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Abstract

In spite of current treatment strategies, myocardial infarction and stroke are still major causes
of death worldwide. These events are triggered by damage of an atherosclerotic plaque,
resulting in occlusive thrombus formation. Mouse studies have significantly contributed to
our understanding of the mechanisms of atherogenesis and of thrombosis following plaque
injury, but the extent to which the mouse serves as an accurate model of human disease is
open to discussion. In this review, we provide a detailed overview and comparison of the
described mouse models for atherothrombosis including their (dis)advantages. Herein gui-
dance is provided on how to select a suitable atherothrombosis model for research questions
primarily relevant to the field of thrombosis.
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Introduction

In spite of current treatment strategies, myocardial infarction (MI)
and stroke are still major causes of death [1]. The emergence of
MI or stroke is preceded by damage of an atherosclerotic plaque,
resulting in thrombus formation, which can either grow and
thereby occlude a vessel or cause vessel occlusion by emboliza-
tion. Classically, the rupture of a so-called vulnerable plaque,
exposing blood to thrombogenic material residing within the
plaque, is regarded as the major cause of acute coronary syn-
drome (ACS). However, plaque erosion of the overlying endothe-
lium is gaining considerable attention as a cause of ACS. Eroded
plaques have distinct morphological characteristics compared to
a plaque that is rupture prone [2]. As a consequence, the mechan-
isms that trigger coronary thrombosis due to superficial erosion
versus fibrous cap rupture might not be the same. Indeed, thrombi
associated with superficial erosion appear more platelet-rich than
the fibrinous clots triggered by plaque rupture [2].

A major preclinical approach for understanding the biology of
plaque erosion or plaque rupture and subsequent thrombotic
responses is the use of murine models. However, the atherosclero-
tic lesions observed in mouse models rarely progress to advanced

stages leading to spontaneous plaque rupture with atherothrom-
botic vascular occlusion that are observed in humans. Therefore,
various mouse models of atherosclerotic plaque injury leading to
acute arterial thrombosis have been developed over the last 20
years. The extent to which these models accurately represent
human disease is open to discussion. In this review, we provide
a detailed overview and comparison of the described mouse
models for atherothrombosis including their (dis)advantages.
Hereby guidance is provided on how to select a suitable athero-
thrombosis model for research questions primarily relevant to the
field of thrombosis and hemostasis. Inclusion criteria are the
histological characterization of the extent of plaque injury and
demonstration of occlusive or non-occlusive thrombotic response
at the site of plaque injury.

Mouse Models for Atherosclerosis and Spontaneous
Plaque Rupture

In humans, high plasma levels of low-density lipoprotein (LDL)
are regarded as a major risk factor for atherosclerosis. In contrast,
mice contain only low levels of LDL and are hence relatively
resistant to the development of atherosclerosis. Genetic manipula-
tions of the lipid metabolism by deletion of Apolipoprotein
E (ApoE) or the LDL receptor (LDLR), often combined by
feeding a high-fat, high-cholesterol diet, are the most common
strategies to induce atherogenesis in mice. A main advantage of
Ldlr−/- over Apoe−/- is that the lipid profile in Ldlr−/- is human-
like whereas this is not the case for Apoe−/-. In Ldlr−/- a high-fat
diet is a prerequisite for atherogenesis, whereas in Apoe−/− it acts
as an accelerator of plaque development. Indeed, at 3 months of
high-cholesterol diet Apoe−/− mice have more advanced athero-
sclerotic lesions than Ldlr−/− mice [3]. A relatively new and
upcoming approach, which enables for rapid atherogenesis in
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wild type mice, is by single adeno-associated virus (AAV)-
mediated gene transfer of mutant pro-protein convertase subtili-
sin/kexin type 9 (PCSK9). This approach leads to increased total
plasma cholesterol as well as VLDL- and LDL-cholesterol, and
the development of atherosclerosis upon Western diet feeding [4].
More detailed information on the lipid metabolism and plaque
composition of these mouse models for atherosclerosis is pro-
vided in comprehensive reviews by Getz et al. and Veseli
et al. [3,5].

Whereas in humans, atherosclerotic lesions in the coronary and
cerebral arteries, carotid bifurcations and abdominal aorta give rise to
most clinical symptoms, in Apoe−/-, Ldlr−/− and PCSK9-AAV mice,
atherosclerotic plaques are mostly observed in the aortic root, aortic
arch, branch points of the brachiocephalic artery and the carotid
bifurcations without significant coronary artery lesions [3,6].
However, the development of plaques can be induced in the coronary
arteries of mice deficient in ApoE combined with either deficiency in
the HDL scavenger receptor B1 (SR-BI) [7] or its downstream med-
iators Akt1 [8], endothelial nitric oxide synthase [9] or PDZK1 [10].

Since atherosclerotic lesions observed in these mouse models
rarely progress to advanced stages leading to plaque vulnerability
and spontaneous plaque rupture, as observed in humans, different
strategies can be used to increase plaque vulnerability and sponta-
neous rupture with subsequent thrombosis, which can be categorized
by: i) alteration of circulating lipoprotein and cholesterol levels by
dietary and/or genetic manipulations, e.g. feeding Apoe−/- or Apoe−/-/
Ldlr−/− mice a high-fat diet for approximately 3 months or feeding
Apoe−/-/Srbi−/- mice a standard chow diet for 6 weeks [3,7], ii) apply-
ing a tandem stenosis around the carotid artery of Apoe−/- mice [11],
iii) continuous infusion of angiotensin II in Apoe−/-mice fed a high-fat
diet for 4 weeks [12], iv) crossbreeding Apoe−/- mice with mice
presenting a mutant fibrillin-1 allele (Fbn1C1039G), producing an
impaired elastin structure of the vessel wall leading to arterial stiffen-
ing and large vulnerable atherosclerotic plaques [13], v) inducing
blood hypercoagulability in Apoe−/- by overexpression of tissue factor
(TF) or prothrombin, by silencing activated protein C or by inhibiting
its thrombomodulin-dependent generation [14,15]. We refer to recent
reviews by Ouweneel et al. [16] and Oppi et al. [17] for a more in-
depth description of these atherothrombosis models, including the site
and frequency of thrombosis and a link to the original research papers.
The incidence of luminal thrombosis ranges widely (~5–75%)
between the models, which in theory can allow for monitoring of
the effect of antithrombotic medication on the presence of thrombi by
using histology. However, since the incidence and vascular location of
spontaneous plaque rupture remains unpredictable, various methods
have been developed to provoke plaque injury and acute thrombus
formation, which are detailed below.

Mouse Models of Thrombus Formation after Acute
Plaque Injury

The literature (Pubmed 1980-May 2019) was screened for origi-
nal research articles using the following keywords: atherothrom-
bosis mouse, plaque rupture mouse, murine atherothrombosis,
murine plaque rupture, thrombus plaque mouse. The search was
expanded by using the ‘similar article’ function in PubMed.
Damage of the carotid artery of Apoe−/- mice appeared to be the
model of choice to elicit an acute thrombotic response in athero-
sclerotic mouse vessels. Of all plaque-containing murine vessels
the carotid artery is most easily accessible to apply plaque
damage and monitor subsequent thrombus formation in real
time. Below we provide a brief description of these models
including their (dis)advantages (Table I). We excluded the inside
wire model [39], which is suitable to study vascular remodeling
after the adhesion of platelets to the atherosclerotic vessel wall, as
no actual thrombus appeared to be formed.

Ultrasound-induced Plaque Injury

In the model of ultrasound-induced plaque injury, the tip of an
ultrasound probe is pressed against the carotid plaque shoulder
and ultrasound is applied for 10 s, as established by two research
groups (Table I) [18,19]. In both cases, the application of ultra-
sound results in loss of the endothelial cell layer and presence of
adherent platelets in contact with plaque material (Figure 2b),
collagen exposure, and luminal formation of a platelet-rich throm-
bus, accompanied by intra-plaque intrusion of erythrocytes and
fibrin formation. Formed thrombi are non-occlusive and display
a biphasic kinetic, with a maximum in thrombus size reached
after 30–60 s, after which the thrombus size progressively
declines within 10–15 min. Thus, the application of ultrasound
induces only mild injury of the plaque resulting in the formation
of relatively small non-occlusive thrombi.

Inside Needle-induced Plaque Injury

Two groups have reported successful injury on an atherosclerotic
plaque using a suture needle. The needle is either introduced
through a collateral of internal carotid in a non-plaque area
[25,26] or directly into the plaque [19] (Figure 1). The duration
of the scratching varies according to the model, with the needle
being moved forward and backward only twice [25] or the
scratching being performed for 3 to 4 min until rupture of the
plaque is observed under the optical microscope [19]. Scratching
leads to the formation of either a small thrombus on the surface of
the plaque [25] or a larger fibrin-rich thrombus in contact with
collagen-rich plaque material, which reaches maximum size just
after the needle is removed and gradually decreases over the next
15 min (Figure 2a) [19]. In both cases, plaque damage is more
pronounced than upon ultrasound application, with rupture of the
atherosclerotic plaque and exposure of the plaque material to the
blood (Figure 2a,b) [19,25], leading to the formation of
a thrombus that is larger in size [19].

Ligation-induced Plaque Injury

In the ligation-induced model of plaque injury, the common
carotid artery is ligated near the carotid bifurcation for 5 min to
induce plaque rupture, after which the wire is removed [28].
Although this injury technique is fairly straightforward to perform
and induces rapid platelet adhesion to the damaged vessel wall, it
does not always appear to promote thrombus formation. In 16-
week-old Apoe−/- mice fed a high-fat diet, thrombus formation
was minimal as evaluated by intravital fluorescence microscopy
[28]. In contrast, an abstract reported reproducible formation of
non-occlusive platelet-rich thrombi that remained present for
a prolonged time (intravital microscopy and histology) [29].
Other investigations using the ligation-induced model studied
vessel-wall remodeling rather than atherothrombosis and report
no information on initial plaque injury. In summary, it has not
been clearly described yet to which extent the atherosclerotic
plaque is injured by ligation.

Ferric Chloride-induced Plaque Injury

To our knowledge, only three research groups have used ferric
chloride (FeCl3) to induce thrombosis in plaque-containing ves-
sels [30–32] (Table I). The size of the thrombus is larger and
occlusive as compared to the non-occlusive thrombi formed in the
case of ultrasound or needle injury, indicating that the severity of
the vascular damage is likely to be greater upon FeCl3 applica-
tion. Of the three groups, two applied FeCl3 to the normal-
appearing segment of the carotid artery [31,32], questioning the
extent of actual plaque injury. Unfortunately, none of these studies
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Table I. Overview of mouse models of thrombotic response after acute plaque injury.

Model
Brief description

Thrombus size;
measurement

Components
involved in
thrombus
formation*1

Diet and
mouse age Advantages Disadvantages Ref

Ultrasound
Ultrasound treatment from
outside the vessel at the
plaque shoulder.
Mild injury of the plaque
with loss of the
endothelial cell layer,
collagen exposure and
luminal formation of
a platelet-rich thrombus,
accompanied by intra-
plaque intrusion of
erythrocytes and fibrin
formation [18,19].

Small, non-occlusive;
microscopy with labeled
platelets and histology

ADP,
CD40L,
collagen,
fibrin, FXI,
FXII,
thrombin

Western-
type, 16%
fat and
0.15% chol
for 18–20
wks, start at
wk 4

Local damage, real-time
kinetics

Rapid increase and
decrease thrombus
size

[18,20–22]

ADP,
collagen,
fibrinogen,
PGE2,
thrombin

Chow with
3% fat for
45 wks

[19]

Inside needle
Plaque injury is induced by
scratching the plaque
with a suture needle,
leading to plaque rupture
and exposure of
collagen-rich plaque
material.

Large fibrin-rich
thrombus in contact
with collagen-rich
plaque material, non-
occlusive; microscopy
with labeled platelets or
mMRI

ADP,
collagen,
fibrinogen,
FX, PGE2,
thrombin

Chow with
3% fat for
45 wks

Local damage, real-time
kinetics. Scratching of the
plaque in combination
with real-time monitoring
fosters eliciting
a consistent thrombogenic
response

Requires skilled
experimenter

[19,23,24]

Fibrin, PGE2 Chow for >
55 wks ± 5
wks high fat
diet

Requires highly
skilled experimenter
since the needle is
introduced through
small collateral of
external carotid
artery

[25–27]

Ligation
Suture around vessel of
interest is tightened for 5
minutes.
Vascular damages
triggers platelet adhesion
only, without clear
thrombus formation.

Single platelets, non-
occlusive; microscopy
or PET imaging with
labeled platelets

ADP, GPVI,
TxA2

Diet with
0.25% chol
for 8–12
wks, start at
wk 4

Straightforward to
perform

No evidence
provided for plaque
injury and/or the
presence of thrombi

[28,29]

FeCl3
Filter paper with 5-20%
FeCl3 applied on
adventitial surface of
vessel at the site of
a plaque [30] or adjacent
to a plaque [31,32].

Large, occlusive fibrin-
rich; doppler flow probe
(TTO)

Platelet
dense
granules

Diet with
42%
calories
from fat for
16–18 wks,
start at wk 4

Straightforward to
perform, duration and
concentration of FeCl3
treatment can be adjusted
to modulate extent of
damage

FeCl3 causes severe
damage in all layers
of the vessel wall
(adventitia, media,
intima).
No histological
analysis of plaque
injury

[32]

FVII and TF,
no role for
FXI and
FXII

High fat
chow for
>90 days,
start at wk
12

[30]

PAI-1 Diet with
21% fat and
0.15% chol
for 14
weeks, start
at wk 6-8

[31]

Photochemical
Free radical formation
upon illumination of
a photosensitive dye,
injected intravenously,
by laser light resulting in
plaque damage.

Large, occlusive fibrin-
rich; doppler flow probe
(TTO)

FX, PAI-1,
thrombin,
TF, Type
I IFNs,
no role for
FXI and
FXII

Chow for 30
wks or
western diet
for 10 wks,
start at wk
8–10

Local damage,
straightforward to perform

No detailed
histological analysis
of plaque injury

[30,33–38]

All studies were performed in the carotid artery of Apoe-/- mice.
Abbreviations: adenosine diphosphate (ADP), CD40 ligand (CD40L), cholesterol (chol), glycoprotein VI (GPVI), factor VII (FVII), factor X (FX),
factor XI (FXI), factor XII (FXII), ferric chloride (FeCl3), interferons (IFNs), molecular magnetic resonance imaging (mMRI), plasminogen activator
inhibitor-1 (PAI-1), positron emission tomography (PET), prostaglandin E2 (PGE2), thromboxane A2 (TxA2), time to occlusion (TTO), tissue factor
(TF), week(s) (wk(s)).

AD1: the involvement of platelet and plasma components in thrombus formation was tested using pharmacological inhibitors or knock-out mice.
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provided histological analysis, which makes it difficult to assess
the extent of the plaque damage. However, in healthy non-
atherosclerotic mice, the application of a filter paper soaked in
a FeCl3 solution on the adventitial side of the carotid artery
induces severe damage to all layers of the vessel wall. Based on
histology and electron microscopy analyses, the following various
mechanisms for initiation of thrombosis in healthy vessels have
been proposed: i) formation of ferric ions-filled spherical bodies,
with tissue factor on their surface, budding of the endothelium
into the lumen and leading to rapid formation of a fibrin-rich
thrombus [40], ii) binding of platelets to endothelial associated
red blood cell-derived material rather than to the endothelium or
collagen [41], and iii) FeCl3-induced aggregation of plasma pro-
teins and blood cells, independent of endothelial cells or collagen
[42]. Moreover, Eckly et al. [40] have shown that FeCl3 alters the
ability of adhesive proteins including collagen, fibrinogen or von

Willebrand factor (vWF) to support platelet adhesion in vitro. Of
note, the study of glycoprotein VI (GPVI)-immunodepleted or
Gp6−/- mice in this model of FeCl3-induced thrombosis yielded
contrasting results, ranging from a prothrombotic role of GPVI to
no role, while there is consensus on the major role of throm-
bin [43].

In sum, the FeCl3 model should be further characterized for
studies of atherothrombosis, among others with regard to the
extent of plaque damage, before clear recommendations can be
made.

Photochemical-induced Plaque Injury

Eitzman, Westrick, and colleagues [33–35] were the first to per-
form photochemical injury of plaques in the carotid artery of mice
(Table I). In this method, the photosensitive dye Rose Bengal,

Figure 1. Schematic representation of the different models of atherosclerotic plaque injury in the mouse carotid artery.
(a) Ultrasound-induced plaque injury, (b) Inside needle-induced plaque injury according to Hechler et al. [19] (c) Inside needle-induced plaque injury
according to Gross et al. [25] (d) Ligation-induced plaque injury, (e) Ferric chloride-induced plaque injury, (f) Photochemical-induced plaque injury,
(g) Spontaneous plaque rupture. See Table I for original research articles on which these schematic representations are based.

Figure 2. Thrombosis of Apoe−/- carotid artery triggered by injury with ultrasound or with a suture needle.
(a) Time-course of thrombosis in response to ultrasound injury or needle injury of carotid artery of an Apoe−/- mouse. (b) Transversal cryosection of
the carotid artery at the site of injury with immunostaining for platelets (GPIbβ brown staining) with hematoxylin counterstaining only in the case of
needle injury.
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injected intravenously, is illuminated by green laser light proximal
to the carotid bifurcation leading to the production of reactive
oxygen species and subsequent occlusive thrombus formation that
persists for at least 24 h [34,44]. Histological analysis of injured
atherosclerotic segments 24 h after photochemical injury demon-
strates the presence of thrombi associated with the atherosclerotic
lesion [34]. Thus, photochemical-induced plaque injury leads to
the formation of a thrombus that is larger in size as compared to
the non-occlusive thrombi formed in the case of ultrasound or
needle injury. Although histological analysis confirms plaque
injury [30], detailed characterization of the extent of plaque
damage has yet to be carried out, in particular, to determine
whether collagen-rich plaque material becomes exposed to
blood. Similarly, thrombus composition has not been studied in
such an atherothrombosis setting, but studies in healthy vessels
have shown that thrombi predominantly consist of platelets and
a large amount of fibrin, indicating involvement of thrombin
[44,45].

Molecular Mechanisms of Murine Atherothrombosis

The main pathways for thrombus formation at the site of athero-
sclerotic plaque injury are similar to those already identified in
the process of thrombus formation on a healthy mouse artery. In
the ultrasound and needle injury models, atherothrombosis
involves the complementary activation of platelets by the col-
lagen-GPVI axis and the generation of thrombin and fibrin for-
mation triggered by plaque-tissue factor. These two models are
sensitive toward both antiplatelet drugs, e.g. GPIIb-IIIa antagonist
eptifibatide, P2Y12 ADP-receptor inhibitor clopidogrel and inhi-
bitors of the common pathway of coagulation (FXa and thrombin)
[18,19,23,24,46]. Yet, they display differences with respect to the
role of the platelet collagen receptor GPVI, with the needle injury
model being less sensitive to its inhibition as compared to the
ultrasound-induced injury, which may be related to the amount of
thrombin generated. Both the extrinsic (TF/FVIIa) and intrinsic
(FXII, FXI) pathways of coagulation appears to contribute to
atherothrombosis following ultrasound plaque injury [18,20,21],
while their respective contribution in the model of needle plaque
injury remains to be investigated.

In experimental atherothrombosis following FeCl3 or photo-
chemical plaque injury, a prominent role of the extrinsic coagula-
tion pathway (TF/FVIIa) over that of the intrinsic pathway has
been reported [30]. Accordingly, Apoe−/- mice presenting hetero-
zygous deficiency for tissue factor pathway inhibitor (TFPI), the
major TF antagonist, display a profound decreased time to occlu-
sive thrombosis after photochemical plaque injury [35]. Platelet
dense granule constituents appear also essential for atherothrom-
bosis following FeCl3 plaque injury [32], while the potential role
of the collagen-GPVI axis has not been evaluated. In addition,
endogenous fibrinolysis, regulated by plasminogen activator inhi-
bitor-1 (PAI-1), has an important role in occlusive vascular
thrombosis after FeCl3- or photochemical-induced plaque injury,
since PAI-1 deficiency prolonged the time to occlusive thrombo-
sis [31,33,36].

Studies described above (see also Table I) indicate that murine
atherothrombosis models are suitable for testing anti-platelet and
anti-thrombotic therapies. However, the atherosclerotic plaque
contains a range of other factors in addition to collagen and tissue
factor, which can potentially contribute to its thrombogenicity,
such as adhesive proteins (vWF, fibrin/fibrinogen, thrombospon-
din, vitronectin, fibronectin, podoplanin), platelet-activating lipids
(oxidized LDL, cholesterol and lysophosphatidic acid) or chemo-
kines [2]. It is of importance to determine whether there are
unique thrombogenic plaque components that would allow for
more selective targeting of the thrombotic process at the

atherosclerosis lesion site while preserving hemostasis. Another
important aspect to consider is the influence of rheological con-
ditions on thrombosis. Experimental infusion chambers with fixed
stenosis, which reproduce the flow disturbance conditions found
in diseased atherosclerotic arteries, have demonstrated the impor-
tance of disturbed blood circulation conditions to accelerate the
deposition of platelets on thrombogenic surfaces [47]. In addition,
mechanistic insight in the atherothrombosis forming process has
been obtained from the perfusion of whole blood over homoge-
nized human plaque material under arterial shear conditions in
microfluidic chambers [22,46,48,49]. Recently, a high correlation
has been demonstrated between flow-dependent thrombus forma-
tion determined by microfluidic devices and models of collagen-
dependent murine experimental arterial thrombosis in healthy
vessels [43], substantiating the suitability of using microfluidics
to study aspects of the atherothrombosis forming process.

In the near future, the in vivo models of thrombosis on
injured atherosclerotic plaques should allow assessing the
potential of various targets, some of which are mentioned
here: i) the GPIb-vWF axis, which is favored under conditions
of high shear stress, typically encountered in stenotic arteries
[50], ii) inhibition of GPVI-fibrin interaction [51,52], iii) phos-
phatidylinositol 3-kinase-β (PI3Kβ) which acts downstream of
most platelet receptors and integrins and is critical to maintain
thrombus stability at a pathological shear rate [53], or iv)
inhibitors of Bruton tyrosine kinase (Btk). Btk inhibitors have
been reported to selectively block GPVI-induced platelet acti-
vation upon exposure to atherosclerotic plaque material
in vitro, while sparing shear-dependent integrin α2β1- and
VWF/GPIb-mediated platelet adhesion and aggregation on col-
lagen, which is important for physiologic hemostasis [54].

Relevance to Human Pathophysiology and Future
Outlook

Mouse models have provided us with useful mechanistic insight
into plaque formation, rupture, and thrombosis. Choosing
a mouse model most suitable to answer a specific research ques-
tion is of vital importance. In Figure 3 guidance is provided for
atherothrombosis model selection. A question that often arises is
to what extent data obtained in mice are of relevance to human
pathophysiology? Clearly men are distinct from mice and novel
drug targets, with proven efficacy and safety in animal models,
sometimes fail in clinical trials. The latter for instance occurred
with the direct thrombin inhibitor melagatran that appeared to
cause hepatotoxicity as a side effect in humans [55]. However,
such an example does not imply a general lack of translational
potential of animal models to humans. A more nuanced view and
in-depth knowledge is required.

The more recent ability of linking large sets of mouse data to
relevant human GWAS studies has provided the research field
with new tools to assess the translational potential of murine
atherosclerosis and thrombosis studies. Regarding the translation
of genes involved in murine atherosclerosis to atherosclerosis in
humans, two contrasting reports have been published in which
human genome-wide association study (GWAS) genes associated
with coronary artery disease (CAD) were linked to genes with
reported involvement in murine atherosclerosis. Pasterkamp et al.
[56] described for 11 out 659 mouse genes – with demonstrated
involvement in murine atherosclerosis – an overlap with human
genes associated with CAD. Von Scheidt et al. [57] took GWAS
as starting point and showed that out of 244 human genes that are
associated with CAD only 46 have been studied in mice.
Strikingly, 45 out of these 46 genes significantly affect murine
atherosclerosis. These conflicting results can be partly explained
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by differences in approach, such as selection criteria for inclusion
of mouse models.

A different approach was employed by Baaten et al. [43],
whom developed a novel synthesis method to quantitatively
compare studies on the role of mouse genes in arterial throm-
bosis and overcome limitations caused by sample size and
differences in methodology. Of the 431 studied mouse genes
60 genes showed a consistent effect on murine arterial throm-
bosis. For these 60 genes, an overall high homology on the
nucleotide level was present with the human orthologs. Also,
a network was constructed with human protein orthologs of
267 genes with modifying effects on murine arterial thrombo-
sis. This network covered substantial gene sets identified in
GWAS of stroke, CAD, platelet count and volume, and related
studies. Each approach has its strengths and limitations.
Understanding the model characteristics is of vital importance.
For the study by Baaten et al. [43] holds among others that
genes with a role in the vascular component of thrombotic
disorders are underrepresented. However, GWAS only detect
variants that are common in the population and whose effects
on risk (odds ratio) are large enough to become significant at
the very stringent genome-wide significance level (10−7–10−8).
Statistical power is in turn strongly dependent on population
size and, importantly, an association that arises from a GWAS
does not necessarily imply a causal relationship [58]. Hence,
studying candidate genes that emerge from human GWAS in
mouse models could either confirm the prediction made GWAS
and/or provide new (contrasting) information.

In sum, in the past mouse models have provided use with
useful insights in molecular mechanisms of atherothrombosis.
Even with upcoming technologies, murine atherothrombosis mod-
els are of great value and indispensable for obtaining unique
information with regard to all in vivo components of this process.
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