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Abstract

This thesis addresses observer design for nonlinear dynamical systems which can be

approximated with dissipative Hamiltonian realizations. The design methods builds

upon earlier developments that allow the approximate dissipative potential to be

extracted using a homotopy operator. This potential is obtained by decomposition of

the observer error associated one-form using the homotopy operator which generates

the potential. A time-varying differential metric equation dependent on the Hessian

of the potential and the measured output function is proposed, which is used to

design a state observer. The stability of both the observer and metric equation are

assessed using Lyapunov theory. A time-invariant metric is then proposed making

use of the Hessian of the potential on a metric-state based observer. Using several

process simulations, the approach is shown to provide an effective design alternative

for nonlinear observer design.
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Chapter 1

Introduction

1.1 Motivation

The design of feedback controllers for dynamical systems requires that the controlled

variables be either measured or estimated. Industrial applications commonly avoid

this problem by linearizing the system about a point and using the well established

linear control and observer design methodology. The observer design solution es-

tablished by Luenberger states that for any linear system satisfying the necessary

observability conditions an observer can be designed [31]. However, for general non-

linear systems, a nonlinear approach is required. Unfortunately, no general observer

design method currently exists. The most general approach for the design of an ob-

server using a Luenberger-like approach is the technique proposed by Kazantzis and

Kravaris [26].

Existing methods of nonlinear observer design are either computationally expensive

or restrictive in terms of requirements. For example, the Kravaris-Kazantzis extension

of the Luenberger observer can be computationally expensive for large scale systems.

Simple techniques such as the extended Kalman filter use linear approaximations
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of the nonlinear dynamics. As a result, it may not be convergent if the initial lin-

earization error is too large. Most other nonlinear design methods lack generality.

Therefore, the objective of this thesis aims to develop an alternative observer design

approach that can be applied to more general classes of nonlinear systems.

A vector field describing the dynamics of a nonlinear system can always be expressed

as the sum of a gradient of a potential function and an antisymmetric component

that involves the gradient of multiple Hamiltonian functions. Although such decom-

positions are not unique, the Hamiltonian potentials that are generated can be used

effectively in the design of controllers and observers. A subset of these systems, po-

sition based mechanical systems, are described by the Lagrangian equations, whose

symmetry can be exploited to design an observer. However, non-mechanistic systems

are driven by chemical or electric potential fields. These dissipative systems can be

described by the Hamiltonian equations and the ‘force’ for action is described by the

negative of the potential.1 Assuming our system model is accurate and the system is

observable, a potential function associated with the system can be obtained and used

to design an observer.

1.2 Thesis Organization

The remainder of this thesis is organized into three chapters.

Chapter 2: First, the observer design problem is specified. An overview of selected

nonlinear observer design methods is presented as well as their potential drawbacks.

The necessary and sufficient conditions for observability are presented. The develop-

ment and properties of Hamiltonian systems for control systems is shown, and other

1Systems are assumed physically based, ie. energy is conserved at best.
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methods of physically based metric observers are presented. The second half of the

chapter covers the necessary mathematical background for the development of our

observer design method. Lyapunov stability theory as the main tool for the stability

analysis of the observer error dynamics. This thesis proposes a homotopy operator

approach for the computation of suitable potentials. This operator is reviewed along

with some basic mathematical background on exterior calculus.

Chapter 3: The method of potential decomposition on an arbitrary metric using the

homotopy operator is developed. Using the mathematics presented in Chapter 2,

the potential-based observer design method for systems using a time-varying metric

is proposed. A Lyapunov-based approach is used to prove the convergence of the

proposed observer. Two simulation examples, the Van der Pol oscillator and the

Chen attractor, are used to demonstrate the effectiveness of the observer.

Chapter 4: A technique for the design of a time-invariant metric is presented. The

approach makes use of the Hessian of the potential to design an effective observer.

The proposed metric is assumed to depend only on the observer states. As a result,

the metric expression can be used directly in the observer dynamics. A Lyapunov

analysis is used to establish the asymptotic stability of the observer error dynamics.

Two simulation examples are then presented: a stable focus system and the two-

dimensional Lotka-Volterra predator-prey system.

Chapter 5: The final chapter provides the conclusions of the thesis. A brief statement

of future research is provided.
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Chapter 2

Literature Review

In this thesis we consider autonomous nonlinear systems of the form:

ẋ = f(x), (2.1)

y = h(x), (2.2)

where x ∈ Rn is the vector of state variables, and y ∈ Rm are the output variables.

f(x) is a vector-valued Ck function of the state variables x ∈ Rn, and h(x) is also Ck

with k ≥ 2. The system is assumed to be stable in the sense of Lyapunov.

2.1 Observer Design and Stability

The design of an observer seeks a nonlinear dynamical system, ˙̂x = F (x̂, h(x)), where

h(x) is the observed system’s output, such that the observer error dynamics:

ė = ẋ− ˙̂x, (2.3)
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has an asymptotically stable equilibrium at the origin e = 0. In this chapter, a

definition of stability will be provided. An overview of the mathematics used in this

thesis is presented. Current nonlinear observer design methods are reviewed.

2.1.1 Nonlinear Observers

Developments in nonlinear observer design can be broadly broken down into the

following areas: linearization methods, high-gain observers, differential geometric

techniques, optimization-based receding horizon, and particle filters. The primary

linearization method makes use of the Luenberger method applied to a local lin-

earization of the nonlinear system. A local nonlinear Luenberger approximation was

proposed by Kazantzis and Kravaris in [26]. Assuming that the eigenvalues of the

Jacobian of f(x) at x0 are non-zero, the observability of the nonlinear system (2.21)

it is shown that there exists a state-space transformation z = T (x) such that the

nonlinear system can be transformed to the linear system:

ż = Az + by, (2.4)

where A is Hurwitz, and {A, b} is controllable. This observer can be written in original

coordinates as follows:

˙̂x = f(x̂) +

[
∂T

∂x̂
(x̂)

]−1

b(y − h(x̂)). (2.5)

This approach requires solving a nonlinear partial differential equation (PDE),

∂T (x)

∂x
= AT (x) + bh(x), T (0) = 0. (2.6)
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Such transformations are therefore extremely difficult to obtain in practice. Kazantzis

and Kravaris [26] propose a Taylor series approach to approximate the solution of

these PDEs for a class of analytic nonlinear systems. Andrieu and Praly [7] build on

this method using a series of sufficient conditions that allows the computation of an

approximate solution for the resulting nonlinear PDE. The approximate solution is

given by:

T (x) =

∫ 0

−∞
exp(−As)B(h(X̃(x, s)))ds, (2.7)

where B is some exponentially decreasing function and X̃ is the solution to the

modified system:

ẋ = f̃(x) = χ(x)f(x), (2.8)

where χ(x) = 1 if x is in some region about the equilibrium and zero outside the

region.

High-gain observers are another widely applied class of design methods. A single out-

put high-gain observer was proposed by Gauthier et al. [18]. The approach considers

an observer of the form:

˙̂x = f(x̂) +H(h(x)− h(x̂)), (2.9)

where H ∈ Rn is chosen such that for ė = ẋ − ˙̂x has a Jacobian which is Hurwitz.

Then H is chosen to minimize the error between:

η̇ = Amη + NL(η), (2.10)
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and,

˙̂η = Amη̂ + N̂L(η̂) +H(y − ET
1 η̂), (2.11)

where Am is the linearization of the state function at x, y = ET
1 η, and NL is the

nonlinear terms dependent on a series of transforms [27]. It is then shown that for a

single output system, one can choose an observer gain that depends on the Lipschitz

constant of the system’s nonlinear dynamics1 and the output function [38][4].

Differential geometric observers use state-space transformation of a nonlinear system

to achieve linear error dynamics. Initial work by Bestle and Zeitz [9], as well as Krener

and Isidori [29], showed that nonlinear systems satisfying certain conditions can be

transformed by state-space diffeomorphisms and output injection to a system that

admits linear observer dynamics. In Alvarez and López [5], a compromise between

robustness and speed of convergence for geometric state estimation is established.

The celebrated Kalman filter can be applied to the nonlinear problem through a

successive linearization procedure [25]. The filter works by estimating the upcoming

output measurement, comparing the prediction to the measurement, and based on the

measurement error recursively updating all previous state estimates to minimize the

least-squares error between the output predictions and measurements. For a nonlinear

continuous-time system, the deterministic formulation of the extended Kalman filter

is discussed in Chapter 4.

The unscented Kalman filter was developed as an improvment upon the extended

Kalman filter and lead to the development of the general class of particle filters [22].

A particle filter uses a set of prior measurements to construct a probability density

function that predicts the expected state variable values [8]. Numerous approaches

1Where if the system seperable into a linear, Ax, and nonlinear part, Ψ, ẋ = Ax+ Ψ(x).
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have been proposed in the literature depending on the type of system and statistical

distribution.

State estimation using the receding horizon method predicts the current state vari-

able using various optimization techniques to minimize the error between prior state

measurements and the estimated state trajectory. The method was first proposed in

[25] to design optimization based observers for both continuous and discrete time to

determine a current state trajectory that minimizes the error of the past measure-

ments [30]. Discrete-time formulation is generally easier to apply and the preferred

methodology in practice. Nevertheless, continuous-time formulations have also been

developed [35].

2.1.2 Observability

This section provides a brief overview of the nonlinear observability conditions and

follows the work of Andrieu, et. al. [6]. From their work, the necessary conditions

for the asymptotic observability of an autonomous nonlinear system of the form (3.1)

are reviewed. Conditions necessary for exponential observability and tunability are

also given. Finally, a sufficient condition for local observability is presented.

In [6], the dynamical system is considered on a smooth Riemannian manifold, M :

f : M 7→ TM, h : M 7→ Rp, (2.12)

then letting A ⊂ M be an open subset containing both the initial conditions, x0,

and the solution at the maximum time, X(x(tf ), tf ). The observer is denoted by the

dynamical system:

˙̂
ξ = ψ(ξ̂, y), x̂ = τ(ξ̂, y), (2.13)
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where τ and ψ are some smooth functions. The trajectories of the nonlinear sys-

tem solution of the system, and the observer, ξ̂, are denoted by (X(x, t), Ξ̂(ξ̂, x, t)),

respectively. The state estimates are given by:

X̂ = τ(Ξ̂(ξ̂, x, t), h(X(x, t))). (2.14)

An asymptotic observer is an observer of the form (2.13) whose solutions, defined for

t ∈ [0,∞), are such that:

lim
t→∞

dg(X(x, t), X̂(x, ξ̂, t)) = 0. (2.15)

Andrieu, et. al [6] provide necessary conditions for observability. If A is an open

subset of M where x ∈ A ⊂ M containing the trajectory of x for all time. Then

∀x1, x2 ∈ A with the same outputs:

h(X(x1, t)) = h(X(x2, t)), ∀t ≥ 0, (2.16)

the corresponding state trajectories X(x1, t), X(x2, t) converge to the same trajectory

asymptotically. That is,

limt→+∞dg(X(x1, t), X(x2, t)) = 0, (2.17)

where dg is the metric distance on the given Riemannian manifold. This is a nonlinear

detectability condition.

The final requirement for an asymptotic observer is the invariance and attractivity of

the zero error set between the given autonomous system and its observer. Assuming
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there exists a compact forward invariant 2 set C = Cx × Cξ̂ ⊂ A × Rm, and there

exists C2 ⊆ Cx where x ∈ C2 7→ τ ∗(x) ⊂ Cξ̂ such that:

ε = {(x, ξ̂) ∈ C2 × Cξ̂ : ξ̂ ∈ τ ∗(x)}. (2.18)

Explicitly this requires:

• ∀(x, ξ̂) ∈ ε : τ(ξ̂, h(x)) = x,

• ε is forward invariant, and

• ε is attractive in C:

limt→+∞ dg,m((X(x, t), Ξ̂(x, ξ̂, t)), ε) = 0,

where dg,m is the metric onM×Rm and dg,m((x, ξ̂), ε) = min(x0,ξ̂0)∈ε dg,m((x, ξ̂), (x0, ξ̂0)).

The more widely used definition of observability is given locally using the Lie deriva-

tives of the state and the output functions [19]. The notation uses the Lie derivative

defined as:

Lf (hl) =
n∑
k=1

∂hl
∂xk

fk, (2.19)

Li+1
f (hl) = Lif (hl). (2.20)

Given that the system’s state trajectories are distinguishable, the system is said to

2(Forward Invariance) A set A ⊂ X is forward invariant if f(A) ⊂ A, where f : M 7→ M is a
continuous mapping [12].
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be locally observable if the matrix:

O(x0) =



∂L0
f (h1)

∂x
(x0)

...

∂L0
f (hp)

∂x
(x0)

...

∂Ln−1
f (h1)

∂x
(x0)

...

∂Ln−1
f (hp)

∂x
(x0)



, (2.21)

has rank = n in a neighbourhood of x0. This condition is associated with the lineari-

ation of the system. In general, local observability requires that the codistribution

O = [dh, dLfh, ..., d
n−1
f h] spans Rn. If these conditions are satisfied then f is locally

observable in some neighbourhood of x0.

2.1.3 Hamiltonian Systems

In this thesis, we consider a class of systems that can be expressed using a potential

field. By the method presented in section (3.2), a potential can be obtained and

used for stabilization or observer construction. Work on Hamiltonian representations

of non-mechanical systems has led to the development of control and stabilization

methods [34]. Some of the recent developments on the subject are briefly reviewed.

Work on the control and description dissipative Hamiltonian systems was proposed

by Maschke et al. [32]. They examined the use of a system’s dissipation to develop

a control function that stabilizes the system. A dissipative Hamiltonian dynamical
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system is represented by:

ẋ = f(x) + g(x)u = T (x)
∂H

∂x
+ g(x)u, (2.22)

where H(x) is a Hamiltonian function, T (x) ∈ Rn × Rn that defines the geometry

to the state space called the structure matrix3. If such a representation exists then

(2.22) is a dissipative Hamiltonian system. Systems of this type form the basis for

the approach proposed in this thesis.

The stabilization and control of Hamiltonian systems has been studied by Ortega et.

al. [34]. In particular, it was shown that if any system of the form ẋ = f(x) ∈ C1 has

an asymptotically stable equilibrium point then there exists matrix valued functions

J(x) = −JT (x), R(x) = RT (x) ≥ 0, and a positive definite H(x) such that:

f(x) = [J(x)−R(x)]
∂H

∂x
(x). (2.23)

2.1.4 Physically Based Metric Observers

Metric based observers map a dynamical system into a given metric space where an

observer can be effectively designed, then transformed back into the system’s original

coordinates.

The most well developed metric based nonlinear observer is the Lagrangian observer.

A Lagrangian system is one that can be described by the Lagrange equation on an

n-dimensional manifold, M :

L(q, q̇) =
1

2
gij(q)q̇

iq̇j − U(q), (2.24)

3T (x) = J(x, u) - R(x), where J(x, u) = −JT (x, u) and R(x) = RT (x) ≥ 0.
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where gij(q) are the elements of the intertia matrix, q ∈M is the coordinates denoted

by qi for i = 1..n, and U(q) is a potential energy function. Typically, both position

or velocity defined mechanical systems are expressible using this method. The La-

grangian and Euler-Lagrange equations are intrinsic4 and define a useable symmetry

that can be exploited to design an observer [3].

Aghannan and Rouchon propose a method of state estimation of the position and

velocity of a mechanical Lagrangian system with position measurements using a pro-

jection onto a Riemannian manifold [3]. The proposed metric, G, is then defined by

the kinetic energy, where, for a given coordinate system’s velocity vectors, it takes

the form:

KE =
1

2
ẋTGẋ. (2.25)

Using the metric curvature and distance, a convergent observer can be designed.

Bonnabel builds on this method and proposes the use of a Jacobi metric for an inde-

pendant estimation of the velocity components (when the position is measured) for a

conservative system [10]. Another example of an energy-based symmetry exploiting

observer was developed by Bonnabel et. al. for quantum systems [11].

Recently, work by Sanfelice and Praly generalizes the use of the metric projection

properties for observer design [37]. They show that one can design an observer if the

system satisfies the following properties. Using the notation in [37], a Riemannian

metric, P (x) is defined that satisfies the following expression:

vTLfP (x)v ≤ 0 ∀(x, v) ∈ Rn × Rn and
∂h

∂x
(x)v = 0, (2.26)

4Meaning that the relations are invariant with respect to choice of coordinates.
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where v is an arbitrary vector in Rn and P (x) is the metric expressed in the original

coordinates 5. As long as the output set H(x) = {x : h(x) = y} is monotonic

then there exists a minimal geodesic for all points in the system’s domain on the

Riemannian manifold. Then the resulting metric observer is be defined as:

˙̂x = f(x̂)− kE(x̂)P (x̂)−1∂h

∂x
(x̂)T

∂δ

∂y1

(h(x̂), y), (2.27)

where δ : Rm × Rm 7−→ R+ and kE(x̂) is a gain function greater than the minimal

geodesic function throughout the entire range. The difficulty wih this method is

that the metric must be implicitly defined using a set of inequality relations. The

computation of a suitable metric remains challenging.6

2.1.5 Previous Work

This thesis develops on developments in the area of Hamiltonian realization [24],

Hamiltonian decomposition [21], and potential-based feedback control [23]. The initial

work on Hamiltonian realization [24] using exterior calculus generalizes on work by

Cheng, et. al [14] to find a dissipative realization on a given metric space for a given

Hamiltonian system. It is shown that given a system expressed in the form:

ẋ = T (x)∇H, (2.28)

5Where the coordinate on the manifold is given by x̄ = ψ(x), then if P̄ (x̄) is the metric on the
manifold, P (x) = ∂ψ

∂x (x)T P̄ (x̄)∂ψ∂x (x).
6Sanfelice and Praly promise a follow up paper that defines the construction of such a Riemman-

nian metric satisfying these conditions but it is not yet published.
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there exists a dissipative potential function.7 The expression of a potential driven

system can be derived using De Rham’s Homotopy operator [20]. For a system with

this property, we build on this work to use the potential field in the design of an

observer.

2.2 Lyapunov Theory

In this section, a brief introduction to Lyapunov theory is provided. Lyapunov theory

remains the only suitable method currently for the analysis of stability of nonlinear

systems. This section follows the definitions and notations provided in [28].

The standard Lyapunov stability results presented are focused on nonlinear systems

of the form:

ẋ = f(x). (2.29)

Stability definitions are first presented.

Definition 1. (Stability): The equilibrium point x = 0 is

• stable if, for each ε > 0, there is a δ(ε) > 0 such that

||x(0)|| < δ =⇒ ||x(t)|| < ε, ∀ t ≥ 0,

• unstable if it is not stable,

• asymptotically stable if it is stable and δ can be chosen such that

||x(0)|| < δ =⇒ limt→∞x(0) = 0.

Is can be shown that this definition of stability is consistent with the existence of a

suitable Lyapunov function. As a result, this stability is often referred to as Lyapunov

7See the section on the potential decomposition.
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stability. A Lyapunov function, V (x), is a continuous function on some domain D ⊂

Rn, V :D 7−→ R.

Definition 2. (Lyapunov Stability): Let x = 0 be an equilibrium point and D ⊂

Rn be a domain containing the equilibrium, x = 0. Let V :D 7−→ R be continuously

differentiable such that:

V (0) = 0 and V (x) > 0 in D − {0},

V̇ (x) ≤ 0 in D,

• then, x = 0 is stable. Additionally, if:

V̇ (x) < 0 in D − {0},

• then x = 0 is asymptotically stable.

Thus, by the above definition, the existence of a Lyapunov function is sufficient, but

not necessary, for stability of a dynamical system. For physical systems Lyapunov

functions can be constructed from the conservation laws.

2.3 Exterior Calculus

The mathematics of exterior calculus is used to extract the dissipative and conser-

vative parts of the energy-like systems. An overview of the necessary operators and

properties used in the analysis are covered here. Edelen [16] gives an extensive cover-

ing of exterior calculus [16] and most advanced vector calculus texts cover differential

forms and their properties [15].
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2.3.1 Differential Forms

The tangent space, Tp(Rb), at a point, p ∈ Rn, is isomorphic to Rn, and its bundle is

represented by:

T (Rn) =
⋃
p∈Rn

Tp(Rn). (2.30)

This mean that if X is a smooth vector field, X ∈ Γ∞(Rn), then we define the

mapping:

X : Rn 7−→ T (Rn), (2.31)

where the mapping assigns to every point in p ∈ Rn a tangent vector X|p ∈ T (Rn).

Then, the cotangent (dual) space as the space of linear functionals on T (Rn):

T ∗(Rn) = {ω|p : TpRn 7−→ R}, (2.32)

where each ω|x is linear. The space of linear functions on Rn:

f : Rn 7−→ Rn, (2.33)

is defined as the space of zero-forms, denoted Λ0(Rn). We define the covector field,

T ∗(X), as the space of differential forms of degree one, Λ1(Rn), with elements of this

space called one-forms, with the representation:

ω =
∑

ωi(x)dxi, (2.34)

where {dxi} is the natural basis of the cotangent space.

The space of smooth vectors is denoted by Γ∞(Rn), and its standard basis by ∂i =
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∂
∂xi

. A smooth vector field can be represented as:

X(x) =
n∑
i=1

vi(x)∂i ∈ Γ(Rn), (2.35)

where vi(x) are smooth functions at point x. As before, the space of one-forms is

denoted by Λ1(Rn), and its standard basis by dxi. A differentiable one-form is then

defined as:

ω(x) =
n∑
i=1

ωi(x)dxi ∈ Λ1(Rn), (2.36)

where the coefficient ω(x1, ..., xn), i = 1, ..., n are smooth functions. The one-form

maps a subset of the manifold to the tangent bundle.

2.3.2 Operators

The required exterior calculus operators will be covered as well as their properties

necessary to extract the potential function of a dynamical system. These operators

are: the wedge (exterior) product, the exterior derivative, the Hodge star operator,

the inner product , and the homotopy operator8.

Using the definitions of the previous section, the wedge product defines an anti-

symmetric algebra on two differential forms of degree k ≥ 1, ∧ : Λk × Λl 7−→ Λk+l,

with the following distributive and anti-commutative properties:

1. α ∧ (β + γ) = α ∧ β + α ∧ γ,

2. α ∧ β = (−1)deg(α)deg(β)β ∧ α,

8Also known as De Rham’s homotopy operator



2.3. EXTERIOR CALCULUS 19

where α, β, and γ ∈ Λ(Rn). A differential form of degree k ≤ n can be written as:

ω(x) =
∑

i1<i2<...<ik

ωi1i2...i3(x)dxi1 ∧ dxi2 ∧ ... ∧ dxik , (2.37)

where, ω(x) ∈ Λk(Rn), and ωi1i2...ik defines
(
n
k

)
functions in the domain of Λk(Rn).

The exterior derivative operates in a similar manner to the familiar derivative operator

and the same on zero-forms. It is a unique operator on Λ(Rn) with the following

properties:

1. d : Λk(Rn) 7−→ Λk+1(Rn),

2. d(aα + bβ) = adα + bdβ,

3. d(α ∧ β) = (dα) ∧ (dβ),

4. df =
∑n

i (∂f/∂xi)dxi, f ∈ Λ0(Rn),

5. d ◦ dα = 0.

where f(x) ∈ Λ0(Rn). Following the fourth property of the exterior derivative, all

differential forms that are exact, α = dβ, are also closed, d◦dα = 0 .9 The general-

ization of the exterior derivative for higher order differential forms is as follows. For

a smooth differential form:

ω =
n∑
i=1

n∑
j=i+1

· · ·
n∑

z=y+1

ωi,j,...,zdxi ∧ dxj ∧ · · · ∧ dxz, ωi,j,...,z ∈ Λ0(Rn), (2.38)

9The converse, all closed forms are exact, is not always true. However on some spaces it is – The
Poincare Lemma.
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its exterior derivative is given by:

dω =
n∑
i=1

(
∂ω

∂xi

)
∧ dxi. (2.39)

The Hodge star operator or Hodge dual, ?, is a linear operator defined a metric space,

G, equiped with an inner product, such that it satisfies:

ω ∧ ?ω =
√
det(G)µ, ∀ω ∈ Λ(Rn), (2.40)

where µ =
√
det(G)dx1 ∧ dx2 ∧ · · · ∧ dxn is the volume form. The Hodge star maps

a differential form of degree p ≤ n to its dual of degree n− p:

? : Λp 7−→ Λn−p, (2.41)

where ω ∈ Λp(Rn). As a basic example, take on a 2-dimensional manifold that has a

metric tensor G = dx1⊗dx1 + dx2⊗dx2, the Hodge star of dx1 yields dx2 (ie. ?dx1

= dx2 and ?dx2 = −dx1). An explicit definition for the generalized Hodge star is

defined using Einstein summation [33]:

?ω =

√
G

k!(n− k)!
ωi1i2...ikε

i1...ikjk+1...jn−kdxjk+1
∧ ... ∧ dxjn , (2.42)

with ω ∈ Λk(Rn) k≤n, where G is the metric tensor, εi1...ikj1...jn−k is the Levi-Civita

symbol, ωi1...ik is the product of the zero-forms making up the k-form.

Similar to the exterior derivative the interior product can be generalized to exterior
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calculus. It acts on a differentiable vector and a differential form of degree k over Rn:

y : Γ∞(Rn)× Λk(Rn) 7−→ Λk−1(Rn), (2.43)

with the following properties:

1. V yf = 0,

2. V yω = ω(D),

3. V y(α + β) = Dyα +Dyβ,

4. V y(α ∧ β) = (Dy) ∧ β + (−1)deg(α)α ∧ (Dyβ),

where ω ∈ Λ1(Rn), ∀V ∈ Γ∞(Rn), ∀α, β ∈ Λk(Rn) with k = 1, 2, ..., n and f ∈ Λ0(Rn).

Homotopy Operator

The final and most central operator to this analysis is the De Rham’s homotopy

operator. The homotopy operator operates on a star-shaped region, S. The star-

shaped region is an open region in the n-dimensional space of Rn. A region is defined

with respect to a point, p0, that is contained in S (in this thesis p0 will normally

be assumed to be 0). If S ⊂ U where U is a neighbourhood of p0, then coordinate

functions assign coordinates (x0
1, x0

2, ... , x0
n) to the point p0. Then S is defined such

that for any point p in S the coordinate function of U assigns coordinates to p such

that the set of points with coordinates (x0
i + λ(xi − x0

i )) ∈ S ∀ λ ∈ [0, 1].10 This

vector field is defined as:

X(xi) = (xi − x0
i )∂i =

(
∂

∂λ
(x0

i + λ(xi − x0
i ))

)
∂i. (2.44)

10In other words, all points in S are connected to p0 linearly.
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The homotopy operator, H, is defined on S by requiring that H be a linear operator

on Λ(S) ⊂ Λ(Rn) that satisfies:

ω = d(Hω) + Hdω, (2.45)

where ω ∈ Λk(S). Let ω be a k-form with S centered around x∗. For these coordinates

the operator is defined as:

(Hω)(x) =

∫ 1

0

Xyω(x∗i + λ(xi − x∗i ))λk−1dλ, (2.46)

with X being the associated vector field on S, λ ∈ [0, 1], and k = deg(ω). H is well

defined on S, since both X and ω(x,λ) are well defined on S [16]. The properties of

H are as follows:

1. H : Λk(S) 7−→ Λk−1(S) ∀k ≥ 1 & Λ0(S) 7−→ 0,

2. dH + Hd = I ∀k ≥ 1,

3. Hdf(x) = f(x)− f(x0) ∀k = 0,

4. HHω(x), Hω(x0) = 0,

5. XyH = 0, HXy = 0.

By identity (2.45), it follows that d(Hω) is a closed form. By the Poincaré lemma

every closed form on S is exact, so d(Hω) is also exact [17]. The exact part of ω is

denoted ωe and the anti-exact part is ωa = Hdω. Thus, the homotopy operator can

be used to separate a one-form into an exact and anti-exact form.
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Chapter 3

Potential Based Metric Observer

3.1 Introduction

In this chapter, a method is developed for the design of a metric-based nonlinear

observer for a system with a potential expression. The systems considered are au-

tonomous nonlinear systems with a measured1 output of the form:

ẋ = f(x), y = h(x) = Cx, (3.1)

where x ∈ Rn is the vector of state variables, y ∈ Rm is the output vector, and

f(x) ∈ Ck where k ≥ 2.

The decomposition method is presented and used to obtain the error system’s po-

tential function, P (e, x̂). The observer equation and time-varying metric differential

equation are proposed to design a suitable observer. The stability of the observer

and metric equation are then assessed using Lyapunov stability. Finally, non-trivial

illustrative simulations are shown.

1Where at least one or more states are not measured.
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3.2 Potential Decomposition

With the techniques developed in the previous section, we now seek to extract the

system’s potential function, as defined in Section 2.1.3. The potential of the error

dynamics is desired in an attempt to highlight the properties of the error dynamics.2

The error vector field is defined over R2n as:

Fe = (f(x)− f(x̂))
∂

∂x
− (f(x)− f(x̂))

∂

∂x̂
, (3.2)

where x̂ is the observer state, and ∂
∂x

and ∂
∂x̂

denote the vector field coordinates.3

In this thesis, we explore the use of two types of metric spaces: time-varying and time

invariant. For both we define the metric tensor, G, that defines the distance between

both state and observer points as:

G =
n∑
i=1

n∑
j=i

(aijdxi ⊗ dxj + aijdx̂i ⊗ dx̂j), (3.3)

where the time-varying metric coefficients, aij, are functions of time and state, and

for time-invariant metrics aij is a function of state only. The canonical metric tensor

is written as:

Gcan = dx1 ⊗ dx1 + ...+ dxn ⊗ dxn + dx̂1 ⊗ dx̂1 + ...+ dx̂n ⊗ dx̂n, (3.4)

with the associated volume form:

µ = dx1 ∧ ... ∧ dxn ∧ dx̂1 ∧ ... ∧ dx̂n. (3.5)

2As long as the system is stable.
3 ∂
∂xi
·dxj = 1 if i = j, and zero otherwise.



3.2. POTENTIAL DECOMPOSITION 25

To get the error associated with the differential form, we take the interior product of

the volume form, µ, along the vector field to obtain the (2n− 1) form:

j = Feyµ = (−1)n−1

n∑
i=1

((fi(x)− fi(x̂))Λi − (fi(x)− fi(x̂))Λ̂i), (3.6)

where

Λi = dx1 ∧ ... ∧ dxi−1 ∧ dxi+1 ∧ ... ∧ dxn ∧ dx̂1 ∧ ... ∧ dx̂n,

Λ̂i = dx1 ∧ ... ∧ dxn ∧ dx̂1 ∧ ... ∧ dx̂i−1 ∧ dx̂i+1 ∧ ... ∧ dx̂n.

The associated one-form, ω, is then computed using the Hodge star operator:

ω = ?j. (3.7)

The metric induced one-form can then be decomposed using the homotopy operator

into the sum of three differential forms:

ω = ωe + ωa + γ, (3.8)

where ωe is the exact part of ω, ωa, the anti-exact part and γ, the harmonic part.

Using the homotopy operator, the one-form, ω, can be decomposed as:

ω = dHω + Hdω, (3.9)

where dHω is the exact or dissipative part and Hdω is the anti-exact or conservative

part of the covector field. For a given system with a potential expression, we can
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rewrite the exact part in gradient-like form:

ωe = dHω = dP = ∇ePde, (3.10)

where the function P (x, x̂) = P (e+ x̂, x̂) is the potential function of the system over

the domain of the star-shaped region, S. Additionally, the anti-exact part of ω on

the X over S is:

XyHdω = 0, (3.11)

by the fourth property of the Homotopy operator. The homotopy operator yields the

potential associated with the canonical metric in error coordinates as:

P (e, x̂) = Hω =

∫ 1

0

e
∂

∂e
y(f(x̂+ λe)− f(x̂))dλ. (3.12)

In the following, this potential will be used for the design of suitable observers.

3.3 Observer Design

The homotopy operator is used to construct an observer for the system shown in (3.1)

that seeks to reduce the estimation error e = x − x̂ with time. From the construction

of the potential function given in (3.12), we note that P (0, x̂) = 0 and ∇eP (0, x̂) = 0.

It is then noted using property 5 of the homotopy operator that the error dynamics

follow a gradient:

e
∂

∂e
yω = eT

∂P (x̂+ e, x̂)T

∂e
= eTΘ(x̂+ e, x̂)e, (3.13)
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where Θ(e, x̂), the Hessian matrix of the potential, is defined by:

Θ(e, x̂) =

∫ 1

0

∂2P

∂x∂xT
(x̂, x̂+ λe)dλ. (3.14)

With the output function (3.1), the following design equations are proposed. The

metric equation is given by:

Ṁ = −2Θ(x̂)− βM −MQM + 2CTRC , M(0) = α, (3.15)

where M is a symmetric positive definite matrix of the time-varying metric coeffi-

cients, aij, α is a matrix of the initial values of the metric coefficients, and Q and

β are symmetric positive matrices of scalars that define a unique and symmetric so-

lution for M . The initial value matrix, α, must be symmetric, positive definite and

in the solution space of β and Q. The proposed observer is given by the dynamical

system:

˙̂x = f(x̂) +M(t)−1CTR(h(x)− h(x̂)) = F (e, x̂). (3.16)

In the following section, the convergence of the metric based observer is proven.

3.4 Main Result

In this section, we establish the asymptotic stability of the error system, ė = ẋ -

˙̂x. First, we show that the Hessian Θ(e, x̂) is Lipschitz. Following that, a Lyapunov

function is proposed and used to establish the observer stability.

Lemma 1. If f ∈ Lip(S), where S ⊂ Rn, then the Hessian matrix Θ(x) is Lipschitz

on S.
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Proof: First, assume that the system has a potential function, P (e+ x̂, x̂), and that

f(x) is at least Lipschitz continuous for all points in the domain of interest. Then

since ė = ∂P
∂e

(e + x̂, x̂) + U(e, x̂)4, so since f(x) is Lipschitz continuous then ė, thus

∂P
∂e

(e + x̂, x̂) is as well. This implies that, by the equality given in (3.13), we get the

Lipschitz relation:

|eT∇eP (x, x̂)− eT∇eP (x = x̂, x̂)| ≤ L||e||2,

=⇒ |eT (Θ(x, x̂)−Θ(x = x̂, x̂))e| ≤ L||e||2.

Thus, Θ is Lipschitz on the star-shaped domain in some area around e = 0. This

proves the lemma.

Then using the Lipschitz property of Θ the local stability of the error dynamics are

assessed.

Theorem 1. Assume that there exists a β and Q such that the equation (3.15) admits

a unique positive definite solution M(t). Furthermore, assume that the β and Q are

such that 1
2
(βλ + λ2λQ) > L, where λ is the minimum eigenvalue of M and λQ that

of Q. Then for this choice of β and Q the observer (3.16) is such that the origin is

an asymptotically stable equilibrium of the error dynamics:

ė = f(x̂+ e)− F (e, x̂). (3.17)

Proof: We pose the Lyapunov function for the error dynamics, V (e,M) = 1
2
eTMe.

4Where eTU(e, x̂) = 0.
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Then taking the derivative we get,

V̇ = eTMė+
1

2
eTṀe. (3.18)

The error dynamics are given by expanding (3.17):

ė = f(x)− f(x̂)−M−1CTRCe.

Expanding V̇ , we obtain:

V̇ = eTM(f(x)− f(x̂))− eTCTRCe+
1

2
eT (−2Θ(x̂)− βM −MQM + CTRC)e.

By the equality (3.13), we obtain eTM(f(x)− f(x̂)) = eTΘ(e, x̂ + e)e. Thus, V̇ can

be simplified to:

V̇ = eT (Θ(e, x̂+ e)−Θ(x̂))e− β

2
eTMe− 1

2
eTMQMe. (3.19)

Then using the previously shown lemma, we obtain the inequality:

V̇ ≤ L||e||2 − β

2
eTMe− 1

2
eTMQMe. (3.20)

Since M is positive definite, it follows that β
2
eTMe ≥ βλ

2
||e||2 where λ is the minimum

eigenvalue of M . It then follows that the inequality can be written as:

V̇ ≤ L||e||2 − (
βλ

2
+
λ2λQ

2
)||e||2, (3.21)
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where λQ is the minimum eigenvalue of Q. As a result, for a fixed β and Q that

satisfy the conditions of the theorem, V̇ < −σ||e||2 on S for some positive constant σ

> 0. This proves the asymptotic stability of the error dynamics and the convergence

of the metric based observer system.

With this proof, we conclude that for a potential expressible system an asymptotically

convergent observer can be constructed using the method shown as long as the metric

is symmetric, positive definite, and well defined on S for the chosen β and Q.

3.5 Simulation

In this section, we perform a simulation to study the application of the proposed

observer design technique. First, the van der Pol oscillator is considered. Then the

observer is designed for a three dimensional chaotic Chen attractor. Finally, the

problem examined by Sanfelice and Praly in [37] is treated using the potential based

method, leading to the discussion of time-invariant metrics the following chapter.

3.5.1 Van der Pol oscillator

The van der Pol oscillator is given as presented:

ẋ1 = x2,

ẋ2 = 2x2(1− x2
1)− x1,

y = x1.
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This system has a stable focus around the equilibrium focus x∗ at {x1 = 0, x2}. The

metric tensor is then posed as:

G = a11dx1 ⊗ dx1 + a12dx1 ⊗ dx2 + a22dx2 ⊗ dx2

+a11dx̂1 ⊗ dx̂1 + a12dx̂1 ⊗ dx̂2 + a22dx̂2 ⊗ dx̂2.

Figure 3.2 shows how the metric coefficients change with time. The choice of metric

yields the error associated one-form:

ω =a11(x2 − x̂2)(dx̂1 − dx1) + (a22(2x2(1− x2
1)

− x1 − 2x̂2(1− x̂2
1) + x̂1)− a12(x2 − x̂2))(dx̂2 − dx2).

The homotopy operator of ω is taken, Hω, then the Hessian is calculated with respect

to x1 and x2.

The choice of tuning matrices are R = 1 and:

Q =

100 0

0 100

 .
The initial conditions are set as:

x1(0) = x2(0) = 2, x̂1(0) = x̂2(0) = 0.5, a11 = a22 = 1, a12 = 0.

Figure 3.1 shows the phase portrait of the system states, as well as the observer

estimates. The observer asymptotically approaches the unknown system state, x2, as

can be seen in Figure 3.4. Additionally as shown in the proof of Theorem 1, the state
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Figure 3.1: A plot of the system about its stable focus (solid) and metric based ob-
server (dashed).

error, e, is asymptotically approaching zero in Figure 3.5.

3.5.2 Chen attractor

The second example is the Chen attractor (a subclass of Chua’s chaotic circuit) given

in [13]. The system is:

ẋ1 = α(x2 − x1),

ẋ2 = (γ − α)x1 − x1x3 + γx2,

ẋ3 = x1x2 − βx3,

y = x2.
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Figure 3.2: A plot of the metric coefficients: a11 (dotted), a22 (dashed), and a12 (solid)
versus time. The initial conditions were: a11(0) = a22(0) = 1 and a12(0)
= 0.

For this simulation, the values are taken as: α = 40, β = 3, and γ = 28. With

the initial conditions being x1(0) = −0.1, x2(0) = 0.5, and x3(0) = −0.6. We then

note the system has an equilibrium point at {x1 = 0, x2 = 0, x3 = 0}. Following the

proposed technique, we assign the metric:

G = a11(dx1 ⊗ dx1 + dx̂1 ⊗ dx̂1) + a12(dx1 ⊗ dx2 + dx̂1 ⊗ dx̂2)

+a13(dx1 ⊗ dx3 + dx̂1 ⊗ dx̂3) + a22(dx2 ⊗ dx2 + dx̂2 ⊗ dx̂2)

+a23(dx2 ⊗ dx3 + dx̂2 ⊗ dx̂3) + a33(dx3 ⊗ dx3 + dx̂3 ⊗ dx̂3).

As before, we set R = 1 and Q = 100I. The observer initial conditions are: x̂1(0) =

x̂2(0) = x̂3(0) = 2, c11(0) = c22(0) = c33(0) = 1, and c12(0) = c13(0) = c23(0) = 0.
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Figure 3.3: A plot of the first state, x1 (solid), and its observer state, x̂1 (dashed).

Figure 3.4: A plot of the first state, x2 (solid), and its observer state, x̂2 (dashed).
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Figure 3.5: A plot of the magnitude of the system error, ||e||, versus time.

The plots are shown in Figures 3.7 to 3.11.

3.5.3 Motivating example

The last example shows the work of Sanfelice and Praly [37] and shows that, with

a time-invariant metric, the potential based observer method can provide interest-

ing and far-reaching results. In equation (35) of the aforementioned paper [37], the

following metric tensor is given:

M(x) =

1 x1x2√
1+x21

0
√

1 + x2
1

 (3.22)
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Figure 3.6: A phase plot of the system for the first and third states (the unobserved
ones) about its focus (solid) and metric based observer (dashed).

for the dynamical system:

ẋ1 = x2

√
1 + x2

1, ẋ2 = − x1√
1 + x2

1

x2
2, y = x1. (3.23)

The observer is subsequently given as:

 ˙̂x1

˙̂x2

 =

x̂2

√
1 + x̂2

1

− x̂1x̂22√
1+x̂21

− 2ke(x̂)

1 + x̂2
1 + (x̂1 + x̂2)2

 1 + x̂2
1

1− x̂1x̂2

 (x̂1 − y), (3.24)

where ke(x̂) is the observer state dependent gain. The observer system is shown to

achieve convergence in some region of the equilibrium. We now demonstrate that the

same type of problem can be solved if the time-invariant metric can be determined a
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Figure 3.7: A plot of the metric coefficients: a11 (solid), a12 (dot-dash), a13 (line),
a22 (dashed), a23 (line), and a33 (dots) versus time. The initial conditions
were: a11(0) = a22(0) = a33(0) = 1 and a12(0) = a13(0) = a23(0) = 0.

priori.

Using the metric based observer approach shown, we can see that for a metric equation

of the form:

G =
1

1 + x2
1

dx1 ⊗ dx1 +
x1x2

1 + x2
1

dx1 ⊗ dx2 + dx2 ⊗ dx2, (3.25)

yields the one-form:

ω = −x2dx1. (3.26)

This one-form is anti-symmetric. As a result, the system has a convex potential
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Figure 3.8: A plot of the first state, x1 (solid), and its observer state, x̂1 (dashed).

Figure 3.9: A plot of the first state, x2 (solid), and its observer state, x̂2 (dashed).
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Figure 3.10: A plot of the first state, x3 (solid), and its observer state, x̂3 (dashed).

Figure 3.11: A plot of the magnitude of the system error, ||e||, versus time.
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and an asymptotically convergent gain observer. Thus, if we can find a way to ob-

tain the correct time-invariant metric apriori for a given system this result could be

generalized, which motivates the discussion in Chapter 4.

3.6 Summary

In this chapter, it was shown that the problem of observer design can be effectively

solved using a time-varying metric that defines a dissipative Hamiltonian representa-

tion. The potential is obtained using the homotopy operator that is made convex by

the choice of a suitable metric differential equation. The observer error dynamics are

shown to be asymptotically stable at the origin. The effectiveness of the proposed

technique is demonstrated using simulations.
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Chapter 4

Time Invariant Metric Observer

4.1 Introduction

Motivated by the example at the end of the last chapter, we design a time-invariant1

metric that allows for the design of a convergent observer. We consider systems of

the type (3.1). The metric is designed with a metric-dependent quadratic Lyapunov

function and makes use of the explicit equation for the error associated one-form.

The Lyapunov derivative is made negative definite by choice of the observer function.

4.2 Design

Let us consider an arbitrary positive definite metric G(e) that meets the following

inequality:

eTGe ≥ 0. (4.1)

Using the approach proposed in the previous chapter, let this choice of metric be such

that the Hessian matrix of the potential is negative semi-definite, that is eTΘe ≤

0, in some region of the origin of the error dynamics (e = 0). This approach is

1Dependant only on the values of the state variables.
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problematic in practice since it is generally difficult to guarantee the negative semi-

definite property of the Hessian such that the metric is only a function of observer

states, x̂. For the Lyapunov function, V = 1
2
eTGe, and the observer dynamics,

˙̂x = f(x̂) + L(x̂, y), where L(x̂, y) is a correction term to be designed. The time

derivative of V is given as:

V̇ = eTΘ(x̂, e+ x̂)e− eTG(e)L(x̂, y) +
1

2
eT Ġe. (4.2)

In general, there is no obvious solution to ensure that:

eTG(e)L(x̂, y) ≥ eTΘe+
1

2
eT Ġe, (4.3)

even if eTΘe ≤ 0 and the metric derivative term can be upper bounded.

However, if one relaxes the negative definiteness conditions on the Hessian matrix

Θ then it may be possible to remove its dependence on the error vector e. In this

chapter, we propose a metric that depends only on x̂ and y. As in the previous

chapter, this metric is required to be positive definite with an associated Lipschitz

continuous Hessian matrix. The metric considered here, is a positive definite observer

state dependent metric:

xTG(x̂, y)x ≥ 0, ∀x ∈ Rn. (4.4)

Specifically, the two (and analogous three) dimensional metric, whose coefficients are:

gij =

 1 + x̂2
i : i = j

0 : i 6= j
,
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is used for simplicity. Using a form analogous to (4.2) the observer gain of the

proposed observer is:

L(x̂, y) = G−1(x̂, y)[Θ(x̂) + L̄(x̂, y)]CT (h(x)− h(x̂)), (4.5)

from (4.2), using h(x) − h(x̂) = C(x − x̂) = Ce, and assuming without any loss of

generality that CTC = 1, one obtains:

V̇ = eTΘ(e, x̂+ e)e− eT (Θ(x̂) + L̄(x̂, y))e+
1

2
eT Ġe. (4.6)

Using the relation from Lemma 1, eT (Θ(e, e+ x̂)−Θ(x̂))e ≤ K||e||2, inequality (4.6)

becomes:

V̇ ≤ K̂||e||2 − eT L̄(x̂, y)e+
1

2
eT Ġe. (4.7)

Posing the left hand side as an equality relation (L.H.S. = 0):

eT K̂Ie+
1

2
eT Ġe = eT L̄(x̂, y)e, (4.8)

where I is the identity matrix of size n, K̂ > K and eliminating the error terms we

obtain:

K̂I +
1

2
Ġ = L̄(x̂, y). (4.9)

We then note that the time derivative of x̂ depends on L(x̂, y). As a result, one must

formulate a system of linear equations to solve for the values of L̄(x̂, y). For our

specific choice of metric, the equation for L̄(x̂, y) can be easily derived.
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First, we note that the derivatives of the metric are given as:

ġij =

 2x̂i ˙̂xi i = j,

0 i 6= j
.

Then since ˙̂x = f(x̂) + L(x̂, y), so the diagonal metric derivative coefficients become:

ġii = 2x̂i[fi(x̂) + Li(x̂, y)]. (4.10)

The expression for Li(x̂, y) is given by:

L(x̂, y) = G−1(x̂)
[
Θ(x̂) + L̄(x̂)

]
CT (h(x)− h(x̂)), (4.11)

= G−1(x̂)



(Θ11 + ¯̀
11) (Θ21 + ¯̀

21) . . . (Θn1 + ¯̀
n1)

(Θ21 + ¯̀
21) (Θ22 + ¯̀

22) . . .
...

...
...

. . .
...

(Θn1 + ¯̀
n1) . . . . . . (Θnn + ¯̀

nn)


CT (h(x)− h(x̂)).

(4.12)

Simplifying the metric inverse g−1
ii to be the diagonal elements of G−1(x̂), the equation
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becomes:

L(x̂, y) =



g−1
11 (Θ11 + ¯̀

11) g−1
22 (Θ21 + ¯̀

21) . . . g−1
nn (Θn1 + ¯̀

n1)

g−1
22 (Θ21 + ¯̀

21) g−1
22 (Θ22 + ¯̀

22) . . .
...

...
...

. . .
...

g−1
nn (Θn1 + ¯̀

n1) . . . . . . g−1
nn (Θnn + ¯̀

nn)


CT (h(x)− h(x̂))

(4.13)

= QCT (h(x)− h(x̂)), (4.14)

where Θij are the elements of the Hessian matrix, assumed symmetric. The elements

of the matrix Q are given by qij = g−1
kk (Θkm + ¯̀

km) with:

k =

 i : i ≥ j

j : j < i
,

m =

 i : i ≤ j

j : j > i
.

For the next step, it is assumed that h(x) ∈ R, so that for y = Cx, the vector C is:

Ci =

 1 for i = p

0 otherwise
.
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As a result, the observer gain is given by:

L(x̂, y) =



qp1(h(x)− h(x̂))

qp2(h(x)− h(x̂))

...

qpn(h(x)− h(x̂))


. (4.15)

From (4.9), the coefficients ¯̀ are such that:

¯̀
ij =

 0 : i 6= j

K̂ + x̂i[fi(x̂) + g−1
kk (Θkm + ¯̀

km)] : i = j
.

This derivation yields a system of n-equations to be solved for n-¯̀ii variables. The

solutions then depend on the dimension of the system, n, and the measured output

vector, C. As an example for a two-dimensional system where C = [1, 0], the function,

L̄, becomes:

L̄(x̂, y) =


K̂+x̂1

[
f1(x̂)+(y−h(x̂))

x̂21
x̂21x̂

2
2

Θ11(x̂)

]
1−x̂1(y−h(x̂))

x̂21
x̂21x̂

2
2

0

0 K̂ + x̂1

[
f2(x̂) + (y − h(x̂))

x̂22
x̂21x̂

2
2
Θ21(x̂)

]
 .

(4.16)

Then for choice of K̂ greater than the Lipschitz constant of the Hessian, and even

though the Hessian may not necessarily be negative semi-definite, the Lyapunov

derivative can be made negative definite, V̇ < 0.
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4.3 Simulation

In this section, two simulation examples will be used to illustrate the function and

design of the metric based observer presented. The systems presented are the two-

dimensional Van der Pol oscillator from Chapter 3 and a stable focus system.

4.3.1 Van der Pol oscillator

The van der Pol oscillator is given by:

ẋ1 = x2,

ẋ2 = 2x2(1− x2
1)− x1,

y = x1.

The system exhibits a limit cycle about the origin. Using the metric defined in (4.4)

and (4.13), the following observer is obtained:

 ˙̂x1

˙̂x2

 = f(x̂) +


20+x̂1x̂2

(1+x̂21)

(
1− x̂1(y−x̂1)

1+x̂21

)
2
3
x̂1x̂22+x̂1x̂2+ 1

4
x̂22−

1
4
x̂21

1+x̂22

 (x1 − x̂1), (4.17)

where the values of K̂ is chosen as 20. For the choice of observer this value ofK ensures

domination of the Hessian Lipschitz constant for ||x0||2 < 5.5. The initial conditions

for the system and the observer states are x1(0) = x2(0) = 2 and x̂1(0) = x̂2(0) = 0.5,

respectively. The results are shown in Figure 4.1. As expected, the observer converges

asymptotically to the system state trajectories. Figure 4.4 shows an asymptotically

decreasing error magnitude as predicted by the Lyapunov analysis. As in Chapter 3,
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Figure 4.1: A plot of the system about the origin (solid) and metric based observer
(dashed).

the time-invariant converges. The rate of convergence of the metric based example

from Chapter 3 is more uniform then the time-invariant method due to the dependence

on the continuous system dynamics.

4.3.2 Chen attractor

The second example again is the chaotic Chen attractor system from Chapter 3:

ẋ1 = 40(x2 − x1),

ẋ2 = −12x1 − x1x3 + 28x2,

ẋ3 = x1x2 − 3x3,

y = x2.
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Figure 4.2: A plot of the first state, x1 (solid), and its observer state, x̂1 (dashed).

Figure 4.3: A plot of the first state, x2 (solid), and its observer state, x̂2 (dashed).
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Figure 4.4: A plot of the magnitude of the system error, ||e||, versus time.

For C = [0, 1, 0], the observer dynamics are given by:

˙̂x = f(x̂)+
−14+ 1

5
x̂22x̂3+3x̂22−10x̂21+ 1

3
x̂3

1+x̂21

1
1+x̂22

(
−28− 24x̂2

2 + 1

1− x̂2(y−x̂2)

1+x̂22

(
6x104 + x̂2

(
−12x̂1 − x̂1x̂3 + 28x̂2 +

(y−x̂2)(−28−14x̂22)

1+x̂22

)))
−1
5
x̂1x̂23+ 1

5
x̂1x̂22

1+x̂23

(x2 − x̂2).

The initial conditions are x1(0) = −0.1, x2(0) = 0.5, x3(0) = −0.6 and x̂i(0) = 2.

The gain value is chosen as K̂ = 6 × 104. The results are shown in figure 4.5 and

4.6. The observer asymptotically converges to the true state trajectories. The results

of the individual states are shown in figures 4.7, 4.8, and 4.9. Unlike the van der

Pol example, the rate of convergence for the time-invariant method is similar to the
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Figure 4.5: A 2-D plot of the Chen attractor system for the first and third states(solid)
and their observer (dashed).

metric based method and the behavior is also similar, with the exception that the

observer is far more agressive for the x2 state.

The proposed method can be compared with the deterministic continuous time ex-

tended Kalman filter given in [36]. Where for a system and its output:

ẋ = f(x) + w, (4.18)

y = Cx+ v, (4.19)

where w and v are Gaussian noise terms centered at zero with covariance matrices,
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Figure 4.6: A plot of the error magnitude, ||e||, of the Chen observer system versus
time.

Figure 4.7: A plot of the first Chen attractor state (solid) and its observer (dashed)
versus time.
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Figure 4.8: A plot of the second Chen attractor state (solid) and its observer (dashed)
versus time.

Figure 4.9: A plot of the third Chen attractor state (solid) and its observer (dashed)
versus time.
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Figure 4.10: A plot of the continuous time extended Kalman filter (dashed) being
used to observer the Chen attractor (solid). The two states shown, x1

and x3, are the unmeasured states.

Q and R, respectively. The continuous-time extended Kalman filter is given by:

˙̂x = f(x̂) +K(y − h(x̂)), (4.20)

K = PCTR−1, (4.21)

Ṗ = (A+ αI)P + P (AT + αI)− PCTR−1CP +Q, (4.22)

with A = ∂f
∂x
|(x̂,0) and F = ∂f

∂w
|(x̂,0). For the Chen example, we let Q = 6×104I, R = I

and α = 0. The results are shown in Figure 4.10 where the first and third states are

shown along the corresponding state estimates. As can be seen in Figure 4.11, the

metric-based observer proposed has an error magnitude 60% less than the extended

Kalman filter after the initial transient behavior.
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Figure 4.11: A plot of the magnitude of the errors of the extended Kalman filter
(solid) and time-invariant metric based (dashed) observers.

4.4 Summary

A time-invariant metric that can be used to design an observer for nonlinear systems

approximated by a dissipative potential was proposed. An observer-based on the

Hessian of the potential on an observer dependent metric was formulated. Under the

assumption that the Hessian matrix resulting for the potential realization is Lips-

chitz continuous, a Lyapunov analysis confirms that the proposed observer produces

asymptotically stable error dynamics. Two simulation examples were presented to

demonstrate the effectiveness of the method.
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Chapter 5

Summary and Conclusions

This thesis proposed two nonlinear observer design approaches. The first approach

applies a time-varying metric dependent on the Hessian of the potential function and

the output. In Chapter 4, an observer is proposed based on a time-invariant metric

dependent on the observer state and the measured output.

5.1 Summary

In Chapter 2, the homotopy operator was presented and is used to decompose a one-

form into its exact (dissipative) and anti-exact (non-dissipative) parts. In Chapter 3

the observer problem was posed as the dynamics of the error between the system and

its observer. This error dynamics were made convergent using an arbitrary metric

and the operators of exterior calculus. The gradient field of the error dynamics was

approximated by the dissipative potential obtained using the homotopy operator. A

metric equation dependent on the Hessian of the potential and the measured output

was proposed, whose inverse is used to design the observer function. Convergence

of the error system was then proven using the metric distance of the error as a

Lyapunov function. Two examples demonstrated the effectiveness of the nonlinear
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the state estimation technique.

The design of a time-invariant metric observer was considered in Chapter 4. The

metric considered was chosen to be dependent on the output and the observer states.

The design of an observer was proposed that makes the Lyapunov derivative negative

definite and which bounds the Lipschitz constant of the Hessian of the potential. A

specific metric was chosen and the associated observer equations were derived. Two

examples of this observer equation were used, and a comparison was made to the

extended Kalman filter.

This work contributes to the nonlinear observer design problem by developing a gen-

eral physically based method that does not require prior knowledge of a metric func-

tion. Techniques of exterior calculus are incorporated to find an alternative to solving

partial differential equations that can be impractical. By making use of the homotopy

operator a large class of dynamical systems can be expressed as potential driven, and

the potential field can be exploited for observer design.

5.2 Future Work

The work leaves many avenues of inquiry unexplored. ‘Natural’ metric spaces such

as the Sasaki or Cheeger-Gromoll metrics have properties such as incompressible

geodesic flow, hamiltonian geodesics, and more [2][1] that may be exploited to design

a more general class of observers. By manipulating properties of the geodesics similar

to the work in [37] improved design methods may be obtainable. Furthermore, the

problem of finding a metric that makes the Hessian of the potential negative-definite

remains. Finally, in this thesis, the exterior derivative was considered to be metric
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independent but could be considered as metric dependent with additional implica-

tions.
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[21] M. Guay, N. Hudon, and K. Höffner. Geometric decomposition and potential-

based representation of nonlinear systems. In Proceedings of the 2013 American

Control Conference, pages 2124–2129, Washington, DC, 2013.

[22] Simon Haykin. Kalman Filtering and Neural Networks. John Wiley and Sons,

2001.

[23] N. Hudon and M. Guay. Observer and damping feedback construction based

on approximate Hamiltonian dissipative realization. In Proceedings of the 18th

IFAC World Congress, pages 13480–13485, Milano, Italy, 2011.
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