
QUANTIFIYING SEASONAL VARIATION IN PHYSIOLOGICAL CONDITION OF 

ADULT FRANKLIN'S GULL (LUECOPHAEUS PIPJXCAN) DURING NESTING 

A Thesis 
Submitted to The Graduate Faculty 

of the 
North Dakota State University 

of Agriculture and Applied Science 

By 

Shawn Edward Weissenfluh 

In Partial Fulfillment of the Requirements 
for the Degree of 

MASTER OF SCIENCE 

Major Department: 
Biological Sciences 

November 2011 

Fargo, North Dakota 



~··· .. 

North Dakota State University 
Graduate School 

Title 

Q11antifying seasonal variation in physiological condition of 

adult Franklin's gull fLuecophaeus pipixcan) during nesting 

By 

Shawn Edward Wei sseofJ 11b 

The Supervisory Committee certifies that this disquisiJion complies with North Dakota State 
University's regulations and meets the accepted standards for the degree of 

MASTER OF SCIENCE 

North Dakota State University Libraries Addendum 

To protect the privacy of individuals associated with the docmnent, signah1res have been 
removed from the digital version of this docmnent. 



ABSTRACT 

Weissenfluh, Shawn Edward, M. S., Department of Biological Sciences, College of 
Science and Mathematics, North Dakota State University, November 2011. Quantifying 
Seasonal Variation in Physiological Condition of Adult Franklin's Gull (Luecophaeus 
pipixcan) During Nesting. Major Professor: Dr. Mark E. Clark. 

Understanding seasonal variation in adult physiological condition is important 

for developing hypotheses on how nest initiation, adult condition, chick development 

and recruitment are related in Franklin's gull and other migratory species of the 

northern plains. The purpose of this study was to profile physiological condition 

during the breeding season in nesting Franklin's gull (Luecophaeus pipixcan) adults. 

Physiological condition was quantified in nesting adults through four metrics: 

body measurements recorded from live-trapped birds, the corticosterone stress 

response measured from blood samples collected serially from live-trapped birds, and 

two measures of immune function (antimicrobial capacity of plasma from blood 

samples and heterophil/lymphocyte ratios based on blood smears, both taken from 

live-trapped birds). 

Physiological condition declined across the breeding season, as shown by a 

decline in body condition, stress tolerance and immune performance. Specifically, 

residual body mass decreased and exposure of the sternum keel increased with the 

progression of the breeding season. Additionally, birds nesting later in the season 

showed greater maximum corticosterone concentrations in the stress profile along 

with lower antimicrobial capacity. 

These results suggest two hypotheses: 1) that timing of nesting has a 

significant impact on the physiclogical condition of Franklin's gull and 2) that birds in 

poorer condition initiate breeding later in the season. Seasonal variation in condition 
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may be related to time constraints observed in temperate latitudes and whether these 

birds are capital (i.e., acquiring resources outside the breeding area) or income (i.e., 

acquiring resources locally) breeders. Thus, determining physiological condition 

during the breeding season is an important step in elucidating how nest initiation, 

adult condition, chick development and recruitment are related in Franklin's gull. 
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INTRODUCTION 

Intercontinental migratory birds experience significant time constraints on 

nesting, rearing and fledging their young and preparing for the long migration back to 

their wintering grounds. Because of this, arrival time at the breeding grounds can 

constrain the time available to rear chicks to fledging. Furthermore, factors such as 

environmental cues that affect arrival time may have significant implications for 

recruitment. Many environmental cues also vary seasonally and are known to alter 

the physiology of breeding adults. For example, in the northern hemisphere, 

photoperiod changes such that day-length increases as the Julian day approaches the 

summer solstice. Photoperiod (i.e., increasing day length) initiates an array of 

physiological changes in birds including gonad recrudescence, feather molt, and fat 

deposition (Wingfield 2005; Wikelski et al. 2008). Along with photoperiod, 

temperature can directly affect physiology and the timing of breeding. Trumpeter 

finches (Bucanetesgithagineus) have been shown to delay egg-laying dates up to 40 

days due to lower temperatures (Barrientos et al. 2007). 

Adult physiological condition affects both current and future reproductive 

success. Body condition of female great tits (Parus major) is positively correlated 

with reproductive output (Norte et al. 2010). However, studies have also shown that 

physiological condition is positively correlated to nutritional reserves critical for 

adult survival (Brown 1996) and therefore future offspring production (Nager et al. 

2001). It is hypothesized that changes in adult physiological condition across the 

breeding season are a manifestation of trade-offs between investments to offspring 
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versus self-maintenance predicated on nest initiation date, because offspring survival 

to recruitment generally declines. across the nesting season (Drent 2006). 

The physiological condition of nesting adults can be quantified through a 

number of measures, including body measurements recorded from live-trapped birds. 

Body mass often fluctuates within the breeding season. Female kittiwakes (Rissa 

tridactyla) exhibit an increase in body mass during incubation and a decrease in body 

mass during the chick-rearing period (Moe et al. 2002). Similarly, female arctic skuas 

(Stercorarius parasiticus) retain body fat reserves during incubation but shed those 

reserves, which reduces wing loading and improves flight efficiency after nesting 

(Phillips and Furness 1997). The ratio between body mass and tarsus or wing length 

can be an indicator of whole body condition, fat storage or lean mass (Gosier et al. 

1998), and is typically used to evaluate nestling condition (Richner et al. 1993). Keel 

depth, a measure of the protrusion of the keeled sternum above breast muscle tissue, 

is another measure of whole-organism condition but more specific to flight 

proficiency that is also known to vary in migratory birds during breeding (Hatch et al. 

2010). 

The corticosterone stress response in birds provides another measure of 

physiological condition. Perceived threats or short-term stressors illicit an increase 

in the production (and circulating levels) of corticosterone that precipitates the 

vertebrate fight/flight response. As such, capture and handling of free-living birds 

can induce a rapid elevation of plasma corticosterone concentrations above the 

background baseline concentration. Because repeated exposure to stress may alter 

the corticosterone response (Cyr and Romero 2006), integrating the corticosterone 
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concentration versus time curve has been used to quantify stress-induced changes to 

physiological condition (Breuner and Hahn 2003). Indeed, the magnitude of the 

corticosterone response was negatively correlated to parental effort in mourning 

doves (Zenaida macroura) (Miller et al. 2009). 

Physiological condition can also be assessed through measures of immune 

function. In free-living birds, two particular measurements have been used to 

characterize the status of the immune system: antimicrobial capacity of plasma (Millet 

et al. 2007) and heterophil/lymphocyte ratio (Gross and Siegel 1983; Vleck et al. 

2000). Bactericidal capacity of plasma assesses multiple components of constitutive 

immunity in vertebrates, and has been correlated with handling stress in birds (Millet 

et al. 2007), but not used to assess immunocompetence of nesting adults. In tropical 

birds, one hour of acute stress has been shown to reduce bacteria killing abiJity by up 

to 40% (Matson et al. 2006). In chronically-stressed individuals, the 

heterophil/lymphocyte ratio increases. Greater investment in offspring compromised 

investments in immune constituents of adult great tits (Ots and Horak 1996). 

Moreover, Dubiec et al. (2005) have shown that early-breeding female great tits have 

greater blood counts of total leukocytes, lymphocytes and heterophils than birds 

starting their clutches late in the season. 

Evidence of effects on timing of nesting has been observed in Franklin's gull 

(Leucophaeus pipixcan), an intercontinental migrant that nests in the northern Great 

Plains. Berg (2009) found that Franklin's gull chicks hatched early in the season were 

structurally larger than chicks hatched later in the season. Furthermore, preliminary 

data on Franklin's gull eggs artificially incubated under alternative photoperiods 
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indicated that both photoperiod and maternal effects (i.e., maternal environment and 

phenotype) associated with timing of nesting affect embryonic development of chicks 

(Clark and Reed, unpublished data). It is not known if adult condition varies within 

the nesting season in Franklin's gull. Changes in adult physiology could be 

responsible for the seasonal maternal effects observed in Franklin's gull chick 

development. Thus, understanding seasonal variation in adult condition will provide 

critical information for developing hypotheses on how nest initiation, adult condition, 

chick development and recruitment are related in Franklin's gull. We hypothesize 

that the timing of nesting is critical for Franklin's gull and that early-nesting birds are 

in better physiological condition then late-nesting individuals. 
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METHODS 

Bird Collection Site 

I monitored adult Franklin's gulls during nesting from early May through late 

June at Rush Lake Waterfowl Production Area in north-central North Dakota. In late 

April I observed numerous adult Franklin's gulls near the Rush Lake Waterfowl 

Production Area, and began searching areas within the Rush Lake marsh each week to 

locate nests for monitoring. When a new nest was found, I marked the location with a 

handheld GPS, placed a small (approximately 3 cm diameter) float with a unique nest 

identification code near the nest, recorded the number of eggs present, marked the 

eggs on their blunt end with a permanent marker and revisited nests on subsequent 

days to determine the final clutch size and the onset of continuous incubation by the 

adults. Newly initiated nests (i.e., those for which the female was still in the process 

of laying eggs) were determined by the presence of a single egg in the nest or 

confirmation of laying by the appearance of an additional egg within 48 hours. For 

nests found with one egg present, I used the flotation method to determine whether 

the egg was recently laid. Eggs that did not float in the water were considered 

recently laid (Nol and Blokpoel 1983; Ackerman and Eagles-Smith 2010). Nests 

determined to be within the first days of continuous incubation ( or not yet 

undergoing continuous incubation) were then targeted for subsequent adult capture 

of the adults within the first week of incubation to measure physiological condition. 

Bird Collection 

I captured and quantified physiological condition of incubating Franklin's guJJ 

adults that initiated nests early, middle and late in the nesting period in 2010. All 
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gulls were trapped within the first week of initiating continuous incubation. Adults 

were captured using nest traps (Burger 1971) placed on targeted nests. Larger traps 

were sometimes used to acclimate a nesting bird, by allowing them to fly in and out of 

the trap without disturbance. Smaller traps, which prevented birds from flying out, 

were then set to capture the nesting bird. Traps were set daily and monitored for 

captures at 30-45 minute intervals. Once an adult was captured, I approached the 

nest rapidly and recorded the time of startle based on the bird's behavior (i.e., 

attempting to fly out of the nest trap). The startle response generally started as soon 

as a bird made visual contact with us as I approached the nest. Upon capture, I 

collected a small blood sample (approximately 600 µl) from the brachial vein within 

approximately three minutes of the initial startle response, then collected subsequent 

blood samples (approximately 300 µleach) at 20 minutes and 30 minutes after the 

initial startle response, which is the protocol for obtaining samples necessary to 

profile a stress response via plasma corticosterone (Wingfield et al. 1982). Following 

collection, blood samples were temporarily placed in a cooler of ice for transport to 

the laboratory. In the interval between collection of the first and second blood 

samples, I measured body mass using a spring scale(± 5.0 grams), tarsus length, 

cul men length, nares length, breast width and keeled sternum depth using digital 

calipers(± 0.1 mm), and wing chord length using a wing rule(± 0.5 mm). During 

blood sample collection, we also made a blood smear for counting heterophil and 

lymphocyte numbers, prepared by spreading a drop of blood across a microscope 

slide producing a single layer of cells and also set aside a small drop of blood in 
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Queen's lysis buffer (Seutin et al. 1991) to preserve DNA for sexing (Franklin's gulls 

are not sexually dimorphic in size or plumage; Burger and Gochfeld 1994). 

Plasma Sample Preparation 

Blood samples were taken to the laboratory for processing within 

approximately four hours of collection. I centrifuged blood samples at 3000 rpm for 

10 minutes to separate red blood cells from plasma, and plasma samples were 

separated into approximately 100 µl aliquots and stored at -20 C until further analysis 

( corticosterone radioimmunoassay or bactericidal assay). 

Evaluation of Body Condition 

Body condition was computed from several metrics of skeletal size in relation 

to body mass. As a simple metric of body condition, I computed the residual of body 

mass from an orthogonal regression of body mass and tarsus length (Schulte

Hostedde et al. 2005). Keel depth was also used to quantify condition (Schmidt

Wellenburg et al. 2008). In addition, I computed the total wingspan from twice wing 

chord length added to breast width to estimate wing loading (the ratio between 

wingspan and body mass) (Mueller et al. 2002). Residuals of body mass regressions 

are expected to be positively correlated to body condition (Green 2001; Schulte

Hostedde et al. 2005), keel depth is expected to be positively correlated to body 

condition and flight muscle performance (Schmidt-Wellenburg et al. 2008), while 

wing loading values are expected to be negatively correlated to flight capability 

(Gosier et al. 1998; Hatch et al. 2010). 

Radioimmunoassay 

I measured plasma corticosterone concentrations using radioimmunoassay to 
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quantify stress response in nesting adults. I used 10 µI of plasma for the 

corticosterone radioimmunoassay following the protocol described in Wingfield and 

Farner (1975). Briefly, a small amount of3H corticosterone (-2000 cpm) was added 

to each plasma sample to estimate extraction efficiency. We extracted steroids from 

the plasma by adding 5 ml of distilled dichloromethane and dried the supernatant at 

40 C under a stream of dried nitrogen gas. Dried extracts were resuspended in PBSg 

buffer and refrigerated overnight at 4 C. I split these samples into duplicate vials for 

the radioimmunoassay and estimated corticosterone levels based on competitive 

binding between known amounts of labeled corticosterone and unknown amounts of 

corticosterone in samples on a corticosterone specific antibody (cross-reactivity 

binding affinity for corticosterone antibody ab7798: 11-dehydrocorticosterone 

0.67%, deoxycorticosterone 1.5%, 18-0H-DOC <0.01%, cortisone <0.01%, cortisol 

<0.01 % and aldosterone 0.2%, as reported by the manufacturer). Assay values were 

corrected for plasma volume and individual recoveries after extraction (recoveries 

after extraction, 78-90%). Intra-assay coefficient of variation was 28.9%; inter-assay 

coefficient of variation was 18. 7%. The corticosterone stress response is expected to 

be positively correlated with short-term stress exposure (Cyr and Romero 2006). 

Bactericidal Assay 

Immune system strength was quantified using a bactericidal assay. 

Antimicrobial activity was measured following the protocol described by Millet et al. 

(2007). Briefly, I streaked out a positive (Al) and negative (Vl) control on trypic soy 

agar (TSA) and incubated overnight at 37 C. After incubation, I inoculated 3.0 ml of 

TSB with a single colony from each of the controls and incubated overnight at 37 C 
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while shaking at 200 rpm. Following overnight incubation, 10 µl of each of the 

controls were used to inoculate 3.0 ml ofTSB, which were then incubated at 37 C 

while shaking at 200 rpm for 45 minutes. Next, two 100 µl aliquots of each sample 

were centrifuged at 8000 rpm at 4 C for five minutes. I then decanted the supernatant 

and resuspended each sample with 100 µl of PBS, vortexed each sample, then 

repeated centrifugation. The samples were again decanted and resuspended with 60 

µl of PBS and 20 µl of plasma sample. After vortexing, 5 µl of each sample was 

removed and placed into a separate vial containing 45 µl of PBS. Serial dilutions 

(1:10) were then performed for each sample and diluted to 10-1 and plated on TSB in 

3 x 10 µl aliquots for each dilution. This step occurred at 0, two, and four hours 

during incubation. After each sample was plated, the plates were incubated at 37 C 

overnight. After incubation, I counted and recorded the number of colonies and 

assigned the sample categorically as sensitive (a decrease in bacteria over time) or 

resistant (an increase in bacteria over time). Antimicrobial capacity is expected to be 

positively correlated with chronically stressed individuals (Millet et al. 2007). 

Heterophil:Lymphocyte Counts 

I further quantified immune system suppression using heterophil/lymphocyte 

counts. I counted heterophil and lymphocyte cells from prepared blood smears as 

described in Vleck et al. (2000). Blood smears were fixed and stained with a Harleco 

Hemacolor staining kit, and then magnified lOOx (oil immersion) on a compound 

microscope, and heterophils and lymphocytes were manually counted. A total of 100 

cells (heterophils and lymphocytes combined) were counted to provide the ratio 
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between cell types. The ratio of heterophils:lymphocytes is expected to be positively 

correlated with long-term stress exposure (Gross and Siegel 1983). 

Statistical Analysis 

I used general linear models to provide a seasonal physiological profile of 

Franklin's gull nesting adults. Specifically, I modeled the measures of condition (i.e., 

residual body mass, keel depth and wing loading), as linear function of trap date 

(expressed as Julian day). I verified that successive plasma corticosterone 

concentrations for an individual increased and used both the maximum concentration 

as well as the difference between the maximum and baseline concentration to 

quantify the stress response, which I then modeled as a linear function of trap date. 

For analysis of immune system components, I used a principal components analysis 

(PCA) of the Al bacteria colony count, Vl bacteria colony count and 

heterophil/lymphocyte ratio to reduce dimensionality and modeled the first and 

second principal components as linear functions of trap date. All statistical analyses 

were conducted using JMP statistical software (JMP 2002). 
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RESULTS 

I captured 61 adults from 61 nests determined to be in the first week of 

continuous incubation from 14 May 2010 to 16 June 2010 at the Rush Lake Waterfowl 

Production Area in North Dakota. Of the 61 adults captured, I was able to obtain body 

mass measurements from 54 individuals, tarsus length measurements from 55 

individuals, keel depth measurements from 49 individuals and wing loading from 49 

individuals. I was able to obtain at least one plasma sample from all 61 captured 

adults, but were only able to determine plasma corticosterone concentrations for 

profiling the individual corticosterone stress response (i.e., concentrations from 

plasma samples collected at less than three, 20 and 30 minutes from startle response) 

from 55 of the individuals. I recovered plasma and cultured the Al and Vl bacteria 

assays from 56 individuals and obtained blood smears for determining 

heterophil/lymphocyte ratio for 54 individuals. 

Residual body mass, wing loading (the ratio of body mass to wingspan), body 

mass and breast width are negatively related to trap date whereas keel depth is 

positively related to trap date. Adult body mass and right tarsus length are positively 

correlated (Pearson's r = 0.45, p = 0.001, n = 49), and we determined residual body 

mass from an orthogonal regression fit to the observations (Figure 1). Residual body 

mass decreases with trap date (Fi,47 = 18.43, p < 0.001, r2 = 0.28; Figure 2). Keel (i.e., 

the exposure of the keel bone above the pectoral muscle) increases with trap date 

(F1,47 = 21.01, p < 0.001, r2 = 0.31; Figure 3). Estimated wing loading (i.e., body mass 

divided by wingspan) declines with trap date (Fi,47 = 12.47, p < 0.001, r2 = 0.21), 

because body mass and breast width decrease with trap date 
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Figure 1. Positive correlation between tarsus length and body mass. The solid line 
represents an orthogonal regression fit to the data (r2 = 0.45). Residual body mass is 
indicated by the dashed line for one observation . 
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and the solid line represents the general linear regression fit to the data (r2 = 0.28). 
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Figure 3. Keeled sternum depth (i.e., protrusion of the keel bone above the pectoral 
muscle) is positively related to trap date. Filled circles indicate observed values and 
the solid line represents the general linear regression fit to the data (r2 = 0.31). 

(mass: F1.s2 = 9.05, p = 0.004, r2 = 0.15; breast width: F1.s3 = 4.60, p = 0.04, r2 = 0.08). 

Serially-collected plasma samples exhibited corticosterone concentrations that 

increased from baseline concentrations to higher asymptotic concentrations collected 

20 min or more after startle. Maximum corticosterone concentrations occurred in 

either the second or third serial plasma sample in 54 of the 55 individuals for which 

three serial plasma samples were available. Moreover, concentrations from the first 

serial sample (mean and standard error of 7.44 ± 0.95) were lower than 

concentrations from the second serial sample (19.65 ± 0.95; t = 12.86, p < 0.001, n = 

54 ), whereas concentrations from the second serial sample are lower than 

concentrations from the third serial sample (21.97 ± 0.95; t = 2.20, p = 0.032, n = 54) 

but did not differ by as much (Figure 4). Later nesting adults show a seasonal 
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increase in the stress response. The rise in corticosterone concentration during the 

stress response, as measured by the difference in the maximum concentration 

observed in an individual and the baseline concentration (i.e., the concentration 

associated with the first serial sample) increased with trap date (F1,s3 = 10.41, p = 

0.002, r2 = 0.16, Figure 5). Maximum corticosterone concentrations also increase with 

trap date (F1.s3 = 9.46, p = 0.003, r2 = 0.15), as did the concentrations from the second 

(F1.s3 = 14.92, p < 0.001, r2 = 0.22) and third (F1,s3 = 3.97, p = 0.051, r2 = 0.07) serial 

samples. However, baseline corticosterone concentrations did not differ across the 

breeding season (F1.s3 = 0.13, p = 0.720, r2 = 0.002). 

25 -
~ 
C, 
a. 20 -C: 
0 

:;:::s 

~ 
C: 15 
~ 
C: 
0 
u 
Q) 10 C: e 
~ 
en 
8 5 'E 
0 
u 

0 
0 5 10 15 20 25 30 35 

Time From Startle (min) 

Figure 4. Plasma corticosterone concentrations determined from serial plasma 
samples. Time from startle indicates the time elapsed from startle to the time when 
the plasma was collected, and each point represents the mean corticosterone 
concentrations for which three plasma samples were collected ± SE (n = 54). 
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Figure 5. Rise in corticosterone concentration (i.e., maximum concentration -
baseline concentration) is positively related to trap date. Filled circles indicate 
observed values and the solid line represents the linear regression fit to the data (r2 = 
0.21). 

The first two principal components for the Al bacteria colony count, Vl 

bacteria colony count and heterophil/lymphocyte ratio are linearly related to trap 

date. Al bacteria colony count, Vl colony count and heterophil/lymphocyte ratio 

were all log-transformed to achieve normality. The eigenvector for the first principal 

component weights the log-transformed Al colony count highest (coefficient of 

0.933), followed by log-transformed heterophil/Iymphocyte ratio (coefficient of 

0.329) and Jog-transformed Vl colony count (coefficient of-0.139), accounts for 

51. 71 % of the variance and the components are positively related to trap date (F 1,49 = 

6.93, p = 0.011, r2 = 0.123; Figure 6). The eigenvector for the second principal 

component weights the log-transformed heterophil/lymphocyte ratio highest 
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( coefficient of 0.89 5), followed by log-transformed Al colony count ( coefficient of -

0.356) and log-transformed Vl colony count (coefficient of -0.268), accounts for 

36.19% of the variance and the components are negatively related to trap date (f 1.49 = 

10.63, p = 0.002, r2 = 0.178; Figure 6). 
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Figure 6. (PC1) The first principal component for log-transformed Al colony count, 
Vl colony count and heterophil/lymphocyte ratio (filled cirlces) is positively related 
to trap date. Large values for the first principal component are associated with large 
Al colony counts, large heterophil/lymphocyte ratios and low Vl colony counts. 
(PC2) The second principal component for log-transformed Al colony count, Vl 
colony count and heterophil/lymphocyte ratio (filled circles) is negatively related to 
trap date. Large values for the second principal component are associated with large 
heterophil/lymphocyte ratios, large Al colony counts and low Vl colony counts. The 
solid line in each plot represents the linear regression fit to the principal component 
values. 
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DISCUSSION 

Understanding seasonal variation in body condition of breeding adults is 

critical to understanding how factors affecting the timing of nesting in migratory birds 

impact reproductive success. Structural size of Franklin's gull chicks varies seasonally 

(Berg 2009), due to both photoperiod (an environmental signal) effects and maternal 

effects (Clark and Reed, unpublished data). Environmental cues vary seasonally and 

can produce changes in adult physiology; however, no information is available on how 

adult physiology changes during the breeding season in Franklin's gull, and many 

other migratory species. 

In this study, I found that residual body mass (i.e., body mass corrected for 

skeletal size) of nesting adult Franklin's gull decreased as the breeding season 

progressed (Figure 2). Other studies have reported similar trends in body mass or 

body condition. For example, Golet and Irons (1999) found that body mass of adult 

kittiwakes (Rissa tridactyla) decreases during the chick-rearing period, and 

hypothesized that this occurs as a trade off between chick survival and adult survival. 

In other words, Golet and Irons suggest that breeding adult kittiwakes compromise 

their body condition because they are investing resources in chicks. I captured 

nesting adult Franklin's gulls in the first half of incubation prior to the onset of food 

provisioning of offspring, yet still observed a decline in body condition (i.e., residual 

body mass). Similarly, Kitaysky et al. (1999) found that body condition decreased in 

late-nesting kittiwakes, and hypothesized that local ecological factors (e.g., declining 

food availability) were the proximate mechanisms responsible for the pattern. 

Information on the temporal dynamics of macro-invertebrates associated with the 
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northern plains is unavailable but would, however, help provide correlative 

information in support or against a local resource limiting condition. 

Keel depth, another measure of body condition, also varied seasonally. Adult 

birds exhibited an increase in keel bone exposure with the progression of the 

breeding season (Figure 3). Keel depth is a measure of pectoral muscle (the principle 

flight muscle) size (Bolton et al. 1991), indicating that Franklin's gull adults that 

initiate nesting later in the season have reduced flight muscle. Similarly, Neto and 

Gosier (2010) found that breast muscle size and protein reserves decreased across 

the breeding season in Savi's warblers (Locustella luscinioides), which has been 

hypothesized to influence future survival. Again, this could be due to breeding adults 

compromising their own body condition to offset diminished resources for chicks 

associated with late-season nests. However, several alternative hypotheses could also 

explain the pattern. For instance, if later nesting birds arrive at breeding sites later 

because they are in poorer condition and took longer to complete migration, a similar 

pattern in body condition and timing of nesting might be observed. Both et al. (2005) 

showed that both arrival and breeding dates in pied flycatchers (Ficedula hypoleuca) 

were dependent on temperatures on their main staging grounds. Inclement weather 

may delay migration and could result in birds arriving in poorer condition. 

In addition to seasonal declines in overall body condition, I also found 

evidence of seasonal variation in physiological sensitivity to stress in Franklin's gull. 

Birds that initiate nesting later in the season show higher maximum plasma 

corticosterone concentrations in the stress profile compared to birds that initiate 

nesting earlier in the season (Figure 5). The vertebrate stress response is 
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characterized by an increase in concentrations of plasma corticosterone following a 

stress, and the peak in plasma corticosterone concentration is considered a measure 

of sensitivity to an induced stress (Beuving and Yonder 1978). Hence, later nesting 

Franklin's gull adults are more sensitive to a perceived threat (i.e., stress) than are 

earlier nesting adults. A recent study investigating stress response changes during 

the breeding season found an increase in response in birds during late incubation 

(Adams et al. 2005), which is similar to findings that variation in corticosterone levels 

during the breeding season are related to reproductive stage of the adult (Pereyra and 

Wingfield 2003). My observations indicate there is seasonal variation in stress 

sensitivity (measured via rise in corticosterone concentration) not related to 

differences in the reproductive cycle of adults in Franklin's gull. 

Immune function represents another aspect of the physiological condition of 

an individual. Constitutive immunity in vertebrates can be assessed by the bacterial 

capacity of plasma (Millet et al. 2007). Immune function can also be measured 

through heterophil/lymphocyte ratios (Gross and Siegel 1983), because lymphocytes 

are a primary component of the acquired immune system (Bone and Moore 2008) 

and an increase in the number of heterophils relative to lymphocytes can indicate a 

chronic stress or an increase in vulnerability to infection (Gross and Siegel 1983; 

Yleck et al. 2000). Using principal component analysis to consider multiple aspects of 

variation in the immune system components, we found that bacteria-killing capability 

was lower in late-nesting gulls compared to early nesting gulls (Figure 6). However, 

variation in heterophil/lymphocyte ratios of nesting Franklin's gull adults is more 

complex, with some variation indicating a positive relationship with trap date (and 
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therefore nest initiation) (Figure 6a) but other elements of the variation indicating a 

negative correlation with trap date (Figure 6b ). Moller et al. (2003) found that birds 

experience seasonal changes in the impact of parasites, resulting in changes in 

immune function that are related to nest type and location. Other studies have 

indicated that incubating adults exhibit an increase in heterophil/lymphocyte ratios 

compared to non-incubating adults during the breeding season (Ots and Horak 1996; 

Horak et al. 1998; Hanssen et al. 2005). My findings suggest that later nesting 

Franklin's gull adults exhibit some immune suppression. However variation in 

immune system performance is not explained by season alone. 

Timing of nesting has a significant impact on the physiological condition of 

migratory birds. Individuals nesting later in the breeding season are known to be in 

poorer condition than individuals nesting earlier in the breeding season (Perrins 

1970; Verhulst et al. 1995), and I found that multiple indices of condition of adult 

Franklin's gulls are lower in later nesting individuals. Migratory birds nesting in 

temperate latitudes are under time constraints to find nesting sites, lay eggs, fledge 

their young and prepare for the migration back to non-breeding areas. 

Seasonal variation in condition may be related to these time constraints 

through resource allocation for self-maintenance and offspring. Many researchers 

have hypothesized that postmigratory residual body stores are critical for successful 

breeding (Ryder 1970; Ankney and Macinnes 1978; Drent and Daan 1980; Ebbinge et 

al. 1982; Davidson and Evans 1988; Sandberg and Moore 1996). Perrins (1970) 

hypothesized that breeding birds laying eggs later in the season experienced a 

shortage of food during egg formation, resulting in offspring that are unable to fully 

20 



profit from the seasonal peak in food availability seen in most temperate ecosystems. 

The relative importance of each factor (residual fat stores versus local food resources) 

has been more broadly expanded to contrast species in which a capital ( e.g., fat 

stores) versus income (e.g., local food resources) breeding strategy is evident in the 

reproductive life history (Drent and Daan 1980). At present not enough information 

is available to determine if Franklin's gull adults are capital or income breeders. 

I found that body condition, stress tolerance and immune system performance 

decreased with progression of the breeding season in Franklin's gull, which is 

consistent with both capital and income breeding strategies. Structural size at 

hatching and post-hatching survival of Franklin's gull chicks decline as the breeding 

season progresses (Berg 2009), therefore, the timing of nesting has significant fitness 

consequences for both parents and offspring in this species. We observed seasonal 

differences in multiple metrics of condition during the first part of incubation (and 

therefore before costs of parental care in chick provisioning are incurred), but it is not 

known if these seasonal differences are present during the latter stages (e.g., the rapid 

yolk development stage) of egg development. Little is known about physiological 

condition before and during migration, how food resources vary seasonally, how egg 

constituents vary seasonally, and how all of these relate to the timing of nesting in 

Franklin's gull. However, my results indicate that late-nesting adults are in poorer 

physiological condition compared to early-nesting adults, which likely compounds 

differences in survival of late-season versus early-season chicks. Thus, determining 

whether resources acquired outside the breeding area (i.e., capital) or JocaJJy (i.e., 

income) underlie the seasonal patterns in adult condition and chick characteristics is 
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critical to directing management efforts in Franklin's gull and other Jong-lived birds 

nesting in the northern plains. 
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