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ABSTRACT

This paper reports (1) an application of the modified hyperbolic sine law to P92 for the
minimum creep strain rate over a wider range of stress level, and 2) the calibration of the
creep cavity fracture model and its applications to such as P92, E911 and MARBN alloys. It
was motivated by the original development of creep cavitation based creep rupture
model and application to other alloys, and the need of creep strain and stress relation
over a wider range of stress. The results include: (1) the calibration of creep cavity fracture
model for E911, and the pre-required cavity nucleation and growth models, for E911, (2)
the creep lifetime and stress relation coefficient U’ for P92, and (3) the relationship of the
cavity nucleation rate coefficient A, and stress level for MARBN cross-welds. This paper
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contributes to the specific knowledge and the methodology. It anticipates that this
methodology will find its value and application in modelling other fractures such as

ductile and fatigue.

Introduction

This paper details the application of a cavitation-based
creep fracture model and the approach to accurately
model the minimum creep strain rate with a broader
range of stress level. The methodology for the calibra-
tion the cavity nucleation and cavity growth models,
based on x-ray synchrotron cavity data, and their
applications to the development of or creep lifetime
prediction model was proposed by Xu et al. [1] and
applied to P91 [1]. That was the very first creep cavity
fracture model based on representable and a more
accurate cavitation data. It is a fundamental break-
through bearing in mind that most of the creep cavity
damage model to date, is a correlation of the creep
damage with creep strain failure. This paper will
report the application such methodology to other
materials such as P92, E911 and MARBN, where the
x-ray synchrotron cavitation data has been available. It
is further suggested that real mechanism based on
creep cavity damage model should be integrated into
the development of the scientifically sound creep
damage constitutive equations [2-4], and further
developed and validated under multi-axial situations
[5-8].

Phenomenological cavitation modelling for creep
damage

Dyson has proposed the well-known phenomenologi-
cally linear relationship between the creep cavity

damage and creep strain. Yin et al. [9] was modified
that approach and proposed creep cavity damage
function for the high Cr alloy as:

D, =A% (1.1)

where A’, B’ are material constants, respectively, and
both A’, B’ can be functions of temperature, but not of
stress.

Such an approach was adopted by Yadav et al. [10],
and it was that the value of B’ = 1, hence,

D, = Aet (1.2)

where A is a parameter that depends on the material,
temperature, and stress. The specific variation of cavita-
tion coefficient A for P92 steel is shown in Table 1 [10]
and graphically in Figure 1.

The trend of coefficientA bases on three, and two
experimental points at 600°C and 650 °C, respectively,
and the stress range is narrow and limited. Thus, the
modelling is challenging for using an accurate predic-
tion for long-term service.

Purpose

The application of new minimum creep strain rate
with stress function

To develop and verify the application of modified
hyperbolic sine law for minimum creep strain rate
over a wider range of stress level for P92 alloy.
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Table 1. The variation of creep cavitation coefficient A [10].

Stress (MPa) 600°C 650°C
92 2.19E+02
104 2.92E+02
110 3.81E+02
145 1.93E+02

160 4.25E+02

The development and application of creep
fracture criterion based on cavity area fraction
along grain boundary for high Cr steel

(1) To provide an equation for cavity area fraction
along grain boundary according to the appro-
priate cavity nucleation and cavity growth
models for E911;

To define the material coefficient U’ of cavity
area fraction equation based on the experi-
mental data on the creep rupture time under
different stress levels and temperature for
P92;

To apply the obtained cavity nucleation model
to MARBN steel in order to show the trend of
cavity nucleation rate coefficient A, with stress.

()

)

Experimental data

The application of new minimum creep strain rate
with stress function

The chosen experimental data for this part, including:

(1) Creep test for ASME Grade 92 (9Cr-1.8W-
0.5Mo-V-Nb) steels: 1) temperature 600°C,
stress range 120-250 MPa, minimum creep
rate between 1.81E-5 h™'and 9.96E-1 h™}; 2)
temperature 650°C, stress range 50-160 MPa,
minimum creep rate between 1.5E-5 h™' and

5.6E-1 h™! [11]. The coefficient designations
used with linking to Equation (2.1).

The development and application of creep
fracture criterion based on cavity area fraction

along

grain boundary for high Cr steel

The chosen experimental data for this part, including:

(1)

(2)

3)

P92

e 500 “(

—p 550

The creep rupture time for E911: tempera-
ture 600°C, creep time 37,800 h, the mini-
mum and maximum cavity diameter of 1.2
and 9.5um at rupture time [12], for the work
described in the above step (1). The coefhi-
cient designations used with linking to
Equation (3.1.b), Equation (3.2), Equation
(3.4), Equation (3.5.b), and Equation (3.6);
The creep rupture time for ASME Grade 92
(9Cr-1.8W-0.5Mo-V-Nb) steels: (1) temperature
600°C, stress range 120-250 MPa, lifetime
5.1-65,363.4 h; temperature 625°C, stress range
100-160 MPa, lifetime 213.4-33,518.5 h; tempera-
ture 650°C, stress range 50-160 MPa, lifetime 10.-
5-50,871.2 h [11]; (2) temperature 600 °C, stress
range 110-185 MPa, lifetime 1000-200,000 h;
temperature 650°C, stress range 60-115 MPa, life-
time 1000-200,000 h, according to Yin et al. [9],
for the work described in the above step (2). The
coefficient designations used with linking to
Equation (3.9), and Equation (3.10);

Cavitation information for MARBN-heat 1
cross-welds  (Martensitic ~ Boron-Nitrogen
strengthened steel): temperature 650°C, stress
range 70-130 MPa, lifetime 3433-17,200 h,
cavity number density between 2.95E-5 um™>
and 3.03E-5 um > [13], for the work described

(

100

Stress, M

120

Pa

Figure 1. The variation of creep cavitation coefficientA with different stress and temperature.



in the above step (3). The coeflicient designa-
tions used with linking to Equation (3.3), and
Equation (3.11).

Method

The application of new minimum creep strain rate
with stress function

The process for this part of the work is:

(1) Apply a new mathematical function reference
by Xu et al. [1];

(2) Compare the predictions with experimental
data in order to display its ability.

The development and application of creep
fracture criterion based on cavity area fraction
along grain boundary for high Cr steel

The process for this part of the work is:

(1) Base on the appropriate cavity nucleation and
cavity growth models for E911 to originate
a specific quantitative equation;

(2) Base on the experimental data on the creep
rupture time under different stress levels and
temperature for P92 to decide the material
coeflicient U’ of cavity area fraction equation.
In order to verify the science and rationality of
the trend, the relevant data was collected from
NIMS and Yin, respectively;

(3) Apply the obtained cavity nucleation model to
other high Cr steel (namely MARBN) to show
the trend of cavity nucleation rate coefficient A,
with stress.

Results and discussion

The application of the modified hyperbolic sine
law for minimum creep strain rate and stress for
high Cr steel

A modified hyperbolic sine law has proposed by Xu
et al. [1] and applied in [1,14], it gives as:

&émin = A sinh(Bg?) (2.1)

where q is stress exponent for minimum creep strain rate.

The modelling results of power law and conventional
hyperbolic sine law do not fit well with the experimental
data such as follows three materials according to [1,14].
The modified hyperbolic sine law successfully applied to
both low and high Cr steel, and materials and its para-
meters shown in Table 2.

In order to reflect the relationship between mini-
mum creep strain rate with stress for P92 (9Cr-1.8W-
0.5Mo-V-Nb), Panait et al. [15] adopted Norton power

MATERIALS AT HIGH TEMPERATURES . 131

Table 2. Materials and its parameters.

Material Parameters A Parameters B q
0-5Cr-0-5Mo-0-25V 4.12E-08 2.51E-04 2
2 - 25Cr-1Mo 5.57E-07 2.40E-04 2
P91 6.10E-07 2.14E-04 2

law to distinguish low and high-stress range to discuss
the stress exponent n at 600°C and 650 °C, respectively,
whom experimental data provided by SZMF, Germany.
Sklenicka et al. [16,17] also adopted power law to dis-
cuss the relationship between the slope and the stress
exponent n, and the difference in minimum strain rate
between received at 600°C and aged state at 650°C.
However, the relevant experimental data were extracted
by reading the published graph and stress range is
limited, which experimental data shows in Figure 2.
Thus, the specific data of minimum creep strain rate
for P92 (9Cr-1.8W-0.5Mo-V-Nb) was taken from the
NIMS creep data sheet [11] at 600°C. Furthermore, the
modelling by a conventional power law, sine law and
the modified hyperbolic sine law show in Figure 3. The
calibrated material parameters display in Table 3. As
can be seen, the curve fits well with experimental data.

The comparison of the above three functions
shown in Figure 3.

The modified hyperbolic sine law applied to P92
steel at 650°C, and the modelling result shown in
Figure 4 with the calibrated material parameters
shown in Table 4. As can be seen, the curve fits well
with experimental data and a favourable agreement
was achieved.

The comparison of the above three functions
shown in Figure 4.

Cavity area fraction along with grain
boundary-based creep fracture criterion for high
Cr steel

Function for cavity area fraction and the cavity size
distribution on E911

Generic theory of cavity area fraction along grain
boundary was presented by Riedel [22]. The cavity
size distribution function is shown [1,22,23]:

A 1— RﬁJrl (aty)/(1-a)
N(R, 1) = 2Ry (1 - — 2 =
A 1+ BA L

(3.1.a)

where A;, A,, a, B, and y are material cavitation con-
stants that may depend on stress.

The growth rate of the cavity radius and nucleation
rate is given as, respectively [1,12,22,23]:

R=AR Pt (3.2)

T =AY (3.3)
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Figure 2. Experimental data of minimum strain rate and stress at 600°C and 650°C for P92 steel [9,11,15].

P92

® Experiment data s Power |[aw == Sine law

Novel hyperbolic sine law

1.00E+02
1.00E+01
1.00E+00
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1.00E-02
1.00E-03
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Figure 3. The comparison between the different function of minimum creep strain rate and applied stress for P92 steel at 600°C.

Table 3. The function of minimum creep strain rate with by Equations (3.2) and (3.3). The cavity size distribu-
calibrated material parameters for P92 steel at 600°C. tion at creep lifetime t; is written as:

A B n q
Power law [18,19 1.00E-39 16.2 —
S 4, 1—q RET 0
(Emin ) N(R t) __Rﬂt a+y 1—
Sine law [20,21] 1.40E-09 8.40E-02 )T f 1+ BA @
(émin = Asinh(Bo)) 1 s
Novel sine law 1.12E-06 2.47E-04 2 (3. 1 .b)

(€min = Asinh(Bo?))

Furthermore, other directly obtained data on cavita-

tion can also be used for the determination of the

where the R is the non-stationary growth rate of the ~ values of the parameters of the cavity nucleation and
cavity radius, the J*, is the nucleation rate of the cavity. cavity growth models such as B, a, and y.

The above cavity size distribution function (3.1.a) is From the literature [1,12,22,23], the typical vale of §

a function of creep time, and theoretically, any such is close to 2, and it agrees with the constrained cavity

experimental data could use for the calibration of the ~ growth. Specifically, Renversade et al. [12], reported

cavity nucleation and cavity growth models specified B = 2.1 £ 0.3 for P91 and E911, while Sket et al. [23]
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200
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Figure 4. The comparison between the different function of minimum creep strain rate and applied stress for P92 steel at 650°C.

Table 4. The function of minimum creep strain rate with
calibrated material parameters for P92 steel at 650°C.

A B n q
Power law [18,19] 8.80E-23 9.6
(Emin = Ad")
Sine law [20,21] 1.40E-07 9.60E-02
(&min = Asinh(Bo))
Novel sine law 1.00E-05 4.95E-04 2

(&min = Asinh(Bo?))

report B = 2. In this paper, we adopt such value with-
out further question.

The value of a the exponent (a« +y)/(1 — a) = 200
and in case of actual a and y unitary value in the
literature [22,23], which suggests a = 0.9999 ~ 1.

With a = 1, Equation (3.1.b) rewrites as:

A, 1+ y R
N(R, tf) = A—lRﬁtf1+Vexp (- mA—1 (3.4)

E911

= N(R,t) Eq3.1

® Experiment data
1.00E+04

1.00E+03

1.00E+02

Number of cavities

1.00E+01

1.00E+00

1 2 3 4 5

The curves of Equation (3.1) with a = 0.9999 type
equation here, and curves of Equation (3.4) with a = 1,
are shown in Figure 5. There is no noticeable difference
by eye, hence it is concluded either way can be used for
prediction, though a singularity occurs when a = 1.
The value of y = 1 characterised for continuum cavity
nucleation with cavity constrained growth [1,23]. Xu
et al. [1] discussed and confirmed its predictions shape
with y = 1 is like to that from the experiment for P91.
The above Equation (3.4) can be rewritten as:

G, Rﬁ+1
N(R,t;) = CiRPexp| — 3.5.
(R.tr) = G exp< A (3.5.)
where C; and C, are a material parameter, C; = ﬁ—f t}”

and C, = lAily.
This equation has also reported in the literature
as [1,23]:

w— N(R,t) Eq3.4

Diameter (um)

Figure 5. No noticed difference of the predicted probability density function by Equation (3.1) (with a = 0.9999) and Equation (3.4)

dots: experimental data from ref [12,25] curves.
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f(R) = CRPexp <— Clzlf ;) (3.5.b)

The following compares predictions with experimen-
tal data reported in the literature [5] and confirms the
value of a = 1, B = 2, y = 1. It is essential to point out
that the actual experimental data is much more inten-
sive, and only a limited number taken from the graph
for comparison. The process for this part work is:

Firstly, according to Equation (3.4) and using the
minimum and maximum cavity diameter of 1.2 pm
and 9.5 pm at 37,800 h solve the values of A; = 8.76
and A, = 9.47E-7.

Secondly, integrating Equation (3.2) with a = 1,
=2,y=1

1
5R3 =AInt+C (3.6)

where C is integration constant related to the cavity
growth rate, using the above Equation (3.6) to calcu-
late the values of C = —56.607 and t, = 645.62h.

Thirdly, according to the value of A; and A, calculate
C; and C,, another method is using Equation (3.5.b) to
solve the value of C; = 154 and C, = 0.228.

Finally, it found that the prediction curve by using
Equations (3.5.b) fits with the experimental data very
well, as displayed in Figure 6. Thus, conforms the
valueofa=1,p=2,y=1.

The cavity nucleation and cavity growth models for
E911 have been calibrated based on x-ray synchrotron
data. The comparison with these coefficients for P91,
as shown by Table 5, has revealed that E911 has

a much higher growth rate (10 times) and much
slower nucleation rate (about 100 times).

The trend of creep lifetime coefficient U’ with stress
levels for P92
Based on the creep cavity nucleation, growth and coales-
cence, a generic mathematical formula for the creep
cavity damage was proposed [22]. Its specific mathema-
tical equation for a given nucleation rate model and
growth model was first time derived by [1]. The cavity
area fraction w obtained and based on the above
Equation (3.1), Equation (3.2) and Equation (3.3), and
gives below:

w= JﬂRZN(R, t)dR (3.7)
Inputting the above values of a = 1, p =2 and y = 1
into above Equation (3.7), the cavity area fraction w is:

3
w:71><g><3§><U5><Al%><A2><t2 (3.8)

When

3
U':n><§><3%><U5><A1§><A2 (3.9)

w=U xt*

When w reaches its critical value, then the rupture

occurs.
wp = U x t} (3.10)

The critical value, wy, is assumed to be n/4, refereeing
to the view [22].

F(R) Eq3.5

® Experiment data
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Figure 6. The probability density function of cavity equivalent R for E911, dots: experimental data from ref [12,25], curve by

Equation (3.5.b).

Table 5. Comparison of nucleation and growth rate coefficients.

Material Temperature (°C) Axial stress (MPa) Internal stress (MPa) Lifetime (h) Parameters A, Parameters A,
P91 [1] 575 526 236 10,200 7.80E-01 8.30E-05
E911 600 489 17.7 37,800 8.76E+00 9.47E-07




Table 6. The value of U’ for P92 at 600°C [24].
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Table 9. The value of U’ for P92 at 600°C.

Stress (MPa) Rupture time (h) [11] U’ (P92 at 600°C)

Stress (MPa) Rupture time (h) [9] U’ (Yin P92 at 600 °C)

120 65,363.4 1.84E-10
130 39,539.9 5.02E-10
140 25,944.6 1.17E-09
160 8219.9 1.16E-08
180 1740.7 2.59E-07
190 6134 2.09E-06
210 112.6 6.19E-05
230 19.9 1.98E-03
250 5.1 3.02E-02

The experimental data based on the NIMS creep
rupture time under different stress levels and tem-
perature on typical ASME Grade 92 (9Cr-1.8W-
0.5Mo-V-Nb) steels [11], and the value of U was

calculated as shown in Tables 6, 7 and 8.

110 200,000 1.9635E-11

115 95,000 8.70247E-11
120 65,000 1.85893E-10
135 30.000 8.72665E-10
150 10,000 7.85398E-09
170 3000 8.72665E-08
185 1000 7.85398E-07

Table 10. The value of U’ for P92 at 650°C.

Stress (MPa)

Rupture time (h) [9]

U’ (Yin P92 at 650 °C)

60 200,000 1.9635E-11

65 95,000 8.70247E-11
70 65,000 1.85893E-10
80 30,000 8.72665E-10
90 10,000 7.85398E-09
105 3000 8.72665E-08
115 1000 7.85398E-07

An apparent trend can see in Figure 7, which pro-
vides much more stable scientific findings and that can
use to convince researchers.

In order to verify the science and rationality of the
trend, the relevant data was collected by reading the
published graph under different stress levels at 600°C

Table 7. The value of U’ for P92 at 625°C.

Stress (MPa) Rupture time (h) [11] U’ (P92 at 625 °C)

100 33,5185 6.9907E-10
110 17,530 2.5558E-09
130 3886.1 5.2007E-08
140 1458.2 3.69365E-07
160 213.4 1.72465E-05

Table 8. The value of U’ for P92 at 650°C [24].

and 650°C for P92 steels [9]. The value of U’ was
calculated, as shown in Tables 9 and 10, and the
apparent trend can display in Figure 8.

The two sets of trends are the same at 600°C and
650°C from Figure 9, although experimental data
based on the NIMS and Yin, respectively. Hence, it
potentially provides a scientifically sound, novel, and
instead of a simple lifetime prediction method.

The variation between cavity nucleation rate
coefficient A, and stress for MARBN

The coefficient A, in the cavity nucleation rate Equation
(3.3) is assumed dependent stress. Assuming there is no
incubation time for simplification, with y = 1, the inte-

Stress (MPa)

Rupture time (h) [11]

U’ (P92 at 650 °C)

grating Equation (3.3) gives [1]:

1
=— At
J 542

(3.11)

where ] is the number density of cavities, and
material parameter A, may depend on stress and
strain rate.

P92

70 50,871.2 3.03E-10
80 21,717.1 1.67E-09
90 10,001.9 7.85E-09
100 37387 5.62E-08
110 1689.1 2.75E-07
130 194 2.09E-05
140 66 1.80E-04
160 10.5 7.12E-03
@ U' (P92 at 600°C) ©;

1.00€-01

1.00E-02

1.00€-03

1.00E-04

x 1.00E-05

> 1.00E-06

1.00E-07

1.00€-08

1.00E-09

1.00E-10

U' (P92 at 625 °C)

=@=U' (P92 at 650°C)

)

@

()

50 70 90 110 130 150 170 190 210 230 250 270 290

Stress, MPa

Figure 7. The trend of the values of U’ under different stress and temperature [24].
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Figure 8. The trend of the values of U’ under different stress and temperature.
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Figure 9. Comparison of Yin's U’ with experiment [11] for P92 steel [24].

This section investigates the dependence between
coeflicient A, and stress. The number density of cavities
at failure for CB8 under a range of stress level has been
researched by Xu et al. [1], which the set of 3D cavity data
referenced by X-ray micro-tomography. Fortunately,
there is another set of 3D cavity data that the number
density of cavities at failure for MARBN-heat 1 cross-
welds under a range of stress levels from 70 MPa to 130
MPa are available [13,25]. The relevant data were
extracted by reading the published graph and table.
Using the above data calculate the individual value of
A, at different stress level shown in Table 11 and Figure
10. A, only reduces slightly with stress. Thus, this is
significant as the above trend could be used for extrapola-
tion to stress.

Table 11. The number of cavities at failure and the individual
value of A, under a range of stress levels.

Stress Lifetime Number density of cavities

(MPa) (h) (10°um™) A,

70 17200 3.03 2.05E-08

80 12981 6.95 8.25E-08

100 8682 7.33 1.94E-07

130 3433 2.95 5.01E-07
Conclusions

Critical conclusions for this research include:

(1) The reliable cavity nucleation and cavity
growth models for E911 have been calibrated
based on x-ray synchrotron data.
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Figure 10. The trend of cavity nucleation rate coefficient A, and stress.

(2) The comparison with these coefficients for P91,
as shown by Table 5, has revealed that E911 has
a much higher growth rate (10 times) and much
slower nucleation rate (about 100 times), bear-
ing in mind that there is a difference between
the testing temperature and applied stress. It
suggests that the creep cavitation rupture is
more dependent on cavity nucleation than cav-
ity growth.

(3) The creep lifetime and stress relation coeffi-
cient U’ for P92 have been obtained based on
cavity along with grain boundary criterion; its
value is typically 10 times smaller than that [1]
of P91 under the same stress level and
temperature.

(4) The application of the calibrated creep cavity
nucleation model gives a scientifically sound
and simple cavity nucleation rate dependence
of stress.

(5) The methodology of the creep cavitation along
grain boundaries is scientifically sound and
should be a further application to other cases.

(6) It also anticipated that such principle in meth-
odology should find applications to other types
of cavitation-based damage such as ductile fail-
ure, fatigue failure, and creep and fatigue com-
bined failure [3];

(7) The minimum creep strain rate and a more
extensive range of stress level for P92 have
obtained. Such formulae should use in the
future development of constitutive equations.

Nomenclatures

€ Creep strain rate

Emin Minimum creep strain rate

D, Creep cavity nucleation rate

A, B, A, B Material parameters, possibly dependent on
temperature

q Stress exponent for minimum creep strain
rate

R Cavity radius

t Time

Ay A, o, B, yMaterial parameter may depend on stress

N(R 1) The cavity size distribution function

f(R) The probability density function of cavity
equivalent radius

C, G, Material parameter

R The growth rate of the cavity radius

J The number density of cavity

J* Cavity nucleation rate

C Integration constant related to the cavity
growth rate

w The cavity area fraction along the grain
boundary

wy A critical value of the cavity area fraction at
the fracture

U Material parameter
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