
Wayne State University
DigitalCommons@WayneState

Wayne State University Dissertations

1-1-2013

Combinatorial Auction-Based Virtual Machine
Provisioning And Allocation In Clouds
Sharrukh Zaman
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Zaman, Sharrukh, "Combinatorial Auction-Based Virtual Machine Provisioning And Allocation In Clouds" (2013). Wayne State
University Dissertations. Paper 720.

http://digitalcommons.wayne.edu?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F720&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F720&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F720&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations/720?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F720&utm_medium=PDF&utm_campaign=PDFCoverPages

COMBINATORIAL AUCTION-BASED VIRTUAL MACHINE
PROVISIONING AND ALLOCATION IN CLOUDS

by

SHARRUKH ZAMAN

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2013

MAJOR: COMPUTER SCIENCE

Approved by:

Advisor Date

c© COPYRIGHT BY

SHARRUKH ZAMAN

2013

ALL RIGHTS RESERVED

DEDICATION

To my parents, who always sacrifice everything for their children’s success.

ii

ACKNOWLEDGMENTS

First, I would like to thank my advisor Dr. Daniel Grosu. His guidance, motivation, and support throughout

the entire program is the most important factor that helped me keep in track. Besides his scholarly advice,

I most appreciate his understanding of all human factors a Ph.D. student may face. He believes in his

students, which is, in my opinion, the most precious asset a Ph.D. student needs to continue and finish this

long journey. I am also indebted to my committee members Dr. Hongwei Zhang and Dr. Nathan Fisher

for their support and encouragement since my qualifying exam. I repeatedly requested them for reference

letters during my long-lasting job search, and every time they extended their help without hesitation. My

external committee member Dr. Cheng-Zhong Xu was always flexible in scheduling my defense meetings

despite his out of country travels. I also thankfully remember that he gave me the opportunity to review

a paper in a renowned journal. I wish to thank the anonymous reviewers of our papers.

At this point I would like to express my gratitude to my parents Dr. Md. Badiuzzaman and Dr. Syeda

Afifa Huda for always being there for me. They gladly accepted my long absence just because I will get

this great opportunity to achieve the degree I dreamed of. My wife Masuma Khandaker married me when

I left my job and was getting ready to start this long journey. She has been so patient and understanding

with the limitations and crazy schedule of a graduate student, I will always wonder how she did this. I

acknowledge my family members and friends who believed that I could finish this program. I remember

Dr. M. Kaykobad of my undergraduate institution BUET at this moment. He always encouraged us to

pursue higher degrees. He becomes really happy to learn about his former students’ successes and tells the

story to his current students.

The Department of Computer Science, despite many limitations, supports many Ph.D. students as

GTAs and provides financial assistance for conference travels. The staff members are really good to make

a foreign student feel home away from home. I also remember Rachel, Matt, and Deb, who left the

department but were here most of the time I have been in the department. I was with a different group in

my first year and at some point I thought I could not continue. Deb Mazur talked me out of that situation

and encouraged me to find a group that would better suit my interest. This list would go on and I cannot

even recall, let alone return the favor for every single contribution to my life and my success. I hope my

degree will give me a greater opportunity to do good for the people who would come across my path and

to the society at large.

Finally, this research was supported in part by National Science Foundation grants DGE-0654014 and

CNS-1116787.

iii

TABLE OF CONTENTS

Dedication . ii

Acknowledgments . iii

List of Tables . vii

List of Figures . viii

Chapter 1: Introduction . 1

1.1 Problem Definition . 3

1.2 Outline of the Dissertation . 6

1.2.1 Our Contribution . 9

1.3 Organization . 10

Chapter 2: Background . 11

2.1 Combinatorial Auctions . 11

2.2 Goals, Properties and Challenges of Mechanism Design 12

2.3 Related Work . 13

Chapter 3: Combinatorial Auction-Based Allocation of Virtual Machine
Instances in Clouds . 21

3.1 Introduction . 21

3.1.1 Our Contribution . 24

3.1.2 Organization . 25

3.2 Virtual Machine Allocation Problem . 25

3.3 Virtual Machine Allocation Mechanisms 28

3.3.1 FIXED-PRICE Mechanism . 29

3.3.2 Combinatorial Auction-Based Mechanisms 30

3.4 Experimental Results . 42

3.4.1 Experimental Setup . 42

3.4.2 Analysis of Results . 46

3.5 Summary . 59

iv

Chapter 4: Efficient Bidding for Virtual Machine Instances in Clouds . . 60

4.1 Introduction . 60

4.1.1 Our Contribution . 61

4.1.2 Organization . 61

4.2 Proposed Bidding Strategy . 61

4.2.1 Execution Time and Speedup . 63

4.2.2 Valuation Function and Algorithm 66

4.2.3 Analysis of EBS . 70

4.3 Experimental Results . 71

4.3.1 Naive Bidding . 71

4.3.2 Simulation Parameters . 73

4.3.3 Analysis of Results . 75

4.4 Summary . 86

Chapter 5: Combinatorial Auction-Based Dynamic VM Provisioning and
Allocation in Clouds . 87

5.1 Introduction . 87

5.1.1 Our Contribution . 89

5.1.2 Organization . 89

5.2 Dynamic VM Provisioning and Allocation Problem 90

5.3 Combinatorial Auction-Based Dynamic VM Provisioning and Allocation Mech-
anism . 93

5.3.1 Properties of CA-PROVISION . 96

5.4 Experimental Results . 99

5.4.1 Experimental Setup . 100

5.4.2 Analysis of Results . 106

5.5 Summary . 114

Chapter 6: An Online Mechanism for Dynamic VM Provisioning and
Allocation in Clouds . 115

6.1 Introduction . 115

v

6.1.1 Our Contribution . 116

6.1.2 Organization . 117

6.2 VM Instance Allocation Problem . 117

6.3 Online Mechanism Design Framework . 120

6.4 Online Mechanism for VM Allocation . 123

6.4.1 Mechanism MOVMPA . 123

6.4.2 Allocation function . 125

6.4.3 Payment function . 126

6.5 Properties of MOVMPA . 130

6.6 Experimental Results . 133

6.6.1 Experimental Setup . 133

6.6.2 Analysis of Results . 136

6.7 Summary . 140

Chapter 7: Future Research Directions . 141

7.1 Combinatorial Auction-Based Mechanisms 141

7.2 Bidding in Combinatorial Auction-Based Mechanisms 141

7.3 Bidding Languages for Combinatorial Auctions in Clouds 142

7.4 Auction-Based Marketplace for Federation of Clouds 142

Chapter 8: Conclusion . 143

References . 143

Abstract . 152

Autobiographical Statement . 154

vi

LIST OF TABLES

3.1 CA-LP Example . 37

3.2 CA-GREEDY Example . 41

3.3 Simulation Parameters . 44

4.1 Simulation Parameters . 74

5.1 Workload logs . 101

5.2 Statistics of workload logs . 102

5.3 Simulation Parameters . 105

6.1 User bids . 128

6.2 Execution of MOVMPA . 129

6.3 Workload logs . 134

6.4 Simulation Parameters . 135

vii

LIST OF FIGURES

3.1 VM instance allocation in clouds: system model 25

3.2 Overall performance of the mechanisms with linear fixed-price vector (.12,
.24, .48, .96), fixed-price factor vector φ = (1, 1, 1), and 100,000 users. The
plot is drawn at log10 scale. 46

3.3 Overall performance of the mechanisms with linear fixed-price vector (.12,
.24, .48, .96), fixed-price factor vector φ = (1, 1, 1), and 50,000 users. The
plot is drawn at log10 scale. 47

3.4 Overall performance of the mechanisms with linear fixed-price vector (.12,
.24, .48, .96), fixed-price factor vector φ = (1, 1, 1), and 10,000 users. The
plot is drawn at log10 scale. 48

3.5 Overall performance of the mechanisms with 100,000 users and (a) sublinear
fixed-price vector (.12, .22, .39, .70); (b) superlinear fixed-price vector (.12,
.26, .58, 1.28). The fixed-price factor vector φ = (1, 1, 1). The plot is drawn
at log10 scale. 49

3.6 Effect of valuation ranges (with 100,000 users) on (a) Revenue; (b) VM
utilization. 50

3.7 (a) Revenue and (b) VM utilization vs. ratios of price and deadline factors.
Ratio is defined as a set of ((price-factor), (deadline-factor)) values. Ratio 1
= ((2, 1.5, 1), (.33, .5, 1)), Ratio 2 = ((2, 1.5, 1), (.5, .67, 1)), Ratio 3 =
((3, 2, 1), (.33, .5, 1)), Ratio 4 = ((3, 2, 1), (.5, .67, 1)). 51

3.8 Percentage of served users for simulations with 100,000 users. 52

3.9 Percentage of served users for simulations with 50,000 users. 53

3.10 Percentage of served users for simulations with 10,000 users. 53

3.11 Percentage of partially served users for simulations with 100,000 users. . . 54

3.12 Percentage of partially served users for simulations with 50,000 users. . . . 54

3.13 Percentage of partially served users for simulations with 10,000 users. . . . 55

3.14 Utilization of resources during different periods of time (100,000 users) . . 56

3.15 Overall performance of the mechanisms with fixed-price factor vector φ =
(3, 2, 1) and 100,000 users. The plot is drawn at log10 scale. 57

viii

3.16 Overall performance of the mechanisms with fixed-price factor vector φ =
(4, 2, 1) and 100,000 users. The plot is drawn at log10 scale. 57

4.1 Characteristics of the valuation function: Speedup vs. number of processors
(Rj = 1) . 65

4.2 Characteristics of the valuation function: Speedup vs. number of VM in-
stances (pj = 26) . 65

4.3 Characteristics of the valuation function: Optimal number of processors (pj)
and time (Tj) vs. workload. 69

4.4 Separate auctions (five-day simulation): Users served 75

4.5 Separate auctions (five-day simulation): Average utility 76

4.6 Separate auctions (five-day simulation): Total revenue 76

4.7 Separate auctions (ten-day simulation): Users served 76

4.8 Separate auctions (ten-day simulation): Average utility 77

4.9 Separate auctions (ten-day simulation): Total revenue 78

4.10 Separate auctions (fifteen-day simulation): Users served 78

4.11 Separate auctions (fifteen-day simulation): Average utility 79

4.12 Separate auctions (fifteen-day simulation): Total revenue 79

4.13 Users served. Here, each scenario represents a combination of (ωmin, ωmax,
V min, V max)-values. The values are: Scenario 1 ≡ (10, 50, 5, 25), Scenario 2
≡ (10, 50, 10, 50), Scenario 3 ≡ (20, 100, 5, 25), and Scenario 4 ≡ (20, 100,
10, 50). 80

4.14 Average utility. Here, each scenario represents a combination of (ωmin, ωmax,
V min, V max)-values. The values are: Scenario 1 ≡ (10, 50, 5, 25), Scenario 2
≡ (10, 50, 10, 50), Scenario 3 ≡ (20, 100, 5, 25), and Scenario 4 ≡ (20, 100,
10, 50). 80

4.15 Total revenue. Here, each scenario represents a combination of (ωmin, ωmax,
V min, V max)-values. The values are: Scenario 1 ≡ (10, 50, 5, 25), Scenario 2
≡ (10, 50, 10, 50), Scenario 3 ≡ (20, 100, 5, 25), and Scenario 4 ≡ (20, 100,
10, 50). 81

4.16 (a) Average utility of users vs two extreme combination of values for system
parameters; (a) Scenario 1 ≡ all system parameters have the minimum value;
(b) Scenario 2 ≡ all system parameters have the maximum value. 82

ix

4.17 Average utility of users vs. four different scenarios of bid parameters. Here,
each scenario represents a combination of (λmin, λmax, σmin

1 , σmax
1 , σmin

2 , σmax
2)-

values. Scenario 1 ≡ minimum values for all parameters; Scenario 2 ≡ min-
imum values for λ but maximum values for both σ parameters; Scenario 3
≡ maximum value for λ and minimum value for both σ parameters; and
Scenario 4 ≡ maximum values for all parameters. 82

4.18 Auctions with mixed user population: Users served 83

4.19 Auctions with mixed user population: Average utility 83

4.20 Auctions with mixed user population: Average revenue 84

4.21 Percent of strategic users among served users vs. user distribution. 85

4.22 Average utility of served users vs. user distribution. 85

4.23 Average revenue generated from served users vs. user distribution. 86

5.1 Average revenue per processor-hour by CA-PROVISION and CA-GREEDY
vs. normalized load. 107

5.2 Average cost per processor-hour by CA-PROVISION and CA-GREEDY vs.
normalized load. 108

5.3 Average profit per processor-hour by CA-PROVISION and CA-GREEDY
vs. normalized load. 108

5.4 Resource utilization by CA-PROVISION and CA-GREEDY vs. normalized
load . 109

5.5 Percent users served by CA-PROVISION and CA-GREEDY vs. normalized
load . 109

5.6 Allocation of VM1 instances: (a) by CA-PROVISION; (b) by CA-GREEDY.
Workload file: DAS2-fs3-2003. 111

5.7 Allocation of VM2 instances: (a) by CA-PROVISION; (b) by CA-GREEDY.
Workload file: DAS2-fs3-2003. 112

5.8 Allocation of VM3 instances: (a) by CA-PROVISION; (b) by CA-GREEDY.
Workload file: DAS2-fs3-2003. 112

5.9 Allocation of VM4 instances: (a) by CA-PROVISION; (b) by CA-GREEDY.
Workload file: DAS2-fs3-2003. 113

6.1 Overall results comparing CA-PROVISION and MOVMPA: percent of users
served vs. workload logs . 137

x

6.2 Overall results comparing CA-PROVISION and MOVMPA: average revenue
per served user vs. workload logs . 137

6.3 Overall results comparing CA-PROVISION and MOVMPA: average utility
per served user vs. workload logs . 138

6.4 Average revenue vs. rate of arrival . 138

6.5 Average revenue vs. average length of each request 139

xi

1

CHAPTER 1: INTRODUCTION

Cloud computing has revolutionized the computing world and will continue to do so for

many years to come. The core technology behind cloud computing is virtualization. Large

datacenters offer computing resources in terms of virtual machines where users remotely

connect to perform their computing tasks or deploy their applications. Cloud services

include virtual machines, virtual platforms, and cloud-based software. Big corporations

that already possess large datacenters are able to generate additional revenues (e.g., Mi-

crosoft Windows Azure [42], Amazon EC2 [4]). Many new companies solely based on cloud

computing products are being added to the market (e.g., Salesforce.com [54], Rackspace

Hosting [51]). On the other hand, users, especially small and medium enterprises, now

have a wide array of options for securing their computing resources - they can rely on cloud

resources at any level (infrastructure, platform, or software). This enables users to balance

their financial requirement for computing - they can replace the upfront cost of procure-

ment and ongoing cost of in-house maintenance with utilizing cloud resources depending

on their financial goals and limitations.

As an emerging field, cloud computing is the focus of many ongoing research. Among

many tracks of cloud computing research, we identify that increasing the efficiency of allo-

cation of the computing resources is a very important problem. As more users and providers

enter the market, the more challenging the efficient allocation of computing resources will

be. Efficiency of allocation, or economic efficiency, is achieved when it is ensured that

the user who values an item the most, gets it. The value a user puts on an item can be

known only when the user bids for that particular item, i.e., expresses her demand for that

item and the amount she is willing to pay for it. However, to decide fairly who gets an

item, it is required that all the users express their true valuation to the system. When it is

guaranteed by a mechanism that the users can maximize their utility by telling the truth

(i.e., reporting their true valuations for the requested resources), we say that the allocation

2

mechanism is incentive compatible.

The resource allocation model in cloud computing uses virtualization techniques. Cloud

providers provision their computing resources into virtual machines (VMs) and users re-

quest the resources to accomplish their intended tasks. Current virtual machine allocation

mechanisms employed by the cloud providers are mainly fixed-price based mechanisms.

Economic theory shows that these mechanisms are not economically efficient. A fixed-price

based mechanism usually follows a first-come fist-served approach that does not necessarily

create incentives for the users to express their true valuation to the system. Regardless of

how valuable a resource is to a user, she pays a fixed price to get access to that resource.

On the other hand, a user who values a resource less than the published market rate cannot

even participate in the process of requesting the resource for herself. As the cloud comput-

ing platform matures toward a popular and highly-accessed system, such issues will be of

major concern for both the users and the providers.

An auction-based mechanism can provide fair allocation and economic provisioning of

computing resources as virtual machines. A cloud provider needs to predict the demand

of its resources in order to be able to provision them in a cost-effective and profitable way.

An efficient mechanism can provide this information in real-time in order to enable the

provider make their provisioning decision effectively. On the other hand, auction-based

mechanisms can also help the cloud users plan proper level of resources for the tasks they

want to execute. When a user knows that by asking for the resources they actually require

with the price they want to really pay for that, her perceived utility from the allocation

can be maximized, she will be able to realistically estimate her work performance and cost.

Auctions are categorized based on different criteria. We determine that combinatorial

auctions are best suited for allocating VM instances in clouds. Combinatorial auctions

enable users to express their requirement when the items they require are complementary

to one another. For example, a user hosting a web service may need three different servers

to use as database server, application server, and web server. If she cannot acquire all three

servers together, she would prefer not getting an allocation at all rather than acquiring a

3

subset of her requirement. Combinatorial auctions provide bidding protocols that allow

complete expression of user requirements.

In this Ph.D. dissertation, we design combinatorial auction-based mechanisms to effi-

ciently provision and allocate VM instances to cloud users, and determine their prices based

on the market demand. We formulate different models for the problem of VM provisioning

and allocation, and devise mechanisms to solve each of them. This will help a provider se-

lect a mechanism based on their particular needs. We have completed four research projects

as part of this thesis. We designed two combinatorial auction-based mechanisms to allocate

VM instances in a setting where they are assumed to be pre-provisioned. Later, we devised

a dynamic mechanism that considers the entire pool of computing resources of a cloud

provider as ‘liquid’ resources and provisions them dynamically into VM instances based on

a combinatorial auction. The above two mechanism design problems are modeled as offline

mechanism design problems. In an offline mechanism, the auction is run periodically and

allocates resources for only one period of time. Users requiring longer time must continue

bidding until they receive allocation for adequate number of times. In our last work in

mechanism design, we investigated the problem of online mechanism design. In an online

mechanism, users include the required time in their bids. Once a user wins her bid, she has

guaranteed access to the allocated resources for the time period she requested in her bid.

In another research work, we investigated the bidding behavior of users where we devised

an efficient bidding algorithm for users who would participate in combinatorial auctions

in clouds. We believe our work has laid a solid foundation for auction-based allocation in

clouds and has opened a number of directions for future research.

1.1 Problem Definition

In this section, we present the part of the problem definition and the notations that are

common throughout the dissertation. Specific definitions, assumptions, and notations are

covered along with respective research problems that we present.

4

We assume that the cloud provider allocates its computing resources asm different types

of VM instances VM1, . . . , V Mm. A weight vector w = (w1, . . . , wm) represents the relative

computing power of each type of VM instance. For example, suppose a cloud provider

defines three types of VM instances (small, medium and large), which we call VM1, V M2

and VM3. Let the configuration of these VMs be VM1 ≡ (One 2 GHz processor, 2 GB

memory, 1 TB disc storage), VM2 ≡ (Two 2 GHz processors, 4 GB memory, 2 TB disc

storage), and VM3 ≡ (Four 2 GHz processors, 8 GB memory, 4 TB disc storage). In this

case, the weight vector will be w = (1, 2, 4). Without loss of generality, we assume that

w1 ≤ . . . ≤ wm and w1 = 1. We also assume that there are n users u1, . . . , un who request

bundles of VM instances to the cloud provider by submitting their bids. The bid of user

uj is denoted by Bj = (rj1, . . . , r
j
m, vj), where rji is the number of VMi instances user uj

requires in her bundle. vj is user uj’s valuation for her requested bundle i.e., the maximum

amount she wants to pay for it. We define the rest of the terms in the following chapters

where we solve different variants of the VM provisioning and allocation problem in clouds.

The first problem we solve as part of our dissertation research is called the Virtual

Machine Allocation Problem (VMAP), which we present in Chapter 3. In this problem, we

assume that the cloud provider has a fixed number of statically provisioned VM instances

to allocate to its users. k1, . . . , km denote the number of VM1, . . . , V Mm instances available

for allocation. The objective of VMAP is to determine a set of winners among the users and

determine their payment so that the social welfare is maximized, satisfying the constraint

given by the available number of VM instances.

The problem we solve in Chapter 4 is to devise an efficient bidding strategy algorithm

for users who submit malleable parallel jobs to a cloud computing platform that uses combi-

natorial auction-based mechanisms to allocate VM instances to its users. Malleable parallel

jobs can be executed on any number of processors, given that the parallel speedup decreases

non-linearly with increase in number of processors. The objective of the problem is to gen-

erate an efficient bid Bj for user uj given the total workload and degree of parallelism of

the job she wants to execute, how much she values the speedup of the execution and her

5

budget, and the system parameters such as communication overhead.

In Chapter 5, we define the Dynamic VM Provisioning and Allocation Problem (DVMPA)

where the number of different types of VM instances are provisioned dynamically based

on the market demand. In DVMPA, the total amount of computing resources is denoted

by M , where M is the total number of VM1 instances that can be provisioned using the

entire resources available to the cloud provider. Note that we assume that VM1 is the

least powerful VM instance with weight w1 = 1. In DVMPA, we also consider the cost of

operating the VM instances: cI is the cost for an idle VM1 instance for a ‘time unit’ and

cR is the cost for a ‘running’ (i.e., allocated to a user) VM1 instance for a ‘time unit’. Cost

of other types of VM instances are linearly proportional to their weight. Given the above

parameters, the objective of DVMPA is to determine a set of winners from the users, deter-

mine their payments, and determine the number of each type of VM instances to provision

so that the the profit (revenue – cost) of the cloud provider is maximized.

We define and solve the problem called Online VM Provisioning and Allocation Problem

(OVMPA) in Chapter 6. Unlike the above problems, OVMPA considers the duration of

time for which users request the VM bundle. Each user uj submits her bid to the mechanism

where she also includes the number of time units she requires to complete her application lj

and the deadline for task completion dj. The time instance aj the user submits her bid is her

‘arrival time’. The user’s bid and her arrival time constitute her type. An online mechanism

is invoked as soon as there are some outstanding bids and there are available resources in the

cloud. Therefore, computation of the mechanism is performed on incomplete information

i.e., before collecting information on all users and having all resources available. The

performance of an online mechanism is worse than offline mechanisms in terms of revenue,

but it provides more user satisfaction by guaranteed time and lower average payments. We

design the mechanism MOVMPA to solve the OVMPA problem in Chapter 6 and discuss

its properties.

6

1.2 Outline of the Dissertation

In this section, we outline our dissertation and summarize our contributions. In the follow-

ing we summarize the four research projects that we accomplished as part of this disserta-

tion.

• Combinatorial Auction-Based Allocation of Virtual Machine Instances in

Clouds. We studied the fixed-price based VM instance allocation mechanisms in

clouds and modeled the VM instance allocation problem. We assumed that the cloud

providers have fixed number of different types of VM instances to allocate to their

users. The users bid periodically to get bundles of VM instances required for their

tasks. The cloud providers’ goal is to allocate the VM instances to the users who value

them the most, determine their prices, and maximize the revenue in the process. We

designed two combinatorial auction-based mechanisms CA-LP and CA-GREEDY to

solve the problem. We analyzed the mechanisms and proved that they are incentive

compatible. Finally, we ran extensive simulation experiments to compare CA-LP and

CA-GREEDY with the fixed-price based mechanisms currently used in clouds. Our

results showed that CA-LP performs best in all metrics than CA-GREEDY and fixed-

price based mechanisms, but CA-GREEDY achieves comparable performance with a

much smaller time complexity. We conclude that CA-GREEDY should be used as a

general-purpose mechanism for allocating VM instances in clouds. We present this

research in Chapter 3. A paper describing this research was published in the Pro-

ceedings of the 2nd IEEE International Conference on Cloud Computing Technology

and Science (IEEE CloudCom 2010) [71] and also received the Best Student Paper

Award. An extended version of this paper is under review for the Journal of Parallel

and Distributed Computing.

• Efficient Bidding for Virtual Machine Instances in Clouds. In order to suc-

cessfully implement VM provisioning and allocation in clouds, it is crucial that the

users can easily participate in such mechanisms and get the best value out of them.

7

In this research work, we show how a user can efficiently bid for the bundle of VM

instances to submit their jobs to the cloud computing platform. We considered a

setting where a cloud provider implements the CA-GREEDY mechanism and users

submit their bids to secure resources to run their malleable parallel jobs on the cloud.

Malleable parallel jobs can be run on any number of processors, with a non-linear

relation of the number of processors used to the speedup of job execution. We de-

signed an efficient bidding strategy algorithm called EBS that takes into account

the job characteristics, system parameters, and user preferences to generate a bid

that comprises the best bundle for a particular job and the true valuation for that

bundle. This bid is submitted to the auction to maximize the user’s utility. We

proved that EBS has reasonable time complexity and experimentally showed that it

outperforms a naive bidding strategy. The results of this research were published in

Proceedings of the 4th IEEE International Conference on Cloud Computing (IEEE

CLOUD 2011) [73]. Later, we extended this paper with more experiments investi-

gating the results with varying the simulation parameters in more dimensions. We

submitted the extended version to Journal of Parallel and Distributed Computing

and it is currently under review. We present this work in detail in Chapter 4.

• Combinatorial Auction-Based Dynamic VM Provisioning and Allocation

in Clouds. In the previous research, we considered that the cloud providers statically

provision the VM instances and the mechanism allocates them to the users. In this

research, we incorporated the dynamic provisioning into the combinatorial auction-

based mechanism. We formulated the problem such that the entire resources are con-

sidered as ‘liquid’ resources and the number of different VM instances to provision are

determined based on the user demand. We also considered the costs for a VM instance

while it is kept idle and when it is allocated to a user. These costs are used to deter-

mine a ‘reserve price’ to avoid revenue losses. We designed a mechanism called CA-

PROVISION that performs a combinatorial auction that considers the dynamic provi-

8

sioning and the reserve price. CA-PROVISION computes the number of VM instances

to provision and allocate to the users and the payment to be charged to each user

in order to maximize the profit of the cloud provider. We compare the performance

of CA-PROVISION with that of CA-GREEDY by performing extensive simulation

experiments using traces of real workloads from the Parallel Workloads Archive [23].

The results show that CA-PROVISION significantly improves the resource utilization

and percentage of served users when compared to CA-GREEDY. The profit obtained

by CA-PROVISION was higher in cases with high density of user demands. And CA-

PROVISION obtains higher profit in half of the cases where the user demands are low.

We conclude that CA-PROVISION performs better in general, where CA-GREEDY

performs better where the pattern of the user demands match the available resources.

We present this work in detail in Chapter 5. A paper describing this research was

published in the Proceedings of the 3rd IEEE International Conference on Cloud Com-

puting Technology and Science (IEEE CloudCom 2011) [72]. An extended version of

this paper is under review for IEEE Transactions on Parallel and Distributed Systems.

• Online Mechanism for VM Provisioning and Allocation in Clouds. An

online mechanism computes the allocation and payment of items without having

complete information. In the context of cloud virtual machine allocation, an online

mechanism would be invoked as soon as some user submits her bid or some resources

become available for allocation. In a cloud computing platform, an online allocation

mechanism would have positive effects such as shorter waiting time for the users,

reduced idle time of computing resources, etc. However, since an online mechanism

works with incomplete information (offline mechanisms are invoked periodically at

fixed intervals, therefore they have complete information about the bids that arrived

during the past interval), it cannot achieve the same efficiency as the offline mecha-

nisms. To ensure performance, an online mechanism must have a good competitive

ratio. In this research project, we formulated the problem of online VM provisioning

9

and allocation in clouds. In this model, the users include the required time and dead-

line for their tasks in their bids. We designed the online mechanism called MOVMPA

to address this problem. MOVMPA is invoked whenever there are outstanding bids

and available resources in the system. It allocates the VM instances to the winning

users for the entire period they request them for. It also calculates the payment based

on the critical value payment in the online setting. We proved that MOVMPA has

good competitive ratio, reasonable runtime, and is truthful. We evaluated this mech-

anism with extensive simulation experiments using real workload data. We compared

MOVMPA with CA-PROVISION and found that MOVMPA performs better than

the theoretical competitive ratio, while providing better user experience. Our work

was published in the Proceedings of the 5th IEEE International Conference on Cloud

Computing (IEEE CLOUD 2012) [74]. We also prepared an extended version of this

paper for submission to the IEEE Transactions on Parallel and Distributed Systems.

We present this research in Chapter 6.

1.2.1 Our Contribution

In this dissertation, we addressed an emerging problem in cloud computing using game

theory and mechanism design techniques. We identified that cloud providers would require

combinatorial auction-based mechanisms to determine efficient allocation of resources to

their users and to increase their revenue in the process. Combinatorial auctions enable

users to express their demand of resources and their willingness to pay in a meaningful

way. On the other hand, auction-based provisioning and allocation mechanisms enable the

cloud providers determine their prices of resources dynamically and also provision to them

according to market demand. In the rapidly improving computing industry, where the price

and utility of a computing resources changes continuously, it is a difficult task for a cloud

provider to accurately predict demand and price their resources accordingly. Combinatorial

auction-based mechanisms allow creating a market that takes care of these complex tasks

automatically. In our dissertation, we investigated the problem in different settings. We

10

designed two combinatorial auction-based mechanisms that allocate pre-provisioned VM

instances to users requesting bundles of VM instances. Then, we focused our attention on

systems where VM instances are dynamically provisioned based on the current market de-

mand. Finally, we developed an online mechanism for dynamic provisioning and allocation

of VM instances. We performed theoretical analysis and simulation experiments with all

the above mechanisms. These results will enable a system designer to implement or adapt

one of the mechanisms based on their specific needs. We also investigated this problem

from the users’ point of view. We designed an efficient bidding strategy algorithm for

submitting malleable parallel jobs in clouds. We also provide theoretical and experimental

results pertaining to this algorithm. We believe our research will encourage implementation

of auction-based mechanisms in clouds and also initiate other research in this field.

1.3 Organization

The rest of the dissertation is organized as follows. In the next chapter, we present back-

ground knowledge on combinatorial auctions, which is the foundation of this dissertation.

We also present a discussion of the related work in the existing literature in Chapter 2. In

Chapter 3, we present our research on designing combinatorial auction-based mechanisms

where the VM instances are pre-provisioned. We design two mechanisms CA-LP and CA-

GREEDY, prove their theoretical properties, and present simulation results comparing

them with fixed-price mechanisms. In Chapter 4, we present our research on designing an

efficient bidding algorithm to request VM bundles for malleable parallel jobs. We show

experimentally that our algorithm, called Efficient Bidding Strategy (EBS), outperforms a

naive strategy in terms of generating higher utility for the users. In Chapter 5, we present

the design of a dynamic provisioning and allocation mechanism called CA-PROVISION.

We present an online mechanism for dynamic provisioning and allocation in clouds in Chap-

ter 6. In Chapter 7 we describe the possible future directions of our research. We conclude

the dissertation in Chapter 8.

11

CHAPTER 2: BACKGROUND

In this section, we briefly introduce the background on combinatorial auctions, which is

the foundation of this dissertation. We discuss further details, when necessary, along with

the specific research work we present. We also present the literature survey related to our

work in this chapter.

2.1 Combinatorial Auctions

Auctions are economic mechanisms that allocate an item or a set of items to participating

users. Users express their requests in terms of ‘bids’, which consist of a valuation (i.e., how

much she values an item or what is the maximum amount she wants to pay for it) and

a subset of the items (where a set of items are being auctioned). Combinatorial auctions

allocate a set of items to users, where users express their bids in terms of bundles of items

and their valuation of respective bundles. A user is called ‘single-minded’ if she requests

only a single bundle and is not interested in any subset of it. Formally, a combinatorial

auction allocates a set of items S to n users j = 1, . . . , n. We assume that the users are

single-minded and each user j submits a bid θ̂j = (Ŝj, v̂j) to the mechanism. Here, Ŝj ⊆ S

is the set of items user j requires and v̂j is the maximum amount she is willing to pay for

it. The goal of the mechanism is to determine a set of winners W ⊆ {1, . . . , n} and their

payments p1, . . . , pn. The users in the set of winners receive their requested bundles and

pay the price determined by the mechanism. In most mechanisms, the losing users do not

pay anything.

The ‘type’ or the ‘true bid’ of a user j is θj = (Sj , vj), which she may or may not report

truthfully to the mechanism. Components of θj means that user j truly requires bundle

Sj ⊆ S and she receives a value of vj if she wins her bid. We express this as the valuation

12

function shown below

Vj =

vj if j ∈ W

0 otherwise

The quasi-linear utility of user j is the difference between her valuation function and the

payment determined by the mechanism, which is expressed as

Uj = Vj − pj

We assume that the users are rational, i.e., they may bid untruthfully if it benefits

them to do so. The goal of the mechanism is to achieve a specific system-wide goal with

the reported values and provide incentives so that the users obtain the maximum benefit

only by reporting their true values. We elaborate on this in the following section.

2.2 Goals, Properties and Challenges of Mechanism

Design

The most reasonable objective function would be to maximize the cloud provider’s rev-

enue, but very little is known about revenue maximization in the context of combinatorial

auctions [44]. Therefore, the most common goal of combinatorial auction mechanisms is

to maximize the so-called social welfare, which is the sum of the reported valuations of the

winning bidders. This has a positive influence on the revenue, because valuations are the

maximum amounts users are willing to pay and they play an important role in determining

the payment. Therefore, assuming that the mechanism allocates non-conflicting bundles

to users, the goal of a combinatorial auction-based mechanism is to solve the following

optimization problem.

max
∑

j∈W

v̂j (2.1)

13

subject to,

⋃

j∈W

Ŝj ⊆ S (2.2)

Ŝi ∩ Ŝj = ∅ where i 6= j (2.3)

Equation (2.1) states that the objective of the mechanism is to maximize the social welfare.

The constraint shown in Equation (2.2) is that the total resources allocated must adhere to

the total resources available. Equation (2.3) ensures that no item is allocated to multiple

bidders.

To achieve the above goal, the mechanism must provide incentives to the users so that

they report their values truthfully. A mechanism is truthful if a user can maximize her

utility by reporting her true value to the mechanism, irrespective of the bids of the other

users. Another desirable property of a mechanism is that it should be individually rational,

which means a user truthfully reporting her valuation will never incur a loss by participating

in the mechanism, irrespective of the other users’ bids.

There are certain challenges that we need to overcome while designing a combinato-

rial auction-based mechanism. First of all, combinatorial auctions are NP-hard problems,

therefore requiring us to find an efficient approximation algorithm for allocation. On the

other hand, classic auction-design techniques to achieve truthfulness do not directly apply

to approximate solutions. Archer and Tardos [8] showed that to design an approximation

mechanism, the allocation algorithm must be monotone and the payment must be deter-

mined using the critical value method. We discuss monotonicity and critical value in the

context of the specific research problems later.

2.3 Related Work

Auction-based allocation of computing resources has been widely studied in the literature,

especially in the distributed computing setting. One of the earliest use of auctions in

14

computing was in reserving computing time of a shared minicomputer at Harvard Univer-

sity [60]. In this auction, an artificial ‘bidding currency’ was provided to the users in order

to participate in the auction to reserve computing time for them. Gagliano [26] also inves-

tigated the allocation of computing resources through auctions, where the tasks themselves

are provided enough intelligence to calculate the bid that is necessary to get the required

resources.

Auctions have been widely studied for scheduling and resource allocation in computa-

tional grids. Wolski et al. [68] compared commodities markets and auctions in grids in

terms of price stability and market equilibrium. Gomoluch and Schroeder [29] simulated

a double auction protocol for resource allocation in grids and showed that it outperforms

the conventional round-robin approach. Garg et al. [27] designed a double auction-based

meta-scheduler for grids, which schedules grid jobs into different clusters that improves

both user utility and system performance when compared to traditional meta-schedulers.

Das and Grosu [18] proposed a combinatorial auction-based protocol for resource alloca-

tion in grids. They considered a model where different grid providers can provide different

types of computing resources. An ‘external auctioneer’ collects this information about the

resources and runs a combinatorial auction-based allocation mechanism where users par-

ticipate by requesting bundles of resources. The major difference between our research in

combinatorial auctions and the one presented in [18] is that we are considering allocat-

ing VM instances of a single cloud provider whereas Das and Grosu [18] considered the

problem of allocating different types of physical resources from multiple grid providers.

Dash et al. [19] formulated a mechanism design problem for task allocation in grids. They

considered an optimization problem where the goal is to reduce the overall system cost,

but selfish resource providers may misreport their capacity and cost parameters if they

benefit by doing so. They proposed a centralized and a distributed mechanism to solve

this problem. A system architecture for incentive-compatible resource allocation in grids

was proposed by Grosu [30]. The proposed architecture allows both users and providers

to deploy and participate in different mechanisms that determine resource allocation and

15

pricing.

Recently, researchers investigated the economic aspects of cloud computing from dif-

ferent points of view. Wang et al. [66] studied different economic and system implications

of pricing resources in clouds. They performed experiments on Amazon EC2 and on their

own testbed concluding that the pricing scheme used by Amazon is unfair to the users.

Walker et al. [64] proposed a model to determine the benefits of acquiring storage ser-

vices from clouds. The tool CloudCmp [36] was developed to assist users in choosing the

appropriate service providers based on the user’s requirements.

Buyya et al. [10] proposed an infrastructure for auction-based resource allocation across

multiple clouds. Altmann et al. [1] proposed a marketplace for resources where the allo-

cation and pricing are determined using an exchange market of computing resources. In

this exchange, the service providers and the users both express their ask and bid prices and

matching pairs are granted the allocation. Risch et al. [52] proposed a testbed for cloud ser-

vices designed for testing different mechanisms. They deployed the exchange mechanism

proposed by Altmann et al. [1] on this platform. A marketplace proposed in the above

research work is not easy to achieve because of interoperability issues of current cloud

platforms. The current focus on the cloud markets is mostly on the single provider and

multiple users model. Our research is therefore based on the single-provider multiple-users

model. A combinatorial exchange would be a possible extension of our work towards the

federated cloud platforms.

There have been significant efforts in designing auction-based allocation mechanisms

for clouds. Lin et al. [37] proposed the use of a simple (k+1)th price auction for allocating

cloud resources. They showed by statistical analysis that when there is a large number

of resources and users, the auction can obtain an efficient allocation and a reasonable

revenue for the cloud provider. To the best of our knowledge, Amazon EC2 implemented

the first auction in clouds, named Spot Instances. Unfortunately, the mechanism behind

the Spot Instances is not publicly available. Researchers reported work on investigating

the Spot Instances and using them efficiently. Chohan et al. [16] showed how to accelerate

16

MapReduce jobs using Spot Instances. They also analyzed the performance gain and the

cost effectiveness of this approach. Ben-Yehuda et al. [9] analyzed the pricing of Amazon

EC2 and claimed that it is not market-driven. They showed that the prices are randomly

generated considering a hidden reserve price that is not driven by supply and demand.

Campos-Náñez et al. [11] investigated dynamic auction settings for ‘utility computing’,

where the bidders are the service providers (service queues) that bid for one customer’s job

at a time. In their model, the available capacity of the queues is public knowledge and the

bidders only bid their prices. The service with the lowest bid is selected for the customer

that arrived. The authors showed that there exists a Markov Perfect Equilibrium for the

game.

The differences between the marked-based mechanisms designed for grids and those de-

signed for clouds are mainly related to their underlying resource allocation model. Clouds

allocate resources in terms of VM instances while traditional grids allocate physical re-

sources directly without involving virtualization. The market-based mechanisms are more

suitable for clouds since they are designed to make profit by selling services while tradi-

tional grids were designed mainly for sharing resources and not for making profits by selling

resources.

One of our research work deals with dynamic provisioning of VM instances, hence we

discuss some existing literature on VM provisioning here. Researchers approached the

problem of VM provisioning in clouds from different points of view. Shivam et al. [58]

presented two systems called Shirako and NIMO that complement each other to obtain on-

demand provisioning of VMs for database applications. Shirako does the actual provisioning

and NIMO guides it through active learning models. The CA-PROVISION mechanism we

propose here performs both demand tracking and provisioning via a combinatorial auction.

Dornemann et al. [21] proposed on-demand resource provisioning for the Business Process

Execution Language (BPEL). Their work extends BPEL engine so that it can support

scientific workflows by dynamically provisioning resources from Amazon EC2 when the

demand surpasses the capacity of the BPEL host.

17

Dynamic provisioning of computing resources was investigated by Quiroz et al. [50]

who proposed a decentralized online clustering algorithm for VM provisioning based on

the workload characteristics. The authors proposed a model-based approach to generate

workload estimates on a long-term basis. Our proposed mechanism provisions the VMs dy-

namically and it does not require the prediction of the workload characteristics, rather the

current demand for VMs is captured and the provisioning is decided by a combinatorial

auction-based mechanism. Van et al. [62] proposed an autonomic resource management

system that decouples VM allocation from the physical mapping of instances to resources.

They showed that their approach can simultaneously satisfy both service level agreement

and resource utilization criteria. Vecchiola et al. [63] proposed a deadline-driven provision-

ing mechanism supporting the execution of scientific applications in clouds.

The goal of our research on auction-based mechanisms is to improve the efficiency of

cloud resources and the revenue and/or profit of cloud providers. Other researchers inves-

tigated this area using different approaches. For example, some research work investigated

methods to increase the efficiency of the cloud data centers. Kansal et al. [33] extended

the power metering technique of physical computing resources towards a per-VM power

metering system. They proposed a metering capability for VM power capping which re-

duces the power provisioning costs in data centers. Meng et al. [38] proposed a technique

that finds and exploits complementary patterns of workloads to multiplex virtual machines.

This technique ‘packs’ multiple VMs into a smaller set of resources while maintaining the

quality of service.

Chen et al. [15] combined several factors of cost saving and optimal resource utilization

to minimize the cost for cloud providers and maximize their profit. Their solution combines

the use of vector arithmetics to ensure balanced utilization of computing resources and

efficient VM reconfigurations at runtime. Ghosh and Naik [28] utilized the fact that most

users request more resources than their application actually require to devise a strategy

to ‘over-commit’ cloud resources in order to maximize profit. Lampe et al. [34] presented

an equilibrium auction for allocating VM instances in cloud and showed that a heuristic

18

algorithm performs much faster with little degradation in performance. But their approach

considers a bid to be a collection of many individual bids that request only one VM instance.

But, unlike combinatorial auctions, this equilibrium price auction cannot guarantee that a

user requesting a bundle will receive the entire bundle even if her bid satisfies the equilibrium

price. However, the authors did a good job in considering the capacity of physical machines

to determine the number of VM machines the cloud provider can allocate. Tsai and Qi [61]

developed a pricing strategy for cloud services to ensure fair pricing in a dynamic setting.

Zafer et al. [70] looked at minimizing the cost of users by using statistical analysis to

design a cost-effective bidding strategy for Amazon Spot Instances. Menychtas et al. [39]

proposed a framework for a cloud marketplace that will enable trading of cloud services

among multiple providers and users, while incorporating business terms (e.g., SLAs) into

the trading model.

The complexity of solving the combinatorial auctions, specifically the winner determi-

nation problem, was first addressed by Rothkopf et al. [53]. Sandholm [55] proved that

solving the winner determination problem is computationally hard. Rothkopf et al. [53]

and Sandholm [55] used the technique of pruning the search tree to devise approximation

algorithms. Andersson et al. [6] proposed an integer programming based solution to the

winner determination problem.

Zurel and Nisan [75] also presented an efficient algorithm for combinatorial auctions.

Lehmann et al. [35] studied combinatorial auctions with single-minded bidders and devised

a greedy mechanism for combinatorial auctions. We extend this mechanism in Chapter 3

to design the CA-GREEDY mechanism. Archer et al. [7] considered another case of single-

minded bidders where multiple identical copies are available for different types of items.

They provided a mixed integer programming based algorithm for winner determination and

showed theoretically that their solution performs better than generalized solutions for this

special case. We extend this mechanism such that it can be used to solve the VM allocation

and pricing problem we consider in Chapter 3. A detailed survey on combinatorial auctions

can be found in [20]. Cramton et al. [17] provides good foundational knowledge on this

19

topic.

Recently, several researchers investigated the design of online mechanisms in differ-

ent contexts. Parkes and Singh [48] designed a Markov Decision Process-based online

mechanism and later on provided an approximate solution for the same model for large

problems [49]. Hajiaghay et al. [31] proposed the idea of automated online mechanism de-

sign. Fundamentals of online mechanism design are covered in [47]. Carroll and Grosu [12]

designed an online mechanism for scheduling malleable parallel jobs on parallel systems.

They considered preemption of jobs in their model in order to provide for jobs with higher

valuation that are submitted later than the currently allocated jobs.

The marketing and advertising in the Internet has created a huge market driven by ad

auctions [22]. Chen et al. [14] investigated Internet auctions in a double-auction setting

where multiple copies of one item are sold. They showed that bidding the actual value

of the item is a weakly dominant strategy for the bidders in this setting. The develop-

ment of cloud computing initiated research in developing and analyzing the market for

computing resources and services. Wang et al. [65] devised a ‘requirement-based’ bidding

language for combinatorial auction-based scheduling problems. The proposed bidding lan-

guage enables the bidders to express otherwise complex requirements (e.g., specifying the

required makespan for the set of jobs submitted) as an atomic bid. They also developed

a branch-and-bound algorithm to solve the winner determination problem for this setting

and reported significant performance improvement over a commercial solver.

Recently, many researchers have investigated the design of efficient bidding strategies

for combinatorial auctions. Sui and Leung [59] proposed an adaptive bidding strategy for

combinatorial auctions. They considered a multi-round first-price combinatorial auction for

allocating computing resources. In their proposed bidding strategy the bidder updates her

bid dynamically based on the outcome of the previous bidding round, in order to maximize

her utility. A similar idea is used by Yi et al. [69] to design a strategy for bidding in the

Amazon EC2 Spot Instances auction [3]. The authors use statistical analysis to show how a

task can be completed at reduced cost and without premature termination on the Amazon

20

EC2 cloud. Our work differs from the above two in that we are considering a combinatorial

auction mechanism which guarantees the maximum utility for a user when she bids truth-

fully. Therefore, our proposed bidding strategy is based on determining the user’s ‘true’

valuation for a bundle and it does not require knowledge of past auction outcomes. This is

a big advantage since the users do not require information from past auctions when making

bidding decisions. An et al. [5] proposed a bidding strategy algorithm that considers a

given ‘synergy’ value between different items, when calculating the valuation of a bundle of

items in general combinatorial auctions. In our work in Chapter 4, we defined the synergy

between the VM instances in a bundle based on a speedup function that takes into account

the overheads of execution on multiple VM instances. The speedup function we use is

an extension of the speedup function for malleable parallel jobs proposed by Havill and

Mao [32]. Carroll and Grosu [12] considered the problem of scheduling malleable parallel

jobs and designed incentive-compatible scheduling mechanisms to solve it. A comprehen-

sive survey classifying parallel applications and their scheduling strategies can be found

in [25].

Other related research includes designing an agent for bidding in combinatorial auc-

tions in grids [56] and proposing an efficient policy for obtaining cloud resources for large

applications [13]. Developing scheduling algorithms that satisfy the budget constraint of

the users were investigated by Oprescu and Kielmann [46] and by Shi and Hong [57]. The

bidding strategy that we propose in Chapter 4 also considers the budget constraints, but

as opposed to the work reported in [46] and [57], the users do not need to submit their

budget information to any scheduler. In our work in Chapter 4, the bidding algorithm will

generate the bid so that the budget constraint is satisfied. Therefore, the scheduler is not

involved in checking and guaranteeing that the budget constraint is satisfied.

21

CHAPTER 3: COMBINATORIAL

AUCTION-BASED ALLOCATION

OF VIRTUAL MACHINE

INSTANCES IN CLOUDS

3.1 Introduction

Cloud computing enables individuals and small to medium enterprises satisfy their com-

putational needs with no or minimum upfront costs of acquiring hardware and software.

On the other hand, cloud providers benefit by commercializing their huge computing re-

sources through the cloud computing platform. A cloud computing platform abstracts the

underlying physical resources from the users by providing them with the view of virtual

machines (VMs). This enables easy management and pricing of the resources. Currently,

the majority of cloud providers price their computing resources based on the ‘size’ of the

VM instances offered. They define different types of VM instances by specifying the num-

ber and speed of processors, the memory size, the bandwidth allocation, etc. There are

two ways to ‘purchase’ the VM instances: pay as you go and long term contract. In both

cases users pay fixed prices per unit of time for using the resources; the only difference is

that by committing to a long term contract they usually pay less per unit of time for using

the same resource.

We argue that the currently used fixed-price schemes for allocation and pricing of re-

sources have several drawbacks. First, they are not economically efficient [67], that is, they

cannot guarantee that the user who values a bundle of VM instances the most gets it.

Second, fixed prices do not necessarily reflect the equilibrium prices that arise from market

22

demand and supply. This may lead to lower than optimal revenue for the service providers.

Finally, since in cloud computing platforms resources are sold for a period of time, it is de-

sirable that user requests be evenly distributed throughout the day. In general, the current

fixed-price methods do not provide users with incentives for demand shaping (i.e., selecting

their execution time-frames in such a way that the system load is balanced over time). It

is possible to modify a fixed-price mechanism so that it provides such incentives by setting

up different fixed prices at different times of the day based on historical demand. This

needs statistical analysis and adjustment of prices as the demand pattern changes making

it hard to achieve dynamic price adjustment.

The inefficiencies in solving the resource allocation problem in clouds mentioned above

can be best addressed by employing auction-based mechanisms. Among different types of

auctions, the combinatorial auctions are the most suitable for solving the VM pricing and

allocation problem in clouds. In combinatorial auctions, the participants bid for bundles of

items rather than individual items [17]. This enables bidders to express their valuations in

a more meaningful way, especially when the items they require are complementary to each

other. To illustrate this, let us consider the following example. A cloud service provider

offers ‘small’ and ‘large’ VM instances. Suppose a user wants to deploy a three-tier web

application on the cloud. The application needs a database server, an application server,

and two web servers. The database and application servers are heavy weight and therefore

the user prefers large instances for them. The web servers are light weight and can be

hosted on two small instances. Thus, a user needs to run an application which requires

two small and two large VM instances. It is more meaningful for her to be able to bid for

the entire bundle she needs rather than bidding for each VM instance separately. Bidding

for each VM instance separately involves the risk of ending up acquiring just a subset of

her required set of VM instances. The motivation behind our work is that by designing

and deploying combinatorial auction-based mechanisms for allocating VM instances, the

cloud providers can guarantee fairness to their users as well as enjoy higher revenues and a

balanced load on their systems over time. Load balancing over time is actually a side-effect

23

of using auctions for allocating VM instances. Users with lower valuations for the VM

instances will choose a time-frame that does not conflict with that of ‘high valuation users’.

For example, if large businesses request resources during the daytime, individual users may

consider that the nighttime slots are more suitable for them, thus balancing the load of the

system over time.

Application of auctions, however, is not entirely new to the cloud computing commu-

nity. After allocating computing resources for the long-term and on demand users, Amazon

EC2 sells the remaining virtual machines (instances) through an auction called Spot In-

stances [3]. In this auction, the bidders specify their demand (i.e., the number and the type

of instances) and the maximum price they are willing to pay. Amazon periodically runs the

auction with active bidders to determine the current price and then users with bids higher

than that price are provided with their desired instances. All users pay the same price per

instance which is computed by the auction. A user getting the allocation may be termi-

nated at a later point if the auction-determined price goes beyond her bid. This approach

is different from combinatorial auctions because one single price is determined based on

market supply and demand (i.e., equilibrium) and all bidders pay the same price per item

regardless of how much they value the item. On the other hand, in combinatorial auctions,

each winning bidder’s payment is calculated based on her and other bidders’ valuations.

Another important difference is that the Spot Instances auction does not support bidding

on bundle of instances, while combinatorial auctions were specifically designed to work

with such bundles. From Amazon’s initial effort of using auction-based allocation, it is

reasonable to expect that cloud providers will be interested in more efficient allocation and

pricing schemes in the near future. Combinatorial auctions will clearly be one of the most

desirable allocation schemes in this regard. This is supported by their successful applica-

tion in various fields ranging from selling wireless spectrum to transportation procurement

for large industries [17].

24

3.1.1 Our Contribution

We formulate the problem of allocating VM instances in clouds as a combinatorial auction

problem. The objective of this problem is to efficiently allocate VM instances of several

types to several users requesting a set of VM instances of different types. To solve this

problem, we propose two combinatorial auction-based allocation mechanisms. These two

mechanisms are obtained by extending the mechanisms proposed by Archer et al. [7] and

Lehmann et al. [35]. The mechanism proposed by Archer et al. [7] considers a combinatorial

auction problem where a user can include at most one item of a particular type in her

requested bundle. We relax this condition to allow users requesting more than one item of

a given type. Also, the mechanism proposed by Archer et al. [7] is suitable for combinatorial

auctions with many types of items where each type of items has few instances. We extend

the mechanism so that it can be applied to the VM allocation problem where there are few

types of items and many instances of each type.

The other mechanism we propose is an extension of the greedy mechanism proposed

by Lehmann et al. [35]. This mechanism determines the allocation based on the valuation

of the users and the total number of items they request. We extend the mechanism pro-

posed by Lehmann et al. [35] so that it considers the relative sizes of the VM instances

and show that the properties of the original mechanism are maintained. We compare the

two proposed combinatorial auction-based mechanisms with the fixed-price based alloca-

tion mechanism used by Microsoft in their Windows Azure platform [41]. We investigate

the relative performance of these three allocation mechanisms by performing extensive sim-

ulation experiments. We also consider variants of the fixed-price mechanism in which the

fixed prices are different at different times of the day. We compare the performance of

these mechanisms with that obtained by our proposed mechanisms as well. The experi-

ments show that the proposed combinatorial auction-based mechanisms clearly outperform

the fixed-price mechanism in terms of resource utilization, generated revenue, and alloca-

tion efficiency. We analyze the results and provide recommendations on where to use the

proposed mechanisms.

25

Users

2VM 1VM3VM

CA

Mechanism

Cloud provider / auctioneer

User1 User2 User3 User4

2 314

Step 1: Mechanism collects bids from all users

Step 2: Mechanism computes allocation and payment

Step 4: User gets access to the resources requested

Step 3: User pays the cloud provider

Figure 3.1: VM instance allocation in clouds: system model

3.1.2 Organization

The rest of the chapter is organized as follows. In Section 3.2, we formally define the VM

instance allocation problem. In Section 3.3, we present the mechanisms we consider for

solving the VM allocation problem. In Section 3.4, we describe the experimental results.

We conclude this chapter by summarizing the contributions in Section 3.5.

3.2 Virtual Machine Allocation Problem

The cloud providers set different configurations of VM instances that the users can request.

A user requests VM instances of different types and pays the cloud provider for the time she

uses them. Usually, the prices for different types of instances for short-term use are fixed

26

by the cloud providers in advance. Another possibility is that a user sets up a long-term

contract if she requires the resources for a long period of time, in which case she may obtain

them for a lower price. Here we consider the problem of efficient allocation and pricing of

VM instances for short-term use.

In Figure 3.1, we provide a high-level representation of the VM instance allocation

system we consider. The cloud provider has several VM instances of different types available

for allocation and runs a combinatorial auction-based mechanism to allocate them to users.

The auction mechanism consists of three steps. First, the mechanism collects ‘bids’ from

the users, which comprise the number of different types of VM instances a user requests and

the price she offers for that bundle. Then, the mechanism computes the allocation and the

payment based on the collected bids and the availability of resources. Finally, users who

get the allocation pay the cloud provider and obtain access to the resources they requested.

We define the Virtual Machine Allocation Problem (VMAP) as follows. Assume that

the allocation and prices are decided periodically by a given mechanism. Let the interval

between two such decisions be ‘one unit of time’. VMAP considers allocating the VM

instances for one unit of time. Assume that a cloud provider hasm different types of virtual

machines VM1, . . . , VMm. The relative computing capabilities (based on number and speed

of CPUs, memory, etc.) of these VMs are characterized by a vector w = (w1, . . . , wm),

where wi ∈ R+, i = 1, . . . , m. We also assume that w1 = 1 and w1 ≤ w2 ≤ . . . ≤
wm. To illustrate this, we consider the types of instances currently offered by Microsoft

Azure Platform: Small (CPU 1.6 GHz, Memory: 1.75 GB, Storage: 225 GB), Medium

(CPU 2x1.6 GHz, Memory: 3.5 GB, Storage: 490 GB), Large (CPU 4x1.6 GHz, Memory: 7

GB, Storage: 1 TB), and Extra large (CPU 8x1.6 GHz, Memory: 14 GB, Storage: 2 TB). In

this example, VM1, VM2, VM3, VM4 are the Small, Medium, Large, and respectively Extra

large VM instances. The weight vector characterizing the VM instances is w = (1, 2, 4, 8).

Let us assume that ki copies of VMi instances are available for allocation at a given

instance of time, i = 1, . . . , m. There are n users u1, . . . , un, each requesting a set (bundle)

of VM instances and revealing how much she values that particular set. That is, a user uj

27

is requesting VMs from the cloud provider by placing a bid Bj = (rj1, r
j
2, . . . , r

j
m, vj), where

rji ∈ {0, 1, . . . , ki} is the number of instances of type VMi user uj requires in her bundle and

vj is her valuation for this bundle, i.e., the maximum price she is willing to pay for using

the requested VMs for one unit of time. Here we consider the users to be single-minded

bidders. A single-minded bidder uj desires only a specific bundle of items Sj, and values

that bundle at vj . Thus, uj has the following valuation function for a bundle S [35],

v(S) =

vj if Sj ⊆ S

0 otherwise
(3.1)

We would like to mention that the assumption of single-minded bidders does not limit

the users to express more flexible requirements. Our model assumes that auctions are run

periodically and that bidders will request only one bundle in a given auction. Since the

auctions are run periodically, a user may choose to revise her bid based on the previous

auction outcome and her preference. For example, suppose that the time interval between

consecutive auctions is one hour. If a user needs a particular bundle for five units of time

and her deadline to complete the job is ten hours, she needs to win five auctions within ten

hours. She may choose to bid the same value until her job is finished, or she may choose

to start with a low bid and raise it when the deadline is approaching. Users executing

parallel applications may want to request as many VM instances as possible to finish their

jobs quickly. In this case, they could start by bidding for the largest possible bundle they

can afford and if not successful, adjust the requested bundle size for the next auction. If a

user must require continuous allocation of resources, she may continue bidding increasing

values in order to increase her chances of winning every auction.

The goal of the VM allocation problem, given the set of users U and their bids, is to

determine the set of winners W ⊆ U and the price the winners have to pay to the cloud

provider. User uj is a winner (i.e., uj ∈ W) if she receives her requested bundle of VM

instances. The price user uj pays to the cloud provider is denoted by pj. We formally

define the VM allocation problem as follows:

28

Virtual Machine Allocation Problem (VMAP)

Determine the set of winners, W ⊆ U , and payment pj for each user uj, j = 1, . . . , n, such

that

∑

j:uj∈W

rji ≤ ki i = 1, . . . , m (3.2)

0 ≤ pj ≤ vj if uj ∈ W (3.3)

pj = 0 if uj /∈ W (3.4)

The constraint in Equation (3.2) ensures that the users are allocated at most ki instances

of VMi. Equations (3.3) and (3.4) ensure that the winners pay at most their valuations

and the losers do not pay at all.

Note that VMAP does not have an objective function. The most reasonable objective

function would be to maximize the cloud provider’s revenue, but very little is known about

revenue maximization in the context of combinatorial auctions [44]. Combinatorial auctions

are usually designed to maximize the sum of the bidders’ valuations, i.e., max
∑n

j=1 vj . Since

valuation is a measure of willingness to pay, maximizing the sum of the valuations usually

generates more revenue for the resource provider than a fixed-price allocation does. On the

other hand, given the prices of each type of VM instance, a fixed-price allocation mechanism

does not have an objective function to maximize. Therefore, VMAP is formulated here as a

feasibility problem with the constraints that are to be satisfied by all types of solutions. We

shall introduce other constraints and/or objective functions when we discuss the proposed

mechanisms for solving VMAP.

3.3 Virtual Machine Allocation Mechanisms

In this section, we present three mechanisms that solve VMAP. The first, called FIXED-

PRICE, is the fixed-price mechanism currently used by several cloud service providers [2, 40].

29

The next two mechanisms are the proposed combinatorial auction-based mechanisms, CA-

LP (Combinatorial Auction - Linear Programming) and CA-GREEDY (Combinatorial

Auction - Greedy). CA-LP is an extended version of the mechanism proposed by Archer et

al. [7]. The mechanism proposed by Archer et al. [7] solves a problem similar to VMAP by

using linear programming relaxation and randomized rounding. We extend that mechanism

so that it is able to solve VMAP. CA-GREEDY is an extension of the mechanism proposed

by Lehmann et al. [35]. The mechanism proposed by Lehmann et al. [35] provides the best

achievable approximate solution1 for combinatorial auctions with single-minded bidders.

However, this is a general purpose mechanism that does not assume any relative impor-

tance of the items being allocated. We extend this mechanism by incorporating the weights

of different types of VMs as described in Section 3.2. We now describe each mechanism in

detail.

3.3.1 FIXED-PRICE Mechanism

The FIXED-PRICE mechanism presented in Algorithm 1 defines a fixed-price vector f =

{f1, . . . , fm}, where fi is the price a user has to pay for using one instance of VMi for

one unit of time. The mechanism allocates VM instances to the users in a first-come,

first-served basis until the resources are exhausted. It also makes sure that in order to

get the requested bundle, the valuation of user uj is at least Fj , where Fj is the sum of

the fixed prices of each VM instance in her bundle (line 10). It also makes sure that the

allocation does not exceed the number of available VM instances of each type (line 11).

The set of users receiving the requested bundle is denoted by W . A user pays the sum of

the fixed-prices of each VM instance in her allocated bundle.

1Lehmann et al. [35] showed that the approximation ratio achieved by their proposed mechanism cannot
be further improved unless NP = ZPP.

30

Algorithm 1 FIXED-PRICE Mechanism

1: {Phase 1: Receive requests from users}
2: for j = 1, . . . , n do

3: Receive (rj1, . . . , r
j
m, vj) from user uj

4: end for

5: {Phase 2: Allocation}
6: Sort users according to their time of placing the request, from earliest to latest.

(Here we assume u1, u2, . . . , un as the order.)
7: Initialize W ← ∅
8: for j = 1, . . . , n do

9: Fj ←
∑m

i=1 r
j
i fi

10: if (vj ≥ Fj) and

11: (rji +
∑

uj′∈W
rj

′

i ≤ ki, i = 1, . . . ,m) then

12: W ← W ∪ {uj}
13: end if

14: end for

15: {Phase 3: Payment}
16: if uj ∈W then

17: User uj pays, pj = Fj

18: else

19: User uj pays, pj = 0
20: end if

3.3.2 Combinatorial Auction-Based Mechanisms

The general combinatorial auction problem can be informally stated as determining the

allocation and prices of bundle of items such that the sum of the user’s valuations is

maximized. In a combinatorial auction, user valuations are expressed on bundles of items

rather than on individual items.

A desired property of a combinatorial auction mechanism is truthfulness. A mechanism

is truthful if the participants benefit the most when they reveal their true valuations to the

mechanism. A participant’s benefit in a combinatorial auction is expressed by her utility,

which is defined as the difference between the valuation she receives from the resource allo-

cation and the price she pays to the mechanism. An ideal truthful mechanism determines

the optimal allocation that maximizes the sum of the valuations and computes payments

such that each participant maximizes her utility only by reporting her true valuation to the

31

mechanism. A truthful mechanism helps the bidders in that they do not need to compute a

complex strategy or assume other users’ strategies while making their bids. They just need

to bid their true valuations for the bundle since bidding any other value will not improve

their utility.

The winner determination problem of combinatorial auctions is an NP-hard prob-

lem [55]. Therefore, research has been conducted to find approximate solutions to combi-

natorial auctions. In order to obtain a truthful approximation mechanism that solve the

winner determination problem, few issues need to be addressed [8]. The approximation

algorithm needs to be monotone. In a monotone allocation algorithm, a bidder can only

increase her chance of getting her requested bundle by reporting a higher valuation or by

requesting fewer items in her bundle. A monotone allocation algorithm allows finding the

so called critical value of a winning bidder, which is the minimum she needs to bid in

order to get her requested bundle. In a truthful mechanism a winning user has to pay her

critical value to the mechanism. For some combinatorial auction problems, randomization

is involved in the winner determination and/or the payment calculation algorithm. In that

case, the goal of the resulting mechanism is to ensure that the participants maximize their

expected utility by bidding their true values. Such mechanisms are truthful in expectation.

We discuss the useful properties of our proposed mechanisms in the next subsections.

The proposed mechanisms are intended to be run periodically, each time considering

the bids placed by the users during that period. It is assumed that users place their bids

until they have been allocated their requested resources for enough units of time to execute

their job to completion, or it becomes obvious that their job cannot be completed by a

deadline. We also assume that the VM instances are statically provisioned, that is, the

cloud provider has already provisioned a given number of VM instances of each type and

only these instances are available for allocation.

32

CA-LP Mechanism

Archer et al. [7] considered a combinatorial auction problem similar to VMAP. The dif-

ference is that in their case bidders can request at most one copy of each item type (i.e.,

rji ∈ {0, 1}), whereas in the VMAP, users can request multiple copies of each type of item

(i.e., rji ∈ {0, 1, . . . , ki}). We modify the winner determination algorithm of the original

mechanism such that it is able to solve VMAP. The algorithm for the calculation of pay-

ment is kept the same as in [7] because it maintains its properties when applied to VMAP

with the modified winner determination algorithm. We present it here for completeness.

The CA-LP mechanism is given in Algorithm 2.

CA-LP involves solving the linear program given by equations (3.5-3.7). The objective

of the linear program is to find a vector of ‘fractional allocations’ x = {x1, . . . , xm} that

maximizes the sum of the users’ valuations (Equation (3.5)). In line 6, the total number

of available VMi instances is reduced to k′
i, which is then used in the constraint in Equa-

tion (3.6). This constraint limits the allocation of VMi instances to k′
i. Using k′

is instead

of kis in this constraint helps reducing the probability of over allocating the VMs during

the randomized rounding performed in lines 9 to 15. This constraint is a modification of

the constraint used in the mechanism presented in [7] by letting rji take any value rather

than only 0 and 1. The next constraint (Equation (3.7)) bounds the fractional allocation

values between 0 and 1.

Lines 9 to 15 implement the randomized rounding where user uj is selected as a winner

with probability xj , if this allocation does not violate any constraint in Equation (3.6).

This operation is executed in order of decreasing xj so that if there is a violation in the

constraint, the user assigned a lower xj is not included in the set of winners W . This step is

another modification of the winner determination algorithm presented in [7]. In the original

algorithm, users are first included in W with a probability of xj and if constraint (3.6) is

violated for any item, all users requesting that item are excluded from W . This method

is suitable for auctions where many different types of items are sold and each type of item

33

Algorithm 2 CA-LP Mechanism

1: {Phase 1: Collect Bids}
2: for j = 1, . . . , n do

3: Collect bid Bj = (rj1, . . . , r
j
m, vj) from user uj

4: end for

5: {Phase 2: Winner Determination}
6: Set k′i ← (1− ǫ)ki, where 0 < ǫ < 1, i = 1, . . . ,m
7: Solve the following linear program

max

n
∑

j=1

xjvj (3.5)

subject to

n
∑

j=1

xjr
j
i ≤ k′i, i = 1, . . . ,m (3.6)

0 ≤ xj ≤ 1, j = 1, . . . , n (3.7)

8: Initialize W ← ∅
9: for each user uj , taken in descending order of xj do

10: Generate a random number yj ∈ [0, 1]
11: if (yj ≤ xj) and

12: (rji +
∑

j′:uj′∈W
rj

′

i ≤ ki, i = 1, . . . ,m) then

13: W ← W ∪ {uj}
14: end if

15: end for

16: {Phase 3: Payment (same as in [7])}
17: for each user uj ∈W do

18: Perform binary search for v′j in the range [0, vj]
(i) Set valuation of uj as v′j in Equation (3.5);
(ii) Solve the LP, let x′j be the fractional allocation computed for uj ;
(iii) Until a v′j is found such that, setting valuation of uj less than v′j
generates x′j < yj and setting the valuation greater than v′j
generates x′j > yj. This v

′
j is the ‘critical value’.

19: pj ← v′j
20: end for

21: for each user uj /∈W do

22: pj ← 0
23: end for

34

has only a few copies. But in the context of VMAP, this approach will significantly affect

the allocation since each type of VM has many copies and there are only a few different

types of VMs. For example, let a cloud provider offer four types of virtual machines, 500

instances of each type. Suppose that after rounding, VM1 becomes over allocated. The

mechanism proposed by Archer et al. [7] discards all the users that request any instance of

VM1 in her bundle. This results in 500 unsold VM instances. The other VMs requested

by those users are also deallocated. This is the reason we cannot use the original winner

determination algorithm proposed by Archer et al. [7] to solve VMAP.

The payment is calculated in lines 17 to 23. For each winning user uj, CA-LP computes

uj’s critical payment as follows. It performs a binary search in the range [0, vj], where vj

is the reported valuation of uj. For each v′j ∈ [0, vj], it solves the linear program given in

line 7 until it finds the minimum v′j that yields xj ≥ yj (line 18). This v′j is the critical

value for user uj because reporting a valuation less than v′j will not allow her to win the

bid, and therefore v′j is what she has to pay. However, a losing user pays zero (lines 21

and 22). Note that the payment computation phase of CA-LP is the same as in the original

mechanism.

We now summarize the changes we made to the original mechanism by Archer et al. in

order to be able to solve VMAP. First, we relaxed the problem formulation to allow users

to request multiple VM instances of the same type in their bundles. This is important

in order to provide the user with more flexibility of bidding. The other modification is

significant in terms of resource utilization. The original mechanism discards all bids that

include a conflicting item. This approach is suitable only in the cases where the auction

involves many item types where the number of each type of items is very small. The cloud

providers usually offer only a few item types (VM instance types), and a large number

of items of each type. Keeping the original approach would result in poor utilization of

resources, and thus, we modified the allocation function to address this issue and at the

same time maintain the truthfulness property.

Archer et al. [7] proved that the original mechanism is truthful in expectation. We

35

claim that CA-LP maintains this property.

Theorem 1. CA-LP mechanism is truthful in expectation.

Proof. In order to prove that an approximation mechanism is truthful, we need to prove

that its winner determination algorithm is monotone and that the payment calculated for

a winning user is her ‘critical payment’, i.e., the minimum she needs to bid to obtain her

requested bundle.

It is shown in [7] that the xj values determined by solving the LP in line 7 are monotone

with respect to the user valuations, i.e., a user uj can increase her probability of winning

by increasing her valuation. We now show that the randomized rounding step of CA-LP

maintains the monotonicity of allocation. We can have two different cases in the randomized

rounding step (lines 11-15),

∑

j:xj>0

rji ≤ ki, ∀i ∈ {1, . . . , m} (3.8)

or
∑

j:xj>0

rji > ki, ∃i ∈ {1, . . . , m} (3.9)

Equation (3.8) represents the condition at which each user uj having yj ≤ xj is guaranteed

to get her requested bundle. Therefore, the probability of user uj to be finally included in

the set of winners is exactly xj and the allocation is monotone.

On the other hand, when Equation (3.9) holds for some i, we divide the users into two

groups as follows. First, let us assume that x1, . . . , xn are in decreasing order. Now, let l

be the largest index for which the following equation holds.

∑

j∈{1...l},xj>0

rji ≤ ki, ∀i ∈ {1, . . . , m} (3.10)

Therefore, a user uj, j ≤ l, will be included in the winners list with probability xj , which

in turn is monotone with respect to her valuation.

36

Now, a user uj, l < j ≤ n, will get her allocation with probability xj if

rji +
∑

j′<j,uj′∈W

rj
′

i ≤ ki, ∀i ∈ {1, . . . , m} (3.11)

i.e., there are enough resources available to fulfill user uj’s request after determining the

winners among u1, . . . , uj−1. Therefore, the probability of user uj winning her bundle is

given by:

Pr

rji +
∑

j′<j,uj′∈W

rj
′

i ≤ ki, ∀i ∈ {1, . . . , m}

 xj (3.12)

The probability given by Equation (3.12) decreases as j increases (i.e., xj decreases). User

uj can increase her probability of winning by reporting a higher valuation. Therefore, the

allocation is monotone with respect to her valuation, although it is not directly proportional

to xj .

Considering the above two cases, we claim that the allocation algorithm of CA-LP

determines the set of winners with a probability that is monotone with respect to the user

valuations.

The payment calculated by CA-LP is the critical value that is the minimum a user

must bid to get her requested bundle allocated. Her reported valuation only helps decide

whether she will be a winner, but she has to pay this critical value when she wins, no

matter how large her valuation is. Because of these and following the results given in [7]

the CA-LP mechanism is truthful in expectation.

Example 1. We show the execution of CA-LP for a small VMAP instance illustrated in

Table 3.1. In this VMAP instance, six users are placing their bids and the cloud provider

has two types of VM instances with eight available copies for each type of instance. Each

row of the table represents a user. The first four columns list the user index j, the requested

number of VM instances of type-1 (rj1) and type-2 (rj2), and the user’s valuation (vj). For

example, user u1’s bid is B1 = (0, 4, 0.74) specifying a request for zero instances of type

VM1 and four instances of type VM2, and a valuation of 0.74 for this bundle. Column xj

37

Table 3.1: CA-LP Example

j rj1 rj2 vj xj yj uj ∈W pj
1 0 4 0.74 0 0.43 N 0
2 3 4 7.62 0.85 0.32 Y 3.65
3 4 1 6.02 0.62 0.61 N 0
4 1 3 7.54 1 0.74 Y 2.01
5 2 1 5.94 1 0.14 Y 3.49
6 1 0 0.97 0 0.95 N 0

shows the fractional allocation values for each user computed by the LP. The next column

is the random value (yj) used to decide the allocation. We see that users u2, u3, u4, and u5

have higher xj than the corresponding yjs. But it is not possible to allocate the requested

bundles to all these users, because that will exceed the number of available VMs of both

types. Therefore, we first eliminate u3 from the set of winners since x3 is the minimum

among these xjs. After this elimination, the set of winners satisfies all constraints. We show

the final allocation decision in the column titled ‘uj ∈ W ’, where ‘Y’ means the bundle is

allocated and ‘N’ means the bundle is not allocated.

The values in the yj column are also used in payment calculation. For example, the

amount bidder u4 will pay to the resource provider is determined by solving the LP with

different valuations of u4. Here, we perform a binary search between zero and 7.54 (i.e.,

v4) to find out the valuation v′4 and solve the LP to find a new x′
4, such that x′

4 < y4 (i.e.,

x′
4 < 0.74) for valuations smaller than v′4 and x′

4 > y4 for valuations greater than v′4. We

find that for v′4 = 2.0138, x′
4 = 0.82 > 0.74 and for v′4 = 2.0129, x′

4 = 0 < 0.74. The search

ends here by deciding the payment p4 = 2.0129, which is shown rounded to two decimal

digits in Table 3.1. We show the payment for all users in column pj. Thus, users u2, u4

and u5 obtain their requested bundles and pay 3.65, 2.01, and 3.49, respectively.

CA-GREEDY Mechanism

Lehmann et al. [35] proposed a
√
M -approximation mechanism for combinatorial auctions

with single-minded bidders where the total number of items that need to be allocated is

38

Algorithm 3 CA-GREEDY Mechanism

1: {Phase 1: Collect Bids}
2: for j = 1, . . . , n do

3: Collect bid Bj = (rj1, . . . , r
j
m, vj) from user uj

4: end for

5: {Phase 2: Winner Determination}
6: W ← ∅;
7: for j = 1, . . . , n do

8: sj ←
∑m

i=1 r
j
iwi

9: end for

10: re-order users such that
v1/
√
s1 ≥ v2/

√
s2 ≥ . . . ≥ vn/

√
sn

11: for j = 1, . . . , n do

12: if for all i = 1, . . . ,m, rji +
∑

uj′∈W
rj

′

i ≤ ki then

13: W ← W ∪ uj
14: end if

15: end for

16: {Phase 3: Payment}
17: for all uj ∈W do

18: W ′
j ← {ul : uj /∈W ⇒ ul ∈W}

19: l← minimum index in W ′
j

20: if W ′
j 6= ∅ then

21: pj ← (vl/
√
sl)
√
sj

22: else

23: pj ← 0
24: end if

25: end for

26: for all uj /∈W do

27: pj ← 0
28: end for

M . We extend this mechanism by redefining M to be the weighted total number of VM

instances, i.e., M =
∑m

i=1 kiwi. Here we define the ‘size’ sj of the bundle in bid Bj requested

by user uj as sj =
∑m

i=1wir
j
i , while in the original mechanism, sj is defined as sj =

∑m
i=1 r

j
i ,

i.e., the total number of items requested in Bj . Our CA-GREEDY mechanism is given in

Algorithm 3.

CA-GREEDY determines the winners by first ranking the users in decreasing order of

their ‘bid density’ (i.e., v1/
√
s1) and then greedily allocating them starting from the top of

39

the list. Before allocating a new bundle the mechanism verifies that the new allocation does

not exceed the number of available VM instances of each type (lines 11-15). The payment

pj a winner uj pays is calculated by multiplying
√
sj with the highest bid density among

the losing bidders who would win if uj would not be a winner (lines 17-24). That is, the

winner pays the critical value.

Our mechanism differs from the mechanism proposed by Lehmann et al. [35] in the way

the bid density is calculated. The original mechanism computes sj as the total number

of items in Bj, while in our case we consider sj to be the weighted sum of the number of

VM instances requested in Bj. Another difference is in the way our mechanism verifies

if the capacity is exceeded for each type of VM instance (line 12). These two differences

are significant because the original problem formulation assumes that each item is of dif-

ferent type and that different types of items do not have any relative importance to the

auctioneer. In our setting a cloud provider allocates different types of VM instances, which

have different characteristics and are valued differently by the cloud provider. Thus, we

associate a weight to each VM instance type in order to reflect these differences. In line 12,

the original mechanism needs to check whether there is a common item in the bundle of

the user that is currently being allocated and the ones that are already in the set of win-

ners. Since there are lots of VM instances of the same type, we changed this and check

if the number of instances of each type allocated to the winning bidders does not exceed

the number of available instances of each type. We claim that CA-GREEDY has the same

approximation ratio as the original greedy mechanism and it is truthful as well.

Theorem 2. CA-GREEDY is a truthful mechanism that computes a
√
M-approximate

solution to VMAP, where M =
∑m

i=1 kiwi.

Proof. The mechanism proposed by Lehmann et al. [35] is an
√
M -approximation mecha-

nism that solves the general combinatorial auction problem, where M is the total number

of items. In the case of VMAP, M =
∑m

i=1 kiwi. According to the definition of w, wi is the

number of VM1 instances equivalent to one VMi instance. Therefore, in VMAP, M is the

40

total number of equivalent instances of VM1 that are available. The mechanism proposed by

Lehmann et al. [35] provides a
√
M -approximation solution when there are M items in to-

tal, therefore the CA-GREEDY mechanism also generates an
√
M -approximation solution

to the VMAP.

Now, we show that the winner determination algorithm of CA-GREEDY is monotone

and the payment calculated for a winner is the critical value. From line 10 of the mechanism,

it is clear that a user can increase her chance of winning by increasing her bid. Also, a user

can increase her chance to win by decreasing the weighted sum of the items. For example,

a user requesting two small and two large VM instances will be higher in the order than

a user requesting one small and three large instances for the same valuation, although the

numbers of VMs requested are the same. Therefore, the winner determination algorithm

of CA-GREEDY is monotone with respect to user bids considering the relative computing

capacities of different types of VMs. Finally, a winning bidder uj pays the minimum amount

she has to bid to win her bundle, i.e., her critical value. This is done by finding the losing

bidder ul who would win if uj would not participate in the auction. User uj’s minimum

bid density has to be at least equal to the bid density of user ul for winning her bundle.

Therefore, her critical valuation is (vl/
√
sl)
√
sj, which is the payment calculated by CA-

GREEDY. Thus, the CA-GREEDY mechanism has a monotone allocation algorithm and

charges the winning bidders their critical payment. We conclude that CA-GREEDY is a

truthful mechanism.

Example 2. In Table 3.2, we show the allocation and payment computation obtained by

CA-GREEDY for the same instance of VMAP we used in Example 1. Here we also assume

that w1 = 1 and w2 = 2, i.e., one instance of VM2 is two times more powerful than one

instance of VM1. There are eight available instances of each type of VM. In Table 3.2, the

first four columns represent the user index, the number of VMs of each type in their bundle

and their valuation for that bundle. The value in the column titled ‘sj ’ is the weighted

sum of the total number of VM instances in a bundle. The next column, titled ‘vj/
√
sj ’,

gives the relative valuation of users with respect to the weighted bundle size, that is the

41

Table 3.2: CA-GREEDY Example

j rj1 rj2 vj sj vj/
√
sj uj ∈W pj

1 0 4 0.74 8 0.26 N 0
2 3 4 7.62 11 2.3 N 0
3 4 1 6.02 6 2.46 Y 5.63
4 1 3 7.54 7 2.85 Y 0.69
5 2 1 5.94 4 2.97 Y 4.6
6 1 0 0.97 1 0.97 Y 0

‘bid density’.

To determine the set of winners, we include users in descending order of vj/
√
sj in the

set of winners unless the inclusion violates the constraint that only eight copies of each

type of VM can be allocated. User u5 is the first winner and we allocate two copies of type

VM1 and one copy of type VM2 to her. The next user to get an allocation is u4, thus three

instances of type VM1 and four instances of VM2 are allocated so far. Next, u3 is selected

for allocation, raising the total VM allocation to seven for VM1 and five for VM2. We see

that the next user in the order is u2, but allocating u2 requires three instances of type VM1

and four of type VM2, whereas there is only one instance of type VM1 and three instances

of type VM2 remaining. Therefore, u2 is not included in the set of winners. User u6, is next

in the order not violating the constraints, thus she is included in the set of winners. So

far, eight instances of VM1 and five instances of VM2 are allocated, leaving only three VM2

instances not allocated. The last user, u1, cannot obtain her allocation since she requests

four instances of VM2.

We show the payment calculation for user u4 as an example. If u4 is not a winner, there

will be one and six instances of VM1 and VM2 to be allocated. The first non-winning user

with respect to the order is u2, but the number of VM instances available is not enough

to allocate u2. But the other remaining user, u1’s request can be fulfilled when u4 is not a

winner. Therefore, u4’s payment is calculated by multiplying u1’s bid density value by
√
7.

Since no such user could be found for u6, u6’s payment is zero.

Here, we note that the total revenue generated by CA-LP is 9.15 and that generated

42

by CA-GREEDY is 10.92. However, it is not guaranteed that CA-GREEDY will always

generate higher revenue than CA-LP. The payment of the CA-LP mechanism depends on

both the random variables yj generated during the allocation phase and the competition

among the bidders. On the other hand, the payment determined by the CA-GREEDY

mechanism depends only on the competition among the bidders. In the example, we see

that the highest four bid densities are between 2.3 and 2.97, where 2.3 is the bid density

of user u2, which is highest among the losing bids. Since this value is close to the winning

bids, the winning bidders need to pay more to win their bundles. However, in a different

scenario the CA-LP mechanism may generate higher revenues.

3.4 Experimental Results

We perform simulation experiments with different instances of VMAP. We solve these

problems by employing the three mechanisms presented above. We compare the results

and discuss the applicability of these mechanisms under different scenarios.

3.4.1 Experimental Setup

The simulation for one instance of VMAP runs for five simulation days. During each

simulation, a maximum of N = 100, 000 users are generated. Groups of users are created

five times an hour, i.e., every twelve minutes. Therefore, an average of about 167 users are

generated every twelve minutes. We add a deviation randomly chosen from [-20%, +20%]

to this number to determine the actual number of users generated at a particular time. We

invoke all three mechanisms every hour, with all the users generated during that hour and

all users from previous time slots that are still active. An active user is one whose task has

not been finished or the task deadline has not been reached. Each mechanism computes the

allocation and pricing for the next one hour time-frame and keeps track of the users’ status

separately. We would like to emphasize here that each run of the mechanisms computes

the allocation and payment of a given user for only one time slot and not for all the time

43

slots required for the user’s task to complete execution. The user will need to participate

in and win several auctions in order to complete her task.

Users are of three categories: type-1, type-2, and type-3. Type-1 users are the most

demanding, type-3 the least, and type-2 users fall in between. User demands are character-

ized by four factors: number of requested VMs, valuation, duration for which the bundle is

requested, and a deadline by which the task has to be finished. For example, type-1 users

request more VMs than the other two types of users, request the VMs for longer periods of

time, have the highest valuations, and have stricter deadlines than the others. Also, each

category of users are generated at particular times of the day. A simulation day is divided

into three periods: peak (8am–4pm), off-peak (4pm–midnight), and night (midnight–8am).

Type-1 users are generated (and hence submit their bids) during the peak hours only.

Type-2 users submit bids only during peak and off-peak hours while type-3 users submit

bids at any time of the day. To compare with real life scenarios, we can roughly consider

that type-1 users are the big corporations, type-2 are the large and medium businesses,

and type-3 are the small businesses and individual users.

We assume that the cloud provider offers four types of VM instances: small, medium,

large, and huge (VM1, VM2, VM3, and VM4). We set their relative weights tow = (1, 2, 4, 8)

and their fixed prices to f = (0.12, 0.24, 0.48, 0.96). This corresponds to the fixed-price

model used in Microsoft’s Windows Azure Platform [41]. We call this vectors a linear price

vector since fi = 0.12 ·wi, for i = 1, . . . , 4. Each user uj’s bid is a 5-tuple (rj1, r
j
2, r

j
3, r

j
4, vj),

where rji is the number of requested instances of VMi and vj is her valuation. User uj’s

task is characterized by the tuple (tj, dj), where tj is the duration for which the resources

are requested and dj is the time by which uj’s job needs to be completed.

To generate user bids, first the type of the user is randomly chosen from the user

distribution. Then, random numbers are generated from the ranges [rmin, rmax], [0, vmax],

and [tmin, tmax] and assigned to rji , vj , and tj , respectively. These values are then scaled

with a factor associated with the category of user. For example, the scale factors for rji s are

given by the vector ρ. Therefore, after generating rji values from the given range, they are

44

Table 3.3: Simulation Parameters

Parameter Description Value(s)

m Types of VMs 4
k1, . . . , km Available VMs of each type 500, 1000, 2000

w Relative weight of VMs (1, 2, 4, 8)

f Fixed-price vector

(.12, .24, .48, .96)
(.12, .22, .39, .70)
(.12, .26, .58, 1.28)

φ Fixed-price factor vector
(1, 1, 1)
(3, 2, 1)
(4, 2, 1)

N Maximum number of users 100000, 50000, 10000
n Number of users in an auction Varies

rmin, rmax Min. & Max. VM instances
of each type in a bundle

0, 5

vmax Maximum valuation 1, 2, 5, 10

tmin, tmax Min. & Max. execution time 1, 10

dmin, dmax Min. & Max. deadline 2, 10

π Distribution of users

(10%, 40%, 50%),
(20%, 30%, 50%),
(20%, 40%, 40%),
(30%, 30%, 40%)

ρ Scale factor for bundle size
(2, 1.5, 1),
(3, 2, 1)

λ Scale factor for valuation
(2, 1.5, 1),
(3, 2, 1)

τ Scale factor for execution time
(2, 1.5, 1),
(3, 2, 1)

δ Scale factor for deadline
(0.5, 0.67, 1),
(0.33, 0.5, 1)

multiplied by ρ1 to determine the actual value when the user is of type-1. To illustrate this,

suppose we generate some rji = 5 for user uj and ρ = (2, 1.5, 1). Now, the actual rji value

of users of type-1, type-2, and type-3 will be 5 × 2 = 10, 5 × 1.5 ≈ 8, and 5, respectively.

Similarly, the elements of vector λ give the scaling factors for valuation of different types

of users. After generating a random number within the range [0, vmax], we multiply it

with the entry in λ corresponding to the type of the generated user. Similarly, vectors τ

and δ denote the factors for scaling the time required and the deadline. The deadline is

45

determined by selecting a random number, scaling it, and then adding the result to tj . We

list all simulation parameters in Table 3.3.

To create different instances of VMAP, we vary the parameters that affect the user

distribution, demand, and payment resulting from the allocation. Thus, we choose four

different distributions of type-1, type-2, and type-3 users given by the following tuples:

(10%, 40%, 50%), (20%, 30%, 50%), (20%, 40%, 40%), and (30%, 30%, 40%). We consider

four values of vmax, 1, 2, 5, and 10, which give four ranges of valuations (0-1), (0-2), (0-5),

and (0-10). We also vary the number of available VM instances and the factors that distin-

guish bids of different types of users. Table 3.3 lists the parameters, their description, and

the range of values they take. Combining all these values with each other, our simulation

experiment simulated 768 different instances of VMAP.

In addition to the above set of experiments, we perform six sets of experiments with 768

VMAP instances each – by varying only one of the parameters listed above. We create two

sets of such experiments by setting N , the maximum number of users to 50,000 and 10,000,

respectively. From these experiments we try to evaluate the VM allocation mechanisms for

various degrees of user demands. In the next two sets of experiments, we set N = 100, 000

and consider two different fixed-price vectors f as follows. A sublinear price vector with

prices for instance VMi given by fi = 0.12 · (wi)
0.85, which corresponds approximately

to f = (0.12, 0.22, 0.39, 0.70); and a superlinear price vector with prices for instance VMi

given by fi = 0.12 · (wi)
1.15, which corresponds to f = (0.12, 0.26, 0.58, 1.28). Since the

FIXED-PRICE mechanism heavily depends on the fixed prices of the VM instances, these

experiments let us determine whether the fixed-price vector affect the performance of the

proposed mechanisms.

Finally, we vary the fixed-price vectors during the peak and off-peak hours of the day to

examine whether they can generate higher revenue by capturing the higher demands during

these times. This is accomplished by introducing the fixed-price factor vector φ. This is a 3-

vector containing factors that are used as multipliers for the fixed-price vector during differ-

ent hours of the day. For example, φ = (3, 2, 1) indicates the fixed prices of each type of VM

46

Served

Revenue

Utilization

Time

10
0

10
1

10
2

10
3

10
4

10
5

10
6

User and System Parameters for 100,000 Users (log10 scale)

FIXED-PRICE

CA-LP

CA-GREEDY

5.52%

8.00%
5.58%

116,831
272,527

225,936

54.67%

94.70%
91.76%

< 1 sec
842 sec

28 sec

Figure 3.2: Overall performance of the mechanisms with linear fixed-price vector (.12, .24,
.48, .96), fixed-price factor vector φ = (1, 1, 1), and 100,000 users. The plot is drawn at
log10 scale.

instance will be multiplied by 3 during the peak hours, by 2 during the off-peak hours, and

by 1 during night hours. If the fixed price-vector is f = (0.12, 0.22, 0.39, 0.70) then the prices

for the four types of VM instances during peak hours are given by (0.36, 0.66, 1.17, 2.1).

In the regular case, φ = (1, 1, 1), that is, the prices for VM instances are the same for all

periods of the day. In our experiments we use two price factor vectors (3, 2, 1) and (3, 2, 1),

that is, we consider that during peak hours the prices are four, and respectively three times

higher than during the night hours, while the prices during off-peak hours are two times

higher than the prices during night hours. This will allow us to investigate the effect of

taking into account the demand when establishing prices for the fixed-price mechanisms.

Table 3.3 lists these price vectors.

3.4.2 Analysis of Results

The experimental results show that the proposed combinatorial auction-based mechanisms

have clear advantages over the fixed-price mechanism for solving the VMAP. Here we discuss

their overall performance and then investigate the effect of different parameters on various

performance metrics such as generated revenue, utilization, runtime, and the number of

47

Served

Revenue

Utilization

Time

10
0

10
1

10
2

10
3

10
4

10
5

10
6

User and System Parameters for 50,000 Users (log10 scale)

FIXED-PRICE

CA-LP

CA-GREEDY

8.03%

13.33%
9.55%

104,648
218,499

186,387

48.25%

93.94%
90.84%

< 1 sec
370 sec

7 sec

Figure 3.3: Overall performance of the mechanisms with linear fixed-price vector (.12, .24,
.48, .96), fixed-price factor vector φ = (1, 1, 1), and 50,000 users. The plot is drawn at
log10 scale.

users served by the system.

First, we present the average performance of the mechanisms in Figures 3.2 to 3.5.

All the plots in these figures are represented using a logarithmic scale. The fixed price

mechanism used in these experiments assumes the same fixed price for all the periods of

the day, that is, the fixed price factor vector φ = (1, 1, 1). In Figure 3.2 we present the

summary of the experiments with 100,000 users and the linear price vector. We see that

CA-LP outperforms the other two mechanisms in all the metrics except the running time.

Here the running time is the average time needed to run one auction simulation. About 8%

of the 100,000 users could complete their tasks while running the CA-LP mechanism. We

also see that the overall utilization of the resources and the revenue generated are the best

for CA-LP. This is because the linear program has as objective maximizing the sum of the

valuations, which eventually generates higher revenue by utilizing as many machines as

possible while satisfying the constraint given in Equation (3.6). Utilizing more machines

allocates more users and therefore more users can finish their tasks. On the other hand, the

CA-GREEDY mechanism allocates users based on their relative valuation. Therefore, it

cannot always utilize resources as much as CA-LP can. But the running time of the CA-LP

48

Served

Revenue

Utilization

Time

10
0

10
1

10
2

10
3

10
4

10
5

10
6

User and System Parameters for 10,000 Users (log10 scale)

FIXED-PRICE

CA-LP

CA-GREEDY

15.85%

44.82%
40.18%

60,945
80,839

79,009

27.23%

85.71%
87.17%

< 1 sec
51 sec

< 1 sec

Figure 3.4: Overall performance of the mechanisms with linear fixed-price vector (.12, .24,
.48, .96), fixed-price factor vector φ = (1, 1, 1), and 10,000 users. The plot is drawn at
log10 scale.

is prohibitively high because the payment calculation involves repeated solving of the linear

program. The FIXED-PRICE mechanism obviously has the lowest running time because it

only allocates users on a first-come, first-served basis. The CA-GREEDY mechanism has

very low running time compared to CA-LP since its only major computation is to sort the

list of users.

In Figures 3.3 and 3.4, we show the summary of the results for experiments with 50,000

and 10,000 users and linear price vector. First, we observe that each of the mechanisms

serves higher percentage of users, generates lower revenue, and utilizes less resources as the

number of users decreases. This trend with decreasing demand is natural for any allocation

mechanism. We further observe that the rank of the mechanisms in terms of all the metrics

remain the same regardless of the total number of participants. Also note that compared

to the FIXED-PRICE mechanism, the increase in served users is much higher for CA-LP

and CA-GREEDY. This is due to the fact that FIXED-PRICE only considers those users

who bid at least the fixed value, while the auctions determine allocations based on the

market demand and supply. For the same reason, the utilization of the machines decreases

at a slower rate in the case of combinatorial auction-based mechanisms than in the case of

49

Served

Revenue

Utilization

Time

10
0

10
1

10
2

10
3

10
4

10
5

10
6

User and System Parameters for Sublinear Price-vector (log10 scale)

FIXED-PRICE

CA-LP

CA-GREEDY

6.13%

8.00%
5.59%

108,546
272,583

225,615

60.09%

94.70%
91.82%

< 1 sec
860 sec

28 sec

(a)

Served

Revenue

Utilization

Time

10
0

10
1

10
2

10
3

10
4

10
5

10
6

User and System Parameters for Superlinear Price-vector (log10 scale)

FIXED-PRICE

CA-LP

CA-GREEDY

4.96%

8.00%
5.59%

121,586
272,709

225,687

50.95%

95.00%
92.00%

< 1 sec
911 sec

29 sec

(b)

Figure 3.5: Overall performance of the mechanisms with 100,000 users and (a) sublinear
fixed-price vector (.12, .22, .39, .70); (b) superlinear fixed-price vector (.12, .26, .58, 1.28).
The fixed-price factor vector φ = (1, 1, 1). The plot is drawn at log10 scale.

the fixed-price mechanism. However, the gap between the total revenue generated reduces

when there are less participants, as the auction-based mechanisms generate less revenue

when there is less competition.

In Figures 3.5a and 3.5b, we summarize the results of the experiments with 100,000

users and sublinear and superlinear fixed-price vectors, respectively. By comparing them

with the results in Figure 3.2, we see that the only mechanism affected is FIXED-PRICE,

which can serve more users and utilize more resources when the price vector is sublinear.

However, in this case the total revenue decreases as users pay less than what they pay in

the case of a linear price vector. Naturally, we see the opposite trend for the superlinear

price vector. We can conclude that we cannot improve the overall quality of the allocation

generated by the FIXED-PRICE mechanism. By changing the price vector we can only

improve one metric while sacrificing another.

We now investigate different performance metrics by varying other simulation parame-

ters, while setting the total number of users to 100,000 and using the linear price vector.

In Figure 3.6a, we show the revenue generated for different ranges of user valuations. We

50

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

0-1 0-2 0-5 0-10

R
e
v
e
n
u
e

Range of Valuations (min-max)

Revenue vs. Valuation Ranges (100,000 Users)

FIXED-PRICE
CA-LP

CA-GREEDY

(a)

 0

 20

 40

 60

 80

 100

0-1 0-2 0-5 0-10

V
M

 U
ti
liz

a
ti
o
n
 (

%
)

Range of Valuations (min-max)

Resource Utilization vs. Valuation Ranges (100,000 Users)

FIXED-PRICE
CA-LP

CA-GREEDY

(b)

Figure 3.6: Effect of valuation ranges (with 100,000 users) on (a) Revenue; (b) VM utiliza-
tion.

see that low user valuations most adversely affect the FIXED-PRICE mechanism. This

is because it does not allocate the requested bundles to users having valuations below the

fixed-price range. On the other hand the combinatorial auction mechanisms can generate

higher revenues because they determine the payments from the user valuations. The rev-

enue increases at the same rate from valuation ranges (0–1) to (0–5). Then, for the valuation

range (0–10), we see a sharp rise in revenue generated by the auction mechanisms, while

the FIXED-PRICE mechanism’s revenue does not increase that much. This is because the

price for an average-sized bundle is 4.5 according to the fixed prices we set. FIXED-PRICE

mechanism’s revenue is bounded by the fixed prices, therefore it cannot take advantage of

higher user valuations. As shown in Figure 3.6b, our experiments reveal that the rate

of resource utilization obtained by the auction-based mechanisms is not affected by the

valuation ranges. The utilization obtained by the FIXED-PRICE mechanism increases as

the valuation range increases, and it is lower than that obtained by combinatorial auction

mechanisms for all the ranges of valuations except for the (1–10) range.

In Figure 3.7, we show the average revenue and resource utilization generated by the

mechanisms when different values of the scale factors for valuation (λ) and deadline (δ)

are used. As a reminder, a scale factor for valuation (or, the price factor) represents how

51

 0

 50000

 100000

 150000

 200000

 250000

 300000

Ratio 1 Ratio 2 Ratio 3 Ratio 4

A
v
e
ra

g
e
 R

e
v
e
n
u
e

Ratios of Price and Deadline Factors

Revenue vs. Price and Deadline Factor Ratios (100,000 Users)

FIXED-PRICE
CA-LP

CA-GREEDY

(a)

 0

 20

 40

 60

 80

 100

Ratio 1 Ratio 2 Ratio 3 Ratio 4

V
M

 U
ti
liz

a
ti
o
n
 (

%
)

Ratio of Price and Deadline Factors

Resource Utilization vs. Price and Deadline Factor Ratios (100,000 Users)

FIXED-PRICE
CA-LP

CA-GREEDY

(b)

Figure 3.7: (a) Revenue and (b) VM utilization vs. ratios of price and deadline factors.
Ratio is defined as a set of ((price-factor), (deadline-factor)) values. Ratio 1 = ((2, 1.5, 1),
(.33, .5, 1)), Ratio 2 = ((2, 1.5, 1), (.5, .67, 1)), Ratio 3 = ((3, 2, 1), (.33, .5, 1)), Ratio 4
= ((3, 2, 1), (.5, .67, 1)).

much more a bundle is valued by a type-1 and type-2 user than a type-3 user. For example,

λ = (2, 1.5, 1) denotes the case where on average a type-1 user bids twice the value than

a type-3 user and a type-2 user bids around 1.5 times higher than a type-3 user. When

λ = (3, 2, 1), these multiplication factors become 3 and 2, respectively and meaning that

those users’ demands are even higher than those of type-3 users. Similarly, a deadline factor

says how strict is the deadline of type-1 and type-2 users compared to that of type-3 users.

We consider four possible combinations of these two factors, which we denote as Ratio 1,

. . . , Ratio 4 in Figure 3.7. We show the revenue generated in different such scenarios in

Figure 3.7a. Ratios 1 and 2 are for the price factors (2, 1.5, 1) and Ratios 3 and 4 are for

the price factors (3, 2, 1). We see that the combinatorial auction-based mechanisms are

capable of generating higher revenues when the type-1 and type-2 bidders bid more, but

the fixed-price mechanism cannot increase the generated revenue that much. However, we

see that deadline factors do not have much effect on the outcome, as evident from similar

values shown for different deadline factors but the same valuation factor (e.g., Ratio 1 and

Ratio 2). From Figure 3.7b we see that these factors have almost no effect on machine

52

 0

 2

 4

 6

 8

 10

 12

Type 1 Type 2 Type 3

P
e
rc

e
n
t
S

e
rv

e
d

User Type

Users Completing Tasks (100,000 Users)

FIXED-PRICE
CA-LP

CA-GREEDY

Figure 3.8: Percentage of served users for simulations with 100,000 users.

utilization achieved by the combinatorial auctions. But utilization is increased a little for

the FIXED-PRICE mechanism with higher valuation factors.

We now examine how the three mechanisms deal with different types of users. Recall

that type-1 users are the most demanding and type-3 users are the least demanding. First,

we show the percentage of users who could complete their tasks in Figures 3.8 to 3.10. We

refer to these users as the served users. In these figures we show the results from three

different sets of experiments, with 100,000, 50,000, and 10,000 users and the linear price

vector. In Figure 3.8, where the total number of users is 100,000, we observe that the

FIXED-PRICE mechanism serves type-3 users the most. This is because it only considers

the order in which users arrive. Type-1 and type-2 users have shorter deadlines and there-

fore leave the system if they do not get the allocation within a few allocation events. On

the other hand, type-3 users have longer deadlines, and therefore they are active longer

and eventually get the allocation once the users that entered the system earlier finish their

tasks. CA-LP also served more users of type-3 than users of other types, yet it served more

users compared to the FIXED-PRICE mechanism in every category. Here we see a nice

property of CA-GREEDY that is, it serves more type-1 users than the other mechanisms.

It also serves more users of type-1 than other user types. This is because CA-GREEDY

makes decisions based on the bid densities, which are on average the highest for type-1

53

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Type 1 Type 2 Type 3

P
e
rc

e
n
t
S

e
rv

e
d

User Type

Users Completing Tasks (50,000 Users)

FIXED-PRICE
CA-LP

CA-GREEDY

Figure 3.9: Percentage of served users for simulations with 50,000 users.

 0

 10

 20

 30

 40

 50

 60

Type 1 Type 2 Type 3

P
e
rc

e
n
t
S

e
rv

e
d

User Type

Users Completing Tasks (10,000 Users)

FIXED-PRICE
CA-LP

CA-GREEDY

Figure 3.10: Percentage of served users for simulations with 10,000 users.

users.

Now comparing Figure 3.8 with Figures 3.9 and 3.10, we see that for 50,000 users

the CA-GREEDY mechanism maintains its feature of serving a higher percentage of more

demanding users than less demanding users. But for 10,000 users, the percentage of served

users of type-3 is higher than the ones corresponding to the other two types of users. This

is because for the reduced demand, type-1 and type-2 users cannot occupy most of the

resources as they do for the cases with higher number of users. Also, recall that type-1 and

type-2 users request larger bundles and are active during peak hours and off-peak hours

only. On the other hand, type-3 users are generated any time of the day. Therefore, the

54

 0

 1

 2

 3

 4

 5

Type 1 Type 2 Type 3

P
e
rc

e
n
t
P

a
rt

ia
lly

 S
e
rv

e
d

User Type

Users with Partial Task Completion (100,000 Users)

FIXED-PRICE
CA-LP

CA-GREEDY

Figure 3.11: Percentage of partially served users for simulations with 100,000 users.

 0

 1

 2

 3

 4

 5

 6

 7

 8

Type 1 Type 2 Type 3

P
e
rc

e
n
t
P

a
rt

ia
lly

 S
e
rv

e
d

User Type

Users with Partial Task Completion (50,000 Users)

FIXED-PRICE
CA-LP

CA-GREEDY

Figure 3.12: Percentage of partially served users for simulations with 50,000 users.

type-3 users get more space for occupying the resources facing less competition from the

other users. Also, their bundle size is smaller compared to the other users and therefore a

higher number of users can be served using the same amount of resources. On the other

hand, in the case of CA-LP, we see almost the same trend (although at a different scale)

in terms of serving the three types of users. Hence, we can conclude that CA-GREEDY is

a better choice in terms of fairness and the handling of demand and supply in the market.

In Figures 3.11 to 3.13 we plot the percentage of users that could only partially complete

their tasks. First, we observe that the FIXED-PRICE mechanism has the least number

of partially served users in all three cases. This is because of its inherent first-come, first-

55

 0

 5

 10

 15

 20

Type 1 Type 2 Type 3

P
e
rc

e
n
t
P

a
rt

ia
lly

 S
e
rv

e
d

User Type

Users with Partial Task Completion (10,000 Users)

FIXED-PRICE
CA-LP

CA-GREEDY

Figure 3.13: Percentage of partially served users for simulations with 10,000 users.

served policy. These plots also reveal that the percentage of partially served users increases

in the case of CA-LP and CA-GREEDY when fewer users participate. Such effect is natural

to auction mechanisms; a user must be denied the resources once another user with a higher

bid arrives in an already saturated market for resources. However, if the consequences of

having jobs partially completed is very important in some systems, it may be better to

consider FIXED-PRICE as the allocation mechanism. The combinatorial auction-based

mechanisms we propose can also be improved by incorporating some penalty for partially

finished jobs. In the simulations we consider that the bids are generated once and a user

submits the same bid until she gets her job done or her deadline is reached. In practice, a

user is an interactive entity and can adapt her bid depending on the value and urgency of her

job and the current market demand. Creating an automated bidding agent to participate

in the combinatorial auctions could also be an interesting research direction that could

eventually decrease the number of partially served users.

Now we present the average resource utilization obtained by the three mechanisms

during different periods of time of the day. Recall that in the experiments, we divided a

day between peak (8am-4pm), off-peak (4pm-midnight), and night (midnight-8am) hours.

Also, type-1 users are generated during the peak hours, type-2 users during the peak and

off-peak hours, and type-3 users can place their bids any time of the day. In Figure 3.14,

56

 0

 20

 40

 60

 80

 100

Peak (8am-4pm) Off-peak (4pm-midnight) Night(midnight-8am)

P
e
rc

e
n
t
o
f
V

M
s
 U

ti
liz

e
d

Time of Day

VM Utilization in Different Time Periods (100,000 Users)

FIXED-PRICE
CA-LP

CA-GREEDY

Figure 3.14: Utilization of resources during different periods of time (100,000 users)

we see that the resource utilization is around 95% for CA-LP for each period of the day.

The utilization achieved by CA-GREEDY is very close to that of CA-LP for all three

periods. The proposed mechanisms are able to effectively balance the load of the system

over time. The utilization obtained by FIXED-PRICE is about 56% and 59% during peak

and off-peak hours and it falls below 50% during night. Since FIXED-PRICE is a first-

come-first-served mechanism, it cannot free up resources that are being used by type-3

users when in the morning type-1 users start placing their requests. Since type-1 users

have shorter deadlines, by the time some resources are freed up, some users have already

left the system. Therefore, the utilization obtained by FIXED-PRICE is far below that

obtained by CA-LP and CA-GREEDY. At night, the utilization further drops because only

the type-3 users request computing resources.

All the above experiments considered the FIXED-PRICE mechanism with a fixed-price

factor vector φ = (1, 1, 1). We now show the results obtained by considering different fixed-

price factor vectors, φ. This is equivalent to considering different prices at different times

of the day and it will allow us to investigate the effect of increasing the prices during high

demand hours on the performance of the mechanisms. The combinatorial auction-based

mechanisms dynamically determine the prices of the VM instances. Since demand varies

during peak, off-peak, and night hours, we multiply the fixed prices with different values

57

Served

Revenue

Utilization

Time

10
0

10
1

10
2

10
3

10
4

10
5

10
6

User and System Parameters for Peak Factors 3-2-1 (log10 scale)

FIXED-PRICE

CA-LP

CA-GREEDY

3.81%

8.01%
5.59%

116,962
272,617

225,617

34.10%

94.70%
91.82%

< 1 sec
832 sec

28 sec

Figure 3.15: Overall performance of the mechanisms with fixed-price factor vector φ =
(3, 2, 1) and 100,000 users. The plot is drawn at log10 scale.

Served

Revenue

Utilization

Time

10
0

10
1

10
2

10
3

10
4

10
5

10
6

User and System Parameters for Peak Factors 4-2-1 (log10 scale)

FIXED-PRICE

CA-LP

CA-GREEDY

3.65%

8.01%
5.59%

111,748
272,666

225,366

32.11%

94.70%
91.83%

< 1 sec
1,747 sec

39 sec

Figure 3.16: Overall performance of the mechanisms with fixed-price factor vector φ =
(4, 2, 1) and 100,000 users. The plot is drawn at log10 scale.

based on the time of the day. The results presented in Figure 3.15, are obtained when we

multiply the fixed-price vector by 3 for the peak hours, by 2 for the off-peak hours, and

by 1 for the night hours. This correspond to a fixed-price factor vector φ = (3, 2, 1). We see

that when compared to the results presented in Figure 3.2, the percentage of served users

when employing the FIXED-PRICE mechanism has decreased from 5.5% to 3.8% and the

utilization of VM instances has decreased from 54% to 34%. This is expected, since more

users are being rejected allocation during peak and off-peak hours due to the increase in the

58

fixed-prices. However, the revenue generated by the FIXED-PRICE mechanism remains

at almost the same level. This shows that adjusting the fixed-price vector in anticipation

of higher demand may not improve much the overall efficiency. At higher prices, fewer

users are served and resources are under-utilized leading to no significant impact on the

generated revenue. Figure 3.16 shows the results obtained when we changed the fixed-price

factor vector to φ = (4, 2, 1), i.e., we multiply the fixed-price vector by 4 during the peak

hours, by 2 during the off-peak hours and by 1 during night hours. Here we observe that

while serving fewer users and utilizing less resources, the FIXED-PRICE mechanism also

obtains lower revenue. We conclude that it is possible to control the behavior of fixed-

price mechanisms by updating the fixed-price vector based on observation or statistical

data about the demands. But combinatorial auction-based mechanisms compute the price

dynamically, therefore no matter how the demand changes, they are able to obtain an

efficient allocation and pricing.

In summary, we can conclude that combinatorial auction-based allocation and pricing

mechanisms are more desirable over the fixed-price based ones currently employed by cloud

providers. CA-LP is a better choice when the objective is to obtain higher revenue and

higher utilization of resources. However, we have to limit the application of CA-LP to sys-

tems with small number of users, because otherwise the execution time will be prohibitive.

This is because the CA-LP involves solving a linear program whose number of unknowns

increases with the number of users participating in the auction. In addition to this, in order

to compute the user’s payments, CA-LP needs to solve one linear program for each user,

thus the execution time increases very fast with the number of users. CA-LP can be a good

choice when auctions are run at longer intervals. On the other hand, CA-GREEDY can be

applied to cloud systems with any number of users being able to generate high revenue and

resource utilization with very low execution time. CA-GREEDY is a better choice when

the objective of VMAP is to maximize the social welfare. It is also worth mentioning that

the CA-LP mechanism is designed for bidders with known bundles (i.e., bundles that are

known to the auctioneer) [7]. Therefore, this mechanism is vulnerable to manipulation by

59

users who bid for unknown bundles in the hope of obtaining a better allocation or price.

On the other hand, CA-GREEDY is a truthful mechanism with respect to both valuations

and the bundles requested. Considering all the above aspects, we recommend using the

CA-GREEDY mechanism for solving general purpose VM allocation problems in clouds.

3.5 Summary

We investigated the applicability of combinatorial auction-based mechanisms for allocation

and pricing of VM instances in cloud computing platforms. We proposed two combinatorial

auction-based mechanisms for solving the problem of allocating VM instances in clouds.

We compared their performance with that obtained by a currently used fixed-price mech-

anism. We performed extensive simulation experiments and conclude that combinatorial

auction-based mechanisms are clearly a better choice for VM allocation in clouds. Based

on experimental data and on the theoretical properties of the mechanisms, we also made

recommendations that the CA-GREEDY mechanism should be the choice for general pur-

pose VM instance allocation problems while the CA-LP mechanism can be reserved for

special scenarios.

60

CHAPTER 4: EFFICIENT

BIDDING FOR VIRTUAL

MACHINE INSTANCES IN

CLOUDS

4.1 Introduction

In the previous chapter, we showed that combinatorial auctions are efficient mechanisms

for allocating the VM instances in clouds. In a combinatorial auction-based VM instance

allocation mechanism, a user bids for a bundle of VM instances of different types required

for executing her application by specifying the bundle and a value. The value represents

how much the user is willing to pay for the bundle if allocated. The auction mechanism

determines the set of winning users, allocates their requested bundles, and computes the

amount they have to pay. The goal of the cloud provider is to efficiently allocate the

available VM instances to the users and generate the maximum possible revenue. On the

other hand, a user desires to maximize her own utility, that is, the value she derives from

obtaining the bundle minus the amount she has to pay for using the bundle. If the user

does not obtain any bundle, her utility is zero. The combinatorial auction mechanisms we

designed in the previous chapter are incentive-compatible, that is, they guarantee that a user

maximizes her utility by bidding her ‘true’ valuation of the requested bundle. Therefore,

to achieve maximum utility, a user needs to determine (i) the bundle of VM instances that

guarantees the best performance for her application, and (ii) the correct (or true) valuation

of the bundle.

However, generating such an efficient bid is a nontrivial problem, especially if the user

61

needs to execute parallel applications on the cloud platform. The degree of parallelism

of the application and the system’s parameters, such as communication delay, limit the

speedup of a parallel application. Thus, it is imperative to incorporate these parameters

when determining the best VM bundle necessary for executing an application. A realistic

valuation of a given bundle of VM instances should also consider the performance gain of

the application achieved by the bundle. Finally, the bid should not exceed the budget of

the user.

4.1.1 Our Contribution

We address the above problem by first designing a user’s valuation function that considers

both the application and the system’s parameters. The proposed valuation function de-

termines the value of a bundle of VM instances on which a user executes her application.

Then, we propose an algorithm that uses this valuation function to generate efficient bids

within the users’ budgets. We analyze the complexity of our proposed bidding algorithm

and perform extensive simulation experiments to investigate its properties.

4.1.2 Organization

The rest of the chapter is organized as follows. In Section 4.2, we describe our proposed

bidding strategy algorithm and analyze its complexity. In Section 4.3, we evaluate the

proposed bidding strategy by extensive simulation experiments. We summarize our results

in Section 4.4.

4.2 Proposed Bidding Strategy

In this section, first we briefly describe the setup of the combinatorial auction for VM

instances allocation in clouds and then present our proposed efficient bidding strategy

algorithm.

62

Among the combinatorial auction-based mechanisms that we designed for VM alloca-

tion in clouds, we choose CA-GREEDY to illustrate the design of our bidding strategy.

The bidding strategy is not designed specifically for this mechanism and it is valid for any

mechanism that solves the same VM allocation problem solved by CA-GREEDY. In Chap-

ter 3, we showed that CA-GREEDY guarantees incentive-compatibility i.e., users obtain

maximum utility only by bidding their true valuations for the requested bundles. Following

is a quick refresher of the VM allocation problem that we solve using CA-GREEDY.

A cloud provider needs to allocate k1, . . . , km copies ofm different types of VM instances

among n competing users. The different types of VMs are represented as VM1, . . . , VMm

and their relative ‘computing powers’ are denoted by w = (w1, . . . , wm), where wi is the

number of processors in VMi. We assume that the VM instances have other computing

resources (e.g., memory, storage, and bandwidth) in proportion to the number of processors.

Here we assume that w1 = 1 and wi ≤ wi+1. An example is w = (1, 2, 4, 8) that means

the cloud provider offers four types of VM instances having 1, 2, 4, and 8 processors,

respectively.

A user uj, j = 1, . . . , n participates in the auction for VM instances by submitting her

bid Bj = (rj1, . . . , r
j
m, vj). Here, r

j
i is the number of VMi instances that user uj requests and

vj is the maximum amount that uj is willing to pay if the bundle is allocated to her. The

goal of the CA-GREEDY mechanism is to determine an allocation vector x = (x1, . . . , xn),

where xj = 0 indicates that user uj does not obtain her requested bundle, and xj = 1

means that uj obtains her requested bundle. The mechanism also determines a payment

vector y = (y1, . . . , yn), where yj is the amount user uj has to pay for the allocated bundle.

The combinatorial auction for VM instances is conducted periodically (e.g., once per

hour). Each auction allocates the maximum possible number of resources to the users for

only one period of time. Users who did not complete their application execution in one

period need to bid again for the next period. It is the users’ responsibility to determine

how many units of time they need certain resources and submit their bids until their work

is completed. Now we are ready to present the bidding strategy algorithm that we design

63

in this work.

A bidding strategy should create efficient bids for users participating in combinatorial

auctions for VM instances in clouds. The strategy must take into account the type and

workload of the application the user intends to run, and her budget. It should generate a

bundle of VM instances and a valuation of that bundle in order to provide the user with

the best performance within her budget.

4.2.1 Execution Time and Speedup

We consider a set of users who intend to run parallel applications on clouds. In particular,

we consider malleable applications, which are parallel applications that can be executed on

any given number of processors [32]. However, by employing more processors we cannot

gain speedup indefinitely. This is because by adding more processors the overhead added

to the execution time increases. This overhead is a function of both system-specific and

application-specific parameters, as we will discuss in the following.

Let us consider that a user uj needs to run a malleable parallel application aj on a cloud

platform. The application is characterized by its workload ωj, expressed as a processor-time

product. Havill and Mao [32] modeled the execution time Tj of an application aj as:

Tj = ωj/pj + (pj − 1)θ (4.1)

where pj is the number of processors used, and θ is a system-specific parameter called the

‘setup time’. The setup time is the time spent to create, dispatch, or destroy multiple

processes. The first term represents the time spent executing the workload only, which

is equally divided to pj processors. The second term corresponds to the system-specific

overhead (e.g., time to create or destroy a process).

We argue that the overhead of execution on multiple processors is not only dependent

on the setup time but also on the time spent on distributing the input data during ini-

tialization and on the time spent on communication and synchronization during program

64

execution. We assume that the amount of information to be exchanged during initialization

and execution can be expressed as a fraction of the total workload. Hence, our proposed

model for the parallel execution time of a malleable application is given by

Tj = ωj/pj + (pj − 1)θ + (pj − 1)δτjωj + (Rj − 1)δcjωj (4.2)

Our new model adds two new terms to the existing two terms of Equation (4.1). The

third term in the new equation for Tj characterizes the initialization overhead. Here, δ is

the time to communicate one unit of data between different VM instances in the system,

and τj is the amount of input data to be transferred, expressed as a fraction of the to-

tal application workload. Therefore, the amount of input data that is transferred is τjωj

and the overhead for data transfer during initialization is (pj − 1)δτjωj. The fourth term

represents the communication and synchronization overhead incurred during processing.

Here, cj is the communication overhead expressed as a fraction of the workload. Rj is the

number of VM instances the total number of processors are divided into. Here we assume

that communication within a VM instance takes negligible amount of time compared to

the communication between VM instances. Therefore, we multiply the amount of commu-

nication by Rj − 1. This implies that if all pj processors reside on one VM instance (i.e.,

Rj = 1), the overhead for communication and synchronization is negligible. Otherwise, it

increases with the number of VM instances employed in running the application.

Using Equation (4.2) we derive the speedup of the application as:

Sj =
ωj

ωj/pj + (pj − 1)θ + (pj − 1)δτjωj + (Rj − 1)δcjωj
(4.3)

We examine the characteristics of this speedup function in Figures 4.1 and 4.2. In both

figures, the following parameters are fixed: ωj = 50, δj = 0.01, τj = 0.05, θj = 0.05,

c = 0.01. In Figure 4.1, we plot the speedup vs. the number of processors while keeping

Rj = 1 constant. Here we see that the speedup improves until the number of processors

65

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40 45 50

S
p
e
e
d
u
p

Number of Processors (p)

Speedup vs. Number of Processors (R = 1)

Figure 4.1: Characteristics of the valuation function: Speedup vs. number of processors
(Rj = 1)

 12.7

 12.75

 12.8

 12.85

 12.9

 12.95

 13

 13.05

 13.1

 13.15

 13.2

 0 5 10 15 20 25 30

S
p
e
e
d
u
p

Number of VM Instances (R)

Speedup vs. Number of VM Instances (p = 26)

Figure 4.2: Characteristics of the valuation function: Speedup vs. number of VM instances
(pj = 26)

reaches about 25, which is the optimal number of processors. In Figure 4.2, we plot the

speedup vs. the number of VM instances (Rj), where the number of processors is kept

constant at pj = 26. The speedup decreases as the number of VM instances increases.

The speedup function given in Equation (4.3) serves as the basis for the valuation

function and the bidding strategy algorithm that we propose.

66

4.2.2 Valuation Function and Algorithm

We now determine a valuation function which gives the ‘value’ a user receives upon com-

pletion of her application on a bundle of VM instances. The function should depend on

the parameters of the application and the bundle allocated to it. We define the valuation

for using a bundle for one unit of time as follows:

vj = (λjSj)(Sj/Sopt) (4.4)

Here, Sj is given by Equation (4.3) and λj denotes how much user uj values each unit

of speedup. The valuation can be interpreted as follows. When the optimal speedup can

be achieved (i.e., Sj = Sopt) within the budget of the application the valuation function

is directly proportional to the speedup. When the optimal speedup cannot be achieved

the valuation is proportional to the ‘scaled speedup’, where the scaling factor is given by

Sj/Sopt < 1. That is, if the optimal speedup is not achieved the user values less the unit of

speedup than in the case in which the optimal speedup is achieved.

The valuation vj can also be interpreted as the user’s maximum willingness to pay for

the given bundle. This value is the bid amount that the user submits to the auctioneer (i.e.,

cloud provider) along with her requested bundle. If the bundle is allocated, user uj needs

to pay a price yj determined by the auction. The user’s utility is defined as the surplus

value retained by the user after paying the price for executing her application.

Uj =

vj − yj if xj = 1

0 if xj = 0
(4.5)

Here, xj is the indicator variable of whether user uj receives her requested bundle of VM

instances. Obviously, the user’s goal is to maximize her utility.

Now we present our proposed Efficient Bidding Strategy (EBS). As we mentioned before,

an auction is run each unit of time (e.g., every hour). Therefore, a bidding strategy needs to

67

Algorithm 4 Efficient Bidding Strategy (EBS)

Require: ωj, τj, cj, Vj , λj

Ensure: (Bj = (rj1, . . . , r
j
m, vj), Tj)

1: {Phase I: Finding optimal bundle and speedup}
2: pj ← ⌊

√

ωj/(θ + δτjωj)⌋
3: z ← pj
4: Rj ← 0

5: for i := m downto 1 do {initialize rji }
6: rji ← ⌊z/wi⌋
7: z ← z mod wi

8: Rj ← Rj + rji
9: end for

10: Tj ← ωj/pj + (pj − 1)θ + (pj − 1)δτjωj + (Rj − 1)δcjωj

11: Sj ← ωj/Tj

12: Sopt ← Sj {save value of optimal speedup}
13: {Phase II: Finding optimal valuation and adjust if necessary}
14: vj ← (λjSj)
15: while vjTj > Vj and pj > 0 do

16: h← 0
17: for i := m downto 1 do {increase number of VMs}
18: if h = 0 and rji > 0 then

19: rji ← rji − 1
20: Rj ← Rj − 1
21: h← i
22: z ← wi

23: else if h > 0 then

24: rji ← rji + ⌊z/wi⌋
25: Rj ← Rj + ⌊z/wi⌋
26: z ← z mod wi

27: end if

28: end for

29: if h = 0 then {maximum possible Rj reached}
30: pj ← pj − 1
31: z ← pj
32: Rj ← 0

33: for i := m downto 1 do {initialize rji for new pj}
34: rji ← ⌊z/wi⌋
35: z ← z mod wi

36: Rj ← Rj + rji
37: end for

38: end if

39: Tj ← ωj/pj + (pj − 1)θ + (pj − 1)δτjωj + (Rj − 1)δcjωj

40: Sj ← ωj/Tj

41: vj ← (λjSj)(Sj/Sopt) {scale valuation w.r.t. speedup}
42: end while

43: if pj = 0 then

44: return “Budget too low”
45: end if

46: return (Bj = (rj1, . . . , r
j
m, vj), Tj)

68

determine the bid Bj = (rj1, . . . , r
j
m, vj) and the time required to complete the application,

Tj . Here r
j
i is the number of VM instances of type VMi included in the requested bundle of

uj. The goal of the strategy is to find a bundle and valuation so that the user can obtain

the best possible speedup within her budget Vj, and thus, maximize her utility. Since vj

is the value the user is willing to pay for the allocation of the bundle for one unit of time,

the algorithm has to ensure that the maximum total cost for the user does not exceed her

budget, i.e.,

vjTj ≤ Vj (4.6)

Our bidding strategy algorithm presented in Algorithm 4 consists of two phases. In the

first phase (lines 1 to 12), it determines the optimum number of processors (i.e., the number

of processors that gives the maximum speedup). First, the optimal number of processors

is calculated (line 2). To compute the optimal number of processors we consider that all

processors are part of the same VM, that is, we set Rj = 1 in Equation (4.2). We then

differentiate Tj with respect to pj and solve
dTj

dpj
= 0 for pj as follows.

−pj2 + θ + δτjωj = 0 (4.7)

Solving the above equation gives us the optimal value of pj as:

popt = ⌊
√

ωj/(θ + δτjωj)⌋ (4.8)

We then generate the bundle with the least number of VM instances possible for pj proces-

sors (lines 3 to 9). Lines 10 and 11 compute the optimal execution time and the speedup

with respect to the optimal values of pj and Rj , respectively. We save the value of the

optimal speedup for later use (line 12).

Note that we set Rj = 1 while deriving the optimal number of processors in Equa-

tion (4.8). This is because the speedup function is linearly decreasing with respect to Rj

(Figure 4.2). Thus, we determine first the optimal value of pj without considering Rj . In

69

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70 80 90 100

O
p
ti
m

a
l
N

u
m

b
e
r

o
f
P

ro
c
e
s
s
o
rs

 a
n
d
 O

p
ti
m

a
l
T

im
e

Workload

Optimal Number of Processors vs. Workload

p
t

Figure 4.3: Characteristics of the valuation function: Optimal number of processors (pj)
and time (Tj) vs. workload.

Figure 4.3, we show the optimal number of processors and the optimal time as a function

of the workload for the same example as the one used to plot Figure 4.2.

In the second phase, the algorithm adjusts the number of processors and/or number of

VM instances if the valuation corresponding to the maximum speedup exceeds the user’s

budget. That is, Rj is increased if the valuation exceeds the user budget. If the valuation

exceeds the budget even when Rj = pj (i.e., the bundle is composed of only one-processor

VM instances), then we decrease the value of pj and iterate until a valuation within the

budget is found, or pj = 0, which means that it is not possible to execute this application

under the given budget Vj .

Lines 13 to 46 constitute the second phase of the algorithm. First, we calculate the

optimal valuation of the bundle for allocation of one unit time, based on the optimal

speedup (line 14). If this valuation cannot satisfy Equation 4.6, the while loop in lines 15-

42 iterates until a feasible bundle is found or it is determined that no such bundle exists.

The for loop in lines 17 to 28 selects one of the largest VM instances in the bundle and

replaces it with smaller VM instances, thus increasing Rj and generating a lower value

bundle. The indicator variable h initialized in line 16 captures the status of whether we

can increase Rj for the current value of pj or not. If Rj has reached its maximum, we

decrease pj , create a new bundle (lines 29-38), and compute Tj and Sj as above (lines 39-

70

40). For this reduced speedup, we compute vj as before, but then scale it with the ratio of

Sj and the optimal speedup (line 41). The implication of this can be understood from the

following equation.

vjTj = (λjSj)(Sj/Sopt)Tj = (λjωj/Tj)(Sj/Sopt)Tj

= (λjωj)(Sj/Sopt) (4.9)

From the above equation, we see that scaling the valuation makes sure that the maximum

total cost of executing the application depends on the ratio of the achieved and the optimal

speedup. Thus, the total cost of the application decreases and the loop in line 15 terminates

when a solution is found within the budget constraint. The algorithm returns the bid and

the time requirement if a feasible solution is found, otherwise it returns “Budget too low”.

4.2.3 Analysis of EBS

Effectiveness. From Equation (4.3), we see that the speedup of a malleable parallel ap-

plication is dependent on two variables, pj and Rj . One way to optimize the speedup

would be to solve a two variable unconstrained optimization problem. We did not consider

solving the two variable optimization problem for two reasons. First, variables pj and Rj

limit each others values. Since there are certain types of VM instances available from the

cloud provider, a given number of processors cannot be mapped into an arbitrary number

of VM instances. Therefore, a solution from solving the two-variable optimization problem

might not be practically implementable and need further adjustments. On the other hand,

Figures 4.1 and 4.2 suggests that only pj has a non-linear relationship with the speedup.

Hence, finding the optimum pj and setting the lowest possible value for Rj will give us one

best estimate of the optimal speedup. If the best speedup leads to a valuation that exceeds

the budget, the algorithm is capable of finding the best speedup within the budget.

Since the EBS algorithm ensures the best speedup within the budget, this maximizes

the user’s utility. This is because the user bids her true valuation in a combinatorial auction

71

that is incentive-compatible [71].

Running Time. In Algorithm 4, the while loop starting in line 15 dominates the running

time. In the worst case, this loop will iterate until pj = 0. In that case, the for loop in

line 17 iterates pj times for each value of pj , where 1 ≤ pj ≤ popt. Each iteration of this

loop replaces one larger VM instance with two or more smaller VM instances until the

bundle contains pj one-processor VM instances. Therefore, for one value of pj, the loop in

line 17 iterates pj times in the worst case. The worst-case running time of the algorithm is
∑popt

i=1 i = O(popt
2).

4.3 Experimental Results

We perform simulation experiments to evaluate the proposed bidding strategy. Our goal is

to answer the following questions: (i) How does the bidding strategy affect users’ utilities?

(ii) How does the bidding strategy affect the cloud providers’ revenue? (iii) How does the

number of strategic bidders participating in an auction influence other bidders’ utilities?

4.3.1 Naive Bidding

We compare our proposed strategy with a ‘naive strategy’. The naive bidding strategy

does not consider the application’s speedup function when determining the bid, but it is

not completely arbitrary. A naive bidder has different values for different types of VM

instances and assumes the existence of some overhead which she incorporates in her bids.

The Naive-Biding (NB) algorithm is given in Algorithm 5.

The naive user uj assigns a value ρji to each VMi as follows. She bases the assignment

on a known fixed-price vector f1, . . . , fm of a cloud provider where fi/fi′ = wi/wi′, for

i = 1, . . . , m. The value for VM1 is determined by multiplying f1 by a valuation factor

σj
1 (line 1). The values of the other VMs, ρji , i = 2, . . . , m, are determined by multiplying

σj
1 by the second valuation factor, σj

2, and by the relative values of other VMi instances,

72

Algorithm 5 Naive-Bidding (NB)

Require: ωj, Vj, σ
j
1, σ

j
2, β

j
1, β

j
2

Ensure: (Bj = (rj1, . . . , r
j
m, vj), tj)

1: ρj1 ← σj
1f1

2: for i := 2 to m do {set user’s ‘own’ value for VMi}
3: ρji ← σj

2ρ
j
1(wi/w1)

4: end for

5: repeat {select a random VM type VMi}
6: i← random(1,m)
7: {select rji , tj such that rji tj > ωj/wi}
8: z ← ωj/wi

9: rji ← ⌈β
j
1

√
z⌉

10: tj ← ⌈βj
2z/r

j
i ⌉

11: vj ← ρji r
j
i

12: {reject VMi if budget exceeded}
13: until vjtj ≤ Vj or all VM types are rejected
14: if vjtj > Vj then

15: return “Budget too low”
16: end if

17: return (Bj = (0, . . . , rji , . . . , 0, vj), tj)

i = 2, . . . , m (lines 2-4).

The bid is generated in lines 6 to 12. First, a VM type is selected at random (line 6).

Then the user creates a bundle and determines the time required to execute her application

so that her application can be completed based on her assumption about the overhead, given

by overhead factors βj
1 and βj

2. The basis of generating the bundle is that with no overhead,

rji instances of VMi should execute an application aj with workload ωj in tj units of time

if wir
j
i tj = ωj . Given wi, one set of values of rji and tj that satisfies this condition is

rji = tj =
√
z, where z = ωj/wi (line 8). The user tries to avoid requesting an excessive

number of VM instances (i.e., making an attempt to reduce the overhead) by setting rji

as
√
z times overhead factor βj

1 (line 9). tj is computed as the value required to satisfy

rji tj = z times the other overhead factor βj
2, in an attempt to allocate some extra time for

completion of the job (line 10). The valuation is simply the product of rji and ρji (line 11).

Lines 6 to 12 are enclosed in a repeat-until loop between lines 5 to 14 that changes the

VM selection when the valuation-time product exceeds the budget. The algorithm returns

73

“Budget too low” if no selection of VM type can satisfy the budget constraint.

4.3.2 Simulation Parameters

We perform two sets of simulation experiments. In the first set of experiments, each user

takes part in two separate auctions. In the first auction, all users participate by generating

their bids using the EBS algorithm while in the second auction, they all use the NB algo-

rithm. In the following, the users that bid using EBS are called strategic users, while those

bidding using NB are called naive users. A user bids in both auctions simultaneously until

their application is completed or its deadline is exceeded. The parameters characterizing

the application of a user are kept the same for both auctions. This set of experiments

allows us to investigate the overall effect of the bidding strategies on the system.

In the second set of experiments, we run an auction with mixed user population. In

each experiment, we set a distribution of naive and strategic users. Users are generated

according to this distribution and all users take part in a single auction. These experiments

allow us to investigate how effective our bidding strategy is on helping the users achieve

better utilities. They also allow us to examine the effect of strategic bidders on the naive

bidders and vice versa.

Each simulation experiment generates N = 50, 000 users on a span of D = 5, 10, or 15

simulated days. We run 24 auctions each day, one per hour. Users are generated each hour,

at an average rate of N/(24D) plus a randomly chosen deviation between [−20%, 20%]. The

workload and the budget of a user are randomly selected from [ωmin, ωmax] and [V min, V max],

respectively. Similarly, the parameters τj , cj , λj, σ
j
1, σ

j
2, β

j
1, and βj

2 are randomly chosen

from their respective minimum and maximum ranges presented in Table 4.1. The bidding

algorithms generate the bundles of VMs, their valuations, and the time required for appli-

cation completion. The deadline of a task is determined by multiplying a deadline factor

dj with the time required, Tj, thus, the deadline is djTj . Here, dj is chosen randomly from

[dmin, dmax].

We consider m = 4 types of VM instances in the system, each having k copies available,

74

Table 4.1: Simulation Parameters

Parameter Description Value(s)

D Simulated days 5, 10, 15
θ Constant setup time for an application 0.01, 0.05
δ Communication time between VMs 0.01, 0.02

m Types of VMs 4
k Available VMs of each type 200, 500
w Relative weight of VMs (1, 2, 4, 8)
f Fixed price of VMs (.12, .24, .48, .96)

N Maximum number of users 50,000
n Users participating in an auction Varies

ωmin, ωmax Min. & Max. workload
10, 50
20, 100

V min, V max Min. & Max. user’s budget
5, 25
10, 50

dmin, dmax Min. & Max. deadline factor 4, 8

τmin, τmax Min. & Max. initialization
overhead

1%, 5%
1%, 10%

cmin, cmax Min. & Max. communication
overhead

1%, 5%
1%, 10%
5%, 25%

λmin, λmax Min. & Max. valuation
for speedup

0.1, 0.25
0.1, 0.5

σmin
1 , σmax

1 Min. & Max. valuation factor 1
0.75, 1.50
1.0, 2.0

σmin
2 , σmax

2 Min. & Max. valuation factor 2
0.75, 1.50
1.0, 2.0

βmin
1 , βmax

1 Min. & Max. overhead factor 1 90%, 95%
βmin
2 , βmax

2 Min. & Max. overhead factor 2 105%, 125%

π Distribution of users

(5%, 95%),
(10%, 90%),
(25%, 75%),
(50%, 50%)

where k = 200, 500. We set the weight and fixed-price vectors of VM instance types to w =

(1, 2, 4, 8) and f = ($0.12, $0.24, $0.48, $0.96). These are taken from the Windows Azure’s

fixed-price VM allocation mechanism [41]. Finally, for the second set of experiments, the

parameter π denotes the distribution of the two types of users. The distributions we use

are (5%, 95%), (10%, 90%), (25%, 75%), and (50%, 50%), where (5%, 95%) means that there

are 5% users who bid strategically using EBS and the rest are naive bidders using NB.

75

 0

 10

 20

 30

 40

 50

 60

 70

 80

Served Partially served Not served Did not bid

P
e
rc

e
n
t

Type of Users Served

Percent of Users Served (5-day simulation)

Naive Bidding
Strategic Bidding

Figure 4.4: Separate auctions (five-day simulation): Users served

We also vary the system parameters θ and δ in different experiments. We list all

the simulation parameters and their values in Table 4.1. By varying the parameters

we perform 4,608 experiments with combinatorial auctions with separate user population

and 6,144 experiments with combinatorial auctions with mixed user population.

4.3.3 Analysis of Results

First, we compare and analyze the outcomes of the experiments where each user generates

a naive bid and a strategic bid for the same application and participates in two different

auctions. In Figures 4.4, 4.5, and 4.6, we show the percentage of users served, the average

utility, and the total revenue generated for D = 5 simulation days. In these figures, the

users whose applications are completed at the end of the simulation are called the ‘served

users’. ‘Partially served users’ are those whose applications are only partially completed.

The users whose applications did not even start fall into the category of ‘not served’ users.

Finally, the users who did not bid because they exceeded their budget are included in the

‘did not bid’ group.

The utilities of the users are computed using Equation (4.5), where the valuation is

determined using Equation (4.4), because this is the correct valuation of a requested bundle

irrespective of the method of generating the bundle. We see that although the number of

76

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

Served Partially served Overall

A
v
e
ra

g
e
 U

ti
lit

y

Type of Users Served

Utility of Users (5-day simulation)

Naive Bidding
Strategic Bidding

Figure 4.5: Separate auctions (five-day simulation): Average utility

 0

 50000

 100000

 150000

 200000

Served Partially served Overall

R
e
v
e
n
u
e
 G

e
n
e
ra

te
d
 (

th
o
u
s
a
n
d
s
)

Type of Users Served

Revenue Generated (5-day simulation)

Naive Bidding
Strategic Bidding

Figure 4.6: Separate auctions (five-day simulation): Total revenue

 0

 10

 20

 30

 40

 50

 60

 70

 80

Served Partially served Not served Did not bid

P
e
rc

e
n
t

Type of Users Served

Percent of Users Served (10-day simulation)

Naive Bidding
Strategic Bidding

Figure 4.7: Separate auctions (ten-day simulation): Users served

77

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

Served Partially served Overall

A
v
e
ra

g
e
 U

ti
lit

y

Type of Users Served

Utility of Users (10-day simulation)

Naive Bidding
Strategic Bidding

Figure 4.8: Separate auctions (ten-day simulation): Average utility

served users is slightly larger when all users bid naively, the average utility of the served

users is much larger when all bidders bid strategically. The reason behind having more

users served while bidding naively is that each user selects one type of VM instances

at random. Therefore, there is less competition among users as compared to the other

auction (with strategic bidders), where users tend to bid for the largest VM instances

if the budget permits. On the other hand, since naive users are not guaranteed to bid

their ‘true’ valuations, often a naive bidder ends up with a negative utility even when her

application is completed. These factors reduce the average utility of naive users. We also

see that (Figure 4.6) although the total revenue is larger when bidders are naive, a large

portion of it comes from the partially served users, which is not desirable to maintain user

satisfaction. The amount of revenue generated when users bid strategically consists mainly

from the revenue generated by the served users.

Next, we show the results obtained by varying the overall demand on the system. We

do this by expanding the simulation into ten and fifteen days, yet keeping the total number

of users the same. These two sets of experiments enable us to investigate whether the

performance of the EBS algorithm scales in different demand settings. These results are

drawn from the experiments where each user generates one bid of each kind and participates

in separate auctions. In Figures 4.7 to 4.9, we plot the percentage of served users, total

78

 0

 50000

 100000

 150000

 200000

Served Partially served Overall

R
e
v
e
n
u
e
 G

e
n
e
ra

te
d
 (

th
o
u
s
a
n
d
s
)

Type of Users Served

Revenue Generated (10-day simulation)

Naive Bidding
Strategic Bidding

Figure 4.9: Separate auctions (ten-day simulation): Total revenue

 0

 10

 20

 30

 40

 50

 60

 70

 80

Served Partially served Not served Did not bid

P
e
rc

e
n
t

Type of Users Served

Percent of Users Served (15-day simulation)

Naive Bidding
Strategic Bidding

Figure 4.10: Separate auctions (fifteen-day simulation): Users served

revenue, and average utility of users where the simulations run for ten simulated days.

Figures 4.10 to 4.12 show the results for the experiments that run for fifteen simulated

days. Comparing Figures 4.4, 4.7, and 4.10, we see that the percentage of served users

increases as the demand decreases, which is expected. We also see that the percentage of

users served increases more for the EBS algorithm and in the case of fifteen-day simulation

it dominates the one obtained by the NB algorithm. Although the percentage of served

users is better with EBS when the demand is low, we see a different trend while comparing

the average utility of users (Figures 4.5, 4.8, and 4.11). Although naive bidders that are

served have comparable utility with strategic bidders when the demand is low, EBS is able

79

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

Served Partially served Overall

A
v
e
ra

g
e
 U

ti
lit

y

Type of Users Served

Utility of Users (15-day simulation)

Naive Bidding
Strategic Bidding

Figure 4.11: Separate auctions (fifteen-day simulation): Average utility

 0

 50000

 100000

 150000

 200000

Served Partially served Overall

R
e
v
e
n
u
e
 G

e
n
e
ra

te
d
 (

th
o
u
s
a
n
d
s
)

Type of Users Served

Revenue Generated (15-day simulation)

Naive Bidding
Strategic Bidding

Figure 4.12: Separate auctions (fifteen-day simulation): Total revenue

to generate high utility for the users when the demand grows. However, the average utility

decreases due to higher competition, which pushes the prices up. Finally, we see that the

total revenue generated by the auctions increases with lower demand (as more users can

be served) for both bidding algorithms. Also, when the demand is low, the bids produced

by EBS generate higher revenue than the ones produced by NB.

We now present some plots to show the auction outcomes as the ranges of workload

and budget vary. Figures 4.13, 4.14, and 4.15 show the percentage of served users, the

average utility of served users, and the average revenue collected from the served users

versus four ‘scenarios’ of workload and budget. The scenarios are different combination of

80

 0

 2

 4

 6

 8

 10

 12

 14

 16

Scenario 1 Scenario 2 Scenario 3 Scenario 4

P
e
rc

e
n
t

Workload-budget scenario

Percent of Users Served vs. Workload and Budget (5-day simulation)

Naive Bidding
Strategic Bidding

Figure 4.13: Users served. Here, each scenario represents a combination of (ωmin, ωmax,
V min, V max)-values. The values are: Scenario 1 ≡ (10, 50, 5, 25), Scenario 2 ≡
(10, 50, 10, 50), Scenario 3 ≡ (20, 100, 5, 25), and Scenario 4 ≡ (20, 100, 10, 50).

-3

-2

-1

 0

 1

 2

 3

 4

 5

Scenario 1 Scenario 2 Scenario 3 Scenario 4

A
v
e
ra

g
e
 U

ti
lit

y

Workload-budget scenario

Average Utility of Served Users vs. Workload and Budget (5-day simulation)

Naive Bidding
Strategic Bidding

Figure 4.14: Average utility. Here, each scenario represents a combination of (ωmin, ωmax,
V min, V max)-values. The values are: Scenario 1 ≡ (10, 50, 5, 25), Scenario 2 ≡
(10, 50, 10, 50), Scenario 3 ≡ (20, 100, 5, 25), and Scenario 4 ≡ (20, 100, 10, 50).

the minimum and maximum workload and budget. For example, Scenario 1 represents the

experiments where the workload varies between 10 and 50 and the budget ranges between 5

and 25. We see in Figure 4.13 that strategic bidding performs better than naive bidding in

terms of the percentage of users served when the workload is higher. This illustrates that

the probability of arbitrarily generating an efficient bid decreases as the workload increases.

This is because the optimal number of processors and time have a non-linear relationship

with the workload. Without this knowledge it is not possible to generate efficient bids

81

 0

 5

 10

 15

 20

Scenario 1 Scenario 2 Scenario 3 Scenario 4

A
v
e
ra

g
e
 R

e
v
e
n
u
e

Workload-budget scenario

Average Revenue from Served Users vs. Workload and Budget (5-day simulation)

Naive Bidding
Strategic Bidding

Figure 4.15: Total revenue. Here, each scenario represents a combination of (ωmin, ωmax,
V min, V max)-values. The values are: Scenario 1 ≡ (10, 50, 5, 25), Scenario 2 ≡
(10, 50, 10, 50), Scenario 3 ≡ (20, 100, 5, 25), and Scenario 4 ≡ (20, 100, 10, 50).

for any workload. The percentage of users served decreases in Scenarios 3 and 4 because

here users have larger workloads, while the amount of resources are the same in all four

experimental scenarios. Also, Figures 4.14 and 4.15 show that when the workload and the

budget increases, the strategic bidding can yield more utility for the users and more revenue

for the cloud provider. Generating more utility for the users is a desirable property of a

bidding strategy. Generating more revenue for the providers is a positive side-effect.

Since the user utility is the primary performance factor for a bidding strategy, we

further investigate the average user utility with respect to two more sets of simulation

parameters. In Figure 4.16, we plot the average utility of the users vs. the minimum and

the maximum values of the system parameters. Figure 4.16a shows the results for the

case where all system parameters are given the minimum values from Table 4.1, that is,

(θ, δ, τmin, τmax) = (0.01, 0.01, 1%, 5%). We see that the overall average utility of all users

is higher with naive bidding, which is due to the large difference in utility of the partially

served users. But for the users who were served, strategic bidding yields about 20% more

utility on average. On the other hand, when all the above parameters take their maximum

values (Figure 4.16a), naive bidding suffers a lot as the average utility becomes negative.

We also observe that in both cases the utility of served users is higher than the utility of

82

 0

 0.5

 1

 1.5

 2

 2.5

 3

Served Partially served Overall

A
v
e
ra

g
e
 u

ti
lit

y

Type of Users Served

Average user utility vs. system parameters: Scenario 1 (5-day simulation)

Naive Bidding
Strategic Bidding

(a)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Served Partially served Overall

A
v
e
ra

g
e
 u

ti
lit

y

Type of Users Served

Average user utility vs. system parameters: Scenario 2 (5-day simulation)

Naive Bidding
Strategic Bidding

(b)

Figure 4.16: (a) Average utility of users vs two extreme combination of values for system
parameters; (a) Scenario 1 ≡ all system parameters have the minimum value; (b) Scenario 2
≡ all system parameters have the maximum value.

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

Scenario 1 Scenario 2 Scenario 3 Scenario 4

O
v
e
ra

ll
a
v
e
ra

g
e
 u

ti
lit

y

Bid parameter scenario

Average utility of bidders vs. Bid Parameters (5-day simulation)

Naive Bidding
Strategic Bidding

Figure 4.17: Average utility of users vs. four different scenarios of bid parameters. Here,
each scenario represents a combination of (λmin, λmax, σmin

1 , σmax
1 , σmin

2 , σmax
2)-values. Sce-

nario 1 ≡ minimum values for all parameters; Scenario 2 ≡ minimum values for λ but
maximum values for both σ parameters; Scenario 3 ≡ maximum value for λ and minimum
value for both σ parameters; and Scenario 4 ≡ maximum values for all parameters.

partially served users, which should be a desired property of a good bidding algorithm.

The next plot, Figure 4.17, shows the average utility of users vs. different sets of values

for the bid parameters (λ, σ). Here, λmin and λmax determine the range of the variable

λ that is multiplied with speedup to determine the valuation of a bundle in EBS. On

83

 0

 10

 20

 30

 40

 50

 60

 70

Served Partially served Not served Did not bid

P
e
rc

e
n
t

Type of Users Served

Percent of Users Served with Mixed User Population (5-day simulation)

Naive Bidding
Strategic Bidding

Figure 4.18: Auctions with mixed user population: Users served

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Served Partially served Overall

A
v
e
ra

g
e
 U

ti
lit

y

Type of Users Served

Utility of Users with Mixed User Population (5-day simulation)

Naive Bidding
Strategic Bidding

Figure 4.19: Auctions with mixed user population: Average utility

the other hand, σmin
1 , σmax

1 , σmin
2 , σmax

2 determine the valuation of a bundle for the Naive-

Bidding (NB) algorithm. In the plot, we show the average valuation of the users vs. the

combination of values of these parameters. We see that in every case except Scenario 3

users achieve higher utility from the EBS algorithm. Scenario 3 is when λ is set to the

maximum value and σ parameters are set to their minimum value. This is because in

this case, EBS generates bids with much higher valuations than the NB. This raises the

payment, and thus, achieves lower utility for EBS.

We now present the results from the second set of experiments, where both naive and

strategic users participate in the same auction. The percentage of users served, the average

84

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

Served Partially served Overall

A
v
e
ra

g
e
 R

e
v
e
n
u
e
 G

e
n
e
ra

te
d
 (

th
o
u
s
a
n
d
s
)

Type of Users Served

Revenue Generated with Mixed User Population (5-day simulation)

Naive Bidding
Strategic Bidding

Figure 4.20: Auctions with mixed user population: Average revenue

utility and the revenue per user are shown in Figures 4.18 to 4.20. We see that in terms of

served users, their utility and average revenue collected from them, the strategic bidders

have better performance over the naive bidders. It is notable that in the presence of

strategic bidders, the inefficiency of naive bidding is clearly seen as their average utility is

negative. This is because a naive bidder is not guaranteed to bid for an optimal bundle

with a true valuation. When all the participants are naive bidders, it is possible that some

bidders’ valuations are better than others and they receive positive utility. On the other

hand, when strategic bidders are also participating, even the ‘best’ naive bidders are not

always capable of getting the job done along with receiving a positive utility.

In the experiments with mixed user population, we also vary the percentage of users that

bid strategically. In Figure 4.21, we show the percentage of strategic bidders among the

served users versus the percentage of the strategic bidders in the distribution. It shows, for

example, that when 5% of the users are strategic bidders, about 8% of the served bidders

are strategic. This trend follows for 5%, 10%, and 25% strategic users. But when the

distribution includes 50% strategic users, the percentage of served users falls below 50%.

This is because of the increased competition between the strategic bidders. We also plot

the average utility of served users in Figure 4.22. Here we observe that the naive bidders

could gain some positive utility on average when there are only a 5% strategic users.

85

 0

 10

 20

 30

 40

 50

5% 10% 25% 50%

P
e
rc

e
n
ta

g
e
 o

f
s
tr

a
te

g
ic

 u
s
e
rs

 a
m

o
n
g
 s

e
rv

e
d
 u

s
e
rs

Percentage of strategic users

Percent of Strategic Users Among Participating and Served Users

Participation %
Served %

Figure 4.21: Percent of strategic users among served users vs. user distribution.

-1

 0

 1

 2

 3

 4

 5

5% 10% 25% 50%

A
v
e
ra

g
e
 U

ti
lit

y

Percent of Strategic Users

Average Utility of Served Users vs. Percent of Strategic Users

Naive Bidding
Strategic Bidding

Figure 4.22: Average utility of served users vs. user distribution.

In all other cases, the naive bidders receive negative average utility. This shows how the

naive bidders’ utility is affected by the presence of strategic bidders. The average utility

of strategic bidders decreases with more strategic users participating since the competition

increases. We also examine the average revenue generated from served users when the

percentage of strategic users varies in Figure 4.23. We see that as the percentage of served

users increases, the average revenue generated from them increases and the average revenue

from the naive users decreases. This result shows that the presence of strategic users also

benefits the cloud provider.

We can conclude that by using the EBS Algorithm the users are able to generate efficient

86

 0

 2

 4

 6

 8

 10

 12

 14

5% 10% 25% 50%

A
v
e
ra

g
e
 r

e
v
e
n
u
e
 f
ro

m
 s

e
rv

e
d
 u

s
e
rs

Percent of Strategic Users

Average revenue from served users vs user distribution

Naive bidders
Strategic bidders

Figure 4.23: Average revenue generated from served users vs. user distribution.

bids, and thus, ensure good completion times and higher utility for their applications. This

also helps the cloud provider generate a fair amount of revenue while maintaining user

satisfaction.

4.4 Summary

We investigated the problem of generating efficient bids in combinatorial auction-based VM

allocation mechanisms in clouds. We designed an efficient bidding algorithm and performed

extensive simulation experiments to investigate its properties. We believe that this research

will encourage users and cloud providers to adopt combinatorial auction-based mechanisms

for allocating their VM instances.

87

CHAPTER 5: COMBINATORIAL

AUCTION-BASED DYNAMIC VM

PROVISIONING AND

ALLOCATION IN CLOUDS

5.1 Introduction

Cloud computing systems provide the next computing infrastructure enabling users to

provision remote resources for their computational needs, eliminating the upfront costs of

setting up their own systems. Clouds give users the illusion of an infinite computing resource

available on demand and allow them to acquire and pay for resources on a short term basis.

Examples of cloud computing systems include both commercial (e.g., Microsoft Azure [42],

Amazon EC2 [4]) and open source ones (e.g., Eucalyptus [45]). The usage model of cloud

computing involves virtualization of computing resources. The cloud providers provision

their resources into different types of virtual machine (VM) instances. These instances

are then ‘sold’ to the users for specific periods of time. However, the fixed price-based

resource allocation and trading mechanisms currently in use in cloud computing systems

do not provide an efficient allocation of resources and do not maximize the revenue of the

cloud providers. A better alternative would be to use combinatorial auction-based resource

allocation mechanisms. This argument is supported by the economic theory; when the

auction costs are low, as is the case in the context of cloud computing, auctions are especially

efficient over the fixed-price markets since products are matched to customers having the

highest valuation [67]. In particular, since each user pays a fixed price for an item, the

fixed-price mechanisms cannot guarantee that the user who values an item the most gets

88

it. An auction-based mechanism can achieve the economic efficiency because it allocates

items based on the perceived values of the users. The nature of allocation requests for cloud

resources suggests that a combinatorial auction-based mechanism is best suited for the VM

allocation problem in clouds. However, we have to overcome certain challenges while using

combinatorial auction-based mechanisms for VM provisioning and allocation in clouds. The

winner determination in a combinatorial auction is an NP-complete problem [44], therefore

we need approximation algorithms to solve it.

In the previous chapter, we presented two combinatorial auction-based approximation

mechanisms for VM instance allocation. Although these mechanisms are able to increase

the allocation efficiency of VM instances and also increase the cloud provider’s revenue, they

assume static provisioning of VM instances. That is, they require that the VM instances

are already provisioned and would not change. Static provisioning leads to inefficiencies due

to under-utilization of resources if it cannot accurately predict the user demand. Since a

regular auction computes the price of the items based on user demands, a very low demand

may require the auctioneer to set a reserve price to prevent losses.

In this work, we address the VM provisioning and allocation problem by designing a

combinatorial auction-based mechanism that produces an efficient allocation of resources

and high profits for the cloud provider. The mechanism extends the CA-GREEDY mech-

anism we proposed in the previous chapter to include dynamic configuration of VM in-

stances and reserve prices. The proposed mechanism, called CA-PROVISION, treats the

set of available computing resource as ‘liquid’ resources that can be configured into dif-

ferent numbers and types of VM instances depending on the requests of the users. The

mechanism determines the allocation based on the users’ valuations until all resources are

allocated. It involves a reserve price determined by the operating cost of the resources.

The reserve price ensures that a user pays a minimum amount to the cloud provider so

that the provider does not suffer any losses from the VM provisioning and allocation.

As a reminder, the results shown in Chapter 3 shows that the VM allocation problem

can be best solved by combinatorial auction-based mechanisms. In that work, our focus

89

was to evaluate the combinatorial auctions against fixed-price mechanisms in solving the

VM allocation problem with static provisioning in clouds. In this research, we design

a combinatorial auction-based mechanism that dynamically provisions and allocates VM

instances.

5.1.1 Our Contribution

We formulate the dynamic VM provisioning and allocation problem and provide a com-

binatorial auction-based mechanism to solve it. Our mechanism ensures high profits for

the cloud provider, as well as high utilization of resources. We show that the mechanism

is truthful, that is, it guarantees that a participating user maximizes its utility only by

bidding its true valuation for the bundle of VMs. We evaluate our mechanism by per-

forming extensive simulation experiments using traces of real workloads from the Parallel

Workloads Archive [23]. We analyze the cost and benefit of employing this new mechanism

and provide implementation guidelines.

5.1.2 Organization

The rest of this chapter is organized as follows. In Section 5.2, we formulate the problem

of dynamic VM provisioning and allocation in clouds. In Section 5.3, we present our pro-

posed mechanism for solving the VM provisioning and allocation problem and characterize

its theoretical properties. In Section 5.4, we perform extensive simulations using real work-

load traces to investigate the properties of our proposed mechanism. In Section 5.5, we

summarize our work presented in this chapter.

90

5.2 Dynamic VM Provisioning and Allocation Prob-

lem

Virtualization technology allows the cloud computing providers to configure computational

resources into virtually any combination of different types of VMs. Hence, it is possible to

determine the best combination of VM instances through a combinatorial auction and then

dynamically provision them. This will ensure that the number of VM instances of different

types are determined based on the market demand and then allocated efficiently to the

users. We formulate the Dynamic VM Provisioning and Allocation Problem (DVMPA) as

follows.

A cloud provider offers computing services to users through m different types of VM

instances, VM1, . . . , VMm. The computing power of a VM instance of type VMi, i =

1, . . . , m is wi, where w1 = 1 and w1 < w2 < . . . < wm. We denote by w = (w1, w2, . . . , wm)

the vector of computing powers of the m types of VM instances. In the rest of this chapter

we will refer to this vector as the ‘weight vector’. As an example of how we use this vector,

let us consider a cloud provider offering three types of VM instances: VM1, consisting

of one 2 GHz processor, 4 GB memory, and 500 GB storage; VM2, consisting of two 2

GHz processors, 8 GB memory, and 1 TB storage; and VM3, consisting of four 2 GHz

processors, 16 GB memory, and 2 TB storage. The weight vector characterizing the three

types of VM instances is thus w = (1, 2, 4). We assume that the cloud provider has enough

resources to create a maximum of M VM instances of the least powerful type, VM1. The

cloud provider can provision the VM instances in several ways according to the specified

types given by VM1, . . . , VMm. Let’s denote by ki the number of VMi instances provisioned

by the cloud provider. The provider can provision any combination of instances given by

the vector (k1, k2, . . . , km) as long as

m
∑

i=1

wiki ≤M. (5.1)

91

We consider n users u1, . . . , un who request computing resources from the cloud provider

specified as bundles of VM instances. A user uj requests VM instances by submitting a

bid Bj = (rj1, . . . , r
j
m, vj) to the cloud provider, where rji is the number of instances of type

VMi requested and vj is the price user uj is willing to pay to use the requested bundle of

VMs for a unit of time. An example of a bid submitted by a user to a cloud provider that

offers three types of VMs can be Bj = (2, 1, 4, 10). This means that the user is bidding ten

units of currency for using two instances of type VM1, one instance of type VM2, and four

instances of type VM3 for one unit of time. The provider runs a mechanism, in our case an

auction, periodically (e.g., once an hour) to provision and allocate the VM instances such

that its profit is maximized. In order to define the profit obtained by the cloud provider

we need to introduce additional notation. Let’s denote by pj the amount paid by user uj

for using her requested bundle of VMs. Note that depending on the pricing and allocation

mechanism used by the cloud provider pj and vj can have different values, usually pj < vj .

Let us assume that the time interval between two consecutive auctions is one unit of

time. Let cR and cI be the costs associated with running, respectively idling a VM1 instance

for one unit of time. Obviously, cR > cI . The cloud provider’s cost of running all available

resources (i.e., all M VM1 instances) is M · cR while the cost of keeping all the available

resources idle is M · cI . We denote by x = (x1, x2, . . . , xn) the allocation vector, where

xj = 1 if the bundle (rj1, . . . , r
j
m) requested by user uj is allocated to her, and xj = 0,

otherwise. Given a particular allocation vector and payments, the cloud provider’s profit

is given by

Π =

n
∑

j=1

xjpj − cR

n
∑

j=1

xjsj − cI

(

M −
n
∑

j=1

xjsj

)

(5.2)

where sj =
∑m

i=1wir
j
i is the amount of ‘unit’ computing resources requested by user uj.

The ‘unit’ computing resource is equivalent to one VM instance of type VM1 (i.e., the least

powerful instance offered). The first term of the equation gives the revenue, the second

term gives the running cost of the VM instances that are allocated to the users, and the

third term gives the cost of keeping the remaining resources idle.

92

The problem of Dynamic VM Provisioning and Allocation (DVMPA) in clouds is defined

as follows

maxΠ (5.3)

subject to:

n
∑

j=1

sj ≤M (5.4)

xj ∈ {0, 1}, j = 1, . . . , n (5.5)

0 ≤ pj ≤ vj , j = 1, . . . , n (5.6)

The solution to this problem consists of allocation xj and price pj for each user uj who

requested the bundle (rj1, . . . , r
j
m), j = 1, . . . , n. The allocation will determine the number

of VMs of each type that needs to be provisioned as follows. We compute ki =
∑n

j=1 xjr
j
i ,

for each type VMi and provision ki VM instances of type VMi.

Current cloud service providers use a fixed-price mechanism to allocate the VM in-

stances and rely on statistical data to provision the VMs in a static manner. In Chapter 3,

we have shown that combinatorial auction-based mechanisms can efficiently allocate VM

instances in clouds generating higher revenue than the currently used fixed-price mecha-

nisms. However, the combinatorial auction-based mechanisms we explored in Chapter 3

require that the VMs are provisioned in advance, that is, they require static provisioning.

We argue that the overall performance of the system can be increased by carefully selecting

the set of VM instances in a dynamic fashion which reflects the market demand at the time

when an auction is executed. In the next section, we propose a combinatorial auction-based

mechanism that solves the DVMPA problem by determining the allocation, pricing, and

the best configuration of VMs that need to be provisioned by the cloud provider in order

to obtain higher profits. Since very little is know about profit maximizing combinatorial

auctions [44], we cannot provide theoretical guarantees that our auction-based mechanism

maximizes the profit. The only guarantee we can provide is that the mechanism maximizes

93

the sum of the users’ valuations. In designing our mechanism we also use reserve prices

which are known to increase the revenue of the auctioneer, in our case, the revenue of the

cloud provider.

5.3 Combinatorial Auction-Based Dynamic VM Pro-

visioning and Allocation Mechanism

We present a combinatorial auction-based mechanism, called CA-PROVISION, that com-

putes an approximate solution to the DVMPA problem. That is, it determines the prices

the winning users have to pay, and the set of VM instances that need to be provisioned to

meet the winning users’ demand. The mechanism also ensures that the maximum possible

number of resources are allocated and no VM instance is allocated for less than the reserve

price. The design of the mechanism is based on the ideas presented in [35].

CA-PROVISION uses a reserve price to guarantee that users pay at least a given amount

determined by the cloud provider. Thus, the cloud provider needs to set the reserve price,

denoted by vres, to a value which depends on its costs associated with running the VMs. To

do that we observe that the reserve price should be the break-even point between cR and cI ,

which is given by cR− cI . This is because if a unit resource is not allocated, it incurs a loss

of cI . Again, if this resource is allocated for a price cR − cI , the loss is cR − (cR − cI) = cI .

In other words, the minimum price a user has to pay for using the least powerful VM for a

unit of time is equal to the difference between the cost of running and the cost of keeping

the resource idle. An auction with reserve price vres can be modeled by an auction without

reserve price in which we artificially introduce a dummy bidder u0 having as its valuation

the reserve price, i.e., v0 = vres. The dummy user u0 bids B0 = (1, 0, . . . , 0, vres), i.e.,

r01 = 1, r0i = 0 for all i = 2, . . . , m, and v0 = vres. CA-PROVISION uses the density of the

bids to determine the allocation. User uj’s bid density is dj = vj/sj , where sj =
∑m

i=1wir
j
i ,

j = 0, . . . , n. The bid density is a measure of how much a user bids per unit of allocation. In

94

Algorithm 6 CA-PROVISION Mechanism

Require: M ; m; wj : j = 1, . . . , n; cR; cI ;
Ensure: W ; pj : j = 1, . . . , n; ki : i = 1, . . . ,m;
1: {Phase 1: Collect bids}
2: for j = 1, . . . , n do

3: collect bid Bj = (rj1, . . . , r
j
m, vj) from user uj

4: end for

5: {Phase 2: Winner determination and provisioning}
6: W ← ∅ {set of winners}
7: vres ← cR − cI
8: add dummy user u0 with bid

B0 = (1, 0, 0, . . . , 0, vres)
9: for j = 0, . . . , n do

10: sj ←
∑m

i=1 r
j
iwi

11: dj ← vj/sj {‘bid density’}
12: end for

13: re-order users u1, . . . , un such that
d1 ≥ d2 ≥ . . . ≥ dn

14: let l be the index such that
dj ≥ d0 if j ≤ l, and
dj < d0 otherwise

15: discard users ul+1, . . . , un

16: rename user u0 as ul+1

17: set n← l + 1
18: R←M
19: for j = 1, . . . , n− 1 do {leave out dummy user}
20: if sj ≤ R then

21: W ←W ∪ uj

22: R← R− sj
23: end if

24: end for

25: for i = 1, . . . ,m do {determine VM configuration}
26: ki ←

∑

j:uj∈W rji
27: end for

28: {Phase 3: Payment}
29: for all uj ∈ W do

30: W ′

j ← {ul : ul /∈ W ∧ (vj = 0⇒ ul ∈W)}
31: l ← lowest index in W ′

j

32: pj ← dlsj
33: end for

34: for all uj /∈ W do

35: pj ← 0
36: end for

37: return (W ; pj : j = 1, . . . , n; ki : i = 1, . . . ,m)

our case the unit of allocation corresponds to one VM instance of type VM1. To guarantee

that the users are paying at least the reserve price, the mechanism will discard all users for

95

which dj < do.

CA-PROVISION is given in Algorithm 6. The mechanism requires some information

from the system such as the total amount of computing resources M expressed as the

total number of VMs of type VM1 that can be provisioned by the cloud provider. The

mechanism also requires as input the number of available VM types, m, and their weight

vector w. It also needs to know cR, the cost of running a VM instance of type VM1, and

cI , the cost of keeping idle a VM instance of type VM1.

The mechanism works in three phases. In Phase 1, it collects the users’ bids Bj (lines 1

to 4). In Phase 2, the mechanism determines the winning bidders and the VM configuration

that needs to be provisioned by the cloud provider as follows. It adds a dummy user u0

with a bid that contains only one instance of VM1 and has a valuation of vres = cR − cI

(line 8). This dummy user is only used to model the auction with reserve price and will not

receive any allocation. It then computes the bundle size sj and bid density dj of all users

(lines 9 to 12). Then, all users except the dummy user are ordered in decreasing order of

their bid densities and all users uj with dj < d0 are discarded (lines 13 to 15). The dummy

user u0 is then moved to the end of the list of the remaining users since it has the lowest

density in the current set of users. The mechanism reassigns n to be the total number of

users under consideration, including the dummy user (lines 16 and 17).

Next, the mechanism determines the winning users in a greedy fashion. It allocates

the requested bundles to users in decreasing order of their bid density, as long as there are

resources available (lines 18 to 24). However, the dummy user is not considered for alloca-

tion. Once the winners are determined, the mechanism determines the VM configuration

that needs to be provisioned by aggregating the bundles requested by the winning users

(lines 25 to 27).

In Phase 3, the mechanism determines the payment for all users. For each winning

bidder uj the mechanism finds the set of losing bidders W ′
j who would otherwise win if

vj = 0, i.e., when user uj is not participating (line 30). From this set, user ul with the

highest bid density is selected. This is determined by taking the lowest indexed user from

96

set W ′
j , since the set of users is already sorted in non-decreasing order of users’ bid densities

(line 31). User uj’s payment is then calculated by multiplying her bundle size sj with the

bid density dl of ul. All losing bidders pay zero. This type of payment is known in the

mechanism design literature as the critical payment [35]. The reason we choose this type

of payment is that it is a necessary condition for obtaining a truthful mechanism, (i.e., a

mechanism that provides incentives to the users to bid their true valuations for the requested

bundles). In the next subsection, we show that our proposed mechanism is truthful.

5.3.1 Properties of CA-PROVISION

We now investigate the properties of the proposed mechanism. An important property of

a mechanism is incentive compatibility, which is also called truthfulness. This is important

because the mechanism computes the allocation and payment based on the information

reported by the users (i.e., bids), which is private information. A rational user may manip-

ulate the mechanism by bidding false valuations if it benefits her to do so. The challenge

of designing a mechanism, therefore, involves designing the winner determination and pay-

ment functions that give the users incentives to bid truthfully. This is very important

since the users participating in a truthful allocation mechanism do not have to employ

sophisticated bidding strategies to maximize their utilities. They just need to bid their

true valuation for the bundle of VMs.

In the following, we denote by B = (B1, . . . , Bn), the vector representing the bids of all

users and, by B−j = (B1, . . . , Bj−1, Bj+1, . . . , Bn) the vector of all user’s bids except the

bid Bj of user uj. Hence, B can also be represented as B = (Bj, B−j). We also assume

that Bj = (rj1, . . . , r
j
m, vj) is the ‘true bid’ of the user, i.e., the user requires the bundle

(rj1, . . . , r
j
m) and she values it at vj. We denote by B̂j = (r̂j1, . . . , r̂

j
m, v̂j), the bid the user

submits to the mechanism, which may or may not be the same as Bj. We denote by

B̂ = (B̂1, . . . , B̂n) the vector of all user’s bids reported to the mechanism.

Here we also abuse the notations for the set of winners W and the payments p1, . . . , pn.

We will use them as the winner determination function W (.) and the payment functions

97

p1(.), . . . , pn(.). W (B̂) computes the set of winners from the bid vector B̂ and pj(B̂)

computes the payment for user uj from B̂. We express the fact that user uj values her

requested bundle at vj by the valuation function

Vj(W (B̂), Bj) =

vj if uj ∈ W (B̂)

0 otherwise
(5.7)

That is, user uj obtains a valuation of vj if her requested bundle is allocated and a valuation

of 0, otherwise.

The utility user uj receives by obtaining the requested bundle is the difference between

her valuation Vj and payment pj as follows

Uj(W (B̂), Bj) = Vj(W (B̂), Bj)− pj(B̂). (5.8)

We assume that the users are rational, that is, their goals are to maximize their utilities.

A truthful mechanism guarantees that a user maximizes her utility only by bidding her true

valuation for the bundle. In the following we define the concept of truthful mechanism.

Definition 1 (Truthful mechanism). A mechanism defined by the winner determination

function W (.) and payment functions p1(.), . . . , pn(.) is truthful if for all uj, B̂j, and B̂−j,

Uj(W (Bj, B̂−j), Bj) ≥ Uj(W (B̂j, B̂−j), Bj) (5.9)

That is, a user participating in a truthful mechanism maximizes her utility only by

bidding her true valuation for the bundle regardless of the other users’ bids.

Truthfulness was well investigated and characterized in the mechanism design litera-

ture [44]. One such useful characterization gives the conditions under which a mechanism

is truthful. Stated informally, a mechanism is truthful if the allocation function is mono-

tone and the payments are the critical payments [43]. We define these two properties in

the context of CA-PROVISION below.

98

Definition 2 (Monotonicity). An allocation function W (.) is monotone if for every user

uj and every B̂−j, Bj = (rj1, . . . , r
j
m, vj) is a winning bid, then every B′

j = (r′j1, . . . , r
′j
m, v

′
j)

with s′j ≤ sj and v′j ≥ vj is also a winning bid. Here s′j =
∑m

i=1wir
′j
i and sj =

∑m
i=1wir

j
i .

In other words an allocation function is monotone if a winning user also wins if she bids

a higher valuation for a smaller size bundle.

Definition 3 (Critical value). The critical value vcj for user uj ∈ W (B̂) is defined as the

unique value such that Bj = (r̂j1, . . . , r̂
j
m, vj) is a winning bid for any vj ≥ vcj and a loosing

bid for any vj ≤ vcj .

In other words, the critical value is the minimum valuation a user must declare in order

to obtain her requested bundle.

Next, we present two lemmas and one theorem to prove that CA-PROVISION is truth-

ful.

Lemma 1. CA-PROVISION implements a monotone allocation function.

Proof. CA-PROVISION allocates resources to users in non-increasing order of dj = vj/sj,

where sj is the sum of the weights of VMs in the requested bundle. Hence, a bid with

higher vj and lower sj is preferable to the mechanism. Assume user uj gets the allocation

by bidding Bj = (rj1, . . . , r
j
m, vj). If she changes her bid to B̂j = (rj1, . . . , r

j
m, v̂j) where

v̂j ≥ vj, she stays at least at the same rank in the ordered list. Since she is requesting the

same resource, this implies that her bid is a winning bid. On the other hand, if user uj

bids B̂ = (r̂j1, . . . , r̂
j
m, vj) where ŝj =

∑m
i=1wir̂

j
i ≤ sj, then dj increases and user uj stays

at least at the same rank in the greedy order of users (Algorithm 1, line 13). Since she is

requesting fewer resources, her bid B̂j is a winning bid. By Definition 2, CA-PROVISION

implements a monotone allocation function.

Lemma 2. CA-PROVISION charges the winning users their critical payments.

Proof. To compute the payment for a winning user uj, CA-PROVISION finds a losing user

ul who would win if user uj would not participate. That means user uj needs to defeat

99

user ul with her bid to get her required bundle (i.e., dj ≥ dl). This means that vj/sj ≥ dl,

and therefore vj ≥ dl · sj. CA-PROVISION charges pj = dl · sj to user uj (line 32 of

Algorithm 1) which is the minimum valuation uj must bid to obtain her required bundle.

Therefore CA-PROVISION implements the critical value payment (Definition 3).

Theorem 3. CA-PROVISION is truthful.

Proof. According to Lemma 1 and 2, CA-PROVISION implements a monotone allocation

function and charges the winning users their critical payments. Following the results of

Mu’alem and Nisan [43], CA-PROVISION is a truthful mechanism. The reserve prices

do not affect the truthfulness of the mechanism since they are basically bids put out by

the dummy user controlled by the cloud provider and truthful bidding is still a dominant

strategy for the users.

Now, we investigate the complexity of CA-PROVISION. The loops in lines 19-24 and

lines 29-33 constitute the major computational load of Algorithm 6. The first loop has

a worst case complexity of O(M). The worst case is when all winning bidders bid for

bundles containing exactly one unit of VM1 instances. The total execution time of the loop

in lines 29-33 is O(n). This is because it iterates over the set of winning bidders and the

search is performed on the losing bidders. Since the bidders are already sorted, the search

for a critical payment for a winner uj+1 actually starts from the ‘critical payment bidder’

ul of uj (without loss of generality, we assume both uj and uj+1 are winners in this case).

Hence, the overall worst case complexity of this loop is O(n), whereas the sorting in line 13

costs O(n logn). Thus, the complexity of CA-PROVISION is O(M + n log n).

5.4 Experimental Results

We perform extensive simulation experiments with real workload data to evaluate the

CA-PROVISION mechanism. We compare the performance of CA-PROVISION with the

performance of the CA-GREEDY mechanism that we designed in the previous chapter. In

100

Chapter 3, we designed CA-GREEDY as a mechanism that allocates statically-provisioned

VM instances and investigated the performance of CA-GREEDY against the performance of

the fixed-price VM allocation mechanism in use by current cloud providers. The mechanism

showed significant improvements over the fixed-price allocation mechanism thus making it

a good candidate for our current experiments. We perform a total of 264 experiments with

data generated using eleven workload logs from the Parallel Workloads Archive [23] and 24

different combination of other parameters for each workload. In this section, we describe

the experimental setup and discuss the experimental results.

5.4.1 Experimental Setup

The experiments consist of generating job submissions from a given workload and then

running both CA-GREEDY and CA-PROVISION concurrently to allocate the jobs and

provision the VMs. For setting up the experiments we have to address several issues such

as workload selection, bid generation, and setting up the auction. We discuss all these

issues in the following subsections.

Workload selection

To the best of our knowledge, standard cloud computing workloads were not publicly

available at the time of writing this chapter. Thus, to overcome this limitation we rely

on well studied and standardized workloads from The Parallel Workloads Archive [23].

This archive contains a rich collection of workloads from various grid and supercomputing

sites. Out of the twenty-six real workloads available, we selected eleven logs that were

recorded most recently. These logs are: 1) ANL-Intrepid-2009, from a Blue Gene/P system

at Argonne National Lab; 2) DAS2-fs0-2003 - DAS-fs4-2003, from a research grid of five

clusters at the Advanced School of Computing and Imaging in the Netherlands; 3) LLNL-

Atlas-2006 and LLNL-Thunder-2007 from two Linux clusters (Atlas and Thunder) located

at Lawrence Livermore National Lab; 4) LLNL-uBGL-2006, from a Blue Gene/L system

101

Table 5.1: Workload logs

Logfile Duration Jobs Processors

ANL-Intrepid-2009 8 months 68,936 163,840
DAS2-fs0-2003 12 months 225,711 144
DAS2-fs1-2003 12 months 40,315 64
DAS2-fs2-2003 12 months 66,429 64
DAS2-fs3-2003 12 months 66,737 64
DAS2-fs4-2003 11 months 33,795 64
LLNL-Atlas-2006 8 months 42,725 9,216
LLNL-Thunder-2007 5 months 121,039 4,008
LLNL-uBGL-2006 7 months 112,611 2,048
LPC-EGEE-2004 9 months 234,889 140
SDSC-DS-2004 13 months 96,089 1,664

at Lawrence Livermore National Lab; 5) LPC-EGEE-2004, from a Linux cluster at The

Laboratory for Corpuscular Physics, Univ. Blaise-Pascal, France; and 6) SDSC-DS-2004,

from a 184-node IBM eServer pSeries 655/690 called DataStar located at the San Diego

Supercomputer Center.

In Table 5.1 we provide a brief description of the workloads we use in our experiments.

The table contains the name of the log file, the length of time the logs were recorded,

the total number of submitted jobs, and the total number of processors available in the

system. The log file name generally contains the acronym of the organization, the name

of the system, and the year of its generation. From the duration column, we see that the

logs were generated for long periods of time, as long as thirteen months for the SDSC

log. The number of jobs submitted ranges from many thousands to more than a couple of

hundred thousands, while the number of processors ranges from 64 to 163,840. These large

variations in the number of processors and the number of submitted jobs make these logs

very suitable for experimentation, providing us with a wide range of simulation scenarios.

The workloads are given in the Standard Workload Format (swf) described in [24]. In

this format, the information corresponding to every job submitted to the system is stored

as a record with eighteen fields. To generate the workload for our simulation experiments,

we need the information from six fields of the log files as follows: (1) Job Number: stores

102

Table 5.2: Statistics of workload logs

Duration Jobs / Avg. Avg procs.
Logfile (hours) hour Runtime per job

ANL-Intrepid-2009 5759 12 2.09 5063
DAS2-fs0-2003 8744 26 1.09 10
DAS2-fs1-2003 8633 5 1.23 8
DAS2-fs2-2003 8760 8 1.29 9
DAS2-fs3-2003 8712 8 1.17 5
DAS2-fs4-2003 7963 4 1.67 4
LLNL-Atlas-2006 4308 10 2.52 401
LLNL-Thunder-2007 3605 34 1.52 43
LLNL-uBGL-2006 5339 21 1.25 576
LPC-EGEE-2004 5728 41 1.80 1
SDSC-DS-2004 9387 10 2.88 62

the job’s identifier; (2) Submit Time: stores the job submission time; (3) Run Time: stores

the time the job needs to complete its execution. We use this as the time required to

complete the job. We round this up to the nearest hour because we run hourly auctions in

the experiments. (4) Number of Allocated Processors: for our purposes this represents the

number of requested processors; (5) Average CPU Time Used: Average time a CPU was

running. We use this field in conjunction with the preceding two parameters to determine

the amount of communication and the parallel speedup of the job. (6) User ID: stores the

ID of the user who submitted the job. We use this ID to place users into different classes

having different bidding behaviors. We list some statistics of the workload files in Table 5.2.

The logs from the Parallel Workloads Archive [23] were collected from different het-

erogeneous sources and then converted into the standard format. Therefore, in some logs,

some of the fields are not specified since the original files had missing information. Some

records in a log file may also have fewer fields than the other records from the same file.

We make corrections on these records as follows.

• If the job starting time is missing, we consider it to be equal to the previous job’s start

time. The logs record the jobs in order of their arrival times. Matching a missing

arrival time with the previous job maintains the job order.

103

• If the execution time is missing, we randomly generate an execution time between

one and two hours from a uniform distribution. As can be seen in Table 5.2, most of

the workloads have an average runtime within this range.

• If the number of processors is missing, we generate a number between 10 and 60

randomly, from a uniform distribution. Since the average number of processors per

job differs widely among the workload logs (from 1 processor/job up to 5063 proces-

sors/job), we select a distribution that has a mean (35 processors/job) approximately

equal to the average of the two-digit numbers in the list (i.e., 10, 43, and 63 proces-

sors/job).

• If the average CPU time is missing we generate a random number between 50%

and 100% of the total run time using the uniform distribution. This generates jobs

with communication to computation ratios between 0 and 0.5.

• We assign user IDs randomly in cases in which they are not provided.

Job and bid generation

For each record in a log file we generate a job that a user needs to execute and create a bid

for it. There are two important parameters associated with a job that we need to generate,

the requested bundle of VMs and the associated bid. First, to generate the bundle of VM

instances for a job j, we determine its communication to computation ratio as follows

ρj = 1−
TCPU
j

TR
j

(5.10)

where TCPU
j is the average CPU time and TR

j is the total run time of the job. The

communication to computation ratio measures the fraction of the total runtime that is

spent by the job on communication and synchronization among its processes. Based on

this value, we categorize the job into one of m categories, where m is the number of VM

types available. The job category specifies a ‘first choice’ of VM type for the job. This

104

works as follows. We define a factor µ that characterizes how many of the total requested

VMs will be requested as ‘first choice’ type VM instances. A job of category i requesting Pj

processors will create a bundle comprising a number of VMi instances required to allocate

µPj processors. The rest of the processors will be requested by arbitrarily choosing other

VM types. After creating the bundle, we generate the associated bid. To do that we first

determine the speedup of the job as follows

Sj = Pj ×
TCPU
j

TR
j

(5.11)

where Pj is the number of CPUs used, TCPU
j is the average CPU time, and TR

j is the total

run time of the job. This speedup is multiplied by a ‘valuation factor’ to generate the bid.

This valuation factor is linked to the type of user. We divide the users into five categories

using their user ID, modulo five. The last parameter we set for a job is its deadline. Since

there is no deadline information provided in the workload logs, we assume that the deadline

is between 4 and 8 times the time required to complete the job. Hence, we set the deadline

of a job to the required time multiplied by a random number between 4 and 8.

We run CA-GREEDY and CA-PROVISION mechanisms concurrently and indepen-

dently considering the users who have jobs available for execution. A user (or job) par-

ticipates in the auction until her job completes or it becomes certain that the job cannot

finish by the deadline. A user is ‘served’ if her job completes its execution and ‘not served’

otherwise. Without loss of generality, we assume that each user is submitting only one job

and we will use ‘user’ and ’job’ interchangeably in the rest of the chapter.

Auction setup

We consider a cloud provider that offers four different types of virtual machines instances

VM1, VM2, VM3, and VM4. These VM types are characterized by the weight vector w =

(1, 2, 4, 8). From each workload file, we extract N , the total number of users and M , the

total number of processors available. The number of users participating in a particular

105

Table 5.3: Simulation Parameters

Name Description Value(s)

N Total users From log file
M Total CPUs From log file
T Simulation hours From log file

(cI , cR) Idle and running (.05, .1), (.1, .25),
cost of unit VM (.15, .5)

µ Factor for CPUs for ‘first
choice’ VM type

0.5, 0.75

h Static distribution of (.25, .25, .25, .25),
processors among VM types (.07, .13, .27, .53)

f Valuation factors (.5, 1, 1.5, 2, 2.5),
for types of users (1, 1.5, 2, 3, 4)

C1, C2, C3 Boundaries of communication
ratios

(.05, .15, .25)

auction is determined dynamically as the auction progresses. That is, n is the number of

users that have been generated, not yet been served, and whose job deadlines have not

been exceeded yet.

We setup few parameters to generate bundles specific to the jobs submitted by a user.

The vector (C1, C2, C3) determines the communication ratios used to categorize the jobs.

We use (C1, C2, C3) = (0.05, 0.15, 0.25), as follows. A job having communication ratio

below 0.05 is a job of type 1 and the majority of its needed VM instances µpj will be

requested as VM1, where pj is the number of processors requested by user uj. We consider

the following values for µ, 0.5 and 0.75. The rest of the bundle is arbitrarily determined

using the other types of VM instances. We use the user ID field of the log file to determine

the valuation range of the user. There are five classes of users submitting jobs. The class

t of a user is determined by ((user ID) mod 5). The logs have real user IDs, therefore

this classification virtually creates a realistic distribution of users. Each class t of users

is associated with a ‘valuation factor’ ft. Having determined that a user is of class t,

we determine the valuation of her bundle using the speedup (as shown in the previous

subsection) and the ‘valuation factor’ ft from the vector f . The vector f has five elements

(equal to the number of classes of users), each representing the mean value of how much a

106

user of that class ‘values’ each ‘unit of speedup’. In particular, a user uj having a speedup

of Sj for her job is willing to pay ftSj on average for each hour of her requested bundle of

VMs, given that uj falls in class t. We generate a random value between 0 and 2ft, and

then multiply it with Sj to generate valuations with a mean of ftSj. We use two sets of

vectors for f , as shown in Table 5.3.

CA-PROVISION determines by itself the configuration of the VMs that needs to be

provisioned by the cloud provider, whereas CA-GREEDY assumes static VM provisioning,

and thus, needs the VM configuration provisioned in advance. To generate the static

provision of VMs required by CA-GREEDY we use a vector h as follows. We consider

two instances of h in the simulation. The first one, h = (0.07, 0.13, 0.27, 0.53) ensures

that, given the weight vector w, the number of VM instances of each type is not the same.

The other instance of this vector, h = (0.25, 0.25, 0.25, 0.25) ensures that the total number

of processors are equally distributed to different types of VMs. We list all simulation

parameters in Table 5.3. With all combinations of values, we perform 24 experiments with

each log file, for a total of 264 experiments.

5.4.2 Analysis of Results

We investigate the performance of the two mechanisms for different workloads. Since the

workloads are heterogeneous in several dimensions, we first define a metric in order to

characterize the workloads, and thus, be able to establish an order among them. Then,

we normalize the performance metrics of the mechanisms and compare them with respect

to the workload characteristics. Finally, we try to gain more insight by comparing the

allocation determined by the two mechanisms side by side.

We define a metric for comparing the workload logs as follows. Looking at the workload

characteristics listed in Tables 5.1 and 5.2, we determine that the best metric to compare

the workloads is the normalized load defined as:

ηω =
Jω × Tω × Pω

Mω

. (5.12)

107

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

D
AS2-fs4 (0.40)

LPC
-EG

EE (0.53)

LLN
L-Thunder (0.54)

D
AS2-fs3 (0.69)

D
AS2-fs1 (0.75)

AN
L-Intrepid (0.77)

LLN
L-Atlas (1.09)

SD
SC

-D
S (1.10)

D
AS2-fs2 (1.44)

D
AS2-fs0 (2.01)

LLN
L-uBG

L (7.41)

A
v
e
ra

g
e
 r

e
v
e
n
u
e
 p

e
r

p
ro

c
e
s
s
o
r-

h
o
u
r

Workload file (normalized load)

CA-PROVISION
CA-GREEDY

Figure 5.1: Average revenue per processor-hour by CA-PROVISION and CA-GREEDY
vs. normalized load.

In the above expression, ηω is the normalized load of workload ω, Jω is the average number

of jobs submitted per hour, Tω is the average runtime of the jobs, Pω is the average number

of processors required per job, and Mω is the total number of processors in the system

corresponding to workload ω. The number of jobs per hour multiplied by the average

processors per job determines how many processors are requested by the jobs arriving each

hour. Multiplying this with the average runtime gives an estimate of the average number

of processors requested by all jobs in an hour. The normalized load gives us an ordering of

the set of workloads.

From each set of simulation experiments, we compute the total revenue generated, the

total cost incurred, and the total profit earned by each mechanism. Since the workloads were

generated for different durations of time for systems with different number of processors

we scale the profit, revenue, and cost with respect to the total simulation hours and the

number of processors. We define the profit per processor-hour as:

Πph
ω =

Πω

Mω × Lω

(5.13)

where Πω is the profit computed on workload ω, Mω is the total number of processors,

and Lω is the number of hours of data provided in workload ω. We define revenue per

108

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

D
AS2-fs4 (0.40)

LPC
-EG

EE (0.53)

LLN
L-Thunder (0.54)

D
AS2-fs3 (0.69)

D
AS2-fs1 (0.75)

AN
L-Intrepid (0.77)

LLN
L-Atlas (1.09)

SD
SC

-D
S (1.10)

D
AS2-fs2 (1.44)

D
AS2-fs0 (2.01)

LLN
L-uBG

L (7.41)

A
v
e
ra

g
e
 c

o
s
t
p
e
r

p
ro

c
e
s
s
o
r-

h
o
u
r

Workload file (normalized load)

CA-PROVISION
CA-GREEDY

Figure 5.2: Average cost per processor-hour by CA-PROVISION and CA-GREEDY vs.
normalized load.

 0

 0.2

 0.4

 0.6

 0.8

 1

D
AS2-fs4 (0.40)

LPC
-EG

EE (0.53)

LLN
L-Thunder (0.54)

D
AS2-fs3 (0.69)

D
AS2-fs1 (0.75)

AN
L-Intrepid (0.77)

LLN
L-Atlas (1.09)

SD
SC

-D
S (1.10)

D
AS2-fs2 (1.44)

D
AS2-fs0 (2.01)

LLN
L-uBG

L (7.41)

A
v
e
ra

g
e
 p

ro
fi
t
p
e
r

p
ro

c
e
s
s
o
r-

h
o
u
r

Workload file (normalized load)

CA-PROVISION
CA-GREEDY

Figure 5.3: Average profit per processor-hour by CA-PROVISION and CA-GREEDY vs.
normalized load.

processor-hour and cost per processor-hour in a similar fashion.

We plot the average revenue, the average cost, and the average profit per processor-hour

versus the workload logs in Figures 5.1 to 5.3. In these figures, the workloads are sorted in

ascending order of their normalized load. Note that the CA-PROVISION mechanism yields

higher revenue in most of the cases. For workloads with normalized loads greater than 1.44,

the revenue obtained by CA-PROVISION steadily increases exceeding that obtained by

CA-GREEDY by up to 40%. This leads us to conclude that CA-PROVISION is capable

of generating higher revenue where there is high demand for resources.

109

 0

 20

 40

 60

 80

 100

D
AS2-fs4 (0.40)

LPC
-EG

EE (0.53)

LLN
L-Thunder (0.54)

D
AS2-fs3 (0.69)

D
AS2-fs1 (0.75)

AN
L-Intrepid (0.77)

LLN
L-Atlas (1.09)

SD
SC

-D
S (1.10)

D
AS2-fs2 (1.44)

D
AS2-fs0 (2.01)

LLN
L-uBG

L (7.41)

P
e
rc

e
n
ta

g
e
 o

f
re

s
o
u
rc

e
s
 u

ti
liz

e
d

Workload file (normalized load)

CA-PROVISION
CA-GREEDY

Figure 5.4: Resource utilization by CA-PROVISION and CA-GREEDY vs. normalized
load

 0

 20

 40

 60

 80

 100

D
AS2-fs4 (0.40)

LPC
-EG

EE (0.53)

LLN
L-Thunder (0.54)

D
AS2-fs3 (0.69)

D
AS2-fs1 (0.75)

AN
L-Intrepid (0.77)

LLN
L-Atlas (1.09)

SD
SC

-D
S (1.10)

D
AS2-fs2 (1.44)

D
AS2-fs0 (2.01)

LLN
L-uBG

L (7.41)

P
e
rc

e
n
ta

g
e
 o

f
u
s
e
rs

 s
e
rv

e
d

Workload file (normalized load)

CA-PROVISION
CA-GREEDY

Figure 5.5: Percent users served by CA-PROVISION and CA-GREEDY vs. normalized
load

In Figure 5.2 we observe that CA-PROVISION incurs a higher total cost for all work-

loads. Since CA-PROVISION decides about the number of VMs dynamically, it can allocate

a higher number of VM instances than CA-GREEDY in an auction with identical bidders.

This explains the higher cost incurred by CA-PROVISION; a unit VM instance costs cI per

unit time when idle and cR > cI per unit time while running (i.e., allocated to a user), as

we assumed in Section 5.2. Therefore, by provisioning and allocating more VM instances,

CA-PROVISION incurs higher cost to the cloud provider.

Now, the question is whether the interplay between increased revenue and increased

110

cost can generate a higher profit. Utilizing more resources means serving more customers

hence selecting more bidders as winners. This interplay has two mutually opposite effects

on the revenue. Obviously, increasing the number of winners has a positive effect on the

revenue. On the other hand, selecting more winners pushes down their critical values,

and thus, individual payments decrease. If the net effect is positive, we get a higher

revenue and when it surpasses the increase in cost, we obtain a higher profit, and thus,

achieve economies of scale. From Figure 5.3 we see that for normalized loads greater

than 1.44, CA-PROVISION consistently generates higher profit than CA-GREEDY and

the difference in profit grows rapidly. We also observe that for the workloads having load

factors below 1.44 CA-PROVISION and CA-GREEDY obtain higher profit in equal number

of cases. This suggests that for low loads the relative outcome of the mechanisms depends

on other parameters.

In Figures 5.4 and 5.5 we compare the resource utilization and the percentage of served

users obtained by the two mechanisms. CA-PROVISION achieves higher values for both

utilization and percentage of served users. We want to draw the attention of the reader to

the fact that in most of the cases the difference in utilization is around 30%. This is where

we can improve a lot if we switch from static to dynamic provisioning and allocation. Since

combinatorial auctions are already established tools for efficient allocation, combining them

with dynamic provisioning can lead to a highly efficient resource allocation mechanism for

clouds.

The number of users served is higher for CA-PROVISION because the VM instances

are not statically provisioned. Therefore, a user requesting two VM1 instances will not be

left unallocated if there are no VM1 instances available but a VM2 instance is available as

in the case of CA-GREEDY. Rather, CA-PROVISION ‘sees’ the available resource as a

computing resource equivalent to two VM1 instances and will allocate this, for instance, to

a user bidding for two VM1 instances or a user bidding for one VM2 instance, depending

on whose reported valuation is higher. This approach increases the number of users served

by CA-PROVISION mechanism.

111

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000 2500 3000 3500 4000

N
u
m

b
e
r

o
f
V

M
1
 i
n
s
ta

n
c
e
s

Auction number

CA-PROVISION vs CA-GREEDY: Allocation of VM1

Actual allocation
Static allocation

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000 2500 3000 3500 4000

N
u
m

b
e
r

o
f
V

M
1
 i
n
s
ta

n
c
e
s

Auction number

CA-GREEDY: Actual vs Static Allocation of VM1

Actual allocation
Static allocation

(b)

Figure 5.6: Allocation of VM1 instances: (a) by CA-PROVISION; (b) by CA-GREEDY.
Workload file: DAS2-fs3-2003.

We now go into the details of the VM allocation by CA-GREEDY and CA-PROVISION

for the DAS2-fs3-2003 workload. We pick a sample scenario from various combination of

input parameters. In this experiment, the static VM allocation consists of 16 instances of

type VM1, 8 instances of type VM2, 4 instances of type VM3, and 2 instances of type VM4,

This is equivalent to 64 instances of unit size (i.e., type VM1). For this workload, a total

of 4100 auctions were held and in Figures 5.6 to 5.9, we show the allocation of different

VM instances in all these auctions. The figures corresponding to the CA-PROVISION

mechanism show the number of the VM instances that are provisioned by the mechanism

as box plots. For example, in Figure 5.6a, we see that in many auctions, all 64 processors

are configured as VM1 instances. On the other hand, there are auction outcomes where

no VM1 instances are provisioned, as evident by the white strips touching the horizontal

axis. The box plots in the figures corresponding to the CA-GREEDY mechanism show the

number of the VM instances that are allocated to the users. In both categories of plots,

we show the static allocation line to compare the differences between static and dynamic

provisioning.

Figure 5.6a is particularly interesting because it shows that at times the demand for

VM1 goes far beyond what we would even think of allocating in advance. In some auctions

112

 0

 5

 10

 15

 20

 0 500 1000 1500 2000 2500 3000 3500 4000

N
u
m

b
e
r

o
f
V

M
2
 i
n
s
ta

n
c
e
s

Auction number

CA-PROVISION vs CA-GREEDY: Allocation of VM2

Actual allocation
Static allocation

(a)

 0

 5

 10

 15

 20

 0 500 1000 1500 2000 2500 3000 3500 4000

N
u
m

b
e
r

o
f
V

M
2
 i
n
s
ta

n
c
e
s

Auction number

CA-GREEDY: Actual vs Static Allocation of VM2

Actual allocation
Static allocation

(b)

Figure 5.7: Allocation of VM2 instances: (a) by CA-PROVISION; (b) by CA-GREEDY.
Workload file: DAS2-fs3-2003.

 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000 2500 3000 3500 4000

N
u
m

b
e
r

o
f
V

M
3
 i
n
s
ta

n
c
e
s

Auction number

CA-PROVISION vs CA-GREEDY: Allocation of VM3

Actual allocation
Static allocation

(a)

 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000 2500 3000 3500 4000

N
u
m

b
e
r

o
f
V

M
3
 i
n
s
ta

n
c
e
s

Auction number

CA-GREEDY: Actual vs Static Allocation of VM3

Actual allocation
Static allocation

(b)

Figure 5.8: Allocation of VM3 instances: (a) by CA-PROVISION; (b) by CA-GREEDY.
Workload file: DAS2-fs3-2003.

demands for VM1 instances are much higher and therefore they push the allocation to the

boundary. On the other hand, if we compare it with Figure 5.6b, we see that CA-GREEDY

indeed can capture the demand and allocate all sixteen available instances of VM1 in most

of the auctions, but is limited to the availability of statically provisioned VMs. Eventually

it has to serve other less valued bids and looses revenue. Also, CA-GREEDY suffers from

under-allocation as it is clear from Figures 5.8a and 5.8b. We see that the actual demand of

113

 0

 1

 2

 3

 4

 5

 0 500 1000 1500 2000 2500 3000 3500 4000

N
u
m

b
e
r

o
f
V

M
4
 i
n
s
ta

n
c
e
s

Auction number

CA-PROVISION vs CA-GREEDY: Allocation of VM4

Actual allocation
Static allocation

(a)

 0

 1

 2

 3

 4

 5

 0 500 1000 1500 2000 2500 3000 3500 4000

N
u
m

b
e
r

o
f
V

M
4
 i
n
s
ta

n
c
e
s

Auction number

CA-GREEDY: Actual vs Static Allocation of VM4

Actual allocation
Static allocation

(b)

Figure 5.9: Allocation of VM4 instances: (a) by CA-PROVISION; (b) by CA-GREEDY.
Workload file: DAS2-fs3-2003.

VM3 instances is lower than what we allocate statically (Figure 5.8a) and the VM instances

indeed remain unallocated in many cases (Figures 5.8b).

We can summarize the experimental results as follows. The CA-GREEDY mechanism is

capable of generating higher revenue than CA-PROVISION when there is matching demand

with the supply. Also, in an auction where items are not ‘configurable’ as in the case of cloud

auctions, CA-GREEDY is a very efficient auction. But when we have reconfigurable items

as in clouds, it is very hard to predict the demand very well in advance. In that case, CA-

PROVISION is a better option and as today’s technology supports, it can be deployed as a

stand-alone configuration and allocation tool without much human intervention. There is

also another use of this mechanism. One can combine CA-GREEDY and CA-PROVISION

in a way that periodically CA-PROVISION will be executed to capture the current market

demand, determine the static allocation that best matches the demand, and instantiate

CA-GREEDY. If the utilization falls below a certain threshold, CA-PROVISION can be

called to determine a good configuration again. This can also eliminate the need of detailed

statistical analysis of demand to find an efficient static configuration for CA-GREEDY.

114

5.5 Summary

We addressed the problem of dynamically provisioning VM instances in clouds in order to

generate higher profit, while determining the VM allocation with a combinatorial auction-

based mechanism. We designed a mechanism called CA-PROVISION to solve this prob-

lem. We performed extensive simulation experiments with real workloads to evaluate our

mechanism. The results showed that CA-PROVISION can effectively capture the market

demand, provision the computing resources to match the demand, and generate higher

revenue than CA-GREEDY, especially in high demand cases. In some of the low demand

cases, CA-GREEDY performs better than CA-PROVISION in terms of profit but not in

terms of utilization and percentage of served users. We conclude that an efficient VM

instance provisioning and allocation system can be designed combining these two combi-

natorial auction-based mechanisms.

115

CHAPTER 6: AN ONLINE

MECHANISM FOR DYNAMIC VM

PROVISIONING AND

ALLOCATION IN CLOUDS

6.1 Introduction

Virtualization technologies have created convenient ways for the cloud providers to allo-

cate their computing resources. They define different configurations of virtual machines

(VMs) and ‘sell’ the resources in units of VM instances. Currently, the cloud providers use

fixed price-based mechanisms to allocate and sell VM instances (e.g., Windows Azure [40],

Amazon EC2 [2]) or auction-based mechanisms to sell resources that are not utilized after

the fixed-price based selling [3].

There are certain features of the problem of VM allocation in clouds that makes online

mechanisms suitable for solving it. First of all, it is quite natural for users to submit bids

for bundles of VMs rather than for individual VMs. For example, if a user requires one

‘small’ and one ‘large’ VM instance for a particular application, she would prefer to get

both of them together, otherwise she would prefer nothing to getting only one of the VMs.

Therefore, the allocation mechanism must allow users to express their preferences for a

bundle of VMs and not only for individual VMs. On the other hand, the users submit their

requests (or arrive at the system) continuously and would prefer to have their allocation

decision as soon as possible, at the best possible price. Once they obtain the requested VM

bundles, they would like to complete their entire task on the acquired resources.

Another consideration is that the cloud provider would prefer a mechanism that sup-

116

ports dynamic provisioning so that they can decide on the number of instances of different

types of VMs based on the market demand. The cloud provider is also interested in max-

imizing its revenue or profit. Considering all the desired properties mentioned above, in

this chapter, we design an online mechanism that provisions computing resources into VM

instances, allocates them to users, and determines the payment for each user. Online mech-

anisms solve allocation problems without having all the information available. An online

mechanism calculates allocation and payment as the participants arrive at the system and

place their requests. This is particularly useful to guarantee allocation efficiency in sys-

tems where users arrive continuously and items being allocated are expiring items [47].

For the problem of VM instance allocation in clouds, the resources can be considered as

expiring since the allocation is dependent on time: a resource not allocated at time t loses

its utilization for that particular moment.

We design an online mechanism for provisioning and allocating VM instances in clouds.

We design the bidding protocol so that a user requests a bundle of VMs expressing that

she is only interested in the whole bundle and not a subset of it. Upon receiving such bids,

the mechanism calculates the allocation and payment online. Also, the allocation cannot

be preempted: a user receiving an allocation at time t continues to hold the resources for

the time period she requested the resources for, while submitting her bid. We also provide

theoretical results proving the properties of the proposed mechanism.

6.1.1 Our Contribution

We formulate the online VM provisioning and allocation problem and design an online

mechanism to solve it. To the best of our knowledge, this is the first work that proposes

an online mechanism for VM provisioning and allocation in clouds. We provide theoretical

results that prove that the proposed mechanism is incentive compatible and runs in a rea-

sonable amount of time. We perform extensive experiments and show that this mechanism

improves the efficiency of allocation of VM instances in clouds.

117

6.1.2 Organization

The rest of the chapter is organized as follows. In Section 6.2, we formulate the problem

of online VM provisioning and allocation. In Section 6.3, we introduce the basic concepts

of mechanism design in general and online mechanism design in particular in the context

of the problem we are addressing. In Section 6.4, we present our proposed online mecha-

nism for VM provisioning and allocation. In Section 6.5, we characterize the properties of

the proposed mechanism. In Section 6.6, we investigate the performance of the proposed

mechanism by extensive simulation experiments. In summarize the research in Section 6.7.

6.2 VM Instance Allocation Problem

We consider a cloud provider that provisions its computing resources into m different types

of VM instances. We denote these types of VM instances by VM1, . . . , V Mm. With each

type VMi we associate a ‘weight’ wi ∈ R
∗
+ which specifies the relative computing power

of VMi with respect to the most powerful VM instance offered by the cloud provider

(i.e., the instance of type VM1). We consider, without loss of generality, that w1 = 1

and w1 ≤ . . . ≤ wm. The total power of the computing resources available for allocation

is denoted by M , and is defined as the equivalent power of M instances of type VM1.

For example, let us consider a cloud provider that offers VM instances of three types:

small (VM1), medium (VM2), and large (VM3). The configurations of these VMs are as

follows: VM1 ≡ (one 2GHz processor, 4GB memory, 1TB hard drive), VM2 ≡ (two 2GHz

processors, 8GB memory, 2TB hard drive), and VM3 ≡ (four 2GHz processors, 16GB

memory, 4TB hard drive). For this setting, the weights of the VMs would be w1 = 1, w2 = 2,

and w3 = 4. If, for example, the cloud provider has enough resources to provision 100,000

VM1 instances, then M = 100, 000. The goal of the cloud provider is to dynamically

provision its available resources into VM instances and allocate them to users efficiently

and at the same time maximize its profit.

There are n users j = 1, . . . , n who submit their requests (or ‘bids’) to the cloud

118

provider in order to secure bundles of VM instances for certain amount of time in order

to execute their applications (jobs) on the cloud. A user j is characterized by her ‘type’

θj = (rj1, . . . , r
j
m, aj , lj, dj, vj) ∈ Θj, where Θj is her type space. Here, (rj1, . . . , r

j
m) is the

bundle of VM instances requested by user j, where rji ∈ N is the number of VMi instances

requested by user j. We also denote the bundle by Sj and its total weight by sj =
∑m

i=1wir
j
i .

The other components of user j’s type θj are: aj ∈ N, the arrival time (i.e., the time at

which user j submits her bid); lj ∈ N, the amount of time the requested bundle must be

allocated for; and, dj ∈ N, the deadline for user j’s job completion. We denote by δj, the

time by which the bundle must be allocated to the user in order for her job to complete

its execution. That is, δj = dj − lj . The last component of θj is vj ≥ 0, the value user j

receives if her requested bundle of VMs is allocated within time δj. We assume that the

users are single-minded, i.e., each user j requires that either her requested bundle Sj be

allocated to her and she pays for it, or she does not get any allocation and pays nothing.

In the following we give an example to clarify the meaning of the components of the user

type. Suppose user j requires two VM1 and one VM3 instances for five hours to complete

a particular application. Hence, she requests the bundle Sj = (2, 0, 1) with a total weight

sj = 2+4 = 6. She submits her bid at time t = 0 and must get her job done by time t = 10.

Hence, aj = 0, lj = 5, and dj = 10. There is no use of the requested bundle if she gets it

after t = 5, therefore δj = 5. Finally, suppose the successful completion of the application

yields a value of $50 to her, hence the valuation of her bundle is vj = 50. Altogether, user

j’s type is θj = (2, 0, 1, 0, 5, 10, 50). We also call it her ‘true bid’, because she may choose

to report a different type from her type space (i.e., all possible combinations of the values)

to the cloud provider if she benefits by doing so.

The cloud provider allocates bundles of VM instances to users by dynamically provi-

sioning the available resources and charges them money. The provider must decide the

allocation of a bundle Sj within the time interval [aj , δj]. If a user is not granted the allo-

cation within this interval, her request is declined and she withdraws her request. Formally,

the cloud provider computes an allocation set A ⊆ Θ×N and a payment set P ⊆ Θ×R+.

119

A tuple (θj , tj) ∈ A represents that bundle Sj of user j of type θj has been allocated at

time tj, where aj ≤ tj ≤ δj . A tuple (θj , pj) ∈ P says that user j of type θj has to pay pj

to the cloud provider. For the above user j, if she is granted the allocation at time t = 3

and charged $30, we would have (θj , 3) ∈ A and (θj , 30) ∈ P . Users who do not get the

requested allocation pay zero.

We also consider that the cloud provider decides about the provisioning and allocation

online, i.e., whenever some users and resources are available. Once a bundle Sj is allocated

to a user j, it will not be reclaimed until lj units of time after the allocation. Due to the

limited resources, the cloud provider cannot allocate the VM bundles to all users at any

given time. Also, unallocated users are going to potentially leave the system when their

respective δj time has passed and they will not contribute to the provider’s revenue. There-

fore, the challenge of the cloud provider is to make provisioning and allocation decisions

dynamically while trying to maximize its profit.

Since very little is known about revenue maximization in the mechanism design litera-

ture, mechanisms are usually designed with the goal of maximizing the sum of the valuations

of the users [44]. Thus a reasonable goal is to allocate the VM instances so that the sum

of the valuations of the users who receive their bundles is maximized. We formulate the

Online VM Provisioning and Allocation Problem (OVMPA) as follows.

max
∑

j:(θj ,tj)∈A

vj (6.1)

subject to:
∑

j:θj∈Ñ(t)

sj ≤M (6.2)

Equation (6.1) is the objective of the problem, that is, the cloud provider maximizes the

sum of the values of the users who obtain their requested bundles. The constraint in

equation (6.2) says that at any given time t the allocation is limited to M , the total

120

amount of resources available. Here,

Ñ (t) = {j | (∃tj ≤ t : (θj , tj) ∈ A) ∧ (tj + lj > t)}

is the set of users who have been allocated prior to or at t and have yet to complete their

allotted time slot at time t.

A straight-forward solution to the above problem would be to select users with the

highest values, and then charge them their reported values. However, the users are rational

and they may misreport their types if it benefits them to do so. For example, a user may

report a lower valuation to pay less or a higher valuation to enhance her chance of winning.

If the cloud provider prefers jobs with an earlier deadline while breaking a tie for values,

users may choose to report a deadline that is earlier than their actual deadline. Since this

information is private, the provider needs to employ a mechanism to compute the allocation

and payment based on the users’ reported values in such a way that the system-wide goals

set by the provider are achieved.

Therefore, the problem of designing an online mechanism for solving the OVMPA is

as follows. Design an online mechanism that computes an allocation set A and payment

set P on the problem space Θ = Θ1 × . . . × Θn to maximize the objective function in

Equation (6.1) satisfying the constraint given in Equation (6.2). The information reported

by the users to the mechanism is denoted as θ̂ = (θ̂1, . . . , θ̂n) ∈ Θ, where θ̂j ∈ Θj . The

goal of the mechanism is to compute an efficient allocation even if θ̂j 6= θj and calculate

payments in a way so that it provides incentives to the users to report their true types.

6.3 Online Mechanism Design Framework

A mechanismM = {A,P} is a set of functions A for computing the allocation and P for

computing the payment for each user. Here, A : Θ → A and P = (p1(.), . . . , pn(.)), where

pj : Θ→ R for j = 1, . . . , n. In the context of OVMPA, the allocation function A computes

121

the allocation set A ⊆ Θ× N from the bids reported by the users. The allocation set A is

the set of the tuples (θj , tj), where j is the user receiving her requested bundle at time tj .

Function pj(.) determines user j’s payment based on the bids of all users.

Each user j is characterized by a valuation function Vj defined as follows:

Vj(A(θ̂), θj) =

vj if(θj , tj) ∈ A ∧ tj ≤ d′j

0 otherwise
(6.3)

This means that the user receives the value vj if she secures the requested bundle, and

no value, otherwise. We quantify user j’s benefit through a utility function defined as the

difference between the value she receives from the mechanism and the payment charged to

her:

Uj(A(θ̂), θj) = Vj(A(θ̂), θj)− pj(θ̂) (6.4)

In the example presented above user j derives a utility of $20 if she values the bundle

at $50, receives her bundle at time t ≤ 5, and pays $30 for it (as shown in Section 6.2).

If the mechanism decides not to allocate her the requested bundle, she receives a value of

zero. In that case, if the mechanism does not charge her any payment, her utility will be

zero as well.

We are interested in designing mechanisms which have two important properties, in-

centive compatibility and individual rationality. In the following, we denote by θ̂−j =

(θ̂1, . . . , θ̂j−1, θ̂j+1, . . . , θ̂n) ∈ Θ−j the bids of all users except j. Recall that the true type of

user j is θj and her reported type (or bid) θ̂j may not be equal to θj .

Definition 4 (Incentive compatibility). A mechanismM is incentive compatible if for all

j, θ̂j ∈ Θj, and θ̂−j ∈ Θ−j,

Uj(A(θj, θ̂−j), θj) ≥ Uj(A(θ̂j , θ̂−j), θj)

That is, the users maximize their utilities by reporting their true types to the mecha-

122

nism, irrespective of the other users’ bids. This is a very important property, because if

satisfied, the users participating in the mechanism will not have incentives to report other

types than their true types to the mechanism. That is, truthful reporting is their best

strategy.

Definition 5 (Individual rationality). A mechanism is individually rational if a user never

incurs a loss by reporting her true type. Formally, for all j, true type θj ∈ Θj, and

θ̂−j ∈ Θ−j,

Uj(A(θj, θ̂−j), θj) ≥ 0

That is, regardless of other users’ bids, a user reporting her type truthfully will never ob-

tain a negative utility by participating in the mechanism. This is a very important property

of a mechanism since it encourages users to voluntarily participate in the mechanism.

In order to obtain an incentive compatible mechanism the allocation function A must

be monotone and the payment function P must implement the critical value payment [43].

We introduce a preference relation, �, on the set of user bids. For example, θ̂′j � θ̂j

means that bid θ̂′j is more preferred to the mechanism than bid θ̂j . In our context θ̂′j � θ̂j

if ŝ′j ≤ ŝj, â
′
j ≤ âj , l̂

′
j ≤ l̂j , d̂j ≥ d̂j and v̂′j ≥ v̂j .

Definition 6 (Monotone allocation function). An allocation function A is monotone if for

all j, θ̂j , θ̂
′
j ∈ Θj, and θ̂−j ∈ Θ−j,

(θ̂′j � θ̂j) ∧ (∃tj : (θ̂j , tj) ∈ A(θ̂j , θ−j))⇒ ∃t′j : (θ̂′j , t′j) ∈ A(θ̂′j, θ−j)

This means that if user j gets her requested bundle by declaring type θ̂j , she will also

get the resources by declaring type θ̂′j , where type θ̂′j is more preferred over θ̂j .

Definition 7 (Critical value payment). Critical value vcj for user j is defined as

vcj = argmin
v′
j
≥0
(∃tj : (θ̂j = (rj1, . . . , r

j
m, aj, lj , dj, v

′
j), tj) ∈ A(θ̂j, θ−j))

123

This means that the critical value for a user is the minimum amount she needs to report

to the mechanism in order to receive her requested bundle. The payment function should

charge a user her critical value in order to obtain an incentive compatible mechanism.

The challenges of designing online mechanisms come from the fact that the mechanisms

do not have full information on the requests and from the richer dimension of user types.

In the context of OVMPA, the users can misreport their arrival time (i.e., submit bid at

a different time than the actual time when the task is available) to gain higher chances

of allocation or lower payments. For example, the critical value of a user may be lower

if she submits her bid at a later time. Therefore, the mechanism must ensure that users

do not gain by misreporting the arrival time as well as other parameters. Misreporting

the other parameters may affect the allocation and payment for both online and offline

mechanisms. In the following section, we design an online mechanism that solves OVMPA

while addressing the above challenges.

6.4 Online Mechanism for VM Allocation

We now present our mechanism for Online VM Provisioning and Allocation (MOVMPA)

that solves the OVMPA problem.

6.4.1 Mechanism MOVMPA

The mechanism MOVMPA is structured as an event handler, which is invoked when a

new bid arrives or a user completes her time for the allocated bundle and releases the

VM instances to the provider. We assume that the information about the users and the

resources is made available to the mechanism via some standard protocol. MOVMPA uses

this information to determine the set of users and resources available for allocation at the

current time and calls the allocation and the payment functions. We present the MOVMPA

mechanism in Algorithm 7.

124

Algorithm 7 Mechanism MOVMPA

Require: Event,A, P
Ensure: A,P
1: t← Current time
2: N (t) ← {θ̂j ∈ N | âj ≤ t ∧ ¬∃tj < t : (θ̂j, tj) ∈ A}
3: Ñ (t) ← {θ̂j | ∃tj < t : (θ̂j , tj) ∈ A ∧ tj + l̂j > t}
4: M (t) ←M −∑

j:θ̂j∈Ñ(t) ŝj

5: if M (t) = 0 ∨N (t) = ∅ then return

6: R←M (t)

7: A(t) ← MOVMPA-ALLOCATE(t,N (t), R)
8: A← A ∪A(t)

9: P (t) ← {(θ̂j , v̂j) | (θ̂j, tj) ∈ A(t)}
10: P ← P ∪ P (t)

11: P ← MOVMPA-PAYMENT(t, P,N (t) , Ñ (t),M (t))
12: NP ← {θ̂j ∈ N | t′ < δj ≤ t}
13: for each θ̂j ∈ NP do

14: if ∃pj : (θ̂j, pj) ∈ P then

15: user j pays pj
16: else

17: user j pays 0
18: end if

19: end for

20: t′ ← t
21: return A,P

MOVMPA takes as input the event, the current allocation set and the payment set. An

event is either a release of resource or an arrival of a user request. We assume that the

system stores these two sets and passes them to MOVMPA when it is invoked. MOVMPA

updates the sets and returns back to the system. In lines 1-4, MOVMPA sets the current

time to t and initializes three variables as follows: N (t), the set of bids of the users that

have not been allocated so far; Ñ (t), the set of bids of the users that have been allocated

in the past and have not finished their time of allocation; and, M (t), the total weight of

the resources that are available for allocation at time t. The mechanism proceeds only if

resources and users are available. It calls the allocation function MOVMPA-ALLOCATE

with the user bids that have not been allocated yet and the resources that are available at

time t. MOVMPA-ALLOCATE returns set A(t), the set of users who would receive their

125

requested bundles at time t (line 7).

Next, MOVMPA updates the overall allocation set A to A(t). The bids in A(t) are also

inserted into the payment set, with pj = v̂j as their initial payment. However, this payment

is updated by calling the payment function MOVMPA-PAYMENT (line 11). In fact, the

payment of user j is going to be updated several times until t = δj , i.e., until the time

instance the user must receive allocation of the bundles she requires. Thus, MOVMPA-

PAYMENT calculates the payments for these users and updates the payment set P . The

next step for MOVMPA is to determine the set NP of the bids of users j for whom the

current time has gone past their respective δj times (line 12). However, this set only

includes the users whose δj has passed after t′, where t′ is the time of the last invocation

of MOVMPA (line 12). If user j has been already provided with her bundle, her payment

will no longer change and the payment that is up to date at the current time will be her

final payment charged to her. If user j has not received her requested bundle until t and

t > δj , she will not be successful in getting an allocation to get her job done. In this case,

user j will pay pj = 0 (lines 14-19). The computation of the prices will be presented when

we discuss the MOVMPA-PAYMENT function.

6.4.2 Allocation function

The allocation function MOVMPA-ALLOCATE is given in Algorithm 8. In order to de-

scribe this function we define a new parameter called ‘bid density’, ρj =
v̂j

ŝj×l̂j
. The intuition

behind bid density is as follows. We can reformulate the VM allocation problem as the

problem of allocating rectangles in a two-dimensional space of VM weight and time. The

bid by user j for a bundle of VM instances of weight ŝj for time l̂j can be interpreted as

requesting a rectangle with area ŝj × l̂j in that two-dimensional space, and user j values

this area at v̂j . Hence, ρj is how much user j values a ‘unit area’ of the rectangular space.

Obviously, the cloud provider is interested in users who want to pay more per unit of their

resources per unit time. MOVMPA-ALLOCATE uses ρj to determine the relative values

of the bids.

126

Algorithm 8 MOVMPA-ALLOCATE

Require: t,N (t), R
Ensure: A(t)

1: A(t) ← ∅
2: Sort all θ̂j ∈ N (t) in non-increasing order of ρj
3: for each θ̂j ∈ N (t) in sorted order do
4: if sj ≤ R then

5: A(t) ← A(t) ∪ (θ̂j , t)
6: R← R− ŝj
7: end if

8: end for

9: return A(t)

First, MOVMPA-ALLOCATE sorts all bids in non-increasing order of ρjs. Ties are

broken in the following order: prefer earlier δj , smaller l̂j , and then smaller ŝj . Further

ties are broken arbitrarily. Then the algorithm allocates bundles requested by these users

while resources last. Finally, it returns the set A(t) of users who are selected for allocation

at time instance t.

MOVMPA-ALLOCATE simply tries to maximize the sum of the reported valuations

of the users who would be granted their requested bundles. In the case of a tie, by giving

priority to users with a smaller δj , (i.e., users who need to leave the system earlier if they

don’t get their bundles), it also makes sure that the highest possible number of users are

served. For the same reason, in case of a tie with δj, priority is given to users who request

the resources for a smaller amount of time.

6.4.3 Payment function

We give the payment function MOVMPA-PAYMENT in Algorithm 9. The payment func-

tion requires as input the current time t, the payment set P , the amount of resources

available before calling the allocation function M (t), the set of users who were considered

at the allocation function N (t), and, the set of users who are occupying resources at the

current time t, Ñ (t). It is worth mentioning that users that were granted the requested

bundle at time t also belong to the set N (t).

127

Algorithm 9 MOVMPA-PAYMENT

Require: t, P,N (t), Ñ (t),M (t)

Ensure: P
1: sort all θ̂j ∈ N (t) in non-increasing order of ρj
2: for each (θ̂j, pj) ∈ P : δj ≤ t do

3: N ′(t) ← N (t) \ θ̂j
4: if θ̂j ∈ Ñ (t) then

5: R′ ←M (t) + ŝj
6: else

7: R′ ←M (t)

8: end if

9: for each θ̂j′ ∈ N (t) do

10: v̄j ← ρj′ × ŝj × l̂j
11: θ̄j ← (rj1, . . . , r

j
m, t, l̂j , d̂j , v̄j)

12: A′ ← MOVMPA-ALLOCATE(t,N ′(t) ∪ {θ̄j}, R′)
13: if (θ̄j, t) ∈ A′ then

14: pj ← min(pj , v̄j)
15: end if

16: end for

17: θ̄j ← (rj1, . . . , r
j
m, t, l̂j , d̂j , 0)

18: A′ ← MOVMPA-ALLOCATE(t,N ′(t) ∪ {θ̄j}, R′)
19: if (θ̄j , t) ∈ A′ then

20: pj ← 0
21: end if

22: end for

23: return P

The main idea of MOVMPA-PAYMENT is to calculate the critical payment of each

user j with δj ≤ t as if their time of arrival is t. By repeatedly calling this function at each

event, MOVMPA ensures that the critical payment of a user j is calculated every time an

event occurs between âj and δj . Formally, MOVMPA-PAYMENT calculates the critical

value

vctj = argmin
v′
j
≥0
(∃tj : (θ̂′j = (r̂j1, . . . , r̂

j
m, t, l̂j, d̂j, v

′
j), tj) ∈ A(θ̂j , θ−j)) (6.5)

at time t, for all users j with δj ≥ t. Based on this critical value the MOVMPA mechanism

computes the critical value as

vcj = min
t∈[âj ,d′j]

vctj (6.6)

128

Table 6.1: User bids

θ̂j ŝj âj l̂j d̂j v̂j δj ρj
θ̂1 3 0 3 5 5 2 0.56

θ̂2 3 0 3 4 4 1 0.44

θ̂3 2 1 5 8 6 3 0.60

θ̂4 2 1 2 5 3 3 0.75

θ̂5 3 3 4 9 8 5 0.67

θ̂6 3 3 6 10 9 4 0.50

That is, vcj is the minimum value user j must report to get her requested bundle for any

arrival time a′j ∈ [âj , d
′
j].

MOVMPA-PAYMENT considers users from the payment set that have δj ≤ t. For

each user j, the arrival time component of her type is set to t and her value is set to the

values of each user to find the minimum value to be reported by user j in order to get her

requested bundle (lines 2-16). If no such minimum value is found, the payment is set to

zero (lines 17-21). One can also set this value to a predefined reserve price. Finally, the

updated set P is returned to the mechanism.

The mechanism keeps updating P by calling MOVMPA-PAYMENT and charges the

updated payment at time t to users j for which δj < t. Users who were not allocated any

resources pay zero.

Example 1. We show the execution of the mechanism by considering a setting in which

the users bid as shown in Table 6.1. For example, user 1’s bid θ̂1 contains the following

information: the weight of her requested bundle is ŝ1 = 3, she submits her bid at â1 = 0,

she requests the bundle for l̂1 = 3 time units, her deadline is d̂1 = 5, and she values the

allocation of the bundle for the entire time at v̂1 = 5. We also show for each user, the value

of δj = d̂j − l̂j , the time by which the bundle must be allocated to meet the deadline, and

ρj =
v̂j

ŝj×l̂j
, the bid density.

We show the execution of MOVMPA for this setting in Table 6.2. The execution is

shown as a time diagram, where the respective sets N (t), Ñ (t), M (t), A, P , and NP are

shown for each time t. As a reminder, N (t) is the set of bids of users that participate at time

129

Table 6.2: Execution of MOVMPA

t t = 0− t = 0 t = 1 t = 2 t = 3

N (t) ∅ {θ1, θ2} {θ4, θ3, θ2} {θ3} {θ5, θ3, θ6}
Ñ (t) ∅ {θ1} {θ4, θ1} {θ4, θ1} {θ5, θ3}
M (t) 5 2 0 0 0
A ∅ {(θ1, 0)} {(θ1, 0), (θ4, 1)} {(θ1, 0), (θ4, 1)} {(θ1, 0), (θ4, 1), (θ5, 3), (θ3, 3)}
P ∅ {(θ1, 4)} {(θ1, 4), (θ4, 2.4)} {(θ1, 4), (θ4, 2.4)} {(θ1, 4), (θ4, 2.4), (θ5, 6), (θ3, 0)}
N (P) ∅ ∅ ∅ {θ2} {θ4, θ1}

t, Ñ (t) is the set of bids of users that are holding some resources at time t (including those

who win their bids at time t), M (t) is the amount of resources available after allocation at

time t, A and P are the allocation and payment sets, and NP is the set of users whose

payments are ‘finalized’ at time t. We assume that the sum of the VM weights in this

example is M = 5.

In the second column, the initial value of all the variables are shown, where M (t) =

M = 5 and all set variables are empty. At t = 1, users 1 and 2 submit their bids and

hence N (t) = {θ1, θ2}. Since ρ1 > ρ2, user 1 is given the allocation of size ŝ1 = 3. The

remaining resources M (t) = 2 are not sufficient to allocate user 2 (ŝ2 = 3), so she loses at

time t = 0. User 1’s payment is computed as p2 = ρ2 × ŝ1 × l̂1, since user 2 needs to bid

at least this amount to defeat user 2 and get the allocation. The sets Ñ (t), A, and P are

updated to reflect the current allocation. At time t = 1, users 3 and 4 submit their bids,

where ρ4 > ρ3 > ρ2. The set N
(t) shows the bids in order of non-increasing ρj values. Here

we see that the new winner is 4 and user 1 is still holding the resources allocated to her,

since she requires them for three time units. At time t = 2, θ2 is discarded from the bidding

users set N (t), because t > δ2 = 1 and she cannot meet her deadline. θ2 is moved to NP

to finalize her payment pj = 0. Note that here no auction is executed since the available

resources are still zero.

At t = 3, both users 1 and 4 complete their allocated time. Their bids are moved to NP

and their current payments are set as their final payments. In this example, their payments

did not change in any subsequent auction after they received the allocation. Users 5 and 6

arrive in the system and users 5 and 3 win their bundles at this time. User 3 pays zero

130

because she requests a bundle with ŝj = 2, which matches with the remaining resources.

User 6 requests more than what is available at time t = 3, therefore user 3 would win even

if she would bid zero. In a scenario with reserve price, user 3’s payment will be set to the

reserve price.

6.5 Properties of MOVMPA

In this section, we prove that the MOVMPA mechanism is incentive compatible and individ-

ually rational. We also perform competitive analysis and determine the runtime complexity

of the mechanism.

Theorem 4. MOVMPA is an individually rational mechanism.

Proof. Let user j declare her true type θj to the mechanism. If she gets her requested

bundle, then she pays pj ≤ vj , because initially she is assigned the payment equal to vj ,

and it is updated at each invocation of the mechanism until the time becomes d′j . The

update takes the minimum of the payment computed so far, therefore it will be always that

pj ≤ vj . Therefore, her utility Uj = vj − pj ≥ 0. On the other hand, if she does not win

her bundle, her valuation and payment are zero and hence the utility is zero.

We prove the following lemmas and use them to prove that MOVMPA is incentive

compatible.

Lemma 3. User j can only misreport a θ̂j with r̂ji ≥ rji for all i, âj ≥ aj, l̂j ≥ lj, and

d̂j ≤ dj.

Proof. The true arrival time of a user into the system is when her intended task is ready to

execute. There is no reason for a user to submit her request earlier than when the applica-

tion is ready for execution. On the other hand, reporting a lower number of VM instances

or a low required time will not allow the user to execute and complete her application.

Similarly, reporting a later deadline may result in getting the bundle too late to complete

the desired application in time.

131

Lemma 4. Let Θ̂j ⊂ Θj be the type space of possible types user j may report to the

mechanism, according to Lemma 3. Then for each θ̂′j , θ̂j ∈ Θj, θ̂
′
j � θ̂j, if ∃tj : (θ̂j , tj) ∈

A(θ̂j,Θ−j), then ∃t′j : (θ̂′j , t
′
j) ∈ A(θ̂′j,Θ−j). In other words, if user j wins by bidding θ̂j,

then she will also win if she reports a more preferable bid.

Proof. Clearly, if user j reports v̂′j ≥ v̂j , her bid θ̂′j will be allocated if θ̂j is also allocated.

Similarly, if a user gets the allocation by reporting d̂j, she will also get it by reporting

d̂′j ≥ d̂j. Proofs for the other parameters follow the same logic, based on the priorities set

for ordering the reported types in MOVMPA-ALLOCATE (Subsection 6.4.2).

Lemma 5. Suppose user j wins her bid by reporting both θ̂j and θ̂′j, where they differ only

on the arrival time â′j ≥ âj, then their payment p′j ≥ pj.

Proof. Since the mechanism calculates the critical value payment for all a′j ∈ [âj , d
′
j], the

minimum calculated over the range [âj , d
′
j] must be less than or equal to the minimum

calculated over the range [â′j , d
′
j].

Lemma 6. If user j gets the requested allocation by bidding both θ̂j and θ̂′j, where the types

differ only on the valuation, v̂j 6= v̂′j, then they pay the same amount.

Proof. Since we compute the minimum value that the users must report to get the alloca-

tion, the minimum value is the same for both θ̂j and θ̂′j , given that the other users’ reported

types remain the same. Hence, j pays the same amount for reporting both types. This is

the critical value payment that we calculate in MOVMPA-PAYMENT.

Theorem 5. MOVMPA is an incentive compatible mechanism.

Proof. Lemmas 3 and 4 show that the allocation algorithm is monotone. Lemmas 5 and 6

show that the mechanism implements the critical payment. Hence, MOVMPA is incentive

compatible.

Theorem 6. The time complexity of MOVMPA is O(n logn).

132

Proof. The costliest operation in MOVMPA-ALLOCATE is sorting the users in line 2.

This requires a runtime of O(n logn). However, n is the total number of users and each

time the mechanism encounters only a fraction of them.

MOVMPA-PAYMENT seems rather complicated because it repeatedly calls MOVMPA-

ALLOCATE. But in an actual implementation, we do not need to call the allocation func-

tion to determine the critical payment. For each user j that is a winner, we need to consider

only the users j′ who lose at time t, in non-increasing order of their bids, and check whether

user j′ can win her bid if j does not participate. This check is done in a single comparison

of resources occupied by j and the resources requested by j′. When we find first such j′,

user j’s payment is v̂j′ . We need to sort the losing bids only once at the beginning of the

algorithm, which again has a running time of O(n logn), where n is a much larger number

than what that algorithm encounters in practice. We present the payment algorithm in

this fashion in order to show the underlying concepts.

Now we prove the competitive ratio of MOVMPA. The competitive ratio of an online

algorithm is c > 1 if the ratio of its performance to an optimum offline algorithm is 1/c. We

prove the competitive ratio of MOVMPA by choosing an input that produces the worst-case

scenario for MOVMPA.

Theorem 7. MOVMPA mechanism has a competitive ratio of M .

Proof. Consider two bids θ1 and θ2 where s1 = 1, s2 = M , (a1, l1, d1, v1) = (0, l, l, v),

and (a2, l2, d2, v2) = (1, l, l + 1,Mv + ǫ), where l > 1. MOVMPA will allocate user 1 her

requested bundle that she will release at time l > 1. Now, since for θ2, a2+ l2 = 1+ l = d2,

user 2 must get the allocation at time a2 = 1, otherwise she withdraws her bid because

she cannot satisfy her deadline. Therefore, MOVMPA will allocate VM instances only to

user 1 and obtain a value of v (Equation (6.1)). On the other hand, an optimum offline

algorithm will allocate resources to user 2 and obtain a value of Mv + ǫ > M × v. Hence,

the competitive ratio of MOVMPA is M .

133

6.6 Experimental Results

In this section, we evaluate MOVMPA through simulation experiments. We compare

MOVMPA with a good offline mechanism to identify its strengths and weaknesses. We

generate user bids from real workload data, which are then parallelly submitted to both

mechanisms. Of the experiment outcome, we mainly focus on three parameters: percent of

users served (i.e., those who received their requested bundle for the entire bundle required),

average revenue generated per served user, and average utility received by each served user.

These three metrics are most important to evaluate a mechanism, because they determine

the resource utilization, provider’s profit, and user satisfaction.

6.6.1 Experimental Setup

We choose the offline mechanism CA-PROVISION from the previous chapter. to compare

with MOVMPA. As we recall, CA-PROVISION solves the dynamic VM provisioning and

allocation problem in clouds. It is invoked at regular intervals, (e.g., hourly). When it is

invoked, it considers all the bids collected during the past interval and runs a combinatorial

auction to determine the set of winners, their payments, and the number of different VM

instances to provision. The VM instances are allocated for one time interval and users

requiring subsequent access must continue to bid until their time requirement is fulfilled.

A bundle allocated to a user at current period may be preempted later if the demand

increases.

We choose CA-PROVISION to compare with MOVMPA because of two reasons. First,

it is the closest mechanism to MOVMPA in the literature and the major difference be-

tween the two mechanisms are that one of them are online and the other is offline. Another

reason for choosing CA-PROVISION is that we compared it with another successful mech-

anism CA-GREEDY and found that CA-PROVISION performs better in different aspects.

This leads us to the decision that comparing with CA-PROVISION will correctly position

MOVMPA in VM allocation mechanisms in terms of different performance metrics. It will

134

Table 6.3: Workload logs

Collection Total Total Total no. of Jobs / Avg. runtime Avg procs. Normalized
Logfile (ω) period Jobs hours Procs. (Mω) hour (Jω) in hour (Tω) per job (Pω) load (ηω)
DAS2-fs0-2003 12 months 225,711 8744 144 25.81 1.09 10.27 2.01
DAS2-fs1-2003 12 months 40,315 8633 64 4.67 1.23 8.38 0.75
DAS2-fs2-2003 12 months 66,429 8760 64 7.58 1.29 9.45 1.44
DAS2-fs3-2003 12 months 66,737 8712 64 7.66 1.17 4.96 0.69
DAS2-fs4-2003 11 months 33,795 7963 64 4.24 1.67 3.66 0.40
LLNL-uBGL-2006 7 months 112,611 5339 2,048 21.09 1.25 575.79 7.41
LPC-EGEE-2004 9 months 234,889 5728 140 41.00 1.80 1 0.53

also show us the merits and demerits of going online with VM allocation mechanisms in

clouds.

The input data we use are collected from The Parallel Workload Archive [23], as in

the previous chapter. We briefly describe the Parallel Workload Archive here for the sake

of completeness. It is a rich collection of well studied and standardized workloads from

various grid and supercomputing sites. These workloads provide us with an opportunity to

experiment with real data in the absence of publicly available cloud workload data (to the

best of our knowledge, there were no such workloads at the time of writing this chapter).

In the previous chapter, we used eleven workload logs from the Parallel Workload Archive

to compare CA-PROVISION with CA-GREEDY. Here we narrow it down to the seven

logs for which CA-PROVISION outperformed CA-GREEDY in all categories. These logs

are: 1) DAS2-fs0-2003 - DAS2-fs4-2003, from a research grid of five clusters at the Advanced

School of Computing and Imaging in the Netherlands; 2) LLNL-uBGL-2006, from a Blue

Gene/L system at Lawrence Livermore National Lab; and 3) LPC-EGEE-2004, from a

Linux cluster at The Laboratory for Corpuscular Physics, Univ. Blaise-Pascal, France.

We show the information about the workload logs and some statistics associated with

them in Table 6.3. The table shows the name of workload logs, the duration for which the

logs were collected, the number of jobs, and the total log hours in the first four columns.

The table also shows the total number of processors of the system the logs were generated

from. We assume that the weight of a VM instance corresponds to the number of processors

allocated to it. Hence, the total number of processors of a system represents the total weight

of the computing resources M . We denote the total computing resources allocated to a

135

Table 6.4: Simulation Parameters

Parameter Notation Values

Average bundle weight savg from workload (Pω)
Average time per job lavg from workload (Tω)
Average deadline factor davg 3
Average valuation vavg 5, 10, 20
Cost of running and idle VM cR, cI 1, 0.5

workload ω by Mω. The next four columns in Table 6.3 are statistical data and are defined

as follows. Jobs/hour (Jω) is the average number of jobs submitted to the system per hour.

The average runtime (Tω) and the average number of processors per job (Pω) are calculated

over all records of the workload log. The last column shows ηω, the ‘normalized load’ of

workload ω, which is computed as follows

ηω =
Jω × Tω × Pω

Mω

.

Normalized load measures the average amount of resources requested against each unit of

computing resources available. It helps us in ranking the otherwise heterogeneous workloads

and also explaining some of the experimental results.

We setup the simulation experiments as follows. We assume that a cloud provider

provisions its resources into four types of VM instances, VM1, . . . , V M4 with weights w =

(1, 2, 4, 8). User’s bids (θj = rj1, . . . , r
j
m, aj , lj, dj, vj) are generated using a workload file ω

and its pre-computed statistics that are shown above. The time of arrival aj of user j

is taken from the log file. sj =
∑m

i=1wir
j
i , i.e., the total weight of the requested bundle

is chosen from an exponential distribution with mean savg = Pω, the average number of

processors per job in workload ω. We arbitrarily set the values of rji s once we determine sj .

The required time for allocation, lj , is also determined using exponential distribution with

mean lavg, which is derived from Tω, average runtime of the jobs in workload ω. Deadline

dj and valuation vj are computed as dj = aj + lj × exp(davg) and vj = exp(vavg). We show

the values chosen for davg and vavg in Table 6.4. We bring more variation in the input data

136

by randomly choosing about 50% users and multiplying any of their bid parameters by 2.

CA-PROVISION computes a reserve price vres = cR−cI from the cost parameters asso-

ciated with a running or idling unit VM instance. Although we did not present MOVMPA

with a reserve price, it can be easily incorporated by discarding users below the reserve

price and then charging a winning user the reserve price instead of zero at line 20 of Algo-

rithm 9. In our experiments, the reserve price for MOVMPA is the same as that used for

CA-PROVISION. We show all the parameter values in Table 6.4. We run 18 experiments

per workload log with different combinations of parameters.

6.6.2 Analysis of Results

We summarize the results per workload in Figures 6.1 to 6.3. In this figure, we show the

workload logs with their normalized load on the horizontal axis and the percent of users

served, the average revenue per served user, and the average utility per served user on

the vertical axis. In Figure 6.1, we observe that MOVMPA serves a higher percentage

of users than CA-PROVISION. The most significant gain is with logs LLNL-uBGL-2006

(normalized load 7.41) and DAS2-fs0-2003 (normalized load 2.01), which are the highest

among the workloads used here. The percentage of served users is nearly doubled for the

case of DAS2-fs0-2003 workload and it increases more than six-fold for LPC-EGEE-2004

workload. This is because in CA-PROVISION, even if there are available resources, a user

must wait until the next auction time. By that time more users may arrive and she may

lose the auction. On the other hand, preemption also makes some users leave even if they

receive the allocation in some auction but still require the resources for additional time to

complete their task. Since the above two workloads generate high bid density, this leads

to an increase in the number of auctions and MOVMPA could accommodate more bids,

thanks to its online design.

On the other hand, in Figure 6.2, we see a decline in the average revenue generated

from each served user. As we discussed in Section 6.5, online mechanisms cannot obtain an

optimal outcome because they determine the allocation based on incomplete information.

137

 0

 20

 40

 60

 80

 100

D
AS2-fs4-2003 (0.40)

LPC
-EG

EE-2004 (0.53)

D
AS2-fs3-2003 (0.69)

D
AS2-fs1-2003 (0.75)

D
AS2-fs2-2003 (1.44)

D
AS2-fs0-2003 (2.01)

LLN
L-uBG

L-2006 (7.41)

P
e
rc

e
n
ta

g
e
 o

f
u
s
e
rs

 s
e
rv

e
d

Workload file (normalized load)

CA-PROVISION
MOVMPA

Figure 6.1: Overall results comparing CA-PROVISION and MOVMPA: percent of users
served vs. workload logs

 0

 5

 10

 15

 20

D
AS2-fs4-2003 (0.40)

LPC
-EG

EE-2004 (0.53)

D
AS2-fs3-2003 (0.69)

D
AS2-fs1-2003 (0.75)

D
AS2-fs2-2003 (1.44)

D
AS2-fs0-2003 (2.01)

LLN
L-uBG

L-2006 (7.41)

A
v
e
ra

g
e
 r

e
v
e
n
u
e
 p

e
r

s
e
rv

e
d
 u

s
e
r

Workload file (normalized load)

CA-PROVISION
MOVMPA

Figure 6.2: Overall results comparing CA-PROVISION and MOVMPA: average revenue
per served user vs. workload logs

This leads to a suboptimal value of the social welfare given by Equation (6.1). An intuitive

explanation is that by deciding about an allocation as soon as possible, MOVMPA helps a

user avoid facing competition with the future bidders. With CA-PROVISION, users must

compete with other users that bid during the same period and hence the price of the items

increases. But the increased number of served users offsets some of this revenue loss.

However, we see in Figure 6.3 that MOVMPA produces comparable results for the

average utility of the served users. Although it is expected that by paying less, users would

gain higher utility, but that will happen if both auctions select the same set of users for

138

 0

 5

 10

 15

 20

D
AS2-fs4-2003 (0.40)

LPC
-EG

EE-2004 (0.53)

D
AS2-fs3-2003 (0.69)

D
AS2-fs1-2003 (0.75)

D
AS2-fs2-2003 (1.44)

D
AS2-fs0-2003 (2.01)

LLN
L-uBG

L-2006 (7.41)

A
v
e
ra

g
e
 u

ti
lit

y
 p

e
r

s
e
rv

e
d
 u

s
e
r

Workload file (normalized load)

CA-PROVISION
MOVMPA

Figure 6.3: Overall results comparing CA-PROVISION and MOVMPA: average utility per
served user vs. workload logs

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 4 8 16 32

A
v
e
ra

g
e
 r

e
v
e
n
u
e
 p

e
r

u
s
e
r

Multiplication factor of original arrival rate

Average Revenue from Users Served by CA-PROVISION and CA-GREEDY

CA-PROVISION
MOVMPA

Figure 6.4: Average revenue vs. rate of arrival

allocation. This is not possible because of two reasons: CA-PROVISION preempts a user

with low valuation for one with higher valuation, but MOVMPA allocates VMs to a user

for the entire period she requested for them. This may lead to losing a high valued user

who arrived at a time when there is no resources available. On the other hand, MOVMPA

allocates more users than CA-PROVISION, which means it accommodates users with low

valuations and these users contribute to the low average utility.

Next, we try in a different way to find out what factors might affect the mechanisms

in generating higher revenue for the cloud provider. To do this, we select one log, LPC-

EGEE-2004, and tweak its parameters in two different dimensions. In Figure 6.4, we show

139

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 3 4 5 6

A
v
e
ra

g
e
 r

e
v
e
n
u
e
 p

e
r

u
s
e
r

Multiplication factor of average job length

Average Revenue from Users Served by CA-PROVISION and CA-GREEDY

CA-PROVISION
MOVMPA

Figure 6.5: Average revenue vs. average length of each request

the results obtained by multiplying the arrival rate of the log by a factor of 2, 4, 8, 16,

and 32. We see that CA-PROVISION follows the trend of the rate of arrival and gen-

erates higher revenue as the rate increases. However, the average revenue generated by

MOVMPA increases very slowly. On the other hand, Figure 6.5 shows the average rev-

enue by both mechanisms where the average length of requests (lavg) is multiplied with

different factors. We see that this affects MOVMPA more than CA-PROVISION. Since

the payment in MOVMPA is determined by finding the critical value in an interval, longer

allocation requests increase competition among bids submitted about the same time. But

only increasing the rate of arrival does not increase the competition in MOVMPA, because

it only needs one moment with available resources for a user to get the allocation in low

price.

In summary, we claim that MOVMPA improves the overall cloud experience for both

the users and the providers. In current auction mechanisms in cloud, the flexibility of price

comes with a risk of preemption of the resources. But MOVMPA ensures that the auction

environment will suit more to the real computing tasks and still the users will have an

option to bid for their required resources. The cloud provider benefits by serving more

users, gaining user satisfaction, and eventually increasing its overall revenue.

140

6.7 Summary

In this research work, we designed an online mechanism for VM provisioning and alloca-

tion in clouds. The mechanism provisions and allocates VM instances whenever enough

resources and matching bids are available. We proved that the mechanism is incentive

compatible, has a competitive ratio of M and runs in polynomial time. We performed

extensive experiments to determine the strength and weaknesses of the mechanism. The

mechanism increases the number of users served but at the cost of decreased average rev-

enue. However, the loss in average revenue may be offset by the increased number of served

users. We conclude that the proposed mechanism is a good choice for provisioning and

allocation of VM instances in clouds.

141

CHAPTER 7: FUTURE

RESEARCH DIRECTIONS

In this chapter, we outline possible research projects that may advance our research in

different directions in the future. We believe that our research will encourage new research

work in the area of resource provisioning and allocation in clouds. Here we mention three

research directions that can be pursued following our work.

7.1 Combinatorial Auction-Based Mechanisms

A direct extension of our work would be to setup a private cloud and implement the

mechanisms. These mechanisms then may be tested with simulated and actual workloads.

A theoretical extension of our work would be to consider a cloud computing platform that

does not have any preset configuration for virtual machines. In this setting, the users will

specify the resources they need on their VM instances and the mechanism will provision the

resources dynamically for them, following a combinatorial auction. Currently, the cloud

computing platforms offer VM instances with fixed configurations. Therefore, this research

can be a part of a project aiming at a more flexible future cloud provisioning and allocation

system.

7.2 Bidding in Combinatorial Auction-Based Mecha-

nisms

We designed an efficient bidding strategy for submitting non-malleable parallel jobs in

clouds. This research can be extended towards designing bidding strategies for different

types of jobs, eventually achieving a general bidding strategy that includes many different

142

types of tasks to be submitted on clouds. There are also open problems in assessing the

effect of the presence of different types of users (e.g., risk neutral, risk averse) in the system.

This research will be more interesting once cloud providers start deploying combinatorial

auction-based mechanisms to actually allocate VM instances through them.

7.3 Bidding Languages for Combinatorial Auctions in

Clouds

We investigated the problem of combinatorial auction-based mechanism design for single-

minded users. Although we provided insight about how different user behaviors can be

modeled using the single-minded property, it would be interesting to design mechanisms

for users with multiple alternatives in mind. In that case, researchers will be required to

define new bidding languages for VM allocation in clouds and design mechanisms pertaining

to these languages. The work by Wang et al. [66] could be a good starting point for research

in this direction.

7.4 Auction-BasedMarketplace for Federation of Clouds

Recently, researchers investigated the idea of building federations of clouds [10], but to the

best of our knowledge, it is not deployed as a real system yet. However, building federations

of clouds will open a new track of research problems in auction-based mechanisms. We

envision that a combinatorial auction-based marketplace would be the center of resource

allocation in a federated cloud. In such a marketplace, both users and providers will have

an opportunity to host and take part in auctions. This marketplace may also implement

an exchange for allocating cloud resources.

143

CHAPTER 8: CONCLUSION

In this Ph.D. dissertation, we presented our research accomplishments in the field of combi-

natorial auction-based virtual machine provisioning and allocation in clouds. We discussed

the background knowledge and presented a survey of relevant literature to lay the foun-

dation of our work. We identified important open problems in the field, formalized them,

and solved the problems by designing mechanisms and algorithms for them. We evaluated

each mechanism, both theoretically and experimentally. We discussed the advantages and

limitations of our solutions and identified their application areas. Throughout our the-

sis, we focused on a specific problem domain and investigated many different aspects of

this problem to get a comprehensive picture of the domain. Finally, we outlined future

directions of research that may stem from our work.

We believe that our thesis is a significant contribution to both the cloud computing in-

dustry and academic research. Following its many successful implementations in different

fields, we adapted combinatorial auction-based mechanisms to solve the VM provisioning

and allocation problem in clouds. These mechanisms will provide the cloud providers the

flexibility of dynamically determining the price of their resources. Also, the providers will

be free from building complex pricing models or generating user statistics for prediction

of system usage. On the other hand, different types of users will be able to select their

convenient and economic usage of cloud resources. If a huge system like cloud comput-

ing platforms start using combinatorial auctions, it will drive more theoretical researchers

to further improve the efficiency of these mechanisms. Finally, yet another successful

implementation of combinatorial auctions in computing will encourage computer science

researchers to look into other problems that may be solved using combinatorial auctions or

auction-based mechanisms in general.

REFERENCES

[1] J. Altmann, C. Courcoubetis, G. D. Stamoulis, M. Dramitinos, T. Rayna, M. Risch,

and C. Bannink. GridEcon: A market place for computing resources. In Proc. Work-

shop on Grid Economics and Business Models, pages 185–196, 2008.

[2] Amazon. Amazon EC2 pricing. http://aws.amazon.com/ec2/pricing/.

[3] Amazon. Amazon EC2 spot instances. http://aws.amazon.com/ec2/

spot-instances/.

[4] Amazon. Amazon Elastic Compute Cloud (Amazon EC2),

http://aws.amazon.com/ec2/.

[5] N. An, W. Elmaghraby, and P. Keskinocak. Bidding strategies and their impact on

revenues in combinatorial auctions. J. Revenue and Pricing Manag., 3(4):337–357,

2005.

[6] A. Andersson, M. Tenhunen, and F. Ygge. Integer programming for combinatorial

auction winner determination. In Proc. Fourth International Conference on Multi-

Agent Systems, pages 39–46, 2000.

[7] A. Archer, C. Papadimitriou, K. Talwar, and É. Tardos. An approximate truthful

mechanism for combinatorial auctions with single parameter agents. Internet Mathe-

matics, 1(2):129–150, 2005.

[8] A. Archer and É. Tardos. Truthful mechanisms for one-parameter agents. In Proc.

42nd IEEE Symposium on Foundations of Computer Science, pages 482–491, 2001.

[9] O. A. Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir. Deconstructing

amazon ec2 spot instance pricing. In Proc. 3rd IEEE Int’l Conf. on Cloud Computing

Technology and Science, 2011.

144

145

[10] R. Buyya, R. Ranjan, and R. N. Calheiros. InterCloud: Utility-oriented federation of

cloud computing environments for scaling of application services. In Proc. 10th In-

ternational Conference on Algorithms and Architectures for Parallel Processing, pages

13–31, 2010.

[11] E. Campos-Nanez, N. Fabra, and A. Garcia. Dynamic auctions for on-demand services.

IEEE Transactions on Systems, Man and Cybernetics–Part A: Systems and Humans,

37(6):878–886, 2007.

[12] T. E. Carroll and D. Grosu. Incentive-compatible online scheduling of malleable par-

allel jobs with individual deadlines. In Proc. 39th Intl. Conf. on Parallel Processing,

pages 418–425, 2010.

[13] F. Chang, J. Ren, and R. Viswanathan. Optimal resource allocation in clouds. In

Proc. 3rd IEEE Intl. Conf. on Cloud Computing, pages 418–425, 2010.

[14] J. Chen, X. Chen, and X. Song. Bidder’s strategy under group-buying auction on the

internet. IEEE Transactions on Systems, Man and Cybernetics–Part A: Systems and

Humans, 32(6):680–690, 2002.

[15] W. Chen, X. Qiao, J. Wei, and T. Huang. A profit-aware virtual machine deployment

optimization framework for cloud platform providers. In Proc. 5th IEEE International

Conference on Cloud Computing, pages 17–24, 2012.

[16] N. Chohan, C. Castillo, M. Spreitzer, M. Steinder, A. Tantawi, and C. Krintz. See spot

run: Using spot instances for MapReduce workflows. In Proc. 2nd USENIX Workshop

on Hot Topics in Cloud Computing, 2010.

[17] P. Cramton, Y. Shoham, and R. Steinberg. Combinatorial Auctions. The MIT Press,

2005.

146

[18] A. Das and D. Grosu. Combinatorial auction-based protocols for resource allocation in

grids. In Proc. 19th International Parallel and Distributed Processing Symposium, 6th

Workshop on Parallel and Distributed Scientific and Engineering Computing, 2005.

[19] R. K. Dash, P. Vytelingum, A. Rogers, E. David, and N. R. Jennings. Market-based

task allocation mechanisms for limited-capacity suppliers. IEEE Transactions on Sys-

tems, Man and Cybernetics–Part A: Systems and Humans, 37(3):391–405, 2007.

[20] S. de Vries and R. V. Vohra. Combinatorial auctions: A survey. INFORMS Journal

on Computing, 15(3):284–309, 2003.

[21] T. Dornemann, E. Juhnke, and B. Freisleben. On-demand resource provisioning for

BPEL workflows using amazon’s elastic compute cloud. In Proc. 9th IEEE/ACM Intl.

Symp. on Cluster Comp. and the Grid, May 2009.

[22] B. Edelman, M. Ostrovsky, and M. Schwarz. Internet advertising and the generalized

second-price auction: Selling billions of dollars worth of keywords. The American

Economic Review, 97(1):242–259, 2007.

[23] D. G. Feitelson. Parallel Workloads Archives: Logs. http://www.cs.huji.ac.il/

labs/parallel/workload/logs.html.

[24] D. G. Feitelson. Parallel Workloads Archives: Standard Workload Format. http:

//www.cs.huji.ac.il/labs/parallel/workload/swf.html.

[25] D. G. Feitelson. Job scheduling in multiprogrammed parallel systems. Research Report

RC 19790 (87657), IBM, 1994.

[26] R. A. Gagliano, M. D. Fraser, and M. E. Schaefer. Auction allocation of computing

resources. Communications of the ACM, 38(6):88–102, 1995.

[27] S. K. Garg, S. Venugopal, J. Broberg, and R. Buyya. Double auction-inspired meta-

scheduling of parallel applications on global grids. Journal of Parallel and Distributed

Computing (in press), 2013.

147

[28] R. Ghosh and V. K. Naik. Biting off safely more than you can chew: Predictive

analytics for resource over-commit in IaaS cloud. In Proc. 5th IEEE International

Conference on Cloud Computing, pages 25–32, 2012.

[29] J. Gomoluch and M. Schroeder. Market-based resource allocation for grid computing:

A model and simulation. In Proc. 1st International Workshop on Middleware for Grid

Computing, pages 211–218, 2003.

[30] D. Grosu. AGORA: An architecture for strategyproof computing in grids. In Proc.

3rd International Symposium on Parallel and Distributed Computing, pages 217–224,

2004.

[31] M. Hajiaghayi, R. Kleinberg, and T. Sandholm. Automated online mechanism design

and prophet inequalities. In Proc. National Conference on Artificial Intelligence, 2007.

[32] J. T. Havill and W. Mao. Competitive online scheduling of perfectly malleable jobs

with setup times. European J. of Oper. Res., 187(3):1126–1142, 2008.

[33] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. A. Bhattacharya. Virtual machine

power metering and provisioning. In Proc. 1st ACM Symposium on Cloud computing,

2010.

[34] U. Lampe, M. Siebenhaar, A. Papageorgiou, D. Schuller, and R. Steinmetz. Max-

imizing cloud provider profit from equilibrium price auctions. In Proc. 5th IEEE

International Conference on Cloud Computing, pages 38–90, 2012.

[35] D. Lehmann, L. I. O’Callaghan, and Y. Shoham. Truth revelation in approximately

efficient combinatorial auctions. Journal of the ACM, 49(5):577–602, 2002.

[36] A. Li, X. Yang, S. Kandula, and M. Zhang. CloudCmp: Shopping for a cloud made

easy. In Proc. 2nd USENIX Workshop on Hot Topics in Cloud Computing, 2010.

148

[37] W.-Y. Lin, G.-Y. Lin, and H.-Y. Wei. Dynamic auction mechanism for cloud resource

allocation. In Proc. 2010 10th IEEE/ACM International Conference on Cluster, Cloud

and Grid Computing, pages 591–592, 2010.

[38] X. Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, and D. Pendarakis. Efficient

resource provisioning in compute clouds via vm multiplexing. In Proc. 7th international

conference on Autonomic computing, 2010.

[39] A. Menychtas, A. Gatzioura, and T. Varvarigou. A business resolution engine for

cloud marketplaces. In Proc. 3rd IEEE Intl. Conf. on Cloud Computing Technology

and Science, pages 462–469, 2011.

[40] Microsoft. Purchase options - pricing - Windows Azure. http://www.microsoft.

com/windowsazure/offers/.

[41] Microsoft. Windows Azure FAQ. http://www.microsoft.com/windowsazure/faq/.

[42] Microsoft. Windows Azure platform, http://www.microsoft.com/windowsazure/.

[43] A. Mu’alem and N. Nisan. Truthful approximation mechanisms for restricted combi-

natorial auctions. In Proc. 18th National Conference on Artificial Intelligence, pages

379–384, 2002.

[44] N. Nisan, T. Roughgarden, É. Tardos, and V. V. Vazirani. Algorithmic Game Theory.

Cambridge University Press, 2007.

[45] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and

D. Zagorodnov. The eucalyptus open-source cloud-computing system. In Proc. of

the 9th IEEE/ACM Intl. Symp. on Cluster Comp. and the Grid, pages 124–131, May

2009.

[46] A.-M. Oprescu and T. Kielmann. Bag-of-tasks scheduling under budget constraints.

In Proc. 2nd IEEE Intl. Conf. on Cloud Computing Technology and Science, pages

351–359, 2010.

149

[47] D. C. Parkes. Online mechanisms. In N. Nisan, T. Roughgarden, É. Tardos, and V. V.

Vazirani, editors, Algorithmic Game Theory, chapter 16. Cambridge University Press,

2007.

[48] D. C. Parkes and S. Singh. An mdp-based approach to online mechanism design. In

Proc. 17th Annual Conference on Neural Information Processing Systems, 2003.

[49] D. C. Parkes, S. P. Singh, and D. Yanovsky. Approximately efficient online mechanism

design. In Proc. 18th Annual Conference on Neural Information Processing Systems,

2004.

[50] A. Quiroz, H. Kim, M. Parashar, N. Gnanasambandam, and N. Sharma. Towards auto-

nomic workload provisioning for enterprise grids and clouds. In Proc. 10th IEEE/ACM

International Conference on Grid Computing, pages 50–57, 2009.

[51] Rackspace Hosting. http://www.rackspace.com/.

[52] M. Risch, J. Altmann, L. Guo, A. Fleming, and C. Courcoubetis. The GridEcon plat-

form: A business scenario testbed for commercial cloud services. In Proc. Workshop

on Grid Economics and Business Models, pages 46–59, 2009.

[53] M. H. Rothkopf, A. Pekec, and R. M. Harstad. Computationally manageable combi-

natorial auctions. Management Science, 44(8):1131–1147, 1998.

[54] Salesforce. http://www.salesforce.com/.

[55] T. Sandholm. Algorithm for optimal winner determination in combinatorial auctions.

Artificial Intelligence, 135(1-2):1–54, 2002.

[56] M. Schwind, T. Stockheim, and O. Gujo. Agent’s bidding strategies in a combinatorial

auction controlled grid environment. In Proc. of AAMAS Agent Theories, Architec-

tures, and Languages, pages 149–163, 2006.

150

[57] W. Shi and B. Hong. Resource allocation with a budget constraint for computing

independent tasks in the cloud. In Proc. 2nd IEEE Intl. Conf. on Cloud Computing

Technology and Science, pages 327–334, 2010.

[58] P. Shivam, A. Demberel, P. Gunda, D. Irwin, L. Grit, A. Yumerefendi, S. Babu, and

J. Chase. Automated and on-demand provisioning of virtual machines for database

applications. In Proc. ACM SIGMOD International Conference on Management of

Data, pages 1079–1081, 2007.

[59] X. Sui and H.-F. Leung. An adaptive bidding strategy for combinatorial auction-

based resource allocation in dynamic markets. In Proc. 11th Pacific Rim Intl. Conf.

on Artificial Intelligence, pages 510–522, 2010.

[60] I. E. Sutherland. A futures market in computer time. Communications of the ACM,

11(6):449–451, 1968.

[61] W.-T. Tsai and G. Qi. DICB: Dynamic intelligent customizable benign pricing strategy

for cloud computing. In Proc. 5th IEEE International Conference on Cloud Computing,

pages 654–661, 2012.

[62] H. N. Van, F. D. Tran, and J.-M. Menaud. Autonomic virtual resource management

for service hosting platforms. In Proc. ICSE Workshop on Software Engineering Chal-

lenges in Cloud Computing, 2009.

[63] C. Vecchiola, R. N. Calheiros, D. Karunamoorthy, and R. Buyya. Deadline-driven

provisioning of resources fro scientific applications in hybrid clouds with aneka. Future

Generation Computer Systems, 28:58–65, 2012.

[64] E. Walker, W. Brisken, and J. Romney. To lease or not to lease from storage clouds.

IEEE Computer, 43(4):44–50, 2010.

151

[65] C. Wang, H. H. Ghenniwa, and W. Shen. Constraint-based winner determination for

auction-based scheduling. IEEE Transactions on Systems, Man and Cybernetics–Part

A: Systems and Humans, 39(3):609–618, 2009.

[66] H. Wang, Q. Jing, R. Chen, B. He, Z. Qian, and L. Zhou. Distributed systems meet

economics: Pricing in the cloud. In Proc. 2nd USENIX Workshop on Hot Topics in

Cloud Computing, 2010.

[67] R. Wang. Auctions versus posted-price selling. The American Economic Review,

83(4):838–851, 1993.

[68] R. Wolski, J. S. Plank, J. Brevik, and T. Bryan. Analyzing market-based resource

allocation strategies for the computational grid. Intl. J. of High Performance Comp

Appl., 15(3):258–281, 2001.

[69] S. Yi, D. Kondo, and A. Andrzejak. Reducing costs of spot instances via checkpoint-

ing in the amazon elastic compute cloud. In Proc. 3rd IEEE Intl. Conf. on Cloud

Computing, pages 236–243, 2010.

[70] M. Zafer, Y. Song, and K.-W. Lee. Optimal bids for spot VMs in a cloud for deadline

constrained jobs. In Proc. 5th IEEE International Conference on Cloud Computing,

pages 75–82, 2012.

[71] S. Zaman and D. Grosu. Combinatorial auction-based allocation of virtual machine

instances in clouds. In Proc. 2nd IEEE Intl. Conf. on Cloud Computing Technology

and Science, pages 127–134, 2010.

[72] S. Zaman and D. Grosu. Combinatorial auction-based dynamic VM provisioning and

allocation in clouds. In Proc. 3rd IEEE Intl. Conf. on Cloud Computing Technology

and Science, pages 107–114, 2011.

[73] S. Zaman and D. Grosu. Efficient bidding for virtual machine instances in clouds. In

Proc. 4th IEEE International Conference on Cloud Computing, 2011.

152

[74] S. Zaman and D. Grosu. An online mechanism for dynamic VM provisioning and

allocation in clouds. In Proc. 5th IEEE International Conference on Cloud Computing,

pages 253–260, 2012.

[75] E. Zurel and N. Nisan. An efficient approximate allocation algorithm for combinatorial

auctions. In Proc. 3rd ACM Conference on Electronic Commerce, pages 125–136, 2001.

153

ABSTRACT

COMBINATORIAL AUCTION-BASED VIRTUAL MACHINE
PROVISIONING AND ALLOCATION IN CLOUDS

by

SHARRUKH ZAMAN

May 2013

Advisor: Dr. Daniel Grosu

Major: Computer Science

Degree: Doctor of Philosophy

Current cloud providers use fixed-price based mechanisms to allocate Virtual Machine

(VM) instances to their users. But economic theory states that when there are large amount

of resources to be allocated to large number of users, auctions are the most efficient alloca-

tion mechanisms. Auctions achieve efficiency of allocation and also maximize the providers’

revenue, which a fixed-price based mechanism is unable to do. We argue that combinato-

rial auctions are best suited for the problem of VM provisioning and allocation in clouds,

since they provide the users with the most flexible way to express their requirements. In

combinatorial auctions, users bid for bundles of items rather than individual ones, there-

fore they are able to express whether the items they require are complementary to each

other. The objective of this Ph.D. dissertation is to design, study, and implement combina-

torial auction-based mechanisms for efficient provisioning and allocation of VM instances

in clouds. The central hypothesis is that allocation efficiency and revenue maximization

can be obtained by inducing users to fully express and truthfully report their preferences

to the system. The rationale for our research is that, once efficient resource provision-

ing and allocation mechanisms that take into account the incentives of the users and cloud

providers are developed and implemented, it will become more efficient to utilize cloud com-

puting environments for solving challenging problems in business, science and engineering.

154

In this dissertation, we present three combinatorial auction-based offline mechanisms for

provisioning and allocating VM instances in clouds. We also present an online mechanism

for dynamic provisioning of virtual machine instances in clouds. Finally, we designed an

efficient bidding algorithm to assist users submitting bids to combinatorial auction-based

mechanisms to execute parallel jobs on the cloud. We outline our contributions and possible

direction for future research in this field.

155

AUTOBIOGRAPHICAL STATEMENT

Sharrukh Zaman was born in the beautiful South Asian country, Bangladesh. His high

school was Mirzapur Cadet College and he completed his undergraduate degree from

Bangladesh University of Engineering and Technology (BUET), in Computer Science and

Engineering. He worked for about five years in Bangladesh in different positions – lecturer

at undergraduate university, software engineer at companies with domestic and offshore

clients, and mid-level management personnel/software development lead for a cellphone

operator.

Sharrukh started his Ph.D. program in the Department of Computer Science, Wayne

State University, in Fall 2007. He joined his advisor Dr. Daniel Grosu’s group in Fall 2008

to perform research on application of game theory and mechanism design in distributed

systems. His first area of work was replication in distributed systems. In this area, he

designed a distributed algorithm to solve the replica placement problem. His next research

was on combinatorial auction-based mechanisms in clouds, which eventually became his

Ph.D. dissertation topic. He completed a number of research projects in this area and co-

authored several papers with his advisor. The papers were published in top-tier conferences

in the field, such as the IEEE CloudCom, the IEEE CLOUD, and the CCGrid. He has a

few journal articles under review for the IEEE Transactions on Parallel and Distributed

Systems and the Journal of Parallel and Distributed Computing.

Following graduation, Sharrukh will join Epic Systems, Verona, Wisconsin as a software

developer. Epic is a software provider for healthcare systems and at the time of writing

this text, holds about 40% of the market share in this segment.

	Wayne State University
	DigitalCommons@WayneState
	1-1-2013

	Combinatorial Auction-Based Virtual Machine Provisioning And Allocation In Clouds
	Sharrukh Zaman
	Recommended Citation

