
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=iplt20

Platelets

ISSN: 0953-7104 (Print) 1369-1635 (Online) Journal homepage: https://www.tandfonline.com/loi/iplt20

TBXA2R gene variants associated with bleeding

Stuart James Mundell & Andrew Mumford

To cite this article: Stuart James Mundell & Andrew Mumford (2018) TBXA2R gene variants
associated with bleeding, Platelets, 29:7, 739-742, DOI: 10.1080/09537104.2018.1499888

To link to this article:  https://doi.org/10.1080/09537104.2018.1499888

© 2018 Taylor & Francis

Published online: 08 Aug 2018.

Submit your article to this journal 

Article views: 620

View related articles 

View Crossmark data

Citing articles: 7 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=iplt20
https://www.tandfonline.com/loi/iplt20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/09537104.2018.1499888
https://doi.org/10.1080/09537104.2018.1499888
https://www.tandfonline.com/action/authorSubmission?journalCode=iplt20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=iplt20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/09537104.2018.1499888
https://www.tandfonline.com/doi/mlt/10.1080/09537104.2018.1499888
http://crossmark.crossref.org/dialog/?doi=10.1080/09537104.2018.1499888&domain=pdf&date_stamp=2018-08-08
http://crossmark.crossref.org/dialog/?doi=10.1080/09537104.2018.1499888&domain=pdf&date_stamp=2018-08-08
https://www.tandfonline.com/doi/citedby/10.1080/09537104.2018.1499888#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/09537104.2018.1499888#tabModule


GENE OF THE ISSUE

TBXA2R gene variants associated with bleeding
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Abstract

Platelet activity is regulated by a number of surface expressed G protein-coupled receptors
(GPCRs) including the α isoform of the thromboxane receptor (TPα receptor). With the advance
of genomic technologies, there has been a substantial increase in the identification of naturally
occurring rare GPCR variants including in the TBXA2R gene, which encodes the TPα receptor.
The study of patients with naturally occurring variants within TBXA2R associated with bleeding
and abnormal TPα receptor function has provided a powerful insight in defining the critical
role of TPα in thrombus formation. This review will highlight how the identification of these
function-disrupting variants of the platelet TPα has contributed important structure-function
information about these GPCRs. Further we discuss the potential implications these findings
have for understanding the molecular basis of mild platelet based bleeding disorders.
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Platelet activity is regulated by a number of cell surface receptors,
including the G protein-coupled α isoform of the thromboxane
receptor (TPα receptor). The human TPα receptor was the first
human eicosanoid receptor cloned and is a typical Class A rho-
dopsin-like G protein-coupled receptor (GPCR) (1) with sequence
variants in TBXA2R, which encodes the TPα receptor implicated
in asthma, atopic dermatitis, and, of particular relevance to this
review, an autosomal dominant bleeding disorder (2).

The ligand for the TPα receptor, thromboxane A2 (TXA2) is a
product of the oxidative metabolism of arachidonic acid generated
by the platelet, thereby acting in an autocrine manner to stimulate
TPα receptors (3). Resulting stimulation of Gq/11 and G12/13 hetero-
trimeric G proteins activates downstream signaling proteins includ-
ing phospholipase C and RhoA to promote platelet activation. The
TXA2 pathway is the target for the most widely prescribed antiplate-
let drug aspirin, which irreversibly inhibits cyclooxygenase enzymes
(COX-1) reducing platelet TXA2 generation and TPα receptor sti-
mulation. Despite the efficacy of aspirin, there is still interest in
developing direct TPα receptor antagonists in order to preserve the
beneficial effects of other prostanoids (such as gastric mucosal
protection) that are lost upon global COX inhibition (3,4).

One powerful approach to understanding pathophysiological
disease mechanisms is the study of patients with bleeding

disorders. For example, analysis of pedigrees with the severe
platelet function disorder Glanzmann thrombasthenia assisted
discovery of the key platelet integrin αIIbβ3 (5). As with most
GPCRs, some insights into TPα receptor biology have emerged
from the large number of mutagenesis studies undertaken in order
to further understand structure–function relationships of the TPα
receptor (3). However, studying the direct impact of in vitro
mutagenesis on anucleate platelet function in vivo is not possible
experimentally. The study of patients with naturally occurring
variants within TBXA2R associated with bleeding and abnormal
TPα receptor function has provided a powerful alternative defin-
ing the critical role of TPα in thrombus formation.

Thromboxane receptor deficiency (MIM#614009) associatedwith
loss of function TBXA2R variants is an autosomal recessive or domi-
nant disorder and has been identified in multiple pedigrees in which
some individuals have mild mucocutaneous bleeding symptoms (2).
To date, one quantitative defect causing reduced TPα receptor expres-
sion (2) and four qualitative defects caused by TPα receptor amino
acid substitutions have been reported ((6–9); see Table I and Figure 1).

A nucleotide variation which caused loss of TPα receptor
expression was first described in a patient with a history of
mucocutaneous bleeding (2). Sequence analysis of TBXA2R in
the patient and her father revealed heterozygosity for a single
nucleotide duplication at c.167 (c.167dupG in NM_001060.5)
resulting in a frame shift from amino acid 58. Corresponding
cell lines studies showed that this nucleotide variation signifi-
cantly reduced receptor expression.

The first reported qualitative defect in the TPα receptor was
caused by a missense TBXA2R variant predicting the p.Arg60Leu
substitution in the TPα receptor at the start of the first intracel-
lular loop (Figure 1) (9). This variant was first described in a
patient with a history of postsurgical bleeding (9), and has since
been described in a further pedigree with a history of mild
bleeding (10). Platelets from affected individuals show absent or
reduced aggregation to the synthetic TXA2 analog U46619. In
Arg60Leu homozygous patients, this defect in aggregation was
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accompanied by a reduction in downstream TXA2-induced cal-
cium signaling pathways. Interestingly, heterozygous Arg60Leu
patients also showed reduced TPα-stimulated platelet aggregation
but apparently normal calcium mobilization, suggesting an addi-
tional pro-aggregatory effect of TPα receptor activation indepen-
dent of calcium signaling. The Arg60Leu TPα receptor variant
has attenuated receptor responses but comparable ligand-binding
affinities and receptor surface expression when compared to wild
type (WT) receptor (11). Molecular modeling indicates that
Arg60 interacts via hydrogen bonds with Met126 and Arg130 in
transmembrane domain (TM)3 and that this interaction is lost
when the Arg is substituted for Leu (11). Arg130 is part of the
highly conserved D/ERY motif (Figure 1) critical for TPα recep-
tor activation (12). Therefore, in line with previous mutagenesis
studies of the ERY motif (12), the Arg60Leu substituted TPα
receptor is predicted to be unable to undergo the conformational
changes required to promote efficient G protein coupling.

The genotyping and phenotyping of platelets (GAPP) consor-
tium has identified and characterized a series of rare variants in a
number of platelet GPCR genes (13,14) including TBXA2R
(Table I (6–8)). GAPP developed an approach for the rapid
identification and characterization of rare genetic variations caus-
ing defects within platelet proteins (13). Identification and sub-
sequent characterization of these mutations have significantly
enhanced our understanding of structure–function relationships
at the TPα receptor

One example was identified in a patient with a history of
bruising and prolonged epistaxes since infancy (6). TPα recep-
tor-stimulated platelet activity was reduced in the patient whereas
other platelet receptor responses were similar to responses in
healthy controls. Sequencing of TBXA2R showed a heterozygous
c.190G> A variant predicting an Asp304Asn substitution within a
highly conserved NPXXY motif in TMD7 (Figure 1). The reduc-
tion in TXA2-mediated platelet activation in the patient was due

Table I. Variants of TBXA2R.

Description
Variation in
coding DNA Inheritance Region Defect Platelet TP receptor phenotype Reference

Insertion variant
causing frameshift

c.167dupG Heterozygous Reduced
receptor
expression

Small and transient platelet aggregation in response to
U46619 (2.5 μM) with marked impairment at higher
concentration of U46619 (10 μM).

(2)

R60L c.179G> T Homozygous
or
heterozygous

ICL1 Reduced
receptor
coupling to
Gq

Absence of platelet response to 9,1 1-epithio-1 1,12-
methano-TXA2 (2 μM).

(9)

D304N c.190G> A Heterozygous TMD7 Reduced
ligand
binding

Absence of platelet aggregation in response to 0.5 mM
AA with reduced level of aggregation to higher AA
(1 mM and 1.5 mM) concentrations.

(6)

W29C c.87G> C Heterozygous TMD1 Reduced
surface
expression

Platelet aggregation in response to AA (1.5 and 2 mM)
markedly reduced.

(7)

N42S c.125A> G Heterozygous TMD1 Reduced
surface
expression

Platelet aggregation and secretion to AA (1 and
1.5 mM) absent.

(8)

The numbering used to describe coding region variants relates to the Ref Seq transcript NM_001060.5. ICL: intracellular loop. TMD: transmembrane
domain.

Figure 1. Thromboxane (TP-α) receptor snake plot.
Sites of naturally occurring variants found in patients with a bleeding history are highlighted in green. Key amino acid regulatory motifs are
highlighted in yellow (specifically RXR ER retention motif; D/NPXXY motif, E/DRY motif).
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to compromised ligand binding in the Asp304Asn substituted
TPα receptor. The NPXXY motif is postulated to weakly stabilize
the inactive state of GPCRs and allow the rapid conformational
changes required for changes in receptor activation state (15).
Why the Asp304Asn substitution causes such a significant
decrease in ligand binding at the TPα receptor is unclear.
Potentially, this substitution may have a loss of function effect
that is unique to the TPα receptor, although it has been postulated
that this residue may have a more complex role in stabilizing
ligand binding pocket integrity (6).

Two further function-disrupting TBXA2R variants predicting
amino acid substitutions within TMD1 have also been character-
ized (Figure 1; (7,8)). Both of these variations reduce TPα recep-
tor expression at the cell surface, suggesting an important role for
TMD1 in the regulation of anterograde receptor traffic. The first
of these variants, a Trp29Cys substitution, was identified in a
patient with abnormal postsurgical bleeding and reduced TPα
receptor-mediated platelet activation responses (7). Ligand-bind-
ing studies indicated a reduction in both surface receptor expres-
sion and ligand-binding affinity with the Trp29Cys variant. There
was no change in total receptor expression, but a significant
reduction in cell surface expression which was accompanied by
a reduced receptor signaling.

The second TMD1 variant, predicting an Asn42Ser substitu-
tion, was identified in a patient with significant postoperative
and mucocutaneous bleeding (8). As with Trp29Cys, this var-
iant resulted in reduced TPα receptor surface expression and
function with the receptor retained intracellularly, in the trans
golgi network (TGN)/ER compartment. Asn42, the most con-
served residue in class A GPCRs, is therefore required for
correct processing and transport of the TPα receptor to the
cell surface.

One important observation from this case was that the variant
predicting the Asn42Ser substitution was present as a heterozy-
gous trait, indicating that platelets are expected to express both
variant and WT TPα receptor. Despite this there was a profound
loss of TPα receptor-stimulated platelet function, suggesting a
dominant negative effect from the heterozygous variant.
Consistent with this, further study revealed that when co-
expressed, the Asn42Ser substituted receptor led to intracellular
retention of WT receptor. Similar findings have also recently been
reported for the platelet P2Y12 purinergic receptor in which co-
expression of WT and variant receptors can also dramatically
reduce P2Y12-mediated platelet activation responses, because of
a dominant negative effect of the substituted receptor on expres-
sion of P2Y12 receptor homodimers (16). Importantly, further
study revealed both Trp29Cys and Asn42Ser TPα receptor var-
iants were impaired in their ability to dimerize in a recombinant
system, with a potential reduction in dimer formation also appar-
ent in platelets taken from the Trp29Cys patient (17). Overall,
these data suggest that the impairment of TP dimerization may
impact upon platelet aggregation and secretion in response to TP
activators in vivo.

Beyond these rare population variants, which are associated
with strong TPα receptor phenotypes, there are a number of
reported common or low-frequency variants that are predicted to
alter TXA2-mediated platelet responses but which have not been
functionally analyzed in patients (18–20). For example, TBXA2
missense variants observed in population databases that predict
Val80Glu and Ala160Thr substitution in the TPα receptor have
been expressed in a novel megakaryocyte-based system in an
attempt to recapitulate the impact on human platelet responses
(18). In this model, the Val80Glu substitution reduced TPα recep-
tor activation whereas the Ala160Thr substitution increased acti-
vation responses. It is unknown whether the Ala160Thr
substitution confers constitutive activity to the TPα receptor in

vivo, potentially promoting platelet hyperactivity and conferring
increased risk of cardiovascular disease.

In conclusion, the relatively low number of TPα receptor
variants identified in patients with abnormal bleeding indicates
that these remain rare contributors to bleeding risk even in
selected populations. Notably, the presence of heterozygous var-
iants in TBXA2R and other GPCR genes does not always correlate
with a clinical bleeding phenotype, even though they are consis-
tently associated with abnormal platelet functional responses in
diagnostic laboratory tests. For example, although the pedigree
index cases with heterozygous variants predicting the Asp304Asn
and Trp29Cys TPα receptor substitutions presented with mild
bleeding, pedigree members who were also heterozygous for
these variants were asymptomatic (6,7). One explanation is that
heterozygous loss of function TBXA2 variants are insufficient
alone to cause a clinical bleeding phenotype, but require other
mild hemostatic defects in affected patients to manifest as bleed-
ing (21). Indeed, while many hundreds of millions of people take
aspirin relatively few have “bleeding disorders” consistent with
the lack of bleeding phenotype that can accompany TP receptor
mutations and even a complete lack of TP receptor signaling.
Studies such as GAPP which use a detailed phenotyping approach
combined with targeted genotyping to diagnose platelet function
disorders have provided unique insights into key structure–func-
tion relationships at the TPα receptor and, in particular, high-
lighted the role of TMD1 in the regulation of TPα receptor cell
surface expression and dimerization. However, in the absence of
whole genome sequencing and validation of various non-platelet
genes involved in hemostasis, wider speculation on their causal
relationship to bleeding should be treated with caution.
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