(x)), (Co2D2)

∂

∂σ
R(S,U , σ , x) = SλLG(N3(x)), (Co2D3)

where

N1(x) = ∂

∂S
R(S, 0, 0, x)|S=1, N2(x) = ∂

∂U
R(1,U , 0, x)|U=0,
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and

N3(x) = ∂

∂σ
R(1, 0, σ , x)|σ=0

are the three generators of R.
Working with a method different from the application of Lie–Gröbner series we proved

the following two theorems in [7] describing the solutions of this system together with the
boundary condition (B2′′). It is possible to apply the method of Lie–Gröbner series also
for this problem. Comparing these proofs we see that especially in the situation λ = 0 the
method of Lie–Gröbner series allows more elegant and simpler proofs.
Theorem 23: Let λ = 0.

(1) If R is a solution of (Co2form) and (B2′′), then R satisfies the three Equations
(Co2D1)–(Co2D3), and it has a representation as a generalized Lie–Gröbner series
of the form

R(S,U , σ , x) = σN3(x)+
∫ U

0
LGξ (N2(x)) dξ.

Moreover the generators must satisfy the conditions N1 = 0 and D(N3(x)) = 0.
(2) If N1 = 0, D(N3(x)) = 0, then the system consisting of (Co2D1)–(Co2D3), (B2′′)

has a unique solution,

R(S,U , σ , x) = σN3(x)+
∫ U

0
LGξ (N2(x)) dξ

which is a generalized Lie–Gröbner series as above. Moreover this solution satisfies
(Co2form).

Theorem 24: Let λ = 1.

(1) If R is a solution of (Co2form) and (B2′′), then R satisfies the three equations
(Co2D1)–(Co2D3), and is of the form

R(S,U , σ , x) = S
∑
n≥0

1
n!D

n(N1(x))Un − N1(x) = SLGU (N1(x))− N1(x).

Moreover the generators must satisfy D(N1(x)) = N2(x) and N3 = 0.
(2) If N3 = 0, D(N1(x)) = N2(x), then the system consisting of (Co2D1)–(Co2D3),

(B2′′) has a unique solution, of the form given above. Moreover this solution satisfies
(Co2form).

In conclusion both systems of differential equations have the same solution.
The necessary conditions on the generators Nj of R are expressed as conditions on

D(Nj). Now we will analyze them more thoroughly. The consequences of D(f ) = 0 for
f ∈ C[[x]] depend on the particular form of P̃(U , x).
Theorem 25: Let H(x) = xk + . . . be a formal generator of a formal iteration group of
type II, where k ≥ 2, and κ1, . . . , κk−1 ∈ C. Assume that D(f ) =

(∑k−1
j=1 −κjxj

)
f (x) +

f ′(x)H(x) = 0 for some f ∈ C[[x]].
(1) If κ1 = · · · = κk−1 = 0, then f (x) ∈ C is constant.
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(2) If κ1 = · · · = κr−1 = 0 where either r < k − 1 and κr �= 0, or r = k − 1 and
κk−1 �∈ N0, then P̃(U , x) = 1 − κrUxr + . . . and f = 0.

(3) If κ1 = · · · = κk−2 = 0 and κk−1 = n1 ∈ N, then P̃(U , x) = 1 − n1Uxk−1 + . . .

and f (x) = fn1xn1 +∑
n>n1 �n(fn1)xn, where fn1 ∈ C can be arbitrarily chosen and

the coefficients�n(fn1) are uniquely determined polynomials in fn1 for n > n1.

Proof: In the first case D(f ) = f ′H = D(f ) = 0, consequently f is constant.
In the second and third case assume that f (x) = ∑

n≥0 fnx
n, then D(f (x))

= ∑
n≥0 fnD(xn). Moreover for n ≥ 0 we have

D(xn) =
k−1∑
j=r

(− κj)xj+n + nxn−1H(x) =
{

−κrxr+n + . . . if r < k − 1,
(− κk−1 + n)xk−1+n + . . . if r = k − 1,

thus ord (D(xn)) = r + n and consequently f = 0 is the unique solution of D(f ) = 0.
In the third case κk−1 = n1 ∈ N, thus ord (D(xn)) = k − 1 + n only for n �= n1, and

ord (D(xn1)) > k−1+n1. Comparing coefficients of xn inD(f ) = 0 we obtain that fn = 0
for n < n1, the coefficient fn1 is not determined by this equation, actually it can be chosen
arbitrarily in C, and the coefficients fn, n > n1, are uniquely determined depending on
fn1 ∈ C.

Consider f1, f2 ∈ C[[x]], then

D(f1) = D(f2) ⇐⇒ D(f1 − f2) = 0.

Now for given N ∈ C[[x]], N �= 0, we want to solve the inhomogeneous equation
D(f ) = N . It is enough to find a particular solution, since by adding all solutions of the
homogeneous equation (cf. Theorem 25) we obtain all solutions of the inhomogeneous
equation.
Theorem 26: Consider some N ∈ C[[x]]. Let H(x) = xk + . . . be a formal generator of
a formal iteration group of type II, where k ≥ 2, and for κ1, . . . , κk−1 ∈ C let D(f ) =(∑k−1

j=1 −κjxj
)
f (x)+ f ′(x)H(x) for f ∈ C[[x]].

(1) If κ1 = · · · = κk−1 = 0, then D(f ) = N has a solution if and only if ord (N) ≥ k.
(2) If κ1 = · · · = κr−1 = 0 where either r < k − 1 and κr �= 0, or r = k − 1 and

κk−1 �∈ N0, then D(f ) = N has a solution if and only if ord (N) ≥ r.
(3) Assume κ1 = · · · = κk−2 = 0 and κk−1 = n1 ∈ N. If ord (N) < k − 1, then there is

no solution of D(f ) = N. Assume that ord (N) ≥ k − 1. Then there exist uniquely
determined coefficients f0, . . . , fn1−1 so that ord

(
N(x) − ∑j

n=0 fnD(xn)
) ≥ k + j,

0 ≤ j ≤ n1 − 1. If, moreover, ord
(
N(x)−∑n1−1

n=0 fnD(xn)
) ≥ k + n1, which means

that the coefficients f0, . . . , fn1−1 satisfy a certain polynomial relation which yields the
coefficient of xk−1+n1 of N, then fn1 can be chosen arbitrarily, say fn1 = 0. All further
coefficients fn, n > n1, are then uniquely determined (depending on fn1).

Proof: In the first case ord (D(f )) = ord (f ′H) ≥ ord (H) = k. If ord (N) ≥ k, then
N/H ∈ C[[x]] and f (x) = ∫ x

0 N(ξ)/H(ξ) dξ satisfies D(f ) = N .
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According to the proof of Theorem 25 in the second case we have ord (D(f )) ≥ r. If
ord (N) ≥ r, then f is uniquely determined by D(f ) = N .

In the third case we obtain from the proof of Theorem 25 that ord (D(f )) ≥ k − 1.
If ord (N) ≥ k − 1, then comparison of coefficients (or an application of the Theory of
Briot–Bouquet equations, cf.[19, Section 5.2] [17, Section 11.1], [18, Section 12.6]) yields
the assertion.

Finally we want to give the explicit form of the solutions β of (Co2). According to (12)
we have

β(s, x) = E(x)α(s, x)�(s, x) = α0(s)P(ck(s), x)E(G(ck(s), x))�(s, x),

where E(x) = 1 + . . . ∈ C[[x]], α0 is a generalized exponential function, ck �= 0 is
an additive function, G(y, x) is a formal iteration group of type II, κ1, . . . , kk−1 ∈ C,
P(y, x) = exp

(∑k−1
j=1 κj

∫ y
0 [G(ξ , x)]j dξ

)
, and �(s, x) = R(α0(s)−1, ck(s),A(s), x), where

R is a solution of (Co2form), andA is another additive function so that ck andA are linearly
independent.

• The situation α0 �= 1 corresponds to λ = 1, thus by Theorem 22 we have

�(s, x) = R(α0(s)−1, ck(s),A(s), x) = α0(s)−1LGU (N1(x))|U=ck(s) − N1(x)

and from Theorem 15 follows

β(s, x) = α0(s)P(ck(s), x)E(G(ck(s), x))
(
α0(s)−1N1(G(ck(s), x))

P(ck(s), x)
− N1(x)

)
.

• The situation α0 = 1 corresponds to λ = 0, thus by Theorem 21 we have

�(s, x) = R(1, ck(s),A(s), x) = A(s)N3(x)+
∫ U

0
LGξ (N2(x)) dξ

∣∣
U=ck(s)

where D(N3) = 0.
If κ1 = · · · = κr−1 = 0where either r < k−1 and κr �= 0, or r = k−1 and κk−1 �∈ N0,
then by Theorem 25 we have N3 = 0. Writing N2(x) as

∑r−1
j=0 njx

j + Ñ2(x) where
ord (Ñ2) ≥ r, by Theorem 26 there exists a unique N̂2 ∈ C[[x]] so that D(N̂2) = Ñ2,
and we derive

∫ U

0
LGξ (N2(x)) dξ =

∫ U

0

r−1∑
j=0

njLGξ (xj) dξ +
∫ U

0

∑
n≥0

1
n!D

n(D(N̂2(x)))ξn dξ

=
∫ U

0

r−1∑
j=0

nj
[G(ξ , x)]j
P(ξ , x)

dξ + LGU (N̂2(x))− N̂2(x).

In conclusion, again using Theorem 15, we deduce

β(s, x) = P(ck(s), x)E(G(ck(s), x))

(
N̂2(G(ck(s), x))
P(ck(s), x)

− N̂2(x)+ Q(s, x)

)
,
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where

Q(s, x) =
∫ U

0

r−1∑
j=0

nj
[G(ξ , x)]j
P(ξ , x)

dξ
∣∣
U=ck(s)

.

• If κ1 = · · · = κk−1 = 0, then by Theorem 25 we haveN3 = c ∈ C. Similarly as in the
previous case we obtain

β(s, x) = P(ck(s), x)E(G(ck(s), x))

(
cA(s)+ N̂2(G(ck(s), x))

P(ck(s), x)
− N̂2(x)+ Q(s, x)

)
,

where

Q(s, x) =
∫ U

0

k−1∑
j=0

nj
[G(ξ , x)]j
P(ξ , x)

dξ
∣∣
U=ck(s)

.

• If κ1 = · · · = κk−2 = 0 and κk−1 = n1 ∈ N, then by Theorem 25 we have N3(x) =
cxn1+∑n>n1 �n(c)xnwith c ∈ C anduniquely determined coefficients�n(c),n > n1.
Writing N2(x) as

∑k−2
j=0 njxj + Ñ2(x) where ord (Ñ2) ≥ k − 1, by Theorem 26 there

exist a series N̂2 ∈ C[[x]] and a constant b ∈ C so that D(N̂2)+ bxk+n1−1 = Ñ2, and
we conclude that

β(s, x) = P(ck(s), x)E(G(ck(s), x))

×
(
A(s)N3(x)+ N̂2(G(ck(s), x))

P(ck(s), x)
− N̂2(x)+ Q(s, x)

)
,

where

Q(s, x) =
∫ U

0

k−2∑
j=0

(
nj

[G(ξ , x)]j
P(ξ , x)

+ b
[G(ξ , x)]k+n1−1

P(ξ , x)

)
dξ
∣∣
U=ck(s)

.

These results generalize the representations of β given in Theorems 16, 17 and 18 of [3] or
the second and third item of Theorem 2.8 of [2].

Combining the two systems of differential equations for the formal second cocycle R
we obtain the following system of three formal Aczél–Jabotinsky equations

N1(x)+ λR(S,U , σ , x) = SλLG(N1(x)), (Co2AJ1)
N2(x)+ D(R(S,U , σ , x)) = SλLG(N2(x)), (Co2AJ2)
N3(x) = SλLG(N3(x)), (Co2AJ3)

where
N1(x) = ∂

∂S
R(S, 0, 0, x)|S=1, N2(x) = ∂

∂U
R(1,U , 0, x)|U=0,

and
N3(x) = ∂

∂σ
R(1, 0, σ , x)|σ=0

are the three generators of R. Only (Co2AJ2) is a differential equation for R.
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Theorem 27: Let λ = 1.

(1) If R is a solution of (Co2form) and (B2′′), then R satisfies the three equations
(Co2AJ1)–(Co2AJ3), and is of the form

R(S,U , σ , x) = S
∑
n≥0

1
n!D

n(N1(x))Un − N1(x) = SLGU (N1(x))− N1(x).

Moreover the generators must satisfy D(N1(x)) = N2(x) and N3 = 0.
(2) If N3 = 0,D(N1(x)) = N2(x), then the system consisting of (Co2AJ1)–(Co2AJ3) has

a unique solution of the form given above. Moreover this solution satisfies (Co2form)
and (B2′′).

Proof: Let R be a solution of (Co2form) and (B2′′), then R satisfies the three equations.
From (Co2AJ1) we immediately obtain the form of R as R(S,U , σ , x) = SLG(N1(x)) −
N1(x). According to (Co2AJ3) the series N3 must vanish since the left hand side does not
depend on S, whereas the right hand side depends on S. Finally (Co2AJ2) can be written
as N2(x)+ SLG(D(N1(x)))− D(N1(x)) = SLG(N2(x)) what implies N2(x) = D(N1(x)).
This also guarantees that LG(D(N1(x))) = LG(N2(x)).

If conversely R satisfies the three equations whereN3 = 0 andD(N1(x)) = N2(x), then
R is of the form R(S,U , σ , x) = SLGU (N1(x))− N1(x) and according to Theorem 22 it is
a solution of (Co2form) and (B2′′).

In the situation λ = 0 we do not obtain the same solutions as for the two other systems
of formal equations. Now (Co2AJ1) and (Co2AJ3) read as Nj(x) = LG(Nj(x)), j ∈ {1, 3},
which means LG(Nj(x)) − Nj(x) = 0. Thus D(Nj) = 0 according to Lemma 20. From
(Co2AJ2) we deduce

D(R(S,U , σ , x)) = LG(N2(x))− N2(x) = D
(∫ U

0
LGξ (N2(x)) dξ

)

thus by Theorem 25

R(S,U , σ , x) =
∫ U

0
LGξ (N2(x)) dξ + R̃(S,U , σ , x)

whereD(R̃(S,U , σ , x)) = 0. Again by Theorem 25 if all the coefficients κj, 1 ≤ j ≤ k−1, of
P̃(U , x) are equal to zero, then R̃(S,U , σ , x) canbe any element ofC[S,U , σ ] since itmust be
constant with respect to x. Taking still into account that N1(x) = c1 ∈ C,N2(x),N3(x) =
c3 ∈ C are the generators of R the polynomial R̃ still has to satisfy ∂

∂S R̃(S, 0, 0, x)|S=1 = c1,
∂
∂σ

R̃(1, 0, σ , x)|σ=0 = c3 and ∂
∂U R̃(1,U , 0, x)|U=0 = 0. For example for anypositive integer

j

R(S,U , σ , x) = − c1
j

+ c1
j
Sj + c3σ + SσU +

∫ U

0
LGξ (N2(x)) dξ

is a solution of the three formal Aczél–Jabotinsky equations, the boundary condition (B2′′),
and the three conditions imposed by the generators of R but not of (Co2form). Also in
the situation κ1 = · · · = κk−2 = 0 and κk−1 = n1 ∈ N there exist solutions of the three
formal Aczél–Jabotinsky equations which are not solutions of (Co2form).
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