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Abstract

SerpinB2, also known as plasminogen activation inhibitor type 2 (PAI-2), is classically viewed as
an inhibitor of fibrinolysis. However, we show herein a distinct, hitherto unrecognized role for
SerpinB2 in hemostasis. Mice deficient in SerpinB2 expression and mice with an active site
mutation in SerpinB2, both showed significant reductions in tail bleeding times. This hemo-
static phenotype was associated with platelets, with SerpinB2 and SerpinB2-urokinase com-
plexes clearly present in platelet fractions, and immunohistochemistry of blood clots
suggesting SerpinB2 is associated with platelet aggregates. Thromboelastography illustrated
faster onset of clot formation in blood from SerpinB2 deficient mice, whereas clotting of
platelet-free plasma was unaffected. The results appear consistent with the low circulating
SerpinB2 levels and hypercoagulation seen during pre-eclampsia; however, SerpinB2 was not
detected in human platelets.
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Introduction

SerpinB2 (also known as plasminogen activator inhibitor type 2 or
PAI-2) is a member of the clade B or ovalbumin-like serine pro-
tease inhibitor (ov-serpin) subgroup of the serpin superfamily.
SerpinB2 can be expressed by variety of cells including monocytes
and macrophages, syncytiotrophoblasts, keratinocytes, fibroblasts,
endothelial cells, dendritic cells and cancer cells [1–6]. SerpinB2
lacks a classical secretory signal peptide and is usually localized to
the cytoplasm. However, SerpinB2 can reach the extracellular
milieu via loss of plasma membrane integrity [5] or microparticle
formation, with SerpinB2 expressed on microparticles, potentially
via an association with phosphatidylserine and annexins [4,7].

The classical view argues that SerpinB2 is involved in the inhibi-
tion of fibrinolysis, via inhibition of plasmin generation by urokinase
plasminogen activator (uPA) and, to a lesser extent, tissue plasmino-
gen activator (tPA) [1,8–12]. SerpinB2 inhibits uPA via the

formation of a covalent SerpinB2-uPA complex involving the P1
arginine at position 380 (Arg380) in the reactive site loop of
SerpinB2 and the active site serine of uPA. PAI-1 also inhibits
fibrinolysis by inhibiting plasmin generation by tPA and uPA, with
PAI-1−/−mice showing enhanced fibrinolysis and thrombolysis [13–
15]. Some in vivo evidence for SerpinB2-mediated inhibition of
fibrinolysis was only recently reported, with SerpinB2−/− mice
showing increased venous thrombus resolution [15], although the
observation was complicated by increased uPA and decreased plas-
minogen activator inhibitor type 1 (PAI-1) expression [16].

Herein we describe a novel function for SerpinB2 in hemosta-
sis using both (i) SerpinB2−/− mice (and a littermate control
SerpinB2+/+ mouse line) [17] and (ii) a newly created mouse
line where the active site Arg380 was mutated to alanine
(SerpinB2R380A) using CRISPR technology, which renders the
serpin unable to inhibit uPA [2,18]. Both SerpinB2−/− and
SerpinB2R380A mice showed significantly reduced bleed times
compared with their respective wild-type controls. This pheno-
type appears unrelated to fibrinolysis since overt increases in uPA/
plasmin-mediated clot dissolution would be expected to increase
(rather than decrease) bleed times.

Materials and Methods

Ethics Statements and Mice

All mouse work was conducted in accordance with the
“Australian code for the care and use of animals for scientific
purposes” as defined by the National Health and Medical
Research Council of Australia. Mouse work was approved by
the QIMR Berghofer Medical Research Institute animal ethics
committee. Mice were euthanized using carbon dioxide.
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SerpinB2 Deficient Mice

SerpinB2−/− and SerpinB2+/+ mice (described previously [17])
were bred in-house at QIMR Berghofer Medical Research
Institute. C57BL/6J mice (6–8 weeks) were purchased from
Animal Resources Center (Canning Vale, WA, Australia).
Heterozygous CRISPR SerpinB2R380A mice on a C57BL/6J back-
ground were generated by the Australian Genome Research
Facility Ltd. (Melbourne, Australia) and a homozygous
SerpinB2R380A mouse line was generated in-house. The active
site (P1) Arg380 [2] (codon AGA) of SerpinB2 was changed to
Ala380 (codon GCA); i.e. nucleotides 1222 and 1223 (with
reference to accession NM_011111.4) were changed from AG to
GC. Two proximal silent mutations were also introduced (1222-
GCAACTGGACATGGTGGCCCACAGTTTGTC-1251; muta-
tions underlined) to prevent cutting of the oligonucleotide during
genome editing. The genotype was confirmed by tail tipping,
extraction of DNA (Extract-N-Amp Tissue PCR Kit, Sigma),
PCR (primers Forward 5′-tctgaggtgttccatcaag-3′, 5′-Reverse ctac-
caacaaatagtatcgtgtg-3′) and sequencing of the PCR products.

Tail Bleeding Time Determination

Bleed time was determined in gender and age matched mice by
restraining the mouse, removing 1 mm of the tail using a scalpel,
placing the tail into normal saline at 37°C and measuring the time
until bleeding stopped.

Plasma Coagulation Time Determination

Mouse blood was collected by heart puncture into citrated blood
collection tubes (BD, Franklin Lakes, NJ, USA). For SerpinB2−/−

and SerpinB2+/+ mice, Thromborel (Dade Behring, Liederbach,
Germany) was added to platelet-free plasma according to the man-
ufacturer’s recommendation. Coagulation time was measured using
a semi-automatic ball coagulometer (Heinrich Amelung GmbH,
Germany). For C57BL/6 and SerpinB2R380A mice, Thromborel S
(Siemens Healthcare Pty Ltd, Bayswater, Australia) was used and
clot time was assessed manually.

Thromboelastography

Citrated mouse blood was treated with recalcified kaolin and clot
parameters measured by thromboelastography (TEG 5000,
Medicell Ltd., London, UK).

P-Selectin Staining

Platelet rich plasma was prepared from citrated blood from
SerpinB2−/− and SerpinB2+/+ mice (n = 4 per strain). Platelets
were spun down and resuspended in SGH buffer (120 mM NaCl,
30 mM glucose, 10 mM HEPES pH 7); final plasma concentra-
tion 10% v/v. After re-calcification for 20 mins at room tempera-
ture, platelets were fixed in paraformadehyde (1% 15 mins),
washed in RPMI 1640, blocked with 10% FCS and stained with
FITC-labeled anti-P selectin (BD Biosciencies; RB40.34) and
analyzed using BD LSRFortessa and data analyzed using BD
FACSDiva™ software.

Immunoblotting of Platelet Fractions

Citrated blood collected by heart puncture was spun at 100 x g for
5 min and the supernatant collected as platelet rich plasma.
Platelets were washed once (3000 x g for 30 mins) in CGS buffer
(120 mM NaCl, 30 mM glucose, 13 mM trisodium citrate, pH 7) or
SGH buffer. Platelet pellets were then lysed with RIPA buffer
(0.1% SDS, 1% NP40, 0.1% sodium deoxycholate, 140 mM

NaCl, 1 mM EDTA and Protease Inhibitor Cocktail – Roche) and
spun at 2000 x g for 5 min. Supernatants were boiled in SDS-
PAGE sample buffer containing 0.1 M dithiothreitol and analyzed
by SDS polyacrylamide gel electrophoresis and immunoblotting
using an anti-murine SerpinB2 antibody and after stripping
(Restore PLUS Western Blot Stripping Buffer; ThermoScientific,
Rockford, IL, USA) and reprobed with a rabbit anti-murine uPA
antibody (ab20789; Abcam, Cambridge, UK) or anti-murine β
actin (13E5, Cell Signaling Technology, Inc., Danvers, MA,
USA) as described [5]. The anti-murine SerpinB2 antibody (affi-
nity purified, rabbit polyclonal) was generated by Peptide Specialty
Labs GmbH (Heidelburg, Germany). An ovalbumin-coupled CD
loop region peptide 62EIGSYGITTRNPENFSGC79 was used as the
immunogen [5].

Immunohistochemistry and Histology

Blood clots from tail bleeds were allowed to form in 1.5 ml
Eppendorf tubes for 30 mins at room temperature and were then
fixed in paraformaldehyde, and processed for immunohistochem-
istry using the aforementioned anti-SerpinB2 antibody as
described previously [5]. Paraffin sections were also stained
with a standard Giemsa or Wright-Giemsa (Sigma).

Results

Bleed Time Decreases in SerpinB2 Deficient Mice

Bleed times were determined in SerpinB2−/− and SerpinB2+/+

mice by tail tipping, with both female (Figure 1A) and male
SerpinB2−/− mice (Fig. S1) showing significantly lower bleed
times compared to the SerpinB2+/+ control mice. The phenotype
was recapitulated in homozygous CRISPR SerpinB2R380A mice
(on a C57BL/6 background) when compared with wild-type
C57BL/6 mice (Figure 1B), illustrating that this bleed time phe-
notype requires the protease inhibition activity of SerpinB2. The
SerpinB2R380A mutation did not affect SerpinB2 protein expres-
sion (Fig. S2); SerpinB2 activities that involve protease inhibition
are thus implicated in this hemostatic phenotype. By extension
other activities, such as annexin binding [4] and transglutaminase
cross-linking [5] via SerpinB2’s CD loop, would thus appear not
to be involved.

The coagulation times for platelet-free plasma from (i)
SerpinB2−/− and SerpinB2+/+ mice and (ii) SerpinB2R380A and
C57BL/6 mice were not significantly different (Figure 1C),
arguing that the phenotype requires the presence of platelets.
(The platelet-free plasma retains microparticles, suggesting they
are also not involved in the phenotype). The platelet count in
SerpinB2−/− and SerpinB2+/+ mice was not significantly different
(Table S1), suggesting platelet activation rather than platelet
numbers were altered in SerpinB2 deficient mice.

Thromboelastography of recalcified citrated mouse whole
blood showed that the time to initial clot formation (reaction
time, R) was significantly lower (faster) for SerpinB2−/− mice
when compared to SerpinB2+/+ mice (Figure 1D). Neither the
kinetic time, alpha angle or the maximum amplitude were sig-
nificantly affected by SerpinB2 deficiency (Fig. S3). Whole blood
platelet lumi-aggregometery also showed a tendency for increased
and faster platelet ATP release from SerpinB2−/− platelets after
standard doses of arachidonic acid and collagen, but not throm-
bin, treatment (Fig. S4).

P-Selectin Staining

To further examine platelet activation, platelets from SerpinB2−/−

and SerpinB2+/+ mice were stained with anti-P-selectin. Prior to
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re-calcification of citrated platelet rich plasma, P-selectin staining
was (as expected) low for platelets from SerpinB2−/− and
SerpinB2+/+ mice (Fig. S5, -Ca2+). Events with high FSC/SSC
(indicative of platelet aggregation) were also relatively low for
SerpinB2−/− (Figure 1E, -Ca2+, P1 red dots) and SerpinB2+/+

platelets (Fig S5A, -Ca2+, P1). After re-calcification events with
high FSC/SSC increased for SerpinB2−/− (Figure 1E, +Ca2+, P1
red dots) and for SerpinB2+/+ platelets (Fig. S5A, +Ca2+, P1 red
dots). P-selectin staining of events in the P1 gates (ostensibly
aggregated platelets) was higher for SerpinB2−/− mice than
SerpinB2+/+ mice (Figure 1E, +Ca2+, P1 histogram plots).
These results further support the view that platelets from
SerpinB2−/− mice have a more activated phenotype.

Platelet Fractions Contain SerpinB2 and uPA

SerpinB2 deficiency thus leads to a bleeding phenotype that
appears to be associated with platelets. To determine whether
SerpinB2 protein can be found in platelets, platelets were isolated
from platelet rich plasma (derived from citrated blood) from
SerpinB2+/+ mice and were analyzed by immunoblotting. Both
SerpinB2 and SerpinB2-uPA complexes were clearly identified,
although uncomplexed uPA (≈34 kDa) was not detected
(Figure 2A, SerpinB2+/+ mice). The presence of uPA on human
[19,20] and mouse [21] platelets has been reported previously,
although uPA was not identified in human platelets that had been
highly purified [22] nor was it found in platelet alpha-granules
from healthy humans [23]. The uPA receptor (uPAR) has been
reported to be expressed on mouse platelets [24], with abundant
PAI-1 expression in human platelets also reported [22].

To illustrate the specificity of the anti-SerpinB2 antibody,
platelets from SerpinB2−/− mice were analyzed, with no signifi-
cant reactivity seen (Figure 2A, SerpinB2−/− platelets), consistent
with previous reports regarding the high level of specificity of this
antibody [5].

Immunohistochemistry of Blood Clots

Immunohistochemistry (IHC) of clots from C57BL/6 mice illu-
strated clumps of anti-SerpinB2 antibody staining distributed
throughout the clot (Figure 2B, top panels). A similar pattern
was observed in clots from SerpinB2R380A mice (Fig. S6A). IHC
controls are shown in Fig. S6B,C. These clumps correspond to
platelet aggregates in Giemsa stained sections of the same blood
clot (Figure 2B, bottom panels), although the small clump sizes
precludes the ability to match IHC and Giemsa in serial sections.
(Wright-Giemsa staining is shown in Fig. S6D). Blood clots from
SerpinB2−/− mice show a similar pattern of platelet aggregates
(Figure 2C). (IHC of blood from a tail bleed dropped straight into
fixative is shown in Fig. S6E).

Discussion

Herein we show that loss of SerpinB2 expression (in SerpinB2−/−

mice) or loss of SerpinB2 protease-inhibition activity (in
SerpinB2R380A mice) results in significant reductions in tail
bleeding times. This SerpinB2-associated hemostatic phenotype
appeared to be associated with platelets. SerpinB2 and SerpinB2-
uPA complexes were clearly identified in platelet fractions from
wild-type mice, with immunohistochemistry of blood clots sup-
porting the view that SerpinB2 is associated with platelet aggre-
gates. Thromboelastography indicated faster onset of clot
formation in blood from SerpinB2-deficient mice, whereas faster
clotting was not apparent in platelet-free plasma. To the best of
our knowledge, this is the first time SerpinB2 has been associated
with a hemostatic phenotype, and the first time SerpinB2 and
SerpinB2-uPA complexes have been reported to be associated
with platelets.

Reduced bleeding times in the absence of bioactive SerpinB2
is difficult to reconcile with the canonical view that SerpinB2
inhibits plasmin-mediated fibrinolysis, which would predict that
loss of SerpinB2 activity would prolong bleeding times. However,

Figure 1. (A) Mean tail bleeding time for SerpinB2−/− and SerpinB2+/+ female mice. Statistics by Kolmogorov-Smirnov test, n = 12 mice per group.
(B) Bleed time for SerpinB2R380A and C57BL/6J female mice. Statistics by Kolmogorov-Smirnov test, n = 19–21 mice per group. (C) Coagulation
time for platelet-free-plasma. Female SerpinB2−/− and SerpinB2+/+ mouse plasma was assessed using a semi-automatic ball coagulometer (n = 9–10
mice per group). Coagulation of plasma from SerpinB2R380A and C57BL/6J female mice was determined manually (n = 8–10). N.S. – not significant.
(D) Thromboelastography of recalcified citrated blood from SerpinB2−/− and SerpinB2+/+ female mice. Mean R values are shown (time to initial clot
formation); the remaining parameters are shown in Fig. S3. Statistics by Kolmogorov-Smirnov test, n = 4 mice per group. (E) P-selectin staining by
FACS. SSC/FSC plots: platelets from citrated blood (-Ca2+) have few events with high side scatter (SSC) and forward scatter (FSC) (P1 gate, red dots).
After re-calcification (+Ca2+) events with high FSC/SSC (indicative of platelet aggregation) increase (P1 gate, red dots). (Similar FCS/SSC plots for
SerpinB2+/+ mice are shown in Fig. S5A). Histograms; the P-selectin staining for events in the P1 gate for SerpinB2−/− and SerpinB2+/+ mice are
shown, with mean florescent intensity (MFI) indicated. Total events collected was 30,000 for each strain. (Representative of two independent
experiments).
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the reduced bleed times in SerpinB2−/− and SerpinB2R380A mice
are consistent with increased bleeding times in uPA−/− and plas-
minogen-deficient mice [25]. (SerpinB2−/− and SerpinB2R380A

mice are likely to have increased uPA/plasmin activation, whereas
uPA−/− and plasminogen-deficient mice are likely to have
reduced uPA/plasmin activation) [25]. Moreover, plasmin not
only plays a key role in fibrinolysis, but has also been shown to
promote platelet activation [21,26,27] via cleavage of (platelet
expressed) protease activated receptor type 4 (PAR4) [28].
Thrombin also cleaves PAR4, with PAR4 considered a promising
target for inhibiting thrombosis [29]. Excess exogenous thrombin
might thus be expected to override any endogenous plasmin-

mediated activity, consistent with the observations presented in
Fig. S4. The presence of SerpinB2 in blood clots (Figure 2B)
might support the view that SerpinB2 also has a role in inhibiting
fibrinolysis, at least in mice [15,16].

Clear illustrations of SerpinB2-uPA complexes in tissues ex
vivo have been rare, suggesting that such complexes are usually
present in small amounts, are rapidly cleared and/or are only
generated in very specific settings/locations [2,4,5]. The immuno-
blotting results suggest SerpinB2-uPA complexes may form in
vivo, although we cannot exclude the possibility that SerpinB2-
uPA complexes formed in platelet fractions as a result of the
isolation procedure. A bewildering array of binding partners and

Figure 2. (A) SerpinB2+/+ platelets; platelets isolated from SerpinB2+/+ mice in CGS or SGH buffers were analyzed by immunoblotting using anti-
murine SerpinB2 antibody and reprobed using anti-uPA antibody. SerpinB2−/− platelets; platelets were isolated from SerpinB2−/− mice and were
analyzed by immunoblotting using anti-murine SerpinB2 antibody and reprobed using anti-murine β actin antibody (loading control). RPM – resident
peritoneal macrophages from SerpinB2+/+ mice; these cells constitutively express high levels of SerpinB2. (B) Blood clots from SerpinB2+/+ mice
were fixed, embedding into paraffin blocks and sections stained with anti-murine SerpinB2 antibody; high and low resolution IHC images are shown
(top panels). (IHC controls with no primary antibody and staining of clots from SerpinB2−/− mice are shown in Fig. S5B,C). Giesma staining of a
section from the same block is shown in the bottom panels. (Wright-Giemsa staining is shown in Fig. S5D). (C) Example of Giemsa staining of a blood
clot from SerpinB2−/− mice.
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activities have been attributed to SerpinB2 [2,10,18,30]; however,
our data provides rare ex vivo evidence supporting the canonical
view that SerpinB2 physiological role is inhibition of uPA
[1,4–6,15].

How relevant might these observations in mice be to humans?
Comprehensive proteomic analysis of human platelets did not
detect SerpinB2 [22], consistent with our inability to detect
SerpinB2 in human platelets. Quantitative ELISAs confirmed
that most of the SerpinB2 in human blood is present in plasma
[31], with some (as reported previously [7]) present on micro-
particles (Fig. S7). Low levels of SerpinB2 were found in platelet
fractions from human blood, but this may have been due to the
presence of SerpinB2-expressing microparticles in these fractions
(Fig. S8), potentially derived from macrophages [4] and/or syn-
cytiotrophoblasts [7]. Another difference is that cleavage of
human PAR4 (compared with cleavage of mouse PAR4) requires
significantly higher levels of plasmin to stimulate platelet aggre-
gation [32]; although the physiological consequences of this dif-
ference remains unclear. Despite these apparent differences
between mice and humans, the platelet phenotype seen in
SerpinB2−/− and SerpinB2R380A mice is nominally consistent
with observations in pre-eclamptic women. Pre-eclampsia is asso-
ciated with both reduced levels of circulating SerpinB2 [31,33–
35] and a platelet-associated hypercoagulopathy [36–39].
However, PAI-1 levels are often higher during pre-eclampsia,
complicating any simple correlation between plasminogen activa-
tion and hypercoagulation [31,40].

In conclusion, although SerpinB2 has classically been asso-
ciated with inhibition of uPA-mediated fibrinolysis, we illustrate
herein that SerpinB2 (at least in mice) has an unexpected platelet-
associated activity in the regulation clot formation. Further
research is required to ascertain how relevant this new role for
SerpinB2 might be in human diseases [6,9,41–45].
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