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SPECIAL REVIEW: PLATELETS ON AGGREGOMETRY

High-throughput measurement of human platelet aggregation under
flow: application in hemostasis and beyond

Sanne L. N. Brouns, Johanna P. van Geffen, & Johan W. M. Heemskerk

Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands

Abstract

In recent years, considerable progress has been made in understanding the mechanisms
involved in platelet activation during hemostasis and thrombosis. Parallel-plate flow chambers
and other microfluidic devices have markedly contributed to this insight. Conversely, such flow
devices are now increasingly used to monitor the combined processes of platelet aggregation,
thrombus formation, and coagulation in human blood. Currently, by combining microspotting
and multi-color fluorescence microscopy, this technology offers the capability of high-through-
put measurement of platelet activation processes, even in small blood samples. Here we review
the potential of flow chamber devices for complex (multiparameter) platelet and coagulation
phenotyping, focusing on patients with (genetic) platelet- or coagulation-based bleeding
disorders as well as monitoring of antithrombotic medication. Animal studies are not
discussed.
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Introduction

Since the early flow chamber studies, where blood was used
directly taken from the arm of a subject and platelet surface-
area coverage was analyzed offline, the microfluidics technology
is developing into a high-throughput test, capable of detecting
aberrations in multiple platelet responses.

Development of flow devices to measure hemostatic
and thrombotic processes

Baumgartner, Badimon, Sixma, and colleagues have pioneered in
the use of flow chamber devices to study platelet adhesion and
aggregation on extracellular matrix components of the arterial
wall (1–3). Initial investigations revealed the importance of a
well-controlled blood flow and indicated that platelet adhesion
markedly increases at higher with blood flow and wall-shear
rates. One approach was to perfuse blood directly originating
from the arm of a volunteer through the flow chamber ex vivo,
thus allowing formation of platelet thrombi without anticoagulant
intervention (4,5). Yet, the first flow chamber experiments were
long-lasting, required large blood volumes, used roller pumps
influencing platelet activity, and required offline analysis of
thrombus formation (6). In most cases, the chambers contained

deliberately damaged endothelium, endothelial matrix, or blood
vessels, all of heterogeneous composition (7,8). Yet, it was imme-
diately recognized that the devices could mimic the in vivo situa-
tion of hemostasis and thrombosis, where platelets rapidly interact
with a damaged or diseased vessel wall to form clots of aggre-
gated platelets and fibrin.

Already in early parallel-plate flow studies, Sakariassen and
McIntyre (9,10) used purified collagen (applied with a paint
brush!) as an effective platelet-adhesive surface. Immobilized
fibrillar collagen type I (pipette coating) now appears to be the
standard surface for measurements of platelet adhesion and
thrombus formation under flow conditions (11). For clinical
application, the use of more widely applied commercial flow
chambers can be considered. However, with such commercial
systems (which are lower in costs and have a great ability for
integration platforms) the possibility of applying more than one
coating in the chamber is limited. For a more in-depth overview
of strengths and weaknesses of different (commercial) microflui-
dic systems, we refer to elsewhere (12).

The widespread use of collagen-I is promoted by three sets of
findings. First, thrombus formation on collagen-I relies on the
synergy between three important receptor complexes on platelets,
namely glycoprotein (GP)VI, integrin α2β1 and GPIb-V-IX; the
latter is required for shear-dependent trapping of platelets to von
Willebrand factor (VWF) that is bound to collagen (13,14). Second,
for many genetic mouse models, it has been noticed that abnormal
collagen-induced thrombus formation in vitro corresponds well with
aberrant arterial thrombus formation in vivo (especially for FeCl3-
and ligation-induced injury models) (15–17). Third, in atherothrom-
bosis models of experimental plaque rupture, thrombus formation
relies on collagen–GPVI interactions next to thrombin generation
(18). Similarly in flow devices, collagen-I (allowing GPVI activa-
tion) as well as tissue factor (producing thrombin) are key compo-
nents of coated plaques to stimulate platelet thrombus and fibrin
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formation (19–21). In addition to the primary collagen–GPVI inter-
action, secondary roles in thrombus buildup have been identified for
autocrine-released ADP acting through the platelet P2Y1/12 recep-
tors (22,23), and of factor XIIa stimulating the intrinsic coagulation
pathway via collagen (24). In multiple laboratories, hence, collagen-
I with or without tissue factor is the preferred surface for flow-based
assays of thrombus formation using human or animal blood, aiming
to obtain overall information on platelet activity in hemostatic and
thrombotic processes.

In parallel-plate chambers with constant blood flow, a throm-
bus will grow but complete occlusion cannot be reached due to
continuous pressure provided by the pump. In the pressure drop
model established by Colace and colleagues, the blood can bypass
occluding channels by moving toward an open channel. This
mimics the physiological situation, where a thrombus grows
until it reaches full occlusion (25). Another remark is that,
when a thrombus is obstructing a channel, the flow pattern will
be disturbed, resulting in very high shear rates (26,27).

Microspotting and high-throughput testing

No coagulation (high Ca2+/Mg2+ with thrombin inhibitors)

Regardless of the widespread use of collagen-I, platelets contain
several other non-collagen receptors that can play a role in inter-
action with the activated or injured vessel wall (28,29). In a recent
paper, our group compared 52 adhesive proteins and peptides
(with single or multiple components), encompassing all major
adhesive receptors, for the capability to support platelet adhesion,
activation and full-size thrombus formation (15). It appeared that,
next to the collagen/VWF receptors (GPVI, α2β1, GPIb-V-IX),
also CLEC-2 (podoplanin, rhodocytin receptor), integrin αIIbβ3
(fibrinogen/WVF receptor), and α6β1 (laminin receptor) sup-
ported adhesion in perfused whole blood. Furthermore, at low
shear rate, we noticed a role of CD36 (thrombospondin receptor).

As early described, rapid screening of the 52 surfaces could only be
performed by microspotting (1–2 mm Ø) and application of 2–3
microspots in the same flow chamber (15). To further increase the
throughput, it is necessary to capture both enhanced-contrast bright-
field and fluorescence microscopic images. Aiming to perform full
platelet function analysis, brightfield images provide information on
platelet deposition (surface-area coverage) and aggregation (aggre-
gate/feature size). Fluorescence images in different colors inform on
stable platelet adhesion (membrane probe), secretion (CD62P or
CD63 expression), integrin activation (probing for activated αIIbβ3 or
fibrinogen), and procoagulant activity (phosphatidylserine exposure).
The combination of multiple microspotted surfaces with different
fluorescent stains thus results in a high-throughput test, e.g., allowing
measurement of 3×8 end-stage parameters of thrombus formation in a
single flow runwith less than 0.5mL of blood (15,30). See also Box 1.

Controlled coagulation

In the majority of in vivo hemostasis and thrombosis models, plate-
let activation/aggregation is known to be accompanied by coagula-
tion (thrombin and fibrin formation), in particularly triggered by
tissue factor (31–34). A common procedure to achieve controlled
coagulation in vitro is to co-perfuse citrate-anticoagulated blood
with a CaCl2/MgCl2 mixture over microspots that contain col-
lagen-I whether or not co-spotted with tissue factor (see Box 1).
Tissue factor can be applied in a range of concentrations to fine-tune
the extent of coagulation triggering (25). Such coagulation experi-
ments require the collection of kinetic information, e.g., by record-
ing of time series of brightfield and fluorescence images, since the
buildup of platelet aggregates with fibrin is more time-dependent.

Box 1. Useful protocols.

A. Construction of flow chambers for blood perfusion. Both
commercial and home-made parallel-plate flow devices can be
used for whole blood perfusion studies to measure platelet
deposition, activation, and aggregation by the use of brightfield
and fluorescence microscopy (73). Soft-material
polydimethylsiloxane (PDMS) chambers though may contain
irregularities in the flow channels, so that hard-plastic chambers
with high-precision dimensions are preferred. The Maastricht
flow chamber is made of polymethyl methacrylate with channel
dimensions of 50 µm height, 3 mm width, and 20 mm length. At
one side it is covered with a rectangular glass coverslip. The
small channel proportions reduce the amount of blood needed per
flow run to about 0.5 mL (27). Flow disturbances are prevented
by tubular inlets entering the channel at low angle of 11 .
Coverslips are usually coated with microspots of 1–2 mm Ø (0.5–
2 μL applied per spot) for obtaining a consistent pattern of
thrombi (15). A variety of platelet-adhesive ligands can be used,
but most common are collagen type-I which binds VWF (73).
Protocol details are given elsewhere (74).

B. Whole-blood thrombus formation without coagulation.
Preferably, blood is collected on thrombin inhibitors.
Alternatively citrate-anticoagulated blood is supplemented, prior
to the experiment, with a CaCl2/MgCl2 mixture in the presence of
thrombin inhibitors, in order to achieve physiological
(millimolar) concentrations of free Ca2+ and Mg2+ (74). In our
experience, dual thrombin inhibition is required to prevent “back-
ground” clotting (e.g. PPACK/fragmin or hirudin/fragmin),
certainly when using hyper-coagulant or mouse blood. We prefer
to perfuse whole blood samples in a plastic syringe in push mode,
thus limiting leakage artifacts. A large set of fluorescent labels is
available for quantifying purposes (27). For most surfaces,
thrombus formation tends to maximize in a time span of 5–8 min,
meaning that end-stage images can be recorded only. Labeling for
platelet activation then is done post hoc, i.e., while recording
(enhanced-contrast) brightfield images. Additional recording of
fluorescence images (e.g. using spectrally non-overlapping green
fluorescent protein (GFP), red fluorescent protein (RFP), and
Cy5 filter sets) ultimate provides multiparameter insight into the
content, structure, and platelet-activation properties of a
thrombus (15).

C. Whole-blood thrombus formation with coagulation. Samples of
citrate-anticoagulated blood may be supplemented with CaCl2/
MgCl2 mixture, and then perfused over a collagen/tissue factor
surface. However, a disadvantage of this procedure is ongoing
contact activation in the blood before reaching the tissue factor
(this is partly prevented by addition of corn trypsin inhibitor).
Our preferred way of operation is to continuously co-infuse
citrated-anticoagulated whole blood with a CaCl2/MgCl2 mixture
(two plastic syringes in push mode), with tissue factor either
added to the mix (56) or present with collagen in microspots (57).
On microspots with tissue factor alone, no fibrin is formed due to
the absence of platelets (57). Since the formation of thrombin and
fibrin is an ongoing process, preferably kinetic information is
collected, i.e., by recording time series of microscopic images.
Fluorescent probes can be added to the blood samples, e.g.,
detecting platelets, procoagulant activity and fibrin (using GFP,
RFP, and Cy5 filter sets).

D. Microscopic image analysis. High-resolution digital microscopic
(≥8-bit, brightfield and fluorescence) images can be scored for
thrombus morphology, and analyzed for coverage of platelets and
labeled activation markers. Image analysis using FIJI software
(75) is convenient since the program allows to write scripts for
different optics and image types. Scripts may include a correction
for background illumination (fast Fourier transform bandpass
filter), followed by (manual) adjustment of a threshold setting,
and a measurement of the surface area coverage of supra-
threshold pixels. For brightfield images, it is useful to include
Gray morphology conversions (large-/medium-sized close,
followed by a small dilate) in order to reduce striping and
improve the detection accuracy.
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Simultaneous assaying of different platelet functions

In the last decade, microfluidic devices are increasingly applied for
characterization of the platelets from patients with several geneti-
cally linked diseases. In the majority of the work, collagen-I was
used as platelet adhesive surface; with a perfusion protocol consist-
ing of perfusion of anticoagulated/recalcified blood at arterial wall-
shear rates of 800–1600 s−1. Thrombi formed on collagen-I were
usually observed by brightfield microscopy, sometimes in combina-
tion with fluorescence microscopy. In some cases, flow pressure
changes, accompanying platelet aggregation, were recorded. In only
few papers, information was obtained on thrombus formation at
other adhesive surfaces than collagen-I. Table I provides an over-
view of the published studies so far.

Platelet procoagulant defects

Patients with Scott syndrome suffer from a mild bleeding disorder
(35), which is linked to the inability of platelets to expose phos-
phatidylserine in a Ca2+-dependent way (36,37). The syndrome is
associated with defective expression of the ANO6 gene (alterna-
tively termed TMEM16F), which encodes the Ca2+-activated ion
channel, anoctamin-6 (37,38). High-throughput whole-blood flow
measurements indicated that platelet adhesion, aggregation, and
secretion were normal on collagen-I, whereas phosphatidylserine
exposure of the Scott platelets was severely decreased (37,39).

Other essential players in platelet Ca2+ homeostasis are the store-
operated Ca2+ channel, ORAI1, and its Ca2+-sensing binding partner
in the endoplasmic reticulum, STIM1 (36). Hetero- or homozygous
mutations in either gene can lead to severe combined immunodefi-
ciency, but are mostly not accompanied with an overt bleeding phe-
notype. An impairment in store-regulated Ca2+ entry is frequently
observed in the platelets from patients with loss-of-function mutations

in either ORAI1 or STIM1. For the few patients studied so far in
multispot flow chamber studies (Table II), it appeared that the
ORAI1 mutation was accompanied by a stronger defect in platelet
adhesion and aggregation than the STIM1 mutation (30). On the
other hand, a gain-of-function mutation in ORAI1 (high store-regu-
lated Ca2+ entry) is associated with relatively high platelet adhesion,
secretion, and integrin activation under flow (15,30). Markedly, for
collagen-I and also other surfaces, platelet procoagulant activity cor-
related well with the loss- or gain-of-function mutation in ORAI1.
Interestingly, the collagen-I surface appeared to bemost sensitive for a
moderate lowering in platelet count often seen in such patients when
compared to VWF/rhodocytin or VWF/fibrinogen (30).

Platelet signaling receptors and cytoskeletal defects

Several bleeding disorders are linked to changes in the platelet cytos-
keleton (40). So far, only patients with May–Hegglin syndrome have
been examined for changes in thrombus formation. This syndrome is
linked to a mutation in the gene for non-muscle myosin heavy chain 9
and is characterized by macrothrombocytopenia. On collagen-I, and
to a lesser extent on other microspots (15), platelet aggregates from a
patient with May–Hegglin anomaly were low in most activation
parameters, except for phosphatidylserine exposure, which was com-
parable to the control level (Table I).

Platelet secretion defects

In several groups of patients, the risk of bleeding is linked to a defect
in platelet α-granule secretion (no P-selectin expression) and/or δ-
granule secretion (no CD63 expression in Hermansky–Pudlak
patients). In both cases, mutations have been detected in multiple
genes (40). The Gray platelet syndrome is an example of α-granule
deficiency, often in combination with mild thrombocytopenia. In

Table I. Changed parameters of platelet thrombus formation on a collagen-I surface (no coagulation) observed for patients with genetically linked
disorders.

Shear rates are indicated in 1000× (k). Color intensity reflects reported frequency (of effect). References: a (37,39); b (30); c (15,30); d (15); e (41); f
(15,42); b (30); g (42); h (43,44); i (45,46); j (47); k (48,50); l (48–52); and m (49).
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high-throughput flow chamber studies, platelets from a patient with
this syndrome showed decreased adhesion, secretion, and aggregation
(collagen-I and other GPVI- and CLEC-2-activating surfaces),
whereas phosphatidylserine exposure remained normal (15). In case
of absent δ-granules, i.e., patients with δ-storage pool disease or
Hermansky–Pudlak syndrome (HPS3 gene), platelet adhesion and
aggregation on collagen-I were found to be impaired (15,41). These
changes are explained by the combination of a lower platelet count
and platelet dysfunction.

Platelet adhesion and receptor defects

Platelets from patients with bleeding and Glanzmann’s thrombasthe-
nia, carrying loss-of-function mutations in the ITGA2B or ITGB3
genes, are characterized by absence of integrin αIIbß3 or a qualitative
defect of integrin activation and, hence, inability to aggregate.
Affected aggregate formation and integrin activation in Glanzmann
patients has also been observed using flow assays assessing platelet
adhesion and thrombus formation on collagen and other surfaces,
independent of shear rate (15,42). Similarly, patients with a combined
immune disease and bleeding disorder, i.e., leukocyte adhesion defi-
ciency-III, due to homozygous dysfunctionalmutations inFERMT3 (a
gene coding for the integrin-regulating protein kindlin-3), have plate-
lets that are unable of αIIbß3 activation and aggregation. High-through-
put flow assays with blood from such a patient or the heterozygous
parents showed a marked reduction for all parameters of thrombus
formation on collagen-I and other surfaces (30).

A clear shear-dependent difference in thrombus formation under
flow is observed for patients with the Bernard–Soulier syndrome.
This is a bleeding disorder characterized bymacrothrombocytopenia
due to mutations in genes encoding for components of the GPIb-V-
IX complex (40). In flow chamber assays, the patients’ platelets
displayed decreased adhesion on collagen at high shear rate (1500
s−1), but normal adhesion at low shear rate (50 s−1) (42). Thrombus
formation is also assessed in blood from patients with (an unknown
cause of) GPVI deficiency or with a genetic compound heterozygous
deficiency in GPVI. For these patients, a decreased platelet adhesion
and aggregation on collagen was seen (43–45); in one case, the
overall adhesion of single platelets was increased, whereas aggre-
gates were not formed at all (46). In healthy subjects, a common
genetic variant that associates with low GPVI expression also
reduces parameters of thrombus formation on collagen-I (47).

Von Willebrand disease and afibrinogenemia

Subtypes of von Willebrand disease (VWD) are defined according to
the altered way of VWF-GPIb-V-IX interaction and the severity of the
bleeding disorder. In VWD type I, 2A or 3, categorized by a low or
defective plasma VWF function, published reports pointed to a
(severely) reduced platelet adhesion and aggregation at high shear
(1000–1500 s−1) flow conditions (42,48–52). However, platelet adhe-
sionwas in the normal range at lower shear rates (50–670 s−1) (42,48–
52). In type 2B vWD, characterized by a gain-of-function of GPIbα,
enlarged platelets are present showing spontaneous binding to VWF
(40). Especially at high-shear flow conditions, platelets from these
patients showed a deficiency in aggregation and integrin activation on
collagen surfaces (48,50). As expected, also low plasma fibrinogen
(afibrinogenemia) resulted in low platelet aggregation under flow
(49). Taken together, although for only some of these patient groups
specific platelet responses (integrin activation, secretion, procoagulant
activity) have been measured, the obtained flow results are in general
agreement with the known platelet phenotypes (Table I).

Simultaneous assaying of platelet activation and
coagulation

Coagulation studies under flow, using surfaces consisting of
collagen with(out) tissue factor, have been performed to charac-
terize abnormalities in the clotting process of patients with geneti-
cally linked or acquired coagulation disorders (Table II). In the
majority of studies performed so far, both platelet adhesion and
fibrin formation have been measured.

Hemophilia A

Several authors (48,53,54) reported a normal formation of a
fibrin-containing thrombus on collagen with(out) tissue factor
with blood from patients with mild hemophilia A (6–30% factor
VIII activity) at low or high shear rates (Table II). Only one paper
describes a decreased fibrin deposition at a shear rate of 1500 s−1

(55). For patients with moderate hemophilia A (1–5% factor VIII
activity), platelet adhesion was normal to decreased and accom-
panied by a marked delayed and reduced formation of fibrin
fibers (53,54,56). In severe hemophilia A (<1% activity), a severe
bleeding phenotype, all parameters of thrombus formation were
reported to be abrogated (with the exception of one paper showing

Table II. Changed parameters of platelet-fibrin thrombus formation on a collagen-I surface with(out)
tissue factor observed for patients with coagulation deficiencies.

Shear rates are indicated in 1000× (k). Color intensity reflects reported frequency (of effect).
References: a (48,54,55); b (53); c (53,54,56); d (48,54,55); e (53); f (56,57); and g (54).

DOI: https://doi.org/10.1080/09537104.2018.1447660 High Throughput Platelet Aggregation under Flow 665



only decreased aggregation and fibrin deposition) without tissue
factor (48,54,55).

Other coagulant disorders

By multiparameter testing, our group (56,57) has reported nor-
mal platelet adhesion on collagen/tissue factor surfaces with
blood from patients with moderate hemophilia B (factor IX
deficiency), whereas fibrin formation is retarded (Table II). A
more striking dysfunction is described with blood from (bleed-
ing) patients with severe hemophilia B, that is, low platelet
adhesion as well as fibrin formation (54). The same is true in
blood from a patient with mild hemophilia C (factor XI defi-
ciency) (54). Acquired dilution coagulopathy is a clinical con-
dition with high bleeding risk, caused by massive blood dilution
due to infusion of colloids and crystalloids in major surgery
(58). Blood samples from patients with dilution coagulopathy
demonstrated low platelet adhesion and fibrin formation on a
collagen/tissue factor surface (57). In most papers monitoring
the effects of coagulation disorders, no information is provided
on specific platelet responses (integrin activation, secretion,
procoagulant activity).

Clinical use: thrombosis and effects of antithrombotic
medication

Flow devices, mostly single-spot, have also been used to assess
altered platelet functions in whole blood as a consequence of
common antithrombotic medication, either in healthy subjects or
in patients with increased risk of cardiovascular disease. An over-
view is given in Table III.

Aspirin and cardiovascular disease

High-throughput assessment of thrombus formation indicated
that, for patients with stabilized peripheral arterial disease and
taking aspirin, platelet adhesion was within the normal range,
whereas aggregate formation and procoagulant activity were
reduced (59). This partial loss of activity was ascribed to the
use of aspirin. Several studies have examined the effect of aspirin
per se, either in vivo or in vitro, on thrombus formation on
collagen-I. Depending on the particular microfluidics conditions
(Table III), reduced platelet adhesion and fibrin formation by

aspirin was described by some authors (60–63), whereas no effect
was reported by others (64,65). In terms of kinetics, one group
described that aspirin in vitro mainly affected secondary aggrega-
tion (66), while another group demonstrated reduced aggregate
stability (63). Taken together, this points to a relatively late effect
of aspirin in the thrombus buildup on collagen-I.

Other antithrombotic drugs

Attention has been paid to the effect of dual antiplatelet agents,
i.e., aspirin in combination with clopidogrel, the latter producing
an active metabolite that causes irreversible P2Y12 receptor inhi-
bition (Table III). Several groups showed that this combination of
agents reduced platelet adhesion, aggregate formation, and fibrin
deposition on a collagen surface (60,63,65,67). Similarly, in vitro
addition of aspirin and the active metabolite of clopidogrel
decreased platelet adhesion and aggregate formation (68). On
the other hand, an early paper reported no effects of P2Y12 or
P2Y1 receptor antagonists on platelet deposition on collagen-I in
an open flow system (69). Very little information is still available
on other platelet responses (integrin activation, secretion, procoa-
gulant activity).

Under coagulating conditions, both dabigatran (thrombin inhi-
bitor) and rivaroxaban (factor Xa inhibitor) were found to reduce
platelet aggregate formation and fibrin deposition (by microscopy
or deduced from pressure changes in a flow chip) on collagen/
tissue factor surfaces (56,70,71). However, one study demon-
strated an increase of platelet adhesion and thrombus formation
on VWF, collagen, and human atherosclerotic plaque tissue after
dabigatran treatment when compared to vitamin K antagonists
(72). Apixaban (another factor Xa inhibitor) gave similar results
as rivaroxaban. Under conditions of limited coagulation (no tissue
factor), rivaroxaban did not affect platelet aggregation (71).

Conclusions

For the limited number of clinical blood samples examined,
mostly from patients with genetically linked bleeding disorders
(Table I), high-throughput analysis of thrombus formation on
collagen-I has provided relevant, all-in-one information about
the platelet phenotype. Additional surfaces (e.g., triggering plate-
let adhesion via CLEC-2, integrin αIIbβ3, α6β1, or CD36) give
more detailed insight into the altered platelet reactivity, if only

Table III. Changed parameters of platelet-fibrin thrombus formation on collagen surface with(out) tissue
factor observed for antithrombotic drugs.

* active metabolite, coinfusion with ADP
Shear rates are indicated in 1000× (k). Color intensity reflects reported frequency (of effect).
References: a (60,64,65,76); b (59); c (60,63,65,67); d (59,61–63,66,76); e (66,68); f (56,70,71); and g (71).
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because these are less sensitive to changes in platelet count. Flow
perfusion measurements under coagulating conditions, e.g., with
collagen/tissue factor surfaces, can distinguish between conditions
of mild, moderate, and severe hemophilia, which appears to be in
accordance with the bleeding risk of the patients. Given this, we
consider that further fine-tuning of the technology for high-
throughput microfluidic assays is needed for optimal assessment
of platelet function and effects of antithrombotic medication.
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