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Abstract

The subject of this thesis is the motion planning algorithm known as the

continuation method. To solve motion planning problems, the continuation

method proceeds by lifting curves in state space to curves in control space;

the lifted curves are the solutions of special initial value problems called

path-lifting equations. To validate this procedure, three distinct obstructions

must be overcome.

The first obstruction is that the endpoint maps of the control system

under study must be twice continuously differentiable. By extending a result

of A. Margheri, we show that this differentiability property is satisfied by an

inclusive class of time-varying fully nonlinear control systems.

The second obstruction is the existence of singular controls, which are

simply the singular points of a fixed endpoint map. Rather than attempting to

completely characterize such controls, we demonstrate how to isolate control

systems for which no controls are singular. To this end, we build on the

work of S. A. Vakhrameev to obtain a necessary and sufficient condition.

In particular, this result accommodates time-varying fully nonlinear control

systems.

The final obstruction is that the solutions of path-lifting equations may not

exist globally. To study this problem, we work under the standing assumption

that the control system under study is control-affine. By extending a result

of Y. Chitour, we show that the question of global existence can be resolved

by examining Lie bracket configurations and momentum functions.

Finally, we show that if the control system under study is completely

unobstructed with respect to a fixed motion planning problem, then its

corresponding endpoint map is a fiber bundle. In this sense, we obtain a

necessary condition for unobstructed motion planning by the continuation

method.
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Chapter 1

Introduction

1.1 Motion planning problems

In motion planning problems, one is faced with a system whose behaviour can

be manipulated, and a high-level description of some desired system behaviour.

The problem is to translate the high-level description into low-level instructions.

The low-level instructions, when implemented, should produce the desired system

behaviour. In this generality, the label “motion planning problem” applies in a very

wide variety of situations, as described by LaValle [2006, Chapter 1].

In this thesis, we are exclusively interested in the case where the system is a

deterministic nonlinear control system evolving in continuous time. For example,

consider a vehicle moving in an obstacle-rich environment. One might be faced with

the problem of steering the vehicle from an initial point to a target point, in a way

that avoids the obstacles. In this case, the low-level instructions are represented

by a control action which effects the point-to-point maneuver. Another example is

provided by a robotic manipulator, such as a multi-jointed arm with a grasping

tool. One might be faced with the problem of taking the manipulator from an

initial pose to a desired final pose through a sequence of joint positions. In this
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case, the low-level instructions are represented by a control action which effects the

desired sequence of joint positions.

Consider a control system Σ with dynamical description

ẋ(t) = f(t, x(t),u(t)).

We assume that t ∈ J = [a, b], the state x(t) evolves in a connected Riemannian

manifold M , and the control u belongs to a collection U of maps of the form

u : J → Rr.

The u-controlled trajectory of Σ with initial condition (t0, x0) is denoted by

µΣ(·, t0, x0,u) : J →M.

This curve represents the state evolution of Σ, starting from state x0 at time t0, as

it is actuated by the control u. We assume that an initial state x0 ∈ M is fixed,

and that Σ is completely controllable from x0 on J . The latter assumption means,

precisely, that for each state x ∈M there exists a control u ∈ U such that

µΣ(b, a, x0,u) = x.

In other words, u takes Σ from state x0 at time a to state x at time b.

The x0-anchored motion planning problem (MPP) for Σ is posed as follows:

Problem: For each x ∈M , find u ∈ U such that µΣ(b, a, x0,u) = x.

A number of exact and approximate solutions of this problem can be found in the

literature. These solutions take a wide variety of analytical approaches, based on

the theory of differential flatness [Martin 1992, Lamiraux and Laumond 2000], the

notion of dynamic extensions [Sussmann 1991], the technical apparatus of exterior

differential systems [Tilbury et al. 1995], the imposition of hierarchical relations

between two control systems [Tabuada and Pappas 2005], the application of highly

2
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Figure 1.1: An illustration of lifting π to Π through EndΣ
x0

oscillatory inputs [Liu 1997, Leonard and Krishnaprasad 1995, Murray and Sastry

1993], the use of nilpotent approximating systems [Lafferriere 1991, Lafferriere and

Sussmann 1991, 1993], the notion of non-singular loops [Sontag 1995], and the

use of the continuation method [Sussmann 1992, 1993, Chitour 1996, Chitour and

Sussmann 1998, Chitour 2002, 2006].

Broadly speaking, the continuation method is the subject of this thesis. Prior

work on the continuation method was carried out under the assumption that Σ is a

driftless C∞ control-affine system; that is, the dynamical description of Σ is

ẋ(t) =
r∑
i=1

ui(t)fi(x(t)), u = (u1, . . . , ur),

relative to C∞ vector fields f1, . . . , fr. However, as we will see in the next section,

the continuation method does not rely fundamentally on this assumption.

3



1.1.1 The continuation method

We begin by introducing the x0-anchored endpoint map

EndΣ
x0

: U →M

that sends u to

EndΣ
x0

(u) = µΣ(b, a, x0,u).

In terms of this map, the x0-anchored MPP can be recast as follows:

Problem: For each x ∈M , find u ∈ U such that EndΣ
x0

(u) = x.

In Figure 1.1, we illustrate the following general procedure: Given x ∈M ,

1. Choose a curve π : [0, 1]→M with π(1) = x,

2. Lift π to a curve Π : [0, 1]→ U through EndΣ
x0
, in the sense that

EndΣ
x0
◦Π = π, and

3. Choose u = Π(1).

By construction, the control u satisfies

EndΣ
x0

(u) = EndΣ
x0
◦Π(1) = π(1) = x.

The continuation method follows this general procedure. In rough terms, the

lifted curve Π is constructed by leveraging differentiability of EndΣ
x0

while respecting

its singular points. To make this more precise, we assume that

• U is the Hilbert space L2(J,Rr),

• EndΣ
x0

is C1 (that is, continuously differentiable) so that its differential TEndΣ
x0

is well-defined, and

4



• U sing
x0

is the set of singular points of EndΣ
x0
.

Provided that π and u0 ∈ U are such that

• The constraint image(π) ⊆ EndΣ
x0

(U r U sing
x0

) is satisfied and

• u0 is contained in (EndΣ
x0

)−1(π(0)) ∩ (U r U sing
x0

),

the lifted curve Π is taken to be the C1 solution of the path-lifting equation
Π̇(t) = TEndΣ

x0
(Π(t))# ·Hπ(t,EndΣ

x0
◦Π(t)), Π(t) ∈ U r U sing

x0
, t ∈ [0, 1]

Π(0) = u0.

(1.1)

Here, Hπ is a time-varying vector field on M such that

Hπ(t, π(t)) = π̇(t)

and the superscript # denotes the Moore–Penrose pseudoinverse.

Despite the rather complicated appearance of (1.1), it arises naturally from the

problem at hand. To see this, suppose that Π is the solution of (1.1). Using the

chain rule and the fact that TEndΣ
x0

(Π(t))# is a right inverse of TEndΣ
x0

(Π(t)),

˙̌�
EndΣ

x0
◦Π(t) = TEndΣ

x0
(Π(t)) · Π̇(t) = Hπ(t,EndΣ

x0
◦Π(t)).

Since Hπ(t, π(t)) = π̇(t), we see that EndΣ
x0
◦Π and π are solutions of Hπ with

EndΣ
x0
◦Π(0) = EndΣ

x0
(u0) = π(0).

The uniqueness of solutions yields the desired result, namely that

EndΣ
x0
◦Π = π.

The preceding discussion demonstrates the plausibility of constructing Π as the

solution of (1.1), although we have sidestepped three issues. These issues are so

fundamental that they constitute obstructions to the continuation method.
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1.1.2 The first obstruction: Ill-posed path-lifting equations

The first obstruction is that path-lifting equations may be ill-posed. That is, the

solution of (1.1) may not exist, and, even if it does exist, it may not be unique.

One can show, however, that this difficulty is alleviated whenever EndΣ
x0

is C2 (that

is, twice continuously differentiable). In the literature on the continuation method,

a result known as Bismut’s theorem is used to ensure high-order differentiability of

EndΣ
x0
; see [Chitour 2006]. Bismut’s theorem implies that EndΣ

x0
is C∞ whenever Σ

is a driftless C∞ control-affine system

ẋ(t) =
r∑
i=1

ui(t)fi(x(t))

and f1(x), . . . , fr(x) are linearly independent for each x ∈ M . From a control-

theoretic point of view, Bismut’s theorem is quite restrictive. Other than the fact

that it only applies to driftless control-affine systems, the linear independence

condition puts topological restrictions on M . For example, it is not hard to see that

M cannot be a product manifold where one of the factors is an even-dimensional

sphere. These limitations motivate the search for a less restrictive high-order

differentiability result.

1.1.3 The second obstruction: Singular controls

The second obstruction to the continuation method is the existence of singular

controls. Recall that the curve π must satisfy the constraint

image(π) ⊆ EndΣ
x0

(U r U sing
x0

). (1.2)

One can show [Bellaïche 1996] that if Σ is a driftless C∞ control-affine system and

the set U r U sing
x0

is nonempty, then this constraint is rendered trivial. That is,

EndΣ
x0

(U r U sing
x0

) = M.

6



For other control systems, however, verifying (1.2) requires a complete characteri-

zation of the set U sing
x0

. Although specialized results exist [Chitour and Sussmann

1998, Popa and Wen 2000, Chitour 2002, Chelouah and Chitour 2003], the problem

of completely characterizing U sing
x0

does not appear to be tractable, in general.

Because of this difficulty, it seems that the only way forward is to restrict attention

to control systems for which U sing
x0

is minimized. Since the issue of minimizing

U sing
x0

is also connected with the third obstruction to the continuation method, our

discussion of this issue is continued in the next section.

1.1.4 The third obstruction: State explosions

The third obstruction to the continuation method is that the solution of a given

path-lifting equation (1.1) may not be defined on [0, 1]. In general, the solution Π

may be defined on the interval [0, δ) for some δ ∈ (0, 1]. Since the continuation

method hinges on the ability to choose

u = Π(1),

this possibility must be ruled out. It turns out that, if

image(π) ⊆M r EndΣ
x0

(U sing
x0 ), (1.3)

then Π is defined on [0, δ) if and only if a “state explosion” occurs. That is,

lim
t↗δ
‖Π̇(t)‖ =∞.

Consequently, one can show that Π is defined on [0, 1] whenever the Moore–Penrose

pseudoinverses TEndΣ
x0

(u)# satisfy a suitable sublinear growth condition.

This approach, which we will use in this thesis, engenders its own difficulties.

As in the preceding section, verifying that (1.3) is satisfied requires a complete

characterization of the set U sing
x0

, and one is again forced to restrict attention to

7



control systems for which U sing
x0

is minimized. This explains why the literature

concerning the continuation method has been focused on strongly bracket-generating

(SBG) driftless control-affine systems [Sussmann 1993, Chitour 1996, Chitour and

Sussmann 1998, Chitour 2006]. Indeed, if Σ is an SBG driftless control-affine system

with r < n, then U sing
x0

= {0}. This renders (1.2) trivial and drastically simplifies

the task of verifying (1.3). A result of Sussmann [1993] tells us that the SBG

condition impinges on sublinear growth conditions as well. To be precise, this result

states that if Σ is an SBG driftless control-affine system, then the Moore–Penrose

pseudoinverses TEndΣ
x0

(u)# satisfy a sublinear growth condition uniformly for

u ∈ (EndΣ
x0

)−1(image(π)).

An alternative proof of this result can be found in [Chitour 2006].

1.2 Problem statement

To validate the continuation method as a solution of the x0-anchored MPP, we must

show that the three obstructions are overcome. Doing so reduces to solving three

subproblems, each of which corresponds to an obstruction. To reiterate, solving

these subproblems is equivalent to demonstrating that

1. The x0-anchored endpoint map EndΣ
x0

is C2,

2. The set U sing
x0

of singular controls is minimized, and

3. The solution of each path-lifting equation (1.1) is defined on [0, 1].

As described above, each subproblem has a satisfying answer provided that Σ is an

SBG driftless control-affine system. In the sense that this result applies to a class

of control systems evolving on general manifolds, it is the only general result which

validates the continuation method. More specialized results exist as well. Indeed, it
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is known that the three obstructions are at least partially overcome for a simple

model of a front wheel-driven car [Chitour and Sussmann 1998], and for certain

left-invariant control systems evolving on compact Lie groups [Chitour 2002]. In

each of the cited works, the control systems under study are driftless control-affine

systems.

The overall goal of this thesis is to study the validity of the continuation

method outside of the realm of driftless control-affine systems. This investigation

is motivated by two simple facts: First, the continuation method can be applied—

at least in principle—to fully nonlinear systems. Second, many control systems

encountered in practice are not driftless control-affine systems. Obviously, control-

affine systems with drift are automatically excluded, as are control systems which

are time-varying. Furthermore, even a very simple physical control system may not

be a control-affine system, as evidenced by the dielectrophoretic control systems

studied by Melnyk and Chang [2010]. With this in mind, our objective is to examine

each of the above-mentioned subproblems individually, and under minimal prior

assumptions about the nature of Σ.

1.3 Organization and contributions

The following is a brief chapter-by-chapter summary of this thesis, with an emphasis

on the original contributions contained in each chapter.

Chapter 2: Preliminaries

In this chapter, we establish notation and review preliminary material. This material

deals primarily with the basic theory of initial value problems.
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Chapter 3: Control systems

In this chapter, we establish essential material concerning control systems. We

begin by recalling the theory of Cq
p and Cq

q -polynomial control systems evolving on

open subsets of Euclidean spaces. Then, we extend this theory to accommodate

control systems evolving on finite-dimensional manifolds. The extended theory

includes a high-order differentiability result which subsumes Bismut’s theorem. This

result can be used to overcome the first obstruction to the continuation method.

Chapter 4: The continuation method

In this chapter, we present the continuation method in full detail. By generalizing

key features of the “classical” continuation method, we obtain a continuation method

which does not rely fundamentally on Moore–Penrose pseudoinverses.

Chapter 5: Operations on time-varying vector fields

In this chapter, we review four operations on time-varying vector fields. These

operations are the vertical lift, tangent lift, cotangent lift, and the pullback of one

time-varying vector field by the global flow of another. In anticipation of Chapter 6,

we derive a number of new identities. These identities provide reductive formulas

for pullbacks involving lifts, an explicit formula for the global flow of X + Y , where

X is a tangent lift and Y is a vertical lift, and explicit formulas for time derivatives

and scalar parameter derivatives of pullbacks.

Chapter 6: Differentials of endpoint maps

In this chapter, we explicitly compute the differentials of the anchored endpoint

maps of Σ. In fact, we compute the differentials of the so-called “endpoint maps” of

Σ, which are functionally dependent on the initial state as well as on the control. In
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contrast with similar results derived by Vakhrameev [1991b], our computations do

not rely on the chronological calculus formalism, and accommodate weakly regular,

time-varying, fully nonlinear control systems. The analytical approach involves

linearized lifts of Σ to the tangent bundle TM , together with the identities derived

in Chapter 5.

Chapter 7: Intrinsic quadratic differentials of anchored

endpoint maps

In this chapter, we explicitly compute the intrinsic quadratic differentials of the

anchored endpoint maps of Σ. Roughly speaking, the results in this chapter carry

the analysis of Chapter 6 to the second order. In particular, the analytical approach

involves bilinearized lifts of Σ to the second tangent bundle TTM , together with

the identities derived in Chapter 5.

Chapter 8: Constant-rank conditions

In this chapter, we study constant-rank conditions; that is, conditions which ensure

that the anchored endpoint maps of Σ are constant-rank. After recalling a sufficient

constant-rank condition derived by Vakhrameev [1991b], we describe how this

condition can be used to overcome the second obstruction to the continuation

method. Building on the work of Vakhrameev [1991b], we then derive a necessary

and sufficient constant-rank condition. Mirroring the analysis in Chapters 6 and 7,

the computations in this chapter do not rely on the chronological calculus formalism,

and accommodate weakly regular, time-varying, fully nonlinear control systems.
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Chapter 9: Sublinear growth

In this chapter, we study the third obstruction to the continuation method, under

the standing assumption that Σ is a control-affine system. We present a sublinear

growth condition, and explain how it can be used to overcome the third obstruction.

Then, by extending a result of Chitour [1996], we show how the sublinear growth

condition can be verified by examining the Lie bracket configuration and momentum

functions of Σ.

Chapter 10: A necessary condition for unobstructed motion

planning by the continuation method

In this chapter, we demonstrate the following fact: If Σ is a control system which is

completely unobstructed with respect to the x0-anchored MPP, then its x0-anchored

endpoint map is a fiber bundle overM . This result indicates that such unobstructed

control systems are quite exceptional within the class of all control systems.

Chapter 11: Examples

In this chapter, we illustrate the theory developed in the preceding chapters. This

is accomplished by applying the theory to several academic control-affine systems.

Chapter 12: Conclusions

In this chapter, we summarize the major contributions of this thesis and indicate

several avenues for future work.
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Chapter 2

Preliminaries

This chapter serves to recall preliminary material, including our notational conven-

tions, essential preliminary results, and the basic theory of initial value problems.

2.1 Notation and preliminary results

In this section, we fix our notation, and quickly review definitions and results which

will be used throughout this thesis.

2.1.1 Sets and maps

The symbols ∅, N, Z, and R have their standard meanings, being the empty set,

the natural numbers, the integers, and the real numbers, respectively. We denote

by Z≥0 the set of nonnegative integers. Similarly, we denote by R<0, R>0, and R≥x

the sets of negative real numbers, positive real numbers, and real numbers greater

than or equal to x ∈ R, respectively. For convenience, we define

N∗ = N ∪ {∞} and R∗≥1 = R≥1 ∪ {∞}.

By convention, ∞− 1 =∞+ 1 =∞, 1
∞ = 0, and x ≤ ∞ for each x ∈ R. Without

further qualification, an interval is a nonempty connected subset of R. Typically,
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we will interpret the elements of an interval as being time instants.

Given a set S, the identity map on S is denoted by idS : S → S. The image

of a map f : S → T is denoted by image(f), and the restriction of f to a subset

S ′ ⊆ S is denoted by f |S ′. Given sets S1, . . . , Sn, projection onto the ith factor of

the product S1 × · · · × Sn is denoted by pri. If S1, . . . , Sn are topological spaces,

then each pri is continuous and open; the property of being open means that the

image of any open subset of Si under pri is open.

The term function is exclusively reserved for R-valued maps. A curve in a

topological space T is a continuous map γ : I → T whose domain is an interval.

Finally, the terms “C0” and “continuous” are synonymous.

2.1.2 Vector spaces, linear maps, and multilinear maps

All vector spaces considered in this thesis are real vector spaces. Given a vector

space E, its origin is denoted by 0E unless specified otherwise. For example, the

origin of R is denoted by 0 instead of 0R. The dimension of E is denoted by dim(E).

Elements of Rn are written in boldface, as are Rn-valued maps, whenever n ≥ 2 or

n is indeterminate. Depending on context, a vector x ∈ Rn will be written as

x = (x1, . . . , xn) or x =


x1

...

xn

 .

Given a Banach space E, its norm is denoted by ‖ · ‖. When we wish to

emphasize E, we will write ‖ · ‖E instead of ‖ · ‖. In particular, Rn will always have

the Euclidean norm ‖ · ‖Rn . Given Banach spaces E and F , Hom(E,F ) denotes the

Banach space of all continuous linear maps λ : E → F with the operator norm

‖λ‖ = sup{‖λ · e‖F : ‖e‖E = 1}.
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Equivalently,

‖λ‖ = inf{C ∈ R>0 : ‖λ · e‖F ≤ C‖e‖E for each e ∈ E}.

In particular, when E = Rn and F = Rm, each λ ∈ Hom(Rn,Rm) can be identified

with its matrix representation with respect to the standard bases. When F = R,

we obtain the continuous dual space of E, denoted by1

E∗ = Hom(E,R).

The image of e ∈ E under λ ∈ Hom(E,F ) is denoted by λ · e, and the kernel and

image of λ are denoted by ker(λ) and image(λ), respectively. The cokernel of λ is

denoted by coker(λ). By definition, coker(λ) is the quotient vector space

coker(λ) = F / image(λ),

where image(λ) denote the closure of image(λ) in F . Note that if F is finite-

dimensional, then image(λ) is closed and coker(λ) = F / image(λ). The rank of λ

is denoted by rank(λ). By definition, rank(λ) = dim(image(λ)).

Given Banach spaces E1, . . . , Ek, their direct sum is denoted by E1 ⊕ · · · ⊕ Ek.

The latter space is a Banach space with the norm

‖(e1, . . . , ek)‖ =
k∑
i=1

‖ei‖Ei .

Given a Hilbert space E, its inner product is denoted by 〈·, ·〉. When we wish

to emphasize E, we will write 〈·, ·〉E instead of 〈·, ·〉. By the Riesz representation

theorem, there is a canonical vector space isomorphism E ∼= E∗. Given Hilbert

spaces E and F , the adjoint of λ ∈ Hom(E,F ) is denoted by λ∗. By definition,

λ∗ ∈ Hom(F ∗, E∗) ∼= Hom(F,E)

1This notation does not conflict with N∗ and R∗≥1, as N and R≥1 are not vector spaces.
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satisfies

〈λ · e, f〉F = 〈e, λ∗ · f〉E

for each e ∈ E and each f ∈ F . In particular, when E = Rn and F = Rm, each

λ∗ ∈ Hom(Rm,Rn) can be identified with the transpose of the matrix representation

of λ with respect to the standard bases.

To accommodate high-order derivatives, we require notation concerning contin-

uous multilinear maps. Given Banach spaces E1, . . . , Ek, F ,

Hom(E1, . . . , Ek, F )

denotes the Banach space of all continuous k-multilinear maps

λ : E1 × · · · × Ek → F

with the operator norm

‖λ‖ = sup{‖λ · (e1, . . . , ek)‖F : ‖e1‖E1 = · · · = ‖ek‖Ek = 1}.

Equivalently,

‖λ‖ = inf{C ∈ R>0 : ‖λ · (e1, . . . , ek)‖F ≤ C‖e1‖E1 · · · ‖ek‖Ek}.

The image of (e1, . . . , ek) under λ ∈ Hom(E1, . . . , Ek, F ) is denoted by

λ · (e1, . . . , ek).

The symmetric subspace of Hom(E1, . . . , Ek, F ) is denoted by Sym(E1, . . . , Ek, F ).

Recall that λ ∈ Sym(E1, . . . , Ek, F ) if and only if λ is invariant under all permuta-

tions of its arguments. In particular, when E1 = · · · = Ek = E, we write

Homk(E,F ) = Hom(E, . . . , E, F ) and

Symk(E,F ) = Sym(E, . . . , E, F ).
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Finally, we use the following standard conventions:

Hom0(E,F ) = Sym0(E,F ) = F and

Hom1(E,F ) = Sym1(E,F ) = Hom(E,F ).

In particular, when E = Rn and F = Rm, each λ ∈ Homk(Rn,Rm) can be identified

with an element of Rnkm via its tensor representation with respect to the standard

bases. For further details, we refer to [Abraham et al. 1988, Chapter 2].

2.1.3 Measure and integration

We now recall basic facts related to measure and integration. This material will

first come into play in Section 2.2, when we consider initial value problems whose

right-hand sides are measurable in the time variable.

Recall that a measurable space (S,S) is comprised of a set S and a σ-algebra

S of subsets of S. When considered as a measure space, an interval I will always

have the Lebesgue σ-algebra LI . Similarly, a topological space T will always have

the Borel σ-algebra BT . Given two measurable spaces (S,S) and (S ′,S′), a map

f : S → S ′ is measurable if and only if A ∈ S′ implies that f−1(A) ∈ S. When

we wish to emphasize the roles of the σ-algebras S and S′, we will say that f is

(S,S′)-measurable .

Suppose that I is an interval and T is a topological space. We denote by

Meas(I, T )

the quotient space obtained from the set of all measurable maps of I into T , modulo

the following equivalence relation: Two measurable maps u, v : I → T are declared

to be equivalent if and only if u(t) = v(t) for a.a. (almost all) t ∈ I. By a

standard abuse of notation, we will identify an equivalence class u ∈ Meas(I, T )

with any representative of u whenever it is convenient. Thus we refer to elements
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of Meas(I, T ) as maps (or functions when T ⊆ R). Operations on maps are

extended to equivalence classes by working with representatives.

All integrals appearing in this thesis are Lebesgue integrals. Suppose that

f : I → E,

where E is an n-dimensional vector space. One can show that f is measurable if

and only if λ · f is measurable for each λ ∈ E∗. Equivalently, f is measurable if and

only if its component functions f 1, . . . , fn : I → R with respect to some basis for

E are measurable. By [Hunter 2010, Theorem 6.24], f is integrable if and only if∫
I
‖f(σ)‖ dσ <∞,

where ‖ · ‖ is any choice of norm on E. In this case, we have∥∥∥∥∫
I
f(σ) dσ

∥∥∥∥ ≤ ∫
I
‖f(σ)‖ dσ.

If t0, t ∈ I and t0 ≤ t, we use the standard notation∫ t

t0
f(σ) dσ =

∫
[t0,t]

f(σ) dσ.

By convention, if t0 > t, then∫ t

t0
f(σ) dσ = −

∫ t0

t
f(σ) dσ.

For further details, we refer to [Cohn 1980] and [Hunter 2010, Chapter 6.A].

2.1.4 Derivatives

We now recall basic facts concerning high-order total derivatives, partial derivatives,

and mixed partial derivatives. This material will first come into play in Section

2.2, when we consider initial value problems whose right-hand sides are k times

differentiable in the state variable. Also, this material will be used in Chapter 3 to

isolate certain special control systems.

All derivatives appearing in this thesis are Fréchet derivatives.
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2.1.4.1 Total derivatives

In this section, E,F are Banach spaces, U is a nonempty open subset of E, and

f : U → F.

If f is Ck, where k ∈ N∗, then the kth-order total derivative of f is denoted by

Dkf . By definition, Dkf : U → Homk(E,F ) and one can show that Dkf actually

takes values in Symk(E,F ). We use the following standard conventions:

D0f = f and D1f = Df.

In particular, if f is C1 and E = R, then each Df(e) can be identified with an

element of F via the canonical vector space isomorphism ι : Hom(R, F )→ F that

sends λ to ι(λ) = λ · 1. In this case, Df(e) is denoted equivalently by

Df(e), ḟ(e), and
d

dt

∣∣∣∣∣
e

f.

The notion of the total derivative can also be extended to the case where U is an

interval of the form [a, b], [a, b), or (a, b]. For example, if U = [a, b] and e ∈ (a, b),

then Df(e) is defined as above. If e ∈ {a, b}, then Df(e) is understood to be a

one-sided derivative. The other cases U = [a, b) and U = (a, b] are analogous.

For products of maps, we have the following result: Suppose that F1, . . . , Fn are

Banach spaces and f = f 1 × · · · × fn : U → F1 ⊕ · · · ⊕ Fn. Then f is Ck if and

only if each of its component maps f i : U → Fi is Ck. In this case,

Dkf = Dkf 1 × · · · ×Dkfn.

2.1.4.2 Partial derivatives

In this section, T1, . . . , Ti−1, Ti+1, . . . , Tn are nonempty sets, Ei and F are Banach

spaces, Ui is a nonempty open subset of Ei, and

f : T1 × · · · × Ti−1 × Ui × Ti+1 × · · · × Tn → F.
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Suppose that

t = (t1, . . . , ti−1, ti+1, . . . , tn) ∈ T1 × · · · × Ti−1 × Ti+1 × · · · × Tn

is fixed and the partial map

ei 7→ Pt = f(t1, . . . , ti−1, ei, ti+1, . . . , tn)

of Ui into F is Ck, where k ∈ N∗. We denote the kth-order total derivative of Pt by

Dk
i f(t1, . . . , ti−1, ·, ti+1, . . . , tn) : Ui → Homk(Ei, F ).

We use the following standard conventions:

D0
i f(t1, . . . , ti−1, ·, ti+1, . . . , tn) = f(t1, . . . , ti−1, ·, ti+1, . . . , tn)

and

D1
i f(t1, . . . , ti−1, ·, ti+1, . . . , tn) = Dif(t1, . . . , ti−1, ·, ti+1, . . . , tn).

If the partial map Pt is Ck for each t, where k ∈ N∗, then the kth-order partial

derivative of f in its ith independent variable is the map

Dk
i f : T1 × · · · × Ti−1 × Ui × Ti+1 × · · · × Tn → Homk(Ei, F )

that sends (t1, . . . , ti−1, ei, ti+1, . . . , tn) to

Dk
i f(t1, . . . , ti−1, ei, ti+1, . . . , tn).

The next proposition relates the total and partial derivatives of f .

Proposition 2.1.1. Suppose that E1, . . . , En are Banach spaces, U = U1×· · ·×Un
is a nonempty product open subset of E1 ⊕ · · · ⊕ En, and f : U → F . Then f

is Ck, where k ∈ N∗, if and only if Dif exists and is Ck−1 for each 1 ≤ i ≤ n.

Furthermore, if f is C1, then

Df(e) · (e1, . . . , en) =
n∑
i=1

Dif(e) · ei

for each e ∈ U and each (e1, . . . , en) ∈ E1 ⊕ · · · ⊕ En.

For further details, we refer to [Abraham et al. 1988, Chapter 2].
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2.1.4.3 Mixed partial derivatives

Proposition 2.1.1 implies that partial derivatives can be iterated. Here, we describe

a particular situation which will arise in this thesis, particularly in Chapter 3. In

this section, I is an interval, E1, E2, F are Banach spaces, U1 × U2 is a nonempty

product open subset of E1 ⊕ E2, and

f : I × U1 × U2 → F.

Suppose that t ∈ I is fixed and the partial map

(e1, e2) 7→ Pt = f(t, e1, e2)

of U1 × U2 into F is Ck, where k ∈ N∗. Furthermore, suppose that 1 ≤ i, j ≤ k are

such that i+ j ≤ k. By Proposition 2.1.1, D2Pt exists and is Ck−1. Iterating,

Dj
2Pt : U1 × U2 → Homj(E2, F )

exists and is Ck−j. Similarly, D1D
j
2Pt exists and is Ck−(1+j). Iterating,

Di
1D

j
2Pt : U1 × U2 → Homi(E1,Homj(E2, F ))

exists and is Ck−(i+j). By construction,

Di
1D

j
2Pt = Di

2D
j
3f(t, ·, ·).

In the remainder of this thesis, we will use the notation appearing on the right-hand

side of the above equation. To maintain notational consistency with the literature,

particularly with the notation used by Margheri [1996], we write

Di
2D

j
3f(t, e1, e2) · (e1,1, . . . , e1,i, e2,1, . . . , e2,j)

= (Di
2D

j
3f(t, e1, e2) · (e1,1, . . . , e1,i)) · (e2,1, . . . , e2,j)

for each (e1, e2) ∈ U1 × U2, each (e1,1, . . . , e1,i) ∈ Ei
1, and each (e2,1, . . . , e2,j) ∈ Ej

2.

For further details, we refer to [Abraham et al. 1988, Chapter 2].
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2.1.5 The chain rule and Leibniz rule

The chain rule and Leibniz rule require some additional terminology, which we now

establish. Our presentation of this material follows [Pötzsche 2010]. If S is a set,

then its power set (that is, the set of all subsets of S) is denoted by 2S and its

cardinality is denoted by card(S).

Definition 2.1.2. Suppose that j, k ∈ N. A j-partition of {1, . . . , k} is a j-tuple

(N1, . . . , Nj), Ni ⊆ {1, . . . , k}, card(Ni) ≥ 0,

whose components form a partition of {1, . . . , k}. We denote the set of all j-

partitions of {1, . . . , k} by Pj(k). For each (N1, . . . , Nj) ∈ Pj(k), we write

Ni = {n1
i , . . . , n

card(Ni)
i }.

An ordered j-partition of {1, . . . , k} is a j-tuple (N1, . . . , Nj) ∈ Pj(k) such that

• card(Ni) ≥ 1 for each 1 ≤ i ≤ j and

• max(Ni) < max(Ni+1) for each 1 ≤ i ≤ j − 1.

We denote the set of all ordered j-partitions of {1, . . . , k} by P ord
j (k).

Remark 2.1.3. By definition, the components Ni of a j-partition of {1, . . . , k}

may be empty. This facilitates the expression of the Leibniz rule, as we will see

below.

The next example illustrates these definitions.

Example 2.1.4. The set of all 2-partitions of {1} is

P2(1) = {(∅, {1}), ({1},∅)}.

The set of all 2-partitions of {1, 2} is

P2(2) = {(∅, {1, 2}), ({1}, {2}), ({2}, {1}), ({1, 2},∅)}.
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The set of all ordered 1-partitions of {1, 2} is

P ord
1 (2) = {({1, 2})}.

Finally, the set of all ordered 2-partitions of {1, 2} is

P ord
2 (2) = {({1}, {2})}.

Theorem 2.1.5. (Chain rule) Suppose that E,F,G are Banach spaces, U is a

nonempty open subset of E, V is a nonempty open subset of F , f : U → F and

g : V → G are Ck, where k ∈ N∗, and image(f) ⊆ V . Then g ◦ f : U → G is Ck

and

Dk(g ◦ f)(e) · (e1, . . . , ek)

=
k∑
j=1

∑
(N1,...,Nj)∈P ord

j (k)

Djg(f(e)) ·
Ä
Dcard(N1)f(e) · eN1 , . . . ,D

card(Nj)f(e) · eNj
ä
,

where for each Ni, eNi denotes the card(Ni)-tuple

eNi =
Å
en1

i
, . . . , e

n
card(Ni)
i

ã
.

Proof. See [Rybakowski 1991].

Example 2.1.6. If f, g are C2, then

D2(g ◦ f)(e) · (e1, e2)

= Dg(f(e)) ·
Ä
D2f(e) · (e1, e2)

ä
+D2g(f(e)) · (Df(e)) · e1,Df(e) · e2) .

This is easily seen, using the expressions from Example 2.1.4.

Theorem 2.1.7. (Leibniz rule) Suppose that E,E1, . . . , En, F are Banach spaces,

U is a nonempty open subset of E, fi : U → Ei is Ck for each 1 ≤ i ≤ n, where

k ∈ N∗, and λ ∈ Hom(E1, . . . , En, F ). Then Λ = λ ◦ (f1 × · · · × fn) : U → F is Ck

and

DkΛ(e) · (e1, . . . , ek)
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=
∑

(N1,...,Nn)∈Pn(k)

λ · (Dcard(N1)f1(e) · eN1 , . . . ,D
card(Nn)fn(e) · eNn),

where for each Ni, eNi denotes the card(Ni)-tuple

eNi =
Å
en1

i
, . . . , e

n
card(Ni)
i

ã
.

Proof. See [Abraham et al. 1988, pages 95–96 and Exercise 2.4C]

Example 2.1.8. Suppose that n = 2 and f1, f2 are C1. Then

DΛ(e) · e1 = λ · (Df1(e) · e1, f2(e)) + λ · (f1(e),Df2(e) · e1).

On the other hand, suppose that f1, f2 are C2. Then

D2Λ(e) · (e1, e2)

= λ · (f1(e),D2f2(e) · (e1, e2)) + λ · (Df1(e) · e1,Df2(e) · e2) +

λ · (Df1(e) · e2,Df2(e) · e1) + λ · (D2f1(e) · (e1, e2), f2(e)).

Again, this is easily seen, using the expressions from Example 2.1.4.

For further details, we refer to [Pötzsche 2010].

2.1.6 Lp and locally Lp spaces

In this section, we recall basic facts about Lp spaces. Throughout this thesis, these

spaces will serve as control spaces—an instance of this appeared in Chapter 1,

where we chose an L2 space of controls. Throughout this section, I is an interval,

E is a finite-dimensional vector space, and ‖ · ‖E is any choice of norm on E.

2.1.6.1 Lp spaces

By definition, u ∈ Lp(I, E), where p ∈ R≥1, if and only if u ∈ Meas(I, E) and

∫
I
‖u(σ)‖pE dσ <∞.
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The vector space Lp(I, E) is a Banach space with the p-norm

‖u‖p =
Å∫

I
‖u(σ)‖pE dσ

ã1/p

.

By definition, u ∈ L∞(I, E) if and only if u ∈ Meas(I, E) and there exists a compact

subset K of E such that u(t) ∈ K for a.a. t ∈ I. The vector space L∞(I, E) is a

Banach space with the ∞-norm

‖u‖∞ = inf{C ∈ R>0 : ‖u(t)‖E < C for a.a. t ∈ I}.

Provided that I is compact, there is a chain of inclusions

L∞(I, E) ⊆ Lq(I, E) ⊆ Lp(I, E) ⊆ L1(I, E), q ≥ p. (2.1)

More generally, (2.1) holds when the measure of I is finite.

For further details, we refer to [Cohn 1980, Chapter 3].

2.1.6.2 Locally Lp spaces

By definition, u ∈ Lploc(I, E), where p ∈ R∗≥1, if and only if u ∈ Meas(I, E) and

u|K ∈ Lp(K,E)

for each compact subinterval K ⊆ I. We say that elements of L1
loc(I, E) are locally

integrable . Clearly, if I is compact, then there is no distinction between Lploc(I, E)

and Lp(I, E). From (2.1), we obtain the chain of inclusions

L∞loc(I, E) ⊆ Lqloc(I, E) ⊆ Lploc(I, E) ⊆ L1
loc(I, E), q ≥ p. (2.2)

To handle nonnegative functions, we define

Lploc(I,R≥0) = {u ∈ Lploc(I,R) : u(t) ≥ 0 for a.a. t ∈ I}.

Given a compact subinterval K ⊆ I, the projection map

πpK : Lploc(I, E)→ Lp(K,E)
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is defined by

πpK(u) = u|K.

One can show that πpK is a surjective continuous linear map, where Lploc(I, E) has

its natural topology as a Fréchet space, and thus πpK is an open map.

For further details, we refer to [Trèves 1966].

2.1.6.3 Hölder’s inequality for k-fold products

The next theorem is Hölder’s inequality for k-fold products of maps. Recall from

Section 2.1.1 that 1
∞ = 0 as a matter of convention.

Theorem 2.1.9. (Hölder’s inequality) Suppose that p1, . . . , pk, q ∈ R∗≥1,

k∑
j=1

1

pj
=

1

q
,

and uj ∈ Lpjloc(I, E) for each 1 ≤ j ≤ k. Then u1 · · ·uk ∈ Lqloc(I, E) and

‖(u1 · · ·uk)|K‖q ≤ ‖u1|K‖p1 · · · ‖uk|K‖pk .

for each compact subinterval K ⊆ I.

Proof. See [Bogachev 2007, Chapter 2].

Note that Hölder’s inequality reduces to the well-known Cauchy–Schwarz in-

equality when k = 2, p1 = 2, p2 = 2, and q = 1. In this case, we have

∫
K
‖u1(σ)u2(σ)‖E dσ ≤

Å∫
K
‖u1(σ)‖2

E dσ
ã1/2 Å∫

K
‖u2(σ)‖2

E dσ
ã1/2

.

2.1.7 Manifolds

As described in Chapter 1, the objects of primary interest in this thesis are control

systems evolving on finite-dimensional manifolds. We also have a primary interest
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in maps between manifolds modelled on Banach spaces (which may be infinte-

dimensional). For example, the x0-anchored endpoint map of a control system,

as described in Chapter 1, is such a map. To treat the finite- and infinite-di-

mensional cases simultaneously, we use the language of Banach manifolds. All

Banach manifolds considered in this thesis are nonempty, real, positive-dimensional,

Hausdorff, and C∞, unless specified otherwise. For example, at several junctures

we will strengthen these hypotheses by assuming that a given Banach manifold is

second-countable or Cω (that is, real-analytic). Note that these conventions apply

to vector bundles as well, since vector bundles are special instances of Banach

manifolds.

Suppose that Q is a Banach manifold modelled on a Banach space EQ. The

dimension of Q is denoted by dim(Q); by definition, dim(Q) = dim(EQ). The

tangent and cotangent bundles of Q, which are themselves Banach manifolds

modelled on the direct sum EQ ⊕ EQ, are denoted by

πTQ : TQ→ Q and πT ∗Q : T ∗Q→ Q,

respectively. The tangent space to Q at q ∈ Q (that is, the fiber of TQ over q) is

denoted by TqQ. A generic element of TqQ is written vq. For notational economy,

the origin of TqQ is denoted by 0q instead of 0TqQ. If Q is an open submanifold of

EQ, then each tangent space TqQ is canonically isomorphic to EQ; we will use this

fact implicitly throughout this thesis. The cotangent space to Q at q ∈ Q (that is,

the fiber of T ∗Q over q) is denoted by T ∗qQ. By construction, T ∗qQ = (TqQ)∗. A

generic element of T ∗qQ is written pq. The second tangent bundle of Q, which is

itself a Banach manifold modelled on EQ ⊕ EQ ⊕ EQ ⊕ EQ, is denoted by

πTTQ : TTQ→ TQ.

The canonical involution of TTQ is denoted by sQ : TTQ→ TTQ.
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Any chart (U,ϕ) on Q induces natural charts on the bundles TQ, T ∗Q, and

TTQ, denoted by (TU, Tϕ), (T ∗U, T ∗ϕ), and (TTU, TTϕ), respectively. In this

way, any compatible atlas AQ on Q induces natural atlases on the bundles TQ,

T ∗Q, and TTQ. These are denoted by TAQ, T ∗AQ, and TTAQ, respectively.

Suppose now that F : Q→ R, where Q and R are Banach manifolds. If F is

Ck, where k ∈ N∗, then its differential TF : TQ→ TR is Ck−1. Given q ∈ Q, the

restriction of TF to the tangent space TqQ is denoted by TF (q). By definition,

TF (q) ∈ Hom(TqQ, TF (q)R).

When it is notationally unwieldy to write TF (q), we simply write TF . If (U,ϕ)

and (V, ψ) are charts on Q and R, respectively, such that F (U) ⊆ V , then we say

that (U,ϕ) and (V, ψ) are F -compatible . For such charts,

Fψ,ϕ = ψ ◦ F ◦ ϕ−1

denotes the local representative of F in (U,ϕ) and (V, ψ). For example, the local

representative of the canonical involution sQ in (TTU, TTϕ) and (TTU, TTϕ) is

(sQ)TTϕ,TTϕ(q,v,Q,V ) = (q,Q,v,V ).

Finally, given a Riemannian manifold Q = (Q, g), each tangent space TqQ is

a Hilbert space with the inner product induced by g. Since TqQ is canonically

isomorphic to T ∗qQ, each T ∗qQ is a Hilbert space. The natural pairing of vq ∈ TqQ

and pq ∈ T ∗qQ is denoted by 〈pq, vq〉 = pq · vq.

For further details, we refer to [Abraham et al. 1988, Chapters 3 and 5].

2.2 Initial value problems evolving on open

subsets of Euclidean spaces

As we will see in Chapter 3, each of the controlled trajectories of a control system

is the solution of an initial value problem. In this section, we review fundamental
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results from the theory of initial value problems evolving on open subsets of

Euclidean spaces. These results concern the nature of solutions, their existence

and uniqueness, and the functional dependence of solutions on initial conditions.

Our presentation follows Sontag [1998, Appendix C]. In Section 2.3, this material

is extended to accommodate initial value problems evolving on finite-dimensional

manifolds.

Our standing assumptions throughout this section are that

• I is an interval,

• V is a nonempty open subset of Rn, and

• f : I × V → Rn.

Throughout this section, ξ : dom(ξ)→ V is a curve.

Here we consider initial value problems of the form
ξ̇(t) = f(t, ξ(t)), ξ(t) ∈ V, t ∈ I

ξ(t0) = x0,
(2.3)

where (t0,x0) ∈ I × V . At the outset, it is reasonable to say that ξ is a solution of

(2.3) if and only if dom(ξ) is a subinterval of I containing t0, the map

t 7→ f(t, ξ(t))

is an element of L1
loc(dom(ξ),Rn) and

ξ(t) = x0 +
∫ t

t0
f(σ, ξ(σ)) dσ (2.4)

for each t ∈ dom(ξ). The fundamental theorem of calculus, which we now review,

equates this property to local absolute continuity and to differentiability.

Definition 2.2.1. Suppose that dom(ξ) is compact. We say that ξ is absolutely

continuous (AC) if for each ε ∈ R>0 there exists δ ∈ R>0 such that
N∑
i=1

‖ξ(di)− ξ(ci)‖Rn < ε
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whenever N ∈ N and [ci, di], 1 ≤ i ≤ n, are disjoint subintervals of dom(ξ) with
N∑
i=1

(di − ci) < δ.

On the other hand, suppose that dom(ξ) is not compact. We say that ξ is locally

absolutely continuous (LAC) if ξ|K is AC for each compact subinterval K of

dom(ξ). Clearly, if dom(ξ) is compact, then there is no distinction between ξ being

AC and ξ being LAC.

The LAC property is stable under composition with locally Lipschitz maps.

Lemma 2.2.2. Suppose that F : V → Rk is locally Lipschitz and ξ is LAC. Then

F ◦ ξ : dom(ξ)→ Rk is LAC.

Proof. Choose a compact subinterval K ⊆ dom(ξ). We must show that F ◦ ξ|K is

AC. To this end, observe that ξ(K) is compact since ξ is continuous. Since F is

locally Lipschitz, F |ξ(K) is Lipschitz. That is, there exists C ∈ R≥0 such that

‖F (x)− F (y)‖Rk ≤ C‖x− y‖Rn

for each x,y ∈ ξ(K). Without loss of generality, we may assume that C 6= 0. Since

ξ|K is AC, for each ε ∈ R>0 there exists δ ∈ R>0 such that
N∑
i=1

‖ξ(di)− ξ(ci)‖Rn <
ε

C

whenever N ∈ N and [ci, di], 1 ≤ i ≤ N are disjoint subintervals of K satisfying
N∑
i=1

(di − ci) < δ.

Thus F ◦ ξ|K is AC, since for each ε ∈ R>0 there exists δ ∈ R>0 such that
N∑
i=1

‖F ◦ ξ(di)− F ◦ ξ(ci)‖Rk ≤ C
N∑
i=1

‖ξ(di)− ξ(ci)‖Rn < C
ε

C
= ε

whenever N ∈ N and [ci, di], 1 ≤ i ≤ N are disjoint subintervals of K satisfying
N∑
i=1

(di − ci) < δ.

We conclude that F ◦ ξ is LAC.
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The next theorem is the fundamental theorem of calculus.

Theorem 2.2.3. The following properties are equivalent:

1. ξ is LAC;

2. ξ̇(t) exists for a.a. t ∈ dom(ξ), t 7→ ξ̇(t) ∈ L1
loc(dom(ξ),Rn), and

ξ(t) = ξ(t0) +
∫ t

t0
ξ̇(σ) dσ

for each t, t0 ∈ dom(ξ);

3. There exists P ∈ L1
loc(dom(ξ),Rn) such that

ξ(t) = ξ(t0) +
∫ t

t0
P (σ) dσ (2.5)

for each t, t0 ∈ dom(ξ).

Furthermore, if ξ is LAC, then P is uniquely determined by the fact that ξ̇(t) = P (t)

for a.a. t ∈ dom(ξ).

Proof. See [Leoni 2009, Chapter 3].

We now formally define initial value problems and their solutions.

Definition 2.2.4. Suppose that (t0,x0) ∈ I × V . The triple (f , t0,x0) is said to

be an initial value problem evolving on V , with right-hand side f and initial

condition (t0,x0). We say that ξ is a solution of (f , t0,x0) if

• dom(ξ) is a relatively open subinterval2 of I containing t0,

• The map t 7→ f(t, ξ(t)) is an element of L1
loc(dom(ξ),Rn), and

• ξ(t) = x0 +
∫ t
t0
f(σ, ξ(σ)) dσ for each t ∈ dom(ξ).

The next lemma characterizes solutions in an alternative way.
2That is, dom(ξ) can be written as the intersection of I with an open interval.
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Lemma 2.2.5. The curve ξ is a solution of (f , t0,x0) if and only if

1. dom(ξ) is a relatively open subinterval of I containing t0,

2. ξ is LAC,

3. ξ(t0) = x0, and ξ̇(t) = f(t, ξ(t)) for a.a. t ∈ dom(ξ).

Proof. This follows immediately from Theorem 2.2.3.

Definition 2.2.6. Suppose that (t0,x0) ∈ I × V and ξ is a solution of (f , t0,x0).

We say that ξ is maximally-defined if it has the following property: If

ξ̃ : dom(ξ̃)→ V

is another solution of (f , t0,x0), then

dom(ξ̃) ⊆ dom(ξ) and ξ̃(t) = ξ(t)

for each t ∈ dom(ξ̃). Clearly, such a solution is unique.

Definition 2.2.7. We say that f is solvable if there exists a maximally-defined

solution of (f , t0,x0) for each (t0,x0) ∈ I × V . If f is solvable, then the maximal-

ly-defined solution of (f , t0,x0) is denoted by

µf (·, t0,x0) : If (t0,x0)→ V.

Two basic properties of maximally-defined solutions are given next.

Proposition 2.2.8. Suppose that f is solvable and (t0,x0) ∈ I × V . Then

1. For each t ∈ If (t0,x0), we have If (t0,x0) = If (t, µf (t, t0,x0)), and

2. For each t, s ∈ If (t0,x0), we have µf (t, t0,x0) = µf (t, s, µf (s, t0,x0)).

To study the functional dependence of maximally-defined solutions on initial

conditions, we aggregate these solutions into a single map.
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Definition 2.2.9. Suppose that f is solvable. Define

dom(Φf ) = {(t, t0,x0) ∈ I × I × V : t ∈ If (t0,x0)}.

The global flow of f is the map Φf : dom(Φf )→ V that sends (t, t0,x0) to

Φft,t0(x0) = µf (t, t0,x0).

We must also consider the global flow of f with its first two independent variables

fixed. For each (t, t0) ∈ I × I, define

dom(Φft,t0) = {x0 ∈ V : (t, t0,x0) ∈ dom(Φf )}.

By a mild abuse of notation, we denote by

Φft,t0 : dom(Φft,t0)→ V

the map that sends x0 to Φft,t0(x0).

Remark 2.2.10. Suppose that f is solvable and (t0,x0) ∈ I × V . Then for each

t, s ∈ If (t0,x0), we have

Φft,t0(x0) = Φft,s ◦ Φfs,t0(x0).

This follows immediately from Proposition 2.2.8.

We now turn to verifying that f is solvable.

Definition 2.2.11. Suppose that E is a normed vector space and

g : I × V → E.

We say that g is locally integrably bounded if for each compact subset K ⊆ V ,

there exists α ∈ L1
loc(I,R≥0) such that

‖g(t,x)‖E ≤ α(t)
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for a.a. t ∈ I and each x ∈ K. We say that g is locally integrably Lipschitz if

for each compact subset K ⊆ V , there exists β ∈ L1
loc(I,R≥0) such that

‖g(t,x)− g(t,y)‖E ≤ β(t) ‖x− y‖Rn

for a.a. t ∈ I and each x,y ∈ K.

Remark 2.2.12. In later chapters, it will be useful to have slightly different

formulations of the conditions described in Definition 2.2.11. First, g is locally

integrably bounded if and only if it has the following property: For each compact

subinterval J ⊆ I and each compact subset K ⊆ V , there exists α ∈ L1(J,R≥0)

such that

‖g(t,x)‖E ≤ α(t)

for a.a. t ∈ J and each x ∈ K. Similarly, g is locally integrably Lipschitz if and

only if it has the following property: For each compact subinterval J ⊆ I and each

compact subset K ⊆ V , there exists β ∈ L1(J,R≥0) such that

‖g(t,x)− g(t,y)‖E ≤ β(t) ‖x− y‖Rn

for a.a. t ∈ J and each x,y ∈ K.

Definition 2.2.13. We say that f satisfies Carathéodory conditions if

• For each t ∈ I, the map x 7→ f(t,x) of V into Rn is continuous,

• For each x ∈ V , the map t 7→ f(t,x) of I into Rn is measurable,

• f is locally integrably bounded, and

• f is locally integrably Lipschitz.

Theorem 2.2.14. If f satisfies Carathéodory conditions, then it is solvable.

Proof. See [Sontag 1998, Appendix C].
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Remark 2.2.15. It is natural to ask if it is strictly necessary to introduce initial

value problems whose right-hand sides are measurable in the time variable. The

answer is affirmative: For the purposes of this thesis, we cannot strengthen the

assumption that each map t 7→ f(t,x) is measurable. Roughly speaking, this is a

consequence of the fact that the continuation method requires measurable controls.

Remark 2.2.16. The first two criteria of Definition 2.2.13 ensure that for each

measurable map ν : dom(ν)→ V , where dom(ν) is a subinterval of I, the map

t 7→ f(t,ν(t))

is measurable. Indeed, this follows from [Aliprantis and Border 2006, Lemma 4.51],

which tells us that f is (LI ⊗BV ,BRn)-measurable. Here, LI ⊗BV denotes the

product of the σ-algebras LI and BV ; see [Cohn 1980] for definitions.

The next result gives a condition under which maximally-defined solutions are

defined on the entire interval I. Note this result only applies when V = Rn.

Lemma 2.2.17. Suppose that V = Rn, f satisfies Carathéodory conditions, and

there exists β ∈ L1
loc(I,R≥0) such that

‖f(t,x)− f(t,y)‖Rn ≤ β(t) ‖x− y‖Rn

for a.a. t ∈ I and each x,y ∈ Rn. Then the following property holds: For each

(t0,x0) ∈ I × V , the maximally-defined solution of (f , t0,x0) satisfies

µf (t0,x0) = I.

Proof. See [Sontag 1998, Proposition C.3.8].

Remark 2.2.18. In later chapters, it will be useful to have a slightly different

formulation of the Lipschitz condition described in Lemma 2.2.17. The map f
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satisfies this condition if and only it has the following property: For each compact

subinterval J ⊆ I, there exists β ∈ L1(J,R≥0) such that

‖f(t,x)− f(t,y)‖Rn ≤ β(t) ‖x− y‖Rn

for a.a. t ∈ J and each x,y ∈ Rn.

We now consider differentiability. The next definition follows Sussmann [1998].

Definition 2.2.19. We say that f is locally integrably Ck, where k ∈ Z∗≥0, if

• For each t ∈ I, the map x 7→ f(t,x) of V into Rn is Ck,

• For each x ∈ V , the map t 7→ f(t,x) of I into Rn is measurable,

• For each 0 ≤ j ≤ k, the map Dj
2f is locally integrably bounded.3

Of course, if f is locally integrably Ck, then it is locally integrably Cj for 0 ≤ j ≤ k.

Remark 2.2.20. In addition to the criteria described in Definition 2.2.19, some

authors require that for each x ∈ V and each 1 ≤ j ≤ k, the map

t 7→Dj
2f(t,x)

of I into Homj(Rn,Rn) is measurable; see [Grasse 2008, Definition 2.6]. Although

this extra requirement leads to a hierarchical definition, where f and its partial

derivatives Dj
2f satisfy identical conditions, it is redundant. Indeed, each map

t 7→ f(t,x) = (f 1(t,x), . . . , fn(t,x))

is assumed to be measurable, hence each of its component functions f i is measurable.

Now consider the nj+1 component functions

t 7→Dj
2f

i(t,x) · (ei1 , . . . , ein) =
∂jf i

∂xi1 · · · ∂xin (t,x), 1 ≤ i, i1, . . . , in ≤ n

3In the literature, some authors refer to these three conditions as Ck Carathéodory conditions;
see, for example, [Grasse 2008].
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of the tensor representation of t 7→Dj
2f(t,x) with respect to the standard bases.

Since each component function is obtained as the pointwise limit of measurable

functions, it is measurable [Cohn 1980]. Thus t 7→Dj
2f(t,x) is measurable.

In particular, this implies that if f is locally integrably Ck, where k ∈ N∗, then

for each 0 ≤ j ≤ k the jth-order partial derivative Dj
2f is locally integrably C0.

Remark 2.2.21. The map f satisfies Carathéodory conditions whenever f is

locally integrably C1. Indeed, the first three criteria of Definition 2.2.13 are clearly

satisfied. By [Sontag 1998, Proposition C.3.4], the fourth criterion is also satisfied.

In particular, f has a well-defined global flow whenever f is locally integrably C1.

We will use this fact implicitly in the remainder of this section.

We now address how global flows give rise to diffeomorphisms.

Theorem 2.2.22. Suppose that f is locally integrably Ck, where k ∈ N∗. Then

1. dom(Φf ) is an open subset of I × I × V ,

2. Φf is continuous, and

3. Φft,t0 is Ck for each (t, t0) ∈ I × I.

The first two conclusions hold if f merely satisfies Carathéodory conditions.

Proof. See [McShane 1944, Chapter IX, Section 69.4].

Corollary 2.2.23. Suppose that f is locally integrably Ck, where k ∈ N∗, and

(t, t0) ∈ I × I.

Then the following conclusions hold:

1. Φft,t0 is a Ck diffeomorphism of dom(Φft,t0) onto dom(Φft0,t);

2. The inverse of Φft,t0 is (Φft,t0)−1 = Φft0,t.
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Proof. By Theorem 2.2.22, it follows that

V0 = dom(Φft,t0)

is open in V and Φft,t0 is Ck. Choose x ∈ V0. By construction, t ∈ If (t0,x), hence

If (t0,x) = If (t, µf (t, t0,x)) = If (t,Φft,t0(x))

by Proposition 2.2.8. In particular, t0 ∈ If (t,Φft,t0(x)). By definition,

Φft,t0(x) ∈ Ṽ0 = dom(Φft0,t).

This shows that Φft,t0 maps V0 into Ṽ0. It is injective, since

Φft0,t ◦ Φft,t0(x) = Φft0,t0(x) = x.

Exchanging the roles of t and t0 completes the proof.

Remark 2.2.24. Analogues of Theorem 2.2.22 and Corollary 2.2.23 can be found

throughout the control theory literature. For example, these results appear in the

work of Sussmann [1999], Agrachev and Sachkov [2004, Chapter 2], Barbu and

Lefter [2005, Section 2.3], and Bullo and Lewis [2005a, Theorem A.1].

2.3 Initial value problems evolving on

finite-dimensional manifolds

In this section, we extend the results of the previous section to accommodate initial

value problems evolving on finite-dimensional manifolds. Although the material in

this section is well-known, we are not aware of any source which provides detailed

proofs. For this reason, as well as the importance of this section to later chapters,

we believe that the detailed treatment in this section is warranted.

Our standing assumptions in this section are that
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• I is an interval and

• M is an n-dimensional manifold.

Throughout this section, ξ : dom(ξ)→M is a curve.

In Section 2.2, we saw that the solution of an initial value problem is a locally

absolutely continuous (LAC) curve. To extend these notions, we first define what

it means for the curve ξ to be LAC. Our approach follows Kawan [2009].

Definition 2.3.1. We say that ξ is locally absolutely continuous (LAC) if for

each t ∈ dom(ξ), there exist

• A compact subinterval It ⊆ dom(ξ) such that t ∈ int(It), where int(It) denotes

the interior of It relative to dom(ξ), and

• A chart (Vt,ψt) on M such that ξ(It) ⊆ Vt and ψt ◦ ξ|It is AC.

One can show that Definition 2.3.1 is equivalent to Definition 2.2.1 when M is

an open submanifold of Rn. Furthermore, one can show that Definition 2.3.1 is

well-defined, in the sense that it does not depend on the particular choice of chart

(Vt,ψt). Both of these assertions are proven in [Kawan 2009, Proposition 1.1.6].

In the literature, one can find several equivalent characterizations of what it

means for a map into M to be AC and LAC. (There is sometimes no distinction

drawn between these two terms, since the notion of locality is already built in by

means of charts or bump functions.) For this material, we refer to [Klingenberg

1995, Sussmann 1998, Ballard 2002, Bullo and Lewis 2005a, Lewis 2009].

One can show that the LAC property is stable under composition with locally

Lipschitz maps. However, we only require this result for composition with C1 maps.

Lemma 2.3.2. Suppose that F : M → N is C1, where N is a finite-dimensional

manifold, and ξ is LAC. Then F ◦ ξ : dom(ξ)→ N is LAC.
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Proof. Suppose that t ∈ dom(ξ) and It, (Vt,ψt) are prescribed as in Definition

2.3.1. Choose a chart (W,χ) on N such that F ◦ ξ(t) ⊆ W . Shrinking It and Vt,

we can assume without loss of generality that

• F ◦ ξ|It ⊆ W and

• (Vt,ψt) and (W,χ) are F -compatible.

Since F ◦ ξ|It = (χ ◦ F ◦ ψ−1
t ) ◦ (ψt ◦ ξ|It) and C1 maps are locally Lipschitz, it

follows from Lemma 2.2.2 that F ◦ ξ|It is AC. This completes the proof.

By Theorem 2.2.3, LAC curves in Euclidean spaces are differentiable almost

everywhere. We now demonstrate that LAC curves in M share this property.

Lemma 2.3.3. Suppose that ξ is LAC. Then ξ̇(t) exists for a.a. t ∈ dom(ξ).

Proof. By [Barreira and Valls 2012, Definition 1.80], ξ̇(t) exists if and only if

˙̇
ψ ◦ ξ(t)

exists for some chart (V,ψ) on M such that ξ(t) ∈ V . Now, for each t ∈ dom(ξ),

let It and (Vt,ψt) be prescribed as in Definition 2.3.1. Then

{ζt = int(It)}t∈dom(ξ)

is an open cover of dom(ξ). Since dom(ξ) is second-countable, this cover can be

reduced to a countable subcover {ζti}i∈N. For each index i ∈ N,

ξi = ψti
◦ ξ|Iti

is AC, and we have the chain of implications

ξi is AC =⇒ ξ̇i(t) exists for a.a. t ∈ Iti

=⇒ ξ̇i(t) exists for a.a. t ∈ ζti ⊆ Iti

=⇒ ξ̇i(t) exists for each t ∈ ζti r Zi, where Zi ⊆ ζti has measure zero
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=⇒ ξ̇(t) exists for each t ∈ ζti r Zi.

Thus ξ̇(t) exists for each

t ∈
⋃
i∈N

(ζti r Zi) =
⋃
i∈N

ζti r
⋃
i∈N

Zi = dom(ξ) r
⋃
i∈N

Zi.

Since a countable union of sets of measure zero has measure zero [Cohn 1980], we

conclude that ξ̇(t) exists for a.a. t ∈ dom(ξ). This completes the proof.

We now consider time-varying vector fields on M .

Definition 2.3.4. Consider a map X : I ×M → TM . We say that X is a time-

varying vector field on M if πTM ◦ X(t, x) = x for each (t, x) ∈ I ×M . The

set of all such maps is denoted by V (I,M). Given a chart (V,ψ) on M , the local

representative of X in (V,ψ) is the map Xψ : I ×ψ(V )→ Rn defined by

Xψ(t,x) = Tψ(ψ−1(x)) ·X(t,ψ−1(x)).

Of course, one can also form the local representative of any vector field X on M by

identifying X with the time-varying vector field X(t, x) = X(x).

In what follows, X ∈ V (I,M).

Definition 2.3.5. Suppose that (t0, x0) ∈ I ×M . The triple (X, t0, x0) is said

to be an initial value problem evolving on M , with right-hand side X and

initial condition (t0, x0). We say that ξ is a solution of (X, t0, x0) if

• dom(ξ) is a relatively open subinterval of I containing t0,

• ξ is LAC,

• ξ(t0) = x0, and ξ̇(t) = X(t, ξ(t)) for a.a. t ∈ dom(ξ).

The next lemma relates solutions of X to solutions of Xψ.

Lemma 2.3.6. Suppose that

41



• (t0, x0) ∈ I ×M ,

• (V,ψ) is a chart on M such that x0 ∈ V ,

• ξ is LAC, and

• image(ξ) ⊆ V .

Then ξ is a solution of (X, t0, x0) if and only if

ψ ◦ ξ

is a solution of (Xψ, t0,ψ(x0)).

Proof. Suppose that ξ is a solution of (X, t0, x0). Since ψ ◦ ξ(t0) = ψ(x0) and

˙̇
ψ ◦ ξ(t) = Tψ(ξ(t)) ◦ ξ̇(t)

= Tψ(ξ(t)) ◦X(t, ξ(t))

= Tψ(ψ−1 ◦ψ ◦ ξ(t)) ◦X(t,ψ−1 ◦ψ ◦ ξ(t))

= Xψ(t,ψ ◦ ξ(t))

for a.a. t ∈ dom(ξ), it follows that ψ ◦ ξ is a solution of (Xψ, t0,ψ(x0)). Conversely,

suppose that ψ ◦ ξ is a solution of (Xψ, t0,ψ(x0)). Since ξ(t0) = x0 and

ξ̇(t) =
˙̌�

ψ−1 ◦ψ ◦ ξ(t)

= Tψ−1(ψ ◦ ξ(t)) · ˙̇
ψ ◦ ξ(t)

= Tψ−1(ψ ◦ ξ(t)) · Tψ(ξ(t)) ·X(t, ξ(t))

= Tψ−1(ψ ◦ ξ(t)) ·Xψ(t,ψ ◦ ξ(t))

= X(t, ξ(t))

for a.a. t ∈ dom(ξ), it follows that ξ is a solution of (X, t0, x0).

Definition 2.3.7. Suppose that (t0, x0) ∈ I ×M and ξ is a solution of (X, t0, x0).

We say that ξ is maximally-defined if it has the following property: If

ξ̃ : dom(ξ̃)→M
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is another solution of (X, t0, x0), then

dom(ξ̃) ⊆ dom(ξ) and ξ̃(t) = ξ(t)

for each t ∈ dom(ξ̃). Clearly, such a solution is unique.

Definition 2.3.8. We say that X is solvable if there exists a maximally-defined

solution of (X, t0, x0) for each (t0, x0) ∈ I×M . If X is solvable, then the maximally-

defined solution of (X, t0, x0) is denoted by

µX(·, t0, x0) : IX(t0, x0)→M.

We have the following analogue of Proposition 2.2.8.

Proposition 2.3.9. Suppose that X is solvable and (t0, x0) ∈ I ×M . Then

1. For each t ∈ IX(t0, x0), we have IX(t0, x0) = IX(t, µX(t, t0, x0)), and

2. For each t, s ∈ IX(t0, x0), we have µX(t, t0, x0) = µX(t, s, µX(s, t0, x0)).

Proof. Identical to the proof of [Grasse 1979, Proposition 3.4.10].

Definition 2.3.10. Suppose that X is solvable. Define

dom(ΦX) = {(t, t0, x0) ∈ I × I ×M : t ∈ IX(t0, x0)}.

The global flow of X is the map ΦX : dom(ΦX)→M that sends (t, t0, x0) to

ΦX
t,t0

(x0) = µX(t, t0, x0).

We must also consider the global flow of X with its first two independent variables

fixed. For each (t, t0)× I × I, define

dom(ΦX
t,t0

) = {x0 ∈M : (t, t0, x0) ∈ dom(ΦX)}.

By a mild abuse of notation, we denote by

ΦX
t,t0

: dom(ΦX
t,t0

)→M

the map that sends x0 to ΦX
t,t0

(x0).
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Remark 2.3.11. Suppose that X is solvable and (t0, x0) ∈ I ×M . Then for each

t, s ∈ IX(t0, x0), we have

ΦX
t,t0

(x0) = ΦX
t,s ◦ ΦX

s,t0
(x0).

This follows immediately from Proposition 2.3.9.

We now turn to verifying that X is solvable.

Definition 2.3.12. We say that X is locally solvable if Xψ is solvable for each

chart (V,ψ) on M .

One can show that X is locally solvable if and only if Xψ is solvable for each

chart (V,ψ) ∈ AM , where AM is a compatible atlas on M .

We now show that if X is locally solvable, then X is solvable as well. To this

end, it will be useful to refer to the following supporting lemmas.

Lemma 2.3.13. Suppose that X is locally solvable,

• (t0, x0) ∈ I ×M ,

• (V,ψ) is a chart on M such that x0 ∈ V ,

• ξ is LAC, and

• image(ξ) ⊆ V .

Then ξ is a solution of (X, t0, x0) if and only if

ψ ◦ ξ(t) = µXψ(t, t0,ψ(x0))

for each t ∈ dom(ξ).

Proof. This follows immediately from Lemma 2.3.6.

The next result is obvious in light of Lemma 2.3.13.
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Lemma 2.3.14. Suppose that X is locally solvable, (V,ψ) is a chart on M ,

I0 × I0 × V0 ⊆ dom(ΦXψ),

and M0 = ψ−1(V0). Then

1. I0 × I0 ×M0 ⊆ dom(ΦX) and

2. ΦX |I0 × I0 ×M0 = ψ−1 ◦ ΦXψ ◦ (idI0 × idI0 ×ψ|M0).

Lemma 2.3.15. Suppose that S and T are topological spaces, the maps

f, g : S → T

are continuous, and T is Hausdorff. Define

eq(f, g) = {s ∈ S : f(s) = g(s)}.

Then eq(f, g) is closed in S.

Proof. We will show that S r eq(f, g) is open in S. If eq(f, g) = S, then there

is nothing to prove. Suppose that eq(f, g) 6= S, and let s ∈ S r eq(f, g). By

construction, f(s) 6= g(s). Since T is Hausdorff, there exist disjoint neighbourhoods

Wf and Wg of f(s) and g(s), respectively. Since f and g are continuous,

f−1(Wf ) ∩ g−1(Wg)

is a neighbourhood of s. We claim that

f−1(Wf ) ∩ g−1(Wg) ⊆ S r eq(f, g).

Indeed, since Wf and Wg are disjoint, f(s̃) 6= g(s̃) for each

s̃ ∈ f−1(Wf ) ∩ g−1(Wg).

We conclude that S r eq(f, g) is open in S.
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We say that the set eq(f, g) is the equalizer of f and g.

Theorem 2.3.16. Suppose that X is locally solvable. Then X is solvable.

Proof. Choose (t0, x0) ∈ I ×M . The proof is divided into three parts.

Part 1: In this part, we show that any two solutions of (X, t0, x0) coincide on

a relatively open subinterval of I containing t0. Suppose that

ξi : dom(ξi)→M, i ∈ {1, 2},

are two solutions of (X, t0, x0). Choose a chart (V,ψ) on M such that x0 ∈ V and

let i ∈ {1, 2}. Since ξi is continuous, there exists a relatively open subinterval Si of

dom(ξi) containing t0 such that ξi(Si) ⊆ V . Clearly, ξi|Si is a solution of (X, t0, x0).

By Lemma 2.3.13,

(ψ ◦ ξi|Si)(t) = µXψ(t, t0,ψ(x0))

for each t ∈ Si. Thus ψ ◦ ξ1(t) = ψ ◦ ξ2(t) for each t ∈ S1 ∩ S2.

Part 2: In this part, we show that any two solutions of (X, t0, x0) coincide on

the intersection of their domains. Suppose that

ξi : dom(ξi)→M, i ∈ {1, 2},

are two solutions of (X, t0, x0). Define

ξri = ξi|(dom(ξ1) ∩ dom(ξ2))

for each i, and consider the equalizer of ξr1 and ξr2:

eq(ξr1, ξ
r
2) = {t ∈ dom(ξ1) ∩ dom(ξ2) : ξr1(t) = ξr2(t)}.

We must show that eq(ξr1, ξ
r
2) and dom(ξ1)∩ dom(ξ2) coincide. Clearly, eq(ξr1, ξ

r
2) is

nonempty since it contains t0. Since M is Hausdorff, eq(ξr1, ξ
r
2) is closed in

dom(ξ1) ∩ dom(ξ2)
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by Lemma 2.3.15. Since dom(ξ1) ∩ dom(ξ2) is connected, it follows that

eq(ξr1, ξ
r
2) = dom(ξ1) ∩ dom(ξ2)

if and only if eq(ξr1, ξ
r
2) is open in dom(ξ1) ∩ dom(ξ2). To see that eq(ξr1, ξ

r
2) is

indeed open in dom(ξ1) ∩ dom(ξ2), let s ∈ eq(ξr1, ξ
r
2). Since ξr1 and ξr2 are solutions

of (X, s, ξr1(s)) = (X, s, ξr2(s)), Part 1 tells us that ξr1 and ξr2 coincide on a relatively

open subinterval of I containing s. Hence ξr1 and ξr2 coincide on a relatively open

subinterval of dom(ξ1) ∩ dom(ξ2) containing s. We conclude that eq(ξr1, ξ
r
2) is open

in dom(ξ1) ∩ dom(ξ2).

Part 3: In this part, we construct the maximally-defined solution of (X, t0, x0).

To begin, we denote by {ξα : dom(ξα)→M}α∈A the set of all solutions of (X, t0, x0).

This set is nonempty, since if (V,ψ) is a chart on M such that x0 ∈ V , then

ψ−1 ◦ µXψ(t, t0,ψ(x0)) is a solution of (X, t0, x0) by Lemma 2.3.13. Now set

IX(t0, x0) =
⋃
α∈A

dom(ξα),

and define µX(·, t0, x0) : IX(t0, x0)→M by

µX(t, t0, x0) = ξα(t)

whenever t ∈ dom(ξα). By Part 2, µX(·, t0, x0) is well-defined. To complete the

proof, it is enough to show that µX(·, t0, x0) is a solution of (X, t0, x0). First,

IX(t0, x0) is an interval since each dom(ξα) contains t0.4 Being a union of relatively

open subintervals of I, IX(t0, x0) is itself a relatively open subinterval of I. Second,

let us show that µX(·, t0, x0) is a LAC curve. Suppose that t ∈ IX(t0, x0) and

(Vt,ψt) is a chart on M such that

xt = µX(t, t0, x0) ∈ Vt.

By Lemma 2.3.13 and the definition of µX(·, t0, x0), we have

µX(τ, t0, x0) = ψ−1
t ◦ µXψt (τ, t,ψt(xt))

4For an explicit proof of this fact, see [Munkres 2000, Theorem 23.3].
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for each τ ∈ IXψt (t,ψt(xt)). From this expression, we conclude that µX(·, t0, x0) is

a LAC curve. Finally, it is evident µX(t0, t0, x0) = x0, so it remains to show that

µ̇X(t, t0, x0) = X(t, µX(t, t0, x0))

for a.a. t ∈ IX(t0, x0). This follows from a covering argument, proceeding along

the same lines as the argument used in the proof of Lemma 2.3.3.

In later chapters, the next result plays a subtle but important role. Roughly

speaking, this result tells us that if X is solvable, then its maximally-defined

solutions are insensitive to the time behaviour of X on a set of measure zero. This

will come into play in Chapter 3, when we consider control systems.

Lemma 2.3.17. Suppose that

• X1, X2 ∈ V (I,M) are solvable,

• X1(t, x) = X2(t, x) for a.a. t ∈ I and each x ∈M , and

• (t0, x0) ∈ I ×M .

Then IX1(t0, x0) = IX2(t0, x0) and

µX1(t, t0, x0) = µX2(t, t0, x0)

for each t ∈ IX1(t0, x0).

Proof. For brevity, we write µi = µXi(·, t0, x0) for each i ∈ {1, 2}. By definition,

µi(t0) = x0 and µ̇i(t) = Xi(t, µi(t))

for a.a. t ∈ IXi(t0, x0). Since X1(t, x) = X2(t, x) for a.a. t ∈ I and each x ∈M ,

µ̇1(t) = X2(t, µ1(t))
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for a.a. t ∈ IX1(t0, x0). In other words, µ1 is a solution of (X2, t0, x0). Since µ2 is

maximally-defined, we have IX1(t0, x0) ⊆ IX2(t0, x0) and

µX1(t, t0, x0) = µX2(t, t0, x0)

for each t ∈ IX1(t0, x0). Exchanging the roles of the indices completes the proof.

Definition 2.3.18. We say that X satisfies Carathéodory conditions if Xψ

satisfies Carathéodory conditions for each chart (V,ψ) on M .

One can show that X satisfies Carathéodory conditions if and only if Xψ satisfies

Carathéodory conditions for each chart (V,ψ) ∈ AM , where AM is a compatible

atlas on M .

The next result extends Theorem 2.2.14.

Lemma 2.3.19. If X satisfies Carathéodory conditions, then it is solvable.

Proof. This follows immediately from Theorems 2.2.14 and 2.3.16.

Definition 2.3.20. We say that X is locally integrably Ck, where k ∈ Z∗≥0, if

Xψ is locally integrably Ck for each chart (V,ψ) on M . Of course, if X is locally

integrably Ck, then it is locally integrably Cj for 0 ≤ j ≤ k.

Again, one can show that X is locally integrably Ck if and only if Xψ is locally

integrably Ck for each chart (V,ψ) ∈ AM , where AM is a compatible atlas on M .

The next three remarks will be used implicitly throughout this thesis.

Remark 2.3.21. Suppose that X is locally integrably C0 and x ∈M . Define the

map γ : I → TxM by γ(t) = X(t, x). Then γ ∈ L1
loc(I, TxM).

Remark 2.3.22. Suppose that X is locally integrably Ck, where k ∈ Z∗≥0. Then

each frozen-time vector field Xt : M → TM defined by Xt(x) = X(t, x) is Ck.
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Remark 2.3.23. Suppose that X is locally integrably C1. Then X satisfies Cara-

théodory conditions and, consequently, is solvable.

We now extend Theorem 2.2.22. To do so, we need the following lemma.

Lemma 2.3.24. Suppose that X is locally integrably Ck, where k ∈ N∗, and

(t∗, x∗) ∈ I ×M.

Then there exists a product neighbourhood

I∗ × I∗ ×M∗

of (t∗, t∗, x∗) in I × I ×M such that

1. I∗ × I∗ ×M∗ ⊆ dom(ΦX),

2. ΦX |I∗ × I∗ ×M∗ is continuous, and

3. ΦX
t,t0
|M∗ is Ck for each (t, t0) ∈ I∗ × I∗.

Proof. Suppose that (V,ψ) is a chart on M such that x∗ ∈ V . By Theorem 2.2.22,

1. dom(ΦXψ) is an open subset of I × I ×ψ(V ),

2. ΦXψ is continuous, and

3. Φ
Xψ
t,t0 is Ck for each (t, t0) ∈ I × I.

In particular, since (t∗, t∗,ψ(x∗)) ∈ dom(ΦXψ), there exists a product neighbour-

hood I∗ × I∗ × V∗ of (t∗, t∗,ψ(x∗)) in I × I ×ψ(V ) such that

I∗ × I∗ × V∗ ⊆ dom(ΦXψ).

SettingM∗ = ψ−1(V∗), we see that I∗×I∗×M∗ is the desired product neighbourhood

of (t∗, t∗, x∗). Indeed, Lemma 2.3.14 tells us that

1. I∗ × I∗ ×M∗ ⊆ dom(ΦX) and
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2. ΦX |I∗ × I∗ ×M∗ = ψ−1 ◦ ΦXψ ◦ (idI∗ × idI∗ ×ψ|M∗).

The conclusions of the lemma follow by composition.

The next result extends Theorem 2.2.22.

Theorem 2.3.25. Suppose that X is locally integrably Ck, where k ∈ N∗. Then

1. dom(ΦX) is an open subset of I × I ×M ,

2. ΦX is continuous, and

3. ΦX
t,t0

is Ck for each (t, t0) ∈ I × I.

Proof. We follow the proof of Grasse [1979, Theorem 3.4.12]. Given

(t∗, x∗) ∈ I ×M,

we say that s ∈ IX(t∗, x∗) has the Ck neighbourhood property (relative to the

particular choice of (t∗, x∗)) if there exists a product neighbourhood

I1
s × I2

s ×Ms

of (s, t∗, x∗) in I × I ×M such that

1. I1
s × I2

s ×Ms ⊆ dom(ΦX),

2. ΦX |I1
s × I2

s ×Ms is continuous, and

3. ΦX
t,t0
|Ms is Ck for each (t, t0) ∈ I1

s × I2
s .

We say that such a neighbourhood is a Ck neighbourhood for s. The set of all

s ∈ IX(t∗, x∗) that have the Ck neighbourhood property is denoted by NPk
∗.

To complete the proof, it is enough to show that

NPk
∗ = IX(t∗, x∗) (2.6)
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for each (t∗, x∗) ∈ I ×M . To this end, choose (t∗, x∗) ∈ I ×M . By Lemma 2.3.24,

NPk
∗ is nonempty since it contains t∗, and NPk

∗ is open in IX(t∗, x∗) by construction.

Since IX(t∗, x∗) is connected, it follows that

NPk
∗ = IX(t∗, x∗) ⇐⇒ NPk

∗ is closed in IX(t∗, x∗)

⇐⇒ NPk
∗ = NPk

∗

⇐⇒ NPk
∗ ⊆ NPk

∗, (2.7)

where NPk
∗ denotes the closure of NPk

∗ in IX(t∗, x∗).

To prove (2.7), choose s ∈ NPk
∗. By Lemma 2.3.24, there exists a product

neighbourhood Is × Is ×Ms of (s, s,ΦX
s,t∗(x∗)) in I × I ×M such that

1. Is × Is ×Ms ⊆ dom(ΦX),

2. ΦX |Is × Is ×Ms is continuous, and

3. ΦX
t,t0

is Ck for each (t, t0) ∈ Is × Is.

Since s is a limit point of NPk
∗ in IX(t∗, x∗), it can be approached arbitrarily closely

by elements of Is ∩ NPk
∗. Thus there exists

ρ ∈ Is ∩ NPk
∗

such that ΦX
ρ,t∗(x∗) ∈Ms. This is illustrated in Figure 2.1.

Since ρ ∈ NPk
∗, there exists a Ck neighbourhood I1

ρ × I2
ρ ×Mρ for ρ. Write

FX
s = ΦX |Is × Is ×Ms and GX

ρ = ΦX |I1
ρ × I2

ρ ×Mρ.

Shrinking I1
ρ × I2

ρ ×Mρ, we can assume without loss of generality that

image(GX
ρ ) ⊆Ms.

We claim that Is × I2
ρ ×Mρ is a Ck neighbourhood for s. Consider the map

HX
s = ΦX |Is × I2

ρ ×Mρ.
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Figure 2.1: An illustration of the proof of Theorem 2.3.25

Since

GX
s (β, β0, x) = FX

s (β, ρ,GX
ρ (ρ, β0, x)),

the criteria of the Ck neighbourhood property are satisfied by composition. This

proves the claim, and the proof is complete.

Corollary 2.3.26. Suppose that X is locally integrably Ck, where k ∈ N∗, and

(t, t0) ∈ I × I.

Then the following conclusions hold:

1. ΦX
t,t0

is a Ck diffeomorphism of dom(ΦX
t,t0

) onto dom(ΦX
t0,t

);

2. The inverse of ΦX
t,t0

is (ΦX
t,t0

)−1 = ΦX
t0,t

.

Proof. Identical to the proof of Corollary 2.2.23.
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Chapter 3

Control systems

In this chapter, we establish background material concerning control systems. As

indicated in Chapter 1, the control systems of interest in this thesis are deterministic

nonlinear control systems evolving in continuous time.

This chapter is organized in the following way. In Section 3.1, we establish a

number of general definitions. In Section 3.2, we recall the theory of Cq
p and Cq

q -po-

lynomial control systems evolving on open subsets of Euclidean spaces, following

Margheri [1996]. Under certain conditions, the anchored endpoint maps of such

control systems are Cq. This fact is instrumental in overcoming the first obstruction

to the continuation method. Indeed, as explained in Chapter 1, the first obstruction

is simply that the anchored endpoint maps of a given control system may fail to be

C2. Finally, in Section 3.3, we extend the theory of Cq
p and Cq

q -polynomial control

systems to accommodate control systems evolving on finite-dimensional manifolds.

Our standing assumptions throughout this chapter are that

• I is an interval and

• M is an n-dimensional manifold.
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Furthermore, for each k ∈ Z≥0, the map

evk : Homk(Rr,Rn)× Rr × · · · × Rr︸ ︷︷ ︸
k factors

→ Rn

is defined by

evk · (λ,ω1, . . . ,ωk) = λ · (ω1, . . . ,ωk).

Note that ev0 = idRn and evk ∈ Hom(Homk(Rr,Rn),Rr, . . . ,Rr,Rn).

3.1 Control systems

Roughly speaking, a control system evolving on M is a pair

Σ = (f,U )

comprised of a time-varying and parameter-dependent vector field

f : I ×M × Rr → TM

and a set U of controls. Each control u ∈ U describes a way in which the

parameter in Rr can be manipulated over time to produce a controlled trajectory

of Σ. Since the controlled trajectories of Σ are maximally-defined solutions of

initial value problems evolving on M , the substitution of each u ∈ U into f must

yield a time-varying vector field which is solvable. In what follows, this intuitive

description is made precise. The next definition follows Grasse [1979].

Definition 3.1.1. Suppose that f : I × M × Rr → TM . We say that f is a

controllable time-varying vector field 1 on M if πTM ◦ f(t, x,ω) = x for each
1More generally, one can consider the case f : I ×M × Ω → TM , where Ω is a separable

metrizable space. This is discussed in detail by Grasse and Sussmann [1990], Sontag [1998] and
Grasse [2003]. We will not need this degree of generality, however, since our interest lies in
controllable time-varying vector fields on M such that (x,ω) 7→ f(t, x,ω) is differentiable.
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(t, x,ω) ∈ I ×M × Rr. The set of all such maps is denoted by V (I,M,Rr). Given

a chart (V,ψ) on M , the local representative of f in (V,ψ) is the map

fψ : I ×ψ(V )× Rr → Rn

defined by

fψ(t,x,ω) = Tψ(ψ−1(x)) · f(t,ψ−1(x),ω).

In what follows, f ∈ V (I,M,Rr) and U ⊆ Meas(I,Rr) is nonempty. Recall

from Section 2.1.3 that Meas(I,Rr) consists of equivalence classes of maps.

Definition 3.1.2. Suppose that u ∈ U . For each representative ũ of the equiva-

lence class u, define the time-varying vector field f ũ ∈ V (I,M) by

f ũ(t, x) = f(t, x, ũ(t)).

We say that u is f-admissible if f ũ is solvable for each representative ũ of

u. Similarly, we say that u is Ck f-admissible , where k ∈ N∗, if f ũ is locally

integrably Ck for each representative ũ of u.

By Remark 2.3.23, u is f -admissible whenever it is C1 f -admissible.

Lemma 3.1.3. Suppose that u ∈ U is f -admissible,

(t0, x0) ∈ I ×M,

and ũ1, ũ2 are representatives of u. Then If ũ1 (t0, x0) = If
ũ2 (t0, x0) and

µf
ũ1 (t, t0, x0) = µf

ũ2 (t, t0, x0)

for each t ∈ If ũ1 (t0, x0).

Proof. By construction, we have

f ũ1(t, x) = f ũ2(t, x)

for a.a. t ∈ I and each x ∈M . Invoking Lemma 2.3.17 completes the proof.
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In light of Lemma 3.1.3, in the remainder of this thesis we will simply write

fu instead of f ũ, with the understanding that u is simply a placeholder for any

representative ũ of u. We now formally define control systems.

Definition 3.1.4. Suppose that each u ∈ U is f -admissible. The pair

Σ = (f,U )

is said to be a control system evolving on M , with time domain I, state space

M , and control space U . The constituent elements of I, M , and U are said to

be times , states , and controls , respectively. Finally, given a chart (V,ψ) on M ,

the local representative of Σ in (V,ψ) is the control system

Σψ = (fψ,U ).

In what follows, Σ = (f,U ) is a control system evolving on M .

Definition 3.1.5. We say that Σ is time-invariant if f is not functionally

dependent on its first independent variable. When we wish to emphasize the fact

that Σ is not time-invariant, we will say that Σ is time-varying .

Definition 3.1.6. We say that

• Σ is a Ck control system, where k ∈ N∗, if each u ∈ U is Ck f -admissible, and

• Σ uses Lp controls , where p ∈ R∗≥1, if U = Lploc(I,Rr).

Definition 3.1.7. Suppose that (t0, x0,u) ∈ I ×M ×U . The maximally-defined

solution of (fu, t0, x0) is denoted by

µΣ(·, t0, x0,u) : IΣ(t0, x0,u)→M.

We say that µΣ(·, t0, x0,u) is the u-controlled trajectory of Σ with initial con-

dition (t0, x0).
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We now consider global flows and endpoint maps. In Section 2.3, we defined the

global flow of a time-varying vector field on M . This object was introduced to study

the functional dependence of maximally-defined solutions on the initial condition. In

a similar way, we can study the functional dependence of the controlled trajectories

of Σ on the initial condition and control, by aggregating these controlled trajectories

into a single map.

Definition 3.1.8. Define

dom(ΦΣ) = {(t, t0, x0,u) ∈ I × I ×M ×U : t ∈ IΣ(t0, x0,u)}.

The global flow of Σ is the map ΦΣ : dom(ΦΣ)→M that sends (t, t0, x0,u) to

ΦΣ
t,t0

(x0,u) = µΣ(t, t0, x0,u).

We say that Σ is complete if dom(ΦΣ) = I × I ×M ×U .

Next, we define the endpoint map and anchored endpoint maps of Σ. To do so,

it is convenient to introduce time-restricted versions of Σ.2 In what follows,

(t, t0) ∈ I × I

is such that t0 ≤ t.

Definition 3.1.9. Suppose that Σ uses Lp controls. Define

Σ|[t0, t] = (f |[t0, t]×M × Lp([t0, t],Rr), Lp([t0, t],Rr))

Clearly, Σ|[t0, t] is itself a control system that uses Lp controls.

Note that if I = [t0, t], then there is no distinction between Σ|[t0, t] and Σ.
2The concept of time restriction is used, albeit implicitly, by Margheri [1996]; see the comment

near the bottom of [Margheri 1996, page 193].
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Definition 3.1.10. Suppose that Σ uses Lp controls. Define

dom(EndΣ|[t0,t]) = {(x0,u) ∈M × Lp([t0, t],Rr) : (t, t0, x0,u) ∈ dom(ΦΣ|[t0,t])}.

The endpoint map3 of Σ|[t0, t] is the map

EndΣ|[t0,t] : dom(EndΣ|[t0,t])→M

that sends (x0,u) to

EndΣ|[t0,t](x0,u) = Φ
Σ|[t0,t]
t,t0 (x0,u).

The namesake of this map is clear, since the value of EndΣ|[t0,t](x0,u) is simply the

right endpoint µΣ|[t0,t](t, t0, x0,u) of the u-controlled trajectory µΣ|[t0,t](·, t0, x0,u).

Definition 3.1.11. Suppose that Σ uses Lp controls and x0 ∈M . Define

dom(EndΣ|[t0,t]
x0

) = {u ∈ Lp([t0, t],Rr) : (x0,u) ∈ dom(EndΣ|[t0,t])}.

The x0-anchored endpoint map of Σ|[t0, t] is the map

EndΣ|[t0,t]
x0

: dom(EndΣ|[t0,t]
x0

)→M

that sends u to

EndΣ|[t0,t]
x0

(u) = EndΣ|[t0,t](x0,u)

The value of EndΣ|[t0,t]
x0

(u) is simply the right endpoint µΣ|[t0,t](t, t0, x0,u) of the

u-controlled trajectory µΣ|[t0,t](·, t0, x0,u). Since the left endpoint of

µΣ|[t0,t](·, t0, x0,u)

is x0, we regard each such controlled trajectory as being anchored at x0.

Next, we state a useful relationship between dom(ΦΣ) and dom(ΦΣ|[t0,t]).
3This map is sometimes called the input-to-state map of Σ, as in [Sontag 1998].
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Remark 3.1.12. Suppose that Σ uses Lp controls and

I0 × I0 ×M0 ×U0 ⊆ dom(ΦΣ)

is a product open subset of I × I ×M ×U . Then

M0 × Ũ0 ⊆ dom(ΦΣ|[t0,t])

is a (possibly empty) product open subset of M × Lp([t0, t],Rr), where

Ũ0 = πp[t0,t](U0)

and πp[t0,t] is the projection map defined as in Section 2.1.6.

The next lemma is an analogue of Lemma 2.3.14 for control systems.

Lemma 3.1.13. Suppose that (V,ψ) is a chart on M ,

I0 × I0 × V0 ×U0 ⊆ dom(ΦΣψ),

and M0 = ψ−1(V0). Then

1. I0 × I0 ×M0 ×U0 ⊆ dom(ΦΣ),

2. ΦΣ|I0 × I0 ×M0 ×U0 = ψ−1 ◦ ΦΣψ ◦ (idI0 × idI0 ×ψ|M0 × idU0), and

3. We have

EndΣ|[t0,t]|M0 × Ũ0 = ψ−1 ◦ EndΣψ |[t0,t] ◦ (ψ|M0 × idŨ0
)

for each (t, t0) ∈ I0 × I0 such that t0 ≤ t, where

Ũ0 = πp[t0,t](U0).

Next, we define a notion of complete controllability.

Definition 3.1.14. Suppose that x0 ∈M . We say that Σ is completely control-

lable from x0 on [t0, t] if the map EndΣ|[t0,t]
x0

is surjective. Of course, if I = [t0, t],

then Σ is completely controllable from x0 on I if and only if EndΣ
x0

is surjective.
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Conditions which imply complete controllability are derived by Nikitin [1994],

Jurdjevic [1997], Ayala et al. [2009], and Jouan [2011a,b]. As one might expect,

these conditions impose certain restrictions on Σ. For example, the conditions

derived by Jouan [2011a] assume that M is at least compact, and possibly a Lie

group, whereas the conditions derived by Jurdjevic [1997] assume that Σ is a Cω

control-affine system. We do not dwell on these conditions here, since for our

purposes it is enough to assume that Σ is completely controllable without further

qualification. This is because we are interested in studying obstructions to the

continuation method under the standing assumption of complete controllability

from a fixed initial state.

Due to their special structure, control-affine systems play an important role in

later chapters. Before a formal definition, let us consider the following example.

Example 3.1.15. Suppose that

• f0, f1, . . . , fr are Ck vector fields on M , where k ∈ N∗,

• f(t, x,ω) = f0(x) +
∑r
i=1 ω

ifi(x),

• u ∈ L1
loc(I,Rr),

• ũ is a representative of u, and

• (V,ψ) is a chart on M .

By linearity,

f ũψ(t,x) = (f0)ψ(x) +
r∑
i=1

ũi(t)(fi)ψ(x).

Clearly, f ũψ satisfies the first two criteria of Definition 2.2.19. For the third criterion,

choose a compact subset K ⊆ ψ(V ) and define C ∈ R≥0 by

C = sup
0≤i≤r, 0≤j≤k

x∈K

{‖Dj(fi)ψ(x)‖}.
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Choose 0 ≤ j ≤ k. We have

‖Dj
2f
ũ
ψ(t,x)‖ ≤ ‖Dj(f0)ψ(x)‖+

r∑
i=1

|ũi(t)| ‖Dj(fi)ψ(x)‖

≤ C

(
1 +

r∑
i=1

|ũi(t)|
)

≤ C
Ä
1 +
√
r‖ũ(t)‖Rr

ä
for a.a. t ∈ I and each x ∈ K. Consequently, u is Ck f -admissible.

Definition 3.1.16. We say that Σ is a Ck control-affine system , where k ∈ N∗,

if there exist Ck vector fields f0, f1, . . . , fr on M such that

f(t, x,ω) = f0(x) +
r∑
i=1

ωifi(x). (3.1)

If M is Cω (that is, real-analytic), then the definition of a Cω control-affine system

is totally analogous. The vector field f0 is called the drift vector field of Σ, while

the vector fields f1, . . . , fr are called the control vector fields of Σ. If f0(x) = 0x

for each x ∈M , then we say that Σ is driftless . In this case, f can be written as

f(t, x,ω) =
r∑
i=1

ωifi(x).

When we wish to emphasize the fact that Σ is not driftless, we will say that Σ is a

Ck control-affine system with drift .

As a point of terminology, note that a Ck control-affine system Σ is not necessarily

a Ck control system. However, as indicated by Example 3.1.15, this will be the

case whenever each element of U is locally integrable.

In the next section, we consider special classes of control systems.
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3.2 Cq
p and Cq

q -polynomial control systems

evolving on open subsets of Euclidean spaces

In this section, we recall the theory of Cq
p and Cq

q -polynomial control systems

evolving on open subsets of Euclidean spaces, following Margheri [1996]. Under

certain conditions, the anchored endpoint maps of such control systems are Cq. As

explained at the beginning of this chapter, this fact is instrumental in overcoming

the first obstruction to the continuation method. This point will be made clearer

in Chapter 4, when we present the continuation method in full detail. Throughout

this section,

• V is a nonempty open subset of Rn,

• Σ = (f ,U ) is a control system evolving on V , and

• p ∈ R≥1 and q ∈ N are fixed, subject to the requirement that p ≥ q.

3.2.1 Basic definitions and properties

In this section, we will encounter the expression

p

p− p =
p

0
.

Wherever this expression appears, it is understood to be equal to ∞. In particular,

in the following definition, the function αp is an element of L∞loc(I,R≥0).

Definition 3.2.1. We say that f is Cq
p if

• For each t ∈ I, the map (x,ω) 7→ f(t,x,ω) of V × Rr into Rn is Cq,

• For each (x,ω) ∈ V × Rr, the map t 7→ f(t,x,ω) of I into Rn is measurable,

and
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• For each compact subset K ⊆ V , there exist

αk ∈ L
p

p−k
loc (I,R≥0), k ∈ {0, 1, . . . , bpc, p},

such that for each 0 ≤ i, j ≤ q satisfying i+ j ≤ q, we have

‖Di
2D

j
3f(t,x,ω)‖ ≤

∑
k∈{0,1,...,bpc−j,p−j}

αj+k(t)‖ω‖kRr (3.2)

for a.a. t ∈ I and each (x,ω) ∈ K × Rr.

Of course, if f is Cq
p , then f is Cj

p for each 1 ≤ j ≤ q.

Remark 3.2.2. Suppose that f is Cq
p and 0 ≤ i, j ≤ q are such that i + j ≤ q.

For each t ∈ I, the map (x,ω) 7→ Di
2D

j
3f(t,x,ω) is continuous by construction.

Arguing as in Remark 2.2.20, one can show that for each (x,ω) ∈ V ×Rr, the map

t 7→Di
2D

j
3f(t,x,ω) is measurable. By Remark 2.2.16, if

ν : dom(ν)→ V × Rr

is measurable, where dom(ν) is a subinterval of I, then the map

t 7→Di
2D

j
3f(t,ν(t))

is measurable. We will use this fact in Chapters 6 and 7.

Definition 3.2.1 is complicated by the fact that p may not be an integer. When

p ∈ N, we have bpc − j = p− j and (3.2) becomes

‖Di
2D

j
3f(t,x,ω)‖ ≤

p−j∑
k=0

αj+k(t)‖ω‖kRr .

This occurs, for example, when f is Cq
q -polynomial in the following sense.

Definition 3.2.3. We say that f is Cq
q -polynomial if there exist maps

P k : I × V → Symk(Rr,Rn), 0 ≤ k ≤ q,

such that
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• For each t ∈ I, the map x 7→ P k(t,x) of V into Symk(Rr,Rn) is Cq,

• For each x ∈ V , the map t 7→ P k(t,x) of I into Symk(Rr,Rn) is measurable,

• For each compact subset K ⊆ V , there exist

αk ∈ L
q

q−k
loc (I,R≥0), 0 ≤ k ≤ q,

such that for each 0 ≤ i ≤ q, we have

‖Di
2P k(t,x)‖ ≤ αk(t) (3.3)

for a.a. t ∈ I and each x ∈ K, and

• f can be written as

f(t,x,ω) =
q∑

k=0

P k(t,x) · (ω, . . . ,ω)︸ ︷︷ ︸
k copies of ω

. (3.4)

Next, we show that f is Cq
q -polynomial if it has a Cq control-affine form.

Example 3.2.4. Suppose that f 0,f 1, . . . ,f r : V → Rn are Cq and

f(t,x,ω) = f 0(x) +
r∑
i=1

ωif i(x).

Define maps P k : I × V → Symk(Rr,Rn), where 0 ≤ k ≤ q, by setting

• P 0(t,x) = f 0(x),

• P 1(t,x) · ω =
∑r
i=1 ω

if i(x), and

• P k to be identically equal to zero for 2 ≤ k ≤ q.

We have

f(t,x,ω) = P 0(t,x) + P 1(t,x) · ω

and a straightforward verification shows that f is Cq
q -polynomial.
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The next lemma appears, without proof, in [Margheri 1996]. For the sake of

completeness, we provide a full proof here.

Lemma 3.2.5. Suppose that f is Cq
q -polynomial. Then f is Cq

q .

Proof. Observe that

f(t,x,ω) =
q∑

k=0

evk · (P k(t,x),ω, . . . ,ω),

where evk is the evaluation map defined at the beginning of this chapter. For each

t ∈ I, the maps x 7→ P k(t,x) are Cq by definition. It follows from the Leibniz rule

that for each t ∈ I, the map

(x,ω) 7→ f(t,x,ω)

is Cq. Similarly, for each x ∈ V , the maps t 7→ P k(t,x) are measurable by definition.

Thus for each (x,ω) ∈ V ∈ Rr, the map

t 7→ f(t,x,ω)

is measurable by composition. We now show that the third criterion of Definition

3.2.1 is satisfied. To this end, let 0 ≤ j, k ≤ q. By the Leibniz rule, we have

Dj [ω 7→ evk · (P k(t,x),ω, . . . ,ω)] (ω) · (ω1, . . . ,ωj)

=
∑

(N1,...,Nk+1)∈Pk+1(j)

evk · (Dcard(N1)[ω 7→ P k(t,x)](ω) · ωN1 ,

Dcard(N2)idRr(ω) · ωN2 , . . . ,D
card(Nk+1)idRr(ω) · ωNk+1

).

If the (k + 1)-tuple (N1, . . . , Nk+1) is such that

• card(N1) ≥ 1 or

• card(Ni) ≥ 2 for 2 ≤ i ≤ k + 1,

then the corresponding term in the above sum is 0Rn . Thus we can restrict our

attention to (k + 1)-tuples such that
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• card(N1) = 0 and

• 0 ≤ card(Ni) ≤ 1 for 2 ≤ i ≤ k + 1.

If k < j, then there are no such (k + 1)-tuples. On the other hand, if k ≥ j, then

there are
Ä
k
j

ä
such (k + 1)-tuples, each of which is equal to

evk · (P k(t,x),ω1, . . . ,ωj,ω, . . . ,ω)

by the symmetry of P k(t,x). Thus

Dj
3f(t,x,ω) · (ω1, . . . ,ωj) =

q∑
k=j

(
k

j

)
evk · (P k(t,x),ω1, . . . ,ωj,ω, . . . ,ω).

Now let 0 ≤ i, j ≤ q satisfy i+ j ≤ q. By the Leibniz rule,

Di
2D

j
3f(t,x,ω) · (v1, . . . ,vi,ω1, . . . ,ωj)

=
q∑
k=j

(
k

j

)
evk · (Di

2P k(t,x) · (v1, . . . ,vi),ω1, . . . ,ωj,ω, . . . ,ω)

=
q∑
k=j

(
k

j

)
(Di

2P k(t,x) · (v1, . . . ,vi)) · (ω1, . . . ,ωj,ω, . . . ,ω)

and consequently

‖Di
2D

j
3f(t,x,ω)‖ ≤

q∑
k=j

(
k

j

)
‖Di

2P k(t,x)‖ ‖ω‖k−jRr . (3.5)

To complete the proof, choose a compact subset K ⊆ V , and let the functions αk

be prescribed as in Definition 3.2.3. Using (3.5), we have

‖Di
2D

j
3f(t,x,ω)‖ ≤

q∑
k=j

(
k

j

)
αk(t) ‖ω‖k−jRr =

q−j∑
k=0

(
j + k

j

)
αj+k(t) ‖ω‖kRr

for a.a. t ∈ I and each (x,ω) ∈ K × Rr. This completes the proof.

The next lemma connects f being Cq
p to Cq f -admissibility.

Lemma 3.2.6. Suppose that f is Cq
p and

u ∈ Lploc(I,Rr).

Then u is Cq f -admissible.
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Proof. Suppose that ũ is a representative of u. We must show that f ũ is locally

integrably Cq in the sense of Definition 2.2.19. For each t ∈ I and each ω ∈ Rr,

the map x 7→ f(t,x,ω) is Cq by definition. It follows that for each t ∈ I, the map

x 7→ f ũ(t,x)

is Cq. Similarly, for each x ∈ V , the map

t 7→ f(t,x, ũ(t))

is measurable by composition. Indeed, it can be written as f ◦ (idI ×κx× ũ), where

κx : I → V denotes the constant map with value x. We now show that the third

criterion of Definition 2.2.19 is satisfied. Choose a compact subset K ⊆ V , and let

the functions αk be prescribed as in Definition 3.2.1. Recall that

αk ∈ L
p

p−k
loc (I,R≥0), k ∈ {0, 1, . . . , bpc, p}.

Choose 0 ≤ i ≤ q. We have

‖Di
2f
ũ(t,x)‖ = ‖Di

2f(t,x, ũ(t))‖ ≤
∑

k∈{0,1,...,bpc,p}
αk(t)‖ũ(t)‖kRr

for a.a. t ∈ I and each x ∈ K. We now examine the terms in the above sum.

Choose k ∈ {0, 1, . . . , bpc, p}. We claim that the function

t 7→ αk(t)‖ũ(t)‖kRr

is an element of L1
loc(I,R≥0). To see this, observe that

αk ∈ L
p

p−k
loc (I,R≥0) and ‖ũ‖kRr ∈ L

p
k
loc(I,R≥0).

Since

p− k
p

+
k

p
=
p

p
= 1,
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the claim follows from Hölder’s inequality. Thus α : I → R defined by

α(t) =
∑

k∈{0,1,...,bpc,p}
αk(t)‖ũ(t)‖kRr

is an element of L1
loc(I,R≥0). We have shown that

‖Di
2f
ũ(t,x)‖ ≤ α(t)

for a.a. t ∈ I and each x ∈ K. This completes the proof.

Definition 3.2.7. We say that Σ is

• Cq
p , if f is Cq

p and Σ uses Lp controls, and

• Cq
q -polynomial , if f is Cq

q -polynomial and Σ uses Lq controls.

Lemma 3.2.8. Suppose that Σ is Cq
p . Then Σ is a Cq control system. In particular,

if Σ is Cq
q -polynomial, then it is a Cq control system.

Proof. This follows immediately from Lemmas 3.2.5 and 3.2.6.

The importance of the next definition will be made clear below.

Definition 3.2.9. Suppose that Σ is Cq
p . We say that Σ is nice if

• p > q or

• Σ is Cq
q -polynomial.

Example 3.2.10. Suppose that Σ is a Cq control-affine system. By Example 3.2.4,

f is Cq
q -polynomial. We conclude that Σ is nice whenever Σ uses Lq controls.

3.2.2 A special property of total derivatives

In this section, we prove a technical lemma. This lemma will come into play in

Chapters 6, 7, and 8, in connection with the first and second variations of Σ.
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Lemma 3.2.11. Suppose that

• Σ is Cq
p ,

• 0 ≤ j ≤ q,

• u0,u1, . . . ,uj ∈ U = Lploc(I,Rr), and

• ũ0, ũ1, . . . , ũj are representatives of u0,u1, . . . ,uj, respectively.

Define g : I × V → Rn by

g(t,x) = Dj
3f(t,x, ũ0(t)) · (ũ1(t), . . . , ũj(t)).

Then g is locally integrably Cq−j.

Proof. Observe that

g(t,x) = evj(D
j
3f(t,x, ũ0(t)), ũ1(t), . . . , ũj(t)),

where evj is the evaluation map defined at the beginning of this chapter. For each

t ∈ I and each ω ∈ Rr, the map x 7→Dj
3f(t,x,ω) is Cq−j by Proposition 2.1.1. It

follows from the Leibniz rule that for each t ∈ I, the map

x 7→ g(t,x)

is Cq−j. Similarly, for each x ∈ V , the map

t 7→ g(t,x)

is measurable by composition. Indeed, it can be written as

evj(D
j
3f ◦ (idI × κx × ũ0), ũ1, . . . , ũj),

where κx : I → V denotes the constant map with value x. We now show that the

third criterion of Definition 2.2.19 is satisfied. Choose a compact subset K ⊆ V ,

and let the functions αk be prescribed as in Definition 3.2.1. Recall that

αk ∈ L
p

p−k
loc (I,R≥0), k ∈ {0, 1, . . . , bpc, p}.
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Choose 0 ≤ i ≤ q − j. We have

‖Di
2g(t,x)‖ = ‖Di

2D
j
3f(t,x, ũ0(t)) · (ũ1(t), . . . , ũj(t))‖

≤ ‖Di
2D

j
3f(t,x, ũ0(t))‖ ‖ũ1(t)‖Rr · · · ‖ũj(t)‖Rr

≤
∑

k∈{0,1,...,bpc−j,p−j}
αj+k(t)‖ũ0(t)‖kRr‖ũ1(t)‖Rr · · · ‖ũj(t)‖Rr

for a.a. t ∈ I and each x ∈ K. We now examine the terms in the above sum.

Choose k ∈ {0, 1, . . . , bpc − j, p− j}. We claim that the function

t 7→ αj+k(t)‖ũ0(t)‖kRr ‖ũ1(t)‖Rr · · · ‖ũj(t)‖Rr

is an element of L1
loc(I,R≥0). To see this, observe that

αj+k ∈ L
p

p−(j+k)

loc (I,R≥0), ‖ũ0‖kRr ∈ L
p
k
loc(I,R≥0), and ‖ũi‖Rr ∈ Lploc(I,R≥0).

Since

p− (j + k)

p
+
k

p
+

j∑
`=1

1

p
=
p− (j + k)

p
+
k

p
+
j

p
= 1,

the claim follows from Hölder’s inequality. Thus α : I → R defined by

α(t) =
∑

k∈{0,1,...,bpc−j,p−j}
αj+k(t)‖ũ0(t)‖kRr ‖ũ1(t)‖Rr · · · ‖ũj(t)‖Rr

is an element of L1
loc(I,R≥0). We have shown that

‖Di
2g(t,x)‖ ≤ α(t)

for a.a. t ∈ I and each x ∈ K. This completes the proof.

3.2.3 Differentiability

In this section, we recall two differentiability results.

Theorem 3.2.12. Suppose that Σ is a nice Cq
p control system. Then

1. dom(ΦΣ) is an open subset of I × I × V × Lploc(I,Rr),
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2. ΦΣ is continuous, and

3. EndΣ|[t0,t] is Cq for each (t, t0) ∈ I × I such that t0 ≤ t.

Proof. This result is a composite of [Bianchini and Margheri 1996, Theorem 3.2]

and [Margheri 1996, Theorem 3.2].

Corollary 3.2.13. Suppose that Σ is a nice Cq
p control system and x0 ∈ V . Then

the map EndΣ|[t0,t]
x0

is Cq for each (t, t0) ∈ I × I such that t0 ≤ t.

Remark 3.2.14. To prove the third conclusion of Theorem 3.2.12, Margheri [1996]

used a converse of Taylor’s theorem. The argument requires that the mixed partial

derivatives of f satisfy local growth conditions, and this explains the prominent

role of such conditions in Definition 3.2.1. The extent to which these conditions are

necessary is also explored by Margheri [1996].

Remark 3.2.15. By definition, nice Cq
p control systems use Lp controls, where

p 6=∞.

For control systems that use L∞ controls, an approximate analogue of Theorem

3.2.12 can be found in [Grasse 1979]. Here, one replaces the assumption that Σ

is Cq
p by the assumption that Σ is quasi-Cq. Interestingly, the results of Grasse

[1979] concerning quasi-Cq control systems subsume differentiability results derived

independently by a number of authors, including Lee and Markus [1986], Bonnard

and Kupka [1993], and Sontag [1998]. This fact is not widely recognized.

3.3 Cq
p and Cq

q -polynomial control systems

evolving on finite-dimensional manifolds

In this section, we extend the theory of Cq
p and Cq

q -polynomial control systems to

accommodate control systems evolving on finite-dimensional manifolds.
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Throughout this section,

• Σ = (f,U ) is a control system evolving on M ,

• p ∈ R≥1 and q ∈ N are fixed, subject to the requirement that p ≥ q.

3.3.1 Basic definitions and properties

Definition 3.3.1. We say that f is Cq
p if fψ is Cq

p for each chart (V,ψ) on M .

One can show that f is Cq
p if and only if fψ is Cq

p for each chart (V,ψ) ∈ AM ,

where AM is a compatible atlas on M .

Remark 3.3.2. Suppose that f is Cq
p . By construction, for each t ∈ I the map

(x,ω) 7→ f(t, x,ω)

of M × Rr into TM is Cq.

Definition 3.3.3. We say that f is Cq
q -polynomial if fψ is Cq

q -polynomial for

each chart (V,ψ) on M .

Again, one can show that f is Cq
q -polynomial if and only if fψ is Cq

q -polynomial

for each chart (V,ψ) ∈ AM , where AM is a compatible atlas on M .

Example 3.3.4. Suppose that Σ is a Cq control-affine system,

f(t, x,ω) = f0(x) +
r∑
i=1

ωifi(x),

and (V,ψ) is a chart on M . Observe that

fψ(t,x,ω) = (f0)ψ(x) +
r∑
i=1

ωi(fi)ψ(x).

By Example 3.2.4, fψ is Cq
q -polynomial, and consequently f is Cq

q -polynomial.

Definition 3.3.5. We say that Σ is
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• Cq
p , if f is Cq

p and Σ uses Lp controls, and

• Cq
q -polynomial , if f is Cq

q -polynomial and Σ uses Lq controls.

Lemma 3.3.6. Suppose that Σ is Cq
p . Then Σ is a Cq control system. In particular,

if Σ is Cq
q -polynomial, then it is a Cq control system.

Proof. This follows immediately from Lemma 3.2.8.

Definition 3.3.7. Suppose that Σ is Cq
p . We say that Σ is nice if

• p > q or

• Σ is Cq
q -polynomial.

Example 3.3.8. Suppose that Σ is a Cq control-affine system. By Example 3.3.4,

f is Cq
q -polynomial. We conclude that Σ is nice whenever Σ uses Lq controls.

3.3.2 A special property of total derivatives

In this section, we extend Lemma 3.2.11.

Lemma 3.3.9. Suppose that

• Σ is Cq
p ,

• 0 ≤ j ≤ q,

• u0,u1, . . . ,uj ∈ U = Lploc(I,Rr), and

• ũ0, ũ1, . . . , ũj are representatives of u0,u1, . . . ,uj, respectively.

Define g : I ×M → TM by

g(t, x) = Dj
3f(t, x, ũ0(t)) · (ũ1(t), . . . , ũj(t)).

Then g is locally integrably Cq−j. Note that g is a well-defined time-varying vector

field on M , since Dj
3f(t, x, ũ0(t)) ∈ Homj(Rr, TxM) by definition.
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Proof. Suppose that (V,ψ) is a chart on M . We must show that gψ is locally

integrably Cq−j in the sense of Definition 2.2.19. By the Leibniz rule, we have

gψ(t,x) = Tψ(ψ−1(x)) ◦Dj
3f(t,ψ−1(x), ũ0(t)) · (ũ1(t), . . . , ũj(t))

= Dj[ω 7→ Tψ(ψ−1(x)) ◦ f(t,ψ−1(x),ω)](ũ0(t)) · (ũ1(t), . . . , ũj(t))

= Dj
3fψ(t,x, ũ0(t)) · (ũ1(t), . . . , ũj(t))

for each (t,x) ∈ I ×ψ(V ). By Lemma 3.2.11, gψ is locally integrably Cq−j.

3.3.3 Differentiability

In this section, we extend Theorem 3.2.12. To do so, we need the following lemma.

Lemma 3.3.10. Suppose that Σ is a nice Cq
p control system and

(t∗, x∗,u∗) ∈ I ×M × Lploc(I,Rr).

Then there exists a product neighbourhood

I∗ × I∗ ×M∗ ×U∗

of (t∗, t∗, x∗,u∗) in I × I ×M × Lploc(I,Rr) such that

1. I∗ × I∗ ×M∗ ×U∗ ⊆ dom(ΦΣ),

2. ΦΣ|I∗ × I∗ ×M∗ ×U∗ is continuous, and

3. EndΣ|[t0,t]|M∗ × Ũ∗ is Cq for each (t, t0) ∈ I∗ × I∗ such that t0 ≤ t, where

Ũ∗ = πp[t0,t](U∗).

Note that the third conclusion is well-defined by Remark 3.1.12.

Proof. Suppose that (V,ψ) is a chart on M such that x∗ ∈ V . By Theorem 3.2.12,

1. dom(ΦΣψ) is an open subset of I × I ×ψ(V )× Lploc(I,Rr),
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2. ΦΣψ is continuous, and

3. EndΣψ |[t0,t] is Cq for each (t, t0) ∈ I × I such that t0 ≤ t.

In particular, since (t∗, t∗,ψ(x∗),u∗) ∈ dom(ΦΣψ), there exists a product neigh-

bourhood I∗ × I∗ × V∗ ×U∗ of (t∗, t∗,ψ(x∗),u∗) in

I × I ×ψ(V )× Lploc(I,Rr)

such that

I∗ × I∗ × V∗ ×U∗ ⊆ dom(ΦΣψ).

Setting M∗ = ψ−1(V∗), we see that I∗ × I∗ × M∗ × U∗ is the desired product

neighbourhood of (t∗, t∗, x∗,u∗). Indeed, Lemma 3.1.13 tells us that

1. I∗ × I∗ ×M∗ ×U∗ ⊆ dom(ΦΣ),

2. ΦΣ|I∗ × I∗ ×M∗ ×U∗ = ψ−1 ◦ ΦΣψ ◦ (idI∗ × idI∗ ×ψ|M∗ × idU∗), and

3. We have

EndΣ|[t0,t]|M∗ × Ũ∗ = ψ−1 ◦ EndΣψ |[t0,t] ◦ (ψ|M∗ × idŨ∗
)

for each (t, t0) ∈ I∗ × I∗ such that t0 ≤ t, where

Ũ∗ = πp[t0,t](U∗).

The conclusions of the lemma follow by composition.

Theorem 3.3.11. Suppose that Σ is a nice Cq
p control system. Then

1. dom(ΦΣ) is an open subset of I × I ×M × Lploc(I,Rr),

2. ΦΣ is continuous, and

3. EndΣ|[t0,t] is Cq for each (t, t0) ∈ I × I such that t0 ≤ t.

76



Proof. We follow the proof of Theorem 2.3.25. Given

(t∗, x∗,u∗) ∈ I ×M × Lploc(I,Rr),

we say that s ∈ IΣ(t∗, x∗,u∗) has the Cq neighbourhood property (relative to

the particular choice of (t∗, x∗,u∗)) if there exists a product neighbourhood

I1
s × I2

s ×Ms ×Us

of (s, t∗, x∗,u∗) in I × I ×M × Lploc(I,Rr) such that

1. I1
s × I2

s ×Ms ×Us ⊆ dom(ΦΣ),

2. ΦΣ|I1
s × I2

s ×Ms ×Us is continuous, and

3. EndΣ|[t0,t]|Ms × Ũs is Cq for each (t, t0) ∈ I1
s × I2

s such that t0 ≤ t, where

Ũs = πp[t0,t](Us).

We say that such a neighbourhood is a Cq neighbourhood for s. The set of all

s ∈ IΣ(t∗, x∗,u∗) that have the Cq neighbourhood property is denoted by NPq
∗.

To complete the proof, it is enough to show that

NPq
∗ = IΣ(t∗, x∗,u∗)

for each (t∗, x∗,u∗) ∈ I ×M × Lploc(I,Rr). To this end, choose

(t∗, x∗,u∗) ∈ I ×M × Lploc(I,Rr).

By Lemma 3.3.10, NPq
∗ is nonempty since it contains t∗, and NPq

∗ is open in

IΣ(t∗, x∗,u∗) by construction. Since IΣ(t∗, x∗,u∗) is connected, it follows that

NPq
∗ = IΣ(t∗, x∗,u∗) ⇐⇒ NPq

∗ is closed in IΣ(t∗, x∗,u∗)

⇐⇒ NPq
∗ = NPq

∗

⇐⇒ NPq
∗ ⊆ NPq

∗, (3.6)
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where NPq
∗ denotes the closure of NPq

∗ in IΣ(t∗, x∗,u∗).

To prove (3.6), choose s ∈ NPq
∗. If s = t∗, then there is nothing to prove.

Suppose that s 6= t∗. By Lemma 3.3.10, there exists a product neighbourhood

Is × Is ×Ms ×Us

of (s, s,ΦΣ
s,t∗(x∗,u∗),u∗) in I × I ×M × Lploc(I,Rr) such that

1. Is × Is ×Ms ×Us ⊆ dom(ΦΣ),

2. ΦΣ|Is × Is ×Ms ×Us is continuous, and

3. EndΣ|[t0,t]|Ms ×Us is Cq for each (t, t0) ∈ Is × Is such that t0 ≤ t, where

Ũs = πp[t0,t](Us).

Since s is a limit point of NPq
∗ in IΣ(t∗, x∗,u∗), it can be approached arbitrarily

closely by elements of Is ∩ NPq
∗. Thus there exists

ρ ∈ Is ∩ NPq
∗

such that ΦΣ
ρ,t∗(x∗,u∗) ∈Ms. This is illustrated in Figure 3.1.

Since ρ ∈ NPq
∗, there exists a Cq neighbourhood I1

ρ × I2
ρ ×Mρ×Uρ for ρ. Write

FΣ
s = ΦΣ|Is × Is ×Ms ×Us and GΣ

ρ = ΦΣ|I1
ρ × I2

ρ ×Mρ ×Uρ.

Shrinking I1
ρ × I2

ρ ×Mρ ×Uρ, we can assume without loss of generality that

• I2
ρ ∩ Is = ∅ (note that this is possible since we have assumed that s 6= t∗),

• image(GΣ
ρ ) ⊆Ms, and

• Uρ ⊆ Us.

We claim that Is × I2
ρ ×Mρ ×Uρ is a Cq neighbourhood for s. Consider the map

HΣ
s = ΦX |Is × I2

ρ ×Mρ ×Uρ.
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Since

HΣ
s (β, β0, x,u) = FΣ

s (β, ρ,GΣ
ρ (ρ, β0, x,u),u),

the first two criteria of the Cq neighbourhood property are satisfied by composition.

For the third criterion, choose (β, β0) ∈ Is × I2
ρ such that β0 ≤ β. There are two

cases to consider, depending on the precise relationship between β and ρ.

• Case 1: Suppose that β0 ≤ ρ ≤ β. Since

EndΣ|[β0,β](x,u) = EndΣ|[ρ,β](EndΣ|[β0,ρ](x, πp[β0,ρ](u)), πp[ρ,β](u))

for each (x,u) ∈Mρ × Ũρ, where

Ũρ = πp[β0,β](Uρ),

it follows that EndΣ|[β0,β]|Mρ × Ũρ is Cq by composition.

• Case 2: Suppose that β0 ≤ β ≤ ρ. Shrinking Is, we may assume without loss

of generality that β ∈ I1
ρ . Thus EndΣ|[β0,β]|Mρ × Ũρ is automatically Cq, where

Ũρ = πp[β0,β](Uρ).

This proves the claim, and the proof is complete.

Corollary 3.3.12. Suppose that Σ is a nice Cq
p control system and x0 ∈M . Then

the map EndΣ is Cq for each (t, t0) ∈ I × I such that t0 ≤ t.
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Figure 3.1: An illustration of the proof of Theorem 3.3.11
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Chapter 4

The continuation method

Consider a control system

Σ = (f,U )

evolving on an n-dimensional manifold M , and let x0 ∈ M . In Chapter 1, we

indicated that the continuation method solves the x0-anchored motion planning

problem for Σ by lifting curves in M to curves in U . In this chapter, we present

the continuation method in full detail. In contrast to the “classical” continuation

method of Sussmann [1993], the continuation method presented in this chapter

does not rely fundamentally on Moore–Penroses pseudoinverses to lift curves.

This chapter is organized in the following way. In Section 4.1, we establish

the theory of right inverses, which play the role of generalized Moore–Penrose

pseudoinverses. In Section 4.2, we briefly review the required theory of initial

value problems evolving on Banach manifolds. Finally, in Section 4.3, we present

the continuation method. The presentation encompasses the general case and the

simplified case where no controls are singular.

Our standing assumptions throughout this chapter are that

• Q is a Banach manifold modelled on a Banach space EQ,
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• R is a second-countable `-dimensional manifold, and

• F : Q→ R is a Ck submersion, where k ∈ N∗.

The developments in this chapter are quite general, being phrased in terms of F .

In Section 4.3, we specialize to control systems. This is accomplished by replacing

the map F with the anchored endpoint map of a control system.

4.1 Right inverses

In this section, we establish the theory of right inverses, approximately following

Earle and Eells [1967]. A right inverse is a special type of vector bundle map whose

domain is the pullback of a vector bundle. Accordingly, we begin this section by

recalling the definition of the pullback of a vector bundle by a Ck map. For all

details concerning vector bundles, we refer to [Abraham et al. 1988].

Definition 4.1.1. Suppose that πE : E → R is a vector bundle. Define

πF ∗(E) : F ∗(E)→ Q

by πF ∗(E)(q, e) = q, where

F ∗(E) = {(q, e) ∈ Q× E : F (q) = πE(e)}.

Then πF ∗(E) is a Ck vector bundle over Q, called the pullback of E by F .

For each q ∈ Q, we have a canonical vector space isomorphism

π−1
F ∗(E)(q)

∼= π−1
E (F (q)).

These isomorphisms will be used implicitly in the remainder of this chapter.

As a special case, the tangent bundle πTR : TR→ R is a vector bundle over R,

and thus F ∗(TR) is a Ck vector bundle over Q. Since π−1
F ∗(TR)(q)

∼= TF (q)R for each
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q ∈ Q, we can regard TF as a Ck−1 vector bundle map

TF : TQ→ F ∗(TR)

over idQ. Recall from [Abraham et al. 1988, Theorem 3.5.18] that

ker(TF ) =
⋃
q∈Q

ker(TF (q))

is a Ck−1 vector bundle over Q. Since F is a submersion,

0→ ker(TF )→ TQ
TF−→ F ∗(TR)→ 0 (4.1)

is a short exact sequence of Ck−1 vector bundle maps over idQ.

Definition 4.1.2. A right inverse of TF is a vector bundle map

TF † : F ∗(TR)→ TQ

over idQ such that TF (q) ◦ TF †(q) = idTF (q)R for each q ∈ Q. Using more algebraic

language, a right inverse of TF is a splitting of (4.1) at the third arrow.

In the remainder of this section, TF † denotes a right inverse of TF .

Definition 4.1.3. We say that TF † is

• Locally Lipschitz , if it is locally Lipschitz as a vector bundle map, and

• Cj, where j ∈ Z∗≥0, if it is Cj as a vector bundle map.

Of course, if TF † is C1, then it is locally Lipschitz.

Proposition 4.1.4. The right inverse TF † is locally Lipschitz whenever the fol-

lowing criterion is satisfied: If (U,ϕ) and (V,ψ) are F -compatible charts on Q and

R, respectively, then the map TF †ϕ,ψ : ϕ(U)→ Hom(R`, EQ) defined by

TF †ϕ,ψ(q) = Tϕ(ϕ−1(q)) ◦ TF †(ϕ−1(q)) ◦ Tψ−1(Fψ,ϕ(q))
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is locally Lipschitz.1

Proof. By an extension of [Abraham et al. 1988, Definition 3.4.2], TF † is locally

Lipschitz as a vector bundle map if and only if the following criterion is satisfied:

For each point ρ0 ∈ F ∗(TR), there exist TF †-compatible vector bundle charts

(A,α) and (B, β) on F ∗(TR) and TQ, respectively, such that

• ρ0 ∈ A,

• α : A→ A′ × R`,

• β : B → B′ × EQ, and

• (TF †)β,α(q,v) = (G(q), H(q) · v),

where G : A′ → B′ and H : A′ → Hom(R`, EQ) are locally Lipschitz.

Choose (q0, vF (q0)) ∈ F ∗(TR) and suppose that (U,ϕ) and (V,ψ) are F -compat-

ible charts on Q and R, respectively, such that q0 ∈ U . Define the map

Tζ∗ : π−1
F ∗(TR)(U)→ ϕ(U)× R`

by

Tζ∗(q, vF (q)) = (ϕ(q), Tψ(F (q)) · vF (q)).

Thus (π−1
F ∗(TR)(U), T ζ∗) and (TU, Tϕ) are TF †-compatible vector bundle charts on

F ∗(TR) and TQ, respectively, such that (q0, vF (q0)) ∈ π−1
F ∗(TR)(U). Since

(Tζ∗)−1(q,v) = (ϕ−1(q), Tψ−1(Fψ,ϕ(q)) · v),

the local representative

(TF †)Tϕ,Tζ∗ : ϕ(U)× R` → ϕ(U)× EQ
1That is, for each q0 ∈ ϕ(U), there exist a neighbourhood U0 of q0 and C ∈ R≥0 such that

‖TF †ϕ,ψ(q)− TF †ϕ,ψ(q̃)‖ ≤ C ‖q − q̃‖EQ

for each q, q̃ ∈ U0.

84



is given by

(TF †)Tϕ,Tζ∗(q,v) = Tϕ(ϕ−1(q)) ◦ TF † ◦ (Tζ∗)−1(q,v)

= Tϕ(ϕ−1(q)) ◦ TF †(ϕ−1(q)) ◦ Tψ−1(Fψ,ϕ(q)) · v)

= (q, TF †ϕ,ψ(q) · v).

This completes the proof.

Proposition 4.1.5. The right inverse TF † is Cj, where j ∈ Z∗≥0, whenever the

following criterion is satisfied: If (U,ϕ) and (V,ψ) are F -compatible charts on Q

and R, respectively, then the map TF †ϕ,ψ : ϕ(U)→ Hom(R`, EQ) defined by

TF †ϕ,ψ(q) = Tϕ(ϕ−1(q)) ◦ TF †(ϕ−1(q)) ◦ Tψ−1(Fψ,ϕ(q))

is Cj.

Proof. Analogous to the proof of Proposition 4.1.4.

By assuming that Q and R are Riemannian, we obtain the next result.

Proposition 4.1.6. Suppose that Q and R are Riemannian. Define the vector

bundle map TF# : F ∗(TR) → TQ by setting TF#(q) to be the Moore–Penrose

pseudoinverse of TF (q). That is,

TF#(q) = TF (q)∗ ◦ (TF (q) ◦ TF (q)∗)−1

for each q ∈ Q.2 Then TF# is a Ck−1 right inverse of TF .

Proof. Choose q ∈ Q. We begin by showing that

(TF (q) ◦ TF (q)∗)−1

is well-defined. Since Q is Riemannian, we can form the orthogonal complement

ker(TF (q))⊥ = {v ∈ TqQ : 〈v, ṽ〉 = 0 for each ṽ ∈ ker(TF (q))}.
2Here, the assumption that Q and R are Riemannian is used to form the adjoints TF (q)∗.
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Clearly, the restriction of TF (q) to ker(TF (q))⊥ is injective. Using the canonical

vector space isomorphisms from [Bachman and Narici 2000, Section 20.3], we have

• ker(TF (q)∗) ∼= {0F (q)} and

• image(TF (q)∗) ∼= ker(TF (q))⊥.

Thus TF (q)∗ is injective and maps TF (q)R onto ker(TF (q))⊥. Consequently,

TF (q) ◦ TF (q)∗

is injective by composition and TF (q) ◦ TF (q)∗ ∈ Hom(TF (q)R, TF (q)R) is bijective.

To show that TF# is Ck−1, we use Proposition 4.1.5. Suppose that (U,ϕ) and

(V,ψ) are F -compatible charts on Q and R, respectively. Then

TF#
ϕ,ψ(q) = Tϕ(ϕ−1(q)) ◦ TF#(ϕ−1(q)) ◦ Tψ−1(Fψ,ϕ(q))

= TFψ,ϕ(q)∗ ◦ (TFψ,ϕ(q) ◦ TFψ,ϕ(q)∗)−1

for each q ∈ ϕ(U). Recall from [Abraham et al. 1988, Lemma 2.5.5] that the map3

I : GL(R`)→ GL(R`)

that sends λ to I(λ) = λ−1 is C∞. By composition, TF#
ϕ,ψ is Ck−1.

Definition 4.1.7. The right inverse TF# : F ∗(TR)→ TQ, defined as in Proposi-

tion 4.1.6 above, is called the Moore–Penrose pseudoinverse of TF .

In Section 4.3, right inverses are incorporated into initial value problems.

4.2 Initial value problems evolving on Banach

manifolds

In this section, we briefly review the required theory of initial value problems

evolving on Banach manifolds. We emphasize that the material in this section
3Here, GL(R`) ⊆ Hom(R`) denotes the set of linear automorphisms of R`.
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does not follow from the material in Section 2.3 concerning initial value problems

evolving on finite-dimensional manifolds. Indeed, the latter material does not

generalize in a straightforward way to the cases considered in this section, as this

generalization requires the introduction of strong measurability and the Bochner

integral; see [Kuttler 1998, Chapter 23]. In any case, it is not necessary to generalize

the material in Section 2.3. For the purposes of the continuation method, it is

enough to consider initial value problems whose right-hand sides are continuous.

Throughout this section, I is an interval and ξ : dom(ξ)→ Q is a curve.

Definition 4.2.1. Consider a map X : I × Q → TQ. We say that X is a time-

varying vector field on Q if πTQ ◦X(t, q) = q for each (t, q) ∈ I × Q. The set

of all such maps is denoted by V (I,Q). Given a chart (U,ϕ) on Q, the local

representative of X in (U,ϕ) is the map Xϕ : I × ϕ(U)→ EQ defined by

Xϕ(t, q) = Tϕ(ϕ−1(q)) ·X(t, ϕ−1(q)).

In what follows, X ∈ V (I,Q).

Definition 4.2.2. Suppose that (t0, q0) ∈ I ×Q. The triple (X, t0, q0) is said to be

an initial value problem evolving on Q, with right-hand side X and initial

condition (t0, q0). We say that ξ is a solution of (X, t0, q0) if

• dom(ξ) is a relatively open subinterval of I containing t0,

• ξ is C1,

• ξ(t0) = q0, and ξ̇(t) = X(t, ξ(t)) for each t ∈ dom(ξ).

Definition 4.2.3. Suppose that (t0, q0) ∈ I ×Q and ξ is a solution of (X, t0, q0).

We say that ξ is maximally-defined if it has the following property: If

ξ̃ : dom(ξ̃)→ Q
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is another solution of (X, t0, q0), then dom(ξ̃) ⊆ dom(ξ) and

ξ̃(t) = ξ(t)

for each t ∈ dom(ξ̃). Clearly, such a solution is unique.

Next, we establish a suitable Lipschitz condition on X.

Definition 4.2.4. Suppose that U is a nonempty open subset of EQ and

f : I × U → EQ.

We say that f is locally Lipschitz if it is continuous and for each (t0, u0) ∈ I ×U ,

there exist a product neighbourhood I0 × U0 of (t0, u0) and C ∈ R≥0 such that

‖f(t, u)− f(t, ũ)‖EQ ≤ C ‖u− ũ‖EQ

for each t ∈ I0 and each u, ũ ∈ U0.

Definition 4.2.5. We say that X is locally Lipschitz if Xϕ is locally Lipschitz

for each chart (U,ϕ) on Q.

One can show that X is locally Lipschitz if and only if Xϕ is locally Lipschitz

for each chart (U,ϕ) ∈ AQ, where AQ is a compatible atlas on Q.

Theorem 4.2.6. Suppose that X is locally Lipschitz. Then there exists a maximal-

ly-defined solution of (X, t0, q0) for each (t0, q0) ∈ I ×Q.

Proof. This follows from [Amann 1990, Theorem 7.6], together with a globalization

procedure analogous to the one employed in Section 2.3.

Provided that X is locally Lipschitz, the maximally-defined solution of the

initial value problem (X, t0, q0) is denoted by

µX(·, t0, q0) : IX(t0, q0)→ Q.
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One can also define the global flow of X, although we do not require this notion.

We conclude this section with the next proposition, which describes how max-

imally-defined solutions behave near the boundaries of their domains of definition.

Proposition 4.2.7. Suppose that U is a nonempty open subset of EQ,

f : I × U → EQ

is locally Lipschitz, and (t0, u0) ∈ I × U . Define

If−(t0, u0) = inf(If (t0, u0)) and If+(t0, u0) = sup(If (t0, u0)).

If If+(t0, u0) < sup(I), then there are two mutually exclusive possibilities:

1. lim
t↗If+(t0,u0)

‖µ̇f (t, t0, u0)‖EQ = lim
t↗If+(t0,u0)

‖f(t, µf (t, t0, u0))‖EQ =∞;

2. u+ = lim
t↗If+(t0,u0)

µf (t, t0, u0) exists in EQ and u+ /∈ U .

Similarly, if inf(I) < If−(t0, u0), then there are two mutually exclusive possibilities:

1. lim
t↘If−(t0,u0)

‖µ̇f (t, t0, u0)‖EQ = lim
t↘If−(t0,u0)

‖f(t, µf (t, t0, u0))‖EQ =∞;

2. u− = lim
t↘If−(t0,u0)

µf (t, t0, u0) exists in EQ and u− /∈ U .

Proof. Suppose that If+(t0, u0) < sup(I). If

lim
t↗If+(t0,u0)

‖f(t, µf (t, t0, u0))‖EQ =∞,

then there is nothing to prove. Suppose that

C = lim
t↗If+(t0,u0)

‖f(t, µf (t, t0, u0))‖EQ <∞.

By continuity and the triangle inequality, there exists t∗ ∈ [t0, I
f
+(t0, u0)) such that

‖f(t, µf (t, t0, u0))‖EQ ≤ 2C
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for each t ∈ [t∗, I
f
+(t0, u0)). It follows that

‖µf (t, t0, u0)− µf (t̃, t0, u0)‖EQ =

∥∥∥∥∥
∫ t

t̃
f(σ, µf (σ, t0, u0)) dσ

∥∥∥∥∥
EQ

≤ sign(t− t̃)
∫ t

t̃
‖f(σ, µf (σ, t0, u0))‖EQ dσ

≤ 2C sign(t− t̃)
∫ t

t̃
dσ

≤ 2C sign(t− t̃)(t− t̃)

= 2C |t− t̃| (4.2)

for each t, t̃ ∈ [t∗, I
f
+(t0, u0)). Now consider a sequence {tn}n∈N in [t∗, I

f
+(t0, u0))

converging to If+(t0, u0). Since {tn}n∈N is convergent, it is Cauchy. By (4.2), the

sequence {µf (tn, t0, u0)}n∈N in EQ is also Cauchy. Thus

u+ = lim
t↗If+(t0,u0)

µf (t, t0, u0) = lim
n→∞

µf (tn, t0, u0)

exists in EQ. To complete the proof, suppose that u+ ∈ U . Since If (If+(t0, u0), u+)

is a relatively open subinterval of I containing If+(t0, u0), we have

I ∩ (If+(t0, u0)− δ, If+(t0, u0) + δ) ⊆ If (If+(t0, u0), u+)

for some δ ∈ R>0. In particular, we have

Iext
+ = I ∩ [If+(t0, u0), If+(t0, u0) + δ) ⊆ If (If+(t0, u0), u+).

Now define µ : If (t0, u0) ∪ Iext
+ → U by

µ(t) =


µf (t, t0, u0), t ∈ If (t0, u0),

µf (t, If+(t0, u0), u+), t ∈ Iext
+ .

Clearly, µ is a solution of (f, t0, u0), and If (t0, u0) is properly contained in

If (t0, u0) ∪ Iext
+ .

This contradicts the fact that µf(·, t0, u0) is the maximally-defined solution of

(f, t0, u0). Hence u+ /∈ U . The second assertion of the proof is analogous.

90



Example 4.2.8. Suppose that f : [0, 1] × U → EQ is locally Lipschitz, t0 = 0,

u0 ∈ U , and If (0, u0) = [0, δ) for some δ ∈ (0, 1]. Then

If+(0, u0) = δ < 1 = sup([0, 1]).

Proposition 4.2.7 completely characterizes this phenomenon, by telling us that

exactly one of the following possibilities has occurred:

1. lim
t↗δ
‖µ̇f (t, 0, u0)‖EQ =∞;

2. u+ = lim
t↗δ

µf (t, 0, u0) exists in EQ and u+ /∈ U .

Note that if U = EQ, then it must be the case that

lim
t↗δ
‖µ̇f (t, t0, u0)‖EQ =∞.

In Chapter 9, Proposition 4.2.7 is used in the context of sublinear growth.

4.3 The continuation method

In this section, we present the continuation method, beginning in Section 4.3.1 with

general definitions and results concerning path-lifting equations. In Section 4.3.2,

we specialize the material of Section 4.3.1 to control systems.

4.3.1 Path-lifting equations

Throughout this section, TF † is a locally Lipschitz right inverse of TF and

π : [0, 1]→ R

is a C1 curve such that image(π) ⊆ image(F ).

Definition 4.3.1. Suppose that

Π : [0, 1]→ Q

is a C1 curve. We say that Π is a C1 lift of π with respect to F if
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Lift(q)

q

F (q)

Figure 4.1: An illustration of Lift(q) ∈ Hom(TF (q)R, TqQ)

• J is a relatively open4 subinterval of [0, 1] containing 0 and

• F ◦ Π = π|J .

If J = [0, 1], then Π is total . On the other hand, if J 6= [0, 1], then Π is partial .

We now turn to path-lifting equations. Since F is a submersion, for each

t ∈ [0, 1] there exists vq ∈ TQ such that TF (q) · vq = π̇(t). We would like to have a

systematic way to select the tangent vector vq. To this end, we take the following

approach: For each q ∈ Q, prescribe Lift(q) ∈ Hom(TF (q)R, TqQ) such that

TF (q) ◦ Lift(q) · π̇(t) = π̇(t).

This is illustrated in Figure 4.1. Collectively, the maps Lift(q) comprise a right

inverse of TF . Intuitively speaking, if this right inverse is regular enough, then we
4That is, J can be written as the intersection of [0, 1] with an open interval.
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δ

π
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π̇(t)

b

Lift(Π(t)) · π̇(t)

Figure 4.2: An illustration of lifting π̇(t) for each t ∈ [0, 1]

can construct Π as the maximally-defined solution of the initial value problem
Π̇(t) = Lift(Π(t)) · π̇(t), Π(t) ∈ Q, t ∈ [0, 1]

Π(0) = q0,
(4.3)

provided that q0 is chosen in an appropriate way. In this sense, one can think of Π

as being constructed from “infinitesimal samples” of π which are lifted to TQ. This

is illustrated in Figure 4.2.

In the next proposition, we begin to make this intuitive description precise.

The time-varying vector field Hπ is incorporated to extend the “tangent vector

field” along π to a vector field on R, and the assumption that Hπ is time-varying is

included to handle the possibility that π may not be injective.

Proposition 4.3.2. There exists Hπ ∈ V ([0, 1], R) such that

1. Hπ is locally Lipschitz,

2. π̇(t) = Hπ(t, π(t)) for each t ∈ [0, 1], and
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3. The time-varying vector field H†π ∈ V ([0, 1], Q) defined by

H†π(t, q) = TF †(q) ·Hπ(t, F (q))

is locally Lipschitz.

Proof. The first two assertions are proven in [Chitour 2006, Section 5.3]. In the

cited work, the construction of Hπ requires that R admits C∞ partitions of unity;

this fact underlies our standing assumption that R is second-countable.

To show that H†π is locally Lipschitz, we use Proposition 4.1.4. Suppose that

(U,ϕ) and (V,ψ) are F -compatible charts on Q and R, respectively. Then

(H†π)ϕ(t, q) = Tϕ(ϕ−1(q)) ·H†π(t, ϕ−1(q))

= Tϕ(ϕ−1(q)) ◦ TF †(ϕ−1(q)) ·Hπ(t, F ◦ ϕ−1(q))

= Tϕ(ϕ−1(q)) ◦ TF †(ϕ−1(q)) ◦

Tψ−1(Fψ,ϕ(q)) ◦ Tψ(F ◦ ϕ−1(q)) ·Hπ(t, F ◦ ϕ−1(q))

= TF †ϕ,ψ(q) ◦ Tψ(ψ−1 ◦ Fψ,ϕ(q)) ·Hπ(t,ψ−1 ◦ Fψ,ϕ(q))

= TF †ϕ,ψ(q) · (Hπ)ψ(t, Fψ,ϕ(q))

for each (t, q) ∈ [0, 1]× ϕ(U). Now choose (t0, q0) ∈ [0, 1]× ϕ(U). Then

• There exists a neighbourhood U0 of q0 and C1 ∈ R≥0 such that

‖TF †ϕ,ψ(q)− TF †ϕ,ψ(q̃)‖ ≤ C1 ‖q − q̃‖EQ

for each q, q̃ ∈ U0, and

• There exists a product neighbourhood I0 × V0 of

(t0,ψ ◦ F (q0))

and C2 ∈ R≥0 such that

‖(Hπ)ψ(t, r)− (Hπ)ψ(t, r̃)‖R` ≤ C2 ‖r − r̃‖R`

for each t ∈ I0 and each r, r̃ ∈ V0.
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Shrinking U0 and I0 × V0, we may assume without loss of generality that

• Fψ,ϕ(U0) ⊆ V0,

• ‖(Hπ)ψ(t, r)‖R` ≤ C0 for each (t, r) ∈ I0 × V0, where C0 ∈ R≥0, and

• ‖TF †ϕ,ψ(q)‖ ≤ C ′0 for each q ∈ U0, where C ′0 ∈ R≥0.

Using the above properties, we have

‖(H†π)ϕ(t, q)− (H†π)ϕ(t, q̃)‖EQ

= ‖TF †ϕ,ψ(q) · (Hπ)ψ(t, Fψ,ϕ(q))− TF †ϕ,ψ(q̃) · (Hπ)ψ(t, Fψ,ϕ(q̃))‖EQ

= ‖[TF †ϕ,ψ(q)− TF †ϕ,ψ(q̃)] · (Hπ)ψ(t, Fψ,ϕ(q̃))

+ TF †ϕ,ψ(q) · [(Hπ)ψ(t, Fψ,ϕ(q))− (Hπ)ψ(t, Fψ,ϕ(q̃))]‖EQ

≤ C1 ‖q − q̃‖EQ ‖(Hπ)ψ(t, Fψ,ϕ(q̃))‖R` + C2 ‖TF †ϕ,ψ(q)‖ ‖Fψ,ϕ(q)− Fψ,ϕ(q̃)‖R`

≤ C0C1 ‖q − q̃‖EQ + C ′0C2 ‖Fψ,ϕ(q)− Fψ,ϕ(q̃)‖R`

for each t ∈ I0 and each q, q̃ ∈ U0. Since Fψ,ϕ is C1, it is locally Lipschitz. In

particular, by further shrinking U0, we may assume without loss of generality that

‖Fψ,ϕ(q)− Fψ,ϕ(q̃)‖R` ≤ C ′′0 ‖q − q̃‖EQ

for each q, q̃ ∈ U0, where C ′′0 ∈ R≥0. Setting C = max{C0C1, C
′
0C
′′
0C2}, we have

‖(H†π)ϕ(t, q)− (H†π)ϕ(t, q̃)‖EQ ≤ C ‖q − q̃‖EQ

for each t ∈ I0 and each q, q̃ ∈ U0. This completes the proof.

For our purposes, the most important consequence of Proposition 4.3.2 is that

there exist unique maximally-defined solutions of the initial value problems
Π̇(t) = TF †(Π(t)) ·Hπ(t, F ◦ Π(t)), Π(t) ∈ Q, t ∈ [0, 1]

Π(0) = q0,
(4.4)
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and 
ṙ(t) = Hπ(t, r(t)), r(t) ∈ R, t ∈ [0, 1]

r(0) = r0

(4.5)

for each q0 ∈ Q and each r0 ∈ R. For reasons which will be made clear below, we

say that (4.4) is a path-lifting equation (PLE) for F . Here, the right inverse TF †

is understood. When we wish to emphasize the role of TF †, we will say that (4.4)

is a PLE for F relative to TF †. On the other hand, when we wish to emphasize

the data π and q0, we will refer to (4.4) as the (π, q0)-PLE for F .

The next lemma tells us that certain solutions of path-lifting equations are C1

lifts of π with respect to F . Note that these lifts may be partial lifts, in general.

Lemma 4.3.3. Suppose that q0 ∈ F−1(π(0)). Then

µH
†
π(·, 0, q0) : IH

†
π(0, q0)→ Q

is a C1 lift of π with respect to F , where H†π is defined as in Proposition 4.3.2.

Proof. Set Π = µH
†
π(·, 0, q0). By definition, IHπ(0, q0) is a relatively open subinterval

of [0, 1] containing 0. Since F ◦ Π(0) = F (q0) = π(0) and

˙̇
F ◦ Π(t) = TF (Π(t)) · Π̇(t)

= TF (Π(t)) ◦H†π(t,Π(t))

= TF (Π(t)) ◦ TF †(Π(t)) ·Hπ(t, F ◦ Π(t))

= idTF◦Π(t)R ·Hπ(t, F · Π(t))

= Hπ(t, F ◦ Π(t))

for each t ∈ IHπ(t0, q0), it follows that F ◦Π is a solution of the initial-value problem

(Hπ, 0, π(0)).

However, π is the maximally-defined solution of (Hπ, 0, π(0)) by construction, since

π̇(t) = Hπ(t, π(t))
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for each t ∈ [0, 1]. This implies that

F ◦ Π = π|IH†π(0, q0).

We conclude that Π is a C1 lift of π with respect to F .

With this material established, we now describe the continuation method.

4.3.2 The continuation method

Throughout this section,

• M is a second-countable n-dimensional manifold,

• Σ = (f,U ) is a nice C1
p control system evolving on M (see Definition 3.3.7),

• The time domain of Σ is J = [a, b], so that U = Lp(J,Rr), and

• Σ is completely controllable from a fixed initial state x0 ∈M on J .

By Corollary 3.3.12, the map

EndΣ
x0

: dom(EndΣ
x0

) ⊆ U →M

is C1. For notational economy, we write

Ux0 = dom(EndΣ
x0

).

4.3.2.1 Basic definitions

We begin by recalling that in Chapter 1, the x0-anchored motion planning

problem (x0-anchored MPP) for Σ was posed in the following way:

Problem: For each x ∈M , find u ∈ Ux0 such that EndΣ
x0

(u) = x.

To attack this problem, we would like to use the material of Section 4.3, replacing

the submersion F : Q → R by EndΣ
x0
. However, the latter map may not be a
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submersion. To remedy this, we will work with a “submersive version” of EndΣ
x0

obtained by restriction. Next, we establish the requisite terminology and notation.

Definition 4.3.4. We say that a control u ∈ Ux0 is singular (with respect to x0)

if it is a singular point of EndΣ
x0
. That is, u is singular if and only if

rank(TEndΣ
x0

(u)) < n.

The set of all singular controls is denoted by U sing
x0

. If u is not singular, then it is

regular . We denote the set of all regular controls by U reg
x0

.

In the remainder of this section, we assume that U reg
x0

is nonempty. By [Abraham

et al. 1988, Proposition 3.6.10], U reg
x0

is an open submanifold of Lp(J,Rr).

Definition 4.3.5. Define EndΣ
x0

: U reg
x0
→M by

EndΣ
x0

(u) = EndΣ
x0

(u),

so that EndΣ
x0

is simply the restriction of EndΣ
x0

to U reg
x0

. We say that EndΣ
x0

is the

desingularized x0-anchored endpoint map of Σ.

By construction, EndΣ
x0

is a C1 submersion.

4.3.2.2 The general case

We now give an algorithmic description of the continuation method. Throughout

this section, TEndΣ,†
x0

is a locally Lipschitz right inverse of TEndΣ
x0
.

Example 4.3.6. Suppose that M is Riemannian and Σ is C2
2 -polynomial. By

Corollary 3.3.12, the map EndΣ
x0

is C2. Since U reg
x0

is an open submanifold of

U = L2(J,Rr),

it is Riemannian when endowed with the induced metric. By Proposition 4.1.6,

the Moore–Penrose pseudoinverse TEndΣ,#
x0

is C1 and thus locally Lipschitz. This
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scenario includes the “classical” continuation method of Sussmann [1993]. Indeed,

if Σ is a driftless C∞ control-affine system that uses L2 controls, then Σ is C2
2 -

polynomial by Example 3.2.10.

The continuation method solves the x0-anchored MPP in the following way.

Algorithm 4.3.7. (Continuation method) Given x ∈M ,

1. Choose a C1 curve π : [0, 1]→M such that π(1) = x.

2. Given that image(π) ⊆ image(EndΣ
x0

),

a. Choose u0 ∈ (EndΣ
x0

)−1(π(0)).

b. If the maximally-defined solution Π of the (π,u0)-PLE for EndΣ
x0

is defined

on [0, 1], then choose u = Π(1). By Lemma 4.3.3, the control u satisfies

EndΣ
x0

(u) = EndΣ
x0

(u) = EndΣ
x0
◦Π(1) = π(1) = x.

If we cannot choose π such that

image(π) ⊆ image(EndΣ
x0

)

is satisfied, then the algorithm fails. For example, this occurs if x /∈ image(EndΣ
x0

).

Remark 4.3.8. Before moving on, let us explain the absence of image(EndΣ
x0

) in

the “classical” continuation method of Sussmann [1993], as this is somewhat difficult

to discern from the literature. Suppose that Σ is a driftless C∞ control-affine system

that uses L2 controls. The key fact is that

image(EndΣ
x0

) = M,

which follows from the assumption that U reg
x0

is nonempty; see [Bellaïche 1996,

Lemmas 2.1 and 2.2]. For instance, U reg
x0

is nonempty whenever

• Σ is Cω and satisfies the Lie algebra rank condition [Sontag 1992] or

• Σ is strongly bracket-generating [Sussmann 1993].
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4.3.2.3 The case where no controls are singular

Evidently, the existence of singular controls complicates the continuation method

to a large degree. In particular, verifying that the constraint

image(π) ⊆ image(EndΣ
x0

)

is satisfied necessitates a complete characterization of U sing
x0

. In Chapter 1, we

called this difficulty the second obstruction to the continuation method. In this

section, we indicate how the continuation method simplifies in the case where U sing
x0

is empty. Throughout this section, TEndΣ,†
x0

is a locally Lipschitz right inverse of

TEndΣ
x0
.

Note that if U sing
x0

= ∅, then EndΣ
x0

= EndΣ
x0

and

image(EndΣ
x0

) = M.

Furthermore, the continuation method simplifies in the following way.

Algorithm 4.3.9. (Simplified continuation method) Given x ∈M ,

1. Choose a C1 curve π : [0, 1]→M with π(1) = x.

2. Choose u0 ∈ (EndΣ
x0

)−1(π(0)).

3. If the maximally-defined solution Π of the (π,u0)-PLE for EndΣ
x0

is defined on

[0, 1], then choose u = Π(1). By Lemma 4.3.3, the control u satisfies

EndΣ
x0

(u) = EndΣ
x0
◦Π(1) = π(1) = x.

In Chapter 11, we will study a control system for which U sing
x0

is empty.
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Chapter 5

Operations on time-varying vector

fields

Consider a control system

Σ = (f,U )

evolving on an n-dimensional manifold M , and let x0 ∈M . In subsequent chapters,

we will derive expressions for the differential of EndΣ and the intrinsic quadratic

differentials of EndΣ
x0

(a formal definition of intrinsic quadratic differentials is delayed

until Chapter 7). As we will see, these differentials are related to the controlled

trajectories of certain control systems derived from Σ. These control systems, called

the first and second variations of Σ, are constructed by lifting time-varying vector

fields on M to TM and TTM . The requisite lifting operations are the subject of

this chapter, including their basic properties and their interplay with one another.

This chapter is organized in the following way. In Section 5.1, we define vertical

lifts and record their relevant properties. In Sections 5.2 and 5.3, we repeat this

process for tangent lifts and cotangent lifts, respectively. In Section 5.4, we define

the pullback of one time-varying vector field by the global flow of another, and

recall the nonlinear variation of constants formula. Finally, in Sections 5.5, 5.6,
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5.7, 5.8, and 5.9, we derive a number of new and useful identities. These identities

provide reductive formulas for pullbacks involving lifts, an explicit formula for

the global flow of X + Y , where X is a tangent lift and Y is a vertical lift, and

explicit formulas for time derivatives and scalar parameter derivatives of pullbacks.

These identities will play an important role in later chapters, although they are

also interesting in their own right.

Our standing assumptions throughout this chapter are that

• I is an interval,

• Q is an `-dimensional manifold,

• Ξ,Υ ∈ V (I,Q) are time-varying vector fields on Q, and

• χ ∈ V (I,Q,Rr) is a controllable time-varying vector field on Q.

At many junctures, it will be necessary to assume that Ξ, Υ, and χ have stronger

regularity properties. These assumptions will be clearly stated.

5.1 Vertical lifts

5.1.1 Basic definitions and properties

We begin by defining vertical subspaces. Given vq ∈ TqQ, we say that

VvqTQ = ker(TπTQ(vq))

is the vertical subspace at vq, and vlftvq ∈ Hom(TqQ, VvqTQ), defined by

vlftvq · ṽq =
d

ds

∣∣∣∣∣
0

(vq + sṽq),

is the pointwise vertical lift at vq. For details, see [Crampin and Pirani 1986,

Chapter 13.2]. Applying each vlftvq , one obtains the vertical lifts of Ξ and χ.
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Definition 5.1.1. We say that vlft(Ξ) ∈ V (I, TQ), defined by

vlft(Ξ)(t, vq) = vlftvq · Ξ(t, q),

is the vertical lift of Ξ. Of course, one can also form the vertical lift of any vector

field Ξ on Q by identifying Ξ with the time-varying vector field

Ξ(t, q) = Ξ(q).

Under this identification, we have vlft(Ξ)t = vlft(Ξt).

Definition 5.1.2. We say that vlft(χ) ∈ V (I, TQ,Rr), defined by

vlft(χ)(t, vq,ω) = vlftvq · χ(t, q,ω),

is the vertical lift of χ.

If (TTV, TTψ) is a natural chart on TTQ, then αvq ∈ VvqTQ if and only if

TTψ(vq) · αvq = (q,v,0R` , ṽ)

for some ṽ ∈ R`. In particular, if Tψ(q) · ṽq = (q, ṽ), then

TTψ(vq) ◦ vlftvq · ṽq = TTψ(vq) ◦ vlftvq ◦ Tψ−1(q) · ṽ

= (q,v,0R` , ṽ).

From this observation, we see that vlftvq is a canonical vector space isomorphism,

and that the local representatives of vlft(Ξ) and vlft(χ) are given as follows.

Lemma 5.1.3. We have

vlft(Ξ)Tψ(t, q,v) =
Å
0R` ,Ξψ(t, q)

ã
for each natural chart (TV, Tψ) on TQ.
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Figure 5.1: An illustration of the pointwise vertical lift operation

Lemma 5.1.4. We have

vlft(χ)Tψ(t, q,v,ω) =
Å
0R` , χψ(t, q,ω)

ã
for each natural chart (TV, Tψ) on TQ.

The next two results follow immediately.

Lemma 5.1.5. Suppose that Ξ is locally integrably Ck, where k ∈ Z∗≥0. Then its

vertical lift vlft(Ξ) is locally integrably Ck.

Theorem 5.1.6. Suppose that Ξ is locally integrably C0. Then its vertical lift

vlft(Ξ) is solvable. Furthermore,

dom(Φvlft(Ξ)) = I × I × TQ

and Φvlft(Ξ) sends (t, t0, vq0) to

Φ
vlft(Ξ)
t,t0 (vq0) = vq0 +

∫ t

t0
Ξ(σ, q0) dσ.

In particular, each tangent space Tq0Q is invariant under Φ
vlft(Ξ)
t,t0 .
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Remark 5.1.7. Theorem 5.1.6 holds under more relaxed conditions. It is enough

that for each q0 ∈ Q, there exists a chart (V,ψ) on Q and α ∈ L1
loc(I,R≥0) such

that q0 ∈ V and ‖Ξψ(t,ψ(q0))‖R` ≤ α(t) for a.a. t ∈ I. We will not need this

degree of generality, however.

5.1.2 Composition with second differentials

The next lemma gives a relationship between first differentials, second differentials,

and pointwise vertical lifts (more precisely, inverse pointwise vertical lifts).

Lemma 5.1.8. Suppose that

• Q1 and Q2 are manifolds of dimension `1 and `2, respectively,

• F : Q1 → Q2 is C2, and

• αvq ∈ VvqTQ1.

Then TTF (vq) · αvq ∈ VTF (q)·vqTQ2 and

vlft−1
TF (q)·vq ◦ TTF (vq) · αvq = TF (q) ◦ vlft−1

vq · αvq .

Proof. Suppose that (TTV1, TTψ1) and (TTV2, TTψ2) are TTF -compatible natu-

ral charts on TTQ1 and TTQ2, respectively, such that αvq ∈ TTV1. By assumption,

TTψ1(vq) · αvq = (q,v,0R`1 , ṽ)

for some ṽ ∈ R`1 . Using [Abraham et al. 1988, Exercise 2.4H], we have

TTFTTψ2,TTψ1
(q,v,0R`1 , ṽ) = (Fψ2,ψ1

(q),DFψ2,ψ1
(q) · v,0R`2 ,DFψ2,ψ1

(q) · ṽ).

Thus TTF (vq) · αvq ∈ VTF (q)·vqTQ2. Using this result, we compute

Tψ2(F (q)) ◦ vlft−1
TF (q)·vq ◦ TTF (vq) · αvq = (Fψ2,ψ1

(q),DFψ2,ψ1
(q) · ṽ).
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Another straightforward computation yields

Tψ2(F (q)) ◦ TF (q) ◦ vlft−1
vq · αvq = (Fψ2,ψ1

(q),DFψ2,ψ1
(q) · ṽ).

This completes the proof.

5.2 Tangent lifts

5.2.1 A local result concerning total derivatives

Before defining tangent lifts, we recall a local result concerning the total derivatives

of global flows. In what follows, V is a nonempty open subset of R` and

f : I × V → R`

is locally integrably C1.

Theorem 5.2.1. The map g : I × V × R` → R` ⊕ R`, defined by

g(t, q,v) =
Å
f(t, q),D2f(t, q) · v

ã
,

is solvable. Furthermore,

dom(Φg) = {(t, t0, q0,v0) : (t0, q0,v0) ∈ I × V × R` and t ∈ If (t0, q0)}

and Φg sends (t, t0, q0,v0) to

Φgt,t0(q0,v0) =
Å

Φft,t0(q0),DΦft,t0(q0) · v0

ã
.

In particular, for each (t0, q0) ∈ I × V , the map

t 7→DΦft,t0(q0)

of If (t0, q0) into Hom(R`,R`) is LAC and satisfies

d

dt

∣∣∣∣∣
t

DΦft,t0(q0) = D2f(t,Φft,t0(q0)) ◦DΦft,t0(q0)

for a.a. t ∈ If (t0, q0).

Proof. See [McShane 1983, Chapter III, Theorem 6-1].
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5.2.2 Basic definitions and properties

We now define tangent lifts. Throughout this section, we assume that Ξ is locally

integrably C1. Thus the frozen-time vector field Ξt is C1 for each t ∈ I. Recall

from Section 2.1.7 that sQ denotes the canonical involution of TTQ.

Definition 5.2.2. We say that tlft(Ξ) ∈ V (I, TQ), defined by

tlft(Ξ)(t, vq) = sQ ◦ TΞt(q) · vq,

is the tangent lift of Ξ.1 Of course, one can also form the tangent lift of any C1

vector field Ξ on Q by identifying Ξ with the time-varying vector field

Ξ(t, q) = Ξ(q).

Under this identification, we have tlft(Ξ)t = tlft(Ξt).

The next lemma describes the local representatives of tlft(Ξ).

Lemma 5.2.3. We have

tlft(Ξ)Tψ(t, q,v) =
Å

Ξψ(t, q),D2Ξψ(t, q) · v
ã

for each natural chart (TV, Tψ) on TQ.

Proof. Choose a natural chart (TV, Tψ) on TQ. For each t ∈ I, the local represen-

tative of Ft = sQ ◦ TΞt in (TV, Tψ) and (TTV, TTψ) is given by

(Ft)TTψ,Tψ(q,v) =
Å
q,v,Ξψ(t, q),D2Ξψ(t, q) · v

ã
.

Using this result, we have

tlft(Ξ)Tψ(t, q,v) =
Å

Ξψ(t, q),D2Ξψ(t, q) · v
ã
.

This completes the proof.
1The tangent lift of Ξ is known by various other names throughout the literature, such

as the canonical lift, complete lift, natural lift, variational vector field, prolongation, and flow
prolongation of Ξ. These names are used in standard references on differential geometry, such as
[Kolář et al. 1993], as well as in the control theory literature [Crouch and van der Schaft 1987].
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The next result follows from Theorem 5.2.1 and Lemma 5.2.3.

Theorem 5.2.4. The tangent lift tlft(Ξ) is solvable. Furthermore,

dom(Φtlft(Ξ)) = {(t, t0, vq0) : (t0, vq0) ∈ I × Tq0Q and t ∈ IΞ(t0, q0)}

and Φtlft(Ξ) sends (t, t0, vq0) to

Φ
tlft(Ξ)
t,t0 (vq0) = TΦΞ

t,t0
(q0) · vq0 .

In particular, t 7→ Φ
tlft(Ξ)
t,t0 (vq0) is a vector field along t 7→ ΦΞ

t,t0
(q0).

Remark 5.2.5. Given (t, t0) ∈ I × I, the preceding theorem implies that

dom(Φ
tlft(Ξ)
t,t0 ) = Tdom(ΦΞ

t,t0
).

If Ξ is locally integrably Ck, where k ∈ N∗, and Q0 is open in dom(ΦΞ
t,t0

), then

Φ
tlft(Ξ)
t,t0 |TQ0 = TΦΞ

t,t0
|TQ0

is a Ck−1 diffeomorphism of TQ0 onto its image with inverse

Φ
tlft(Ξ)
t0,t |Φ

tlft(Ξ)
t,t0 (TQ0) = TΦΞ

t0,t
|Φtlft(Ξ)

t,t0 (TQ0).

This fact, which follows from Corollary 2.3.26, will be used implicitly in the

remainder of this chapter.

Tangent lifts lose one degree of differentiability in the following sense.

Lemma 5.2.6. Suppose that Ξ is locally integrably Ck, where k ∈ N∗. Then its

tangent lift tlft(Ξ) is locally integrably Ck−1.

Proof. See Section A.1.

To conclude this section, let us note that the discussion in this section is not

entirely comprehensive, being limited to those properties of tangent lifts which are

germane to our purposes. For additional properties of tangent lifts, we refer to

[Kolář et al. 1993] and [Bullo and Lewis 2005b, Sections S1.2.1 and S1.3.4].
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5.3 Cotangent lifts

5.3.1 A local result concerning adjoint total derivatives

Before defining cotangent lifts, we derive a local result concerning adjoint total

derivatives of global flows. This result is dual to Theorem 5.2.1, in a certain sense.

In what follows, V is a nonempty open subset of R` and

f : I × V → R`

is locally integrably C1.

Theorem 5.3.1. The map h : I × V × R` → R` ⊕ R`, defined by

h(t, q,p) =
Å
f(t, q),−D2f(t, q)∗ · p

ã
,

is solvable. Furthermore,

dom(Φh) = {(t, t0, q0,p0) : (t0, q0,p0) ∈ I × V × R` and t ∈ If (t0, q0)}

and Φh sends (t, t0, q0,p0) to

Φht,t0(q0,p0) =
Å

Φft,t0(q0),DΦft0,t(Φ
f
t,t0(q0))∗ · p0

ã
.

In particular, for each (t0, q0) ∈ I × V , the map

t 7→DΦft0,t(Φ
f
t,t0(q0))∗

of If (t0, q0) into Hom(R`,R`) is LAC and satisfies

d

dt

∣∣∣∣∣
t

DΦft0,t(Φ
f
t,t0(q0))∗ = −D2f(t,Φft,t0(q0))∗ ◦DΦft0,t(Φ

f
t,t0(q0))∗

for a.a. t ∈ If (t0, q0).

Proof. Choose (t0, q0) ∈ I × V . By Corollary 2.2.23, we have

DΦft0,t(Φ
f
t,t0(q0))∗ =

Ä
DΦft,t0(q0)−1

ä∗
=
Ä
DΦft,t0(q0)∗

ä−1
.
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Recall from [Abraham et al. 1988, Lemma 2.5.5] that the map2

I : GL(R`)→ GL(R`)

that sends λ to I(λ) = λ−1 is C∞ and DI(λ) · µ = −λ−1 ◦ µ ◦ λ−1. These facts,

together with Lemma 2.2.2 and Theorem 5.2.1, imply that the map

t 7→
Ä
DΦft,t0(q0)∗

ä−1

of If (t0, q0) into Hom(R`,R`) is LAC and satisfies

d

dt

∣∣∣∣∣
t

DΦft0,t(Φ
f
t,t0(q0))∗

=
d

dt

∣∣∣∣∣
t

Ä
DΦft,t0(q0)∗

ä−1

= −
Ä
DΦft,t0(q0)∗

ä−1 ◦ d

dt

∣∣∣∣∣
t

DΦft,t0(q0)∗ ◦
Ä
DΦft,t0(q0)∗

ä−1

= −
Ä
DΦft,t0(q0)∗

ä−1 ◦
(

d

dt

∣∣∣∣∣
t

DΦft,t0(q0)

)∗
◦
Ä
DΦft,t0(q0)∗

ä−1

= −
Ä
DΦft,t0(q0)∗

ä−1 ◦ (D2f(t,Φft,t0(q0)) ◦DΦft,t0(q0))∗ ◦
Ä
DΦft,t0(q0)∗

ä−1

= −
Ä
DΦft,t0(q0)∗

ä−1 ◦DΦft,t0(q0)∗ ◦D2f(t,Φft,t0(q0))∗ ◦
Ä
DΦft,t0(q0)∗

ä−1

= −D2f(t,Φft,t0(q0))∗ ◦
Ä
DΦft,t0(q0)∗

ä−1

= −D2f(t,Φft,t0(q0))∗ ◦DΦft0,t(Φ
f
t,t0(q0))∗

for a.a. t ∈ If (t0, q0). This completes the proof.

5.3.2 Basic definitions and properties

We now define cotangent lifts. Throughout this section, we assume that Ξ is locally

integrably C1 and T ∗Q is a symplectic manifold with its canonical symplectic

structure. We use the symplectic structure on T ∗Q to form Hamiltonian vector

fields in the following way. Choose t ∈ I, and recall from Section 2.1.7 that the
2Here, GL(R`) ⊆ Hom(R`) denotes the set of all linear automorphisms of R`.
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natural pairing of vq ∈ TqQ and pq ∈ T ∗qQ is denoted by 〈pq, vq〉. Then

HΞt : T ∗Q→ R

is the C1 function defined by

HΞt(pq) = 〈pq,Ξt(q)〉

and
−→HΞt : T ∗Q→ TT ∗Q is its associated Hamiltonian vector field. If (T ∗V, T ∗ψ)

is a natural (hence, symplectic) chart on T ∗Q, then

(
−→HΞt)T ∗ψ(p, q) = ((Ξt)ψ(q),−DΞt(q)∗ · p) = (Ξψ(t, q),−D2Ξ(t, q)∗ · p) (5.1)

For all details concerning symplectic manifolds, including the canonical symplectic

structure on T ∗Q, we refer to [Abraham et al. 1988, Chapter 8].

Definition 5.3.2. We say that ctlft(Ξ) ∈ V (I, T ∗Q), defined by

ctlft(Ξ)(t, pq) =
−→HΞt(pq),

is the cotangent lift of Ξ.3 Of course, one can also form the cotangent lift of any

C1 vector field Ξ on Q by identifying Ξ with the time-varying vector field

Ξ(t, q) = Ξ(q).

Under this identification, we have ctlft(Ξ)t = ctlft(Ξt).

The next lemma describes the local representatives of ctlft(Ξ).4

3In the literature, the cotangent lift of Ξ is also known as the Hamiltonian lift and variational
covector field of Ξ. In particular, this is true in some of the literature concerning the continuation
method; see [Chitour and Sussmann 1998, Section 3] and [Chitour 2006, Section 2.1].

4In the literature, the local representative of ctlft(Ξ) in a natural chart (T ∗V, T ∗ψ) on T ∗Q is
sometimes expressed as

ctlft(Ξ)T∗ψ(t, q,p) =
(
Ξψ(t, q),−p ·D2Ξψ(t, q)

)
. (5.2)

The idea is that T ∗ψ is a bijection of T ∗V onto ψ(V )× (R`)∗, where (R`)∗ is identified with the
space of `-dimensional row vectors. Thus ctlft(Ξ)T∗ψ is a map of I × V × (R`)∗ into R` ⊕ (R`)∗.
In particular, the expression (5.2) appears in some of the literature concerning the continuation
method; see [Chitour and Sussmann 1998, Section 3] and [Chitour 2006, Section 2.1].
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Lemma 5.3.3. We have

tlft(Ξ)T ∗ψ(t, q,p) =
Å

Ξψ(t, q),−D2Ξψ(t, q)∗ · p
ã

for each natural (hence, symplectic) chart (T ∗V, T ∗ψ) on T ∗Q.

Proof. This is simply a restatement of (5.1).

The next result follows from Theorem 5.3.1 and Lemma 5.3.3.

Theorem 5.3.4. The cotangent lift ctlft(Ξ) is solvable. Furthermore,

dom(Φctlft(Ξ)) = {(t, t0, pq0) : (t0, pq0) ∈ I × T ∗q0Q and t ∈ IΞ(t0, q0)}

and Φctlft(Ξ) sends (t, t0, pq0) to

Φ
ctlft(Ξ)
t,t0 (pq0) = TΦΞ

t0,t
(ΦΞ

t,t0
(q0))∗ · pq0 .

In particular, t 7→ Φ
ctlft(Ξ)
t,t0 (pq0) is a covector field along t 7→ ΦΞ

t,t0
(q0).

Cotangent lifts lose one degree of differentiability in the following sense.

Lemma 5.3.5. Suppose that Ξ is locally integrably Ck, where k ∈ N∗. Then its

cotangent lift ctlft(Ξ) is locally integrably Ck−1.

Proof. Identical to the proof of Lemma 5.2.6.

To conclude this section, let us mention that additional properties of cotangent

lifts can be found in [Bullo and Lewis 2005b, Sections S1.2.2 and S1.3.4].

5.4 Pullbacks

In this section, we define the pullback of one time-varying vector field by the global

flow of another. For our purposes, the importance of the pullback stems from its

appearance in the nonlinear variation of constants formula, which describes the
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global flow of a time-varying vector field of the form Ξ + Υ. The nonlinear variation

of constants formula, presented below in Proposition 5.4.2, will play an important

role in later chapters via the identities derived in Sections 5.5, 5.6, 5.7, 5.8, and 5.9.

Throughout this section,

I = [a, b].

We begin with the following basic observation: Suppose that Ξ is locally inte-

grably Ck, where k ∈ N∗, and q0 ∈ dom(ΦΞ
b,a). Then there exists a neighbourhood

Q0 of q0 such that ΦΞ
t,a|Q0 is a Ck diffeomorphism of Q0 onto its image for each

t ∈ I. In fact, one can choose Q0 to be any open subset of dom(ΦΞ
b,a) that contains

q0, since dom(ΦΞ
b,a) ⊆ dom(ΦΞ

t,a) for each t ∈ I.5 This fact will be used implicitly

in the remainder of this chapter. Indeed, it appears almost ubiquitously in the

definitions and results that follow.

Definition 5.4.1. Suppose that Ξ is locally integrably C1, q0 ∈ dom(ΦΞ
b,a), and

Q0 is a neighbourhood of q0 such that ΦΞ
t,a|Q0 is a C1 diffeomorphism of Q0 onto

its image for each t ∈ I. The time-varying vector field

AdΞ
Q0

(Υ) ∈ V (I,Q0)

defined by

AdΞ
Q0

(Υ)(t, q) = TΦΞ
a,t(Φ

Ξ
t,a(q0)) ·Υ(t,ΦΞ

t,a(q0))

is called the pullback of Υ by Ξ.6 It is clear that

AdΞ
Q0

(Υ)(t, q0) ∈ Tq0Q ∼= Tq0Q0,

and thus AdΞ
Q0

(Υ) is well-defined.
5This conclusion does not rely fundamentally on the assumption that I = [a, b]. In fact, the

same conclusion holds if [a, b] ⊆ I. We will not need this degree of generality, however.
6The “Ad” notation stems from similarities with Lie theory; see [Fulton and Harris 1991].
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The next result is the nonlinear variation of constants formula.

Proposition 5.4.2. Suppose that Ξ is locally integrably Ck+1, where k ∈ Z∗≥0,

q0 ∈ dom(ΦΞ
b,a), and Q0 is a neighbourhood of q0 such that ΦΞ

t,a|Q0 is a Ck+1

diffeomorphism of Q0 onto its image for each t ∈ I. Furthermore, suppose that Υ

is locally integrably Ck. Then

1. Ξ + Υ is locally integrably Ck,

2. AdΞ
Q0

(Υ) is locally integrably Ck, and

3. The global flow of Ξ + Υ satisfies

ΦΞ+Υ
t,a (q0) = ΦΞ

t,a ◦ Φ
AdΞ

Q0
(Υ)

t,a (q0)

whenever the left- and right-hand sides of the above equation are well-defined.

Proof. See [Bullo and Lewis 2005a, Proposition 9.6].

Finally, we prove three simple but useful technical lemmas.

Lemma 5.4.3. Suppose that Ξ is locally integrably C1, Υ is locally integrably C1,

and s ∈ I. Define the time-varying vector field Z ∈ V (I,Q) by

Z(t, q) = [Ξt,Υs](q).

Then Z is locally integrably C0.

Proof. Choose a chart (V,ψ) on Q. We must show that Zψ is locally integrably

C0 in the sense of Definition 2.2.19. To this end, observe that

Zψ(t, q) = D(Υs)ψ(q) · (Ξt)ψ(q)−D(Ξt)ψ(q) · (Υs)ψ(q)

= D(Υs)ψ(q) · Ξψ(t, q)−D2Ξψ(t, q) · (Υs)ψ(q).

Since Ξ and Υ are locally integrably C1, the first two criteria of Definition 2.2.19

are satisfied by composition. We now show that the third criterion is satisfied.
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Choose a compact subset K ⊆ ψ(V ). Since Υ is locally integrably C1, Υs is a C1

vector field on Q. Hence there exists C ∈ R≥0 such that

‖(Υs)ψ(q)‖R` ≤ C and ‖D(Υs)ψ(q)‖ ≤ C

for each q ∈ K. Similarly, since Ξ is locally integrably C1, there exists a function

α ∈ L1
loc(I,R≥0) such that

‖Ξψ(t, q)‖R` ≤ α(t) and ‖D2Ξψ(t, q)‖ ≤ α(t)

for a.a. t ∈ I and each q ∈ K. Thus

‖Zψ(t, q)‖R` ≤ ‖D(Υs)ψ(q)‖ ‖Ξψ(t, q)‖R` + ‖D2Ξψ(t, q)‖ ‖(Υs)ψ(q)‖R`

≤ Cα(t) + Cα(t)

= 2Cα(t)

for a.a. t ∈ I and each q ∈ K. This completes the proof.

The next proposition states that linear maps commute with integration.

Proposition 5.4.4. Suppose that E,F are finite-dimensional vector spaces,

λ ∈ Hom(E,F ),

and γ ∈ L1(I, E). Then λ ◦ γ ∈ L1(I, F ) and

λ ·
∫
I
γ(σ) dσ =

∫
I
λ · γ(σ) dσ.

Proof. See [Hunter 2010, Chapter 6.A].

Lemma 5.4.5. Suppose that Ξ is locally integrably C1 and Υ is locally integrably

C1. Define the time-varying vector field Z ∈ V (I,Q) by

Z(t, q) =
∫ t

a
[Ξσ,Υt](q) dσ.

Then Z is well-defined and is locally integrably C0.

115



Proof. By Lemma 5.4.3, Z is well-defined. Choose a chart (V,ψ) on Q. We must

show that Zψ is locally integrably C0 in the sense of Definition 2.2.19. To this end,

observe that

Zψ(t, q) = Tψ(ψ−1(q)) · Z(t,ψ−1(q))

= Tψ(ψ−1(q)) ·
∫ t

a
[Ξσ,Υt](ψ

−1(q)) dσ

=
∫ t

a
Tψ(ψ−1(q)) · [Ξσ,Υt](ψ

−1(q)) dσ

=
∫ t

a
D(Υt)ψ(q) · (Ξσ)ψ(q) dσ −

∫ t

a
D(Ξσ)ψ(q) · (Υt)ψ(q) dσ

=
∫ t

a
D2Υψ(t, q) · Ξψ(σ, q) dσ −

∫ t

a
D2Ξψ(σ, q) ·Υψ(t, q) dσ

= D2Υψ(t, q) ·
∫ t

a
Ξψ(σ, q) dσ −

∫ t

a
D2Ξψ(σ, q) dσ ·Υψ(t, q)

by Proposition 5.4.4. Since Ξ and Υ are locally integrably C1, the first two criteria

of Definition 2.2.19 are satisfied by composition.7 We now show that the third

criterion is satisfied. Choose a compact subset K ⊆ ψ(V ). Since Υ is locally

integrably C1, there exists α ∈ L1
loc(I,R≥0) such that

‖Υψ(t, q)‖R` ≤ α(t) and ‖D2Υψ(t, q)‖ ≤ α(t)

for a.a. t ∈ I and each q ∈ K. Similarly, since Ξ is locally integrably C1, there

exists β ∈ L1
loc(I,R≥0) such that

‖Ξψ(t, q)‖R` ≤ β(t) and ‖D2Ξψ(t, q)‖ ≤ β(t)

for a.a. t ∈ I and each q ∈ K. Thus

‖Zψ(t, q)‖R`

≤ ‖D2Υψ(t, q)‖
∫ t

a
‖Ξψ(σ, q)‖R` dσ +

∫ t

a
‖D2Ξψ(σ, q)‖ dσ ‖Υψ(t, q)‖R`

7Here we are using the fact that the maps

t 7→
∫ t

a

Ξψ(σ, q) dσ and t 7→
∫ t

a

D2Ξψ(σ, q) dσ

of I into R` are AC, hence measurable.
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≤ α(t)
∫ t

a
β(σ) dσ + α(t)

∫ t

a
β(σ) dσ

≤ α(t)
∫ b

a
β(σ) dσ + α(t)

∫ b

a
β(σ) dσ

= α(t)‖β‖1 + α(t)‖β‖1

= 2α(t)‖β‖1

for a.a. t ∈ I and each q ∈ K. This completes the proof.

Lemma 5.4.6. Suppose that Ξ is locally integrably C1, q0 ∈ dom(ΦΞ
b,a), and Q0

is a neighbourhood of q0 such that ΦΞ
t,a|Q0 is a C1 diffeomorphism of Q0 onto its

image for each t ∈ I. Furthermore, suppose that Υ is locally integrably C1 and

s ∈ I. Define the map γ : I → Tq0Q by

γ(t) = AdΞ
Q0

([Ξt,Υs])(t, q0).

Then γ ∈ L1(I, Tq0Q).

Proof. Define the time-varying vector field Z ∈ V (I,Q) by

Z(t, q) = [Ξt,Υs](q).

By Proposition 5.4.2 and Lemma 5.4.3, AdΞ
Q0

(Z) is locally integrably C0. To

complete the proof, just observe that

γ(t) = AdΞ
Q0

([Ξt,Υs])(t, q0)

= TΦΞ
a,t(Φ

Ξ
t,a(q0)) · [Ξt,Υs](Φ

Ξ
t,a(q0))

= TΦΞ
a,t(Φ

Ξ
t,a(q0)) · Z(t,ΦΞ

t,a(q0))

= AdΞ
Q0

(Z)(t, q0)

for each t ∈ I.
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5.5 Pullbacks involving lifts

In this section, we derive reductive formulas for pullbacks involving vertical lifts

and tangent lifts. Throughout this section,

I = [a, b].

Lemma 5.5.1. Suppose that Ξ is locally integrably C2, q0 ∈ dom(ΦΞ
b,a), and Q0

is a neighbourhood of q0 such that ΦΞ
t,a|Q0 is a C2 diffeomorphism of Q0 onto its

image for each t ∈ I. Furthermore, suppose that Υ is locally integrably C1. Define

X = tlft(Ξ) and Y = tlft(Υ). Then

AdXTQ0
(Y )(t, vq0) = tlft(AdΞ

Q0
(Υ))(t, vq0)

for each (t, vq0) ∈ I × Tq0Q.

Proof. Observe that

• AdXTQ0
(Y ) is well-defined by Lemma 5.2.6 and

• tlft(AdΞ
Q0

(Υ)) is well-defined by Proposition 5.4.2.

By [Abraham et al. 1988, Exercise 3.3B] and Theorem 5.2.4, we have

AdXTQ0
(Y )(t, vq0) = TΦX

a,t(Φ
X
t,a(vq0)) ◦ Y (t,ΦX

t,a(vq0))

= TΦX
a,t(Φ

X
t,a(vq0)) ◦ tlft(Υ)(t,ΦX

t,a(vq0))

= TΦX
a,t(Φ

X
t,a(vq0)) ◦ sQ0 ◦ TΥt(Φ

Ξ
t,a(vq0)) ◦ ΦX

t,a(vq0)

= TTΦΞ
a,t ◦ sQ0 ◦ TΥt(Φ

Ξ
t,a(vq0)) ◦ TΦΞ

t,a(q0) · vq0

= sQ0 ◦ TTΦΞ
a,t ◦ TΥt(Φ

Ξ
t,a(vq0)) ◦ TΦΞ

t,a(q0) · vq0

= sQ0 ◦ T (TΦΞ
a,t ◦Υt ◦ ΦΞ

t,a)(q0) · vq0

= sQ0 ◦ T (AdΞ
Q0

(Υ)t)(q0) · vq0

= tlft(AdΞ
Q0

(Υ))(t, vq0)

for each (t, vq0) ∈ I × Tq0Q. This completes the proof.
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Lemma 5.5.2. Suppose that Ξ is locally integrably C2, q0 ∈ dom(ΦΞ
b,a), and Q0

is a neighbourhood of q0 such that ΦΞ
t,a|Q0 is a C2 diffeomorphism of Q0 onto its

image for each t ∈ I. Define X = tlft(Ξ) and Y = vlft(Υ). Then

AdXTQ0
(Y )(t, vq0) = vlft(AdΞ

Q0
(Υ))(t, vq0)

for each (t, vq0) ∈ I × Tq0Q.

Proof. Observe that AdXTQ0
(Y ) is well-defined by Lemma 5.2.6. By [Lee 2003,

Proposition 3.12], Theorem 5.2.4, and linearity of each ΦX
a,t|TΦΞ

t,a(q0)Q, we have

AdXTQ0
(Y )(t, vq0) = TΦX

a,t(Φ
X
t,a(vq0)) · Y (t,ΦX

t,a(vq0))

= TΦX
a,t(Φ

X
t,a(vq0)) · vlft(Υ)(t,ΦX

t,a(vq0))

=
d

ds

∣∣∣∣∣
0

ΦX
a,t

Ä
ΦX
t,a(vq0) + sΥ(t,ΦΞ

t,a(q0))
ä

=
d

ds

∣∣∣∣∣
0

vq0 + ΦX
a,t(sΥ(t,ΦΞ

t,a(q0)))

=
d

ds

∣∣∣∣∣
0

vq0 + sΦX
a,t(Υ(t,ΦΞ

t,a(q0)))

=
d

ds

∣∣∣∣∣
0

vq0 + sTΦΞ
a,t(Φ

Ξ
t,a(q0)) ·Υ(t,ΦΞ

t,a(q0))

=
d

ds

∣∣∣∣∣
0

vq0 + sAdΞ
Q0

(Υ)(t, q0)

= vlft(AdΞ
Q0

(Υ))(t, vq0)

for each (t, vq0) ∈ I × Tq0Q. This completes the proof.

Lemma 5.5.3. Suppose that Ξ is locally integrably C1. Define X = vlft(Ξ) and

Y = vlft(Υ). Then

AdXTQ(Y )(t, vq) = Y (t, vq)

for each (t, vq) ∈ I × TQ.
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Proof. Observe that AdXTQ(Y ) is well-defined by Lemma 5.1.5 and Theorem 5.1.6.

By [Lee 2003, Proposition 3.12], we have

AdXTQ(Y )(t, vq) = TΦX
a,t(Φ

X
t,a(vq)) · Y (t,ΦX

t,a(vq))

= TΦ
vlft(Ξ)
a,t (ΦX

t,a(vq)) · vlft(Υ)(t,Φ
vlft(Ξ)
t,a (vq))

=
d

ds

∣∣∣∣∣
0

Φ
vlft(Ξ)
a,t (Φ

vlft(Ξ)
t,a (vq) + sΥ(t, q))

=
d

ds

∣∣∣∣∣
0

Φ
vlft(Ξ)
a,t

Ç
vq +

∫ t

a
Ξ(σ, q) dσ + sΥ(t, q)

å
=

d

ds

∣∣∣∣∣
0

Ç
vq +

∫ t

a
Ξ(σ, q) dσ + sΥ(t, q) +

∫ a

t
Ξ(σ, q) dσ

å
=

d

ds

∣∣∣∣∣
0

Ç
vq +

∫ t

a
Ξ(σ, q) dσ + sΥ(t, q)−

∫ t

a
Ξ(σ, q) dσ

å
=

d

ds

∣∣∣∣∣
0

(vq + sΥ(t, q))

= vlft(Υ)(t, vq)

= Y (t, vq)

for each (t, vq) ∈ I × TQ. This completes the proof.

The case where X = vlft(Ξ) and Y = tlft(Υ) is treated below in Section 5.8.

5.6 A particular global flow

In this section, we compute the global flow of X + Y , where X is a tangent lift and

Y is a vertical lift. Throughout this section,

I = [a, b].

Lemma 5.6.1. Suppose that Ξ is locally integrably C2, q0 ∈ dom(ΦΞ
b,a), and Q0

is a neighbourhood of q0 such that ΦΞ
t,a|Q0 is a C2 diffeomorphism of Q0 onto its

image for each t ∈ I. Furthermore, suppose that Υ is locally integrably C0. Define

X = tlft(Ξ) and Y = vlft(Υ). If

ΦX+Y
t,a (vq0)
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is well-defined for each (t, vq0) ∈ I × Tq0Q, then

ΦX+Y
t,a (vq0) = TΦΞ

t,a(q0) · vq0 +
∫ t

a
TΦΞ

t,a(q0) · AdΞ
Q0

(Υ)(σ, q0) dσ

for each (t, vq0) ∈ I × Tq0Q.

Proof. By Proposition 5.4.2, AdΞ
Q0

(Υ) is locally integrably C0. By Theorem 5.1.6,

Φ
vlft(AdΞ

Q0
(Υ))

t,a (vq0) = vq0 +
∫ t

a
AdΞ

Q0
(Υ)(σ, q0) dσ

for each (t, vq0) ∈ I×Tq0Q. Using this fact, together with Theorem 5.2.4, Proposition

5.4.2, Proposition 5.4.4, Lemma 5.5.2, and linearity of each ΦX
t,a|Tq0Q, we have

ΦX+Y
t,a (vq0) = ΦX

t,a ◦ Φ
AdXTQ0

(Y )

t,a (vq0)

= Φ
tlft(Ξ)
t,a ◦ Φ

Ad
tlft(Ξ)
TQ0

(vlft(Υ))

t,a (vq0)

= Φ
tlft(Ξ)
t,a ◦ Φ

vlft(AdΞ
Q0

(Υ))

t,a (vq0)

= Φ
tlft(Ξ)
t,a ·

Ç
vq0 +

∫ t

a
AdΞ

Q0
(Υ)(σ, q0) dσ

å
= TΦΞ

t,a(q0) · vq0 + TΦΞ
t,a(q0) ·

∫ t

a
AdΞ

Q0
(Υ)(σ, q0) dσ

= TΦΞ
t,a(q0) · vq0 +

∫ t

a
TΦΞ

t,a(q0) · AdΞ
Q0

(Υ)(σ, q0) dσ

for each (t, vq0) ∈ I × Tq0Q. This completes the proof.

5.7 Time derivatives of pullbacks

In this section, we compute time derivatives of pullbacks. This leads to useful

expressions for pullbacks, which are phrased in terms of integrated Lie brackets.

While the developments in this section are similar to those in [Abraham et al. 1988,

Section 4.2], the cited work only deals with C1 time-varying vector fields. Our

computational approach is also completely different from that of Abraham et al.

[1988], as it involves tangent lifts. Throughout this section,

I = [a, b].
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Lemma 5.7.1. Suppose that Ξ is locally integrably C2, q0 ∈ dom(ΦΞ
b,a), and Q0

is a neighbourhood of q0 such that ΦΞ
t,a|Q0 is a C2 diffeomorphism of Q0 onto its

image for each t ∈ I. Furthermore, suppose that vq0 ∈ Tq0Q. Then

d

dτ

∣∣∣∣∣
t

TΦΞ
a,τ (Φ

Ξ
τ,a(q0)) · TΦΞ

t,a(q0) · vq0

= −TTΦΞ
a,t(w) ◦ sQ0 ◦ TΞt(Φ

Ξ
t,a(q0)) ◦ TΦΞ

t,a(q0) · vq0

for a.a. t ∈ I, where w = TΦΞ
t,a(q0) · vq0.

Proof. Define γ : I → TQ by

γ(t) = TΦΞ
a,t(Φ

Ξ
t,a(q0)) ◦ TΦΞ

t,a(q0) · vq0 .

Clearly, γ̇(t) = 0 for each t ∈ I. By the chain rule, we have

γ̇(t) =
d

dτ

∣∣∣∣∣
t

TΦΞ
a,τ (Φ

Ξ
τ,a(q0)) ◦ TΦΞ

t,a(q0) · vq0 + TTΦΞ
a,t(w) ◦ d

dτ

∣∣∣∣∣
t

TΦΞ
τ,a(q0) · vq0

for a.a. t ∈ I, where w = TΦΞ
t,a(q0) · vq0 . By Theorem 5.2.4, the second term is

equal to

TTΦΞ
a,t(w) ◦ d

dτ

∣∣∣∣∣
t

TΦΞ
τ,a(q0) · vq0

= TTΦΞ
a,t(w) ◦ d

dτ

∣∣∣∣∣
t

Φtlft(Ξ)
τ,a (vq0)

= TTΦΞ
a,t(w) ◦ tlft(Ξ)(t, TΦΞ

t,a(q0) · vq0)

= TTΦΞ
a,t(w) ◦ sQ0 ◦ TΞt(Φ

Ξ
t,a(q0)) ◦ TΦΞ

t,a(q0) · vq0 .

This completes the proof.

Lemma 5.7.2. Suppose that Ξ is locally integrably C2, q0 ∈ dom(ΦΞ
b,a), and Q0

is a neighbourhood of q0 such that ΦΞ
t,a|Q0 is a C2 diffeomorphism of Q0 onto its

image for each t ∈ I. Furthermore, suppose that Υ is locally integrably C1 and

s ∈ I. Then

d

dτ

∣∣∣∣∣
t

AdΞ
Q0

(Υs)(τ, q0) = AdΞ
Q0

([Ξt,Υs])(t, q0)

for a.a. t ∈ I.
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Proof. By definition,

AdΞ
Q0

(Υs)(t, q0) = TΦΞ
a,t(Φ

Ξ
t,a(q0)) ◦Υs ◦ ΦΞ

t,a(q0)

for each t ∈ I. By the chain rule,

d

dτ

∣∣∣∣∣
t

AdΞ
Q0

(Υs)(τ, q0)

= TTΦΞ
a,t(w) ◦ d

dτ

∣∣∣∣∣
t

Υs ◦ ΦΞ
τ,a(q0) +

d

dτ

∣∣∣∣∣
t

TΦΞ
a,τ (Φ

Ξ
τ,a(q0)) ◦Υs ◦ ΦΞ

t,a(q0)

for a.a. t ∈ I, where w = Υs ◦ ΦΞ
t,a(q0). The first term is equal to

TTΦΞ
a,t(w) ◦ d

dτ

∣∣∣∣∣
t

Υs ◦ ΦΞ
τ,a(q0) = TTΦΞ

a,t(w) ◦ TΥs(Φ
Ξ
t,a(q0)) ◦ Ξt ◦ ΦΞ

t,a(q0).

Invoking Lemma 5.7.1 with vq0 = AdΞ
Q0

(Υs)(t, q0), the second term is equal to

d

dτ

∣∣∣∣∣
t

TΦΞ
a,τ (Φ

Ξ
τ,a(q0)) ◦Υs ◦ ΦΞ

t,a(q0)

= −TTΦΞ
a,t(w) ◦ sQ0 ◦ TΞt(Φ

Ξ
t,a(q0)) ◦Υs ◦ ΦΞ

t,a(q0).

Consequently,

d

dτ

∣∣∣∣∣
t

AdΞ
Q0

(Υs)(τ, q0)

= TTΦΞ
a,t(w) ◦ [TΥs(Φ

Ξ
t,a(q0)) ◦ Ξt ◦ ΦΞ

t,a(q0)

− sQ0 ◦ TΞt(Φ
Ξ
t,a(q0)) ◦Υs ◦ ΦΞ

t,a(q0)]

= TTΦΞ
a,t(w) ·K(q0).

By [Abraham et al. 1988, Exercise 4.2K], we have K(q0) ∈ VwTQ and

K(q0) = vlftw ◦ [Ξt,Υs] ◦ ΦΞ
t,a(q0).

Finally, we invoke Lemma 5.1.8 to obtain

vlft−1
AdΞ

Q0
(Υs)(t,q0)

◦ d

dτ

∣∣∣∣∣
t

AdΞ
Q0

(Υs)(τ, q0)

= vlft−1
TΦΞ

a,t(Φ
Ξ
t,a(q0))◦Υs◦ΦΞ

t,a(q0)
◦ d

dτ

∣∣∣∣∣
t

AdΞ
Q0

(Υs)(τ, q0)
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= vlft−1
TΦΞ

a,t(Φ
Ξ
t,a(q0))·w ◦ TTΦΞ

a,t(w) ·K(q0)

= TΦΞ
a,t(Φ

Ξ
t,a(q0)) ◦ vlft−1

w ◦K(q0)

= TΦΞ
a,t(Φ

Ξ
t,a(q0)) ◦ vlft−1

w ◦ vlftw ◦ [Ξt,Υs] ◦ ΦΞ
t,a(q0)

= TΦΞ
a,t(Φ

Ξ
t,a(q0)) ◦ [Ξt,Υs] ◦ ΦΞ

t,a(q0)

= AdΞ
Q0

([Ξt,Υs])(t, q0).

This completes the proof.8

The next corollary is the integral form of Lemma 5.7.2.

Corollary 5.7.3. Suppose that Ξ is locally integrably C2, q0 ∈ dom(ΦΞ
b,a), and Q0

is a neighbourhood of q0 such that ΦΞ
t,a|Q0 is a C2 diffeomorphism of Q0 onto its

image for each t ∈ I. Furthermore, suppose that Υ is locally integrably C1 and

s ∈ I. Then

AdΞ
Q0

(Υs)(t, q0) = Υs(q0) +
∫ t

a
AdΞ

Q0
([Ξσ,Υs])(σ, q0) dσ

for each t ∈ I. In particular, with s = t, we have

AdΞ
Q0

(Υ)(t, q0) = Υt(q0) +
∫ t

a
AdΞ

Q0
([Ξσ,Υt])(σ, q0) dσ

for each t ∈ I.

Proof. By Lemma 5.4.6, the map

t 7→ AdΞ
Q0

([Ξt,Υs])(t, q0)

of I into Tq0Q is an element of L1(I, Tq0Q). Integrating, we obtain

AdΞ
Q0

(Υs)(t, q0) = AdΞ
Q0

(Υs)(a, q0) +
∫ t

a
AdΞ

Q0
([Ξσ,Υs])(σ, q0) dσ

= Υs(q0) +
∫ t

a
AdΞ

Q0
([Ξσ,Υs])(σ, q0) dσ

for each t ∈ I. This completes the proof.
8Here, we are using the fact that each pointwise vertical lift is a canonical vector space

isomorphism.
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To conclude this section, we note that the results of Lemma 5.7.2 and Corollary

5.7.3 match certain formulas appearing in the proof of [Bullo and Lewis 2005a,

Proposition 9.9].

5.8 Pullbacks involving lifts: An integral formula

In this section, we derive an integral formula for pullbacks of the general form

AdX(Y ), where X is a vertical lift and Y is a tangent lift. Throughout this section,

I = [a, b].

Lemma 5.8.1. Suppose that Ξ is locally integrably C2, q0 ∈ dom(ΦΞ
b,a), and Q0

is a neighbourhood of q0 such that ΦΞ
t,a|Q0 is a C2 diffeomorphism of Q0 onto its

image for each t ∈ I. Furthermore, suppose that Υ is locally integrably C2. Define

X = vlft(Ξ) and Y = tlft(Υ). Then

AdXTQ0
(Y )(t, vq0) = tlft(Υ)(t, vq0) +

∫ t

a
vlft([Ξσ,Υt])(vq0) dσ

for each (t, vq0) ∈ I × Tq0Q.

Proof. Observe that

• X is locally integrably C2 by Lemma 5.1.5 and

• Y is locally integrably C1 by Lemma 5.2.6.

Invoking Corollary 5.7.3, we have

AdXTQ0
(Y )(t, vq0) = Yt(vq0) +

∫ t

a
AdXTQ0

([Xσ, Yt])(σ, vq0) dσ

= tlft(Υ)(t, vq0) +
∫ t

a
Ad

vlft(Ξ)
TQ0

([vlft(Ξ)σ, tlft(Υ)t])(σ, vq0) dσ

= tlft(Υ)(t, vq0) +
∫ t

a
Ad

vlft(Ξ)
TQ0

([vlft(Ξσ), tlft(Υt)])(σ, vq0) dσ
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for each (t, vq0) ∈ I × Tq0Q. By [Grabowski and Urbański 1995, Theorem 2.4],

[vlft(A), tlft(B)] = vlft([A,B]).

whenever A is a C1 vector field on Q and B is a C2 vector field on Q. Thus

AdXTQ0
(Y )(t, vq0) = tlft(Υ)(t, vq0) +

∫ t

a
Ad

vlft(Ξ)
TQ0

(vlft([Ξσ,Υt]))(σ, vq0) dσ.

By Lemma 5.5.3, we have

AdXTQ0
(Y )(t, vq0) = tlft(Υ)(t, vq0) +

∫ t

a
vlft([Ξσ,Υt])(σ, vq0) dσ

= tlft(Υ)(t, vq0) +
∫ t

a
vlft([Ξσ,Υt])(vq0) dσ.

This completes the proof.

5.9 Scalar parameter derivatives of pullbacks

In this section, we compute parameter derivatives of pullbacks, where the parameter

lies in an interval R. This leads to useful expressions for parameter derivatives

of pullbacks, which are phrased in terms of integrated Lie brackets. While the

developments in this section are similar to those in [Tretiyak 1997], the cited work

only deals with C∞ dependence on scalar parameters. Our computational approach

is also completely different, as it is not based on the chronological calculus formalism

[Agrachev and Sachkov 2004]. Throughout this section,

I = [a, b].

5.9.1 Time-varying vector fields with scalar parameters

We begin by establishing the necessary terminology and notation.

Definition 5.9.1. Suppose that V is a nonempty open subset of R` and

f : I × V ×R→ R`.
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We say that f is locally integrably Cj,k, where j, k ∈ N∗, if

• For each r ∈ R, the map (t, q) 7→ f(t, q, r) of I × V into R` is locally integrably

Cj,

• For each t ∈ I, the map (q, r) 7→ f(t, q, r) of V ×R into R` is Ck, and

• For each r ∈ R, the map

(t, q) 7→ d

dρ

∣∣∣∣∣
r

f(t, q, ρ)

of I × V into R` is locally integrably Ck−1.

Definition 5.9.2. Suppose that X : I ×Q×R→ TQ. We say that X is a time-

varying vector field on Q with scalar parameters if πTQ ◦X(t, q, r) = q for

each (t, q, r) ∈ I ×Q×R. The set of all such maps is denoted by V (I,Q,R). We

obtain Xr ∈ V (I,Q) by freezing the scalar parameter at r ∈ R. That is,

Xr(t, q) = X(t, q, r).

Given a chart (V,ψ) on Q, the local representative of X in (V,ψ) is the map

Xψ : I ×ψ(V )×R→ R`

defined by

Xψ(t, q, r) = Tψ(ψ−1(q)) ·X(t,ψ−1(q), r).

In what follows, X ∈ V (I,Q,R).

Definition 5.9.3. We say that X is locally integrably Cj,k, where j, k ∈ N∗, if

Xψ is locally integrably Cj,k for each chart (V,ψ) on Q.

One can show that X is locally integrably Cj,k if and only if Xψ is locally

integrably Cj,k for each chart (V,ψ) ∈ AQ, where AQ is a compatible atlas on Q.
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Furthermore, if X is locally integrably Cj,k, there exists a maximally-defined

solution of (Xr, t0, q0) for each (t0, q0, r) ∈ I ×Q×R. Indeed, this follows from the

fact that each time-varying vector field Xr is locally integrably Cj by definition.

Definition 5.9.4. Suppose that X is locally integrably Cj,k. Define

dom(ΦX) = {(t, t0, q0, r) ∈ I × I ×Q×R : t ∈ IXr

(t0, q0)}.

The global flow of X is the map ΦX : dom(ΦX)→ Q that sends (t, t0, q0, r) to

ΦXr

t,t0
(q0) = µX

r

(t, t0, q0).

Theorem 5.9.5. Suppose that X is locally integrably Cj,k. Then

1. dom(ΦX) is an open subset of I × I ×Q×R,

2. The map ΦX is continuous,

3. ΦXr

t,t0
is Cj for each (t, t0, r) ∈ I × I ×R, and

4. The map ρ 7→ ΦXρ

t,t0
(q0) of

{r ∈ R : (t, t0, q0, r) ∈ dom(ΦX)}

into Q is Ck for each (t, t0, q0) ∈ I × I ×Q.

Proof. This follows from [McShane 1944, Chapter IX, Section 69.4], together with

a globalization procedure analogous to the one employed in Section 2.3.

Using the above theorem, one can show that if q0 ∈ dom(ΦXr0

b,a ) for some r0 ∈ R,

then there exists a product neighbourhood Q0 ×R0 of (q0, r0) such that ΦXr

t,a |Q0 is

a Cj diffeomorphism of Q0 onto its image for each (t, r) ∈ I ×R0, and the map

ρ 7→ ΦXρ

t,a (q0)

of R0 into Q is Ck for each t ∈ I. This fact, which follows from an argument

similar to the one used in Section 5.4 to obtain the neighbourhood Q0, will be used

implicitly in the remainder of this chapter.
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Definition 5.9.6. Suppose that X is locally integrably Cj,k. We say that

tlft(X) ∈ V (I, TQ,R),

defined by

tlft(X)(t, q, r) = tlft(Xr)(t, q),

is the tangent lift of X.

Definition 5.9.7. Suppose that X is locally integrably Cj,k. Define

ZX ∈ V (I,Q,R)

by

ZX(t, q, r) =
d

dρ

∣∣∣∣∣
r

X(t, q, ρ).

By construction, Zr
X is locally integrably Ck−1 for each r ∈ R.

One can easily verify that tlft(X) and ZX have the following properties:

• If X is locally integrably Cj+1,k+1, then tlft(X) is locally integrably Cj,k;

• For each r ∈ R, we have tlft(X)r = tlft(Xr);

• For each r ∈ R, we have Zr
tlft(X) = tlft(Zr

X) provided that k ≥ 2.

5.9.2 Scalar parameter derivatives of pullbacks

We now compute derivatives. As above, X ∈ V (I,Q,R).

Lemma 5.9.8. Suppose that X is locally integrably C2,1, q0 ∈ dom(ΦXr0

b,a ) for some

r0 ∈ R, Q0 × R0 is a product neighbourhood of (q0, r0) such that ΦXr

t,a |Q0 is a C2

diffeomorphism of Q0 onto its image for each (t, r) ∈ I ×R0, and the map

ρ 7→ ΦXρ

t,a (q0)
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of R0 into Q is C1 for each t ∈ I. Then

d

dρ

∣∣∣∣∣
r

ΦXρ

t,a (q0) =
∫ t

a
TΦXr

t,a (q0) · AdX
r

Q0
(Zr

X)(σ, q0) dσ

for each (t, r) ∈ I ×R0.

Proof. For each r ∈ R, define ArX ∈ V (I, TQ) by

ArX(t, vq) = tlft(Xr)(t, vq) + vlft(Zr
X)(t, vq).

The local representative of ArX in a natural chart (TV, Tψ) on TQ is

(ArX)Tψ(t, q,v) =

Ü
Xr
ψ(t, q)

D2X
r
ψ(t, q) · v + (Zr

X)ψ(t, q)

ê
. (5.3)

Using (5.3), together with [McShane 1983, Theorem III.6-2], it follows that

Φ
ArX
t,a (vq0) = Φ

tlft(Xr)+vlft(ZrX)
t,a (vq0)

is well-defined for each (t, vq0 , r) ∈ I × Tq0Q×R0 and

d

dρ

∣∣∣∣∣
r

ΦXρ

t,a (q0) = Φ
ArX
t,a (0q0)

for each (t, r) ∈ I × R0. By construction, Xr is locally integrably C2 and Zr
X is

locally integrably C0. By Lemma 5.6.1, we have

Φ
ArX
t,a (0q0) = Φ

tlft(Xr)+vlft(ZrX)
t,a (0q0)

= TΦXr

t,a (q0) · 0q0 +
∫ t

a
TΦXr

t,a (q0) · AdX
r

Q0
(Zr

X)(σ, q0) dσ

=
∫ t

a
TΦXr

t,a (q0) · AdX
r

Q0
(Zr

X)(σ, q0) dσ.

This completes the proof.

Lemma 5.9.9. Suppose that X is locally integrably C3,2, q0 ∈ dom(ΦXr0

b,a ) for some

r0 ∈ R, Q0 × R0 is a product neighbourhood of (q0, r0) such that ΦXr

t,a |Q0 is a C3

diffeomorphism of Q0 onto its image for each (t, r) ∈ I ×R0, and the map

ρ 7→ ΦXρ

t,a (q0)
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of R0 into Q is C2 for each t ∈ I. Furthermore, suppose that vq0 ∈ Tq0Q. Then

d

dρ

∣∣∣∣∣
r

TΦXρ

a,t (ΦXρ

t,a (q0)) · TΦXr

t,a (q0) · vq0 = −
∫ t

a
sQ0 ◦ T (AdX

r

Q0
(Zr

X)σ)(q0) · vq0 dσ

for each (t, r) ∈ I ×R0.

Proof. See Section A.2.

In what follows, Y ∈ V (I,Q,R).

Lemma 5.9.10. Suppose that X is locally integrably C3,2, q0 ∈ dom(ΦXr0

b,a ) for

some r0 ∈ R, Q0 ×R0 is a product neighbourhood of (q0, r0) such that ΦXr

t,a |Q0 is a

C3 diffeomorphism of Q0 onto its image for each (t, r) ∈ I ×R0, and the map

ρ 7→ ΦXρ

t,a (q0)

of R0 into Q is C2 for each t ∈ I. Furthermore, suppose that Y is locally integrably

C1,1, s ∈ I, and r ∈ R0. Then

d

dρ

∣∣∣∣∣
r

AdX
ρ

Q0
(Y r

s )(t, q0) =
∫ t

a

î
AdX

r

Q0
(Zr

X)σ,AdX
r

Q0
(Y r

s )t
ó
(q0) dσ

for each (t, r) ∈ I ×R0.

Proof. See Section A.3.

Lemma 5.9.11. Suppose that X is locally integrably C3,2, q0 ∈ dom(ΦXr0

b,a ) for

some r0 ∈ R, Q0 ×R0 is a product neighbourhood of (q0, r0) such that ΦXr

t,a |Q0 is a

C3 diffeomorphism of Q0 onto its image for each (t, r) ∈ I ×R0, and the map

ρ 7→ ΦXρ

t,a (q0)

of R0 into Q is C2 for each t ∈ I. Furthermore, suppose that Y is locally integrably

C1,1 and s ∈ I. Then

d

dρ

∣∣∣∣∣
r

AdX
ρ

Q0
(Y ρ

s )(t, q0) = AdX
r

Q0
((Zr

Y )s)(t, q0) +
d

dρ

∣∣∣∣∣
r

AdX
ρ

Q0
(Y r

s )(t, q0)
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or equivalently

d

dρ

∣∣∣∣∣
r

AdX
ρ

Q0
(Y ρ

s )(t, q0) = AdX
r

Q0
((Zr

Y )s)(t, q0) +
∫ t

a

î
AdX

r

Q0
(Zr

X)σ,AdX
r

Q0
(Y r

s )t
ó
(q0) dσ

for each (t, r) ∈ I ×R0. In particular, with s = t, we have

d

dρ

∣∣∣∣∣
r

AdX
ρ

Q0
(Y ρ)(t, q0) = AdX

r

Q0
(Zr

Y )(t, q0) +
d

dρ

∣∣∣∣∣
r

AdX
ρ

Q0
(Y r)(t, q0)

or equivalently

d

dρ

∣∣∣∣∣
r

AdX
ρ

Q0
(Y ρ)(t, q0) = AdX

r

Q0
(Zr

Y )(t, q0) +
∫ t

a

î
AdX

r

Q0
(Zr

X)σ,AdX
r

Q0
(Y r)t

ó
(q0) dσ

for each (t, r) ∈ I ×R0.

Proof. See Section A.4.

Remark 5.9.12. When we invoke Lemma 5.9.11 in Chapter 8, we will write

d

dρ

∣∣∣∣∣
r

AdX
ρ

Q0
(Y ρ)(t, q0)

= AdX
r

Q0

(
d

dρ

∣∣∣∣∣
r

Y ρ

)
(t, q0) +

∫ t

a

[
AdX

r

Q0

(
d

dρ

∣∣∣∣∣
r

Xρ

)
σ

,AdX
r

Q0
(Y r)t

]
(q0) dσ.

This formulation is less precise, but eliminates the need to write ZX and ZY .

To conclude this chapter, let us briefly indicate where these identities come

into play in subsequent chapters. In Chapters 6 and 7, we make heavy use of the

identities dealing with pullbacks involving lifts. In Chapter 8, the most important

identities are the ones dealing with derivatives of pullbacks.
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Chapter 6

Differentials of endpoint maps

Consider a control system

Σ = (f,U )

evolving on an n-dimensional manifold M , and let x0 ∈M . In Chapter 4, we saw

that the continuation method solves the x0-anchored motion planning problem for

Σ by lifting curves in M to curves in U . The candidate curves in M must satisfy

image(π) ⊆ image(EndΣ
x0

). (6.1)

Verifying that this constraint is satisfied is difficult, in the sense that it necessitates

a complete characterization of U sing
x0

.1 In Chapter 1, we called this difficulty

the second obstruction to the continuation method. It is clear that, in order to

understand the nature of U sing
x0

, one must begin by computing the differential

TEndΣ
x0
,

or, more generally, the differential TEndΣ. In this chapter, we compute TEndΣ,

using a novel approach which is not based on the chronological calculus formalism

[Agrachev and Sachkov 2004]. In Chapter 8, we use the resulting expression for

TEndΣ to derive a necessary and sufficient constant-rank condition.
1Recall from Chapter 4 that the domain of EndΣ

x0
is U r U sing

x0
.
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This chapter is organized in the following way. In Section 6.1, we begin by

constructing the first variations of Σ. Roughly speaking, each first variation can be

viewed as a linearized version of Σ evolving on TM . We then show how the first

variations of Σ can be used to compute TEndΣ. In Section 6.2, we present three

examples. Finally, in Section 6.3, we discuss how the contents of this chapter relate

to the established literature.

Our standing assumptions in this chapter are that

• M is an n-dimensional manifold,

• Σ is a nice C1
p control system evolving on M (see Definition 3.3.7), and

• The time domain of Σ is J = [a, b], so that U = Lp(J,Rr).

By Corollary 3.3.12, the map

EndΣ : dom(EndΣ) ⊆M ×U →M

is C1.

6.1 First variations

To explicitly compute TEndΣ, it will be necessary to evaluate the global flows of

time-varying vector fields on open submanifolds of TM . To make this evaluation,

we will invoke Lemma 5.6.1. To ensure that its hypotheses are satisfied, Σ must

satisfy the additional criterion contained in the next definition.

Definition 6.1.1. We say that Σ has first variations if, in addition to being a

nice C1
p control system, Σ is also a C2 control system.

In the remainder of this section, we assume that Σ has first variations and

(x0,u0) ∈ dom(EndΣ).
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We say that u0 is the zeroth-order reference control . There exists a neigh-

bourhood M0 of x0 such that Φfu0

t,a is a C2 diffeomorphism of M0 onto its image

for each t ∈ J . This follows from the assumption that Σ is a C2 control system,

together with an argument identical to the one used in Section 5.4 to obtain the

neighbourhood Q0.

6.1.1 Basic definitions and properties

In this section, we construct the first variation of Σ along the zeroth-order reference

control u0. We do so using tangent and vertical lifts. To the best of our knowledge,

this idea originates in the work of Crouch and van der Schaft [1987]. For more

recent work involving the same type of construction, we refer to [Bullo and Lewis

2007]. The major difference between the analysis in this chapter and the cited work

is that the latter only concerns C∞ control-affine systems.

We require the following additional notation: Define the controllable time-

varying vector field D3fu0 ∈ V (J,M,Rr) by

D3fu0(t, x,ω) = D3f(t, x,u0(t)) · ω.

On the right-hand side, u0 denotes any representative of u0. Using Lemma 3.1.3,

it is not hard to see that the considerations in this chapter involving D3fu0 are

independent of the particular choice of representative. Note that D3fu0 is well-

defined, since

D3f(t, x,u0(t)) ∈ Hom(Rr, TxM)

by definition.

Definition 6.1.2. The first variation of Σ along u0 is the pair

TΣu0 = (Tfu0 ,U ),
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where the controllable time-varying vector field Tfu0 ∈ V (J, TM,Rr) is defined by

Tfu0(t, vx,ω) = tlft(fu0)(t, vx) + vlft(D3fu0)(t, vx,ω).

Here, tlft and vlft are the tangent and vertical lift operations from Chapter 5.

In a natural chart (TV, Tψ) on TM , we have

tlft(fu0)Tψ(t,x,v) =

Ü
fψ(t,x,u0(t))

D2fψ(t,x,u0(t)) · v

ê
and

vlft(D3fu0)Tψ(t,x,v,ω) =

Ü
0Rn

D3fψ(t,x,u0(t)) · ω

ê
.

By linearity,

(Tfuu0
)Tψ(t,x,v) =

Ü
fψ(t,x,u0(t))

D2fψ(t,x,u0(t)) · v +D3fψ(t,x,u0(t)) · u(t)

ê
. (6.2)

We now show that TΣu0 is a control system in the sense of Definition 3.1.4.

Lemma 6.1.3. The pair TΣu0 is a control system.

Proof. We must show that each u ∈ U is Tfu0-admissible. To this end, suppose

that u ∈ U , AM is a compatible atlas on M , (TV, Tψ) ∈ TAM , and

(t0,x0,v0) ∈ J ×ψ(V )× Rn.

Provided that it exists, it is clear that the maximally-defined solution

ζ = (ξ,ν) : dom(ζ)→ ψ(V )× Rn

of ((Tfuu0
)Tψ, t0,x0,v0) must satisfy the following three properties:

• dom(ζ) ⊆ JΣψ(t0,x0,u0),

• ξ(t) = Φ
Σψ
t,t0(x0,u0) for each t ∈ dom(ζ), and
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• ν is the maximally-defined solution of (g, t0,v0), where

g : JΣψ(t0,x0,u0)× Rn → Rn

is defined by

g(t,v) = D2fψ(t, ξ(t),u0(t)) · v +D3fψ(t, ξ(t),u0(t)) · u(t). (6.3)

If we can show that there exists a maximally-defined solution of (g, t0,v0), then the

proof will be complete. By Theorem 2.2.14, it is enough to show that g satisfies

Carathéodory conditions. Recalling Remark 3.2.2, it is clear that the first two

criteria of Definition 2.2.13 are satisfied. We now show that g is locally integrably

bounded and locally integrably Lipschitz. Suppose that J0 is a compact subinterval

of JΣψ(t0,x0,u0) and K is a compact subset of Rn. Invoking Lemma 3.2.11, there

exists α ∈ L1(J0,R≥0) such that

‖D2fψ(t, ξ(t),u0(t))‖ ≤ α(t) and ‖D3fψ(t, ξ(t),u0(t)) · u(t)‖Rn ≤ α(t)

for a.a. t ∈ J0. Setting C = supv∈K ‖v‖Rn , it follows that

‖g(t,v)‖Rn ≤ (C + 1)α(t)

for a.a. t ∈ J0 and each v ∈ K. Furthermore, by linearity, we have

‖g(t,v)− g(t,w)‖Rn = ‖D2fψ(t, ξ(t),u0(t)) · (v −w)‖Rn

≤ ‖D2fψ(t, ξ(t),u0(t))‖ ‖v −w‖Rn

≤ α(t) ‖v −w‖Rn

for a.a. t ∈ J0 and each v,w ∈ K. In fact, it is clear that this upper bound holds

regardless of whether or not v,w are constrained to lie in K. That is, the upper

bound holds for a.a. t ∈ J0 and each v,w ∈ Rn. Since J0 and K were chosen

arbitrarily, we conclude that g satisfies Carathéodory conditions.
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The next lemma states that, locally, the controlled trajectories of TΣu0 are

defined on the same interval as the corresponding u0-controlled trajectories of Σ.

Lemma 6.1.4. Suppose that u ∈ U , (TV, Tψ) is a natural chart on TM , and

(t0,x0,v0) ∈ J ×ψ(V )× Rn.

Then the maximally-defined solution

ζ = (ξ,ν) : dom(ζ)→ ψ(V )× Rn

of ((Tfuu0
)Tψ, t0,x0,v0) satisfies

dom(ζ) = JΣψ(t0,x0,u0).

Proof. In the proof of Lemma 6.1.3, we showed that ν is the maximally-defined

solution of (g, t0,v0), where g was defined by (6.3). We also showed that for each

compact subinterval J0 of JΣψ(t0,x0,u0), there exists α ∈ L1(J0,R≥0) such that

‖g(t,v)− g(t,w)‖Rn ≤ α(t)

for a.a. t ∈ J0 and each v,w ∈ Rn. By Lemma 2.2.17,

dom(ζ) = JΣψ(t0,x0,u0).

This completes the proof.

Recalling that (x0,u0) ∈ dom(EndΣ), the next result follows immediately.

Proposition 6.1.5. We have

π−1
TM(x0)×U = Tx0M ×U ⊆ dom(EndTΣu0 ).

Furthermore,

πTM ◦ EndTΣu0 (vx0 ,u) = EndΣ(x0,u0)

for each (vx0 ,u) ∈ Tx0M ×U .
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6.1.2 First variations compute differentials

It was indicated at the beginning of this chapter that the first variations of Σ can

be used to compute TEndΣ. In this section, we make this statement precise.

Theorem 6.1.6. We have

EndTΣu0 (vx0 ,u) = TΦfu0

b,a (x0) · vx0 +
∫ b

a
TΦfu0

b,a (x0) · Adf
u0

M0
(D3f

u
u0

)(σ, x0) dσ

for each (vx0 ,u) ∈ Tx0M ×U .

Proof. Choose (vx0 ,u) ∈ Tx0M ×U . By construction,

EndTΣu0 (vx0 ,u) = Φ
TΣu0
b,a (vx0 ,u)

= Φ
Tfuu0
b,a (vx0)

= Φ
tlft(fu0 )+vlft(D3fuu0

)

b,a (vx0)

Since Σ has first variations, fu0 is locally integrably C2. Furthermore, D3f
u
u0

is

locally integrably C0 by Lemma 3.3.9. Invoking Lemma 5.6.1, we conclude that

EndTΣu0 (vx0 ,u) = TΦfu0

b,a (x0) · vx0 +
∫ b

a
TΦfu0

b,a (x0) · Adf
u0

M0
(D3f

u
u0

)(σ, x0) dσ.

This completes the proof.

The control system TΣu0 has the following linearity property.

Corollary 6.1.7. We have

EndTΣu0 (vx0 + ṽx0 ,u+ ũ) = EndTΣu0 (vx0 ,u) + EndTΣu0 (ṽx0 , ũ)

for each (vx0 ,u), (ṽx0 , ũ) ∈ Tx0M ×U .

Proof. This follows immediately from Theorem 6.1.6 and the fact that

Adf
u0

M0
(D3f

u+ũ
u0

) = Adf
u0

M0
(D3f

u
u0

+D3f
ũ
u0

)

= Adf
u0

M0
(D3f

u
u0

) + Adf
u0

M0
(D3f

ũ
u0

)

for each u, ũ ∈ U .
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Remark 6.1.8. In [Amiss and Guay 2011b], Theorem 6.1.6 is derived under

unnecessarily strong conditions on Σ. Namely, it is assumed that Σ is a nice C3
p

control system. This hypothesis can be relaxed, as in this chapter.

The next lemma relates TEndΣ(x0,u0) to the controlled trajectories of TΣu0 .

Lemma 6.1.9. We have

TEndΣ(x0,u0) · (vx0 ,u) = EndTΣu0 (vx0 ,u) (6.4)

for each (vx0 ,u) ∈ T(x0,u0)(M ×U ) ∼= Tx0M ⊕U .

Proof. Choose (vx0 ,u) ∈ Tx0M ⊕U and charts (V0,ψ0), (V1,ψ1) on M such that

x0 ∈ V0 and x1 = EndΣ
x0

(u0) ∈ V1. By (6.2) and [Margheri 1996, Equation 3.12],

Tψ1(x1) ◦ EndTΣu0 (vx0 ,u)

=

Ü
ψ1(x1)

D(ψ1 ◦ EndΣ ◦ (ψ−1
0 × idU ))(ψ0(x0),u0) · (Tψ0(x0) · vx0 ,u)

ê
.

This completes the proof.

The next theorem, which is the main result in this chapter, combines the results

of Theorem 6.1.6 and Lemma 6.1.9 to compute the linear map TEndΣ(x0,u0).

Theorem 6.1.10. We have

TEndΣ(x0,u0) · (vx0 ,u)

= TΦfu0

b,a (x0) · vx0 +
∫ b

a
TΦfu0

b,a (x0) · Adf
u0

M0
(D3f

u
u0

)(σ, x0) dσ

for each (vx0 ,u) ∈ T(x0,u0)(M ×U ) ∼= Tx0M ⊕U .

In particular, the preceding theorem tells us that

T1EndΣ(x0,u0) · vx0 = TEndΣ(x0,u0) · (vx0 ,0U )

= TΦfu0

b,a (x0) · vx0
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and

T2EndΣ(x0,u0) · u = TEndΣ(x0,u0) · (0x0 ,u)

= TEndΣ
x0

(u0) · u

=
∫ b

a
TΦfu0

b,a (x0) · Adf
u0

M0
(D3f

u
u0

)(σ, x0) dσ

for each (vx0 ,u) ∈ Tx0M ⊕ U . Here, T1EndΣ and T2EndΣ denote the partial

differentials of EndΣ; see [Lee 2009, Section 2.4] for definitions.

The first variations of Σ can be regarded as linearized versions of Σ. Thus Theo-

rem 6.1.10 can be regarded as a coordinate-free linearizations compute differentials

principle, in the sense of [Sontag 1998, Section 2.8].

6.2 Examples

In this section, we illustrate Theorem 6.1.10 by way of three examples.

Example 6.2.1. Suppose that Σ is a linear system with M = Rn and

f(t,x,ω) = A · x+B · ω

for matrices A ∈ Rn×n and B ∈ Rn×r. In this case, the well-known variation of

constants formula yields

ΦΣ
t,a(x,u) = exp((t− a)A) · x+

∫ t

a
exp((t− σ)A) ◦B · u(σ) dσ,

where exp denotes the matrix exponential [Sontag 1998]. In particular,

EndΣ(x,u) = exp((b− a)A) · x+
∫ b

a
exp((b− σ)A) ◦B · u(σ) dσ

and one computes directly that

TEndΣ(x0,u0) · (v,u) = exp((b− a)A) · v +
∫ b

a
exp((b− σ)A) ◦B · u(σ) dσ.
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To see that this coincides with the result of Theorem 6.1.10, observe that

TΦf
u0

t,a (x) · v = exp((t− a)A) · v

and, furthermore, that D3f
u
u0

(t,x) = B · u(t) for each u ∈ Lp(J,Rr). Thus

Adf
u0

M0
(D3f

u
u0

)(t,x0) = exp((a− t)A) ◦B · u(t).

By Theorem 6.1.10,

TEndΣ(x0,u0) · (v,u)

= TΦfu0

b,a (x0) · v +
∫ b

a
TΦfu0

b,a (x0) · Adf
u0

M0
(D3f

u
u0

)(σ,x0) dσ

= exp((b− a)A) · v +
∫ b

a
exp((b− a)A) ◦ exp((a− σ)A) ◦B · u(σ) dσ

= exp((b− a)A) · v +
∫ b

a
exp((b− σ)A) ◦B · u(σ) dσ,

as expected.

In the next two examples, Σ is a C2 control-affine system with U = L2(J,Rr).

Such a control system has first variations; see Examples 3.1.15 and 3.2.4.

Example 6.2.2. Suppose that Σ is driftless and

f(t, x,ω) =
r∑
i=1

ωifi(x)

for C2 vector fields f1, . . . , fr. We have

D3f
u
u0

(t, x) =
r∑
i=1

ui(t)fi(x).

By Theorem 6.1.10,

TEndΣ(x0,u0) · (vx0 ,u)

= TΦfu0

b,a (x0) · vx0 +
∫ b

a
TΦfu0

b,a (x0) · Adf
u0

M0
(D3f

u
u0

)(σ, x0) dσ

= TΦfu0

b,a (x0) · vx0 +
∫ b

a

r∑
i=1

ui(σ)TΦfu0

b,a (x0) · TΦfu0

a,σ (Φfu0

σ,a (x0)) · fi(Φfu0

σ,a (x0)) dσ
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= TΦfu0

b,a (x0) · vx0 +
∫ b

a

r∑
i=1

ui(σ)TΦfu0

b,σ (Φfu0

σ,a (x0)) · fi(Φfu0

σ,a (x0)) dσ.

In particular,

TEndΣ
x0

(u0) · u = T2EndΣ(x0,u0) · u

=
∫ b

a

r∑
i=1

ui(σ)TΦfu0

b,σ (Φfu0

σ,a (x0)) · fi(Φfu0

σ,a (x0)) dσ.

This result matches the expressions for TEndΣ
x0

(u0) presented, without proof, in

[Sussmann 1993], [Chitour and Sussmann 1998], and [Chitour 2006].

Example 6.2.2 is easily extended to C2 control-affine systems with drift.

Example 6.2.3. Suppose that

f(t, x,ω) = f0(x) +
r∑
i=1

ωifi(x)

for C2 vector fields f0, f1, . . . , fr. As in Example 6.2.2, we have

D3f
u
u0

(t, x) =
r∑
i=1

ui(t)fi(x).

By Theorem 6.1.10,

TEndΣ(x0,u0) · (vx0 ,u)

= TΦfu0

b,a (x0) · vx0 +
∫ b

a

r∑
i=1

ui(σ)TΦfu0

b,σ (Φfu0

σ,a (x0)) · fi(Φfu0

σ,a (x0)) dσ.

Although they are formally similar, the difference between this example and Example

6.2.2 is that here, Φfu0 depends on the drift vector field f0.

6.3 Discussion

6.3.1 L∞ controls

The scope of this chapter was limited to nice C1
p control systems, which, by definition,

use Lp controls for p 6=∞. To adapt the results in this chapter to accommodate
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control systems that use L∞ controls, it is enough to replace the assumption that Σ

is a nice C1
p control system by the assumption that Σ is a quasi-C1 control system

in the sense of Grasse [1979]. Indeed, the assumption that Σ is quasi-C1 ensures

that End is C1. For a proof of this fact, we refer to [Grasse 1979, Chapter 3].

6.3.2 Related results

Results similar to Theorem 6.1.10 can be found in the literature. For example,

we refer to [Agrachev and Sachkov 2004, Section 20.3]. For this reason, we are

obliged to point out how the analysis in this chapter differs from the cited work.

The major difference is that the approach of Agrachev and Sachkov [2004] employs

the chronological calculus formalism, which requires that Σ meets more stringent

smoothness and completeness conditions—in particular, Σ must be a complete,

time-invariant, C∞ control system. We do not use this formalism in our approach.

As a result, we require only that Σ meets minimal regularity conditions. The notion

of minimality is encapsulated by the requirement that Σ has first variations.

To conclude this section, let us explain how Theorem 6.1.10 makes contact with

the field of sub-Riemannian geometry. With respect to sub-Riemannian geometry,

suppose that F ⊆ TM is a C∞ distribution of rank r. We denote by

Hor2
x0

(F )

the set of all LAC curves γ : J →M which are horizontal to F , are L2 with respect

to any sub-Riemannian metric on M , and satisfy γ(0) = x0; for definitions, we

refer to [Montgomery 2002]. Bismut’s theorem, which is one of the basic results

of sub-Riemannian geometry, states that Hor2
x0

(F ) is a Hilbert manifold and the

endpoint map E : Hor2
x0

(F )→M , defined by E(γ) = γ(b), is C∞. Moreover, its

differential TE can be explicitly computed, as in [Montgomery 2002, Appendix D].

With respect to control theory, suppose that Σ is a complete, driftless, C∞
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control-affine system with U = L2(J,Rr). Further, let us suppose that

f(t, x,ω) =
r∑
i=1

ωifi(x)

for C∞ vector fields f1, . . . , fr and that f1(x), . . . , fr(x) are linearly independent

for each x ∈M . If F is the C∞ distribution of rank r spanned by the vector fields

f1, . . . , fr, then the linear independence condition allows U to be identified with

Hor2
x0

(F ). Under this identification, E coincides with the map EndΣ
x0
. As described

in Chapter 1, this fact is used in the literature to ensure that EndΣ
x0

is C2, or, in

other words, that the first obstruction to the continuation method is overcome.

Furthermore, it is not hard to see that TE, as computed in [Montgomery 2002,

Appendix D], coincides with the result of Example 6.2.2. However, we emphasize

that our approach does not rely on the assumptions that Σ is complete and C∞,

nor does it rely on any type of linear independence condition.
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Chapter 7

Intrinsic quadratic differentials of

anchored endpoint maps

Consider a control system

Σ = (f,U )

evolving on an n-dimensional manifold M , and let x0 ∈ M . In Chapter 6, we

computed the differential TEndΣ. In this chapter, we carry the analysis of Chapter

6 to the second order. In particular, we compute the intrinsic quadratic differentials

QEndΣ
x0

(u0)

of EndΣ
x0
, using a novel approach which is not based on the chronological calculus

formalism [Agrachev and Sachkov 2004]. In Chapter 8, we use the resulting

expressions for QEndΣ
x0

(u0) to derive a necessary and sufficient constant-rank

condition. This leads to conditions which ensure that U sing
x0

is empty, or, in other

words, that the second obstruction to the continuation method is overcome.

This chapter is organized in the following way. We begin in Section 7.1 by

establishing the basic theory of intrinsic quadratic differentials. In Section 7.2, we

construct the second variations of Σ, mirroring the developments in Chapter 6.

146



Roughly speaking, each second variation can be viewed as a bilinearized version of

Σ evolving on TTM . We then show how the second variations of Σ can be used to

compute the intrinsic quadratic differentials of EndΣ
x0
. In Section 7.3, we present

two examples. Finally, in Section 7.4, we briefly discuss how the contents of this

chapter relate to the established literature.

Our standing assumptions in this chapter are that

• M is a second-countable n-dimensional manifold,

• Σ is a nice C2
p control system evolving on M (see Definition 3.3.7), and

• The time domain of Σ is J = [a, b], so that U = Lp(J,Rr).

By Corollary 3.3.12, the map

EndΣ
x0

: dom(EndΣ
x0

) ⊆ U →M

is C2.

7.1 Intrinsic quadratic differentials

In this section, we establish the basic theory of intrinsic quadratic differentials1

(IQDs), independently of any considerations involving Σ. Throughout this section,

F : Q→ R

is C2, where Q is an open submanifold of a Banach space E and R is a second-

countable `-dimensional manifold. In rough terms, the IQDs of F represent the

coordinate-invariant part of the second total derivatives of F , taken in charts.
1As a historical remark, it seems that IQDs first appeared in the work of Arnol’d [1968]. IQDs

are also developed by Porteous [1971], Agrachev and Sachkov [2004], Fehér and Kőműves [2006],
and Reis and Weiss [2010]. In particular, the material in this section is inspired by the treatments
of Arnol’d [1968] and Agrachev and Sachkov [2004]. An important caveat is that there is no
standardized terminology concerning IQDs. Throughout the literature, IQDs are also referred
to as Porteous quadratic differentials, Porteous quadratic derivatives, generalized Hessians, and
Hessians. The latter term is used, in particular, in the control theory literature; see, for example,
[Agrachev and Gamkrelidze 1985, Agrachev 1990, Agrachev and Gamkrelidze 1991, Vakhrameev
1991b, 1996, Agrachev and Sachkov 2004].
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7.1.1 Basic definitions and properties

We begin by recalling some basic properties of continuous dual spaces.

Lemma 7.1.1. Suppose that e ∈ E and λ · e = 0 for each λ ∈ E∗. Then e = 0E.

Proof. By the Hahn–Banach theorem [Abraham et al. 1988] there exists λ0 ∈ E∗

such that λ0 · e = ‖e‖E. In particular, λ0 · e = ‖e‖E = 0 so e = 0E.

Corollary 7.1.2. Suppose that e, ẽ ∈ E and

λ · e = λ · ẽ

for each λ ∈ E∗. Then e = ẽ.

Proof. Clearly, λ · e = λ · ẽ for each λ ∈ E∗ if and only if λ · (e− ẽ) = 0 for each

λ ∈ E∗. Invoking Lemma 7.1.1, we conclude that e− ẽ = 0E.

For each q ∈ Q, the annihilator of image(TF (q)) is

image(TF (q))0 = {λ ∈ T ∗F (q)R : λ · vF (q) = 0 for each vF (q) ∈ image(TF (q))}.

In the remainder of this section, we use the canonical vector space isomorphisms

image(TF (q))0 ∼= ker(TF (q)∗) ∼= coker(TF (q))∗

from [Bachman and Narici 2000, Section 17.4] and [Conway 1990, Theorem 10.2].

We now define the IQD of F at a point q ∈ Q, which will be denoted by QF (q).

Following Agrachev and Sachkov [2004], our definition does not directly specify

the value of QF (q) ∈ coker(TF (q)). Rather, we specify how QF (q) is acted on

by elements of the continuous dual space coker(TF (q))∗. By Corollary 7.1.2, this

specification will uniquely determine QF (q) as an element of coker(TF (q)).

Definition 7.1.3. Suppose that q ∈ Q. The intrinsic quadratic differential

(IQD) of F at q is the map

QF (q) : ker(TF (q))× ker(TF (q))→ coker(TF (q))
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defined as follows. For tangent vectors

(vq, ṽq) ∈ ker(TF (q))× ker(TF (q)),

choose C∞ vector fields X and X̃ on Q such that X(q) = vq and X̃(q) = ṽq. For

each λ ∈ coker(TF (q))∗, choose a C∞ function gλ : R→ R such that

Tgλ(F (q)) = λ.

Then QF (q) · (vq, ṽq) + image(TF (q)) is specified by the requirement that

λ · (QF (q) · (vq, ṽq) + image(TF (q))) = LXLX̃(gλ ◦ F )(q)

for each λ ∈ coker(TF (q))∗, where L denotes the Lie derivative.

This definition relies on several choices. The next lemma tells us that QF (q) is

well-defined, in the sense that it is independent of these choices.

Lemma 7.1.4. Suppose that q ∈ Q, (vq, ṽq) ∈ ker(TF (q))× ker(TF (q)), and the

value of QF (q) · (vq, ṽq) is prescribed as in Definition 7.1.3, relative to particular

choices of X, X̃, and gλ. Then QF (q) · (vq, ṽq) is well-defined.

Proof. We must show that for each λ ∈ coker(TF (q))∗, the value of

LXLX̃(gλ ◦ F )(q)

depends only on X(q) = vq, X̃(q) = ṽq, and Tgλ(F (q)) = λ.

Suppose that (U,ϕ) and (V,ψ) are F -compatible charts on Q and R, respectively,

such that q ∈ U . For each λ ∈ coker(TF (q))∗, it holds that

LX̃(gλ ◦ F )(ϕ−1(x)) = D(gλ ◦ψ−1 ◦ Fψ,ϕ)(x) · X̃ϕ(x)

for each x ∈ ϕ(U); see [Abraham et al. 1988]. Writing r = ψ(F (q)), we have

LXLX̃(gλ ◦ F )(q)
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= D2(gλ ◦ψ−1 ◦ Fψ,ϕ)(ϕ(q)) · (Xϕ(ϕ(q)), X̃ϕ(ϕ(q)))

+ D(gλ ◦ψ−1 ◦ Fψ,ϕ)(ϕ(q)) ◦DX̃ϕ(ϕ(q)) ·Xϕ(ϕ(q))

= D(gλ ◦ψ−1)(r) · (D2Fψ,ϕ(ϕ(q)) · (Xϕ(ϕ(q)), X̃ϕ(ϕ(q))))

+ D2(gλ ◦ψ−1)(r) · (DFψ,ϕ(ϕ(q)) ·Xϕ(ϕ(q)),DFψ,ϕ(ϕ(q)) · X̃ϕ(ϕ(q)))

+ D(gλ ◦ψ−1 ◦ Fψ,ϕ)(ϕ(q)) ◦DX̃ϕ(ϕ(q)) ·Xϕ(ϕ(q))

= D(gλ ◦ψ−1)(r) · (D2Fψ,ϕ(ϕ(q)) · (Xϕ(ϕ(q)), X̃ϕ(ϕ(q))))

+ D(gλ ◦ψ−1 ◦ Fψ,ϕ)(ϕ(q)) ◦DX̃ϕ(ϕ(q)) ·Xϕ(ϕ(q))

by the Leibniz rule, chain rule, and the fact that vq, ṽq ∈ ker(TF (q)). Hence

LXLX̃(gλ ◦ F )(q)

= Tgλ(F (q)) ◦ Tψ−1(r) · (D2Fψ,ϕ(ϕ(q)) · (Xϕ(ϕ(q)), X̃ϕ(ϕ(q))))

+ Tgλ(F (q)) ◦ Tψ−1(r) ◦DFψ,ϕ(ϕ(q)) ◦DX̃ϕ(ϕ(q)) ·Xϕ(ϕ(q))

= λ ◦ Tψ−1(r) · (D2Fψ,ϕ(ϕ(q)) · (Xϕ(ϕ(q)), X̃ϕ(ϕ(q))))

+ λ ◦ Tψ−1(r) ◦DFψ,ϕ(ϕ(q)) ◦DX̃ϕ(ϕ(q)) ·Xϕ(ϕ(q)).

This computation shows that the value of LXLX̃(gλ ◦F )(q) depends on X(q) = vq,

X̃(q) = ṽq, and Tgλ(F (q)) = λ, as well as on the map germ of X̃ at q. To complete

the proof, it is enough to show that

LXLX̃(gλ ◦ F )(q) = LX̃LX(gλ ◦ F )(q). (7.1)

Indeed, suppose that (7.1) holds. By exchanging the roles of X and X̃, we conclude

that the value of LXLX̃(gλ ◦ F )(q) does not depend on the map germ of X̃ at q.

To see that (7.1) holds, observe that

LXLX̃(gλ ◦ F )(q)−LX̃LX(gλ ◦ F )(q)

= (LXLX̃(gλ ◦ F )−LX̃LX(gλ ◦ F ))(q)

= L[X,X̃](gλ ◦ F )(q)

150



= T (gλ ◦ F )(q) · [X, X̃](q)

= Tgλ(F (q)) ◦ TF (q) · [X, X̃](q)

= 0, (7.2)

since λ ∈ coker(TF (q))∗ ∼= image(TF (q))0.

From the proof of Lemma 7.1.4, one can deduce several useful properties of the

map QF (q). These properties are stated in the following corollaries.

Corollary 7.1.5. Suppose that q ∈ Q and (U,ϕ), (V,ψ) are F -compatible charts

on Q and R, respectively, such that q ∈ U . Then QF (q) · (vq, ṽq) is equal to

Tψ−1(r) · (D2Fψ,ϕ(ϕ(q)) · (Xϕ(ϕ(q)), X̃ϕ(ϕ(q)))) + image(TF (q))

for each (vq, ṽq) ∈ ker(TF (q))×ker(TF (q)), where r = ψ(F (q)) and the C∞ vector

fields X, X̃ are prescribed as in Definition 7.1.3.

Corollary 7.1.6. We have QF (q) ∈ Hom2(ker(TF (q)), coker(TF (q))).

The next result was also pointed out by Agrachev and Gamkrelidze [1991].

Corollary 7.1.7. Suppose that q ∈ Q and R = R`. Then the map

QF (q) : TqE × TqE ∼= E × E → coker(TF (q)),

prescribed as in Definition 7.1.3 up to the extension of its domain, is well-defined

in the sense that its values are invariant under linear automorphisms of R. More

precisely, suppose that (U,ϕ) is a chart on Q such that q ∈ U , and ψ, ψ̃ are linear

automorphisms of R. Then QF (q) · (vq, vq) is equal to

Tψ−1(r) · (D2Fψ,ϕ(ϕ(q)) · (Xϕ(ϕ(q)), X̃ϕ(ϕ(q)))) + image(TF (q))

= T ψ̃
−1

(r̃) · (D2Fψ̃,ϕ(ϕ(q)) · (Xϕ(ϕ(q)), X̃ϕ(ϕ(q)))) + image(TF (q))

for each (vq, ṽq) ∈ E × E, where r = ψ(F (q)), r̃ = ψ̃(F (q)), and the C∞ vector

fields X, X̃ are prescribed as in Definition 7.1.3.
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Next, we examine the link between IQDs and locally constant-rank maps.

7.1.2 Locally constant-rank maps

For our purposes, the most important property of intrinsic quadratic differentials

is that they give us a way of detecting if F is locally constant-rank. To explain

this, we begin by recalling a theorem from [Margalef-Roig and Outerelo Domínguez

1992, Chapter 5.1] concerning the local character of locally constant-rank maps.

Definition 7.1.8. We say that F is constant-rank if

rank(TF (q)) = rank(TF (q̃)) (7.3)

for each q, q̃ ∈ Q. In this case, the rank of F is rank(F ) = rank(TF (q)). If (7.3)

is satisfied whenever q, q̃ are contained in the same connected component of Q,

then we say that F is locally constant-rank . Clearly, if Q is connected, then F

is locally constant-rank if and only if F is constant-rank.

Theorem 7.1.9. Suppose that F is constant-rank and q ∈ Q. Then there exist

1. F -compatible charts (U,ϕ) and (V,ψ) on Q and R, respectively, such that q ∈ U

and

2. A continuous linear map Λ ∈ Hom(E,R`)

such that rank(Λ) = rank(F ) and Fψ,ϕ(x) = Λ(x) for each x ∈ ϕ(U).

Thus F can be locally linearized by suitable choices of charts.

Lemma 7.1.10. Suppose that F is locally constant-rank and q ∈ Q. Then

QF (q) · (vq, ṽq) = 0coker(TF (q)) = 0F (q) + image(TF (q))

for each (vq, ṽq) ∈ ker(TF (q))× ker(TF (q)).
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Proof. Suppose that (U,ϕ), (V,ψ), and Λ are prescribed as in Theorem 7.1.9. By

Corollary 7.1.5, Theorem 7.1.9, and the fact that the second total derivative of a

continuous linear map is identically equal to zero, we have

QF (q) · (vq, ṽq)

= Tψ−1(r) · (D2Fψ,ϕ(ϕ(q)) · (Xϕ(ϕ(q)), X̃ϕ(ϕ(q)))) + image(TF (q))

= Tψ−1(r) · (D2Λ(ϕ(q)) · (Xϕ(ϕ(q)), X̃ϕ(ϕ(q)))) + image(TF (q))

= Tψ−1(r) · 0R` + image(TF (q))

= 0F (q) + image(TF (q))

= 0coker(TF (q))

for each (vq, ṽq) ∈ ker(TF (q))× ker(TF (q)).

At this point, we have established the general theory of intrinsic quadratic

differentials. In the remainder of this chapter, we specialize to the case where F is

one of the anchored endpoint maps of Σ. That is, F = EndΣ
x0

for some x0 ∈M .

7.2 Second variations

To explicitly compute QEndΣ
x0
, it will be necessary to evaluate the global flows of

time-varying vector fields on open submanifolds of TTM . To make this evaluation,

we will invoke several lemmas from Chapter 5. To ensure that their hypotheses are

satisfied, Σ must satisfy the additional criteria contained in the next definition.

Definition 7.2.1. We say that Σ has second variations if, in addition to being

a nice C2
p control system,

• Σ is a C3 control system and

• D3f
u
u0

is locally integrably C2 for each u0,u ∈ U , where the controllable

time-varying vector field D3fu0 ∈ V (J,M,Rr) is defined as in Section 6.1.
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In the remainder of this section, we assume that Σ has second variations and

u0 ∈ dom(EndΣ
x0

).

We say that u0 is the zeroth-order reference control . There exists a neigh-

bourhood M0 of x0 such that Φfu0

t,a is a C3 diffeomorphism of M0 onto its image

for each t ∈ J . This follows from the assumption that Σ is a C3 control system,

together with an argument identical to the one used in Section 5.4 to obtain the

neighbourhood Q0. For reasons which will be made clear below, we also fix

u1 ∈ U .

We say that u1 is the first-order reference control .

7.2.1 Basic definitions and properties

In this section, we construct the second variation of Σ along the zeroth- and first-

order reference controls u0 and u1. As in Section 6.1, we do so using tangent and

vertical lifts. In addition to the notation established in Section 6.1, we define the

controllable time-varying vector field D2
3fu0,u1 ∈ V (J,M,Rr) by

D2
3fu0,u1(t, x,ω) = D2

3f(t, x,u0(t)) · (u1(t),ω).

On the right-hand side, u0 and u1 denote any representatives of u0 and u1,

respectively. Using Lemma 3.1.3, it is not hard to see that the considerations

in this chapter involving D2
3fu0,u1 are independent of the particular choices of

representatives. Note that D2
3fu0,u1 is well-defined, since

D2
3f(t, x,u0(t)) ∈ Hom2(Rr, TxM).

Definition 7.2.2. The second variation of Σ along u0 and u1 is the pair

TTΣu0,u1 = (TTfu0,u1 ,U ),
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where TTfu0,u1 ∈ V (J, TTM,Rr) is defined by

TTfu0,u1(t, αvx ,ω) = tlft(tlft(fu0) + vlft(D3f
u1
u0

))(t, αvx)

+ vlft(tlft(D3fu0) + vlft(D2
3fu0,u1))(t, αvx ,ω).

Here, tlft and vlft are the tangent and vertical lift operations from Chapter 5.

In a natural chart (TTV, TTψ) on TTM , we have

tlft(tlft(fu0) + vlft(D3f
u1
u0

))TTψ(t,x,v,X,V )

=



fψ(t,x,u0(t))

D2fψ(t,x,u0(t)) · v +D3fψ(t,x,u0(t)) · u1(t)

D2fψ(t,x,u0(t)) ·X

D2
2fψ(t,x,u0(t)) · (v,X) +D2fψ(t,x,u0(t)) · V +

D2D3fψ(t,x,u0(t)) · (u1(t),X)


and

vlft(tlft(D3fu0) + vlft(D2
3fu0,u1))TTψ(t,x,v,X,V ,ω)

=



0Rn

0Rn

D3fψ(t,x,u0(t)) · ω

D2D3fψ(t,x,u0(t)) · (ω,v) +D2
3fψ(t,x,u0(t)) · (u1(t),ω)


.

By linearity,

(TTfuu0,u1
)TTψ(t,x,v,X,V )
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=



fψ(t,x,u0(t))

D2fψ(t,x,u0(t)) · v +D3fψ(t,x,u0(t)) · u1(t)

D2fψ(t,x,u0(t)) ·X +D3fψ(t,x,u0(t)) · u(t)

D2fψ(t,x,u0(t)) · V +D2
2fψ(t,x,u0(t)) · (v,X) +

D2D3fψ(t,x,u0(t)) · (u(t),v) +D2D3fψ(t,x,u0(t)) · (u1(t),X) +

D2
3fψ(t,x,u0(t)) · (u1(t),u(t))



.

(7.4)

We now show that TTΣu0,u1 is a control system in the sense of Definition 3.1.4.

Lemma 7.2.3. The pair TTΣu0,u1 is a control system.

Proof. We must show that each u ∈ U is TTfu0,u1-admissible. To this end, suppose

that u ∈ U , AM is a compatible atlas on M , (TTV, TTψ) ∈ TTAM , and

(t0,x0,v0,X0,V 0) ∈ J ×ψ(V )× Rn × Rn × Rn.

Provided that it exists, it is clear that the maximally-defined solution

ζ = (ξ,ν,Ξ,Υ) : dom(ζ)→ ψ(V )× Rn × Rn × Rn,

of ((TTfuu0,u1
)Tψ, t0,x0,v0,X0,V 0) must satisfy the following five properties:

• dom(ζ) ⊆ JΣψ(t0,x0,u0),

• ξ(t) = Φ
Σψ
t,t0(x0,u0) for each t ∈ dom(ζ),

• ν is the maximally-defined solution of (g, t0,v0), where

g : JΣψ(t0,x0,u0)× Rn → Rn

is defined by

g(t,v) = D2fψ(t, ξ(t),u0(t)) · v +D3fψ(t, ξ(t),u0(t)) · u1(t),
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• Ξ is the maximally-defined solution of (g̃, t0,X0), where

g̃ : JΣψ(t0,x0,u0)× Rn → Rn

is defined by

g(t,X) = D2fψ(t, ξ(t),u0(t)) ·X +D3fψ(t, ξ(t),u0(t)) · u(t),

and, finally,

• Υ is the maximally-defined solution of (h, t0,V 0), where

h : JΣψ(t0,x0,u0)× Rn → Rn

is defined by

h(t,V )

= D2fψ(t, ξ(t),u0(t)) · V +D2
2fψ(t, ξ(t),u0(t)) · (ν(t),Ξ(t))

+ D2D3fψ(t, ξ(t),u0(t)) · (u(t),ν(t)) +D2D3fψ(t, ξ(t),u0(t)) · (u1(t),Ξ(t))

+ D2
3fψ(t, ξ(t),u0(t)) · (u1(t),u(t)).

If we can show that there exist maximally-defined solutions of (g, t0,v0), (g̃, t0,X0),

and (h, t0,V 0), then the proof will be complete. In each case, this follows from an

argument analogous to the one used in the proof of Lemma 6.1.3.

The next lemma states that, locally, the controlled trajectories of TTΣu0,u1 are

defined on the same interval as the corresponding u0-controlled trajectories of Σ.

Lemma 7.2.4. Suppose that u ∈ U , (TTV, TTψ) is a natural chart on TTM ,

and

(t0,x0,v0,X0,V 0) ∈ J ×ψ(V )× Rn × Rn × Rn.

Then the maximally-defined solution

ζ = (ξ,ν,Ξ,Υ) : dom(ζ)→ ψ(V )× Rn × Rn × Rn
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of ((TTfuu0,u1
)Tψ, t0,x0,v0,X0,V 0) satisfies

dom(ζ) = JΣψ(t0,x0,u0).

Proof. Analogous to the proof of Lemma 6.1.4.

Recalling that u0 ∈ dom(EndΣ
x0

), the next result follows immediately.

Proposition 7.2.5. We have

π−1
TTM(Tx0M)×U ⊆ dom(EndTTΣu0,u1 ).

Furthermore,

1. πTTM ◦ EndTTΣu0,u1 (αvx0
,u) = EndTΣu0 (vx0 ,u1) and

2. πTTM ◦ sM ◦ EndTTΣu0,u1 (αvx0
,u) = EndTΣu0 (πTTM ◦ sM(αvx0

),u)

for each (αvx0
,u) ∈ π−1

TTM(Tx0M)×U .

7.2.2 Second variations compute intrinsic quadratic

differentials

It was indicated at the beginning of this chapter that the second variations of Σ

can be used to compute IQDs. In this section, we make this statement precise.

Lemma 7.2.6. Suppose that u1 ∈ ker(TEndΣ
x0

(u0)). Then

EndTTΣu0,u1 (00x0
,u) ∈ V0x1

TM

for each u ∈ ker(TEndΣ
x0

(u0)), where x1 = EndΣ
x0

(u0).

Proof. Choose u ∈ ker(TEndΣ
x0

(u0)). By Theorem 6.1.10 and Proposition 7.2.5,

πTTM ◦ sM ◦ EndTTΣu0,u1 (00x0
,u) = EndTΣu0 (πTTM ◦ sM(00x0

),u)

= EndTΣu0 (0x0 ,u)
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= TEndΣ
x0

(u0) · u

= 0x1 .

By [Abraham et al. 1988, Exercise 3.3B], the diagram

TTM
sM -�
sM

TTM

TM
�

T
π T
M

π
T
T
M

-

(7.5)

commutes. It follows that

TπTM(EndTΣu0 (0x0 ,u1)) · EndTTΣu0,u1 (00x0
,u) = 0x1 .

Again using Theorem 6.1.10, we see that

EndTTΣu0,u1 (00x0
,u) ∈ ker(TπTM(EndTΣu0 (0x0 ,u1)))

= ker(TπTM(TEndΣ
x0

(u0) · u1)

= ker(TπTM(0x1)),

the latter space being equal to V0x1
TM by definition.

Recall from Section 5.1 that each pointwise vertical lift

vlftvx : TxM → VvxTM

is a canonical vector space isomorphism, thus invertible.

Theorem 7.2.7. Suppose that u1 ∈ ker(TEndΣ
x0

(u0)). Then

vlft−1
0x1
◦ EndTTΣu0,u1 (00x0

,u)

= TΦfu0

b,a (x0) ·
∫ b

a
Adf

u0

M0
(D2

3f
u
u0,u1

)(s, x0) ds

+ TΦfu0

b,a (x0) ·
∫ b

a

∫ s

a
[Adf

u0

M0
(D3f

u
u0

)σ,Adf
u0

M0
(D3f

u1
u0

)s](x0) dσ ds

for each u ∈ ker(TEndΣ
x0

(u0)), where x1 = EndΣ
x0

(u0).
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Proof. Choose u ∈ ker(TEndΣ
x0

(u0)). For notational economy, we write

0 = 00x0
, f = fu0 , g = D3f

u1
u0
, g̃ = D3f

u
u0
, h = D2

3f
u
u0,u1

,

and suppress subscripts on pullbacks throughout the proof. Since Σ has second

variations, f is locally integrably C3 and g, g̃ are locally integrably C2. Furthermore,

h is locally integrably C0 by Lemma 3.3.9. By construction,

EndTTΣu0,u1 (0,u) = Φ
TTΣu0,u1
b,a (0,u)

= Φ
TTfuu0,u1
b,a (0)

= Φ
tlft(tlft(f)+vlft(g))+vlft(tlft(g̃)+vlft(h))
b,a (0).

Invoking Proposition 5.4.2, together with Lemmas 5.5.1, 5.5.2, and 5.5.3, we obtain

Φ
tlft(tlft(f)+vlft(g))+vlft(tlft(g̃)+vlft(h))
b,a (0)

= Φ
tlft(tlft(f))+tlft(vlft(g))+vlft(tlft(g̃))+vlft(vlft(h))
b,a (0)

= Φ
tlft(tlft(f))
b,a ◦ Φ

Adtlft(tlft(f))(tlft(vlft(g))+vlft(tlft(g̃))+vlft(vlft(h)))
b,a (0)

= Φ
tlft(tlft(f))
b,a ◦ Φ

Adtlft(tlft(f))(tlft(vlft(g)))+Adtlft(tlft(f))(vlft(tlft(g̃)))+Adtlft(tlft(f))(vlft(vlft(h)))
b,a (0)

= Φ
tlft(tlft(f))
b,a ◦ Φ

vlft(tlft(Adf (g)))+tlft(vlft(Adf (g̃)))+vlft(vlft(Adf (h)))
b,a (0)

= Φ
tlft(tlft(f))
b,a ◦ Φ

tlft(vlft(Adf (g̃)))+vlft(tlft(Adf (g)))+vlft(vlft(Adf (h)))
b,a (0).

Iterating this procedure, we see that

Φ
tlft(vlft(Adf (g̃)))+vlft(tlft(Adf (g)))+vlft(vlft(Adf (h)))
b,a (0) = Φ

tlft(vlft(Adf (g̃)))
b,a (Z),

where

Z = Φ
Adtlft(vlft(Adf (g̃)))(vlft(tlft(Adf (g))))+Adtlft(vlft(Adf (g̃)))(vlft(vlft(Adf (h))))
b,a (0)

= Φ
vlft(Advlft(Adf (g̃))(tlft(Adf (g))))+vlft(Advlft(Adf (g̃))(vlft(Adf (h))))
b,a (0)

= Φ
vlft(Advlft(Adf (g̃))(tlft(Adf (g))))+vlft(vlft(Adf (h)))
b,a (0)

=
∫ b

a
Advlft(Adf (g̃))(tlft(Adf (g)))(s, 0x0) ds+

∫ b

a
vlft(Adf (h))(s, 0x0) ds
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= Z1 + Z2.

To compute Z1, we invoke Lemma 5.8.1 to obtain

Z1 =
∫ b

a
tlft(Adf (g))(s, 0x0) ds+

∫ b

a

∫ s

a
vlft([Adf (g̃)σ,Adf (g)s])(0x0) dσ ds.

Since u1 ∈ ker(TEndΣ
x0

(u0)), Theorem 6.1.10 yields

∫ b

a
Adf (g)(s, x0) ds = TΦf

a,b(x0) · TEndΣ
x0

(u0) · u1 = TΦf
a,b(x0) · 0x1 = 0x0 .

Consequently,

∫ b

a
tlft(Adf (g))(s, 0x0) ds = 0.

This shows that

Z1 + Z2 =
∫ b

a
vlft(Adf (h))(s, 0x0) ds+

∫ b

a

∫ s

a
vlft([Adf (g̃)σ,Adf (g)s])(0x0) dσ ds

is contained in V0x0
TM . Thus

Φ
tlft(tlft(f))
b,a ◦ Φ

tlft(vlft(Adf (g̃)))
b,a (Z1 + Z2)

= TTΦf
b,a ◦ Φ

tlft(vlft(Adf (g̃)))
b,a (Z1 + Z2)

= TTΦf
b,a ◦ sM ◦ Φ

vlft(tlft(Adf (g̃)))
b,a ◦ sM(Z1 + Z2)

= TTΦf
b,a ◦ sM ◦ Φ

vlft(tlft(Adf (g̃)))
b,a (Z1 + Z2)

= TTΦf
b,a ◦ sM

Ç
Z1 + Z2 +

∫ b

a
tlft(Adf (g̃))(s, 0x0) ds

å
.

Since u ∈ ker(TEndΣ
x0

(u0)), Theorem 6.1.10 yields

∫ b

a
Adf (g̃)(s, x0) ds = 0x0 .

Consequently,

∫ b

a
tlft(Adf (g̃))(s, 0x0) ds = 0.
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This shows that

Φ
tlft(tlft(f))
b,a ◦ Φ

tlft(vlft(Adf (g̃)))
b,a (Z1 + Z2) = TTΦf

b,a ◦ sM(Z1 + Z2)

= TTΦf
b,a · (Z1 + Z2).

Finally, using Lemma 5.1.8 and Proposition 5.4.4, we obtain

vlft−1
0x1
◦ EndTTΣu0,u1 (0,u)

= vlft−1
0x1
◦ TTΦf

b,a · (Z1 + Z2)

= TΦf
b,a(x0) ◦ vlft−1

0x0
· (Z1 + Z2)

= TΦf
b,a(x0) ·

∫ b

a
Adf (h)(s, x0) ds

+ TΦf
b,a(x0) ·

∫ b

a

∫ s

a
[Adf (g̃)σ,Adf (g)s](x0) dσ ds.

This completes the proof.

The control system TTΣu0,u1 has the following bilinearity property.

Corollary 7.2.8. We have

EndTTΣu0,u1 (00x0
,u+ ũ) = EndTTΣu0,u1 (00x0

,u) + EndTTΣu0,u1 (00x0
, ũ)

and

EndTTΣu0,u1+ũ(00x0
,u) = EndTTΣu0,u1 (00x0

,u) + EndTTΣu0,u1+ũ(00x0
,u)

for each u, ũ ∈ U .

Proof. Analogous to the proof of Corollary 6.1.7.

The next lemma relates QEndΣ
x0

(u0) to the controlled trajectories of TTΣu0,u1 .

Lemma 7.2.9. We have

QEndΣ
x0

(u0) · (u1,u2)

= vlft−1
0x1
◦ EndTTΣu0,u1 (00x0

,u2) + image(TEndΣ
x0

(u0))

for each (u1,u2) ∈ ker(TEndΣ
x0

(u0))× ker(TEndΣ
x0

(u0)), where x1 = EndΣ
x0

(u0).
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Proof. Choose (u1,u2) ∈ ker(TEndΣ
x0

(u0))× ker(TEndΣ
x0

(u0)) and a chart (V,ψ)

on M such that x1 ∈ V . By (7.4) and [Margheri 1996, Equations 3.12 and 3.13],

TTψ ◦ EndTTΣu0,u1 (00x0
,u2) =



ψ(x1)

D(ψ ◦ EndΣ
x0

)(u0) · u1

D(ψ ◦ EndΣ
x0

)(u0) · u2

D2(ψ ◦ EndΣ
x0

)(u0) · (u1,u2)



=



ψ(x1)

0Rn

0Rn

D2(ψ ◦ EndΣ
x0

)(u0) · (u1,u2)


.

Using Lemma 5.1.8 and Corollary 7.1.5,

QEndΣ
x0

(u0) · (u1,u2)

= Tψ−1(ψ(x1)) ◦D2(ψ ◦ EndΣ
x0

)(u0) · (u1,u2) + image(TEndΣ
x0

(u0))

= Tψ−1(ψ(x1)) ◦ vlft−1
(ψ(x1),0Rn ) ◦ TTψ ◦ EndTTΣu0,u1 (00x0

,u2)

+ image(TEndΣ
x0

(u0))

= Tψ−1(ψ(x1)) ◦ Tψ(x1) ◦ vlft−1
0x1
◦ EndTTΣu0,u1 (00x0

,u2)

+ image(TEndΣ
x0

(u0))

= vlft−1
0x1
◦ EndTTΣu0,u1 (00x0

,u2) + image(TEndΣ
x0

(u0)).

This completes the proof.

The next theorem, which is the main result in this chapter, combines the results

of Theorem 7.2.7 and Lemma 7.2.9 to compute the bilinear map QEndΣ
x0

(u0).

Theorem 7.2.10. We have

QEndΣ
x0

(u0) · (u1,u2)

= TΦfu0

b,a (x0) ·
∫ b

a
Adf

u0

M0
(D2

3f
u2
u0,u1

)(s, x0) ds
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+ TΦfu0

b,a (x0) ·
∫ b

a

∫ s

a
[Adf

u0

M0
(D3f

u2
u0

)σ,Adf
u0

M0
(D3f

u1
u0

)s](x0) dσ ds

+ image(TEndΣ
x0

(u0))

for each (u1,u2) ∈ ker(TEndΣ
x0

(u0))× ker(TEndΣ
x0

(u0)).

This result matches the expression for QEndΣ
x0

(u0) derived by Agrachev and

Sachkov [2004]. In particular, see [Agrachev and Sachkov 2004, pages 307–308].

The second variations of Σ can be regarded as bilinearized versions of Σ. Thus

Theorem 7.2.10 can be regarded as a coordinate-free bilinearizations compute

intrinsic quadratic differentials principle, in the spirit of [Sontag 1998, Section 2.8].

To the best of our knowledge, the results in this section constitute the first explicit

demonstration of such a principle.

7.3 Examples

In this section, we illustrate Theorem 7.2.10 by way of two examples.

Example 7.3.1. Suppose that Σ is a linear system with M = Rn and

f(t,x,ω) = A · x+B · ω

for matrices A ∈ Rn×n and B ∈ Rn×r. In this case,

EndΣ
x(u) = exp((b− a)A) · x+

∫ b

a
exp((b− σ)A) ◦B · u(σ) dσ

and one computes directly that

D2EndΣ
x0

(u0) · (u1,u2) = 0Rn .

To see that this coincides with the result of Theorem 7.2.10, observe that

D2
3f
u
u0,u1

(t,x) = 0Rn
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Furthermore, we have

Adf
u0

M0
(D3f

u
u0

)(t,x0) = exp((a− t)A) ◦B · u(t).

Thus [Adf
u0

M0
(D3f

u2
u0

)σ,Adf
u0

M0
(D3f

u1
u0

)s](σ,x0) = 0Rn . By Theorem 7.2.10,

QEndΣ
x0

(u0) · (u1,u2) = 0Rn + image(TEndΣ
x0

(u0))

for each (u1,u2) ∈ ker(TEndΣ
x0

(u0))× ker(TEndΣ
x0

(u0)), as expected.

In the next example, Σ is a C3 control-affine system with U = L2(J,Rr). Such

a control system has second variations; see Examples 3.1.15 and 3.2.4.

Example 7.3.2. Suppose that

f(t, x,ω) = f0(x) +
r∑
i=1

ωifi(x)

for C3 vector fields f0, f1, . . . , fr. We have D2
3f
u
u0,u1

(t, x) = 0x. By Theorem 7.2.10,

QEndΣ
x0

(u0) · (u1,u2)

= TΦfu0

b,a (x0) ·
∫ b

a

∫ s

a
[Adf

u0

M0
(D3f

u2
u0

)σ,Adf
u0

M0
(D3f

u1
u0

)s](x0) dσ ds

+ image(TEndΣ
x0

(u0))

for each (u1,u2) ∈ ker(TEndΣ
x0

(u0))× ker(TEndΣ
x0

(u0)). In particular, this result

matches the expression for QEndΣ
x0

(u0) derived in [Agrachev and Sachkov 2004,

Section 20.4]. The latter expression is derived under a certain technical assumption

which is satisfied, in particular, when Σ is control-affine.

7.4 Discussion

Here we briefly discuss the results obtained in this chapter.
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7.4.1 L∞ controls

To adapt the results in this chapter to accommodate control systems that use L∞

controls, it is enough to replace the assumption that Σ is a nice C2
p control system

by the assumption that Σ is a quasi-C2 control system in the sense of Grasse [1979].

For more information, we refer to [Grasse 1979, Chapter 3].

7.4.2 Related results

Results similar to Theorem 7.2.10 can be found in the literature. For example,

we refer to [Agrachev and Sachkov 2004, Section 20.3]. In contrast with the cited

work, we do not use the chronological calculus formalism in our approach. Instead,

our approach employs the geometry of TTM and, as a result, requires only that Σ

meets minimal regularity conditions. The notion of minimality is encapsulated by

the requirement that Σ has second variations.

7.4.3 Intrinsic differentials of higher order

Our approach to computing the IQDs of EndΣ
x0

suggests a general, albeit compu-

tationally unwieldy, approach to computing intrinsic differentials of higher order;

see, for example, [Porteous 1971]. However, it is not clear what role these intrinsic

differentials play in control theory, if any.
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Chapter 8

Constant-rank conditions

Consider a control system

Σ = (f,U )

evolving on an n-dimensional manifold M , and let x0 ∈M . In Chapter 4, we saw

that the continuation method solves the x0-anchored motion planning problem for

Σ by lifting curves in M to curves in U . As described at the beginning of Chapter

6, the candidate curves in M must satisfy

image(π) ⊆ image(EndΣ
x0

). (8.1)

Verifying that this constraint is satisfied is difficult, in the sense that it requires a

complete characterization of U sing
x0

. In this chapter, we isolate control systems for

which U sing
x0

is empty. For such control systems, (8.1) is trivially satisfied, and thus

the second obstruction to the continuation method is overcome. Here, the point

of departure is the simple observation that U sing
x0

is empty if and only if EndΣ
x0

is a submersion. Since a submersion is a special type of constant-rank map, this

observation motivates the search for constant-rank conditions; that is, conditions

which ensure that EndΣ
x0

is constant-rank.

This chapter is organized in the following way. We begin in Section 8.1 by

establishing preliminary material concerning first-order Pontryagin cones. In Section
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8.2, we recall a sufficient constant-rank condition derived by Vakhrameev [1991b].

We then describe how this condition can be used to check if EndΣ
x0

is a submersion.

In Section 8.3, we recall the basic theory of symmetric Lebesgue points. In Section

8.4, we characterize first-order Pontryagin cones in a way that is amenable to

computation. In Section 8.5, we prove two simple containment lemmas. In Section

8.6, we derive a necessary and sufficient constant-rank condition which extends

[Vakhrameev 1991b, Theorem 1.1]. Our approach uses the results derived in

Chapters 5, 6, and 7, and, consequently, is not based on the chronological calculus

formalism [Agrachev and Sachkov 2004]. Finally, in Section 8.7, we briefly connect

the results of Section 8.6 to the property of subimmersivity.

Our standing assumptions in this chapter are that

• M is a second-countable n-dimensional manifold,

• Σ = (f,U ) is a nice C2
p control system evolving on M (see Definition 3.3.7),

• The time domain of Σ is J = [a, b], so that U = Lp(J,Rr),

• Σ has second variations in the sense of Definition 7.2.1, and

• x0 ∈M .

By Corollary 3.3.12, the map

EndΣ
x0

: dom(EndΣ
x0

) ⊆ U →M

is C2. Since Σ and x0 are fixed, we write

End = EndΣ
x0

and

µu0(t) = µΣ(t, a, x0,u0) = Φfu0

t,a (x0)

for each u0 ∈ dom(End). Using this notation, we have End(u0) = µu0(b).
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For each u0 ∈ dom(End), there exists a neighbourhood M0 of x0 such that

Φfu0

t,a |M0 is a C3 diffeomorphism onto its image for each t ∈ J . This follows from

the fact that Σ is a C3 control system, together with an argument identical to the

one used in Section 5.4 to obtain the neighbourhood Q0. We emphasize that M0

depends on u0, although this is not reflected in the notation. Since u0 will always

be understood from context, this should not be the source of any confusion.

8.1 First-order Pontryagin cones

In this section, we define a collection of subspaces which encode the rank of

TEnd(u0) for each u0 ∈ dom(End). Note that, although we have assumed that Σ

is a nice C2
p control system, the contents of this section also apply in the case where

Σ is merely a nice C1
p control system. Indeed, in the latter case, End is C1. The

next definition follows Bonnard and Caillau [2006, Definition 1.1].

Definition 8.1.1. Suppose that u0 ∈ dom(End). We say that

PCΣ
x0

(u0) = TΦfu0

a,b (End(u0)) · image(TEnd(u0))

is the first-order Pontryagin cone along µu0 .1

Since Σ and x0 are fixed, we write

PC(u0) = PCΣ
x0

(u0)

in this chapter. Next, we show that PC(u0) encodes the rank of End at u0.

Lemma 8.1.2. Suppose that u0 ∈ dom(End). Then

dim(PC(u0)) = rank(TEnd(u0)).

1Of course, PCΣ
x0

(u0) is trivially a cone since it is a vector subspace of Tx0
M . When controls

are U -valued, where U is a proper subset of Rr, one can define Pontryagin cones in an analogous
way [Bonnard and Caillau 2006]. In this situation, however, Pontryagin cones are not subspaces.
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Proof. Since Φfu0

a,b |Φfu0

b,a (M0) is a C3 diffeomorphism onto M0, its differential

TΦfu0

a,b (End(u0))

is a vector space isomorphism. Since such isomorphisms preserve dimension,

dim(PC(u0)) = dim(TΦfu0

a,b (End(u0)) · image(TEnd(u0)))

= dim(image(TEnd(u0)))

= rank(TEnd(u0)).

This completes the proof.

8.2 A sufficient constant-rank condition

In this section, Σ is a C∞ control-affine system with

f(t, x,ω) = f0(x) +
r∑
i=1

ωifi(x).

We assume that Σ is complete and uses L2 controls, so that

dom(End) = U = L2(J,Rr).

Since the vector fields fi are C∞, we can take their iterated Lie brackets of arbitrarily

high order. Such Lie brackets will be written compactly using the following standard

notation [Sontag 1998]: For C∞ vector fields X, Y on M , we define

ad0
X(Y ) = Y

and inductively adkX(Y ) = [X, adk−1
X (Y )] for k ≥ 1.

The next definition, taken from [Vakhrameev 1991b], can be viewed as a nonlinear

analogue of the Cayley–Hamilton theorem [Sontag 1998, Chapter 3.2].
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Definition 8.2.1. We say that Σ satisfies the local finite definiteness condition

if for each x∗ ∈ M there exist a neighbourhood V of x∗ in M , ∆ ∈ Z≥0, and C∞

functions Pj,k,` : V → R, such that

ad∆+1
f0

(fj)(x) =
∆∑
k=0

r∑
`=1

Pj,k,`(x)adkf0
(f`)(x) (8.2)

for each x ∈ V and each 1 ≤ j ≤ r. If (8.2) holds with V = M , then we say that Σ

satisfies the global finite definiteness condition with degree ∆. Of course, if

Σ satisfies the global finite definiteness condition with degree ∆, then it satisfies

the local finite definiteness condition.

To expand on the remark made prior to Definition 8.2.1, we note that ifM = Rn

and Σ is a time-invariant linear system, then Σ satisfies the global finite definiteness

condition with degree ∆ = n− 1 by virtue of the Cayley–Hamilton theorem.

Example 8.2.2. Observe that Σ satisfies the global finite definiteness condition

with degree 0 if and only if there exist C∞ functions Pj,k : M → R such that

[f0, fj] =
r∑

k=1

Pj,kfk (8.3)

for each 1 ≤ j ≤ r. For instance, (8.3) is satisfied whenever [f0, fj] ≡ 0 for each

1 ≤ j ≤ r, since in this case we can choose each function Pj,k to be identically equal

to 0. One may also consider the case where r = n and the vector fields f1, . . . , fn

constitute a global frame for TM ; that is,

f1(x), . . . , fn(x)

are linearly independent for each x ∈M . In this case, (8.3) is satisfied whenever

Pj,k are the components of [f0, fj] in this global frame; see [Lee 2003, Chapter 5].

Lemma 8.2.3. Suppose that Σ is a Cω control-affine system. Then Σ satisfies the

local finite definiteness condition.

171



Proof. See Section A.5.

The next definition is also due to Vakhrameev [1991b], who studied constant-rank

conditions in their own right and also in relation to bang-bang theorems.

Definition 8.2.4. We say that Σ satisfies the local bang-bang condition if for

each x∗ ∈M , there exist a neighbourhood V of x∗ in M and C∞ functions

Q∆
i,j,k,` : V → R,

such that

[fi, ad∆
f0
fj](x) =

∆∑
k=0

r∑
`=1

Q∆
i,j,k,`(x)adkf0

f`(x) (8.4)

for each x ∈ V , each ∆ ∈ Z≥0, and each 1 ≤ i, j ≤ r. If (8.4) holds with V = M ,

then we say that Σ satisfies the global bang-bang condition . Of course, if

Σ satisfies the global bang-bang condition, then it satisfies the local bang-bang

condition.

Example 8.2.5. If [f0, fj] ≡ 0 for each 1 ≤ j ≤ r, then Σ clearly satisfies the

global bang-bang condition. In fact, under the same condition, Σ satisfies the global

finite definiteness condition with degree 0, as explained in Example 8.2.2.

Theorem 8.2.6. Suppose that

• Σ satisfies the local finite definiteness condition and

• Σ satisfies the local bang-bang condition.

Then End is constant-rank.

Proof. See [Vakhrameev 1991b, Theorem 1.3] and [Vakhrameev 1995, p. 2608].

Corollary 8.2.7. Suppose that

• Σ satisfies the local finite definiteness condition,
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• Σ satisfies the local bang-bang condition, and

• There exists u0 ∈ U such that dim(PC(u0)) = n.

Then End is a C2 submersion.

Proof. This follows immediately from Lemma 8.1.2 and Theorem 8.2.6.

Using Corollary 8.2.7, we can verify that End is a submersion by first examining

the Lie bracket configuration of Σ, and then examining the dependence of PC(u0)

on u0. Clearly, this is a considerable improvement over a direct verification. As

we will see in Section 8.4, it is possible to go somewhat further and characterize

PC(u0) in a more computable fashion.

8.3 Symmetric Lebesgue points

In this section, we recall the basic theory of symmetric Lebesgue points and their

associated Lebesgue values, following Mikkola [2002, Appendix B.5]. Throughout

this section, E is a finite-dimensional vector space.

Suppose that g : J → E is continuous at the point t ∈ (a, b). Clearly,

lim
δ↘0

1

δ

∫ t

t−δ
‖g(s)− g(t)‖ ds = 0 (8.5)

and

lim
δ↘0

1

δ

∫ t+δ

t
‖g(s)− g(t)‖ ds = 0, (8.6)

where ‖ · ‖ is any choice of norm on E. Now suppose that g ∈ L1(J,E). By

definition, g is an equivalence class of maps. Thus the value of g at t ∈ J is not

well-defined. Nevertheless, one can consider the points t ∈ (a, b) at which we can

associate an element g(t) ∈ E such that (8.5) and (8.6) hold. These points are

called the symmetric Lebesgue points of g. The end result is that one can work
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with the symmetric Lebesgue points of g as if they were points of continuity of g,

at least with respect to the validity of (8.5) and (8.6).

Definition 8.3.1. Suppose that t ∈ (a, b). We say that t is a symmetric Leb-

esgue point of g if there exists e ∈ E such that

lim
δ↘0

1

δ

∫ t

t−δ
‖g(s)− e‖ ds = 0 (8.7)

and

lim
δ↘0

1

δ

∫ t+δ

t
‖g(s)− e‖ ds = 0, (8.8)

where ‖ · ‖ is any choice of norm on E. The set of all symmetric Lebesgue points of

g is denoted by Leb(g).

Note that if t ∈ Leb(g) and e ∈ E satisfies (8.7) and (8.8), then

lim
δ↘0

1

δ

∫ t

t−δ
g(s) ds = e (8.9)

and

lim
δ↘0

1

δ

∫ t+δ

t
g(s) ds = e. (8.10)

For example, to prove the first assertion, simply observe that

lim
δ↘0

∥∥∥∥∥1

δ

∫ t

t−δ
g(s) ds− e

∥∥∥∥∥ ≤ lim
δ↘0

1

δ

∫ t

t−δ
‖g(s)− e‖ ds = 0.

This shows, in particular, that e is the unique element of E which satisfies (8.7)

and (8.8). We say that e is the Lebesgue value of g at t, and we write

g(t) = e.

We stress that this notation does not create any ambiguity. Indeed, the value of g

at t is not well-defined, as mentioned above.

The following facts about symmetric Lebesgue points will be useful.
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• Suppose that t ∈ Leb(g). Then for each ε ∈ R>0, there exists a neighbourhood

U(t, ε) of t in (a, b) such that the inequalities∥∥∥∥∥
∫ t

t−δ
g(s) ds− δg(t)

∥∥∥∥∥ < δε and
∥∥∥∥∥
∫ t+δ̃

t
g(s) ds− δ̃g(t)

∥∥∥∥∥ < δ̃ε

hold whenever δ, δ̃ ∈ R>0 are such that t−δ, t+δ̃ ∈ U(t, ε). This is a consequence

of (8.9) and (8.10). Combining the above inequalities, it follows that∥∥∥∥∥
∫ t+δ̃

t−δ
g(s) ds− (δ + δ̃)g(t)

∥∥∥∥∥ < (δ + δ̃)ε

whenever δ, δ̃ ∈ R>0 are such that t− δ, t+ δ̃ ∈ U(t, ε).

• The set (a, b)rLeb(g) has measure zero; see, for example, [Hewitt and Stromberg

1965, Lemma 18.4]. For our purposes, the important consequence of this fact is

that Leb(g) is dense in (a, b), and, in turn, Leb(g) is dense in J = [a, b].2

• Finally, if g is continuous, in the sense that it has a continuous representative,

then Leb(g) = (a, b).

8.4 A characterization of first-order Pontryagin

cones

In this section, we characterize the vector subspaces PC(u0) in a way that is a-

menable to computation. We require the following specialized notation. For each

u0 ∈ dom(End) and each u ∈ U , define λ1
u0
· u ∈ L1(J, Tx0M) by

(λ1
u0
· u)(t) = Adf

u0

M0
(D3f

u
u0

)(t, x0),

where D3f
u
u0

is prescribed as in Chapter 6. The fact that λ1
u0
· u is integrable

follows from Lemma 3.3.9 and Proposition 5.4.2.
2It is enough to show that each nonempty open subset of (a, b) has a nonempty intersection

with Leb(g). Suppose that U ⊆ (a, b) is such a subset. Since U is nonempty and open in (a, b), it
must contain an open subinterval of (a, b). This implies that the measure of U is positive, so U
cannot be contained in (a, b) r Leb(g). Hence U ∩ Leb(g) 6= ∅, and Leb(g) is dense in (a, b).
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b b b

ba
bb

σ

t1
b
τ

U(t1, ε̃)

b
t1 + δ+1

t2 − δ−2

U(t2, ε̃)

b
t2

Figure 8.1: An illustration of the proof of Theorem 8.4.3

The notion of a simple chain will be useful.

Definition 8.4.1. Suppose that T is a topological space and t, t̃ ∈ T . A simple

chain connecting t and t̃ is a sequence U1, . . . , Uk of open subsets of T such that

t ∈ U1, t̃ ∈ Uk, and Ui ∩ Uj 6= ∅ if and only if |i− j| ≤ 1.

Theorem 8.4.2. Suppose that T is a topological space, t, t̃ lie in the same connected

component of T , and C is an open cover of T . Then there exists a simple chain

U1, . . . , Uk connecting t and t̃ with the property that Ui ∈ C for each 1 ≤ i ≤ k.

Proof. See [Willard 1970, Theorem 26.15].

The next theorem bears close similarity to results appearing, without proof, in

the work of Agrachev and Gamkrelidze [1985, 1991], Agrachev and Vakhrameev

[1984, 1986], and Vakhrameev [1991a,b, 1995, 1996, 1998].

Theorem 8.4.3. Suppose that u0 ∈ dom(End). Then PC(u0) coincides with

Q(u0) = span
¶
(λ1
u0
· u)(t) : u ∈ U , t ∈ Leb(λ1

u0
· u)
©
.

Proof. First observe that by Theorem 6.1.10,

TΦfu0

a,b (End(u0)) ◦ TEnd(u0) · u =
∫ b

a
Adf

u0

M0
(D3f

u
u0

)(s, x0) ds

=
∫ b

a
(λ1
u0
· u)(s) ds (8.11)

for each u ∈ U . Choose

q =
k∑
j=1

Cj(λ
1
u0
· uj)(tj) ∈ Q(u0)
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and let {δn}n∈N be a sequence of positive real numbers such that δn → 0 as n→∞.

Without loss of generality, we can assume that for each n ∈ N, we have

• [tj, tj + δn] ⊆ (a, b) for each 1 ≤ j ≤ k and

• [ti, ti + δn] ∩ [tj, tj + δn] = ∅ for each 1 ≤ i, j ≤ k with i 6= j.

Consider the sequence {wn}n∈N in U defined by

wn(t) =


δ−1
n Cjuj(t), t ∈ [tj, tj + δn],

0Rr , otherwise.

We say that each wn is a control variation. Using (8.11),

lim
n→∞

TΦfu0

a,b (End(u0)) ◦ TEnd(u0) ·wn = lim
n→∞

∫ b

a
(λ1
u0
·wn)(s) ds

=
k∑
j=1

Cj lim
n→∞

1

δn

∫ tj+δn

tj
(λ1
u0
· uj)(s) ds

=
k∑
j=1

Cj(λ
1
u0
· uj)(tj).

Consequently, q ∈ PC(u0) = PC(u0) and Q(u0) ⊆ PC(u0).

Now choose u ∈ U . Recall that for each t ∈ Leb(λ1
u0
· u) and each ε ∈ R>0,

there exists a neighbourhood U(t, ε) of t in (a, b) such that∥∥∥∥∥
∫ t+δ̃

t−δ
(λ1
u0
· u)(s) ds− (δ + δ̃)(λ1

u0
· u)(t)

∥∥∥∥∥ ≤ (δ + δ̃)ε (8.12)

whenever δ, δ̃ ∈ R>0 are such that t − δ, t + δ̃ ∈ U(t, ε). Now let ε ∈ R>0. Since

Leb(λ1
u0
· u) is dense in J and the maps

t 7→
∫ t

a
(λ1
u0
· u)(s) ds and t 7→

∫ b

t
(λ1
u0
· u)(s) ds

are continuous, there exist σ, τ ∈ Leb(λ1
u0
· u) such that∥∥∥∥∫ σ

a
(λ1
u0
· u)(s) ds

∥∥∥∥ ,
∥∥∥∥∥
∫ b

τ
(λ1
u0
· u)(s) ds

∥∥∥∥∥ < ε

3
.

Set ε̃ = ε/(3(b− a)) and consider the set

C = {U(t, ε̃) : t ∈ Leb(λ1
u0
· u)}.
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Since Leb(λ1
u0
·u) is dense in J , C is an open cover of (a, b). Relative to C , choose

a simple chain U(t1, ε̃), . . . , U(tk, ε̃) connecting σ to τ as in Theorem 8.4.2. By

definition, σ ∈ U(t1, ε̃) and τ ∈ U(tk, ε̃). Without loss of generality, we can assume

that σ < t1 and tk < τ . This allows us to write∫ τ

σ
(λ1
u0
· u)(s) ds =

k∑
j=1

∫ tj+δ
+
j

tj−δ−j
(λ1
u0
· u)(s) ds,

where δ−j , δ
+
j ∈ R>0, 1 ≤ j ≤ k are such that

• t1 − δ−1 = σ, tk + δ+
k = τ ,

• tj + δ+
j = tj+1 − δ−j+1 for each 1 ≤ j ≤ k − 1, and

• tj + δ+
j = tj+1 − δ−j+1 ∈ U(tj, ε̃) ∩ U(tj+1, ε̃) for each 1 ≤ j ≤ k − 1.

By construction,
k∑
j=1

(δ−j + δ+
j ) < τ − σ < b− a.

Using (8.12), we can now complete the proof. We have∥∥∥∥∥
∫ b

a
(λ1
u0
· u)(s) ds−

k∑
j=1

(δ−j + δ+
j )(λ1

u0
· u)(tj)

∥∥∥∥∥
<
ε

3
+
ε

3
+

∥∥∥∥∥
∫ τ

σ
(λ1
u0
· u)(s) ds−

k∑
j=1

(δ−j + δ+
j )(λ1

u0
· u)(tj)

∥∥∥∥∥
=

2ε

3
+

∥∥∥∥∥ k∑
j=1

∫ tj+δ
+
j

tj−δ−j
(λ1
u0
· u)(s) ds− (δ−j + δ+

j )(λ1
u0
· u)(tj)

∥∥∥∥∥
≤ 2ε

3
+

k∑
j=1

∥∥∥∥∥
∫ tj+δ

+
j

tj−δ−j
(λ1
u0
· u)(s) ds− (δ−j + δ+

j )(λ1
u0
· u)(tj)

∥∥∥∥∥
<

2ε

3
+ ε̃

k∑
j=1

(δ−j + δ+
j )

<
2ε

3
+ ε̃(b− a)

= ε.

Consequently,

TΦfu0

a,b (End(u0)) ◦ TEnd(u0) · u =
∫ b

a
(λ1
u0
· u)(s) ds ∈ Q(u0) = Q(u0)
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and PC(u0) ⊆ Q(u0). This completes the proof.

8.5 Containment lemmas

In this section, we prove two technical lemmas dealing with containment.

Lemma 8.5.1. Suppose that u0 ∈ dom(End) and u ∈ U . Then

(λ1
u0
· u)(t) ∈ PC(u0)

for a.a. t ∈ J .

Proof. This follows immediately from Theorem 8.4.3 and the fact that

(a, b) r Leb(λ1
u0
· u)

has measure zero.

For the next lemma, we require the following specialized notation. For each

u0 ∈ dom(End) and each u, ũ ∈ U , define λ2
u0
· (u, ũ) ∈ L1(J, Tx0M) by

(λ2
u0
· (u, ũ))(t) = Adf

u0

M0
(D2

3f
ũ
u0,u

)(t, x0),

where D2
3f
ũ
u0,u

is prescribed as in Chapter 7. We also define

Λ2
u0
· (u, ũ) ∈ L1(J, Tx0M)

by

(Λ2
u0
· (u, ũ))(t) =

∫ t

a
[Adf

u0

M0
(D3f

u
u0

)σ,Adf
u0

M0
(D3f

ũ
u0

)t](x0) dσ.

The fact that λ2
u0
· (u, ũ) is integrable follows from Lemma 3.3.9 and Proposition

5.4.2, while the fact that Λ2
u0
· (u, ũ) is integrable follows from Lemma 3.3.9,

Proposition 5.4.2, and Lemma 5.4.5.
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Recall from Section 7.1 that ifM = Rn, then each intrinsic quadratic differential

QEnd(u0)

is well-defined on U ×U , in the sense that it its values are invariant under linear

automorphisms of M . In the proof of the next lemma, we use this fact to construct

control variations as in the proof of Theorem 8.4.3.

Lemma 8.5.2. Suppose that M = Rn, the map End is locally constant-rank,

u0 ∈ dom(End),

and u, ũ ∈ U . Then

(λ2
u0
· (u, ũ))(t) + (Λ2

u0
· (u, ũ))(t) ∈ PC(u0)

for a.a. t ∈ J .

Proof. Since End is locally constant-rank, we have

QEnd(u0) · (w, w̃) = 0coker(TEnd(u0))
∼= image(TEnd(u0))

for each (w, w̃) ∈ U ×U . It follows from Theorem 7.2.10 that

∫ b

a
(λ2
u0
· (w, w̃))(s) ds+

∫ b

a
(Λ2
u0
· (w, w̃))(s) ds

is contained in

TΦfu0

a,b (End(u0)) · image(TEnd(u0)) = PC(u0)

for each (w, w̃) ∈ U ×U . Choose

t ∈ Leb(λ2
u0
· (u, ũ)) ∩ Leb(Λ2

u0
· (u, ũ))

and let {δn}n∈N be a sequence of positive real numbers such that δn → 0 as n→∞.

Without loss of generality, we can assume that for each n ∈ N,

[t, t+ δn] ⊆ J.
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Consider the sequences {wn}n∈N, {w̃n}n∈N in U defined by

wn(s) =


u(s)√
δn
, s ∈ [t, t+ δn],

0Rr , otherwise,

and

w̃n(s) =


ũ(s)√
δn
, s ∈ [t, t+ δn],

0Rr , otherwise.

Using these control variations, we have

lim
n→∞

∫ b

a
(λ2
u0
· (wn, w̃n))(s) ds = lim

n→∞

1

δn

∫ t+δn

t
(λ2
u0
· (u, ũ))(s) ds

= (λ2
u0
· (u, ũ))(t)

and similarly

lim
n→∞

∫ b

a
(Λ2
u0
· (wn, w̃n))(s) ds = (Λ2

u0
· (u, ũ))(t).

Consequently,

λ2
u0

(t) · (u, ũ) + Λ2
u0

(t) · (u, ũ) ∈ PC(u0) = PC(u0).

To complete the proof, it is enough to recall the fact that

(a, b) r (Leb(λ2
u0
· (u, ũ)) ∩ Leb(Λ2

u0
· (u, ũ)))

has measure zero.

8.6 A necessary and sufficient constant-rank

condition

In this section, we derive an extension of [Vakhrameev 1991b, Theorem 1.1]. The

latter theorem is a necessary and sufficient constant-rank condition whose appli-

cability is limited to complete, time-invariant, C∞ control systems. The extended

version accommodates weakly regular, time-varying, fully nonlinear control systems.
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We will require the notion of a time-varying subspace. In what follows, E is a

finite-dimensional vector space. If Ẽ is a vector subspace of E, then

projẼ ∈ Hom(E)

denotes the orthogonal projection of E onto Ẽ.

Definition 8.6.1. An assignment [0, 1] 3 t 7→ S(t), where S(t) is a ρ-dimensional

vector subspace of E, is called a ρ-dimensional time-varying subspace of E. We

say that S is Ck, where k ∈ N∗, if for each t0 ∈ [0, 1], there exist

• A relatively open subinterval I ⊆ [0, 1] such that t0 ∈ I and

• Ck maps b1, . . . , bρ : I → E such that

S(t) = span{b1(t), . . . , bρ(t)}

for each t ∈ I.

Lemma 8.6.2. Suppose that t 7→ S(t) is a ρ-dimensional time-varying subspace of

E and define projS : [0, 1]→ Hom(E) by

projS(t) = projS(t).

Then S is Ck, where k ∈ N∗, if and only if projS is Ck.

Proof. For definiteness, let us suppose that E is `-dimensional. By choosing a basis

for E, we can identify E and Hom(E) with R` and R`×`, respectively.

Suppose that S is Ck, where k ∈ N∗. We must show that projS is Ck or,

equivalently, that for each t0 ∈ [0, 1], there exists a relatively open subinterval

I ⊆ [0, 1] such that t0 ∈ I and projS|I is Ck. To this end, let t0 ∈ [0, 1], let I and

b1, . . . , bρ be prescribed as in Definition 8.6.1, and define B : I → R`×` by

B(t) = [b1(t) · · · bρ(t)].
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Clearly, B is Ck. Since

(projS|I)(t) = B(t)(B(t)∗B(t))−1B(t)∗

for each t ∈ I, we conclude that projS|I is Ck.

Conversely, suppose that projS is Ck. We must show that S is Ck. To this end,

let t0 ∈ [0, 1] and let b0
1, . . . , b

0
ρ ∈ S(t0) be linearly independent. Given 1 ≤ i ≤ ρ,

let bi : [0, 1]→ R` be the maximally-defined solution of the initial value problem
ξ̇(t) =

˙̇
projS(t) · ξ(t), ξ(t) ∈ R`, t ∈ [0, 1]

ξ(t0) = b0
i .

The fact that bi is defined on [0, 1] follows from Lemma 2.2.17. Furthermore, bi is

Ck, since the right-hand side

(t,x) 7→ ˙̇
projS(t) · x

is clearly Ck−1. By continuity, there exists a relatively open subinterval I ⊆ [0, 1]

such that t0 ∈ I and b1(t), . . . , bρ(t) are linearly independent for each t ∈ I. To

finish the proof, we now show that

b1(t), . . . , bρ(t) ∈ S(t)

for each t ∈ I. Given 1 ≤ i ≤ ρ, consider the map ci : I → R` defined by

ci(t) = A(t) · bi(t) = (idR` − projS(t)) · bi(t).

By the Leibniz rule, ci is Ck. Differentiating the identity

A(t) ◦ projS(t) = 0R`×` ,

we have

A(t) ◦ ˙̇
projS(t) = −Ȧ(t) ◦ projS(t)
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and hence

ċi(t) = Ȧ(t) · bi(t) +A(t) · ḃi(t)

= Ȧ(t) · bi(t) +A(t) ◦ ˙̇
projS(t) · bi(t)

= Ȧ(t) · bi(t)− Ȧ(t) ◦ projS(t) · bi(t)

= Ȧ(t) ◦ (idR` − projS(t)) · bi(t)

= Ȧ(t) · ci(t)

for each t ∈ I. Thus ci is the maximally-defined solution of
ξ̇(t) = Ȧ(t) · ξ(t), ξ(t) ∈ R`, t ∈ I

ξ(t0) = (idR` − projS(t0)) · b0
i .

By construction, b0
i ∈ S(t0), so that

(idR` − projS(t0)) · b0
i = 0R` .

We conclude that ci is identically equal to 0R` . Equivalently,

bi(t) ∈ S(t)

for each t ∈ I. This completes the proof.

The next theorem extends [Vakhrameev 1991b, Theorem 1.1]. To avail ourselves

of Lemma 8.5.2, we include the hypothesis that M = Rn.

Theorem 8.6.3. Suppose that M = Rn. Then End is locally constant-rank if and

only if PC(u0) = PC(ũ0) whenever u0, ũ0 are contained in the same connected

component of dom(End).

Proof. Suppose that PC(u0) = PC(ũ0) whenever u0, ũ0 are contained in the same

connected component of dom(End). By Lemma 8.1.2,

rank(TEnd(u0)) = rank(TEnd(ũ0))
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for each such u0, ũ0. Consequently, End is locally constant-rank.

Conversely, suppose that End is locally constant-rank and u0, ũ0 are contained

in the same connected component K of dom(End). Set

ρ = dim(PC(u)) = rank(TEnd(u)), u ∈ K .

We must show that PC(u0) = PC(ũ0). To this end, let

γ : [0, 1]→ K

be a C∞ curve in K such that γ(0) = u0 and γ(1) = ũ0. Consider the map

[0, 1] 3 t 7→ S(t) = PC(γ(t))

We claim that S is a C1 ρ-dimensional time-varying subspace of Tx0M . To see this,

let t0 ∈ [0, 1] and let b0
1, . . . , b

0
ρ ∈ S(t0) be linearly independent. Then

b0
i = TΦfγ(t0)

a,b (End(γ(t0))) ◦ TEnd(γ(t0)) · ui

for some ui ∈ U . Consider the maps b1, . . . , bρ : [0, 1]→ Tx0M defined by

bi(t) = TΦfγ(t)

a,b (End(γ(t))) ◦ TEnd(γ(t)) · ui

= (T1EndΣ(x0,γ(t)))−1 ◦ TEnd(γ(t)) · ui.

It follows from Theorem 3.3.11 that each bi is C1 by composition. By conti-

nuity, there exists a relatively open subinterval I ⊆ [0, 1] such that t0 ∈ I

and b1(t), . . . , bρ(t) are linearly independent for each t ∈ I. By construction,

b1(t), . . . , bρ(t) ∈ S(t) for each t ∈ I. Thus S is a C1 ρ-dimensional time-varying

subspace of Tx0M .

Suppose now that the tangent vectors v1, . . . , vn ∈ Tx0M are linearly independent.

For each 1 ≤ i ≤ n, define the map Vi : [0, 1]→ Tx0M by

Vi(t) = projS(t) · vi = projPC(γ(t)) · vi.

In what follows, the following easily-verified observations will be crucial:
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• PC(γ(t)) = span{V1(t), . . . , Vn(t)} for each t ∈ [0, 1];

• By the Leibniz rule and Lemma 8.6.2, each Vi is C1;

• Each Vi can be written in the form

Vi(t) = TΦfγ(t)

a,b (End(γ(t))) ◦ TEnd(γ(t)) ·U i(t),

where U i : [0, 1]→ U is C1. Alternatively, by Theorem 6.1.10, each Vi can be

written in the form3

Vi(t) =
∫ b

a
Adf

γ(t)
(
D3f

U i(t)
γ(t)

)
(s, x0) ds,

where U i : [0, 1]→ U is C1;

• By Lemma 3.3.9 and Proposition 5.4.2, the map

(t, s) 7→ Adf
γ(t)

(
D3f

U i(t)
γ(t)

)
(s, x0)

of [0, 1] × J into Tx0M satisfies the hypotheses of [Dudley 2002, Section 4.3,

Exercise 10], at least locally in its first independent variable, and thus

V̇i(t) =
d

dτ

∣∣∣∣∣
t

∫ b

a
Adf

γ(τ)
(
D3f

U i(τ)
γ(τ)

)
(s, x0) ds

=
∫ b

a

d

dτ

∣∣∣∣∣
t

Adf
γ(τ)

(
D3f

U i(τ)
γ(τ)

)
(s, x0) ds

for each t ∈ [0, 1];

• By Lemma 3.3.9, the map F : J ×M × [0, 1]→ TM defined by

F (t, x, τ) = f(t, x,γ(τ)(t))

is a locally integrably C3,2 time-varying vector field onM with scalar parameters.

• By Lemma 3.3.9, the map G : J ×M × [0, 1]→ TM defined by

G(t, x, τ) = D3f(t, x,γ(τ)(t)) ·U i(τ)(t)

is a locally integrably C1,1 time-varying vector field onM with scalar parameters.
3Here, and in the rest of the proof, the subscript M0 is suppressed on pullbacks.
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By construction, we have

F τ = fγ(τ) and Gτ = D3f
U i(τ)
γ(τ)

for each τ ∈ [0, 1]. For concreteness, we write fγ(τ) and D3f
U i(τ)
γ(τ) instead of F τ and

Gτ , respectively. Invoking Lemma 5.9.11, we obtain

V̇i(t) =
∫ b

a

d

dτ

∣∣∣∣∣
t

Adf
γ(τ)

(
D3f

U i(τ)
γ(τ)

)
(s, x0) ds

=
∫ b

a
Adf

γ(t)

(
d

dτ

∣∣∣∣∣
t

D3f
U i(τ)
γ(τ)

)
(s, x0) ds︸ ︷︷ ︸

(†)

+
∫ b

a

d

dτ

∣∣∣∣∣
t

Adf
γ(τ)

(
D3f

U i(t)
γ(t)

)
(s, x0) ds︸ ︷︷ ︸

(‡)

for each t ∈ [0, 1]. To evaluate (†), observe that

d

dτ

∣∣∣∣∣
t

D3f
U i(τ)
γ(τ) (s, x) =

d

dτ

∣∣∣∣∣
t

D3f(s, x,γ(τ)(s)) ·U i(τ)(s)

= D2
3f(s, x,γ(t)(s)) · (γ̇(t)(s),U i(t)(s))

+ D3f(s, x,γ(t)(s)) · U̇ i(t)(s)

= D2
3f
U i(t)
γ(t),γ̇(t)(s, x) +D3f

U̇ i(t)
γ(t) (s, x)

for each (s, x) ∈ J ×M . Thus

(†) =
∫ b

a
(λ2
γ(t) · (γ̇(t),U i(t)))(s) ds+

∫ b

a
(λ1
γ(t) · U̇ i(t))(s) ds.

To evaluate (‡), we invoke Lemma 5.9.11 again, concluding that

(‡) =
∫ b

a

∫ s

a

[
Adf

γ(t)

(
d

dτ

∣∣∣∣∣
t

fγ(τ)

)
σ

,Adf
γ(t)

(
D3f

U i(t)
γ(t)

)
s

]
(x0) dσ ds.

Observe that

d

dτ

∣∣∣∣∣
t

fγ(τ)(s, x) =
d

dτ

∣∣∣∣∣
t

f(s, x,γ(τ)(s))

= D3f(s, x,γ(t)(s)) · γ̇(t)(s)

= D3f
γ̇(t)
γ(t) (s, x)
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for each (s, x) ∈ J ×M . Thus

(‡) =
∫ b

a
(Λ2
γ(t) · (γ̇(t),U i(t)))(s) ds.

Altogether, we have shown that

V̇i(t) =
∫ b

a
(λ1
γ(t) · U̇ i(t))(s) ds

+
∫ b

a
(λ2
γ(t) · (γ̇(t),U i(t)))(s) + (Λ2

γ(t) · (γ̇(t),U i(t)))(s) ds

for each t ∈ [0, 1]. It follows from Lemmas 8.5.1 and 8.5.2 that

V̇i(t) ∈ PC(γ(t))

for each t ∈ [0, 1].4 Since PC(γ(t)) = span {V1(t), . . . , Vn(t)} for each t ∈ [0, 1],

V̇i(t) =
n∑
i=1

Aji (t)Vj(t) (8.13)

for continuous functions Aji : [0, 1]→ R.

To complete the proof, suppose that zx0 lies in the annihilator

PC(γ(0))0 = PC(u0)0.

For each 1 ≤ i ≤ n, define Zi : [0, 1]→ R by

Zi(t) = 〈zx0 , Vi(t)〉.

Then each Zi satisfies Zi(0) = 〈zx0 , Vi(0)〉 = 0 and, using (8.13), we have

Żi(t) = 〈zx0 , V̇i(t)〉

=

∞
zx0 ,

n∑
j=1

Aji (t)Vj(t)

∫
4This relies on the following fact: Suppose that E is a finite-dimensional vector space and Ẽ

is a vector subspace of E. If ξ : J → E is integrable and satisfies ξ(t) ∈ Ẽ for a.a. t ∈ J , then∫ b

a

ξ(s) ds ∈ Ẽ.
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=
n∑
j=1

Aji (t)〈zx0 , Vj(t)〉

=
n∑
j=1

Aji (t)Zj(t).

Thus Z = (Z1, . . . , Zn) is the maximally-defined solution of the initial value problem
ξ̇(t) = A(t) · ξ(t), ξ(t) ∈ Rn, t ∈ [0, 1]

ξ(0) = 0Rn ,

where A(t) is the matrix with Aji (t) in the (i, j)th position. It follows that Z is

identically equal to 0Rn on [0, 1], or, equivalently, that zx0 ∈ PC(γ(t))0 for each

t ∈ [0, 1]. Since zx0 was chosen arbitrarily, we have shown that

PC(u0)⊥ ⊆ PC(γ(t))⊥

for each t ∈ [0, 1]. Equivalently [Leung 1973, Theorem 7.7], we have shown that

PC(γ(t)) ⊆ PC(u0)

for each t ∈ [0, 1]. In particular, setting t = 1, we have shown that

PC(ũ0) = PC(γ(1)) ⊆ PC(u0).

Since End is locally constant-rank, dim(PC(u0)) = dim(PC(ũ0)) and consequently

PC(u0) = PC(ũ0).

This completes the proof.

Remark 8.6.4. Interestingly, the proof of [Vakhrameev 1991b, Theorem 1.1] does

not rely on the assumption that M = Rn. Since the details of the argument are

not forthcoming, it is not clear to us how Vakhrameev’s proof proceeds without

this assumption. More precisely, it is not clear to us how to verify that

ker(TEnd(u0))× ker(TEnd(u0))
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contains a sufficiently rich family of control variations. In the case where Σ is

C2
2 -polynomial, and thus U = L2(J,Rr), the easily-verified fact that

ker(TEnd(u0)) ∼= L2(J,Rr)

may be pertinent. However, this remains speculative.

Corollary 8.6.5. Suppose that M = Rn and dom(End) is connected. Then End

is constant-rank if and only if PC(u0) = PC(ũ0) for each u0, ũ0 ∈ dom(End). In

particular, End is a submersion if and only if

• PC(u0) = PC(ũ0) for each u0, ũ0 ∈ dom(End) and

• There exists u0 ∈ dom(End) such that dim(PC(u0)) = n.

For example, dom(End) is connected whenever Σ is complete, since in this case

dom(End) = U

by definition.

8.7 Subimmersivity

Finally, we briefly connect the results of Section 8.6 to subimmersivity.

Definition 8.7.1. Suppose that Q and R are Banach manifolds and

F : Q→ R

is Ck for k ∈ N∗. We say that F is a subimmersion at q ∈ Q if there exist a

neighbourhood U of q in Q, a Banach manifold P , a Ck submersion s : U → P ,

and a Ck immersion i : P → R such that F |U = i ◦ s. We say that F is a

subimmersion if it is a subimmersion at each q ∈ Q.
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Corollary 8.7.2. Suppose that M = Rn. Then End is a subimmersion if and

only if PC(u0) = PC(ũ0) whenever u0, ũ0 are contained in the same connected

component of dom(End).

Proof. Since M is finite-dimensional, End is a subimmersion if and only if it is

locally constant-rank; see [Abraham et al. 1988, Proposition 3.5.16].
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Chapter 9

Sublinear growth

Consider a control system

Σ = (f,U )

evolving on an n-dimensional manifold M , and let x0 ∈ M . In Chapter 4, we

saw that the continuation method attempts to solve the x0-anchored motion plan-

ning problem for Σ by lifting curves in M to curves in U ; the lifted curves are

maximally-defined solutions of path-lifting equations (PLEs). For this procedure to

be successful, it is essential that each such solution is defined on [0, 1]. In general,

this is not guaranteed. Indeed, each PLE is an initial value problem, which opens up

the possibility that its maximally-defined solution is defined on a proper subinterval

of [0, 1]. In Chapter 1, we called this phenomenon the third obstruction to the

continuation method. In this chapter, we derive conditions which ensure that this

obstruction is overcome. For tractability, the analysis is carried out under the

assumption that Σ is a control-affine system that uses L2 controls.

This chapter is organized in the following way. In Section 9.1, we introduce

the cotangent lift of Σ and record several of its basic properties. In Section 9.2,

we establish terminology surrounding Lie derivatives, momentum functions, and

switching functions. In Section 9.3, we establish a certain sublinear growth condition,
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then explain its relevance to the study of PLEs. An alternative formulation of this

condition, phrased in terms of switching functions, is the subject of Section 9.4. In

Section 9.5, we prove a theorem on sublinear growth. This theorem, which extends

a result of Chitour [1996], constitutes the main result in this chapter.

Our standing assumptions in this chapter are that

• M is a second-countable n-dimensional Riemannian manifold,

• Σ = (f,U ) is a C2 control-affine system evolving on M , where

f(t, x,ω) = f0(x) +
r∑
i=1

ωifi(x),

• The time domain of Σ is J = [a, b],

• Σ uses L2 controls, so that U = L2(J,Rr),

• Σ is complete, and

• Σ is completely controllable from a fixed initial state x0 on J .

By Corollary 3.3.12, the map

EndΣ
x0

: U →M

is C2. We define

M∆ = M r EndΣ
x0

(U sing
x0 ),

where the overline denotes closure in M . The reasons for including the closure

operation in the definition of M∆ will be made clear below. Finally, we define

xu = EndΣ
x0

(u)

for each u ∈ U .
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9.1 Cotangent lifts of control systems

In this brief section, we introduce the cotangent lift of Σ and record several of its

basic properties. For further information, we refer to [Sussmann 1998].

Definition 9.1.1. The cotangent lift1 of Σ is the C1 control-affine system

Σ∗ = (f ∗,U )

evolving on T ∗M , where f ∗ ∈ V (J, T ∗M,Rr) is defined by

f ∗(t, px,ω) = f ∗0 (px) +
r∑
i=1

ωif ∗i (px).

Recall from Section 5.3 that f ∗i is the cotangent lift of fi.

Note that Σ∗ is a C1 control-affine system by Lemma 5.3.5. From Theorem

5.3.4 we obtain the next lemma, which describes the controlled trajectories of Σ∗.

Lemma 9.1.2. For each u ∈ U and each pxu ∈ T ∗xuM , we have

1. JΣ∗(b, pxu ,u) = J ,

2. µΣ∗(t, b, pxu ,u) = TΦfu

a,t(Φ
fu

t,a(x0))∗ ◦ TΦfu

b,a(x0)∗ · pxu for each t ∈ J , and

3. πT ∗M ◦ µΣ∗(t, b, pxu ,u) = µΣ(t, a, x0,u) for each t ∈ J .

This lemma gives an explicit form for the u-controlled trajectory of Σ∗ with

initial condition (b, pxu). Since b is the right endpoint of the interval J , it is

sometimes referred to as a terminal condition; see, for example, [Sussmann 1993].
1In the literature, the cotangent lift of Σ is also known as the Hamiltonian lift of Σ. In

particular, this is true in some of the literature concerning the continuation method; see [Chitour
and Sussmann 1998, Section 3] and [Chitour 2006, Section 2.1].
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9.2 Lie derivatives, momentum functions, and

switching functions

In this section, we establish terminology surrounding Lie derivatives, momentum

functions, and switching functions, following Sussmann [1993].

Definition 9.2.1. Suppose that G : T ∗M → R is C1 and 0 ≤ i ≤ r. The f ∗i -Lie

derivative of G is the continuous function Lf∗i
G : T ∗M → R defined by

Lf∗i
G(px) = TG(px) · f ∗i (px).

Now let f ∗ denote the r-tuple (f ∗1 , . . . , f
∗
r ) of C1 vector fields on T ∗M . The f ∗-Lie

derivative of G is the continuous map L f∗G : T ∗M → Rr defined by

L f∗G(px) = (Lf∗1
G(px), . . . ,Lf∗rG(px)).

The next lemma describes how these Lie derivatives arise in this chapter.

Lemma 9.2.2. Suppose that G : T ∗M → R is C1 and µ∗ : dom(µ∗)→ T ∗M is a

u-controlled trajectory of Σ∗. Then the function G ◦ µ∗ is LAC and

˙˚�G ◦ µ∗(t) = Lf∗0
G(µ∗(t)) + 〈u(t),L f∗G(µ∗(t))〉Rr (9.1)

for a.a. t ∈ dom(µ∗).

Proof. By Lemma 2.3.2, G ◦ µ∗ is LAC. By the chain rule, we have

˙˚�G ◦ µ∗(t) = TG(µ∗(t)) · µ̇∗(t)

= TG(µ∗(t)) ·
(
f ∗0 (µ∗(t)) +

r∑
i=1

ui(t)f ∗i (µ∗(t))

)

= TG(µ∗(t)) · f ∗0 (µ∗(t)) +
r∑
i=1

ui(t)TG(µ∗(t)) · f ∗i (µ∗(t))

= Lf∗0
G(µ∗(t)) +

r∑
i=1

ui(t)Lf∗i
G(µ∗(t))

= Lf∗0
G(µ∗(t)) + 〈u(t),L f∗G(µ∗(t))〉Rr

for a.a. t ∈ dom(µ∗). This completes the proof.
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We now define the momentum functions and switching functions of Σ. For

insight into the origin of these terms, we refer to [Loomis and Sternberg 1990,

Chapter 13] and [Vakhrameev and Topunov 2002], respectively.

Definition 9.2.3. Suppose that 0 ≤ i ≤ r. The ith momentum function of Σ

is the C2 function ϕΣ
i : T ∗M → R defined by

ϕΣ
i (px) = 〈px, fi(x)〉.

The momentum vector of Σ is the C2 map ϕΣ : T ∗M → Rr defined by

ϕΣ(px) =
Ä
ϕΣ

1 (px), . . . , ϕ
Σ
r (px)

ä
.

Now suppose that 0 ≤ i, j ≤ r. The (i, j)th first derived momentum function

of Σ is the C1 function ψΣ
i,j : T ∗M → R defined by

ψΣ
i,j(px) = 〈px, [fj, fi](x)〉.

Note that the order of the indices i and j is reversed on the right-hand side.

Lemma 9.2.4. Suppose that 0 ≤ i, j ≤ r. Then Lf∗i
ϕΣ
j = ψΣ

i,j.

Proof. See [Chitour 1996, Proposition 3].

Definition 9.2.5. Suppose that 0 ≤ i ≤ r and µ∗ : dom(µ∗)→ T ∗M is a controlled

trajectory of Σ∗. We say that the function ϕΣ
i ◦ µ∗ is a switching function of Σ.

9.3 Sublinear growth

In this section, we establish a certain sublinear growth condition, then explain its

relevance to the study of PLEs. Recall from Chapter 4 that

EndΣ
x0

: U reg
x0
→M
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is the desingularized x0-anchored endpoint map of Σ, and that

TEndΣ
x0

(·)#

is the Moore–Penrose pseudoinverse of TEndΣ
x0
. Since EndΣ

x0
is a C2 submersion, it

follows from Proposition 4.1.6 that TEndΣ
x0

(·)# is C1.

In the remainder of this section, K is a nonempty compact subset of M∆.

Definition 9.3.1. If there exists C ∈ R>0 such that

‖TEndΣ
x0

(u)#‖ ≤ C(1 + ‖u‖)

for each u ∈ (EndΣ
x0

)−1(K), then we say that the Moore–Penrose pseudoinverse of

TEndΣ
x0

has sublinear growth over K.

Note that in the above definition, ‖TEndΣ
x0

(u)#‖ denotes the operator norm of

TEndΣ
x0

(u)# ∈ Hom(TxuM,U ),

while ‖u‖ denotes the norm of u as an element of U = L2(J,Rr).

We now explain the relevance of the sublinear growth condition.

Lemma 9.3.2. Suppose that the Moore–Penrose pseudoinverse of TEndΣ
x0

has

sublinear growth over K and π : [0, 1]→M is a C1 curve such that

image(π) ⊆ K ∩ image(EndΣ
x0

).

Then for each choice of control u0 ∈ (EndΣ
x0

)−1(π(0)), the maximally-defined solution

of the (π,u0)-PLE for EndΣ
x0

is defined on [0, 1].

Proof. Choose a control u0 ∈ (EndΣ
x0

)−1(π(0)), and let Π be the maximally-defined

solution of the (π,u0)-PLE for EndΣ
x0
. To reach a contradiction, let us assume that

Π is defined on [0, δ) for δ ∈ (0, 1]. By Proposition 4.2.7, either

1. lim
t↗δ
‖Π̇(t)‖ =∞, or
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2. u+ = lim
t↗δ

Π(t) exists in U and u+ ∈ U sing
x0

.

Since Hπ is continuous, there exists B ∈ R≥0 such that

‖Hπ(t, π(t))‖ ≤ B

for each t ∈ [0, 1]. Since image(π) ⊆ K and EndΣ
x0
◦Π = π|[0, δ), it follows that

image(Π) ⊆ (EndΣ
x0

)−1(K).

With C ∈ R>0 prescribed as in Definition 9.3.1, we have

‖Π(t)‖ =

∥∥∥∥∥u0 +
∫ t

0
Π̇(σ) dσ

∥∥∥∥∥
≤ ‖u0‖+

∫ t

0
‖Π̇(σ)‖ dσ

= ‖u0‖+
∫ t

0
‖TEndΣ

x0
(Π(σ))# ·Hπ(σ, π(σ))‖ dσ

≤ ‖u0‖+
∫ t

0
‖TEndΣ

x0
(Π(σ))#‖ ‖Hπ(σ, π(σ))‖ dσ

≤ ‖u0‖+
∫ t

0
BC(1 + ‖Π(σ)‖) dσ

≤ ‖u0‖+BCt+
∫ t

0
BC‖Π(σ)‖ dσ

≤ ‖u0‖+BC +
∫ t

0
BC‖Π(σ)‖ dσ

for each t ∈ [0, δ). By the Bellman–Gronwall inequality [Sontag 1998], we have

‖Π(t)‖ ≤ C0 = (‖u0‖+BC)eBC

for each t ∈ [0, δ). But this implies that

‖Π̇(t)‖ = ‖TEndΣ
x0

(Π(t))# ·Hπ(t, π(t))‖

≤ ‖TEndΣ
x0

(Π(t))#‖ ‖Hπ(t, π(t))‖

≤ BC(1 + ‖Π(t)‖)

≤ BC(1 + C0)
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for each t ∈ [0, δ). Hence

lim
t↗δ
‖Π̇(t)‖ <∞.

Thus u+ exists in U and u+ ∈ U sing
x0

. By continuity,

lim
t↗δ

EndΣ
x0
◦Π(t) = lim

t↗δ
EndΣ

x0
◦Π(t) = EndΣ

x0
(u+) ∈ EndΣ

x0
(U sing

x0
).

However,

lim
t↗δ

EndΣ
x0
◦Π(t) = lim

t↗δ
π(t) = π(δ) ∈ K ⊆M∆.

We have shown that limt↗δ EndΣ
x0
◦Π(t) is contained in

EndΣ
x0

(U sing
x0

) and M∆ = M r EndΣ
x0

(U sing
x0 ),

which is a contradiction. This completes the proof.

Although the preceding lemma gives a way of checking if the maximally-defined

solution of the (π,u0)-PLE is defined on [0, 1], its hypotheses are difficult to verify.

Next, we begin to reduce the hypotheses of the lemma to a computable form.

9.4 An alternative characterization of sublinear

growth

In this section, we give an alternative characterization of the sublinear growth

condition, phrased in terms of switching functions. The alternative characterization

is more tangible from a control-theoretic point of view, since it is phrased in terms

of the controlled trajectories of the cotangent lift of Σ.

We begin by establishing notation for unit covectors. We define

S∗xM = {px ∈ T ∗xM : ‖px‖ = 1}

for each x ∈M . Recalling that xu = EndΣ
x0

(u), we have the following lemma.
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Lemma 9.4.1. Suppose that u ∈ U reg
x0

. Then

‖TEndΣ
x0

(u)#‖ =

Ç
inf

pxu∈S∗xuM
‖TEndΣ

x0
(u)∗ · pxu‖2

å− 1
2

. (9.2)

Proof. See the discussion preceding [Sussmann 1993, Equation 10].

Remark 9.4.2. Since M is finite-dimensional, S∗xuM is compact. Consequently,

there exists an element pmin
xu ∈ S∗xuM which achieves the infimum in (9.2).

Equation (9.2) suggests that we should examine the adjoints TEndΣ
x0

(u)∗ to

determine if the Moore–Penrose pseudoinverse of TEndΣ
x0

has sublinear growth over

a nonempty compact subset of M∆. To this end, we will compute the adjoints

TEndΣ
x0

(u)∗

for each u ∈ U . Doing so computes the adjoints TEndΣ
x0

(u)∗ as well. Indeed, since

EndΣ
x0

is obtained from EndΣ
x0

by restriction to U reg
x0

, it is clear that

TEndΣ
x0

(u)∗ = TEndΣ
x0

(u)∗

whenever u ∈ U reg
x0

.

For each 1 ≤ i ≤ r and each u ∈ U , define the map

Ωi
x0

(u) : T ∗xuM → U

by setting

(Ωi
x0

(u) · pxu)(t) = ϕΣ
i (µΣ∗(t, b, pxu ,u))

=
¨
µΣ∗(t, b, pxu ,u), fi(µ

Σ(t, a, x0,u))
∂

(9.3)

for each t ∈ J . By Lemma 9.1.2, (9.3) is well-defined. Furthermore, each

Ωi
x0

(u) · pxu

is LAC by Lemma 2.3.2, and thus is an element of U . The next lemma tells us

that each Ωi
x0

(u) is continuous and linear, as well.
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Lemma 9.4.3. Suppose that 1 ≤ i ≤ r and u ∈ U . Then

Ωi
x0

(u) ∈ Hom(T ∗xuM,U ).

Proof. By Lemma 9.1.2, we have

(Ωi
x0

(u) · (Cpxu + C̃p̃xu))(t)

=
¨
µΣ∗(t, b, Cpxu + C̃p̃xu ,u), fi(µ

Σ(t, a, x0,u))
∂

=
¨
TΦfu

a,t(Φ
fu

t,a(x0))∗ ◦ TΦfu

b,a(x0)∗ · (Cpxu + C̃p̃xu), fi(µ
Σ(t, a, x0,u))

∂
= C

¨
TΦfu

a,t(Φ
fu

t,a(x0))∗ ◦ TΦfu

b,a(x0)∗ · pxu , fi(µΣ(t, a, x0,u))
∂

+ C̃
¨
TΦfu

a,t(Φ
fu

t,a(x0))∗ ◦ TΦfu

b,a(x0)∗ · p̃xu , fi(µΣ(t, a, x0,u))
∂

= C(Ωi
x0

(u) · pxu)(t) + C̃(Ωi
x0

(u) · p̃xu)(t)

for each t ∈ J . Since T ∗xuM is finite-dimensional, Ωi
x0

(u) is automatically continuous;

see [Bachman and Narici 2000, Theorem 14.7]. This completes the proof.

For each u ∈ U , define the map Ωx0(u) : T ∗xuM → U by setting

(Ωx0(u) · pxu)(t) = ϕΣ(µΣ∗(t, b, pxu ,u))

=
Ä
(Ω1

x0
(u) · pxu)(t), . . . , (Ωr

x0
(u) · pxu)(t)

ä
for each t ∈ J . The next lemma is an obvious consequence of Lemma 9.4.3.

Lemma 9.4.4. Suppose that u ∈ U . Then Ωx0(u) ∈ Hom(T ∗xuM,U ).

Somewhat less obvious is that Ωx0(u) is the adjoint of TEndΣ
x0

(u).

Lemma 9.4.5. Suppose that u ∈ U . Then Ωx0(u) = TEndΣ
x0

(u)∗.

Proof. Choose u ∈ U . We must show that

〈Ωx0(u) · pxu , ũ〉 =
¨
pxu , TEndΣ

x0
(u) · ũ

∂
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for each pxu ∈ T ∗xuM and each ũ ∈ U . Recall from Example 6.2.3 that

TEndΣ
x0

(u) · ũ =
∫ b

a

r∑
i=1

ũi(σ)TΦfu

b,a(x0) ◦ TΦfu

a,σ(Φfu

σ,a(x0)) · fi(Φfu

σ,a(x0)) dσ.

In what follows, we write

µσ = Φfu

σ,a(x0) = µΣ(σ, a, x0,u).

Invoking Proposition 5.4.4 and Lemma 9.1.2, we have

〈pxu , TEndΣ
x0

(u) · ũ〉 =

〈
pxu ,

∫ b

a

r∑
i=1

ũi(σ)TΦfu

b,a(x0) ◦ TΦfu

a,σ(µσ) · fi(µσ) dσ

〉

=
∫ b

a

r∑
i=1

¨
pxu , ũ

i(σ)TΦfu

b,a(x0) ◦ TΦfu

a,σ(µσ) · fi(µσ)
∂

dσ

=
∫ b

a

r∑
i=1

ũi(σ)
¨
pxu , TΦfu

b,a(x0) ◦ TΦfu

a,σ(µσ) · fi(µσ)
∂

dσ

=
∫ b

a

r∑
i=1

ũi(σ)
¨
TΦfu

a,σ(µσ)∗ ◦ TΦfu

b,a(x0)∗ · pxu , fi(µσ)
∂

dσ

=
∫ b

a

r∑
i=1

ũi(σ)
¨
µΣ∗(σ, b, pxu ,u), fi(µσ)

∂
dσ

=
∫ b

a

r∑
i=1

ũi(σ)(Ωi
x0

(u) · pxu)(σ) dσ

= 〈Ωx0(u) · pxu , ũ〉

for each pxu ∈ T ∗xuM and each ũ ∈ U . In the last line, we have used the fact that

〈u1,u2〉 =
∫ b

a

r∑
i=1

ui1(σ)ui2(σ) dσ

by definition. This completes the proof.

In the next lemma, we derive the alternative characterization.

Lemma 9.4.6. Suppose that K is a nonempty compact subset of M∆. Then the

Moore–Penrose pseudoinverse of TEndΣ
x0

has sublinear growth over K if and only

if there exists C ∈ R>0 such that

C ≤ ‖Ωx0(u) · pxu‖(1 + ‖u‖)

for each choice of control u ∈ (EndΣ
x0

)−1(K) and each unit covector pxu ∈ S∗xuM .
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Proof. By Lemmas 9.4.1 and 9.4.5, the Moore–Penrose pseudoinverse of TEndΣ
x0

has sublinear growth over K if and only if there exists C0 ∈ R>0 such thatÇ
inf

pxu∈S∗xuM
‖TEndΣ

x0
(u)∗ · pxu‖2

å− 1
2

≤ C0(1 + ‖u‖)

⇐⇒ 1

C2
0

≤ inf
pxu∈S∗xuM

‖TEndΣ
x0

(u)∗ · pxu‖2(1 + ‖u‖)2

⇐⇒ 1

C2
0

≤ inf
pxu∈S∗xuM

‖Ωx0(u) · pxu‖2(1 + ‖u‖)2

⇐⇒ 1

C2
0

≤ ‖Ωx0(u) · pmin
xu ‖2(1 + ‖u‖)2

⇐⇒ 1

C0

≤ ‖Ωx0(u) · pmin
xu ‖(1 + ‖u‖)

for each u ∈ (EndΣ
x0

)−1(K), where each pmin
xu is prescribed as in Remark 9.4.2.

This lemma plays a crucial role in the next section.

9.5 The main result

Although the conditions of Lemma 9.4.6 are phrased in terms of the controlled

trajectories of the cotangent lift of Σ, it is not obvious that these conditions can

be verified in practice. In this section, we show that this is indeed possible, by

imposing extra conditions on Σ. These extra conditions are partly Lie-algebraic.

9.5.1 The Υ-condition

In this section, we introduce a technical condition on Lie derivatives.

Definition 9.5.1. Suppose that K ⊆M is compact. We define K∗ by

K∗ =
¶
px ∈ T ∗M : x ∈ K and ‖px‖ ∈

î
1
2
, 3

2

ó©
. (9.4)

Clearly, K∗ is itself compact. See Figure 9.1 for an illustration.

In the remainder of this section, K is a nonempty compact subset of M .
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M

T ∗M

K

K∗

πT∗M

Figure 9.1: An illustration of the compact subset K∗

Definition 9.5.2. Suppose that G : T ∗M → R is C1. If there exist

• A (possibly empty) compact subset N of K∗ such that

ρ = inf

®
1, inf

px∈K∗rN
‖ϕΣ(px)‖Rr

´
> 0,

• Continuous functions αi : N → R such that

Lf∗0
G(px) =

r∑
i=1

αi(px)ϕ
Σ
i (px) (9.5)

for each px ∈ N , and

• C1 functions βi : N → R and continuous maps γi : N → Rr such that

L f∗G(px) =
r∑
i=1

βi(px)L f∗ϕ
Σ
i (px) + ϕΣ

i (px)γi(px) (9.6)

for each px ∈ N ,

then we say that G satisfies the Υ-condition over K. Here, each βi is C1 in the

sense that it has a C1 extension to an open submanifold of T ∗M containing N .

In the above definition, an infimum taken over ∅ is equal to ∞.

204



Remark 9.5.3. Our version of the Υ-condition extends the Υ-condition for driftless

control-affine systems. In the literature, the driftless version of the Υ-condition can

be found in [Chitour 1996, Proposition 5] and [Chitour and Sussmann 1998].

Remark 9.5.4. From the above remarks, it is clear that if

inf
px∈K∗

‖ϕΣ(px)‖Rr > 0,

then each C1 function G : T ∗M → R satisfies the Υ-condition over K with N = ∅.

9.5.2 The locally Lipschitz-AC chain rule

In the next section, we will need the following version of the chain rule, valid for

the composition of a locally Lipschitz function and an AC curve in Rk. This result,

which is a composite of [Leoni 2009, Theorem 3.44] and [Leoni 2009, Theorem 4.54],

requires the notion of a purely H 1-unrectifiable subset of Rk: If H 1 denotes the

1-dimensional Hausdorff measure on Rk, then the set E ⊆ Rk is said to be purely

H 1-unrectifiable if

H 1(E ∩ image(`)) = 0

for each Lipschitz curve ` : R→ Rk.

Theorem 9.5.5. Suppose that F : Rk → R is locally Lipschitz and ξ : J → Rk is

AC. Then F ◦ ξ : J → R is AC and the following chain rules hold, depending on

the value of k:

1. If k = 1, then

˙̇
F ◦ ξ(t) = Ḟ (ξ(t))ξ̇(t)

for a.a. t ∈ dom(ξ), where we set Ḟ (ξ(t))ξ̇(t) = 0 whenever ξ̇(t) = 0;
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2. If k ≥ 2 and the set¶
x ∈ Rk : F is not differentiable at x

©
is purely H 1-unrectifiable, then

˙̇
F ◦ ξ(t) = DF (ξ(t)) · ξ̇(t)

for a.a. t ∈ dom(ξ), where we set DF (ξ(t)) · ξ̇(t) = 0 whenever ξ̇(t) = 0.

9.5.3 The main result

We now derive the main results of this chapter. Throughout this section, K is a

nonempty compact subset of M . We begin by specializing Definition 8.2.1.

Definition 9.5.6. If there exist C1 functions Pi,j : K → R such that

[fi, f0](x) =
r∑
j=1

Pi,j(x)fj(x) (9.7)

for each 1 ≤ j ≤ r and each x ∈ K, then we say that Σ satisfies the finite

definiteness condition with degree ∆ = 0 on K. Here, each Pi,j is C1 in the

sense that it has a C1 extension to an open submanifold of M containing K.

The next proposition extends [Chitour 1996, Proposition 5].2

Proposition 9.5.7. Suppose that

• G : T ∗M → R is C1,

• G satisfies the Υ-condition over K, and
2We note that the cited result is stated in a slightly inaccurate way, since it asserts the

existence of a constant C which is universal, in the sense that it is independent of the data µ∗
and [c, d]. (Here, we are using the notation of Proposition 9.5.7.) On the contrary, the constant C
depends strongly on µ∗ and [c, d], and this is clear from an inspection of the proofs of [Chitour
1996, Proposition 5] (see also [Chitour 2006, Proposition 4]). The important fact is that the
constant C depends only on Σ, G, and the absolute difference ∆ of G(µ∗(d)) and G(µ∗(c)). As
we will see in Theorem 9.5.12 below, one is ultimately interested in restricting µ∗ and [c, d] such
that ∆ is constant. In this way, one effectively obtains the universal constant C, although we
stress that it is only universal after restricting µ∗ and [c, d].
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• Σ satisfies the finite definiteness condition with degree ∆ = 0 on K.

Then the following conclusion holds: If µ∗ : J → T ∗M is a u-controlled trajectory

of Σ∗ and [c, d] is a subinterval of J such that µ∗(t) ∈ K∗ for each t ∈ [c, d], then

there exists C ∈ R>0 such that

∆ = |G(µ∗(d))−G(µ∗(c))|

≤ C

√∫ d

c
‖ϕΣ(µ∗(σ))‖2

Rr dσ

Ñ
1 +

√∫ d

c
‖u(σ)‖2

Rr dσ

é
.

Furthermore, C depends only on Σ (precisely, on the vector fields f0, f1, . . . , fr and

their cotangent lifts), G, and ∆.

Proof. If ∆ = 0, then there is nothing to prove, since we can simply choose C = 1.

Suppose therefore that ∆ 6= 0. Since G satisfies the Υ-condition over K, we let N ,

ρ, αi, βi, and γi be prescribed as in Definition 9.5.2. Define C1 ∈ R≥0 by

C1 = sup
px∈K∗

¶
|Lf∗0

G(px)|, ‖L f∗G(px)‖Rr
©
,

and let C2 ∈ R≥0 be the maximum of

sup
px∈N
1≤i≤r

¶
|αi(px)|, |βi(px)|, |Lf∗0

βi(px)|, ‖L f∗βi(px)‖Rr
©

and

sup
px∈N
1≤i≤r

¶
|Lf∗0

ϕΣ
i (px)|, ‖L f∗ϕ

Σ
i (px)‖Rr , ‖γi(px)‖Rr

©
.

Now let µ∗ and [c, d] be given as in the statement of the proposition. We define

auxiliary functions as follows: For each ρ ∈ (0, ρ), define ν0
ρ : R→ R by

ν0
ρ(t) =



−1, t < −ρ

tρ−1, −ρ ≤ t ≤ ρ

1, t > ρ
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and define νρ : [c, d]→ R by

νρ(t) = ν0
ρ(‖ϕΣ(µ∗(t))‖Rr).

These functions have the following obvious properties:

• 0 ≤ ν0
ρ(t) ≤ 1 for each t ∈ R≥0 and

• 0 ≤ ν0
ρ(t) ≤ tρ−1 for each t ∈ R≥0, so that

0 ≤ νρ(t) ≤
‖ϕΣ(µ∗(t))‖Rr

ρ
(9.8)

for each t ∈ [c, d].

By Lemma 2.3.2, G ◦ µ∗ : [c, d]→ R is AC. Consequently

G(µ∗(d))−G(µ∗(c)) =
∫ d

c

˙˚�G ◦ µ∗(σ) dσ.

Using (9.1), we have

˙˚�G ◦ µ∗(t) = Lf∗0
G(µ∗(t)) + 〈u(t),L f∗G(µ∗(t))〉Rr

for a.a. t ∈ [c, d]. Thus

G(µ∗(d))−G(µ∗(c)) =
∫ d

c
Lf∗0

G(µ∗(σ)) dσ +
∫ d

c
〈u(σ),L f∗G(µ∗(σ))〉Rr dσ

= I1 + I2,

where

I1 =
∫ d

c
νρ(σ)Lf∗0

G(µ∗(σ)) dσ +
∫ d

c
νρ(σ)〈u(σ),L f∗G(µ∗(σ))〉Rr dσ

and

I2 =
∫ d

c
(1− νρ(σ))Lf∗0

G(µ∗(σ)) dσ +
∫ d

c
(1− νρ(σ))〈u(σ),L f∗G(µ∗(σ))〉Rr dσ.

It follows that ∆ ≤ |I1|+ |I2|. In the remainder of the proof we will establish upper

bounds on |I1| and |I2| by manipulating ρ, which is indeterminate until Step 3.
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Step 1 (I1): Using (9.8) and the Cauchy–Schwarz inequality,

|I1| ≤
∫ d

c
νρ(σ) |Lf∗0

G(µ∗(σ))| dσ +
∫ d

c
νρ(σ) |〈u(σ),L f∗G(µ∗(σ))〉Rr | dσ

≤ C1

ρ

∫ d

c
‖ϕΣ(µ∗(σ))‖Rr dσ +

C1

ρ

∫ d

c
‖u(σ)‖Rr ‖ϕΣ(µ∗(σ))‖Rr dσ.

The next two steps of the proof are concerned with I2. Note that for each

t ∈ [c, d], we have 1− νρ(t) 6= 0 if and only if ‖ϕΣ(µ∗(t))‖Rr < ρ. Furthermore,

‖ϕΣ(µ∗(t))‖Rr < ρ =⇒ ‖ϕΣ(µ∗(t))‖Rr < ρ

=⇒ µ∗(t) /∈ K∗ r N

=⇒ µ∗(t) ∈ N .

Thus whenever the term 1− νρ(t) appears as a multiplicative factor in an integrand

(or finite sum), we can assume that t is such that |ϕΣ
i (µ∗(t))| ≤ ‖ϕΣ(µ∗(t))‖Rr < ρ

and µ∗(t) is contained in N , since otherwise the contribution to the integral (or

finite sum) is zero. We will use this fact implicitly in the remainder of the proof.

In particular, it follows that

I2 = J1 + J2 + J3,

where

J1 =
r∑
i=1

∫ d

c
(1− νρ(σ))αi(µ

∗(σ))ϕΣ
i (µ∗(σ)) dσ,

J2 =
r∑
i=1

∫ d

c
(1− νρ(σ))βi(µ

∗(σ))
¨
u(σ),L f∗ϕ

Σ
i (µ∗(σ))

∂
Rr dσ, and

J3 =
r∑
i=1

∫ d

c
(1− νρ(σ))ϕΣ

i (µ∗(σ)) 〈u(σ),γi(µ
∗(σ))〉Rr dσ.

Step 2.1 (J1): Directly, we have

|J1| ≤ rC2

∫ d

c
‖ϕΣ(µ∗(σ))‖Rr dσ.

Step 2.2 (J2): Using (9.1), we have

J2 =
r∑
i=1

∫ d

c
(1− νρ(σ))βi(µ

∗(σ))

Ç
˙¸�

ϕΣ
i ◦ µ∗(σ)−Lf∗0

ϕΣ
i (µ∗(σ))

å
dσ

209



= J2,1 − J2,2,

where

J2,1 =
r∑
i=1

∫ d

c
(1− νρ(σ))βi(µ

∗(σ))
˙¸�

ϕΣ
i ◦ µ∗(σ) dσ and

J2,2 =
r∑
i=1

∫ d

c
(1− νρ(σ))βi(µ

∗(σ))Lf∗0
ϕΣ
i (µ∗(σ)) dσ.

By the AC integration by parts formula [Leoni 2009, Corollary 3.37], we have

J2,1 = J2,1,1 − J2,1,2 + J2,1,3,

where

J2,1,1 =
r∑
i=1

(1− νρ(d))βi(µ
∗(d))ϕΣ

i (µ∗(d))−
r∑
i=1

(1− νρ(c))βi(µ∗(c))ϕΣ
i (µ∗(c)),

J2,1,2 =
r∑
i=1

∫ d

c
ν̇ρ(σ)βi(µ

∗(σ))ϕΣ
i (µ∗(σ)) dσ, and

J2,1,3 =
r∑
i=1

∫ d

c
(1− νρ(σ))

˙˚�βi ◦ µ∗(σ)ϕΣ
i (µ∗(σ)) dσ.

For |J2,1,1|, it is clear that

|J2,1,1| ≤ 2rC2ρ.

For |J2,1,2|, we begin by noting that the Euclidean norm ‖ · ‖Rr is locally Lipschitz

and ϕΣ ◦ µ∗ is AC. It is well-known that

{x ∈ Rr : ‖ · ‖Rr is not differentiable at x} = {0Rr}.

This set is purely H 1-unrectifiable, since the 1-dimensional Hausdorff measure of a

set with at most one element is 0. Invoking Theorem 9.5.5, we have

d

dt
‖ϕΣ(µ∗(t))‖Rr =

Æ
ϕΣ(µ∗(t)),

˙¸�ϕΣ ◦ µ∗(t)
∏
Rr

‖ϕΣ(µ∗(t))‖Rr

=

∑r
i=1 ϕ

Σ
i (µ∗(t))

˙¸�ϕΣ
i ◦ µ∗(t)

‖ϕΣ(µ∗(t))‖Rr
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for a.a. t ∈ [c, d]. Another invocation of Theorem 9.5.5 yields

ν̇ρ(t) =
d

dt
ν0
ρ(‖ϕΣ(µ∗(t))‖Rr)

=

∑r
i=1 ϕ

Σ
i (µ∗(t))

˙¸�ϕΣ
i ◦ µ∗(t)

ρ‖ϕΣ(µ∗(t))‖Rr

for a.a. t ∈ [c, d]. Here ν̇0
ρ(t) = ρ−1, since

‖ϕΣ(µ∗(t))‖Rr < ρ

by construction. Using (9.1), we have

ν̇ρ(t) =

∑r
i=1 ϕ

Σ
i (µ∗(t))Lf∗0

ϕΣ
i (µ∗(t))

ρ‖ϕΣ(µ∗(t))‖Rr
+

∑r
i=1 ϕ

Σ
i (µ∗(t))〈u(t),L f∗ϕ

Σ
i (µ∗(t))〉Rr

ρ‖ϕΣ(µ∗(t))‖Rr

for a.a. t ∈ [c, d]. Using the Cauchy–Schwarz inequality,

|ν̇ρ(t)| ≤
rC2‖ϕΣ(µ∗(t))‖Rr
ρ‖ϕΣ(µ∗(t))‖Rr

+
rC2‖ϕΣ(µ∗(t))‖Rr‖u(t)‖Rr

ρ‖ϕΣ(µ∗(t))‖Rr

=
rC2

ρ
(1 + ‖u(t)‖Rr)

for a.a. t ∈ [c, d]. Thus

|J2,1,2| ≤
r2C2

2

ρ

∫ d

c
‖ϕΣ(µ∗(σ))‖Rr dσ +

r2C2
2

ρ

∫ d

c
‖u(σ)‖Rr ‖ϕΣ(µ∗(σ))‖Rr dσ.

Now let us consider |J2,1,3|. Using (9.1), we have

J2,1,3 =
r∑
i=1

∫ d

c
(1− νρ(σ))Lf∗0

βi(µ
∗(σ))ϕΣ

i (µ∗(σ)) dσ

+
r∑
i=1

∫ d

c
(1− νρ(σ))〈u(σ),L f∗βi(µ

∗(σ))〉RrϕΣ
i (µ∗(σ)) dσ.

Using the Cauchy–Schwarz inequality,

|J2,1,3| ≤ rC2

∫ d

c
‖ϕΣ(µ∗(σ))‖Rr dσ

+ rC2

∫ d

c
‖u(σ)‖Rr ‖ϕΣ(µ∗(σ))‖Rr dσ.
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Finally, we consider J2,2. Recall from Lemma 9.2.4 that Lf∗0
ϕΣ
i = ψΣ

0,i. Using this

fact, together with the assumption that Σ satisfies the finite definiteness condition

with degree ∆ = 0 on K, there exist C1 functions Pi,j : K → R such that

Lf∗0
ϕΣ
i (px) = ψΣ

0,i(px)

= 〈px, [fi, f0](x)〉

=

∞
px,

r∑
j=1

Pi,j(x)fj(x)

∫
=

r∑
j=1

Pi,j(x) 〈px, fj(x)〉

=
r∑
j=1

Pi,j(x)ϕΣ
j (px)

for each px ∈ N . Writing µ = πT ∗M ◦ µ∗, we have

J2,2 =
r∑
i=1

r∑
j=1

∫ d

c
(1− νρ(σ))βi(µ

∗(σ))Pi,j(µ(σ))ϕΣ
j (µ∗(σ)) dσ.

Consequently,

|J2,2| ≤ r2C2C3

∫ d

c
‖ϕΣ(µ∗(σ))‖Rr dσ,

where

C3 = sup
x∈K

1≤i,j≤r

{|Pi,j(x)|}.

Step 2.3 (J3): Using the Cauchy–Schwarz inequality,

|J3| ≤ rC2

∫ d

c
‖u(σ)‖Rr ‖ϕΣ(µ∗(σ))‖Rr dσ.

Step 3 (Summary of Steps 1 and 2): We have shown above that there

exist constants C1, C2, C3 ∈ R≥0 such that

∆ ≤ |I1|+ |J1|+
3∑
i=1

|J2,1,i|+ |J2,2|+ |J3|

≤ 2rC2ρ+ r2C2C3

∫ d

c
‖ϕΣ(µ∗(σ))‖Rr dσ
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+

Ç
C1

ρ
+ 2rC2 +

r2C2
2

ρ

å∫ d

c
‖ϕΣ(µ∗(σ))‖Rr dσ

+

Ç
C1

ρ
+ 2rC2 +

r2C2
2

ρ

å∫ d

c
‖u(σ)‖Rr‖ϕΣ(µ∗(σ))‖Rr dσ. (9.9)

By construction, these constants depend only on Σ and G, and do not depend on

µ∗ or [c, d]. To complete the proof, define C∗ ∈ R>0 by

C∗ = sup

®
C1, 2rC2, r

2C2
2 , r

2C2C3,
∆

ρ

´
.

Note that C∗ does depend on µ∗ and [c, d], by way of its dependence on ∆, and the

fact that C∗ ∈ R>0 is due to our earlier assumption that ∆ is nonzero. Then (9.9),

together with the fact that ρ < ρ ≤ 1, implies that

∆ ≤ C∗ρ+
4C∗
ρ

∫ d

c
‖ϕΣ(µ∗(σ))‖Rr dσ +

4C∗
ρ

∫ d

c
‖u(σ)‖Rr‖ϕΣ(µ∗(σ))‖Rr dσ.

(9.10)

By definition, ρ ≥ ∆
C∗
. Making the specific choice

ρ =
∆

2C∗
≤ ρ

2
∈ (0, ρ),

we have C∗ρ = ∆
2
. Using (9.10) and the Cauchy–Schwarz inequality,

∆ ≤ 16C2
∗

∆

∫ d

c
‖ϕΣ(µ∗(σ))‖Rr dσ

+
16C2

∗
∆

∫ d

c
‖u(σ)‖Rr‖ϕΣ(µ∗(σ))‖Rr dσ

≤ 16C2
∗
√
d− c

∆

√∫ d

c
‖ϕΣ(µ∗(σ))‖2

Rr dσ

+
16C2

∗
∆

√∫ d

c
‖u(σ)‖2

Rr dσ

√∫ d

c
‖ϕΣ(µ∗(σ))‖2

Rr dσ

≤ 16C2
∗
√
b− a

∆

√∫ d

c
‖ϕΣ(µ∗(σ))‖2

Rr dσ

+
16C2

∗
∆

√∫ d

c
‖u(σ)‖2

Rr dσ

√∫ d

c
‖ϕΣ(µ∗(σ))‖2

Rr dσ.

Setting

C = sup

{
16C2

∗
∆

,
16C2

∗
√
b− a

∆

}

and gathering terms completes the proof.
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We now turn to proving the main result of this chapter. To begin, we recall

some general notions concerning subsets of metric spaces and their δ-enlargements.

Suppose that X = (X, dX) is a metric space and S is a nonempty subset of X. For

each point x ∈ X, the point-set distance from x to S is defined by

dX(x, S) = inf
s∈S

dX(x, s).

For each δ ∈ R>0, the open δ-enlargement of S is the set

B<δ(S) = {x ∈ X : dX(x, S) < δ},

and the closed δ-enlargement of S is the set

B≤δ(S) = {x ∈ X : dX(x, S) ≤ δ}.

By [Prasolov 2006, Theorem 2.1], the map fS : X → R≥0 defined by

fS(x) = dX(x, S)

is continuous. Thus, B<δ(S) is open and B≤δ(S) is closed.

Lemma 9.5.8. Suppose that X is locally compact and K is a nonempty compact

subset of X. Then there exists δ0 ∈ R>0 such that B<δ0(K) is compact.

Proof. See [Bridges 1998, Section 3.3].

Corollary 9.5.9. Suppose that X is locally compact and S is a nonempty compact

subset of X. Then there exists δ ∈ R>0 such that B≤δ(S) is compact.

Proof. Choose δ = δ0/2, where δ0 is prescribed as in Lemma 9.5.8. Then B≤δ(K)

is compact, since it is closed and contained in the compact set B<δ0(S).

In particular, Lemma 9.5.8 and Corollary 9.5.9 apply whenever X is an open

submanifold of M , where X is viewed as a locally compact metric space with the

Riemannian distance. In the remainder of this section, we assume that K ⊆M∆.
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Figure 9.2: An illustration of the proof of Lemma 9.5.10

Lemma 9.5.10. Suppose that x0 /∈ K. Then there exists δ ∈ R>0 such that

1. B≤δ(K) is compact,

2. x0 /∈ B≤δ(K), and

3. B≤δ(K) ⊆M∆.

Proof. By assumption, K and

L = {x0} ∪ EndΣ
x0

(U sing
x0 )

are disjoint closed subsets of M . Since M is a metric space endowed with the

Riemannian distance, there exist disjoint open submanifolds V1 and V2 of M

containing K and L, respectively; see, for example, [Munkres 2000, Theorem 32.2].

Invoking Corollary 9.5.9 with X = V1, there exists δ ∈ R>0 such that B≤δ(K) is

compact and contained in V1. This is illustrated in Figure 9.2.

Remark 9.5.11. Note that the proof of Lemma 9.5.10 relies fundamentally on the

closure operation, which is built into the definition of M∆.

The next theorem constitutes the main result in this chapter. We use the

following notation: For each δ ∈ R>0, we write Kδ = B≤δ(K). Define

K∗1 = {px ∈ T ∗M : x ∈ K and ‖px‖ = 1}.
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Clearly, K∗1 is compact and contained in each K∗δ = B≤δ(K)∗. By construction,

T ∗M rK∗δ ⊆ T ∗M rK∗1 .

By [Lee 2003, Proposition 2.26], there exists a C∞ bump function

G : T ∗M → R

for T ∗M rK∗δ supported in T ∗M rK∗1 . In particular,

• G(px) = 1 for each px ∈ T ∗M rK∗δ and

• G(px) = 0 for each px ∈ K∗1 .

Although the existence of such a bump function G is guaranteed, the next theorem

requires, in addition, that G satisfies the Υ-condition over Kδ.

Theorem 9.5.12. Suppose that

• x0 /∈ K,

• δ ∈ R>0 satisfies the conclusions of Lemma 9.5.10,

• There exists a C∞ bump function G : T ∗M → R for T ∗M rK∗δ supported in

T ∗M rK∗1 that satisfies the Υ-condition over Kδ, and

• Σ satisfies the finite definiteness condition with degree ∆ = 0 on Kδ.

Then the Moore–Penrose pseudoinverse of TEndΣ
x0

has sublinear growth over K.

Proof. Choose u ∈ (EndΣ
x0

)−1(K) and pxu ∈ S∗xuM . For brevity, we write

µ∗(t) = µΣ∗(t, pxu ,u)

in what follows. Note that

• G(µ∗(a)) = 1, since µ∗(a) ∈ T ∗M rK∗δ and

• G(µ∗(b)) = G(pxu) = 0, since S∗xuM ⊆ K∗1 .
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Thus there exists c ∈ J such that G(µ∗(c)) = 1/2 and µ∗(t) ∈ K∗δ for each t ∈ [c, b].

See Figure 9.3. By Proposition 9.5.7, there exists C ∈ R>0 such that

1

2
=
∣∣∣∣G(pxu)− 1

2

∣∣∣∣
= |G(µ∗(b))−G(µ∗(c))|

≤ C

√∫ b

c
‖ϕΣ(µ∗(σ))‖2

Rr dσ

Ñ
1 +

√∫ b

c
‖u(σ)‖2

Rr dσ

é
≤ C‖ϕΣ ◦ µ∗‖(1 + ‖u‖)

= C‖Ωx0(u) · pxu‖(1 + ‖u‖).

Furthermore, C depends only on Σ, G, and the fact that

1

2
= |G(µ∗(b))−G(µ∗(c))| .

In particular, C does not depend on u and pxu . Hence

0 <
1

2C
≤ ‖Ωx0(u) · pxu‖(1 + ‖u‖)

for each u ∈ (EndΣ
x0

)−1(K) and each pxu ∈ S∗xuM . Now invoke Lemma 9.4.6.

We will see a concrete application of Theorem 9.5.12 in Chapter 11.
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Figure 9.3: An illustration of the proof of Theorem 9.5.12
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Chapter 10

A necessary condition for

unobstructed motion planning by

the continuation method

In the preceding chapters, we derived conditions which ensure that the three ob-

structions to the continuation method are overcome. Here, we assume that the

obstructions are overcome, and then study a particular consequence of this assump-

tion. Thus the subject of this chapter is a necessary condition for unobstructed

motion planning by the continuation method.

This chapter is organized in the following way. In Section 10.1, we recall basic

facts about fiber bundles. In Section 10.2, we establish two notions of PLE-complete-

ness. In Section 10.3, we briefly review the required theory of initial value problems

evolving on Banach manifolds. In Section 10.4, we derive general topological results

concerning PLE-completeness. Finally, in Section 10.5, we apply the results of

Section 10.4 to control systems, yielding the necessary condition.

Our standing assumptions in this chapter are that

• Q is a Banach manifold modelled on a Banach space EQ,
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• R is a second-countable `-dimensional manifold,

• F : Q→ R is a surjective C1 submersion, and

• TF † is a locally Lipschitz right inverse of TF .

10.1 Fiber bundles

In this section, we recall basic facts about fiber bundles. This material is well-known,

and more information can be found, for example, in [Husemoller 1994].

Definition 10.1.1. Suppose that E and B are topological spaces. A fiber bundle

is a surjective continuous map p : E → B that is locally trivializable in the

following sense: For each b ∈ B, there exist

• A neighbourhood Vb of b in B,

• A topological space Fb called the fiber over b, and

• A homeomorphism Ψb : p−1(Vb)→ Fb × Vb, such that

pr2 ◦Ψb = p|p−1(Vb).

This definition is illustrated in Figure 10.1.

Definition 10.1.2. Suppose that E and B are Banach manifolds, and k ∈ N∗.

A Ck fiber bundle is a surjective Ck submersion p : E → B that is Ck locally

trivializable in the following sense: For each b ∈ B, there exist

• A neighbourhood Vb of b in B,

• A Ck Banach manifold Fb called the fiber above b, and

• A Ck diffeomorphism Ψb : p−1(Vb)→ Fb × Vb, such that

pr2 ◦Ψb = p|p−1(Vb).
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Figure 10.1: An illustration of a fiber bundle p : E → B

Of course, if p is a Ck fiber bundle, then it is a fiber bundle.

10.2 PLE-completeness

In this section, we establish two notions of PLE-completeness. We begin by recalling

from Chapter 4 that the (π, q0)-path-lifting equation, or simply (π, q0)-PLE for F ,

is the initial value problem
Π̇(t) = TF †(Π(t)) ·Hπ(t, F ◦ Π(t)), Π(t) ∈ Q, t ∈ [0, 1]

Π(0) = q0,
(10.1)

where π : [0, 1]→ R is a C1 curve, q0 ∈ F−1(π(0)), Hπ is prescribed as in Proposition

4.3.2, and TF † is a fixed locally Lipschitz right inverse of TF .

Definition 10.2.1. We say that F is PLE-complete if for each C1 curve

π : [0, 1]→ R
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and each q0 ∈ F−1(π(0)), the maximally-defined solution of the (π, q0)-PLE for F

is defined on [0, 1]. Here, the right inverse TF † is understood. When we wish to

emphasize the role of TF †, we will say that F is PLE-complete relative to TF †.

Next, we establish a weaker notion of PLE-completeness.

Definition 10.2.2. Suppose that r ∈ R. A coordinate ball centered at r is a

chart (V,ψ) on R such that

• r ∈ V ,

• ψ(V ) is an open ball in R` centered at 0R` , and

• ψ(r) = 0R` .

Definition 10.2.3. Suppose that (V,ψ) is a chart on R. Relative to this chart, a

line segment is a curve L : [0, 1]→ ψ(V ) such that

L(t) = tx+ (1− t)y

for some x,y ∈ ψ(V ). We say that F is PLE-complete for line segments if for

each r ∈ R, there exists a coordinate ball (V,ψ) centered at r with the following

property: For each line segment L : [0, 1]→ ψ(V ) and each

q0 ∈ F−1(ψ−1 ◦ L(0)),

the maximally-defined solution of the (ψ−1 ◦ L, q0)-PLE for F is defined on [0, 1].

Note that if F is PLE-complete, then it is PLE-complete for line segments.

10.3 Initial value problems evolving on Banach

manifolds

In this section, we briefly review the required theory of initial value problems

evolving on Banach manifolds. This material is distinct from the material of Section
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4.2, since we are interested in initial value problems whose right-hand sides are

functionally dependent on an extra parameter which lies in a locally compact

metric space Λ. Although there is a considerable overlap with Section 4.2, we have

elected to present this material in a systematic way for the sake of completeness.

Throughout this section, ξ : dom(ξ)→ Q is a curve.

Definition 10.3.1. Suppose that X : Q × Λ → TQ. We say that X is a para-

meter-dependent vector field on Q if πTQ ◦X(q, λ) = q for each (q, λ) ∈ Q×Λ.

The set of all such maps is denoted by V (Q,Λ). Given a chart (U,ϕ) on Q, the

local representative of X in (U,ϕ) is the map Xϕ : ϕ(U)× Λ→ EQ defined by

Xϕ(q, λ) = Tϕ(ϕ−1(q)) ·X(ϕ−1(q), λ).

In what follows, X ∈ V (Q,Λ).

Definition 10.3.2. Suppose that (q0, λ) ∈ Q× Λ. The triple (X, q0, λ) is said to

be an initial value problem evolving on Q, with right-hand side X, initial

condition q0, and parameter λ. We say that ξ is a solution of (X, q0, λ) if

• dom(ξ) is a relatively open subinterval of R containing 0,

• ξ is C1,

• ξ(0) = q0, and ξ̇(t) = X(ξ(t), λ) for each t ∈ dom(ξ).

Definition 10.3.3. Suppose that (q0, λ) ∈ Q× Λ and ξ is a solution of (X, q0, λ).

We say that ξ is maximally-defined if it has the following property: If

ξ̃ : dom(ξ̃)→ Q

is another solution of (X, q0, λ), then dom(ξ̃) ⊆ dom(ξ) and

ξ̃(t) = ξ(t)

for each t ∈ dom(ξ̃). Clearly, such a solution is unique.
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Next, we establish a suitable Lipschitz condition on X.

Definition 10.3.4. Suppose that U is a nonempty open subset of EQ and

f : U × Λ→ EQ.

We say that f is locally Lipschitz if it is continuous and for each (u∗, λ∗) ∈ U ×Λ,

there exist a product neighbourhood U∗ × Λ∗ of (u∗, λ∗) and C∗ ∈ R≥0 such that

‖f(u, λ)− f(ũ, λ)‖EQ ≤ C∗‖u− ũ‖EQ

for each u, ũ ∈ U∗ and each λ ∈ Λ∗.

Note that if Λ ⊆ Rp is open and f is C1, then f is locally Lipschitz.

Definition 10.3.5. We say that X is locally Lipschitz if Xϕ is locally Lipschitz

for each chart (U,ϕ) on Q.

One can show that X is locally Lipschitz if and only if Xϕ is locally Lipschitz

for each chart (U,ϕ) ∈ AQ, where AQ is a compatible atlas on Q.

Theorem 10.3.6. Suppose that X is locally Lipschitz. Then there exists a maxim-

ally-defined solution of (X, q0, λ) for each (q0, λ) ∈ Q× Λ.

Proof. This follows from [Amann 1990, Theorem 7.6], together with a globalization

procedure analogous to the one employed in Section 2.3.

Provided that X is locally Lipschitz, the maximally-defined solution of the

initial value problem (X, q0, λ) is denoted by

µX(·, q0, λ) : IX(q0, λ)→ Q.

Since IX(q0, λ) is an open subinterval of R containing 0, it can be written as

IX(q0, λ) = (IX− (q0, λ), IX+ (q0, λ))

for IX− (q0, λ) ∈ R<0 and IX+ (q0, λ) ∈ R>0.
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Definition 10.3.7. Suppose that X is locally Lipschitz. Define

dom(ΦX) = {(t, q0, λ) ∈ R×Q× Λ : t ∈ IX(q0, λ)}.

The global flow of X is the map ΦX : dom(ΦX)→ Q that sends (t, q0, λ) to

ΦX
t (q0, λ) = µX(t, q0, λ).

Theorem 10.3.8. Suppose that X is locally Lipschitz. Then

1. dom(ΦX) is an open subset of R×Q× Λ and

2. ΦX is continuous.

Furthermore, if Λ ⊆ Rp is open and X is Ck, where k ∈ N∗, then ΦX is Ck.

Proof. This follows from [Amann 1990, Theorem 8.3], together with a globalization

procedure analogous to the one employed in Section 2.3.

10.4 The main results

In this section, we derive the main results of this chapter. Throughout this section,

AQ is a compatible atlas on Q. The following technical lemma will be useful.

Lemma 10.4.1. Suppose that r ∈ R and (V,ψ) is a coordinate ball centered at

r. Then W = F−1(V ) is an open submanifold of Q and the parameter-dependent

vector field X ∈ V (W,R`) defined by

X(q, ξ) = TF †(q) ◦ Tψ−1(ψ ◦ F (q)) · ξ

is locally Lipschitz.

Proof. Consider the compatible atlas AW on W defined by

AW = {(U ∩W,ϕ|U ∩W ) : (U,ϕ) ∈ AQ and U ∩W 6= ∅}.
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Choose (U,ϕ) ∈ AW . We must show that Xϕ is locally Lipschitz. To this end, let

(q∗, ξ∗) ∈ ϕ(U) × R`. By construction, F (U) ⊆ V . Furthermore, since W is an

open submanifold of Q, (U,ϕ) is also a chart on Q. Thus the map

TF †ϕ,ψ : ϕ(U)→ Hom(R`, EQ),

defined as in Proposition 4.1.4, is locally Lipschitz. Thus there exists a neighbour-

hood U∗ of q∗ and C∗ ∈ R≥0 such that

‖TF †ϕ,ψ(q)− TF †ϕ,ψ(q̃)‖ ≤ C∗‖q − q̃‖EQ

for each q, q̃ ∈ U∗. Returning to Xϕ, we have

Xϕ(q, ξ) = Tϕ(ϕ−1(q)) ·X(ϕ−1(q), ξ)

= Tϕ(ϕ−1(q)) ◦ TF †(ϕ−1(q)) ◦ Tψ−1(ψ ◦ F ◦ ϕ−1(q)) · ξ

= Tϕ(ϕ−1(q)) ◦ TF †(ϕ−1(q)) ◦ Tψ−1(Fψ,ϕ(q)) · ξ

= TF †ϕ,ψ(q) · ξ

for each (q, ξ) ∈ ϕ(U)× R`. This implies that Xϕ is continuous at (q∗, ξ∗), since

‖Xϕ(q, ξ)−Xϕ(q̃, ξ̃)‖EQ

= ‖TF †ϕ,ψ(q) · ξ − TF †ϕ,ψ(q̃) · ξ̃‖EQ

= ‖TF †ϕ,ψ(q) · ξ − TF †ϕ,ψ(q) · ξ̃ + TF †ϕ,ψ(q) · ξ̃ − TF †ϕ,ψ(q̃) · ξ̃‖EQ

= ‖TF †ϕ,ψ(q) · (ξ − ξ̃) + (TF †ϕ,ψ(q)− TF †ϕ,ψ(q̃)) · ξ̃‖EQ

≤ ‖TF †ϕ,ψ(q)‖ ‖ξ − ξ̃‖R` + ‖TF †ϕ,ψ(q)− TF †ϕ,ψ(q̃)‖ ‖ξ̃‖R`

≤ ‖TF †ϕ,ψ(q)‖ ‖ξ − ξ̃‖R` + C∗‖q − q̃‖ ‖ξ̃‖R`

for each (q, ξ), (q̃, ξ̃) ∈ U∗ × R`. Furthermore,

‖Xϕ(q, ξ)−Xϕ(q̃, ξ)‖EQ = ‖TF †ϕ,ψ(q) · ξ − TF †ϕ,ψ(q̃) · ξ‖EQ

= ‖(TF †ϕ,ψ(q)− TF †ϕ,ψ(q̃)) · ξ‖EQ
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≤ ‖TF †ϕ,ψ(q)− TF †ϕ,ψ(q̃)‖ ‖ξ‖R`

≤ C∗‖q − q̃‖EQ ‖ξ‖R`

≤ C∗(1 + ‖ξ∗‖R`)‖q − q̃‖EQ

for each q, q̃ ∈ U∗ and each ξ ∈ B<1(ξ∗). Since (q∗, ξ∗) ∈ ϕ(U) × R` was chosen

arbitrarily, we conclude that Xϕ is locally Lipschitz. This completes the proof.

The next result is based on [Gutú and Jaramillo 2004, Theorem 2.3], but differs

from the cited theorem in two major respects. First of all, the result of Gutú and

Jaramillo [2004] is phrased in terms of a continuation property with respect to

arbitrary C1 lifts of C1 curves π : [0, 1]→ R. This continuation property implies

that F is, in our terminology, PLE-complete with respect to any locally Lipschitz

right inverse of TF . It is therefore enough to show that a locally Lipschitz right

inverse of TF exists. In contrast, our C1 lifts are not arbitrary. Indeed, they

are solutions of PLEs, which involve a particular choice of locally Lipschitz right

inverse. Second, PLEs incorporate the time-varying vector fields Hπ. Handling

these differences is fairly straightforward, as we will see below.

Theorem 10.4.2. Suppose that F is PLE-complete. Then F is a fiber bundle.

Proof. Since F is surjective and continuous, it remains to show that F is locally

trivializable. To this end, let r ∈ R, let (V,ψ) be a coordinate ball centered at r,

and define W = F−1(V ). Then X ∈ V (W,R`), defined by

X(q, ξ) = TF †(q) ◦ Tψ−1(ψ ◦ F (q)) · ξ

is locally Lipschitz by Lemma 10.4.1. Now define F̂ : W → ψ(V ) by

F̂ = ψ ◦ F,

and let (q0, ξ) ∈ W × R`. Clearly, F̂ (µX(0, q0, ξ)) = F̂ (q0), and for each

t ∈ (IX− (q0, ξ), IX+ (q0, ξ))
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the tangent vector to the composite curve F̂ ◦ µX(·, q0, ξ) at t is equal to

T F̂ (µX(t, q0, ξ)) · µ̇X(t, q0, ξ)

= T F̂ (µX(t, q0, ξ)) ·X(µX(t, q0, ξ), ξ)

= T F̂ (µX(t, q0, ξ)) ◦ TF †(µX(t, q0, ξ)) ◦ Tψ−1(ψ ◦ F (µX(t, q0, ξ))) · ξ

= Tψ(F (µX(t, q0, ξ))) ◦ TF (µX(t, q0, ξ)) ◦ TF †(µX(t, q0, ξ)) ◦

Tψ−1(ψ ◦ F (µX(t, q0, ξ))) · ξ

= Tψ(F (µX(t, q0, ξ))) ◦ Tψ−1(ψ ◦ F (µX(t, q0, ξ))) · ξ

= ξ.

It follows that for each (q0, ξ) ∈ W × R` and each t ∈ (IX− (q0, ξ), IX+ (q0, ξ)),

F̂ (µX(t, q0, ξ)) = F̂ (q0) + tξ. (10.2)

We now prove two technical sublemmas.

Lemma 10.4.3. For each q0 ∈ W , we have

[−1, 0] ⊆ (IX− (q0, F̂ (q0)), IX+ (q0, F̂ (q0))).

Proof. Choose q0 ∈ W , and suppose that

IX− (q0, F̂ (q0)) ∈ (−1, 0).

Define the line segment L1 : [0, 1]→ ψ(V ) by

L1(t) = (1− t)F̂ (q0).

Note that

• L1 is well-defined, since ψ(V ) is convex, and

• ψ ◦ F (q0) = F̂ (q0) = L1(0), which implies that q0 ∈ F−1(ψ−1 ◦ L1(0)).
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Since F is PLE-complete, the maximally-defined solution of
ω̇(t) = TF †(ω(t)) ◦Hψ−1◦L1

(t, F ◦ ω(t)), ω(t) ∈ Q, t ∈ [0, 1]

ω(0) = q0

(10.3)

is defined on [0, 1]. We denote this solution by ω : [0, 1]→ Q. By Lemma 4.3.3, we

have F ◦ ω = ψ−1 ◦ L1. Writing L1 = ψ−1 ◦ L1 for brevity, we compute

ω̇(t) = TF †(ω(t)) ·HL1(t, F ◦ ω(t))

= TF †(ω(t)) ·HL1(t,L1(t))

= TF †(ω(t)) · L̇1(t)

= TF †(ω(t)) ◦ Tψ−1(L1(t)) · L̇1(t)

= −TF †(ω(t)) ◦ Tψ−1(L1(t)) · F̂ (q0)

= −TF †(ω(t)) ◦ Tψ−1(ψ ◦ψ−1 ◦ L1(t)) · F̂ (q0)

= −TF †(ω(t)) ◦ Tψ−1(ψ ◦ F (ω(t))) · F̂ (q0)

= −X(ω(t), F̂ (q0))

for each t ∈ [0, 1]. Consider now the curve

Ω : [0,−IX− (q0, F̂ (q0)))→ Q

defined by

Ω(t) = µX(−t, q0, F̂ (q0)).

Since Ω(0) = q0 and

Ω̇(t) = −µ̇X(−t, q0, F̂ (q0))

= −X(µX(−t, q0, F̂ (q0)), F̂ (q0))

= −X(Ω(t), F̂ (q0))

for each t ∈ [0,−IX− (q0, F̂ (q0))), we see that Ω is a solution of (10.3). Thus

Ω(t) = ω(t)
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for each t ∈ [0,−IX− (q0, F̂ (q0))). By continuity, we have

lim
t↘IX− (q0,F̂ (q0))

µX(t, q0, F̂ (q0)) = lim
t↗−IX− (q0,F̂ (q0))

µX(−t, q0, F̂ (q0))

= lim
t↗−IX− (q0,F̂ (q0))

Ω(t)

= lim
t↗−IX− (q0,F̂ (q0))

ω(t)

= ω(−IX− (q0, F̂ (q0))).

Clearly, this contradicts the fact that µX(·, q0, F̂ (q0)) is the maximally-defined

solution of (X, q0, F̂ (q0)). Hence IX− (q0, F̂ (q0)) /∈ (−1, 0). This completes the

proof.

Lemma 10.4.4. For each (q0, ξ) ∈ F̂−1(0R`)×ψ(V ), we have

[0, 1] ⊆ (IX− (q0, ξ), IX+ (q0, ξ)).

Proof. Choose (q0, ξ) ∈ F̂−1(0R`)×ψ(V ), and suppose that

IX+ (q0, ξ) ∈ (0, 1).

Define the line segment L2 : [0, 1]→ ψ(V ) by

L2(t) = tξ.

Note that

• L2 is well-defined, since ψ(V ) is an open ball centered at 0R` , and

• ψ ◦ F (q0) = F̂ (q0) = 0R` = L2(0), which implies that q0 ∈ F−1(ψ−1 ◦ L2(0)).

Since F is PLE-complete, the maximally-defined solution of
ω̇(t) = TF †(ω(t)) ·Hψ−1◦L2

(t, F ◦ ω(t)), ω(t) ∈ Q, t ∈ [0, 1]

ω(0) = q0

(10.4)
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is defined on [0, 1]. We denote this solution by ω : [0, 1]→ Q. By Lemma 4.3.3, we

have F ◦ ω = ψ−1 ◦ L2. A straightforward computation yields

ω̇(t) = X(ω(t), ξ)

for each t ∈ [0, 1]. Consider now the curve Ω : [0, IX+ (q0, ξ))→ Q defined by

Ω(t) = µX(t, q0, ξ).

Since Ω(0) = q0 and

Ω̇(t) = X(Ω(t), ξ)

for each t ∈ [0, IX+ (q0, ξ)), we see that Ω is a solution of (10.4). Thus

Ω(t) = ω(t)

for each t ∈ [0, IX+ (q0, ξ)). By continuity,

lim
t↗IX+ (q0,ξ)

µX(t, q0, ξ) = lim
t↗IX+ (q0,ξ)

Ω(t)

= lim
t↗IX+ (q0,ξ)

ω(t)

= ω(IX+ (q0, ξ)).

Clearly, this contradicts the fact that µX(·, q0, ξ) is the maximally-defined solution

of (X, q0, ξ). Hence IX+ (q0, ξ) /∈ (0, 1). This completes the proof.

In summary, Lemma 10.4.3 guarantees for each q0 ∈ W , the expression

µX(−1, q0, F̂ (q0))

is well-defined. In particular, for each q0 ∈ W , we have

F̂ (µX(−1, q0, F̂ (q0))) = F̂ (q0)− F̂ (q0) = 0R` (10.5)
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by (10.2). Similarly, Lemma 10.4.4 guarantees that for each

(q0, ξ) ∈ F̂−1(0R`)×ψ(V ),

the expression µX(1, q0, ξ) is well-defined. Using these results, we now complete

the proof that F is locally trivializable.

Consider the map AXr : F̂−1(0R`)×ψ(V )→ W , defined by

AXr (q0, ξ) = ΦX
1 (q0, ξ) = µX(1, q0, ξ).

To see that AXr is a homeomorphism, first observe that it is continuous, since it is

the composition of (q0, ξ) 7→ (1, q0, ξ) and ΦX |{1} × F̂−1(0R`)× ψ(V ), the latter

map being continuous by Theorem 10.3.8. To see that AXr is injective, suppose that

AXr (q0, ξ) = AXr (q̃0, ξ̃), so that µX(1, q0, ξ) = µX(1, q̃0, ξ̃). By (10.2),

F̂ (µX(1, q0, ξ)) = F̂ (µX(1, q̃0, ξ̃) ⇐⇒ F̂ (q0) + ξ = F̂ (q̃0) + ξ̃

⇐⇒ 0R` + ξ = 0R` + ξ̃

⇐⇒ ξ = ξ̃.

Hence q0 = q̃0 and AXr is injective. To see that AXr is surjective, let q0 ∈ W . By

Lemma 10.4.3 and (10.5), µX(−1, q0, F̂ (q0)) ∈ F̂−1(0R`) and

AXr (µX(−1, q0, F̂ (q0)), F̂ (q0)) = q0.

Hence AXr is surjective. We claim that the inverse of AXr is the map

BX
r : W → F̂−1(0R`)×ψ(V )

defined by

BX
r (q0) = (ΦX

−1(q0, F̂ (q0)), F̂ (q0)) = (µX(−1, q0, F̂ (q0)), F̂ (q0)).

Continuity of BX
r follows from continuity of F̂ and ΦX |{−1} × graph(F̂ ), where

graph(F̂ ) = {(q0, F̂ (q0)) : q0 ∈ W} ⊆ W ×ψ(V )
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denotes the graph of F̂ . To see that BX
r = (AXr )−1, choose

(q0, ξ) ∈ F̂−1(0R`)×ψ(V ).

By (10.2), we have

BX
r ◦ AXr (q0, ξ) = BX

r (ΦX
1 (q0, ξ))

= (ΦX
−1(ΦX

1 (q0, ξ)), F̂ (ΦX
1 (q0, ξ)))

= (q0, F̂ (ΦX
1 (q0, ξ)))

= (q0, F̂ (µX(1, q0, ξ)))

= (q0, F̂ (q0) + ξ)

= (q0,0R` + ξ)

= (q0, ξ).

Hence W is homeomorphic to

F̂−1(0R`)×ψ(V ) = F−1(r)×ψ(V ).

To complete the proof, consider the map Ψr : W → F−1(r)× V defined by

Ψr(q0) = (id×ψ−1) ◦BX
r ,

where id = idF−1(r). Clearly, Ψr is a homeomorphism, and

pr2 ◦Ψr(q0) = pr2 ◦ (id×ψ−1) ◦BX
r (q0)

= pr2 ◦ (id×ψ−1)(ΦX
−1(q0, F̂ (q0)), F̂ (q0))

= pr2 ◦ (ΦX
−1(q0, F̂ (q0)),ψ−1 ◦ F̂ (q0))

= pr2 ◦ (ΦX
−1(q0, F̂ (q0)), F (q0))

= F (q0)

for each q0 ∈ W . In other words, pr2 ◦Ψr = F |W = F |F−1(V ). Since r was chosen

arbitrarily, we conclude that F is locally trivializable. This completes the proof.
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Corollary 10.4.5. Suppose that F is PLE-complete for line segments. Then F is

a fiber bundle.

Proof. This is clear from the proof of Theorem 10.4.2, in which it was only necessary

to consider (π, q0)-PLEs, where π is a line segment.

The next results are Ck versions of Theorem 10.4.2 and Corollary 10.4.5.

Theorem 10.4.6. Suppose that F is Ck, where k ∈ N∗, TF † is a Ck right inverse

of TF , and F is PLE-complete. Then F is a Ck fiber bundle.

Proof. We freely use the notation established in the proof of Theorem 10.4.2. First

of all, since F is a Ck submersion, F−1(r) is a Ck submanifold of Q; see, for

example, [Margalef-Roig and Outerelo Domínguez 1992, Theorem 4.2.1]. Note

also that graph(F̂ ) is a Ck submanifold of W × ψ(V ) by [Margalef-Roig and

Outerelo Domínguez 1992, Proposition 3.3.10]. If we can show that X is Ck, then

the proof will be complete. Indeed, if X is Ck, then its global flow ΦX is Ck by

Theorem 10.3.8. Thus the restrictions of ΦX to the Ck submanifolds

{1} × F−1(r)×ψ(V ) and {−1} × graph(F̂ )

of R×W × R` are also Ck. Inspecting the proof of Theorem 10.4.2, we see that

this implies that Ψr is a Ck diffeomorphism, and hence F is a Ck fiber bundle.

Now choose (U,ϕ) ∈ AW , where AW is the compatible atlas on W defined as

in Lemma 10.4.1. By construction, F (U) ⊆ V . Furthermore, since W is an open

submanifold of Q, (U,ϕ) is also a chart on Q. Thus the map

TF †ϕ,ψ : ϕ(U)→ Hom(R`, EQ),

defined as in Proposition 4.1.4, is Ck. As in Lemma 10.4.1, we have

Xϕ(q, ξ) = TF †ϕ,ψ(q) · ξ
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for each (q, ξ) ∈ ϕ(U)×R`. By the Leibniz rule, Xϕ is Ck. Since (U,ϕ) was chosen

arbitrarily, we conclude that X is Ck. This completes the proof.

Corollary 10.4.7. Suppose that F is Ck, where k ∈ N∗, TF † is a Ck right inverse

of TF , and F is PLE-complete for line segments. Then F is a Ck fiber bundle.

We will see a concrete application of Corollary 10.4.7 in Chapter 11.

10.5 Unobstructed control systems

We now apply the results of Section 10.4 to control systems. In this section,

• M is a second-countable n-dimensional manifold,

• Σ = (f,U ) is a control system evolving on M ,

• The time domain of Σ is J = [a, b],

• Σ uses Lp controls, so that U = Lp(J,Rr),

• Σ is complete, and

• Σ is completely controllable from a fixed initial state x0 ∈M on J .

The next definition codifies what it means for a control system to be unobstructed

with respect to the x0-anchored motion planning problem.

Definition 10.5.1. We say that Σ is Ck unobstructed , where k ∈ N∗, if

• EndΣ
x0

: U →M is Ck,

• U sing
x0

= ∅, and

• EndΣ
x0

is PLE-complete relative to TEndΣ,†
x0

,

where TEndΣ,†
x0

is a Ck right inverse of TEndΣ
x0
.
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The next two results seem to indicate that unobstructed control systems are

quite exceptional within the class of all control systems, in the sense that they

are distinguished by their topological structure. In prior work on the continuation

method, this point was not addressed.

Theorem 10.5.2. Suppose that Σ is Ck unobstructed, where k ∈ N∗. Then EndΣ
x0

is a Ck fiber bundle.

Proof. This is simply an application of Theorem 10.4.6.

Corollary 10.5.3. Suppose that Σ uses L2 controls,

• EndΣ
x0

: U →M is Ck+1, where k ∈ N∗,

• U sing
x0

= ∅, and

• For each compact subset K of M , the Moore–Penrose pseudoinverse of TEndΣ
x0

has sublinear growth over K.

Then EndΣ
x0

is a Ck fiber bundle.

Proof. By Lemma 9.3.2, EndΣ
x0

is PLE-complete relative to the Moore–Penrose

pseudoinverse of TEndΣ
x0
. Since EndΣ

x0
is Ck+1, the Moore–Penrose pseudoinverse

of TEndΣ
x0

is Ck by Proposition 4.1.6. Thus Σ is Ck unobstructed.

To conclude this chapter, let us remark that the results in this section are

modest contributions to an emerging literature [Vakhrameev 1991a, Zhong 1993,

Vakhrameev 1996, Kızıl 2008, Dominy and Rabitz 2011] on the topological structure

of endpoint maps. Within this literature, our results are distinguished by the

topological structure obtained, in that we obtain fiber bundles and not fibrations.

This is interesting, since fiber bundles constitute a special class of fibrations.
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Chapter 11

Examples

In previous chapters, we presented a number of theoretical results concerning the

three obstructions to the continuation method. In this chapter, we illustrate several

of these results by applying them to academic control-affine systems.

11.1 Hirschorn’s system

Here we consider the control-affine system from [Hirschorn 1990, Example 2.5].

Although it meets the criteria of Corollary 8.2.7 for an appropriate choice of

initial state, this control system does not satisfy local or global finite definiteness

conditions with degree ∆ = 0. Consequently, the results of Chapter 9 do not apply.

Despite this limitation, the analysis in this section is interesting in its own right,

as it demonstrates that an underactuated control-affine system can give rise to a

submersive anchored endpoint map. This phenomenon has not been previously

reported in the literature, to the best of our knowledge.

We begin by setting M = R>0 × R. In what follows, we consider M as an open

Riemannian submanifold of R2. A generic element of M is written

x =

Ü
x1

x2

ê
.
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Consider the Cω control-affine system Σ = (f ,U ) evolving on M , where

• The controllable time-varying vector field f ∈ V ([0, 1],M,R) is defined by

f(t,x, ω) = f 0(x) + ωf 1(x) =

Ü
0

ln(x1)

ê
+ ω

Ü
x1

0

ê
and

• U = L2([0, 1],R).

We claim that Σ is complete. To see this, observe that for each x ∈ M and

each u ∈ U , the u-controlled trajectory of Σ with initial condition (0,x) is

µΣ(t, 0,x, u) =

Ü
x1e

∫ t
0
u(σ) dσ

x2 +
∫ t
0 ln
Å
x1e

∫ τ
0
u(σ) dσ

ã
dτ

ê
.

This is clearly well-defined for each t ∈ [0, 1]. Using the results of Hirschorn [1990],

we see that Σ is completely controllable from each x ∈M on [0, 1].1

Our next objective is to show that EndΣ
x0

is a submersion, where

x0 =

Ü
1

0

ê
.

To this end, we use the results of Chapter 8. A straightforward computation shows

that [f 0, [f 0,f 1]] is identically equal to 0R2 , so that Σ satisfies the global finite

definiteness condition with degree ∆ = 1. Furthermore, [f 1,f 1] and [f 1, [f 0,f 1]]

are identically equal to 0R2 . This implies that Σ satisfies the global bang-bang

condition. Now let u0 ∈ U be the function

u0(t) = t.

Recall from Section 8.4 that for each u ∈ U , the map

λ1
u0
· u ∈ L1([0, 1], Tx0M)

1In fact, a much stronger conclusion holds, namely that Σ is strongly controllable from x.
Roughly speaking, this means that Σ is completely controllable from x on [0, ε] for each ε ∈ R>0.
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is defined by

(λ1
u0
· u)(t) = Adf

u0

M (D3f
u
u0

)(t,x0)

= TΦf
u0

0,t (µu0(t)) ◦D3f(t,µu0(t), u0(t)) · u(t),

where

µu0(t) = µΣ(t, 0,x0, u0) =

Ü
e
t2

2

t3

6

ê
.

To evaluate this map, first note that

Φf
u0

t,0 (x) =

Ü
x1e

t2

2

x2 + t ln(x1) + t3

6

ê
and thus

TΦf
u0

0,t (x) =

Ü
e−

t2

2 0

− te−
t2

2

x1 1

ê
for each t ∈ [0, 1] and each x ∈M . In particular, this means that

TΦf
u0

0,t (µu0(t)) =

Ü
e−

t2

2 0

−te−t2 1

ê
.

Since Σ is control-affine, it is clear that

D3f(t,µu0(t), u0(t)) · u(t) =

Ü
u(t)e

t2

2

0

ê
and consequently

(λ1
u0
· u)(t) =

Ü
e−

t2

2 0

−te− t
2

2 1

ê
·

Ü
u(t)e

t2

2

0

ê
=

Ü
u(t)

−u(t)te−
t2

2

ê
.

Note that if u is continuous, then λ1
u0
· u is continuous, and thus each t ∈ (0, 1) is a

symmetric Lebesgue point of λ1
u0
. In other words, Leb(λu0) = (0, 1). By Theorem

8.4.3, the first-order Pontryagin cone along µu0 is

PCΣ
x0

(u0) = span{(λ1
u0
· u)(t) : u ∈ U , t ∈ Leb(λ1

u0
· u)}
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= span


Ü

u(t)

−u(t)te−
t2

2

ê
: u ∈ U , t ∈ Leb(λ1

u0
· u)

 .
Choosing u ≡ 1 and t = 1/2, we see thatÜ

1

− e−
1
8

2

ê
∈ PCΣ

x0
(u0).

Now let {tn}n∈N be a sequence of real numbers in (0, 1) such that tn → 0 as n→∞.

Choosing u ≡ 1, we see that the sequence of vectors
Ü

1

−tne−
t2n
2

ê
n∈N

in PCΣ
x0

(u0) satisfies Ü
1

−tne−
t2n
2

ê
→

Ü
1

0

ê
as n→∞. Since PCΣ

x0
(u0) is closed,Ü

1

0

ê
∈ PCΣ

x0
(u0).

The fact that Ü
1

− e−
1
8

2

ê
and

Ü
1

0

ê
are linearly independent yields

PCΣ
x0

(u0) = R2.

Invoking Corollary 8.2.7, we conclude that EndΣ
x0

is a C2 submersion.

Finally, observe that [f 0,f 1] is identically equal toÜ
0

−1

ê
.

It follows that Σ cannot satisfy finite definiteness conditions with degree ∆ = 0, as

[f 0,f 1](x) cannot be written as a scalar multiple of f 1(x) for any x ∈M .
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11.2 An augmented version of Hirschorn’s system

Here we consider a control-affine system Σ obtained by augmenting Hirschorn’s

system with an additional control vector field. One effect of the additional control

vector field is that Σ satisfies local finite definiteness conditions with degree ∆ = 0.

Consider the Cω control-affine system Σ = (f ,U ) evolving on M , where

• M is the Riemannian manifold R>0 × R, as in Section 11.1,

• The controllable time-varying vector field f ∈ V ([0, 1],M,R2) is defined by

f(t,x,ω) = f 0(x) + ω1f 1(x) + ω2f 2(x) =

Ü
0

ln(x1)

ê
+ ω1

Ü
x1

0

ê
+ ω2

Ü
0

x2

ê
,

and

• U = L2([0, 1],R2).

Note that span{f 1(x),f 2(x)} = R2 if and only if x2 6= 0.

We claim that Σ is complete. To see this, observe that for each x ∈ M and

each u ∈ U , the u-controlled trajectory of Σ with initial condition (0,x) is

µΣ(t, 0,x,u) =

Ü
x1e

∫ t
0
u1(σ) dσ

e
∫ t

0
u2(σ) dσ

Å
x2 +

∫ t
0 ln
Å
x1e

∫ τ
0
u1(σ) dσ

ã
e−
∫ τ

0
u2(τ) dτ dτ

ãê .

This is clearly well-defined for each t ∈ [0, 1]. Furthermore, it follows immediately

from Section 11.1 that Σ is completely controllable from each x ∈M on [0, 1].

Our next objective is to show that EndΣ
x0

is a submersion, where

x0 =

Ü
1

0

ê
.

We proceed as in the previous section. Straightforward computations show that

[f 0, [f 0,f 1]] and [f 0, [f 0,f 2]] are identically equal to 0R2 , so that Σ satisfies the

global finite definiteness condition with degree ∆ = 1. Furthermore,
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• [f 1,f 1], [f 2,f 2], and [f 1,f 2] are identically equal to 0R2 ,

• [f 1, [f 0,f 1]] is identically equal to 0R2 ,

• [f 1, [f 0,f 2]] = −[f 0,f 1],

• [f 2, [f 0,f 1]] = −[f 0,f 1], and

• [f 2, [f 0,f 2]] = −[f 0,f 2].

This implies that Σ satisfies the global bang-bang condition. Now let u0 ∈ U be

the map

u0(t) =

Ü
t

0

ê
.

For each u ∈ U , consider the map λ1
u0
· u ∈ L1([0, 1], Tx0M) that sends t to

(λ1
u0
· u)(t) = TΦf

u0

0,t (µu0(t)) ◦D3f(t,µu0(t),u0(t)) · u(t),

where

µu0(t) = µΣ(t, 0,x0,u0) =

Ü
e
t2

2

t3

6

ê
.

To evaluate this map, first note that

Φf
u0

t,0 (x) =

Ü
x1e

t2

2

x2 + t ln(x1) + t3

6

ê
and thus

TΦf
u0

0,t (x) =

Ü
e−

t2

2 0

− te−
t2

2

x1 1

ê
for each t ∈ [0, 1] and each x ∈M . In particular, this means that

TΦf
u0

0,t (µu0(t)) =

Ü
e−

t2

2 0

−te−t2 1

ê
.
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Since Σ is control-affine, it is clear that

D3f(t,µu0(t),u0(t)) · u(t) =

Ü
e
t2

2 0

0 t3

6

ê
·

Ü
u1(t)

u2(t)

ê
=

Ü
u1(t)e

t2

2

u2(t) t
3

6

ê
and consequently

(λ1
u0
· u)(t) =

Ü
e−

t2

2 0

−te−t2 1

ê
·

Ü
u1(t)e

t2

2

u2(t) t
3

6

ê
=

Ü
u1(t)

−u1(t)te−
t2

2

ê
+

Ü
0

u2(t) t
3

6

ê
.

Note that if u is continuous, then λ1
u0
·u is continuous and thus Leb(λ1

u0
·u) = (0, 1).

By Theorem 8.4.3, the first-order Pontryagin cone along µu0 is

PCΣ
x0

(u0) = span{(λ1
u0
· u)(t) : u ∈ U , t ∈ Leb(λ1

u0
· u)}

= span


Ü

u1(t)

−u1(t)te−
t2

2

ê
+

Ü
0

u2(t) t
3

6

ê
: u ∈ U , t ∈ Leb(λ1

u0
· u)


Choosing t = 1/2,

u ≡

Ü
1

0

ê
, and u ≡

Ü
0

1

ê
,

we see that Ü
1

− e−
1
8

2

ê
,

Ü
0

1
48

ê
∈ PCΣ

x0
(u0).

The fact that Ü
1

− e−
1
8

2

ê
and

Ü
0

1
48

ê
are linearly independent yields

PCΣ
x0

(u0) = R2.

Invoking Corollary 8.2.7, we conclude that EndΣ
x0

is a C2 submersion.

With respect to finite definiteness conditions with degree ∆ = 0, observe that

243



• [f 0,f 1](x) =
Ä

0
−1

ä
and

• [f 0,f 2](x) =
Ä

0
ln(x1)

ä
for each x ∈M . Define Z = {x ∈M : x2 = 0}. Clearly, Z is closed in M and

[f 0,f 1](x) = − 1

x2
f 2(x) and [f 0,f 2](x) =

ln(x1)

x2
f 2(x)

for each x ∈M rZ . If K is a nonempty compact subset of M rZ , then x0 /∈ K

by construction. Furthermore, Σ satisfies the local finite definiteness condition with

degree ∆ = 0 on K. Using this observation, we have the following lemma.

Lemma 11.2.1. Suppose that K is a nonempty compact subset of M r Z . Then

the Moore–Penrose pseudoinverse of TEndΣ
x0

has sublinear growth over K.

Proof. Choose δ ∈ R>0 such that B≤δ(K) ⊆M rZ and the conclusions of Lemma

9.5.10 are satisfied. By construction, each x ∈ B≤δ(K) is such that x2 6= 0. Thus

f 1(x) and f 2(x) are linearly independent for each x ∈ B≤δ(K). It follows2 that

inf
(x,p)∈B≤δ(K)∗

‖ϕΣ(x,p)‖R2 > 0. (11.1)

By Remark 9.5.4, each C1 function G : T ∗M → R satisfies the Υ-condition over

B≤δ(K). Thus the hypotheses of Theorem 9.5.12 are satisfied. Invoking Theorem

9.5.12, we conclude that the Moore–Penrose pseudoinverse of TEndΣ
x0

has sublinear

growth over K.

Remark 11.2.2. This preceding proof illustrates how the hypotheses of Theorem

9.5.12 can be verified in practice. However, with respect to asserting the existence

of a bump function that satisfies the conditions of Theorem 9.5.12, the situation

encountered in the proof constitutes the simplest possible case—that is, the case

where f 1(x) and f 2(x) are linearly independent for each x ∈ B≤δ(K). In other

cases, one must use the full strength of the Υ-condition, which does not require

linearly independent control vector fields.
2Here we are identifying T ∗M with the product space M × R2.
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In the next section, we move away from specific examples.

11.3 A special class of control-affine systems

Consider the Cω control-affine system Σ = (f,U ) evolving on M , where

• M is a connected, compact, n-dimensional, Cω Riemannian manifold,

• The controllable time-dependent vector field f ∈ V ([0, 1],M,Rn) is given by

f(t, x,ω) = f0(x) +
n∑
i=1

ωifi(x)

where f1, . . . , fn constitute a global frame3 for M , and

• U = L2([0, 1],Rn).

We further assume that the fundamental group of M does not contain any elements

of infinite order; for definitions, we refer to [Lee 2000, Chapter 7]. For example,

this topological restriction is satisfied whenever M is the k-dimensional sphere Sk,

where k ∈ {1, 3, 7}.

Since M is compact, Σ is complete; this follows from an argument along the

lines of [Lee 2003, Lemma 17.10]. Using the well-known fact that an arbitrary

family of Cω vector fields is Lie-determined, it follows from [Jurdjevic 1997, Chapter

4, Theorem 2] and [Jurdjevic 1997, Chapter 3, Theorem 13] that Σ is completely

controllable from each x ∈M on [0, 1]. To clarify the role played by the restriction on

the fundamental group of M , we note that this restriction is an essential hypothesis

of [Jurdjevic 1997, Chapter 3, Theorem 13].

We now show that EndΣ
x0

is a submersion, where the initial state x0 ∈ M is

chosen arbitrarily. Since f1, . . . , fn constitute a global frame forM , it is clear that Σ

satisfies the global finite definiteness condition with degree ∆ = 0. Furthermore, Σ

3This means that span{f1(x), . . . , fn(x)} = TxM for each x ∈ M . By definition, M is
parallelizable if and only if it admits a global frame; see [Lee 2003, Chapter 5] for more information.
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satisfies the global bang-bang condition. Now choose an arbitrary control u0 ∈ U .

For each u ∈ U , consider the map λ1
u0
· u ∈ L1([0, 1], Tx0M) that sends t to

(λ1
u0
· u)(t) = TΦfu0

0,t (µu0(t)) ◦D3f(t, µu0(t),u0(t)) · u(t),

where

µu0(t) = µΣ(t, 0, x0,u0).

To evaluate this map, first observe that

D3f(t, µu0(t),u0(t)) · u(t) =
n∑
i=1

ui(t)fi(µ
u0(t))

and

(λ1
u0
· u)(t) = TΦfu0

0,t (µu0(t)) ◦D3f(t, µu0(t),u0(t)) · u(t)

= TΦfu0

0,t (µu0(t)) ·
n∑
i=1

ui(t)fi(µ
u0(t))

= Φ
tlft(fu0 )
0,t

(
n∑
i=1

ui(t)fi(µ
u0(t))

)

=
n∑
i=1

ui(t)Φ
tlft(fu0 )
0,t (fi(µ

u0(t))).

Note that if u is continuous, then λ1
u0
·u is continuous and thus Leb(λ1

u0
·u) = (0, 1).

By Theorem 8.4.3, the first-order Pontryagin cone along µu0 is

PCΣ
x0

(u0)

= span{(λ1
u0
· u)(t) : u ∈ U , t ∈ Leb(λ1

u0
· u)}

= span

{
TΦfu0

0,t (µu0(t)) ·
n∑
i=1

ui(t)fi(µ
u0(t)) : u ∈ U , t ∈ Leb(λ1

u0
· u)

}
.

Choosing u ≡ e1, . . . , en, where ei is the ith standard basis vector, we see that

TΦfu0

0,t (µu0(t)) · fi(µu0(t)) ∈ PCΣ
x0

(u0)

for each t ∈ (0, 1) and each 1 ≤ i ≤ n. Since each Φfu0

0,t is a C∞ diffeomorphism,

PCΣ
x0

(u0) = Tx0M.
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Invoking Corollary 8.2.7, we conclude that EndΣ
x0

is a C2 submersion.

We have the following analogue of Lemma 11.2.1.

Lemma 11.3.1. Suppose that K is a nonempty compact subset of M such that

x0 /∈ K. Then the Moore–Penrose pseudoinverse of TEndΣ
x0

has sublinear growth

over K.

Proof. Identical to the proof of Lemma 11.2.1.

We now briefly consider topological ramifications, using the results derived in

Chapter 10. Consider the map

E : dom(E) = U r (EndΣ
x0

)−1(x0)→M r {x0}

obtained from EndΣ
x0

by restriction. That is,

E(u) = EndΣ
x0

(u)

for each u ∈ dom(E). By construction, E is a surjective C2 submersion. It follows

from Lemma 9.3.2 and Lemma 11.3.1 that E is PLE-complete relative to TE#,

which is C1. Invoking Theorem 10.4.6, we conclude that E is a C1 fiber bundle.

Although Σ is simple from a control-theoretic point of view, an interesting feature

of this result is that the drift vector field f0 does not play any role whatsoever.
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Chapter 12

Conclusions

12.1 Summary

This thesis presented a number of results pertaining to the continuation method

for motion planning. More precisely, the analysis in this thesis dealt with technical

obstructions to the continuation method. After describing the three distinct obstruc-

tions, we demonstrated that they can be overcome. In each case, we accomplished

this task by constraining the control system under study. The constraints were

imposed by restricting the control system’s dynamical description, its Lie bracket

configuration, and its momentum functions.

The major contributions of this thesis are as follows:

• An extended theory of Cq
p and Cq

q -polynomial control systems that accommodates

control systems evolving on finite-dimensional manifolds (Chapter 3);

• An extended continuation method that incorporates arbitrary locally Lipschitz

right inverses in lieu of Moore–Penrose pseudoinverses (Chapter 4);

◦ A number of identities involving time-varying vector fields. These identities

provide reductive formulas for pullbacks involving lifts, an explicit formula for
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the global flow of X + Y , where X is a tangent lift and Y is a vertical lift, and

explicit formulas for time and parameter derivatives of pullbacks (Chapter 5);

◦ An explicit formula for the differentials of endpoint maps (Chapter 6);

◦ An explicit formula for the intrinsic quadratic differentials of anchored endpoint

maps (Chapter 7);

◦ A necessary and sufficient constant-rank condition, which is applicable to control

systems evolving on Euclidean spaces (Chapter 8);

• A general theorem on sublinear growth, which is applicable to control-affine

systems with drift (Chapter 9);

• A topological necessary condition for unobstructed motion planning by the

continuation method (Chapter 10).

In contrast with related work, the results marked with a “◦” have two distinguishing

features—they are not derived using the chronological calculus formalism, and

accommodate weakly regular, time-varying, fully nonlinear control systems.

In the next section, we indicate some possible avenues for future work.

12.2 Future work

Although the results presented in this thesis have shed additional light on the

continuation method, the method is not yet a viable solution of practical motion

planning problems. In our opinion, there are three fundamental challenges:

• The method is quite elaborate, as it relies on a number of potentially non-trivial

mathematical constructions;

• The results pertaining to sublinear growth have extremely restrictive hypotheses;
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• Out of necessity, one must restrict attention to control systems with few singular

controls. Unfortunately, such control systems are not very abundant.

In what follows, we describe some possible ways to address these challenges.

12.2.1 Numerical implementation

Despite the elaborate nature of the continuation method, it does not defy numerical

implementation. In fact, the method has been implemented by Alouges et al.

[2010] towards a solution of the rolling-body problem. Their specific approach uses

Galerkin methods, in which the solutions of path-lifting equations are computed by

means of finite-dimensional reductions. (It must be noted that the application of

Galerkin methods is only justified in light of [Chitour 2006, Theorem 1]. Roughly

speaking, the latter result states that the finite-dimensional reductions are well-

posed and converge, in a suitable sense, to the solution of the original path-lifting

equation.) The work of Alouges et al. [2010] suggests the possibility of a more

general implementation of the continuation method. This would permit exploratory

numerical studies, particularly those involving the application of the continuation

method to practical motion planning problems.

12.2.2 Relax the sublinear growth conditions

Although the results pertaining to sublinear growth have extremely restrictive

hypotheses, we believe that this phenomenon does not reflect an inherent limitation

of the continuation method. On the contrary, it seems to be an artifact produced by

the imposition of sublinear growth conditions. One alternative is to use the results

derived by Lee and O’Regan [1993], which imply that sublinear growth conditions

can be replaced, with no loss of generality, by Wintner-type growth conditions. By
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relaxing the sublinear growth conditions to the full extent allowed by the Wintner

theory, it may be possible to relax the results of Chapter 9 in a corresponding way.

12.2.3 Beyond submersivity

In this thesis, we focused on “submersive” control systems. That is, we focused

on control systems which give rise to submersive anchored endpoint maps. The

appeal of submersive control systems lies in the fact that they possess no singular

controls. Broadening the domain of inquiry to non-submersive control systems

presents the difficult problem of characterizing singular controls; see, for example,

[Chitour et al. 2008]. This problem was taken up by Popa and Wen [2000], who

described an algorithmic technique to characterize the singular controls of control

systems in multi-chain form and control systems which are finitely generated in a

certain sense. This technique was successfully applied to a number of interesting

examples, including Dubins’ car and the control of a knife edge in point contact

with a plane. Thus the control systems considered by Popa and Wen [2000] are a

natural point of departure for any investigations aiming to go beyond submersivity.

251



Bibliography

R. Abraham, J. E. Marsden, and T. Ratiu. Manifolds, Tensor Analysis, and

Applications, volume 75 of Applied Mathematical Sciences. Springer-Verlag, New

York, second edition, 1988.

A. Agrachev and R. Gamkrelidze. Quasi-extremality for control systems. Journal

of Mathematical Sciences, 55(4):1849–1864, 1991. Translated from Itogi Nauki

i Tekhniki, Seriya Sovremennye Problemy Matematiki, Noveishie Dostizheniya,

volume 35, pages 109–134, 1989.

A. Agrachev and Y. Sachkov. Control Theory from the Geometric Viewpoint,

volume 87 of Encyclopaedia of Mathematical Sciences. Springer, Berlin, 2004.

A. A. Agrachev. Quadratic mappings in geometric control theory. Journal of

Mathematical Sciences, 51(6):2667–2734, 1990.

A. A. Agrachev and R. V. Gamkrelidze. The index of extremality and quasiextremal

controls. Doklady Akademii Nauk SSSR, 284(4):777–781, 1985.

A. A. Agrachev and S. A. Vakhrameev. Nonlinear control systems of constant rank

and bang-bang conditions for extremal controls. Doklady Akademii Nauk SSSR,

279(2):265–269, 1984.

A. A. Agrachev and S. A. Vakhrameev. Systems, linear with respect to the control,

of constant rank and conditions for the extremal controls to be switchable.

252



Akademiya Nauk SSSR i Moskovskoe Matematicheskoe Obshchestvo. Uspekhi

Matematicheskikh Nauk, 41(6(252)):163–164, 1986.

C. D. Aliprantis and K. C. Border. Infinite Dimensional Analysis: A Hitchhiker’s

Guide. Springer, Berlin, third edition, 2006.

F. Alouges, Y. Chitour, and R. Long. A motion planning algorithm for the rolling-

body problem. IEEE Transactions on Robotics, 26(5):827–836, 2010.

H. Amann. Ordinary Differential Equations: An Introduction to Nonlinear Analysis,

volume 13 of de Gruyter Studies in Mathematics. Walter de Gruyter, Berlin,

1990.

S. C. Amiss and M. Guay. A necessary condition for path-finding by the homotopy

continuation method. In Proceedings of the 48th IEEE Conference on Decision

and Control, pages 2117–2124, Shanghai, 2009.

S. C. Amiss and M. Guay. Intrinsic quadratic differentials of the endpoint maps

of nonlinear systems with Lp controls. In Proceedings of the 18th IFAC World

Congress, pages 13551–13556, Milan, 2011a.

S. C. Amiss and M. Guay. On the endpoint maps of fully nonlinear control systems

that use locally Lp controls. In Proceedings of the 49th IEEE Conference on

Decision and Control, pages 2716–2722, Atlanta, 2011b.

S. C. Amiss and M. Guay. A constant-rank theorem for time-varying control

systems. 2012a. Submitted to the 2013 American Control Conference.

S. C. Amiss and M. Guay. Formulas for derivatives of global flows and pullbacks.

2012b. Submitted to the 2013 American Control Conference.

253



S. C. Amiss and M. Guay. Motion planning by the continuation method for control-

affine systems. In Proceedings of the 2012 American Control Conference, pages

1767–1772, Montréal, 2012c.

S. C. Amiss and M. Guay. Motion planning by the homotopy continuation method

for control-affine systems: Sublinear growth conditions. In Proceedings of the

51st IEEE Conference on Decision and Control, Maui, 2012d. To appear.

V. I. Arnol’d. Singularities of smooth mappings. Russian Mathematical Surveys, 23

(1):1–43, 1968.

V. Ayala, J. Ayala-Hoffmann, and I. de Azevedo Tribuzy. Controllability of invariant

control systems at uniform time. Kybernetika (Prague), 45(3):405–416, 2009.

G. Bachman and L. Narici. Functional Analysis. Dover Publications, Inc., Mineola,

Dover edition, 2000.

P. Ballard. Dynamics of rigid bodies systems with unilateral or frictional constraints:

Formulation and well-posedness. In D. Y. Gao and R. W. Ogden, editors, Advances

in Mechanics and Mathematics, 2002, volume 1 of Advances in Mechanics and

Mathematics, pages 3–87. Kluwer Academic Publishers, Dordrecht, 2002.

V. Barbu and C. Lefter. Optimal control of ordinary differential equations. In

A. Cañada, P. Drábek, and A. Fonda, editors, Handbook of Differential Equations:

Ordinary Differential Equations, volume 2, pages 1–75. Elsevier B. V., Amsterdam,

2005.

L. Barreira and C. Valls. Ordinary Differential Equations: Qualitative Theory,

volume 137 of Graduate Studies in Mathematics. American Mathematical Society,

Providence, 2012. Translated from the 2010 Portuguese original.

254



A. Bellaïche. The tangent space in sub-Riemannian geometry. In A. Bellaïche

and J.-J. Risler, editors, Sub-Riemannian Geometry, volume 144 of Progress in

Mathematics, pages 4–78. Birkhäuser, Basel, 1996.

R. M. Bianchini and A. Margheri. First-order differentiability of the flow of a

system with Lp controls. Journal of Optimization Theory and Applications, 89

(2):293–310, 1996.

V. I. Bogachev. Measure Theory. Vol. I, II. Springer-Verlag, Berlin, 2007.

B. Bonnard and J.-B. Caillau. Introduction to nonlinear optimal control. In

Advanced Topics in Control Systems Theory, volume 328 of Lecture Notes in

Control and Information Science, pages 1–60. Springer, London, 2006.

B. Bonnard and I. Kupka. Théorie des singularités de l’application entrée/sortie

et optimalité des trajectoires singulières dans le problème du temps minimal.

Forum Mathematicum, 5:111–159, 1993.

D. S. Bridges. Foundations of Real and Abstract Analysis, volume 174 of Graduate

Texts in Mathematics. Springer-Verlag, New York, 1998.

F. Bullo and A. D. Lewis. Geometric Control of Mechanical Systems: Modeling,

Analysis, and Design for Simple Mechanical Control Systems, volume 49 of Texts

in Applied Mathematics. Springer-Verlag, New York, 2005a.

F. Bullo and A. D. Lewis. Supplementary chapters for Geometric Control of

Mechanical Systems [Bullo and Lewis 2005a], 2005b. URL http://motion.mee.

ucsb.edu/book-gcms/.

F. Bullo and A. D. Lewis. Reduction, linearization, and stability of relative

equilibria for mechanical systems on Riemannian manifolds. Acta Applicandae

Mathematicae, 99(1):53–95, 2007.

255

http://motion.mee.ucsb.edu/book-gcms/
http://motion.mee.ucsb.edu/book-gcms/


A. Chelouah and Y. Chitour. On the motion planning of rolling surfaces. Forum

Mathematicum, 15:727–758, 2003.

Y. Chitour. Applied and Theoretical Aspects of the Controllability of Nonholonomic

Systems. PhD thesis, Rutgers University, 1996.

Y. Chitour. Path planning on compact Lie groups using a homotopy method.

Systems & Control Letters, 47:383–391, 2002.

Y. Chitour. A continuation method for motion-planning problems. ESAIM: Control,

Optimisation and Calculus of Variations, 12:139–168, 2006.

Y. Chitour and H. J. Sussmann. Line-integral estimates and motion planning using

a continuation method. In J. Baillieul, S. Sastry, and H. J. Sussmann, editors,

Essays on Mathematical Robotics, volume 104 of IMA Volumes in Mathematics

and its Applications, pages 91–125. Institute for Mathematics and its Applications,

Minneapolis, 1998.

Y. Chitour, F. Jean, and E. Trélat. Singular trajectories of control-affine systems.

SIAM Journal on Control and Optimization, 47(2):1078–1095, 2008.

D. L. Cohn. Measure Theory. Birkhäuser, Boston, 1980.

J. B. Conway. A Course in Functional Analysis, volume 96 of Graduate Texts in

Mathematics. Springer-Verlag, New York, second edition, 1990.

M. Crampin and F. A. E. Pirani. Applicable Differential Geometry, volume 59 of

London Mathematical Society Lecture Note Series. Cambridge University Press,

Cambridge, 1986.

P. E. Crouch and A. J. van der Schaft. Variational and Hamiltonian Control

Systems, volume 101 of Lecture Notes in Control and Information Sciences.

Springer-Verlag, Berlin Heidelberg, 1987.

256



J. Dominy and H. Rabitz. Dynamic homotopy and landscape dynamical set topology

in quantum control. Preprint, arXiv:1102.4360v2 [quant-ph], 2011.

R. M. Dudley. Real Analysis and Probability, volume 74 of Cambridge Studies in

Advanced Mathematics. Cambridge University Press, Cambridge, 2002.

C. J. Earle and J. Eells. Foliations and fibrations. Journal of Differential Geometry,

1:61–69, 1967.

L. M. Fehér and B. Kőműves. On second order Thom–Boardman singularities.

Fundamenta Mathematicae, 191:249–264, 2006.

W. Fulton and J. Harris. Representation Theory: A First Course, volume 129 of

Graduate Texts in Mathematics (Readings in Mathematics). Springer-Verlag,

New York, 1991.

J. Grabowski and P. Urbański. Tangent lifts of Poisson and related structures.

Journal of Physics. A. Mathematical and General, 28(23):6743–6777, 1995.

K. A. Grasse. Controllability and Accessibility in Nonlinear Systems. PhD thesis,

University of Illinois at Urbana-Champaign, 1979.

K. A. Grasse. Admissibility of trajectories for control systems related by smooth

mappings. Mathematics of Control, Signals, and Systems, 16:120–140, 2003.

K. A. Grasse. Admissible simulation relations, set-valued feedback, and controlled

invariance. Mathematics of Control, Signals, and Systems, 20(3):199–226, 2008.

K. A. Grasse and H. J. Sussmann. Global controllability by nice controls. In H. J.

Sussmann, editor, Nonlinear Controllability and Optimal Control, volume 133 of

Monographs and Textbooks in Applied Mathematics, pages 33–79. Marcel Dekker,

Inc., New York, 1990.

257



O. Gutú and J. A. Jaramillo. Fibrations on Banach manifolds. Pacific Journal of

Mathematics, 215(2):313–329, 2004.

E. Hewitt and K. Stromberg. Real and Abstract Analysis. A Modern Treatment of

the Theory of Functions of a Real Variable. Springer-Verlag, New York, 1965.

R. M. Hirschorn. Global controllability of locally linearizable systems. SIAM

Journal on Control and Optimization, 28(3):540–551, 1990.

J. K. Hunter. Notes on partial differential equations. Unpublished lecture notes,

2010. URL www.math.ucdavis.edu/~hunter/pdes/.

D. Husemoller. Fibre Bundles, volume 20 of Graduate Texts in Mathematics.

Springer-Verlag, New York, third edition, 1994.

P. Jouan. Finite-time and exact-time controllability on compact manifolds. Journal

of Mathematical Sciences, 177:402–410, 2011a.

P. Jouan. Invariant measures and controllability of finite systems on compact

manifolds. ESAIM: Control, Optimisation and Calculus of Variations, E-First,

2011b.

V. Jurdjevic. Geometric Control Theory, volume 52 of Cambridge Studies in

Advanced Mathematics. Cambridge University Press, Cambridge, 1997.

C. Kawan. Invariance Entropy for Control Systems. PhD thesis, Universität

Augsburg, 2009.

E. Kızıl. Universal covering of driftless control systems. Journal of Dynamical and

Control Systems, 14(4):453–464, 2008.

W. P. A. Klingenberg. Riemannian Geometry, volume 1 of de Gruyter Studies in

Mathematics. Walter de Gruyter & Co., Berlin, second edition, 1995.

258

www.math.ucdavis.edu/~hunter/pdes/


I. Kolář, P. W. Michor, and J. Slovák. Natural Operations in Differential Geometry.

Springer-Verlag, Berlin, 1993.

K. L. Kuttler. Modern Analysis. Studies in Advanced Mathematics. CRC Press,

LLC, Boca Raton, 1998.

G. Lafferriere. A general strategy for computing steering controls of systems without

drift. In Proceedings of the 30th IEEE Conference on Decision and Control, pages

1115–1120, Brighton, 1991.

G. Lafferriere and H. Sussmann. Motion planning for controllable systems without

drift. In Proceedings of the 1991 IEEE International Conference on Robotics and

Automation, pages 1148–1153, Sacramento, 1991.

G. Lafferriere and H. J. Sussmann. Motion planning for controllable systems without

drift. In Z. Li and J. F. Canny, editors, Nonholonomic Motion Planning, pages

235–270. Kluwer Academic Publishers, Dordrecht, 1993.

F. Lamiraux and J.-P. Laumond. Flatness and small-time controllability of multi-

body mobile robots: Application to motion planning. IEEE Transactions on

Automatic Control, 45(10):1878–1881, 2000.

S. M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge, 2006.

E. B. Lee and L. Markus. Foundations of Optimal Control Theory. Robert E.

Krieger Publishing Co., Inc., Melbourne, second edition, 1986.

J. M. Lee. Introduction to Topological Manifolds, volume 202 of Graduate Texts in

Mathematics. Springer-Verlag, New York, 2000.

J. M. Lee. Introduction to Smooth Manifolds, volume 218 of Graduate Texts in

Mathematics. Springer-Verlag, New York, 2003.

259



J. M. Lee. Manifolds and differential geometry, volume 107 of Graduate Studies in

Mathematics. American Mathematical Society, Providence, 2009.

J. W. Lee and D. O’Regan. Existence results for differential equations in Banach

spaces. Commentationes Mathematicae Universitatis Carolinae, 34(2):239–251,

1993.

N. E. Leonard and P. S. Krishnaprasad. Motion control of drift-free, left-invariant

systems on Lie groups. IEEE Transactions on Automatic Control, 40(9):1539–

1554, 1995.

G. Leoni. A First Course in Sobolev Spaces, volume 105 of Graduate Studies in

Mathematics. American Mathematical Society, Providence, 2009.

K.-T. Leung. Linear Algebra and Geometry. Hong Kong University Press, Hong

Kong, 1973.

A. D. Lewis. Incomplete notes on geometric control theory. Third Interna-

tional Summer School on Geometry, Mechanics and Control (L’Ametlla del

Mar, Tarragona, Spain), 2009. URL http://webpages.ull.es/users/gmcnet/

Summer-School09/Documentos/andrews-notes.pdf.

W. Liu. An approximation algorithm for nonholonomic systems. SIAM Journal on

Control and Optimization, 35(4):1328–1365, 1997.

L. H. Loomis and S. Sternberg. Advanced Calculus. Jones and Bartlett Publishers,

Inc., Boston, revised edition, 1990.

J. Margalef-Roig and E. Outerelo Domínguez. Differential Topology, volume 173 of

North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam,

1992. With a preface by Peter W. Michor.

260

http://webpages.ull.es/users/gmcnet/Summer-School09/Documentos/andrews-notes.pdf
http://webpages.ull.es/users/gmcnet/Summer-School09/Documentos/andrews-notes.pdf


A. Margheri. Flow regularity and optimality conditions with controls in Lp. Mathe-

matics of Control, Signals, and Systems, 9(3):189–206, 1996.

P. Martin. Contribution à l’Étude des Systèmes Différentiellement Plats. PhD

thesis, École des Mines, Paris, 1992.

E. J. McShane. Integration. Princeton University Press, Princeton, 1944.

E. J. McShane. Unified Integration, volume 107 of Pure and Applied Mathematics.

Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1983.

M. P. Melnyk and D. E. Chang. Time optimal control of a dielectrophoretic system.

Asian Journal of Control, 13(4):480–491, 2010.

K. M. Mikkola. Infinite-Dimensional Linear Systems, Optimal Control and Algebraic

Riccati Equations. PhD thesis, Helsinki University of Technology, 2002.

R. Montgomery. A Tour of Subriemannian Geometries, Their Geodesics and

Applications, volume 91 of Mathematical Surveys and Monographs. American

Mathematical Society, Providence, 2002.

J. R. Munkres. Topology. Prentice Hall, Upper Saddle River, second edition, 2000.

R. M. Murray and S. S. Sastry. Nonholonomic motion planning: Steering using

sinusoids. IEEE Transactions on Automatic Control, 38(5):700–716, 1993.

S. Nikitin. Global Controllability and Stabilization of Nonlinear Systems, volume 20

of Series on Advances in Mathematics for Applied Sciences. World Scientific

Publishing Co., Inc., River Edge, 1994.

D. Popa and J. T. Wen. Singularity computation for iterative control of nonlinear

affine systems. Asian Journal of Control, 2(2):57–75, 2000.

261



I. R. Porteous. Simple singularities of maps. In Proceedings of Liverpool Singularities

Symposium, I (1969/70), volume 192 of Lecture Notes in Mathematics, pages

286–307. Springer, Berlin, 1971.

C. Pötzsche. Geometric Theory of Discrete Nonautonomous Dynamical Systems,

volume 2002 of Lecture Notes in Mathematics. Springer-Verlag, Berlin Heidelberg,

2010.

V. V. Prasolov. Elements of Combinatorial and Differential Topology, volume 74 of

Graduate Studies in Mathematics. American Mathematical Society, Providence,

2006. Translated from the 2004 Russian original by Olga Sipacheva.

R. Reis and M. Weiss. Smooth maps to the plane and Pontryagin classes. Part I:

Local aspects. Preprint, arXiv:1008.5104v1 [math.AT], 2010.

K. Rybakowski. Formulas for higher-order Fréchet derivatives of composite maps,

implicitly defined maps and solutions of differential equations. Nonlinear Analysis:

Theory, Methods & Applications, 16(6):517–532, 1991.

E. D. Sontag. Universal nonsingular controls. Systems & Control Letters, 19:

221–224, 1992.

E. D. Sontag. Control of systems without drift via generic loops. IEEE Transactions

on Automatic Control, 40(7):1210–1219, 1995.

E. D. Sontag. Mathematical Control Theory: Deterministic Finite Dimensional

Systems, volume 6 of Texts in Applied Mathematics. Springer-Verlag, New York,

second edition, 1998.

H. J. Sussmann. Local controllability and motion planning for some classes of

systems with drift. In Proceedings of the 30th IEEE Conference on Decision and

Control, pages 1110–1114, Brighton, 1991.

262



H. J. Sussmann. New differential geometric methods in nonholonomic path finding.

In A. Isidori and T.-J. Tarn, editors, Systems, Models and Feedback: Theory

and Applications (Capri, 1992), volume 12 of Progress in Systems and Control

Theory, pages 365–384. Birkhäuser, Boston, 1992.

H. J. Sussmann. A continuation method for nonholonomic path-finding problems.

In Proceedings of the 32nd IEEE Conference on Decision and Control, pages

2718–2723, San Antonio, 1993.

H. J. Sussmann. An introduction to the coordinate-free Maximum Principle. In

Geometry of Feedback and Optimal Control, volume 207 of Pure and Applied

Mathematics: A series of monographs and textbooks, pages 463–557. Marcel

Dekker, Inc., New York, 1998.

H. J. Sussmann. Geometry and optimal control. In Mathematical Control Theory,

pages 140–198. Springer, New York, 1999.

P. Tabuada and G. J. Pappas. Hierarchical trajectory generation for a class of

nonlinear systems. Automatica, 41:701–708, 2005.

D. Tilbury, R. M. Murray, and S. S. Sastry. Trajectory generation for the n-trailer

problem using Goursat normal form. IEEE Transactions on Automatic Control,

40(5):802–819, 1995.

A. I. Tretiyak. Sufficient conditions for local controllability and high-order nec-

essary conditions for optimality. A differential-geometric approach. Journal of

Mathematical Sciences, 85(3):1899–2001, 1997. Translated from Itogi Nauki i

Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie

Obzory, Vol. 23, Dinamicheskie Sistemy-4, 1995.

263



F. Trèves. Linear Partial Differential Equations with Constant Coefficients: Exis-

tence, Approximation and Regularity of Solutions, volume 6 of Mathematics and

its Applications. Gordon and Breach Science Publishers, New York, 1966.

S. A. Vakhrameev. Hilbert manifolds with angles of finite codimension, and optimal

control theory. Journal of Soviet Mathematics, 53(2):176–223, 1991a.

S. A. Vakhrameev. Smooth control systems of constant rank and linearizable

systems. Journal of Mathematical Sciences, 55(4):1864–1891, 1991b. Translated

from Itogi Nauki i Tekhniki, Seriya Sovremennye Problemy Matematiki, Noveishie

Dostizheniya, volume 35, pages 135–178, 1989.

S. A. Vakhrameev. Geometrical and topological methods in optimal control theory.

Journal of Mathematical Sciences, 76(5):2555–2719, 1995.

S. A. Vakhrameev. On some properties of the path spaces for smooth control

systems of constant rank. Journal of Mathematical Sciences, 78(5):612–625, 1996.

S. A. Vakhrameev. Bang-bang theorems and related questions. Trudy Matematich-

eskogo Instituta Imeni V. A. Steklova. Rossĭıskaya Akademiya Nauk, 220:49–112,
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Appendix A

Proofs

A.1 Lemma 5.2.6

Proof. Suppose that AQ is a compatible atlas on Q and (TV, Tψ) ∈ TAQ. We

must show that tlft(Ξ)Tψ is locally integrably Ck−1 in the sense of Definition 2.2.19.

To this end, observe that

tlft(Ξ)Tψ(t, q,v) =
Å

Ξψ(t, q), ev(D2Ξψ(t, q),v)

ã
,

where ev : Hom(R`,R`)× R` → R` is defined by

ev(λ,v) = λ · v.

It is not hard to see that

ev ∈ Hom(Hom(R`,R`),R`,R`).

For each t ∈ I, the map q 7→ Ξψ(t, q) is Ck by definition. It follows from the

Leibniz rule that for each t ∈ I, the map

(q,v) 7→ tlft(Ξ)Tψ(t, q,v)
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is Ck−1. Similarly, for each q ∈ ψ(V ), the map t 7→ D2Ξψ(t, q) is measurable by

Remark 2.2.20. Thus for each (q,v) ∈ ψ(V )× R`, the map

t 7→ tlft(Ξ)Tψ(t, q,v)

is measurable by composition. We now show that the third criterion of Definition

2.2.19 is satisfied. Choose 0 ≤ j ≤ k − 1. Regarding tlft(Ξ)Tψ as a map of

I × (ψ(V )× R`) ⊆ I × (R` ⊕ R`)

into R` ⊕ R`, we must show that

Dj
2tlft(Ξ)Tψ : I × (ψ(V )× R`)→ Homj(R` ⊕ R`,R` ⊕ R`)

is locally integrably bounded. By the Leibniz rule,

Dj
2tlft(Ξ)Tψ(t, q,v) · (q1,v1, . . . , qj,vj)

=



Dj
2Ξψ(t, q) · (q1, . . . , qj)

Dj+1
2 Ξψ(t, q) · (v, q1, . . . , qj) +∑j

i=1D
j
2Ξψ(t, q) · (q1, . . . , qi−1,vi, qi+1, . . . , qj)


. (A.1)

This implies that

‖Dj
2tlft(Ξ)Tψ(t, q,v)‖

≤ ‖Dj
2Ξψ(t, q)‖+ ‖v‖R` ‖Dj+1

2 Ξψ(t, q)‖+
j∑
i=1

‖Dj
2Ξψ(t, q)‖

To complete the proof, letK ⊆ ψ(V )×R` be compact. Since Ξψ is locally integrably

Ck and pr1(K) is compact, there exist α, β ∈ L1
loc(I,R≥0) such that

‖Dj
2Ξψ(t, q)‖ ≤ α(t) and ‖Dj+1

2 Ξψ(t, q)‖ ≤ β(t)

for a.a. t ∈ I and each q ∈ pr1(K). On the other hand, since pr2(K) ⊆ R` is

compact, and hence bounded, there exists C ∈ R≥0 such that ‖v‖R` ≤ C for each
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v ∈ pr2(K). Together with (A.1), these observations imply that

‖Dj
2tlft(Ξ)Tψ(t, q,v)‖

≤ ‖Dj
2Ξψ(t, q)‖+ C‖Dj+1

2 Ξψ(t, q)‖+
j∑
i=1

‖Dj
2Ξψ(t, q)‖

= (j + 1)‖Dj
2Ξψ(t, q)‖+ C‖Dj+1

2 Ξψ(t, q)‖

≤ (j + 1)α(t) + Cβ(t)

for a.a. t ∈ I and each (q,v) ∈ K. This completes the proof.

A.2 Lemma 5.9.9

Proof. For each t ∈ I, define γt : R0 → TQ by

γt(ρ) = TΦXρ

a,t (ΦXρ

t,a (q0)) ◦ TΦXρ

t,a (q0) · vq0 .

Clearly, γ̇t(r) = 0 for each (t, r) ∈ I ×R0. By the chain rule, we have

γ̇t(r) =
d

dρ

∣∣∣∣∣
r

TΦXρ

a,t (ΦXρ

t,a (q0)) ◦ TΦXr

t,a (q0) · vq0 + TTΦXr

a,t (w) ◦ d

dρ

∣∣∣∣∣
r

TΦXρ

t,a (q0) · vq0

for each (t, r) ∈ I ×R0, where w = TΦXr

t,a (q0) · vq0 . By Theorem 5.2.4, the second

term is

d

dρ

∣∣∣∣∣
r

TΦXρ

t,a (q0) · vq0 =
d

dρ

∣∣∣∣∣
r

Φ
tlft(Xρ)
t,a (q0) · vq0 =

d

dρ

∣∣∣∣∣
r

Φ
tlft(X)ρ

t,a (vq0).

By Theorem 5.2.4, Proposition 5.4.4, Lemma 5.5.1, and Lemma 5.9.8, we have

d

dρ

∣∣∣∣∣
r

Φ
tlft(X)ρ

t,a (vq0) =
∫ t

a
TΦ

tlft(X)r

t,a (vq0) · Ad
tlft(X)r

TQ0
(Zr

tlft(X))(σ, vq0) dσ

=
∫ t

a
TΦ

tlft(Xr)
t,a (vq0) · Ad

tlft(Xr)
TQ0

(Zr
tlft(X))(σ, vq0) dσ

=
∫ t

a
TΦ

tlft(Xr)
t,a (vq0) · Ad

tlft(Xr)
TQ0

(tlft(Zr
X))(σ, vq0) dσ

=
∫ t

a
TΦ

tlft(Xr)
t,a (vq0) · tlft(AdX

r

Q0
(Zr

X))(σ, vq0) dσ

=
∫ t

a
TΦ

tlft(Xr)
t,a (vq0) ◦ sQ0 ◦ T (AdX

r

Q0
(Zr

X)σ)(q0) · vq0 dσ
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=
∫ t

a
TTΦXr

t,a (vq0) ◦ sQ0 ◦ T (AdX
r

Q0
(Zr

X)σ)(q0) · vq0 dσ

= TTΦXr

t,a (vq0) ·
∫ t

a
sQ0 ◦ T (AdX

r

Q0
(Zr

X)σ)(q0) · vq0 dσ.

This completes the proof.

A.3 Lemma 5.9.10

Proof. By definition,

AdX
r

Q0
(Y r

s )(t, q0) = TΦXr

a,t (Φ
Xr

t,a (q0)) ◦ Y r
s ◦ ΦXr

t,a (q0)

for each (t, r) ∈ I ×R0. By the chain rule,

d

dρ

∣∣∣∣∣
r

AdX
ρ

Q0
(Y r

s )(t, q0)

= TTΦXr

a,t (w) ◦ d

dρ

∣∣∣∣∣
r

Y r
s ◦ ΦXρ

t,a (q0) +
d

dρ

∣∣∣∣∣
r

TΦXρ

a,t (ΦXρ

t,a (q0)) ◦ Y r
s ◦ ΦXr

t,a (q0)

for each (t, r) ∈ I ×R0, where w = Y r
s ◦ΦXr

t,a (q0). By Proposition 5.4.4 and Lemma

5.9.8, the first term is equal to

TTΦXr

a,t (w) ◦ d

dρ

∣∣∣∣∣
r

Y r
s ◦ ΦXρ

t,a (q0)

= TTΦXr

a,t (w) ◦ TY r
s (ΦXr

t,a (q0)) ◦ d

dρ

∣∣∣∣∣
r

ΦXρ

t,a (q0)

= TTΦXr

a,t (w) ◦ TY r
s (ΦXr

t,a (q0)) ◦
∫ t

a
TΦXr

t,a (q0) · AdX
r

Q0
(Zr

X)(σ, q0) dσ

=
∫ t

a
TTΦXr

a,t (w) ◦ TY r
s (ΦXr

t,a (q0)) ◦ TΦXr

t,a (q0) · AdX
r

Q0
(Zr

X)(σ, q0) dσ

=
∫ t

a
T (TΦXr

a,t ◦ Y r
s ◦ ΦXr

t,a )(q0) · AdX
r

Q0
(Zr

X)(σ, q0) dσ

=
∫ t

a
T (AdX

r

(Y r
s )t)(q0) · AdX

r

Q0
(Zr

X)(σ, q0) dσ

=
∫ t

a
T (AdX

r

(Y r
s )t)(q0) · AdX

r

Q0
(Zr

X)σ(q0) dσ.

Invoking Lemma 5.9.9 with vq0 = AdX
r

Q0
(Y r

s )(t, q0), the second term is equal to

d

dρ

∣∣∣∣∣
r

TΦXρ

a,t (ΦXρ

t,a (q0)) ◦ Y r
s ◦ ΦXr

t,a (q0)
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= −
∫ t

a
sQ0 ◦ T (AdX

r

Q0
(Zr

X)σ)(q0) · AdX
r

Q0
(Y r

s )(t, q0) dσ

= −
∫ t

a
sQ0 ◦ T (AdX

r

Q0
(Zr

X)σ)(q0) · AdX
r

Q0
(Y r

s )t(q0) dσ.

Consequently,

d

dρ

∣∣∣∣∣
r

AdX
ρ

Q0
(Y r

s )(t, q0)

=
∫ t

a
T (AdX

r

Q0
(Y r

s )t)(q0) · AdX
r

Q0
(Zr

X)σ(q0)

− sQ0 ◦ T (AdX
r

Q0
(Zr

X)σ)(q0) · AdX
r

Q0
(Y r

s )t(q0) dσ

=
∫ t

a
Kσ(q0) dσ.

By [Abraham et al. 1988, Exercise 4.2K], we have

Kσ(q0) ∈ VΩTQ,

where Ω = AdX
r

Q0
(Y r

s )t(q0), and

Kσ(q0) = vlftΩ ◦
î
AdX

r

Q0
(Zr

X)σ,AdX
r

Q0
(Y r

s )t
ó
(q0).

Finally, we invoke Proposition 5.4.4 to obtain

vlft−1
Ω ·

d

dρ

∣∣∣∣∣
r

AdX
ρ

Q0
(Y r

s )(t, q0) = vlft−1
Ω ·

∫ t

a
Kσ(q0) dσ

=
∫ t

a
vlft−1

Ω ·Kσ(q0) dσ

=
∫ t

a

î
AdX

r

Q0
(Zr

X)σ,AdX
r

Q0
(Y r

s )t
ó
(q0) dσ.

This completes the proof.1

A.4 Lemma 5.9.11

Proof. Using the chain rule, it is not hard to see that

d

dρ

∣∣∣∣∣
r

AdX
ρ

Q0
(Y ρ

s )(t, q0) =
d

dρ

∣∣∣∣∣
r

AdX
r

Q0
(Y ρ

s )(t, q0) +
d

dρ

∣∣∣∣∣
r

AdX
ρ

Q0
(Y r

s )(t, q0)

1Here, we are using the fact that each pointwise vertical lift is a canonical vector space
isomorphism.
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for each (t, r) ∈ I ×R0. By linearity, the first term is equal to

d

dρ

∣∣∣∣∣
r

AdX
r

Q0
(Y ρ

s )(t, q0) = AdX
r

Q0
((Zr

Y )s).

By Lemma 5.9.10, the second term is equal to

d

dρ

∣∣∣∣∣
r

AdX
ρ

Q0
(Y r

s )(t, q0) =
∫ t

a

î
AdX

r

Q0
(Zr

X)σ,AdX
r

Q0
(Y r

s )t
ó
(q0) dσ.

This completes the proof.

A.5 Lemma 8.2.3

Proof. In this proof, we use the following notation:

• V ω(M) is the set of Cω vector fields on M ;

• Cω(V,R) is the ring of Cω functions on an open submanifold V of M .

Recall that V ω(M) is a Cω(M,R)-module [Bullo and Lewis 2005a, Section 3.9.4],

and consider the submodule M of V ω(M) generated by the set

{adkf0
(f`) : k ∈ Z≥0, 1 ≤ ` ≤ r}.

More explicitly, each element Y ∈M is of the form

Y =
deg(Y )∑
k=0

r∑
`=1

P Y
k,`adkf0

(f`),

where deg(Y ) ∈ Z≥0 and P Y
k,` ∈ Cω(M,R). For each open submanifold V of M , we

define M |V = {Y |V : Y ∈M }. By [Lewis 2009, Theorem 2.4.28], M is locally

finitely generated. That is, for each x∗ ∈M , there exist a neighbourhood V of x∗

in M , ρ ∈ Z≥0, and Y1, . . . , Yρ ∈M , such that each Y ∈M |V can be written as

Y =
ρ∑
i=1

CiYi|V
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for functions Ci ∈ Cω(V,R). Given x∗, V , ρ, and Y1, . . . , Yρ in this way, set

∆ = max{deg(Y1), . . . , deg(Yρ)}.

By construction, ad∆+1
f0

(fj)|V ∈M |V , hence

ad∆+1
f0

(fj)|V =
ρ∑
i=1

Ci
jYi|V

=
ρ∑
i=1

Ci
j

deg(Yi)∑
k=0

r∑
`=1

P Yi
k,`|V adkf0

(f`)|V.

For deg(Yi) < k ≤ ∆, let P Yi
k,` ∈ Cω(M,R) be identically equal to 0. Then

ad∆+1
f0

(fj)|V =
ρ∑
i=1

Ci
j

∆∑
k=0

r∑
`=1

P Yi
k,`|V adkf0

(f`)|V

=
∆∑
k=0

r∑
`=1

( ρ∑
i=1

Ci
jP

Yi
k,`|V

)
adkf0

(f`)|V

=
∆∑
k=0

r∑
`=1

Pj,k,`adkf0
(f`)|V,

where

Pj,k,` =
ρ∑
i=1

Ci
jP

Yi
k,`|V.

Since x∗ was chosen arbitrarily, Σ satisfies the local finite definiteness condition.
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