
Wayne State University

Wayne State University Dissertations

1-1-2016

Novel Machine Learning Methods For Modeling
Time-To-Event Data
Bhanukiran Vinzamuri
Wayne State University,

Follow this and additional works at: https://digitalcommons.wayne.edu/oa_dissertations

Part of the Computer Sciences Commons, and the Library and Information Science Commons

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in

Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Vinzamuri, Bhanukiran, "Novel Machine Learning Methods For Modeling Time-To-Event Data" (2016). Wayne State University

Dissertations. 1600.
https://digitalcommons.wayne.edu/oa_dissertations/1600

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1600&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1600&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1600&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1600&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1600&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1018?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1600&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations/1600?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1600&utm_medium=PDF&utm_campaign=PDFCoverPages

NOVEL MACHINE LEARNING METHODS FOR MODELING
TIME-TO-EVENT DATA

by

BHANUKIRAN VINZAMURI

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2016

MAJOR: COMPUTER SCIENCE

Approved By:

Advisor Date

DEDICATION

This dissertation is dedicated to parents and my Guru.

ii

ACKNOWLEDGEMENTS

I would like to extend my gratitude to my advisor Dr. Chandan K. Reddy for mentoring

me throughout my PhD. I have learned a lot from his perseverance and his desire to excel in

this extremely competitive world. I would also like to thank him for improving my technical

writing skills and being approachable to discuss issues.

I am grateful to Dr. Ming Dong, Dr. Dongxiao Zhu and Dr. Kazuhiko Shinki for

agreeing to be on my committee and I thank them for providing their valuable feedback on

my research.

I would also like to thank all the PhD and Masters students of the Data Mining and

Knowledge Discovery (DMKD) lab who have helped in building a productive and friendly

work environment. Finally, I am indebted to my parents, sister and guru for providing

necessary emotional and financial support to ensure the completion of my PhD.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . vii

LIST OF FIGURES . ix

CHAPTER 1: INTRODUCTION . 1

1.1 Time-to-event Data . 1

1.1.1 An Illustrative Example . 1

1.1.2 Statistical Interpretation . 3

1.1.3 Main Challenges . 6

1.2 Our Contributions . 7

1.3 Organization . 8

CHAPTER 2: PREDICTIVE MODELS FOR TIME-TO-EVENT DATA . 10

2.1 Non-Parametric Methods . 11

2.2 Semi-Parametric and Parametric Methods 13

2.2.1 The Proportional Hazards (PH) Model 14

2.2.2 Parametric Methods . 17

2.3 Machine Learning Methods . 18

2.4 Limitations of Existing Methods . 19

CHAPTER 3: REGULARIZED SURVIVAL REGRESSION MODELS . . . 21

3.1 Motivation . 21

3.2 Preliminaries . 25

3.3 Cox Regression with Correlation-based Regularization 27

3.3.1 FEAR-COX Algorithm . 28

3.3.2 OSCAR-COX Algorithm . 29

3.4 Experimental Results . 35

3.4.1 Experimental Setup . 35

iv

3.4.2 Evaluation Metrics . 38

3.4.3 Redundancy in Features . 39

3.4.4 Visualizing Sparsity of Models . 41

3.4.5 Scalability Experiments . 43

3.4.6 Biomarker Validation . 43

3.4.7 Discussion on Clinical Implications 45

CHAPTER 4: REPRESENTATION BASED SURVIVAL REGRESSION . 47

4.1 Motivation . 47

4.2 Preliminaries . 50

4.3 Calibration using the Inverse Covariance Matrix 52

4.3.1 REC Algorithm . 53

4.3.2 TREC Algorithm . 55

4.3.3 Algorithm Analysis . 57

4.4 Experimental Results . 60

4.4.1 Datasets Description . 61

4.4.2 Performance Evaluation . 63

4.4.3 Integrating REC and TREC with Survival Regression 64

4.4.4 Improvement in AUC with Imputed Censoring 65

4.4.5 Parameter Sensitivity Analysis . 67

CHAPTER 5: STRUCTURED MODEL FOR RIGHT CENSORED DATA 70

5.1 Motivation . 70

5.2 Preliminaries . 72

5.3 The Proposed SLIREC Algorithm . 74

5.3.1 Event Matrix Generation . 74

5.3.2 Structured Regularization based Linear Regression 76

5.3.3 Optimization . 79

5.3.4 Theoretical Analysis . 82

v

5.4 Experimental Results . 84

5.4.1 Implementation Details . 84

5.4.2 Evaluating Importance of Structured Regularization 85

5.4.3 Evaluation using Survival Models . 86

5.4.4 Goodness of Survival Prediction . 88

5.4.5 Scalability Experiments . 88

CHAPTER 6: ACTIVE LEARNING BASED SURVIVAL REGRESSION . 92

6.1 Motivation . 92

6.2 Preliminaries . 96

6.3 Active Learning with Regularized Survival Analysis 98

6.3.1 RegCox: Regularized Cox Regression 98

6.3.2 Model Discriminative Gradient-Based Sampling 101

6.3.3 Proposed ARC Algorithm . 102

6.3.4 Flow Diagram of ARC . 103

6.4 Experimental Results . 104

6.4.1 Datasets Description . 104

6.4.2 Implementation Details . 106

6.4.3 Goodness of Prediction . 107

6.4.4 Comparison of Sampling Strategies 109

6.4.5 Importance of Censored Samples . 109

CHAPTER 7: CONCLUSIONS AND FUTURE WORK 112

APPENDIX : LIST OF PUBLICATIONS . 115

REFERENCES . 124

ABSTRACT . 125

AUTOBIOGRAPHICAL STATEMENT . 127

vi

LIST OF TABLES

Table 2.1 Commonly used parametric distributions in survival analysis. 17

Table 3.1 Notations used in this chapter. 24

Table 3.2 An example to demonstrate right censoring for 30-day readmission . . . 24

Table 3.3 Description of EHRs used in our experiments. 38

Table 3.4 Redundancy of features selected by FEAR-COX and OSCAR-COX against
feature selection algorithms. 40

Table 3.5 Survival AUC values of FEAR-COX and OSCAR-COX against state-of-
the-art algorithms. 41

Table 3.6 Brier score values of FEAR-COX and OSCAR-COX against state-of-the-
art algorithms. 41

Table 3.7 Statistical association between biomarkers and heart failure readmission. 45

Table 4.1 Notations used in this chapter. 51

Table 4.2 Kickstarter data statistics for 18,143 projects. 61

Table 4.3 Description of censored statistics in the Kickstarter projects. 61

Table 4.4 Basic Statistics for EHRs. 62

Table 4.5 Comparison of Survival AUC values for different regularized Cox regres-
sion algorithms without and with TREC applied on kickstarter, EHR
and synthetic censored datasets. 64

Table 4.6 Comparison of Survival AUC values for different survival algorithms
without and with TREC applied on kickstarter, EHR and synthetic
censored datasets. 65

Table 5.1 Notations used in this chapter. 72

Table 5.2 Description of the datasets used. 84

Table 5.3 Survival AUC and standard deviation values for the SLIREC algorithm
compared to other survival regression models. 89

Table 5.4 Integrated Brier score values for the SLIREC algorithm compared to
other survival regression models. 89

Table 6.1 Notations used in this chapter. 97

Table 6.2 Description of the datasets. 104

Table 6.3 Comparison of Survival AUC (std) values in ARC w.r.t. different regu-
larizers. 107

vii

Table 6.4 Comparison of MSE (std) values of ARC w.r.t. different regularizers. . . 108

viii

LIST OF FIGURES

Figure 1.1 A sample illustration of survival data. 2

Figure 2.1 Categorization of machine learning methods for time-to-event data. . . 10

Figure 2.2 Kaplan Meier curve for data in Figure 1.1. 12

Figure 3.1 Correlation Heat maps for visualizing the diverse correlation structure
present in EHRs . 22

Figure 3.2 Patient readmission cycle at a hospital. 36

Figure 3.3 Boxplot visualizing the regression coefficients of the sparse variables se-
lected by the regularized Cox regression algorithms. 42

Figure 3.4 Scalability w.r.t the number of instances. 44

Figure 3.5 Scalability w.r.t the number of features. 44

Figure 4.1 Flow diagram for the proposed calibrated survival analysis approach on
a EHR dataset. 49

Figure 4.2 Percentage of right censored instances in EHR and Kickstarter datasets. 61

Figure 4.3 Survival AUC plots obtained for calibrated synthetic and EHR datasets
using REC, TREC, SoftImpute and Misglasso methods. 66

Figure 4.4 Survival AUC plots obtained for calibrated kickstarter datasets using
REC, TREC, SoftImpute and Misglasso methods. 67

Figure 4.5 Runtime on Kickstarter dataset using L1, L2 norms in TREC. 68

Figure 4.6 Iterations for convergence using L2 norm based TREC. 68

Figure 5.1 Illustrative example of SLIREC algorithm on a sample right censored
dataset. 73

Figure 5.2 Visualizing structure in the event matrices for two survival datasets. . . 76

Figure 5.3 Performance comparison using CCA, OPLS, SSL and SLIREC methods
on various survival datasets. 87

Figure 5.4 Measuring improvement in runtime before and after applying the approx-
imation scheme in SLIREC for Lung dataset. 90

Figure 5.5 Measuring improvement in runtime before and after applying the approx-
imation scheme in SLIREC for DLBCL dataset. 91

Figure 6.1 Survival Regression viewed as a binary classification problem. 93

Figure 6.2 Active learning cycle for time-to-event data. 94

Figure 6.3 Block diagram of the active learning framework with KEN-COX regression.103

ix

Figure 6.4 Readmission probabilities for patients computed within 30, 60 and 90
days post discharge from index hospitalization. 106

Figure 6.5 Comparison of the active learning rates of ARC with 4 different regular-
izers over real-world and synthetic datasets. 110

Figure 6.6 Censoredness plot for Breast and Colon datasets. 111

x

1

CHAPTER 1: INTRODUCTION

Knowledge extraction from time-to-event data [1–4] is an upcoming field of research

which has wide utility in different real-world applications such as healthcare, finance and

engineering. Time-to-event data is different from other forms of relational data, as this data

has a unique temporal structure. In such data, a domain expert monitors the occurrence

of a defined event of interest. In addition, the duration of study is also defined here within

which the expert monitors the event occurrence.

1.1 Time-to-event Data

In many studies, the outcome of interest is related to the timing of the occurrence of an

event. This can be explained by considering a clinical setting, where one may be interested in

measuring how long a chronically ill patient survives after receiving a certain treatment. In

another scenario, one may be interested in determining which of the three drugs, compared

to a placebo, provides symptom relief most rapidly.

Imagine that a hospital is interested in monitoring the survival status of a patient fol-

lowing a first heart attack. The study could begin when the first patient, following his or

her first heart attack, is randomly assigned to a follow-up program, with additional patients

enrolled through time. Conversely, the study could begin with a cohort of subjects, each of

whom has had their first heart attack, and were randomly assigned to a follow-up program.

In either case, there are potentially three outcomes that could occur with each patient, with

the event of interest being the death of the patient. These are (1) the patient dies; (2) the

patient drops out of the study thereby becoming a loss to follow-up which could occur for

any number of reasons, such as relocating geographically; or (3) the event of interest does

not occur to the patient during the period of study. These three mutually exclusive events

are the foundation for survival analysis studies.

1.1.1 An Illustrative Example

We present an illustration of time-to-event survival data which demonstrates the three

cases mentioned above. In Figure 1.1, we present a simple example where 5 patients are

2

studied and the event of interest is the death of the patient. Subject C and Subject E have

the event of interest recorded for both of them, whereas Subject B and Subject D survive

the entire observation period. Their survival time is known to be for a length of time that

is greater than the length of the study. This is known as type I censoring. Subject A drops

out of the study after 6 months.Survival Data

Subject A

Subject B

Subject C

Subject D

Subject E
X 1. Subject E dies at 4 months.

Beginning of study End of study
Time in months

2. Subject A
drops out after 6

months

X 3. Subject C dies
at 7 months

4. Subjects B
and D survive
for the entire
year-long
study period

Figure 1.1: A sample illustration of survival data.

Such instances for which the exact endpoints are not known, because the subject dropped

out of the study, was withdrawn from the study, or survived beyond the termination of the

study are called right censored data, because the survival times extend beyond the right tail

of the distribution of survival times. Generally, for purposes of analysis, a dichotomous, or

indicator, variable is used to distinguish survival times of those subjects who experience the

event of interest and those that do not because of one of the censoring mechanisms described

above. Typically, this variable is called a status variable, with a zero indicating that an event

did not occur and hence the survival time is censored, and a 1 indicating that the event of

interest did occur.

Although, a vast majority of published research using survival analysis methods is clinical

3

in nature, it should be noted that there are many non-clinical uses for survival analysis

as well. With the advent of computer-based statistical programs to help with complex

calculations, the use of survival analysis methodologies has increased demonstrably among

many disciplines. For example, engineers may wish to know the time it takes for a battery to

lose its charge, a quality-control scientist at a manufacturing plant may wish to understand

at which point machines need to be recalibrated, or an ecologist may want to estimate how

long the average carcass remains in a study area before it is scavenged.

1.1.2 Statistical Interpretation

We now present the mathematical concepts for interpreting time-to-event data, and we

also emphasize on data distributions commonly encountered in such analyses. Time-to-

event data are distributed temporally, such that events occur either at some point, or within

some interval of time. These events are considered to represent a random variable having

some probability of occurrence at each time period for each subject in the study. To set

up the framework for survival data with right censoring, two random variables need to

be defined namely, Tsurv and Tcens. The former corresponding to the survival time and

the latter corresponding to the censoring time. A common censoring scheme applied to

survival data is administrative censoring, where the censoring time is determined by the

termination of the study. The crucial condition for the kind of survival analysis discussed

here is that the survival time Tsurv and the censoring time Tcens are independent. For

both the random variables the cumulative distribution functions Fsurv(t)=P (Tsurv ≤ t) and

Fcens=P (Tcens ≤ t). The survival function S(t) and the censoring function G(t) are defined

as given in Eq. (1.1). The observed survival time is labeled as the minimum of Tsurv and

Tcens. The censoring indicator δ is set to 0 if T=Tcens and 1 if T=Tsurv. A related concept

is the cumulative hazard function denoted by H(t). H(t) and S(t) are closely related as in

H(t)=-ln(S(t)) and S(t)=exp(−H(t))

The cumulative distribution function (cdf) represents the probability that an event time

is less than or equal to some specified measurement time t. F (t) is an increasing function

4

that runs from a value of zero (it is assumed theoretically that no events have occurred at

the initiation of the study), to a value of 1 (it is assumed theoretically that all events have

occurred at the conclusion of the study). In the context of survival analysis, a closely related

function that is more commonly used than F (t) is a function that runs from a value of 1

(it is assumed that all subjects at the initiation of the study have survived to that point)

to a value of zero (it is assumed theoretically that none of the subjects have survived when

the study ends, though some subjects may be censored). Conveniently, this is known as

the survival distribution, S(t), and is mathematically related to the cumulative distribution

function as mentioned in Eq. (1.1).

F (t) = P (T ≤ t) (1.1)

S(t) = 1− Fsurv(t) = P (Tsurv > t)

G(t) = 1− Fcens(t) = P (Tcens > t)

The probability distribution function is represented by the set of probabilities that spec-

ify the possible values of a random variable. In the context of survival analysis, this density

function represents the probability of an event occurring in a defined interval of time. Al-

though, fully appreciating the intricacies of this probability distribution requires knowledge

of calculus, we can illustrate its meaning conceptually by using some of the properties of the

normal distribution. When we calculate the probabilities for the normal distribution, we are

interested in calculating the area under a curve that was bounded by two values. Similarly,

in survival analysis we are interested in calculating the probability of an event bounded by

an interval of time, say ∆t and then finding our probability as the interval becomes very

small, that is as ∆t → 0. Hence, the probability distribution function, f(t), is defined by

Eq. (1.2).

f(t) =
∆F (t)

∆t
= −∆S(t)

∆t
(1.2)

That is, the set of probabilities of events that occur in an infinitesimally small interval of

5

time defines the probability function. It is also possible to find this function by examining

what happens during a change in F (t), say ∆F (t), or a change in S(t), say ∆S(t), in a given

interval of time.

The mean survival time is another important metric of interest in survival analysis, which

is defined as µ = E[X] and which maybe further expressed as µ=
∫∞

0
S(t)dt. This gives the

expected lifetime for an individual with a given survival function which is sometimes needed

in survival analysis to estimate the life expectancy. Although the hazard function is difficult

to estimate directly in survival analysis, it plays an important role in understanding the

process of survival. A decreasing hazard function implies that the prognosis gets better as

you live longer, and an increasing hazard function implies that the prognosis gets worse as

you live longer.

Finally, a function that is often encountered in survival analysis is the hazard function,

h(t). This function is used to define the instantaneous probability of an event occurring,

given that the subject has survived up to a given time t. This function is defined as in

Eq. (1.3).

h(t) =
P (t ≤ T < t+∆t|T ≥ t)

∆t
∆t→ 0 (1.3)

h(t) =
f(t)

S(t)

This function is based on a conditional probability, wherein we are interested in calcu-

lating the probability of an event occurring given that the subject has already survived until

a particular time point. The condition of having already survived to a given time means

that the probability of surviving into the future is influenced by having already survived

previous time periods. This idea can be very important in some situations, where surviving

the early stages of a disease may dramatically decrease the potential of an event occurring

in the near future. As an example, consider cancer where non-recurrence, or remission, for

a period of 5 years generally increases survivorship. This function can also be expressed

in terms of the two functions previously defined in Eq. (1.3). This expression is defined so

6

because, the hazard function can exceed 1, so it is not truly a probability, though it is based

on the conditional probability of an event occurring. The hazard function is often defined in

survival analysis by a known distribution such as the lognormal, exponential, or a Weibull

distribution.

1.1.3 Main Challenges

We now explore the challenges that will be addressed in this dissertation while building

models for time-to-event data which are as follows.

• Correlation: In longitudinal data, it is observed that the data exhibits different kinds

of correlations which are as follows (i) Inter-event correlation: Instances for which the

events are observed tend to be correlated with each other. For example, two patients

who were readmitted within 30-days of discharge for a disease, most often have a lot of

similarity in the actions which triggered their readmission. (ii) Intra-event correlation:

The covariates of an electronic health record (EHR) for a patient have a non-uniform

effect in determining the survival status, which is why this intra-event correlation is

an extremely important factor in predicting event occurrence.

• Missing information: During the period of observation, the events are not observed

for all the patients, because of several reasons such as loss of follow-up or early ter-

mination of the study. In such cases, these patients do not have any time-to-event

labels associated with them and they are called as right censored instances, as they

only have a censoring time associated with them. This causes a significant problem

while learning models from time-to-event data.

• Lack of adaptability: Prominent machine learning methods such as linear regression

offer several benefits when applied for prediction on right censored data. However, ex-

isting linear regression-based methods are non-intuitive and they rely on user specified

parameters to interpret the censoredness from the data. In such scenarios, it is ex-

tremely desirable to extend the linear regression model to right censored data, so that

it can interpret the inherent patterns (such as the underlying structure of the data)

7

and use this knowledge extensively for prediction. The motivation for this approach is

that it does not rely on user specified parameters and it can make the linear regression

model more adaptable to different distributions of events and censored instances in the

data.

• Insufficient training instances: Models built on such data rely heavily on the

quality of training data available. Instances for which the event is observed have an

event label defined and they can be added to the model directly. However, including

censored instances in the model which do not have labels, has to be decided judiciously

by assessing the influence of adding the instance in the model. This is a non-trivial

task and the model has to include only those censored instances in the training data,

which are having a significant impact on the model performance.

1.2 Our Contributions

We now mention the major contributions of the proposed machine learning models for

time-to-event data. They are as follows.

• We address the problem of building survival models which can infer intra-event cor-

relation by proposing two diverse regularizers. We address two forms of intra-event

correlation which are feature based correlation and grouped correlation, respectively.

Correlation among features in survival data is addressed using the FEAture Regular-

ized Cox (FEAR-COX) algorithm. Grouped correlation (structured sparsity) among

covariates in survival data is addressed using the Octagonal Shrinkage Clustering Al-

gorithm Regression (OSCAR-COX). The performance of these algorithms is studied

exhaustively on longitudinal EHRs obtained from a large hospital. These regularizers

are also compared to state-of-the-art regularization methods in the literature.

• We propose a representation learning method for imputing times for the censored in-

stances, which estimates the censored times by inferring the correlation pattern among

different censored instances. This method uses a novel two-dimensional imputation

approach which incorporates the inter-event and intra-event correlation to estimate

8

the time-to-event label for censored instances using a sparse inverse covariance based

imputation method. This is called the Transposable REgularized covariance based

calibration method (TREC). This learned new representation of the original survival

dataset using TREC is then used for subsequent survival analysis.

• We present a method called Structured regularization based LInear REgression al-

gorithm for right Censored data (SLIREC) which infers the underlying structure of

the survival data directly and uses this knowledge to guide the base linear regression

model. This structured approach is more robust compared to the standard statistical

and Cox-based methods, as it can automatically adapt to different distributions of

events and censored instances in the dataset which is very useful when dealing with

different real-world datasets.

• We propose an active learning based survival regression method which can efficiently

identify important censored instances from the survival dataset which are contribut-

ing most in order to build an effective survival model. This active learning method

is generic as it uses the gradient of the loss function employed in the learning algo-

rithm. We implement this active learning approach using the regularized Cox regression

framework to present the Active Regularized Cox (ARC) algorithm.

1.3 Organization

This dissertation is organized as follows. In Chapter 2, we present an overview of popular

survival analysis methods such as non-parametric, semi-parametric and ensemble methods,

and conduct an in-depth literature study on different models for time-to-event data in these

three categories. In Chapter 3, we present our regularized Cox regression algorithms which

proposes two correlation-based regularizers to handle diverse intra-event correlation in longi-

tudinal data. In Chapter 4, we present our representation learning based survival regression

algorithm which is successful in learning a novel representation for survival data. This algo-

rithm infers the time-to-event label using an imputation-based inverse covariance method.

In Chapter 5, we present our Structured regularization based LInear REgression algorithm

9

for right Censored data (SLIREC) which extends the linear regression model by making it

more adaptable to right censored data. In Chapter 6, we present our active learning-based

survival regression approach, which is the first method to successfuly use the active learning

methodology for survival data to obtain a model with more informative and lesser number

of training instances. Finally, in Chapter 7, we draw conclusions from all these algorithms

and briefly discuss methods for extending them.

10

CHAPTER 2: PREDICTIVE MODELS FOR TIME-TO-EVENT DATA

In this section, we present the related work on existing machine learning methods pro-

posed for time-to-event data. We provide a flow diagram in Figure 2.1 which represents

different kinds of methods described in this chapter.

Time‐to‐event
data

Non
parametric ML basedParametricSemi

parametric

SuperPC KM Cox
Regression

AFT

Optimization Probabilistic Ensemble

Feature based
Regularization

Graph based
Regularization

Structured
Sparsity based
Regularization

LASSO
COX

EN
COX

FEAR
 COX

LAPNET
COX

OSCAR
COX

Fused
LASSO COX

ADAP
LASSO COX

SVM Neural
Network

Naïve
Bayes

Bayesian
Network

RSF COX
Boost Boost CI

Figure 2.1: Categorization of machine learning methods for time-to-event data.

In this chapter, we discuss about different non-parametric estimation methods [4, 5]. This

is followed by explaining the most important semi-parametric method studied in the survival

analysis literature called Cox regression [6]. We study its partial log-likelihood formulation

in detail. We segregate the existing methods for time-to-event data into three categories,

namely, non-parametric, semi-parametric and parametric methods. Non-parametric methods

such as the Kaplan-Meier (KM) and Nelson-Aalen (NA) estimator directly conduct inference

11

on the data without making any assumptions about the distribution. Semi-parametric meth-

ods make a trade-off between non-parametric and parametric methods by trying to extract

information from the covariates present in the dataset, and they do not make any additional

assumptions on the distribution of the hazard function [1–3].

Parametric methods, on the other hand, make assumptions apriori on the distribution of

the functions involved completely and conduct maximum likelihood estimation for learning

the model parameters directly. These methods make assumptions which seem to be confined

to a fixed distribution alone while conducting survival analysis which need not be the case

with survival data sampled from multiple distributions. This is the main motivation to prefer

semi-parametric methods over parametric methods in survival analysis. We now study each

of these methods in detail in the following sections.

2.1 Non-Parametric Methods

Non-parametric methods are used frequently for survival analysis as they make no as-

sumptions about the hazard function and conduct estimation. We start by explaining the

Kaplan-Meier (KM) estimator. The starting point for the KM estimator is considering a

sample of n independent observations (t1, δ1), (t2, δ2), . . . , (tn, δn) from (T,δ). The following

notation is introduced from the field of counting processes.

ŜKM(t) =
∏

s≤t

(

1− △N̄(s)

Ȳ (s)

)

(2.1)

Let Yi(t)=1{ti ≥ t}, Ȳ (t)=Σn
i=1Yi(t), Ni(t)=1{ti ≤ t, δi = 1}, N̄(t)=Σn

i=1Ni(t). The risk

set R(t) = {i; ti ≥ t} represents the set of instances who are at risk at a given time t, and

△N̄(t) is the number of events at time t. This KM estimator is one of the most widely used

non-parametric estimators of the survival function. It can be interpreted as a conditional

survival function resulting from a partitioning of the time scale and estimating the survival

function on each partitioning. In Figure 2.2, we plot the KM curve for the data considered

in Figure 1.1. This KM estimator can also be defined similarly for the censoring function

12

ĜKM(t) and the hazard functions ĤKM(t).

H(t) =

t∫

0

h(s)ds (2.2)

ĤKM(t) = −ln(ŜKM(t)) =
∑

s≤t

ln(1− △N̄(s)

Ȳ (s)
)

Corresponding Kaplan-Meier Curve

100 %

Subject C dies at 7
months

Fraction surviving
this death = 2/3

Time in Months

Figure 2.2: Kaplan Meier curve for data in Figure 1.1.

We now look at other methods for non-parametric survival analysis such as supervised

principal components (SuperPC). This is a method which selects features from survival data

which have a direct effect on the time-to-event. The steps involved in this algorithm involve

computing the standard regression coefcients for each feature and then form a reduced data

matrix consisting of only those features whose univariate coefcient exceeds a pre-defined

threshold in absolute value. Subsequently, the selected principal components of the reduced

data matrix are used in a regression model to predict the time-to-event outcome [7].

Multiple imputation for censored data is a method where the failure times are imputed

using an asymptotic data augmentation scheme based on the current estimates and the

baseline survival curve [8]. Once this is done a standard procedure such as Cox regression is

13

applied to the imputed data to update the estimates. A similar problem has been dealt with

in the crowdsourcing domain which predicts the time-to-event directly using the survival

function [9, 10]. Misglasso is an extension to the approach for imputing missing values by

using the graphical lasso algorithm [11–13]. Other popular approaches include the SoftIm-

pute algorithm which uses a nuclear norm minimization subject to constraints to fill the

missing entries [14].

Risk stratified imputation in survival analysis is another approach which performs strat-

ified imputation of missing time-to-events based on groups of patients who are similar to

each other. The stratification is done to ensure that not too many samples are imputed, and

all the imputation is done among censored instances which are similar to each other. An

auxiliary variable approach to multiple imputation in survival analysis is proposed here [15]

with the goal to improve efficiency using Monte Carlo methods.

2.2 Semi-Parametric and Parametric Methods

Cox regression is a semi-parametric method which uses the proportionality hazards (PH)

assumption. It is widely used because of its effective performance and ease of availability.

However, due to its maximum likelihood-based formulation, Cox regression tends to overfit

data. This problem is solved by introducing regularizers into Cox regression to reduce the

variance of the obtained solution.

The Lasso regularizer which is based on the L1 norm was integrated with the partial

log-likelihood function and the corresponding optimization problem was solved using the

iteratively reweighted least squares algorithm. Lasso provides sparse solutions, but when

selection has to be conducted over several correlated variables it selects one variable and

does not consider the remaining variables. The elastic net regularizer which uses a convex

combination of the L1 and L2 norms is effective for correlated survival data and the elastic net

Cox (EN-COX) algorithm is implemented using a cyclic coordinate descent algorithm [16].

The computation in this algorithm is accelerated by approximating the Hessian computation

involved. To incorporate more feature-based information, graph regularization has also been

14

used with Cox regression, where the graph Laplacian is used as a penalty [17–19]. The graph

laplacian can successfully capture feature similarities through its structure and this penalty

tries to keep similar coefficient values for connected features in the graph. Such graph-based

regularized Cox models can also be stabilized using the regularizers built on the feature

graph. The Jaccard graph is used here to obtain stability in the model. In a similar way, the

adaptive lasso regularizer can also be used with Cox regression which improves performance

over the LASSO-COX model [20–22]. In this algorithm, LASSO-COX is applied on the

survival dataset, then the inverse of the obtained regression coefficients are used as weights

to run further rounds of the LASSO-COX algorithm. This approach was observed to be more

biased towards features initialized with higher weights, but it obtained superior performance

in many cases. Fused-lasso is a similar regularizer which imposes sparsity on the model by

imposing temporal smoothness among the regularizer coefficients to ensure stability of the

coefficient values. Regularizers such as scout were also integrated with Cox regression [23].

These come under the supervised covariance-based regression models which consider the

covariance matrix over the features and impose sparsity on it. The inverse covariance matrix

represents the partial correlations between different features present in the dataset and this

method can be considered as a minor variant of the feature correlation-based regularizers

described above.

2.2.1 The Proportional Hazards (PH) Model

A very popular model in survival analysis is the proportional hazards (PH) model where

individual specific hazard functions hi(t) are learned, and the proportional hazards assump-

tion is made as given in Eq. (2.5). In this model, ci is constant and h0(t) is a baseline hazard

function which is left unspecified. The ci term can be replaced with exp(XTβ) to obtain the

Cox PH model [24].

hi(t) = cih0(t) (2.3)

h(t|X) = h0(t)exp(X
Tβ)

15

The effect of the covariates on the hazard can be modeled by taking ci=exp(XT
i β). The

survival function implied by the model is given in Eq. (2.4) where H0(t)=
∫ t

0
h0(s)ds is the

cumulative baseline hazard and the baseline survival function is given as S0(t)=exp(−H0(t)).

S(t|X) = exp(−exp(XTβ)H0(t)) = S0(t)
exp(XT β) (2.4)

A key feature of Cox regression model is that the hazard function of two individuals with

covariates X
′

and X
′′

respectively are proportional. This can be expressed as in Eq. (2.5)

and this ratio is constant over time. This ratio is called the relative risk for an individual

with covariates X
′

compared to X
′′

h(t|X ′

)

h(t|X ′′)
=

h0(t)exp(X
′

β)

h0(t)exp(X
′′β)

= exp[βT (X
′ −X

′′

)] (2.5)

The Cox regression model learns the regression coefficient vectors in survival analysis

using a method called the partial likelihood estimation. We now explain this concept by first

looking at the complete log-likelihood using the information summarized in the dataset in

the form of triplets (T, δ,X) as in Eq. (2.6)

L(h0, β) =
n∑

i=1

(−H0(ti)exp(x
T
i β) + δi(ln(h0(ti)) + xT

i β) (2.6)

Expanding this equation using H0(t) =
∑

s≤t h0(s) gives us Eq. (2.7) and for a fixed value

of β this expression is maximal for the breslow estimator, which is given as in Eq. (2.8).

L(H0, β) =
∑

t

(−h0(t)
∑

i

Yi(t)exp(x
T
i β) + ln(h0(t))△ N̄(t) +

∑

i

△Ni(t)x
T
i β)) (2.7)

Substituting the Breslow estimator in Eq. (2.7) gives us Eq. (2.9). In this equation, pl(β)

represents the partial log-likelihood which is given in Eq. (2.10).

ĥ0(t|β) =
△N̄(t)

∑

i Yi(t)exp(xT
j β)

(2.8)

16

A simplified and more often used version of the partial likelihood is provided in Eq. (2.11).

L(ĥ0(β), β) = pl(β) +
∑

t

(

−△N̄(t) + ln(△N̄(t))

)

(2.9)

pl(β) =
n∑

i=1

∞∫

0

ln(
exp(xT

i β)
∑

j Yj(t)exp(xT
j β)

)dNi(t) (2.10)

pl(β) =
k∏

i=1

exp(βTXi)
∑

j∈Ri
exp(βTXj)

(2.11)

Finally, we also present the logarithmic version of this partial likelihood which is often

used for MLE estimation in Cox regression in Eq. (2.12).

l(β) = log(pl(β)) =
k∑

i=1

βTXi −
k∑

i=1

log(
∑

j∈Ri

exp(βTXj)) (2.12)

The computation of the partial log-likelihood is changed if we consider tied event times

in survival data. For all the k unique time-to-event values we use di to represent the number

of times ti re-occurs in the survival data and Di to represent the set of indices with time ti.

In addition, we also let si =
∑

j∈Di
Xj then the approximations proposed by Breslow and

Effron can be found in Eq. (2.13).

l(β)breslow =
k∏

i=1

exp(βT si)
∑

j∈Ri
exp(βTXj)di

(2.13)

l(β)effron =
k∏

i=1

exp(βT si)
∏di

j=1[
∑

h∈Ri
exp(βTXh)− j−1

di

∑

l∈Di
exp(βTXl)]

The computation in Cox regression consists of maximizing the partial log-likelihood given

in Eq. (2.12) with or without the ties adjustment as given in Eq. (2.13), and then using the

estimated regression coefficient vector in the estimating functions given in Eq. (2.14) to

obtain the time dependent survival function. There are two ways to estimate the survival

function one is using the NA estimator and the other is using the analogue of the KM

17

estimator which is called the Product-Limit (PL) estimator. These are provided in Eq. (2.14).

ŜNA(t|X, β̂) = exp

(

− Ĥ0(t)exp(x
T β̂)

)

(2.14)

ŜPL(t|X, β̂) =
∏

s≤t

(

1− exp(xT β̂)ĥ0(s)

)

2.2.2 Parametric Methods

Parametric methods differ from semi-parametric methods, as these assume that the haz-

ard distribution is specified. The accelerated failure time (AFT) model is one of the popular

parametric survival models. We look at its formulation briefly. The AFT model assumption

is stated in Eq. (2.15) where S0 is the baseline survival function. From this equation it is seen

that covariates act multiplicatively on time so that their effect is to accelerate or decelerate

time-to-event relative to the basline survival function.

S(t|X) = S0(t)
exp(XT β) (2.15)

An equivalent popular formulation of AFT-model is the following linear regression for-

mulation for the log-transformed event time log(T) given X as in Eq. (2.16).

log(T) = −XTβ + ǫ. (2.16)

In this equation ǫ is assumed to be independent of X. The AFT model is appealing due

to its direct relationship between the failure time and the covariates. The semi-parametric

version of the AFT model is computationally intensive, but if we are willing to specify a form

for the baseline function, then the AFT model is fully parametric. We also specify some of

the commonly used parametric distribution in survival analysis in Table 2.1.

Table 2.1: Commonly used parametric distributions in survival analysis.

Distribution Hazard Rate Survival Function Probability Density Function
Exponential λ exp(−λt) λexp(−λt)
Weibull αλtα−1 exp(−λtα) αλtα−1exp(−λtα)
Log-Normal f(t)

S(t)
1-I(λt, β) λβtβ−1exp(λt)

τ(β)

18

Elastic net Buckley James (EN-BJ) [25] is a method which directly models the response

for events using the least squares method, and for the censored instances the response variable

is imputed using the conditional expectation values given the corresponding censoring times

and covariates. This algorithm uses the elastic-net regularization term with this AFT model

and was applied on high-dimensional genomic data obtaining good performance.

2.3 Machine Learning Methods

In this section, we present the machine learning methods used for analyzing time-to-

event data. We categorize these methods into three categories, namely, (i) Bayesian-based

(ii) Optimization-based and (iii) Ensemble-based. Censored Naive Bayes (CensNB) is a

bayesian approach which applies the standard Naive Bayes algorithm for censored data [26].

In this algorithm, the conditional survivor function is learned by initializing the functions

using non-parametric densities, which are then subsequently smoothed using a weighted loess

smoother. These models use an approach called inverse probability of censoring weighting

(IPCW) for each of the records in the dataset. This is a method which applies weights to the

censored instances inorder to account for censoring when compared to uncensored instances

(events). Similarly, bayesian networks based data imputation has also been used to enhance

the performance of survival trees. The imputation on missing instances is done using the

bayesian network computed on complete instances and the model has shown to perform well

in clinical trials.

We now look at ensemble methods for time-to-event data. The first method in this

category is CoxBoost which applies the boosting based paradigm to the Cox regression al-

gorithm by building a set of weak learners and learning their weights iteratively. A more

refined boosting framework for survival data is based on boosting the concordance index

(BoostCI) [27]. This method is based on optimizing the evaluation metric such as concor-

dance index (survival AUC) directly, rather than optimizing the maximum likelihood, which

has been observed to perform better in several scenarios. The algorithm computes the neg-

ative gradient of the concordance index and fits it separately to each of the components of

19

X and continues this until convergence is observed.

Random Survival Forests (RSF) is an ensemble method which uses a forest of survival

trees for prediction [28]. The basic intuition of the RSF algorithm is explained as follows.

The algorithm begins by drawing B bootstrap samples from the original data where 37% of

the data is excluded in each sample which is also called out-of-bag (OOB) data. A survival

tree is grown for each sample, where at each node we randomly select p candidate variables.

The node is split using the candidate variables that maximizes survival difference between

the daughter nodes. A constraint is used so that no terminal node has less than d0 unique

deaths. An ensemble cumulative hazard function is calculated using the cumulative hazard

function for each tree and the OOB data is used to evaluate the model. This approach was

found to provide competitive performance for many survival datasets.

Apart from this method other extensions to the linear regression model have been studied

extensively in the context of multi-response prediction. These include methods such as

canonical correlation analysis (CCA) [29], orthonormalized partial least-squares (OPLS) [30]

and shared subspace learning (SSL) [31] which attempt to reduce the dimensionality of high-

dimensional data and try to learn a projected representation onto the lower dimensional

space. Subsequently, regression models built on the learned projected space perform more

effectively.

2.4 Limitations of Existing Methods

We now look at the limitations of the methods discussed above. Non-parametric methods

such as KM, NA, CensNB and SuperPC are flexible to use, but they do not conduct any

form of inference on the survival data. Real-world survival data often needs some additional

interpretation through the form of methodical inference of its properties, so that effective

models can be built on them. In this dissertation, in Chapter 4, we study two different

representation learning-based algorithms which modify the representation of survival data by

capturing inherent properties such as intra-event and inter-event correlations in the dataset.

This helps in deciphering patterns in the survival data which can enhance the predictive

20

power of the base model.

Semi-parametric regression methods such as Cox regression suffer from the overfitting

problem, due to its MLE formulation. Traditional real-world survival data has complex

patterns which cannot be deciphered using simple regularizers such as the lasso and ridge.

In Chapter 3, we study more advanced properties in survival data such as structured sparsity

in the form of grouped correlation to propose regularizers to handle such data.

Survival data consists of both events and censored instances, and the model is built using

information from both these sources. However, the reliability of the information obtained

from censored instances is ambiguous, as they do not have defined time-to-event labels. The

models mentioned above directly use the censored times for these instances during model

building, which is inappropriate. In this problem, it is extremely important to determine the

influence of a censored instance on the model before including it in the training model. The

survival models mentioned above do not address this labelling problem with survival data

which is crucial to build reliable and effective models. These issues are addressed in detail

in Chapter 6.

21

CHAPTER 3: REGULARIZED SURVIVAL REGRESSION MODELS

3.1 Motivation

The necessity to build correlation-based regularized Cox regression algorithms can be

explained by considering the heterogeneous nature of electronic health records (EHRs) [32–

35]. A typical EHR can be obtained by concatenating data from several resources such as

demographics, comorbidities, procedures, medications, labs and insurance information. We

segregate all this information from a real EHR cohort considered in this dissertation, and we

plot the canonical correlation heatmaps between each of these groups. Canonical correlation

captures the correlation patterns among multi-dimensional datasets with the same number

of instances and different number of features by calculating the weights of the projection

vectors which maximize the correlation between these two datasets in the projected space.

This makes canonical correlation heat maps ideal to visualize the diverse correlation structure

in EHRs.

The correlation heat maps in Figure 3.1 indicate that the intensity of correlation among

the 6 different subgroups of EHRs are high, and this correlation pattern should be effec-

tively utilized by an algorithm to obtain accurate predictions. One can also observe that

as the correlation patterns are not uniform, which indicates the necessity to build complex

regularizers that can account for such heterogeneous and non-uniform grouped correlation

structure in EHRs.

In this chapter, we propose two algorithms which integrate novel regularizers in the Cox

regression framework, which addresses two forms of intra-event correlation, which are feature

correlation and grouped correlation, respectively. We present a generalized framework which

converts Cox regression to a modified least squares problem using the gradient and Hessian

information from the partial log-likelihood of Cox regression. This framework can be inte-

grated with any regularizer using the corresponding regularized least squares version solver.

For example, the traditional shooting LASSO least squares solver [36] can be integrated di-

22

−1.0

−0.5

0.0

0.5

1.0

value

demographics

la
bs

(a) Demographics-Labs

−1.0

−0.5

0.0

0.5

1.0
value

demographics

m
ed
ic
at
io
ns

(b) Demographics-Medications

−1.0

−0.5

0.0

0.5

1.0
value

demographics

pr
oc
ed
ur
es

(c) Demographics-Procedures

−1.0

−0.5

0.0

0.5

1.0
value

demographics

in
su
ra
nc
e

(d) Demographics-Insurance

−1.0

−0.5

0.0

0.5

1.0
value

comorbidities

de
m
og
ra
ph
ic
s

(e) Comorbidities-Demographics

−0.5

0.0

0.5

1.0
value

comorbidities

la
bs

(f) Comorbidities-Labs

Figure 3.1: Correlation Heat maps for visualizing the diverse correlation structure present
in EHRs

23

rectly with this framework to provide a more effective solution for LASSO-COX. We use this

framework exhaustively, and study a total of 7 regularized Cox regression methods of which

we implement 4 methods, namely, (fused-lasso (FLASSO-COX), adaptive-lasso (ALASSO-

COX), feature regularized (FEAR-COX) and oscar (OSCAR-COX) using this least squares

framework.

We propose a Feature Regularized Cox regression (FEAR-COX) algorithm which uses a

novel feature-based regularizer with the modified least squares formulation of Cox regres-

sion. Our experimental results demonstrate that this method is more effective than the

elastic net at handling correlated features. The novel pairwise feature similarity regularizer

in this method is obtained using a convex formulation which uses a positive semi-definite

matrix. We propose a graph-based OSCAR (Octagonal Shrinkage and Clustering Algorithm

for Regression) regularized Cox regression method (OSCAR-COX) which uses the oscar reg-

ularizer [37] based least squares solver with the modified least squares formulation of Cox

regression. This method is effective since it can capture structured sparsity (grouped corre-

lation) among the feature sets in EHRs. It exploits the graph structure of the features in

the dataset to capture this unique phenomenon in EHRs.

We demonstrate the improved discriminative ability of FEAR-COX and OSCAR-COX

using standard evaluation metrics in survival analysis such as concordance index (c-index)

and brier score. We also demonstrate the non-redundancy of the features selected by the

sparse models of FEAR-COX and OSCAR-COX and also visualize the sparsity of our pro-

posed models. In addition, we use the parsimonious models from FEAR-COX and OSCAR-

COX to identify important biomarkers for heart failure readmission from EHRs. We validate

the biomarkers identified using well known survey studies from the clinical informatics liter-

ature.

We now present a synthetic example which illustrates how patients are right censored in

an EHR setting. In Table 3.2, we consider a simple EHR dataset consisting of 4 instances.

In this example, the time is measured in days. The censoring time is set to 30 days for all

24

Table 3.1: Notations used in this chapter.

Name Description
X n x m matrix of feature vectors
T k x 1 vector of sorted unique failure times
Ri risk set of all patients j such that (tj ≥ ti)
di number of patients readmitted within time ti
δ n x 1 vector of censored statu.

β̂ m x 1 regression coefficient vector
S(·), G(·), h(·) survival, censoring and hazard functions
Fsurv(·), Gcens(·) cumulative survival and censoring functions
P Positive semi-definite feature regularizer matrix
E incidence graph on feature set

the patients. One can observe that instances with patient ID 122 and 21 are not censored

and hence δ is set to 1 with the survival time equivalent to the time to event of interest

(T). Instances with patient ID 61 and 45 are censored with δ set to 0. In this manner, right

censoring is applied on the instances in the dataset.

Table 3.2: An example to demonstrate right censoring for 30-day readmission

Patient ID T Event δ Interpretation
122 2 HF Readmission 1 Patient readmitted after 2 days
61 30 End of Study 0 Patient not readmitted even 30 days after discharge
45 6 Drop from Study 0 Lost follow up of patient 6 days after discharge
21 4 HF Readmission 1 Patient readmitted after 4 days

With a brief description of the survival regression framework, we now introduce some

notations that will help in comprehending the Cox regression framework in Table 3.3. Given

a dataset X which consists of n data points. Let xi denote the ith feature vector. Let

T = {t1 < t2 < t3 < . . . < tk} represent the set of sorted k unique time-to-event values.

δi represents the censoring status for the ith patient. δi=1 represents the occurrence of an

event and δi=0 represents a censored instance.

25

3.2 Preliminaries

The likelihood term in Cox regression can be written as in Eq. (3.1) and the partial log

likelihood is defined using Eq. (3.2).

l(β) =
n∏

i=1

{

exp(xT
i β)

∑

j∈Ri
exp(xT

j β)

}δi

(3.1)

L(β) = log(l(β)) =
n∑

i=1

δix
T
i β −

n∑

i=1

δilog

(
∑

j∈Ri

exp(xT
j β)

)

(3.2)

In the partial log likelihood equation, Ri is the set of all patients who are in the risk set

of the ith patient. In this Equation, the covariate values for the jth individual is represented

using xj.

∂L(β)

∂βj

=
n∑

i=1

δixij −
n∑

i=1

δi

∑

l∈Ri
exp(xT

l β)xlj
∑

l∈Ri
exp(xT

l β)
(3.3)

∂2L(β)

∂βj∂βk

= −
n∑

i=1

δi

[∑

l∈Ri
exp(xT

l β)xljxlk
∑

l∈Ri
exp(xT

l β)
(3.4)

−
∑

l∈Ri
(exp(xT

l β)xlj)
∑

l∈Ri
(exp(xT

l β)xlk)
∑

l∈Ri
(exp(xT

l β))
2

]

We now explain the procedure to convert Cox regression to a modified least squares

problem. We define these additional notations to explain our interpretation of Cox as a

modified least squares problem. In Algorithm 3.1, M is a triangular matrix obtained after

applying the Cholesky factorization on H. M is called the pseudo-design matrix. z is denoted

as the pseudo-response vector.

In Algorithm 3.1, the calculation of a pseudo-design matrix (M) and a pseudo-response

matrix(z) helps us solve Cox regression problem as a modified least squares problem. This is

very helpful considering that there are state-of-the-art least squares solvers which can then

be used for solving different variants of Cox regression problems. Similarly, penalized Cox

regression problems can also be converted into penalized least squares problems which then

26

become easier to solve with the existing solvers. However, the Hessian calculation in Cox

regression is computationally expensive which can hinder the performance of Algorithm 3.1.

It is so because for each of the m2 elements of the matrix we have to compute the risk

sets individually. So we use a trick here to improve the performance of the algorithm by

accelerating the Hessian computation. We set the H matrix to be equivalent to the diagonal

matrix of the elements of the diagonal of - ∂
2L(β)

∂βj∂βk
.

Finally in Algorithm 3.1, we estimate the values of β̂ iteratively until convergence is

obtained. Once the regression coefficient vector β̂ is estimated, we can obtain the baseline

hazard function using Eq. (3.5). After obtaining the baseline hazard function, we can com-

pute the hazard function h(t) for any given time t. This gives us the hazard or survival

probability estimates at any given time t with the trained Cox model.

h0(t) =
∑

i:ti≤t

δi
∑

j∈Ri
exp(β̂Txj)

(3.5)

Algorithm 3.1: Cox regression as a modified least squares problem

1 Input: Time-to-event labels T , Censored survival data X, Censoring Indicator δ,
Number of instances n, tolerance parameter tol, Maximum iterations
itermax.

2 Output: Regression coefficient vector β̂

3 Initialize β;
4 Derive the partial log-likelihood function L(β) using Eq. (3.2);
5 for j=1 to itermax do

6 Set G = −∂L(β)
∂βj

using Eq. (3.3);

7 Set H = − ∂2L(β)
∂βj∂βk

using Eq. (3.4);

8 Compute M ← cholesky(H);
9 Compute z ← (MT)−1 · (Hβ −G));

10 Solve arg min
β

(z −Mβ)T (z −Mβ);

11 if ‖ β − β̂ ‖2< tol then
12 break;
13 end

14 Set β = β̂;

15 end

27

3.3 Cox Regression with Correlation-based Regularization

In this section, we describe the algorithms developed by combining two novel correlation-

based regularizers with Cox regression. We integrate both these regularizers following the

same paradigm explained in Algorithm 3.1 where we convert Cox regression into its equivalent

least squares formulation (LSQ). This conversion helps us solve a regularized Cox regression

problem as a regularized least squares problem itself. This is a very critical part of all the

regularized Cox regression methods we discuss in this chapter including those presented in

Section 3.4. We do not explicitly mention this conversion in the discussion below and only

discuss the solutions for the regularized least squares variants itself to great detail. Finally,

we use these derived regularized least squares solvers in Step 9 of Algorithm 3.1 to obtain

the desired regularized Cox regression algorithm.

We now briefly discuss about how the regularizers presented in this section differ from the

most commonly used regularizers. Generally, most regularizers considered in the literature

are convex loss functions because of their desirable properties. The motivation for applying

convex functions in the clinical domain arises from the success achieved by using convex

non-smooth functions such as the L1 and the L2,1 norms for different applications [38].

Their properties of sparsity and group sparsity have proven to be very effective for such

applications.

Our novel regularizers are functions which use the L1, L2, and L∞ norms. Regularizers

also need a parameter which governs their importance in the framework. In general, this is

denoted as λ and is also called the regularization parameter. In this section, we present the

regularizers and their corresponding optimization routines used in the different variants of

the modified least squares formulation of Cox regression. This is followed by exploring the

feature based penalty and the Octagonal Shrinkage and Clustering Algorithm for Regression

(OSCAR) penalty. We now explain how these penalties can be integrated in the modified

least squares formulation of Cox regression, and then we present efficient solvers which are

later integrated in Algorithm 3.1 to obtain the FEAR-COX and OSCAR-COX algorithms,

28

respectively.

3.3.1 FEAR-COX Algorithm

In this section, we define the feature-based regularizer for the modified least squares

formulation of Cox regression, and we then discuss the cyclic coordinate descent method

for solving this optimization problem. This regularizer is defined in the context of the least

squares problem as follows. Consider a linear model as given in Eq. (3.6) where X ∈ R
n×m is

the data matrix, y ∈ R
n is the response vector and β is the regression coefficient vector. We

can assume that the model is standardized which implies that 1Ty=0, 1TXi=0 and XT
i Xi=1

y = Xβ + ǫ. (3.6)

The general problem being solved is given in Eq. (3.7). In this equation J(β) is a

non-negative valued penalty function. λ is a non-negative complexity and regularization

parameter. For the least squares formulation J(β)=0. For ridge regression J(β)=‖ β ‖22 and

for the lasso J(β)=‖ β ‖1. The overall minimization formulation will be as follows

β̂ = arg min
β

‖ y −Xβ ‖2 +λJ(β) (3.7)

We propose a feature-based convex regularizer and plug it into the regression framework.

The regularizer is used to incorporate the pairwise feature similarity into the regression

framework. Let P ∈ R
m×m be a positive semi-definite matrix.

J(β) = |β|TP |β| (3.8)

β̂ = arg min
β

‖ y −Xβ ‖2 +λ|β|TP |β|

J(β) is defined as in Eq. (3.8). This is followed by defining the formulation of the feature-

29

based regularizer in Eq. (3.8).

L(β) =‖ y −Xβ ‖2 +λ|β|TP |β| (3.9)

= yTy − 2qTβ + βTQβ + λ
∑

i,j

Pij|βiβj|

∂L

∂βi

= −2qi + 2QT
i β + 2λsgn(βi)

m∑

j=1

Pij|βiβj|

(Qii + Pii)βi + sgn(βi)λ
∑

j 6=i

Pij|βj| = qi −
∑

j 6=i

Qijβj

In Eq. (3.9), we provide the cyclic coordinate descent steps used in solving for β. We set

Q=XTX and q=XTy. This is followed by setting the derivative to zero and solving for the

ith coordinate of β keeping the remaining (i-1) components constant. In this formulation, S

is the soft-thresholding function and is defined as Sλ(x)=sgn(x)max(|x| − λ, 0).

To implement the FEAR-COX algorithm, we follow the steps outlined in Algorithm 3.1

and replacing the Equation in Step 9 of Algorithm 3.1 by the FEAR-COX solver procedure

provided in Algorithm 3.2. This replacement in Algorithm 3.1 makes use of a more efficient

regularizer in the form of the feature-based formulation to learn the corresponding regression

coefficient vector.

3.3.2 OSCAR-COX Algorithm

Structured sparsity (grouped correlation) in EHRs as illustrated in Figure 3.1 is a phe-

nomenon which is difficult to capture using regular sparsity inducing norms such as the

LASSO and elastic net. In practical applications, one often knows a structure on the co-

efficient vector in addition to sparsity. For example, in group sparsity, one assumes that

variables in the same group tend to be zero or nonzero simultaneously. If meaningful struc-

tures exist, we show that one can take advantage of such structures to improve the standard

sparse learning based Cox regression methods. In this algorithm, we incorporate the OSCAR

(Octagonal Shrinkage and Clustering Algorithm for Regression) regularization [37] into the

Cox regression framework.

30

Algorithm 3.2: Solver for the FEAR-COX Algorithm.

1 Input: Feature Vector X, Response variable y, Regularization parameter λ, PSD
Matrix P , Maximum number of iterations numiter, Tolerance tol,
Initialized coefficient vector β0

2 Output: Regression vector β

3 Initialize β0;
4 Q← XTX, q ← XTy, βold ← β ← β0;
5 for j=1 to numiter do
6 for i=1 to m do

7 βi ← S(Qiiβi−QT
i β+qi,λ(P

T
i |β|−Pii|βi|))

Qii+λPii
;

8 end
9 if ‖ β − βold ‖2< tol then

10 β ← diag(1 + Pii

Qii
)β;

11 return;

12 end
13 βold ← β;

14 end

OSCAR performs variable selection for regression with many highly correlated predictors.

The advantage of using this penalty over other penalties such as the elastic net and LASSO is

that this method promotes equality of coefficients which are similarly related to the response.

OSCAR obtains the advantages of both individual sparsity due to the L1 norm and the group

sparsity because of the pairwise L∞ norm. It can select features and form different groups

of features. In this way, OSCAR also does supervised clustering of the features. In this

chapter, we use the modified Graph OSCAR (GOSCAR) regularizer [37, 39, 40] in the Cox

regression formulation. The formulation of the GOSCAR penalty is given in Eq. (3.10). In

this formulation, E is the incidence matrix of the feature graph and L(β) is the loss function

which is the modified least squares loss function derived from the partial log likelihood of

Cox regression and λ1 and λ2 are the regularization parameters.

In this manner, a pairwise feature regularizer is added to the Cox regression formulation.

OSCAR has proven to be more effective than the elastic net in handling correlation among

variables and hence is more suited for EHR data as illustrated in Figure 3.1. For the sake

of simplicity, we refer to the GOSCAR-COX algorithm as OSCAR-COX throughout this

31

chapter.

β̂ = arg min
β

L(β) + λ1(‖ β ‖1) + λ2(‖ Eβ ‖1) (3.10)

In contrast to the FEAR-COX algorithm, the formulation in OSCAR-COX is non-

smooth. This problem can be solved using the alternate direction method of multipliers

(ADMM) [41] method effectively. The ADMM method has proven to have a very fast con-

vergence rate and is particularly useful for our problem. We now explain the OSCAR regres-

sion algorithm for regularized linear regression which can be used for solving the modified

least squares formulation of OSCAR-COX. This solution will use the ADMM formulation

for fast and efficient convergence. We now explain the formulation for the alternate direction

method of multipliers (ADMM).

The ADMM routine is used to solve problems of the form in Eq. (3.11). The variables

x ∈ R
n and z ∈ R

m where A ∈ R
p×n, B ∈ R

p×m and c ∈ R
p. f and g are assumed to be

convex functions.

argmin
x,z

f(x) + g(z) (3.11)

s.t. Ax+Bz = c

ADMM method uses a variant of the augmented lagrangian method and reformulates

the problem as given in Eq. (3.12). The update rule steps which are iteratively processed

in this method are given in Eq. (3.13). In Eq. (3.14), we provide a basic formulation of the

OSCAR penalty in the linear regression setting explained above.

Lρ(x, z, µ) = f(x) + g(z) + µT (Ax+Bz − c) (3.12)

+
ρ

2
‖ Ax+Bz − c ‖2

32

The update rule for ADMM is given by

xk+1 : = arg min
x

Lρ(x, z
k, µk) (3.13)

zk+1 : = arg min
z

Lρ(x
k+1, z, µk)

µk+1 : = µk + ρ(Axk+1 +Bzk+1 − c)

The GOSCAR regression algorithm uses the OSCAR penalty with a least squares loss

function. This is a modified form of the OSCAR penalty as given in Eq. (3.14) with the

addition of the incidence matrix E for the graph. We now explain the steps needed to

solve this modified OSCAR regression problem using the ADMM procedure. The ADMM

formulation for the GOSCAR regression algorithm is given in Eq. (3.15).

argmin
β
‖ y −Xβ ‖2 +λ1 ‖ β ‖1 +λ2

∑

i<j

max{|βi|, |βj|} (3.14)

argmin
β,q,p

1

2
‖ y −Xβ ‖2 +λ1 ‖ q ‖1 +λ2 ‖ p ‖1 (3.15)

s.t β − q = 0, Eβ − p = 0

Lρ(β, q, p, µ, v) =
1

2
‖ y −Xβ ‖2 (3.16)

+ λ1 ‖ q ‖1 +λ2 ‖ p ‖1 +µT (β − q)

+ vT (Eβ − p) +
ρ

2
‖ β − q ‖2 +ρ

2
‖ Eβ − p ‖2

βk+1 = argmin
β

1

2
‖ y −Xβ ‖2 +(µk + ETvk)Tβ (3.17)

+
ρ

2
‖ β − qk ‖2 +ρ

2
‖ Eβ − pk ‖2

33

Algorithm 3.3: OSCAR Solver for the modified least squares formulation of Cox
Regression.

1 Input: Feature Vector X,Response y,Incidence Graph E, Regularization
parameters λ1, λ2, Auxiliary parameter ρ, Maximum number of iterations
itermax

2 Output: Regression vector βk

3 Initialize p0 ← 0, q0 ← 0, µ0 ← 0, v ← 0;
4 for k=1 to itermax do
5 Compute βk+1 using Eq. (3.17);
6 Compute qk+1 using Eq. (3.18);
7 Compute pk+1 using Eq. (3.18);
8 Compute µk+1, vk+1 using Eq. (3.18);
9 k ← k + 1;

10 Continue until convergence;

11 end

qk+1 = argmin
q

ρ

2
‖ q − βk+1 ‖2 +λ1 ‖ q ‖1 −(µk)T q (3.18)

= Sλ1/ρ(β
k+1 +

1

ρ
µk)

pk+1 = Sλ2/ρ(Eβk+1 +
1

ρ
vk) (3.19)

µk+1 = µk + ρ(βk+1 − qk+1)

vk+1 = vk + ρ(Eβk+1 − pk+1)

In this formulation, q and p are the slack variables. E is the incidence matrix of the

graph. In Eq. (3.16), we obtain the augmented lagrangian function in terms of the variables

and lagrange multipliers µ and v. In this equation, ρ is the scalar augmented lagrangian

parameter which is derived using cross validation.

In Eq. (3.18), Sλ is the soft thresholding function. Sλ(x)=sgn(x)max(|x| − λ, 0). To

implement the OSCAR-COX algorithm, we follow the steps outlined in Algorithm 3.1 and

replace the Equation in Step 9 of Algorithm 3.1 by the OSCAR solver for the least squares

formulation of Cox provided in Algorithm 3.3.

34

The essence of both FEAR-COX and OSCAR-COX is the same that they are solving a

regularized least squares problem derived from Cox regression. However, the difference arises

in the usage of novel regularizers and different optimization methods for solving the regular-

ized least squares problem. In terms of the regularization, the difference between the FEAR

and OSCAR regularizers lies in their uniqueness in handling correlated variables. FEAR

uses a feature-based regularizer in its formulation to handle correlated variables effectively.

In this algorithm, the choice of P is important, but we do not study the performance with

different formulations of P which is intended for future work. It uses the L2 norm based

formulation in its regularizer.

In OSCAR, we use the L1 norm and a pairwise L∞ norm term. The pairwise L∞ func-

tion encourages similar coefficient values for correlated variables. OSCAR is also effective at

handling structured sparsity which cannot be inherently detected using the elastic net reg-

ularizers. This discussion helps us understand that both these algorithms handle correlated

variables in their own unique ways.

We now discuss the complexity of these algorithms. FEAR-COX uses the cyclic coordi-

nate descent approach with a convex smooth composite loss function which is theoretically

known to converge from the literature of coordinate descent. The time complexity of one

iteration of FEAR-COX is O(m) which is for the soft-thresholding operation.

OSCAR-COX uses the ADMM method coupled with a convex loss function. The theory

of augmented lagrangian based multipliers can be used easily here to prove the convergence

of this approach using the ADMM steps provided earlier in this section. In OSCAR-COX,

the Cholesky factorization only needs to be computed once, and each iteration involves

solving one linear system and two soft-thresholding operations. The time complexity of the

soft-thresholding operation is O(m). Due to the sparsity of computing the incidence matrix

E, its time complexity is O(me), where e is the number of edges in the feature graph. Thus

the time complexity for one iteration of OSCAR-COX is O(m(m + n) + me).

35

3.4 Experimental Results

In this section, we discuss the experimental results obtained by using the proposed FEAR-

COX and OSCAR-COX regression algorithms on 9 real-world EHRs. We evaluate the

goodness of these algorithms in terms of non-redundancy in feature selection, discrimina-

tive ability measured using the survival AUC (concordance index) and Brier score metrics,

respectively. We compare the performance of our proposed regularizers against state-of-the-

art regularizers such as adaptive-lasso (ALASSO) [20, 42], laplacian net (LAPNET) [43] and

fused-lasso (FLASSO) [44]. We also provide brief implementation details for these algorithms

and the parameter settings are also explained. Our feature selection analysis compares the

goodness of the features selected using our methods and compares them to those obtained

from other prominent feature selection methods for censored data. We also plot the sparse

important variables included in the models and conduct a study on the biomarkers obtained

by using the proposed algorithms and validate those biomarkers using survey articles from

existing clinical literature.

3.4.1 Experimental Setup

In this section, we provide the description of the components of the EHRs used in this

chapter followed by briefly explaining the implementation details for our proposed regularized

Cox regression algorithms. We will describe various kinds of variables present in our data

acquired from Henry Ford Health System (HFHS) Detroit, Michigan USA. We also present

a flowchart diagram which represents how these variables are collected from a patient at

HFHS in Figure 3.2. The patient readmission cycle consists of the different stages a patient

goes through from the initial admission to the next readmission [45, 46]. The different

kinds of information obtained from the patient beginning from the admission to discharge

includes demographics, comorbidities, medications, procedures and pharmacy claims. All

these constitute an EHR for that particular hospitalization of the patient. The entire set

of important variables which constitute an EHR are classified in the literature under the

following broad categories.

36

Patient Index

Hospitalization

D
ia

g
n

o
si

s

Stay

Patient in HospitalTreatment period Pre-discharge period

Patient Discharge

Follow-up period

Claims for HAP Patients

Readmission Period
ACE, Beta blockers

Comorbidities

(Diabetes, Hypertension)

Medications

ACE Inhbitor

Beta Blockers

Milrinone

Procedures

Cardiac Catheterization

Mechanical Ventilation

Hemodialysis

Adm Lab Values

(BUN, CREAT, GFR) (BUN, CREAT, GFR)

Demographics

(Age, Sex, Race)

Dischg Lab Values

Medication

Diuretics

Figure 3.2: Patient readmission cycle at a hospital.

• Socio-demographic Variables : These variables in this category include age, sex, race,

marital status, health insurance, and income. This also consists of follow-up informa-

tion on the patients after being discharged from the hospital.

• Comorbid Conditions : These variables are considered to be one of the most impor-

tant factors for determining the readmission risk. The most commonly used conditions

under this category are represented using binary variables for different conditions asso-

ciated with heart failure such as diabetes, hypertension, atrial fibrillation, myocardial

infarction, and chronic lung disease.

• Serum Biomarkers : These variables include certain laboratory variables which are

associated with the readmission risk. Some of the important variables in this category

include BUN, Creatinine, serum sodium (NA) and hematocrit or haemoglobin (HGB).

We extracted unique labs from EHRs for our current analysis which includes most of

the lab variables that are important candidates for being associated with readmission

risk.

• Medications and Procedures : The variables under this category include medications

such as Beta-blockers, ACE (angiotensin-converting-enzyme) inhibitors, and ARB (an-

37

giotensin receptor blockers). The procedures that are important include cardiac catheter-

ization, hemodialysis and mechanical ventilation.

We computed features which signify the % of abnormal labs for a patient (ALR). We con-

struct this feature by using the measured lab values for the patient throughout and comparing

it with the lower and upper bound values present in the Labs. The average abnormality score

computed over all the labs for a patient helps in understanding the aberration present in the

labs for a patient. The idea behind constructing this feature is based on domain knowledge

from the literature which indicates that >25% decrease in GFR and >25% increase in BUN

values was associated with worse survival rate and higher readmission [47].

For the procedures, we created variables for each distinct procedure conducted for the

patient. This feature represents the number of times these individual procedures were con-

ducted for the patient. In the medications, we follow the same protocol as done for the

procedures and we created two new variables for the distinct medications. In summary, it

can seen that following this procedure summarizes the complex clinical data into a succinct

representation which is then used for readmission risk prediction [48].

In Table 3.3, we provide the details about the number of records in the EHRs. The

variation in the number of columns for these EHRs arises from the difference in the number

of common lab tests, procedures and medications administered to the patients during their

different readmissions. In this longitudinal data, we observe the phenomenon that as the

readmission index increases the number of patients readmitted decreases.

The FEAR-COX and OSCAR-COX algorithms were implemented in the R programming

environment. We convert the original Cox regression problem into its modified least squares

formulation. We then implemented the cyclic coordinate descent and ADMM procedures

for FEAR-COX and OSCAR-COX. We also used the igraph R package for constructing the

incidence matrix to be used in OSCAR and for computing the graph laplacian for laplacian

net cox algorithm. In addition, we also implemented the FLASSO-COX using the genlasso

R package [44]. We used the coxNet R package for the EN-COX algorithm. We use the

38

Table 3.3: Description of EHRs used in our experiments.

EHRs # Features # Instances
EHR-0 77 4416
EHR-1 76 3409
EHR-2 76 2748
EHR-3 76 2208
EHR-4 75 1800
EHR-5 75 1463
EHR-6 77 1248
EHR-7 75 1055
EHR-8 75 855

sbrier function from the ipred R package to compute the Brier score [49]. Feature selection

using supervised principal components analysis is done using the superpc R package.

In the OSCAR-COX algorithm, the augmented lagrangian parameter ρ was set to 3 and

we use the same values for both the regularization parameters λ1 and λ2 which was set to

2. These values were determined in a greedy manner by choosing the values that gave us

the best performance. In the FEAR-COX algorithm, the elastic net parameter α was varied

from 0.1 to 0.7 with increments of 0.05. We observed that an α value of 0.6 gave us the best

performance.

3.4.2 Evaluation Metrics

In this section, we explain the evaluation metrics used for our experimental results.

Popular metrics used in survival analysis, such as time-based AUC and survival AUC [49]

aim at evaluating the relative risk of an event for two instances, than predicting the absolute

survival times for these instances. These metrics are introduced below.

AUC(Tc) = P (Ŷi < Ŷj|Yi < Tc, Yj > Tc) (3.20)

=
1

num(Tc)

∑

Yi<Tc

∑

Yj>Tc

I(Ŷi < Ŷj)

In Eq. (3.20), we define the time-based AUC estimated at any given time Tc. num(Tc)

denotes the number of comparable pairs at time Tc and I is an indicator function. AUC(Tc)

39

can be used to define the Survival AUC metric which measures the weighted average of the

time-based AUC as given in Eq. (3.21). In this equation, Te represents the set of all possible

event times in the dataset, and num represents the cumulative number of comparable pairs

calculated over all event times.

Survival AUC =
1

num

∑

Tc∈Te

AUC(Tc) · num(Tc) (3.21)

We also evaluate our model by computing the brier score [49] at any given time Tc using

Eq. (3.22). This corresponds to the squared difference between the event indicator variable

for instance i (δi) and its correponding survival prediction Ŷi. This is averaged over all

instances to obtain BS(Tc) and integrated over (Te) to obtain the integrated brier score

(IBS).

BS(Tc) =
1

n

n∑

i=1

(δi − Ŷi)
2 (3.22)

IBS =
1

max(Te)

max(Te)∫

0

BS(Tc)dTc

The values of the integrated brier score and survival AUC range between 0 and 1. It

should be noted that a good survival regression model will have high survival AUC and

low brier score. In Eq. (3.23), we provide the formula for the redundancy metric. In this

Equation, ρij is the Pearson correlation coefficient , F is the set of features selected by the

corresponding parsimonious model and m is the number of features present in the dataset.

Redundancy =
1

m(m− 1)

∑

fi,fj∈F,i>j

ρij (3.23)

3.4.3 Redundancy in Features

In the proposed regularized Cox regression algorithms, we use sparsity inducing norms

with specific mathematical structure to handle correlation among attributes. Due to the

sparsity induced, these methods also perform feature selection implicitly. We compare the

goodness of the features selected by these methods against state-of-the-art feature selection

40

methods. The metric we use for comparison is the redundancy of features given in Eq. (3.23).

In Table 3.4, we compute the redundancy scores using several regularized Cox regression

algorithms and supervised principal components (SuperPC) [7].

Supervised principal components is a generalization of principal components regression.

The principal components are the linear combinations of the features that capture the di-

rections of largest variation in a dataset. To find linear combinations that are related to an

outcome variable, we retain only those features whose score exceeds a threshold. A principal

components based analysis is carried out using only the data from these selected features.

The redundancy values in Table 3.4 indicate that FEAR-COX is unanimously providing

the best set of top ranked features for all the datasets. These features are non-redundant

in terms of representation and also effective for prediction. The survival AUC values in

Table 3.5, indicate that OSCAR-COX has higher discriminative ability compared to other

methods as it can infer structured sparsity effectively.

Table 3.4: Redundancy of features selected by FEAR-COX and OSCAR-COX against feature
selection algorithms.

EHRs
Method 0 1 2 3 4 5 6 7 8
SuperPC 0.0134 0.0147 0.0137 0.0139 0.0129 0.0117 0.011 0.0149 0.0136
EN-COX 0.04832 0.0453 0.0458 0.0491 0.0458 0.0455 0.0420 0.04793 0.0466
LASSO-COX 0.0478 0.0466 0.0453 0.0486 0.0454 0.0451 0.0414 0.0472 0.0464
ALASSO-COX 0.0171 0.0156 0.018 0.0215 0.0186 0.0077 0.009 0.0157 0.0138
LAPNET-COX 0.0461 0.0471 0.0458 0.0491 0.0458 0.0455 0.042 0.0479 0.0466
FLASSO-COX 0.0483 0.0471 0.0458 0.0491 0.0458 0.0455 0.042 0.0479 0.0466
FEAR-COX 0.0053 0.005 0.0078 0.0074 0.007 0.0053 0.0056 0.005 0.0046
OSCAR-COX 0.0483 0.0471 0.0458 0.0491 0.0458 0.0455 0.042 0.0479 0.046

In Table 3.6, we report the values obtained at time 30 to assess the goodness of our

predictions for the 30-day readmission problem. The values provided in Table 3.6 clearly

indicate that FEAR-COX and OSCAR-COX are building models which are giving the best

predictions at time 30 compared to other regularized Cox regression algorithms.

41

Table 3.5: Survival AUC values of FEAR-COX and OSCAR-COX against state-of-the-art
algorithms.

EHRs
Method 0 1 2 3 4 5 6 7 8
CensNB 0.5611 0.56622 0.567 0.5633 0.574 0.583 0.58490 0.5756 0.5771
EN-COX 0.5957 0.6036 0.600 0.611 0.611 0.6094 0.6049 0.6059 0.6081
LASSO-COX 0.5569 0.5624 0.5531 0.5483 0.5440 0.5641 0.56818 0.5527 0.5271
ALASSO-COX 0.595 0.601 0.596 0.608 0.6076 0.6049 0.5971 0.5998 0.5974
LAPNET-COX 0.5563 0.573 0.600 0.611 0.6110 0.5953 0.6049 0.6059 0.6081
FLASSO-COX 0.5637 0.5838 0.5633 0.5456 0.5809 0.588 0.5761 0.5700 0.5592
FEAR-COX 0.587 0.5949 0.5846 0.5923 0.5944 0.6094 0.588 0.5933 0.5848
OSCAR-COX 0.605 0.613 0.586 0.627 0.6076 0.5900 0.611 0.608 0.62

Table 3.6: Brier score values of FEAR-COX and OSCAR-COX against state-of-the-art al-
gorithms.

EHRs
Method 0 1 2 3 4 5 6 7 8
CensNB 0.56 0.54 0.545 0.562 0.5498 0.4879 0.5132 0.4677 0.522
EN-COX 0.4075 0.40626 0.3823 0.3649 0.3547 0.3057 0.3264 0.338 0.325
LASSO-COX 0.393 0.394 0.3695 0.3582 0.3225 0.3204 0.3092 0.3030 0.2876
ALASSO-COX 0.404 0.403 0.379 0.333 0.3474 0.3269 0.3284 0.3272 0.3083
LAPNET-COX 0.4364 0.415 0.3824 0.3649 0.3547 0.3055 0.3263 0.3383 0.3254
FLASSO-COX 0.3944 0.3914 0.366 0.3490 0.3261 0.3238 0.3107 0.3028 0.2824
FEAR-COX 0.3932 0.388 0.3638 0.3519 0.322 0.3181 0.3089 0.3023 0.2821
OSCAR-COX 0.3925 0.3878 0.3648 0.3482 0.322 0.3152 0.3084 0.299 0.2800

3.4.4 Visualizing Sparsity of Models

In this section, we analyze the sparsity of the models obtained using our regularized

Cox regression algorithms. We use all the 7 regularized Cox regression algorithms and apply

them on the 9 longitudinal EHRs. We then obtain some of the features retained in each

model and plot their corresponding regression coefficient values over the longitudinal EHRs.

In Figure 3.3, we plot the sparsity of the solutions obtained and compare them with respect

to the coefficients obtained using our proposed sparse models.

This experiment demonstrates how each of these regularized Cox regression models are

interpreting different novel and important biomarkers in their unique way. One can notice

that as OSCAR-COX promotes equality of coefficients among the same group of variables

42

●

●

●

●

●

a
d
m

_
B

U
N

a
d
m

_
G

F
R

H
G

B

N
A

. K

C
R

E
T

O
2
S

A
T

M
G

−10

−5

0

5

Covariates

C
oe

ffi
ci

en
ts

(a) EN-COX

●

●

●

●

●

●

●

●

a
d
m

_
B

U
N

a
d
m

_
G

F
R

H
G

B

N
A

. K

C
R

E
T

O
2
S

A
T

M
G

−10

−5

0

5

Covariates

C
oe

ffi
ci

en
ts

(b) ALASSO-COX

●

●

●

●

●
●

●

●

●

a
d
m

_
B

U
N

a
d
m

_
G

F
R

H
G

B

N
A K

C
R

E
T

O
2
S

A
T

M
G

−0.2

−0.1

0.0

0.1

Covariates

C
oe

ffi
ci

en
ts

(c) FEAR-COX

●

●

●

●
●

●

a
d
m

_
B

U
N

a
d
m

_
G

F
R

H
G

B

N
A K

C
R

E
T

O
2
S

A
T

M
G

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Covariates

C
oe

ffi
ci

en
ts

(d) OSCAR-COX

Figure 3.3: Boxplot visualizing the regression coefficients of the sparse variables selected by
the regularized Cox regression algorithms.

43

such as labs in EHRs which explains why there is more similarity among these values in

the boxplot. Similarly, one can also notice the ALASSO-COX tends to be more biased

towards variables with higher initialized weights during model building which gives HGB

higher importance. This kind of analysis of these algorithms can help a domain expert

decide which algorithm to use as per their clinical requirements.

3.4.5 Scalability Experiments

In this section, we study the scalability of our proposed FEAR-COX and OSCAR-COX

algorithms when the number of instances and features in EHRs are varied. We sample EHRs

from our cohort and estimate the time needed to determine the final regression coefficient

vector for both these algorithms. In Figure 3.4 and Figure 3.5, we provide the scalablity plots

for FEAR-COX and OSCAR-COX w.r.t. the number of instances and features, respectively.

To obtain thse plots we sampled different set of instances and features in an increasing

order, and we obtained the time needed to build our proposed regularized Cox models. The

x-axis represents the selected number of instances and features and the y-axis represents

the time taken in seconds. These plots indicate that FEAR-COX is relatively robust with

increasing number of instances as its complexity is linear. The time taken for OSCAR-COX

follows a similar trend with an increasing number of instances and features which indicates

its consistency. However, OSCAR-COX has quadratic runtime complexity, but it tends to

build more effective models in terms of performance metrics such as survival AUC and brier

score. Hence,s there is a trade-off between complexity and performance.

3.4.6 Biomarker Validation

Biomarkers are important indicators (variables) of the progression of a disease in a real-

world clinical setting. In this section, we provide a comparative analysis of the biomarkers

obtained by applying our methods on the EHRs. We begin by explaining how we created

the baseline to evaluate the biomarkers obtained.

Baseline generation: In a popular clinical review article [50], the authors conducted

a survey over medical journal articles to determine the important variables for predicting

44

Number of Instances

0 200 400 600 800 1000

T
im

e
 (

s
e

c
)

0

2000

4000

6000

8000

10000

12000
FEAR-COX

OSCAR-COX

Figure 3.4: Scalability w.r.t the number of instances.

Number of Features

0 10 20 30 40 50 60 70 80

T
im

e
 (

s
e

c
)

×10
4

0

0.5

1

1.5

2

2.5

FEAR-COX

OSCAR-COX

Figure 3.5: Scalability w.r.t the number of features.

readmission risk for heart failure. The survey statistics included capturing the % of studies

where the clinical variable was included in the model, % of studies where the variable was

included and found to be statistically associated with readmission risk and other related

measurements. In Table 3.7, the second column represents the % of clinical studies which

reported a statistical association between the candidate variable and heart failure readmission

risk. We obtained these numbers directly from the clinical review article [50]. We use this

number as the baseline and sort the important biomarkers in the descending order of their

statistical association. For each important biomarker, we use a ✔ mark to represent that

this variable is selected in the parsimonious feature model and ✖ to mark its absence from

45

the model. The regression models we consider in this experiment are those of LASSO-

COX, EN-COX, FEAR-COX and OSCAR-COX, respectively. We also consider the top 20

variables with highest absolute regression coefficient values from the non-sparse models in

this experiment.

We observe that FEAR-COX ranks 6 out of 7 variables as its features in the model,

and OSCAR-COX identifies all 7 important baseline biomarkers and uses them in its model.

LASSO-COX ranks 5 of these biomarkers in its top ranked feature list. EN-COX identifies

only 4 out of the 7 important biomarkers. This proves that our methods identify clinically

relevant variables from the entire set and retain those variables in their parsimonious models

effectively.

3.4.7 Discussion on Clinical Implications

In this experiment, we consider the important biomarkers which were selected by our

regularized Cox regression models and assess their importance from a clinical perspective.

Based on our analysis, we received explicit feedback from the clinical expert who informed us

that Haemoglobin (HGB), Creatinine (CREAT), Blood urea Nitrogen (BUN) and glomerular

filtration rate (GFR) are all well described biomarkers in the heart failure literature [45, 47].

The relationship of Potassium (K) to readmission is complex due to its correlation with renal

dysfunction and it is also a biomarker which has not been explored so far. The relationship

of magnesium to hospitalization in heart failure patients is also not well described in the

medical literature possibly because of its relation with diuretic medications and it deserves

further investigation.

Table 3.7: Statistical association between biomarkers and heart failure readmission.

Variable Assoc LASSO-COX EN-COX FEAR-COX OSCAR-COX
HGB 0.81 ✖ ✔ ✔ ✔

cardiac cath 0.73 ✔ ✔ ✔ ✔

NA 0.71 ✔ ✔ ✔ ✔

BUN/CREAT 0.66 ✔ ✔ ✔ ✔

heart failure 0.60 ✔ ✖ ✔ ✔

afib 0.60 ✖ ✖ ✔ ✔

pvd 0.56 ✔ ✖ ✖ ✔

46

Arterial oxygen saturation (O2SAT) was used in different home monitoring methods

to assess its relationship with readmission risk. However, there are no conclusive studies

so far which indicate a direct relationship of O2SAT with readmission risk which makes

this an interesting biomarker to explore. The discovery of a new biomarker through such

studies raises the possibility of a new target of interventions to be tested on patients. The

biomarker can then be applied in real-time clinical scenarios where a simple intervention

could be aimed at this biomarker to check if the changes in its magnitude reflected the

improvement/exacerbation in the patient’s health condition.

Transforming into Practice: Intervention Studies- The risk of readmission will be cal-

culated at the time of discharge from the hospital and it can be used to make appropriate

intervention decisions. Many of these interventions would be reasonable to try in a high-risk

population (low-risk patients get routine standard current care which is brief education at the

time of discharge and routine follow-up scheduled with their outpatient physician). Examples

of interventions for high-risk patients can include: enrollment in nurse-driven disease man-

agement programs, home nursing visits, early discharge follow-up, outpatient intravenous

diurectics, laboratory/biomarker monitoring and novel technology-based solutions. The ob-

jective here is to target more costly interventions to patients with the highest risk of heart

failure readmission [51].

We hypothesize that the patients with an estimated probability of 30-day readmission

between 50% and 90% are seen in specialized follow up clinic in 3 days, and they receive

weekly home nursing visits through the first 6 weeks post-discharge. When deciding what

the cutoff is (ie whether the target patients are those with estimated 30-day readmission risk

greater than 50%, 70% or 90%) is a judgment call and could be influenced by what the risk

estimates look like across the cohort and the cost/difficulty of the intervention being planned

at that particular hospital facility.

47

CHAPTER 4: REPRESENTATION BASED SURVIVAL REGRESSION

4.1 Motivation

In this chapter, we address another important issue with survival data, which is learning

a representation for survival data that can resolve the issue of missing time-to-events for

censored instances. In standard survival analysis, these instances are labeled using the

duration of the study or last known follow-up time [1, 2]. Such censored instances cannot

provide much information to the survival algorithm. This inappropriate labelling can become

a significant problem especially when the data has many censored instances (≥ 40% of overall

number of instances). To overcome this problem, we propose to solve the missing time-to-

events problem in censored data by developing an approach called calibrated survival analysis

which can learn an appropriate label value for the censored instances. We now explain our

motivation for developing this framework for calibrating time-to-event values for censored

instances by explaining the inherent problem associated with censored data, and we also

explain the two-dimensional correlation based structure in censored data using an example

from the crowdfunding domain.

Censoring in data can be divided into two categories, namely, independent and dependent

censoring. Independent censoring is a phenomenon where the covariates and censoring are

assumed to be independent [1, 3]. In this assumption alone, traditional estimators such

as Kaplan-Meier (KM) remain unbiased yielding true estimates. However, most datasets

violate independent censoring and exhibit a phenomenon called dependent censoring where

the covariates in the data and censoring are correlated with each other. In this scenario, the

KM estimator is biased which effects the correctness of several other related survival analysis

methods.

To address this issue in this chapter, we present an approach called calibrated survival

analysis which employs a novel form of censoring called imputed censoring. The goal of

imputed censoring is to reduce the bias in standard survival estimators, and this is ac-

48

complished by using a regularized inverse covariance based imputation algorithm. We use

covariance-based imputation methods as they are well equipped to capture correlations be-

tween censored instances while performing imputation which other methods such as matrix

factorization do not capture.

The correlation structure in censored data exhibit a unique phenomenon which can be

explained by considering a typical crowdfunding scenario. In this scenario, we define an

event of interest as the time taken by a project to reach its pre-defined goal amount and

succeed [52]. Considering two projects which got censored one can notice that in order to

impute the time-to-event labels for these instances the following factors need to be considered

which are (i) time taken by instances similar to both of them to reach the goal amount (inter-

event correlation) (ii) importance of similar features for both instances in determining the

time-to-event (intra-event correlation). To account for both these phenomena, we develop

a row and column-based regularization approach within an inverse covariance estimation

procedure to appropriately estimate the time-to-event label. Our proposed calibrated survival

analysis approach imputes the time-to-event labels for censored instances using a regularized

inverse covariance matrix approach.

Another important motivation for proposing a calibrated survival analysis framework

for censored data can be obtained from the theory of representation learning [53]. Repre-

sentation learning attempts to learn a novel representation of the data which captures the

inherent structure, so that any predictive algorithm can perform better on the learned new

representation. In calibrated survival analysis, through imputed censoring, we are effectively

learning a new represenation of the original survival data by solving the bias problem ex-

plained earlier. We also state that imputed censoring preserves the original censored nature

of the problem, and does not output a predictive model directly. Hence, our proposed ap-

proach can be used in conjunction with other existing predictive survival analysis methods.

This is considered to be an important advantage of this work since it does not compete

49

365 0 12.5 10 8 24 1

124

365

72

365

1 14.5 14 6.2 26 0

0 17 17 9 29 1

1 19 18 8.3 28 1

0 11 14 4.1 32 1

Use T,δ ,X and build
the survival log

likelihood

Apply row and
column

regularization

Estimated Inverse
Covariance Matrix

Feature Vector X

95 0

124

170

72

61

1

0

1

0

Input
Calibration

User
Provided

Parameters

Iterative
Convergence
approach

Right Censored EHR Data Calibrated Right EHR Censored Data

X

? 0

124

?

72

?

1

0

1

0

X

Missing Time‐to‐
event Labels

Figure 4.1: Flow diagram for the proposed calibrated survival analysis approach on a EHR
dataset.

with existing method to perform better, rather it compliments any exisiting survival method

and improves it performance. We now provide a flow diagram in Figure 4.1 which explains

the process of conversion for a sample right censored EHR dataset into a calibrated censored

EHR dataset. In Figure 4.1, we consider 5 patients who are being monitored for subsequent

readmissions (events). The survival attributes are the time-to-event (T) and the censored

status (δ) which are stacked at the front, and they are followed by their corresponding

predictive EHR based attributes. One can observe that all the instances in this dataset

have been followed up until 365 days past their discharge from their primary hospitalization,

which is when we assume the follow-up period ended.

The event of interest here is the rehospitalization of the patient during the follow-up

time. We observe that for patients 1, 3 and 5 the event was not observed during the entire

follow-up period and their time-to-event labels are presumed to be missing. Most often,

while studying such patients in survival analysis, the methods from the literature typically

50

assign the last known follow-up time (in this case 365) to label them [54].

Our calibrated survival analysis approach fills the gap in the current literature here

by estimating the calibrated time-to-event values for these censored instances by exploiting

instance-based and feature-based correlations among censored instances inorder to effectively

impute them. As illustrated in Figure 4.1, this estimation is done through an iterative

convergence routine which forms the main part of our imputed censoring method.

Propose a calibrated survival analysis framework which uses a novel imputed censoring

approach to model the time-to-event variable. This imputed censoring approach uses a

row and column regularization-based inverse covariance estimation algorithm to impute the

censored instances. The goal of this approach is to impute the missing time-to-events for

the censored instances in order to build a more efficient representation of the survival data

which an algorithm can leverage upon. The primary objective of our approach is to improve

the representation of survival data to enhance the predictive ability of survival algorithms.

In this chapter, we study the formulation of our row and column based regularized in-

verse covariance method which is used in imputed censoring exhaustively. We discuss the

properties of this algorithm using the L1 and L2 regularizers, but the framework can work

with any regularizer with a defined Lp norm where (p ≥ 1). We also evaluate the effective-

ness of our calibration method by comparing the survival AUC (concordance index) values

obtained using standard survival regression algorithms on the data with and without our

time-to-event calibration. We also conduct experiments to assess the convergence and the

impact of regularizers and regularization parameters on the performance of our algorithm.

4.2 Preliminaries

In this section, we explain an overview of our proposed method for converting a censored

dataset into a calibrated censored dataset. We begin by presenting the table of notations

used in this chapter in Table 4.1.

In this section, we present an overview of our method which can convert any given dataset

with right censoring into a calibrated right censored dataset. In this approach, we build a

51

Table 4.1: Notations used in this chapter.

Name Description
X R

n×p data matrix
Σ n× n row covariance matrix
∆ p× p column covariance matrix
T time-to-event
υi mean of ith row
µj mean of jth column
qr row regularizer
ρr row penalty
qc column regularizer
ρc column penalty

framework that uses both single and composite regularization by imposing regularizers and

user provided penalty parameters on both the rows (single) and rows, columns (composite)

of the feature matrix.

Regularization is used here to learn the sparse inverse covariance matrix. The learned

covariance matrix captures the correlation structure among censored instances which is sub-

sequently used for imputed censoring. Unlike other censored labeling schemes, the novelty of

this framework lies in interpreting the missing time-to-event values using a mean-restricted

matrix variate normal distribution which is represented as Nn,p (υ,µ,Σ,∆). This distribution

implies that the missing time-to-event labels are modeled with a mean vi + µj along with

variance Σii∆jj.

This modeling can be viewed as a random effects model defined as Tij=vi + µj + ǫij where

ǫij ∼ N(0,Σii∆jj) which has two additive fixed effects depending on the row and column

means and a random effect whose variance depends on the product of the corresponding row

and column covariances.

The goal of this method is to impute the time-to-event and in this process calibrating

it to a more optimal value. This is called the calibration step of our method where we

impute the time-to-event labels for the right censored instances rather than naively labelling

52

it with the duration of observation. We note here that censoring is still preserved in this

dataset as these values are calibrated values and not the true observed values. If we knew

the true time-to-event values for the right censored instances, then the dataset would have

been independent of censoring which is unlikely in domains with higher number of censored

instances.

Through this methodology, we are proposing a new way of handling time-to-event values

for right censored instances, which can convert the dataset into a calibrated dataset which

makes it more conducive to apply survival algorithms. Before presenting the algorithm, we

first review the notation and phrases used throughout this chapter. For the sake of simplicity,

we refer to right censoring as censoring. 1n represents a unit vector of n entries. We use i

to denote the row index and j to denote the column index. The observed and missing parts

of row i are oi and mi, respectively, and oj and mj are the analogous parts of column index

j. We let m and o denote the complete set of missing and observed elements, respectively.

X here represents a n× p matrix. This includes the features, the censoring indicator δ and

the time-to-event variable T .

Further expanding over this notation, xi,oi denotes the observed components of an un-

censored instance i and xi,mi
denote the missing components of a censored instance. This

includes both the missing feature values and the missing time-to-event label information for

the censored instance. For each observation, we partition the mean and covariance to corre-

spond to the observed parts of observation i and denote them by µoi and ∆oi,oi , respectively.

4.3 Calibration using the Inverse Covariance Matrix

In this section, we present the two methods for calibrated survival analysis. We begin

by explaining the REgularized inverse covariance based Calibration (REC) method, and

then present the Transposable REgularized covariance based Calibration (TREC) method.

Before exploring the inner details of these algorithms, we state explicitly that both these

approaches are only meant to build a more effective representation of the original survival

data. The time values in the calibrated censored dataset are not the predicted values, but are

53

only estimated by our iterative convergence framework in an effort to facilitate the process

of building an efficient representation of the survival data.

4.3.1 REC Algorithm

In this section, we begin by explaining the REC method which receives the censored

dataset as an input and outputs the calibrated Times, Tcalib, which are used for learning the

final model. This algorithm is designed using an iterative convergence style optimization

procedure where we initialize the missing time-to-event values and update our estimates

iteratively until convergence is observed.

We now present the regularized likelihood equation used in REC algorithm in Eq. (4.1)

which uses a single column-based regularization term. One can notice that an important

difference between this and the EM algorithm term is the regularization component used.

Imputation is a part of the E-step of the algorithm in which the conditional expectation

of the complete data log-likelihood is taken given the current parameter estimates. The

computation in REC can be divided into two parts which are: (i) imputation-based calibra-

tion and (ii) covariance correction. We outline both these steps in Eq. (4.2) and Eq. (4.3),

respectively.

ℓobs(µ,∆) =
1

2
Σn

i=1[log |∆−1
oi,oi
|− (4.1)

(xoi − µoi)
T∆−1

oi,oi
(xoi − µoi)]− ρc ‖ ∆−1 ‖qc

The first step, imputation-based calibration, is given in Eq. (4.2). This step also involves

the covariance -based correction term and the next step is given in Eq. (4.3). The covariance-

based correction term is defined so because it is added to the cross products forming the

54

covariance matrix.

x̂i,j = E(xi,j | xi,oi , µ
′,∆′) (4.2)

=

µ′
mi

+∆′
mi,oi

∆′−1
oi,oi

(xi,oi − µ′
oi
), if j ∈ mi

xi,j, if j ∈ oi

ci,jj′ =

∆′
mi,mi

−∆′
mi,oi

∆′−1
oi,oi

∆′
oi,mi

, if j, j′ ∈ mi

0, otherwise

One can notice that in the covariance correction term ci,jj′ is only non-zero when both j

and j
′

are missing (censored in our context). The second step of our REC algorithm is the

maximization step which is given in Eq. (4.4). In this maximization step, ∆̂
′

is computed

by replacing µ with µ̂ in ∆̂
′

.

E(xi,jxi,j′ |xi,oi , µ
′,∆′) = x̂i,jx̂i,j′ + ci,j′j (4.3)

In Algorithm 4.1, we follow an iterative convergence routine similar to the traditional EM

algorithm and introducing a row-based regularization term and the corresponding covariance

correction term. We set qr=1 using the L1 regularizer due to its formulation as the graphical

lasso which can be solved using available techniques such as coordinate descent efficiently.

Q(θ|θk) = n

2
log|∆−1| − 1

2
tr(∆̂

′

∆−1)− ρc ‖ ∆−1 ‖qc (4.4)

∆̂′

jj
′ = Σn

i=1[(x̂ij − µj)(x̂ij − µj) + ci,jj′]

This column-based regularization captures one aspect of imputing censored instances by

considering the feature importance among different censored instances in determining their

corresponding time-to-event labels while imputing them. With this background, we now look

at our next algorithm which uses a composite row and column based regularization method

which also captures the instance-wise correlation while imputing right censored instances.

55

Algorithm 4.1: REC Algorithm

1 Input: Features X, Status δ, Time T
2 Output: Calibrated Times Tcalib

3 Initialize Set the missing values as :x̂i,mi
=Σi∈oixij/ni;

4 Set µ(0),∆(0) as the empirical mean, covariance;
5 Compute E(xi,j|xi,oi , µ

k,∆k) as in Eq. (4.2);

6 Update Estimates: µ̂j&∆̂
′

jj′ ;

7 Maximize penalized log-likelihood w.r.t. ∆−1 to obtain the new estimate ∆̂;
8 Repeat until convergence;

4.3.2 TREC Algorithm

In this section, we present theTREC algorithm which tries to learn the inverse covariance

matrix from censored data by imposing row and column based regularization on the likelihood

function. This is called the Transposable REgularized covariance based Calibration (TREC)

method for censored data. The novelty of this framework lies in interpreting censoring as an

imputation problem on the time-to-event variable by modeling its dependence on both row

and column-based features [55]. The formulation for the log-likelihood function in TREC

is given by Eq. (4.5).

ℓ(υ, µ,Σ,∆) =
p

2
log |Σ−1|+ n

2
log |∆−1| (4.5)

− 1

2
Tr(Σ−1(X − υ1T(p) − 1(n)µ

T)∆−1(X − υ1T(p) − 1(n)µ
T)T)− ρr ‖ Σ−1 ‖qr −ρc ‖ ∆−1 ‖qc

In Eq. (4.5), qr and qc are either 1 or 2, which corresponds to either L1 or L2 regularizer.

We consider these two choices as they are the most popular regularizers used in the literature.

Considering the L1 norm when qr are qc are set to 1, it is observed that solution obtained

reaches a stationary point, but it is not guaranteed to be the global maximum.

This happens because of the large number of stationary points present on the likelihood

surface when using the L1 penalty. However, maximization with the L1 penalties can be

achieved by applying the graphical lasso algorithm [11]. This coordinate-wise maximization

method used in the graphical lasso leads to a simple iterative algorithm, but it does not

necessarily converge to a global maximum.

56

While considering the L2 penalty problem on the other hand , the problem can be solved

by taking the Eigenvalue decomposition and a global maximum can be found. This leads

to a global maximum, but the solution does not have a simple iterative form as for the

L1 norm. However, in both the cases, we observe that better initialization of the row and

column estimates can result in a faster convergence rate.

The optimal way of beginning such an assignment is by initializing them with their

corresponding MLE estimates for faster convergence. In this regard, we now give the proof

for the maximum likelihood estimate (MLE) of the mean parameters.

Theorem 1. The MLE estimate for υ and µ are

υ̂ = Σp
j=1

(Xcj − µ̂j)

p
(4.6)

µ̂ = Σn
i=1

(Xir − υ̂i)

n

Proof. Expanding the trace term of ℓ(υ, µ,Σ,∆) w.r.t. µ and υ and then taking partial
derivatives, we get

∂ℓ

∂υ
= 2Σ−1υ1T∆−1 − 2Σ−1(X − 1µT)∆−1 = 0

⇒ υ̂1T = X − 1µT

⇒ υ̂ =
1T (X − 1µT)

p
= Σp

j=1

Xcj − µj

p

This proof can be extended in a similar manner to obtain µ̂ as well. With these MLE

initial estimates derived, we now propose the TREC algorithm with the L1 and L2 norms as

regularizers. The algorithm uses a strategy similar to block coordinate descent by maximizing

on one block of coordinates at a given time, thus saving considerable mathematical and

computational time. Conditional maximization (CM) is done with respect to one block of

coordinates either Σ−1 or ∆−1.

We now put these steps together and present the TREC Algorithm 4.2. In this Algo-

rithm, we begin by initializing υ̂ and µ̂ from the observed uncensored instances using the

MLE estimates given in Eq. (4.6). We then use these values to initialize the time-to-event

57

Algorithm 4.2: TREC Algorithm

1 Input: Features X, Status δ, Time T , Regularization parameters ρr,ρc,qr,qc
2 Output: Calibrated Times Tcalib

3 Initialize: Estimate υ̂ and µ̂ from observed uncensored instances using Eq. (4.6);
4 if Tij is missing then
5 Set Tij = υ̂i + µ̂j;
6 end

7 Start with nonsingular estimates Σ̂ and ∆̂;
8 Initalize matrices G,C, F,D;

9 Calculate X̂T Σ̂−1X̂ +G(Σ̂−1) as in Eq. (4.9);
10 Update estimates of υ̂ and µ̂;

11 Maximize Q with respect to ∆−1 to obtain ∆̂ using gradient as given in Eq. (4.10,
4.11);

12 Update estimates of υ̂ and µ̂;

13 Maximize Q with respect to Σ−1 to obtain Σ̂ using gradient as in Eq. (4.10, 4.11);
14 Repeat until convergence;

label and begin the computation as given in Eq. (4.9).

After convergence, the final values of υ̂ and µ̂ are calculated, subsequently the calibrated

time-to-event values Tcalib are computed through our imputation step. Finally, a new survival

model is built using X, δ and Tcalib and a survival algorithm.

We now provide the details of the convergence and complexity of our TREC algorithm.

The novelty of our framework lies in estimating both the row and column sparse inverse

covariance matrices. The complexity associated with each column-wise computation is O(np)

and this computation over p columns amounts to a O(np2) time complexity. The resulting

optimization problem is convex with respect to each term and it can be efficiently solved

using block coordinate descent methods.

4.3.3 Algorithm Analysis

We now develop the steps involved in the block coordinate descent optimization algorithm

mathematically, beginning with the observed data log-likelihood which we seek to maximize.

We use this term x∗
oj ,j

to condense the likelihood equation to express it in a simpler form as

58

given in Eq. (4.7).

x∗
oj ,j

= Σ−1/2
oj ,oj

(xoj ,j − υoj) (4.7)

ℓ(υ, µ,Σ,∆) =
1

2
[Σp

j=1 log | Σ−1
oj ,oj
| +Σn

i=1 | ∆−1
oi,oi
|]

− 1

2
Tr

(

Σn
i=1(x

∗
i,oi
− µoi)

T (x∗
i,oi
− µoi)∆

−1
oi,oi

)

− ρr ‖ Σ−1 ‖qr −ρc ‖ ∆−1 ‖qc

We now derive a simple form to express each of our steps. One is expressed with respect

to Σ−1 and the other with respect to ∆−1 as in Eq. (4.9). This is possible because of the

structure of the matrix-variate model, specifically the trace term. The model parameters

are represented using θ = {υ, µ,Σ,∆}. The E step, denoted by Q(θ | θ′

, Xo), is expressed in

Eq. (4.8).

Q(θ | θ′

, Xo) = E(ℓ(υ, µ,Σ,∆) | Xo, θ
′

) (4.8)

∝ E[Tr(XTΣ−1∆−1X)|Xo, θ
′

]

∝ Tr[E(XTΣ−1X | Xo, θ
′

)∆−1]

∝ Tr[E(X∆−1XT | Xo, θ
′

)Σ−1]

We now provide the proof for our theorem for obtaining the simple forms of the condi-

tional maximization step which will be used in our blockwise algorithm.

Theorem 2. The E step is proportional to the following form.

E[Tr(XTΣ−1X∆−1) | Xo, θ
′

] = Tr[(X̂TΣ−1X̂ +G(Σ−1))∆−1] (4.9)

= Tr[(X̂∆−1X̂T + F (∆−1))Σ−1]

where X̂ = E(X | Xo, θ
′

) and

G(Σ−1) =

Tr(C(11)Σ−1) . . . Tr(C(1p)Σ−1)
...

. . .
...

Tr(C(p1)Σ−1) . . . Tr(C(pp)Σ−1)

59

F (∆−1) =

Tr(D(11)∆−1) . . . Tr(D(1n)∆−1)
...

. . .
...

Tr(D(n1)∆−1) . . . Tr(D(nn)∆−1)

C(jj
′

) = Cov(Xcj, Xcj′ | Xo, θ
′

)

D(ii
′

) = Cov(Xir, Xi′r | Xo, θ
′

)

Proof. We first show that

E[Tr(XTΣ−1X∆−1)|Xo, θ
′

] = Tr[(X̂TΣ−1X̂ +G(Σ−1))∆−1]

Let A = XTΣ−1X, then,

E[Tr(XTΣ−1X∆−1) | Xo, θ
′

] = Tr[E(A|Xo, θ
′

),∆−1]

E(Ajj′ |Xo, θ
′

) = E(XT
cjΣ

−1Xcj′ |Xo, θ
′

)

= E[
n∑

k=1

n∑

t=1

xtjxkj
′σ−1

tk |Xo, θ
′

]

=
n∑

k=1

n∑

t=1

x̂tjx̂kj′σ
−1
tk +

n∑

k=1

n∑

t=1

C
(jj′)
tk σ−1

tk

= X̂T
cjΣ

−1X̂cj′ + Tr(C(jj′)Σ−1)

Thus, E(A|Xo, θ
′

) = X̂TΣ−1X̂ +G(Σ−1)
The proof showing

E[Tr(XTΣ−1X∆−1) | Xo, θ
′

] = Tr[(X̂TΣ−1X̂ + F (∆−1))Σ−1]

is similar to the calculation above with B = X∆−1XT and

E(Bii|Xo, θ
′

) = X̂ir∆
−1X̂T

i′r + Tr(D(ii′)∆−1)

We now present the gradient equations that are used in TREC with the L1 and L2 norms

60

in Eq. (4.10) and Eq. (4.11).

∂Q

∂∆−1
= ∆− X̂TΣ−1X̂ +G(Σ−1)

n
− 2ρc

n
sgn(∆−1) (4.10)

∂Q

∂Σ−1
= Σ− X̂∆−1X̂T + F (∆−1)

p
− 2ρr

p
sgn(Σ−1)

We now use a notation now through the remainder of this chapter to represent the

regularizer being used in TREC. L1-TREC represents using the L1 norm in TREC. The

same notation can be extended to the L2-TREC algorithm. The gradient equation in this

case are given as follows.

∂Q

∂∆−1
= ∆− X̂TΣ−1X̂ +G(Σ−1)

n
− 4ρc

n
∆−1 (4.11)

∂Q

∂Σ−1
= Σ− X̂∆−1X̂T + F (∆−1)

p
− 4ρr

p
Σ−1

4.4 Experimental Results

In this section, we present the experimental results obtained using the proposed REC

and TREC methods for calibrated survival analysis on EHRs, Kickstarter and synthetic

datasets. In Figure 4.2, we present a bar graph which plots the censored statistics for

the kickstarter and EHRs. One can clearly observe that the distribution of right censored

instances is higher for the kickstarter data compared to the EHRs, which is an important

characteristic of datasets from the crowdfunding domain.

In this section, we will discuss the data collection and pre-processing steps for the EHRs

and kickstarter datasets. We conduct several experiments to study the importance of imput-

ing censored instances using our methods. We provide plots which illustrate the improve-

ments obtained in survival regression algorithms after applying our approach. Finally, we

also study the effect of both the regularizers and regularization parameters on the runtime

performance of our algorithms.

61

Dataset

%
 o

f
C

e
n

so
ri

n
g

10

20

30

40

50

1 2 3 4

Kickstarter

EHR

Figure 4.2: Percentage of right censored instances in EHR and Kickstarter datasets.

4.4.1 Datasets Description

We will first describe the various kinds of datasets used in our experiments. These include

the Kickstarter data, EHRs and the synthetic datasets. We explain the data collection and

pre-processing steps involved with each of these datasets briefly.

Table 4.2: Kickstarter data statistics for 18,143 projects.

Attr Mean Min Max StdDev
Goal 26,531 100 100,000,000 758,366

Pledged 11,023 100 6,224,955 78,550
backers 138 1 35,383 633
Days 31 1 60 10.5

Table 4.3: Description of censored statistics in the Kickstarter projects.

Name Startdate Enddate # Projects Censored(%)
Kick1 1/12/2013 1/1/2013 4175 52.99
Kick2 1/1/2014 15/3/2014 5229 47.36
Kick3 16/3/2014 31/4/2014 5720 51.25
Kick4 1/5/2014 30/6/2014 2969 48.58

For the experiments in this chapter, we obtained six months of Kickstarter (a popular

crowdfunding platform) data from www.kickspy.com. This dataset spans from 12/15/13

to 06/15/14, which consists of projects characterized by 30 project-based attributes. The

attributes in the kickstarter datasets include a number of static features such as project

goal amount, duration, textual content, etc., and two dynamic features: per-day increase

62

Table 4.4: Basic Statistics for EHRs.

Readm # Rows # Columns Censored(%)
EHR0 4417 77 22.20
EHR1 3410 77 17.98
EHR2 2749 77 16.44
EHR3 2209 77 13.63
EHR4 1801 76 12.05

in number of backers and pledged amount as given in Table 4.3. In this manner, a total of

18,143 projects with over 1 million backers were obtained and processed using the procedures

followed in [56]. The attribute used to determine the outcome in the kickstarter datasets is

the duration of the project.

Each project in our kickstarter database is tracked over a period of time until its goal

date is reached or it obtains the goal amount. If a project reaches its goal amount (event in

this scenario) in a specified duration (time-to-event) this is measured as a success. However,

failure to reach the specified goal amount by the end of the study would imply that the

instance has been censored (possibly attains the goal amount at a later time). With this

notion of censoring, we present the percentage of censored instances in kickstarter data in

Table 4.3.

We also procured electronic health records (EHRs) for patients admitted at the Henry

Ford Health System, Detroit, Michigan over a period of 10 years. The event here is heart

failure readmission and the duration is measured after the patient has been discharged from

primary index hospitalization.

The basic statistics along with the right censored percentages are provided for 5 of our

sample datasets in Table 4.4. Readm-index represents the index of readmission for the

patients. EHR0 corresponds to the data for the index hospitalization. Similarly, EHRn

represents the dataset for the nth rehospitalization for the patient set considered. It should

be noted that as n increases the number of patients will be reduced.

In addition, we also generated synthetic datasets by setting the pairwise correlation

between any pair of covariates to vary from -0.5 to 0.5. Feature vectors of different dimen-

63

sionality are generated to construct three synthetic datasets. For each of these synthetic

datasets, the generated failure times T are computed using a Weibull distribution.

We compare the effect of calibrated survival analysis on any given dataset before and

after applying it, by evaluating the performance using a standard survival learner. In our

experiments, for each dataset we create a new one after applying TREC-based calibration

and this is labelled as With, and the version before applying TREC-based calibration is

labelled as Without. We use this notation throughout this section.

4.4.2 Performance Evaluation

We will now describe the evaluation metrics used in this work along with some of the

implementation details for both the algorithms proposed in this chapter as well as details

pertaining to baseline comparison algorithms. We implemented both REC and TREC

in the R programming language. As mentioned earlier we implemented the versions cor-

responding to both the L1 and L2 norms in TREC. The glasso R package was used for

solving the graphical lasso problem for solving the corresponding subproblems in REC and

TREC. The iterative blockwise gradient descent algorithm was implemented as the main

optimization routine for solving TREC. The corresponding parameters for regularization in

REC and TREC were determined through five-fold cross validation.

In this section, we will refer to L2-TREC as TREC, and this has been used for obtaining

the results in this section. As mentioned earlier, we prefer the L2 norm as it gives us a global

maximum compared to the L1 norm. So all the calibrated datasets have been generated

using the L2-TREC and REC algorithms. We explicitly emphasize that if a regularizer is

not mentioned with TREC, then it is assumed to be the L2-TREC algorithm itself. As

REC uses the L1 norm alone, we do not specify the norm explicitly, and it assumed that

REC refers to using the L1 norm formulation only.

We now briefly discuss the implementation details pertaining to baseline comparison

algorithms. The software for CensNB is available at 1 and we used our code for FEAR-COX

1https://sites.google.com/a/umn.edu/jwolfson/software

64

and OSCAR-COX2. The randomForestSRC and CoxNet R packages are used for running

random survival forests and EN-COX, respectively.

We now briefly explain the baseline imputation algorithms used for comparing the per-

formance of REC and TREC. The first baseline algorithm is SoftImpute [14] which is a

method which uses the nuclear norm regularizer and iteratively replaces the missing elements

with those obtained from a soft thresholded singular value decomposition (SVD). It tries to

minimize the nuclear norm subject to certain constraints. The softImpute R package is used

for the SoftImpute algorithm.

The other baseline method is Misglasso [13] which is a method that replaces the missing

values using the standard graphical lasso by modifying the update step in the EM iteration.

We implement the misglasso algorithm by using the graphical lasso R package (glasso).

Table 4.5: Comparison of Survival AUC values for different regularized Cox regression al-
gorithms without and with TREC applied on kickstarter, EHR and synthetic censored
datasets.

Dataset EN-COX FEAR-COX OSCAR-COX
Without With Without With Without With

Kick 1 0.81 0.83 0.79 0.80 0.81 0.84
Kick 2 0.81 0.86 0.81 0.84 0.83 0.87
Kick 3 0.80 0.82 0.79 0.833 0.81 0.833
Kick 4 0.77 0.81 0.78 0.81 0.82 0.85
EHR 0 0.58 0.60 0.61 0.605 0.63 0.643
EHR 1 0.592 0.609 0.611 0.62 0.62 0.65
EHR 2 0.598 0.605 0.624 0.611 0.618 0.599
EHR 3 0.59 0.595 0.611 0.63 0.607 0.62
EHR 4 0.618 0.633 0.641 0.655 0.644 0.66
Syn1 0.668 0.673 0.681 0.699 0.677 0.664
Syn2 0.872 0.902 0.890 0.910 0.927 0.943
Syn3 0.727 0.719 0.785 0.854 0.8 0.931

4.4.3 Integrating REC and TREC with Survival Regression

In this section, we present results which demonstrate the robustness of REC and TREC.

The algorithms used in this section are Censored Naive Bayes (CensNB) [26], Boosted Con-

2https://github.com/MLSurvival/

65

Table 4.6: Comparison of Survival AUC values for different survival algorithms without and
with TREC applied on kickstarter, EHR and synthetic censored datasets.

Dataset CensNB RSF BoostCI CoxBoost
Without With Without With Without With Without With

Kick 1 0.77 0.80 0.80 0.799 0.78 0.78 0.83 0.86
Kick 2 0.78 0.81 0.81 0.833 0.74 0.733 0.80 0.82
Kick 3 0.76 0.75 0.732 0.758 0.76 0.72 0.79 0.82
Kick 4 0.72 0.77 0.796 0.812 0.72 0.744 0.84 0.83
EHR 0 0.57 0.59 0.599 0.611 0.51 0.55 0.61 0.619
EHR 1 0.575 0.58 0.583 0.609 0.54 0.56 0.62 0.62
EHR 2 0.57 0.60 0.581 0.591 0.575 0.591 0.637 0.665
EHR 3 0.60 0.63 0.611 0.636 0.62 0.62 0.64 0.648
EHR 4 0.621 0.659 0.633 0.627 0.66 0.69 0.66 0.652
Syn1 0.654 0.661 0.633 0.642 0.64 0.67 0.69 0.71
Syn2 0.847 0.867 0.852 0.905 0.83 0.89 0.87 0.933
Syn3 0.714 0.764 0.834 0.841 0.74 0.74 0.85 0.922

cordance Index (BoostCI) [27], CoxBoost, Elastic net Cox (ENCOX) [16], Feature regularized

Cox (FEAR-COX), Oscar Cox (OSCAR-COX) [57] and Random Survival Forests (RSF) [28].

The results from Tables 4.5, 4.6 indicate that when TREC is applied on the censored dataset

(With), the survival regression algorithm is able to give a better performance in comparison

to using the original right censored dataset (Without).

We attribute this better performance to the fact that TREC models the censored miss-

ing time-to-event values using a row and column regularization method which infers the

correlation patterns among censored instances which is needed to impute the time-to-event

labels correctly.

The improvements in survival AUC values are prominent with using both regularized

Cox regression algorithms as given in Table 4.5, and other survival algorithms as given in

Table 4.6. These improvements also confirm that the performance of our approach does not

depend on using any specific kind of survival regression algorithm.

4.4.4 Improvement in AUC with Imputed Censoring

In this experiment, we plot the survival AUC values of the learning algorithm when

we gradually sample instances from the calibrated data (With) using different methods

for imputing the missing time-to-event values in survival data. This experiment helps us

66

interpret how the calibrated samples are contributing towards building a more effective

model as they are sampled iteratively. The approaches used for imputation in this experiment

include SoftImpute [14], Misglasso [13], REC and TREC. In this experiment, we present

the results for the synthetic datasets, kickstarter datasets and EHRs.

0 10 20 30 40 50 60 70 80
0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

Percentage of censored samples

S
u
r
v
i
v
a
l

A
U
C

SoftImpute

Misglasso

REC

TREC

(a) AUC on Syn1

0 10 20 30 40 50 60 70 80
0.7

0.75

0.8

0.85

0.9

0.95

Percentage of censored samples

S
u
r
v
i
v
a
l

A
U
C

SoftImpute

Misglasso

REC

TREC

(b) AUC on Syn2

0 10 20 30 40 50 60 70 80
0.52

0.54

0.56

0.58

0.6

0.62

Percentage of Censored Samples

S
u
r
v
i
v
a
l

A
U
C

SoftImpute

Misglasso

REC

TREC

(c) AUC on EHR 0

0 10 20 30 40 50 60 70 80

0.58

0.6

0.62

0.64

0.66

Percentage of censored samples

S
u
r
v
i
v
a
l

A
U
C

SoftImpute

Misglasso

REC

TREC

(d) AUC on EHR 1

Figure 4.3: Survival AUC plots obtained for calibrated synthetic and EHR datasets using
REC, TREC, SoftImpute and Misglasso methods.

The learning algorithm considered for this experiment was the (EN-COX) algorithm. As

determined from the previous experiment the choice of the learning algorithm was not a part

of our approach, so we can choose any arbitrary survival learner. We train the initial survival

model using all the uncensored instances, and we continuously sample instances from a pool

of censored instances and add them to retrain a survival model. These censored instances

have been imputed using REC and TREC. Simultaneously, we also impute these instances

iteratively using methods such as SoftImpute and Misglasso before training a new survival

model.

As imputed censored instances are added to the training data from the censored pool, we

retrain the model and plot the survival AUC values on this combined dataset of the initial

67

0 10 20 30 40 50 60 70 80
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

Percentage of censored samples

S
u
r
v
i
v
a
l

A
U
C

SoftImpute

Misglasso

REC

TREC

(a) AUC on Kick 1

0 10 20 30 40 50 60 70 80
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

Percentage of censored samples

S
u
r
v
i
v
a
l

A
U
C

SoftImpute

Misglasso

REC

TREC

(b) AUC on Kick 2

0 10 20 30 40 50 60 70 80
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

Percentage of censored samples

S
u
r
v
i
v
a
l

A
U
C

SoftImpute

Misglasso

REC

TREC

(c) AUC on Kick 3

0 10 20 30 40 50 60 70 80
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

Percentage of censored samples

S
u
r
v
i
v
a
l

A
U
C

SoftImpute

Misglasso

REC

TREC

(d) AUC on Kick 4

Figure 4.4: Survival AUC plots obtained for calibrated kickstarter datasets using REC,
TREC, SoftImpute and Misglasso methods.

set of uncensored instances and the sampled censored instances. From the plots in Figure 4.3

and Figure 4.4, we observe that the survival AUC values improve for most of the cases, with

the improvements being prominent for TREC compared to other competing methods, and

REC stands as the second best method.

The better performance of TREC is because it is effective in interpreting the missing

values in the time-to-event labels for censored instances, as it imputes these values consider-

ing the two-dimensional correlation structure within the covariance matrix in its formulation.

Calibrated time-to-event labels tend to provide the survival model with more discriminative

information which is evident from the improvement in the survival AUC values.

4.4.5 Parameter Sensitivity Analysis

In this section, we study the influence of the row and column regularizers and parameters

on the convergence and runtime of the TREC algorithm. We study the runtime using both

L1 and L2 regularizers in TREC to assess their time efficiency. We use one of the kickstarter

datasets (Kick 1) for this experiment. The values of the row and column regularization

68

parameters were obtained using cross validation for this dataset.

Number of Instances

0 500 1000 1500 2000 2500 3000

ti
m

e
 (

s
)

0

2000

4000

6000

8000

L1 norm

L2 norm

Figure 4.5: Runtime on Kickstarter dataset using L1, L2 norms in TREC.

Kickstarter datasets
1 2 3 4

N
u

m
b

e
r

o
f

It
e

ra
ti

o
n

s

0

1

2

3

4
(1,1)

(2.5,2.5)

(5,5)

Figure 4.6: Iterations for convergence using L2 norm based TREC.

In Figure 4.5 and Figure 4.6, we plot the runtime in seconds on the Y-axis, and the num-

ber of instances sampled from Kick 1 dataset are labeled on the X-axis. We run both our L1

and L2 norm based TREC algorithms separately to assess their runtime. In Figure 4.5, one

can observe that among the two norms L2 norm seems to be more time efficient compared to

the L1 norm. The L1 norm uses the graphical lasso solver and the higher number of station-

ary points observed in this formulation results in higher runtime to obtain convergence. This

makes the L2 norm the more effective regularizer due to better scalability. However, the L2

norm does not provide sparse solutions with respect to the inverse covariance matrix esti-

69

mated which affects the interpretability of the solution when dealing with high dimensional

datasets. So there is a trade-off between choosing the L1 and L2 norms.

In another experiment, we also study the impact of the choice of the regularization

parameters on the convergence of TREC. In Figure 4.6, the X-axis represents the indices

of the 4 kickstarter datasets used in this chapter. The Y-axis represents the number of

iterations needed for TREC to converge for each dataset using three sets of regularization

parameter values. The legend in the figure indicates the values chosen for the regularization

parameters ρr and ρc. We observe that the choice of regularization parameters does not

affect the convergence, as there is no uniform pattern observed. So these experiments help

us conclude that the choice of regularizer is important, but the value of these regularization

parameters does not affect the convergence of TREC significantly. This also indicates that

our framework is not sensitive to the row and column regularization parameters.

70

CHAPTER 5: STRUCTURED MODEL FOR RIGHT CENSORED DATA

5.1 Motivation

Predictive models have been built on right censored data using non-parametric, semi-

parametric and parametric methods as seen in Chapter 2, 3 and 4. In particular, semi-

parametric methods such as Cox regression [6] offer some distinct benefits of interpreting

the censoredness from the data, but these methods also assume that the proportional hazards

(PH) assumption [2] must be satisfied. This assumption states that the risk of occurrence

of an event for two unique instances is related by a fixed multiplicative factor called the

baseline hazard rate. It has been observed empirically that this assumption is not satisfied

for all the real-world datasets which limits their applicability significantly.

Other approaches such as linear regression [58, 59] have also been used to learn effec-

tive prediction models for right censored data without assuming the PH condition. The

advantages of using linear regression models in this domain are (i) it is a non-parametric

approach and it does not make any assumptions about the distribution of the data, and

(ii) it provides good performance for diverse real-world datasets. Linear regression methods

account for right censored instances using weighted schemes and imputation methods [60].

However, weighted methods rely heavily on the convergence of instance weights which is not

guaranteed making them biased, and imputation methods use an expectation maximization

(EM) framework which adds a significant computational burden affecting the scalability. In

contrast to these methods, in this chapter, we propose a Structured regularization based

LInear REgression algorithm for right Censored data (SLIREC) which infers the underlying

structure directly and uses this knowledge to guide the base linear regression model. Our

motivation to use structure-based methods arises from the fact that they can effectively

infer latent knowledge for prediction such as tree-based hierarchies [61] and graph-based re-

lationships which is extremely crucial for prediction. This is also supported by the success

obtained using structured sparsity based regularization methods in regression [62], and to

71

our knowledge this is the first work which addresses the issue of building structured sparsity

based regression models for right censored data.

This structured approach is more robust compared to the standard statistical and Cox-

based methods, as it can automatically adapt to different distributions of events and cen-

sored instances in the dataset which is very useful when dealing with different real-world

datasets. Specific structured regularization methods such as sparse inverse covariance es-

timation (SICE) [11] can learn a sparse graphical model which explores the dependencies

among different events in the right censored data. Our primary goal in this work is to extract

such structural knowledge from right censored data using SICE and explore the utility of

this knowledge for the linear regression model.

SICE is known to outperform generic regularization methods which do not exploit the

structure, as they can efficiently interpret partial correlations among features, which is ob-

served more frequently than absolute correlations. This is one of the primary reasons of

their widespread usage in learning sparse graphical models and studying conditional feature

independence. The major contributions of this chapter are summarized as follows.

• We propose a Structured regularization based LInear REgression algorithm for right

Censored data (SLIREC) which addresses the problem of building a linear regression

model for right censored data by learning the sparse inverse covariance matrix, and

uses this structural knowledge in a regularization framework to guide the base linear

regression model.

• We formulate SLIREC as a bi-convex optimization problem based on the block-coordinate

descent algorithm, and we accelerate the inner computations involved using an efficient

approximation scheme based on the proximal-Newton [63] method, which improves the

runtime complexity of this algorithm significantly.

• We evaluate the performance of SLIREC by comparing its goodness with respect to reg-

ularized Cox regression methods, and also illustrate the improvement obtained through

SLIREC by comparing its performance to regression methods which vary in their ability

72

to infer the structure. In addition, we also present results based on survival regression

metrics such as the Brier score and concordance index [49].

This chapter is organized as follows. In Section 5.2, we provide an overview of our

approach. In Section 5.3, we present the details of the proposed SLIREC algorithm and

discuss the optimization. In Section 5.4, we present the experimental results obtained by

applying SLIREC on different benchmark datasets.

5.2 Preliminaries

In this section, we begin by explaining the notations used in this chapter. This is then

followed by a brief description of the proposed SLIREC algorithm for time-to-event data. In

Table 5.1, we present the notations and their brief implications. Let X and Y be symmetric

p × p matrices, then X ≻ 0 and X � 0 implies that X is positive definite and positive

semidefinite, respectively.

Table 5.1: Notations used in this chapter.

Name Description
X R

n×p survival covariates matrix
T R

n×1 times response vector
δ binary n× 1 event indicator vector
k number of events
Te R

k×1 sorted unique time-to-event vector
Y R

n×k multi-response event matrix

ŜKM(·) survival Kaplan-Meier function
λ1 scalar regularization parameter
Λ R

k×k symmetric weight matrix
β R

p×k regression coefficients matrix
Ω R

k×k events inverse covariance matrix

T represents the observed response time vector for all the instances with Ti being the

response time for instance i. Te represents the set of unique time-to-event values sorted in

ascending order and both Ts, Tc represents an arbitrary time value. The vectorized listing of

the elements of a p×p matrix is denoted by vec(X) and the Kronecker product of matrices X

and Y is denoted asX⊗Y . G andH represent the gradient and Hessian matrices for a matrix

function. We also use the matrix norm notation in this chapter where ‖ X ‖1= Σi,j|Xij|

73

and |X| represents the determinant of the matrix and the absolute value when X is a scalar.

‖ X ‖1,Λ= Σi,jλij|Xij| represents the weighted element-wise ℓ1 norm where Λ is a symmetric

non-negative weighted matrix, with Λ = [λij] and λij > 0 for off-diagonal elements and

λii = 0 for diagonal entries. This is also referred to as the weighted matrix norm in our

SLIREC formulation.

Extract Events
(δ=1)

Compute
 Risk Set

Sort Unique
Event Times

 Estimate KM
ŜKM(.)

Estimate
entries using
jackknife

estimator of
ŜKM(.)Survival Covariates (X)

Estimate β, Ω using bi‐convex optimization

 Event Matrix
(Y)

0

0

1

0

0

73 1 35 2

32 0 57 3

59 1 8 2

65 1 16 2

89 1 39 2

0.93

0.89

0.88

0.92

0.95

0.91 0.76

0.88 0.76

0.87 0.68

0.92 0.81

0.94 0.77

1

1

0

0

1

772

448

2172

2161

471

ho
rm

on
e

ag
e

M
en

o‐
st
at

siz
e

gr
ad

e

T.
44

8

T.
47

1

T.
77

2

T δ

1

2

3

4

5

id

Figure 5.1: Illustrative example of SLIREC algorithm on a sample right censored dataset.

In Figure 5.1, we present an illustrative example on a sample cancer survival dataset,

and also explain the intuition behind the steps used in the SLIREC algorithm. The first step

of SLIREC is the event matrix generation where we initially extract events (δ = 1) using T

and δ. In this example, the event matrix generated on the right consists of three columns

corresponding to three events at different time points (448, 471, 772). We then learn the

Kaplan-Meier (KM) estimator [5, 24, 32] of the survival function (ŜKM(·)) which measures

the probability of the event not yet occurring, and estimate it for instance 1 at these three

time points. Thus, we obtain three probability values after computing ŜKM(.) to build a

R
1×3 event probability vector.

Once this is done, we assess the influence of instance 1 on ŜKM(·) at all three event

times by recomputing the KM function without considering instance 1. This is called the

jackknife method of estimation in the statistics literature [64]. We then obtain 3 influence

values for instance 1 corresponding to each time to obtain a R
1×3 event influence vector.

74

This procedure of computing the influence is then repeated for the remaining instances at

all event times to obtain a R
5×3 event influence matrix, where each cell value represents the

influence of this instance in determining the event at the given time. For simplicity, we refer

to this event influence matrix as the event matrix in the rest of this chapter.

Subsequently, this event matrix (Y) is used to fit a multi-response linear regression model

on the survival covariates (X). This step of SLIREC also involves applying structured

regularization on Y using sparse inverse covariance estimation, and use this to guide the

base linear regression model for obtaining predictions Ŷ . One of the unique features of this

approach is that the adopted structured regularization will enhance the predictiveness of the

linear regression model. This feature will be illustrated later in our experiments also.

5.3 The Proposed SLIREC Algorithm

In this section, we present the SLIREC algorithm by explaining the two stages involved

in this approach, namely the event matrix generation and the linear regression algorithm

which imposes structured regularization on the learned event matrix. We also present the

details of the optimization involved and discuss the complexity of the SLIREC algorithm.

5.3.1 Event Matrix Generation

In this section, we present the process of generating an event matrix from right censored

data using the Kaplan-Meier (KM) estimator. We begin by explaining the formulation of the

KM estimator, and we also explain the jackknife estimation method used for estimating the

pseudo-response variables to populate the event matrix [65]. The novelty of this approach

is that it is a non-parametric method of learning a multi-response representation of the

dataset and it estimates pseudo-response values even for the right censored instances. The

key contribution of this method is that it relies solely on using only T and δ to obtain

these pseudo-responses making it more viable to apply linear regression-based prediction

models for right censored data, which could not be done before. An important feature of the

generated event matrix is that there are individual response variables in the event matrix (Y)

corresponding to each unique time-to-event variable as shown in Figure 5.1. We now explain

75

the procedure of estimating the columns of Y using the non-parametric KM estimator.

The starting point for the KM estimator is a sample of n independent observations from

a survival dataset with k unique events with the event times ordered as T1 < T2 < . . . < Tk.

At any arbitrary time Ts, we can define the number of events observed as es, and the number

of instances with event times greater than or equal to Ts at risk are represented by rs. The

conditional probability of surviving beyond time Ts can then be defined as p(Ts).

p(Ts) =
rs − es

rs
(5.1)

ŜKM(Tc) =
∏

Ts<Tc

p(Ts)

In this equation, the KM estimator ŜKM(Tc) can be interpreted as the probability of

the event not yet occurring until an arbitrary time Tc. This is calculated by estimating the

cumulative probability of the event not occurring at each of the preceding time intervals

(Ts < Tc), and subsequently multiplying all these preceding probability values to obtain the

final probability. This method of probability estimation is completely non-parametric and it

does not make any assumptions about the survival covariates. This makes it more suitable

for our approach compared to semi-parametric and parametric estimation methods.

We now explain the procedure used to estimate the values in the event matrix (Y) using

ŜKM(Tc), which represents the KM estimator of the survival function evaluated at a specific

event time Tc. The entry in the event matrix for instance j at time point Tc i.e. (Yj(Tc))

can then be defined as given in Eq. (5.2), where Ŝ−j
KM(·) is the KM estimator based on the

instances other than the jth instance.

Yj(Tc) = nŜKM(Tc)− (n− 1)Ŝ−j
KM(Tc) (5.2)

As mentioned earlier, this method of estimation is called the jackknife approach, where

we estimate the change in ŜKM(·) at every event time Tc before and after removing instance

j from the dataset. This difference, as calculated by Eq. (5.2), represents the influence of

instance j on predicting the occurrence of the event at time T . This influence computation is

76

done for all the instances to estimate the entries in the event matrix. This method depends

on estimating the ŜKM(·) function alone which makes its computation much simpler.

The goal of this step of the SLIREC algorithm was to resolve the issue of missing re-

sponse variables for right censored instances in survival data. This was done by generating

a complete multi-response matrix which consists of the estimated pseudo responses for both

censored instances and events which were obtained using the KM estimator of the survival

function. This multi-response matrix is now fitted onto the survival covariates using the

linear regression model. However, applying linear regression directly to predict each individ-

ual response variable is not intuitive, as this approach would completely ignore the effect of

other response variables on modeling the current response.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Breast

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(b) Whas500

Figure 5.2: Visualizing structure in the event matrices for two survival datasets.

To resolve this problem, we resort to a structured regularization approach which can

model the effects of multiple response variables by capturing their inherent structure. We

visualize this correlation structure for two survival datasets, namely, Breast and Whas500 in

Figure 5.2. We now explain our method which can infer this underlying structure effectively

in the next section.

5.3.2 Structured Regularization based Linear Regression

In this section, we present the Structured regularization based LInear REgression al-

gorithm for right Censored data (SLIREC) which learns a sparse linear regression model

77

by simultaneously learning the structure of the event matrix present in the data. In this

method, two regularizers, one for the regression coefficient matrix and the other for the in-

verse covariance matrix over the event matrix are used. The method estimates the sparse

inverse covariance matrix, and uses the learned graphical model structure to supplement the

predictive ability of the original linear regression model. This is also referred to as super-

vised covariance-based regression. We now define the SLIREC likelihood function using the

two variables (β,Ω) where Ω = Σ−1 is called as the inverse covariance matrix (also called a

precision matrix).

L(β,Ω) = tr

[

1

n
(Y −Xβ)T (Y −Xβ)Ω

]

− log|Ω| (5.3)

Ŷ = Xβ̂ + ǫ.

Eq. (5.3), gives the formulation of the SLIREC likelihood function in terms of two vari-

ables β and Ω. We also present the multi-response linear regression estimation equation

where the multi-response predictions Ŷ are obtained using X, β̂ and ǫ is the error term.

While estimating β̂ and Ω̂ it is desirable to learn sparse inverse covariance matrices, as their

computation can be very expensive when dealing with high-dimensional datasets. To induce

sparsity, we use the weighted matrix norm penalty on the inverse covariance matrix which

is defined as ‖ Ω ‖1,Λ= Σi,jλij|Ωij| and Λ = [λij] with λij > 0 for the off-diagonal elements

and λii = 0 for diagonal entries. The intuition of using this regularizer is that it penalizes

off-diagonal entries alone, and it also ensures that the optimal solution for Ω has a finite

solution. This penalty also has an effect of reducing the number of parameters for Ω.

(β̂, Ω̂) = argmin
β,Ω

{

L(β,Ω)+ ‖ Ω ‖1,Λ +λ1 ‖ β ‖1
}

(5.4)

We impose the L1 penalty on β in this formulation to build interpretable models. The

regularizers used here are the L1 norm and the weighted matrix norm. This optimization

problem is not convex; however, solving for either β or Ω with the other one fixed is convex.

We now solve Eq. (5.4) using the block-coordinate descent algorithm [66]. The solution for

78

Eq. (5.4) with (β=β0) gives Eq. (5.5) which is a L1-penalized covariance estimation problem.

Ω̂(β0) = argmin
Ω

{

tr(SΩ)− log|Ω|+ ‖ Ω ‖1,Λ
}

(5.5)

S =
1

n
(Y −Xβ0)

T (Y −Xβ0)

There are solvers such as the graphical lasso (glasso) [11] which can solve this problem.

However, it is observed that for high-dimensional data the glasso solver does not scale well.

To overcome this problem, we use an efficient second-order approximation based algorithm

to solve Eq. (5.5), which uses the symmetric structure of the Hessian for obtaining faster

convergence.

β̂(Ω0) = argmin
β

{

tr

[

1

n
(Y −Xβ)T (Y −Xβ)Ω0)

]

(5.6)

+ λ1 ‖ β ‖1
}

The solution for Eq. (5.6), which solves for β̂ by keeping Ω fixed as Ω0 can be ob-

tained using the cyclic-coordinate descent algorithm. The coordinate descent steps can be

simply obtained through the directional derivatives which are then used along with the

soft-thresholding operator. The coordinate-descent procedure is guaranteed to converge pro-

vided the inverse covariance matrix is positive semi-definite which is ensured through our

estimation procedure.

As outlined in Algorithm 5.1, the first step of our approach is to use T along with the

event indicator δ to learn the event matrix Y . This event matrix is generated using the

procedure explained in Section 5.3.1. Subsequently, the survival covariates X and the event

matrix Y are used within the SLIREC algorithm. The scalar regularization parameter λ1 and

the symmetric weight matrix Λ are provided as inputs while solving the individual convex

optimization problems with respect to β and Ω, respectively.

We iteratively estimate β̂ and Ω̂ until convergence. This algorithm uses the block-

coordinate descent optimization method, and Ω̂ is estimated using an efficient second-order

79

approximation approach which is explained in the next section. The intuition behind using

Algorithm 5.2 for solving Eq. (5.5) is to obtain faster convergence of the solution. After

convergence of both these parameters, we use X and β̂ to obtain the final prediction matrix

using Eq. (5.3). This prediction matrix Ŷ is a R
n×k matrix where each cell represents the

probability of event of interest not yet occurring at the specified time for each instance. We

explain the optimization steps we used in our algorithm to improve its efficiency in the next

section.

Algorithm 5.1: SLIREC Algorithm

1 Input: Survival covariates matrix X ∈ R
n×p, Times vector T , Event indicator δ,

regularization parameter λ1, weight matrix Λ ∈ R
k×k, tolerance parameter

ǫ, maximum iterations max iter
2 Output: Regression coefficients matrix β̂iter+1 ∈ R

p×k, Events inverse covariance

matrix Ω̂iter+1 ∈ R
k×k

3 Initialize β̂0, Ω̂0;
4 Generate event matrix Y using T and δ using Eq. (5.1) and Eq. (5.2);
5 for iter = 0, . . . ,max iter do

6 Compute β̂iter+1 by solving Eq. (5.6) using Ω̂iter;

7 Compute Ω̂iter+1 by solving Eq. (5.5) using Algorithm 5.2 and β̂iter+1;

8 if ‖ β̂iter+1 − β̂iter ‖1< ǫ then
9 break;

10 end

11 end

5.3.3 Optimization

In this section, we present an effective second-order approximation-based algorithm to

solve the optimization problem in Eq. (5.5). The intuition for using a second-order approxi-

mation is to obtain faster convergence rates compared to first-order methods which converge

at a slow rate of O(1/
√
n). However, to avoid the intensive Hessian computation, approxi-

mation methods such as the quasi-Newton method and the proximal-Newton method have

been proposed [63]. The solver used by us here is a variant of this proximal-Newton method

which is explained below.

We represent the composite objective function in this equation as f(Ω). This objective

80

function is composed of two parts such that f(Ω) ≡ g(Ω) + h(Ω) where g(Ω) is convex and

h(Ω) is convex, but not differentiable (non-smooth). This minimization problem can be

solved using the second-order Taylor expansion of g(Ω). The second-order expansion for the

log-determinant function is given in Eq. (5.7) where t indicates the iteration index for the

sequence of Ω values generated.

f(Ω) ≡ g(Ω) + h(Ω) (5.7)

g(Ω) = tr(SΩ)− log|Ω|

h(Ω) =‖ Ω ‖1,Λ

ḡΩt
(∆) ≡ g(Ωt) + vec(∇g(Ωt))

Tvec(∆) +
1

2
vec(∆)T∇2g(Ωt)vec(∆)

D∗
t = argmin

∆
{ḡΩt

(∆) + h(Ωt +∆)}

We now define the Newton direction D∗
t for the objective function f(Ω) which can then be

written as the solution of the regularized quadratic program given in Eq. (5.7) and Eq. (5.8).

This Newton direction computation problem can be expressed as a lasso problem as shown

in Eq. (5.8) with the gradient and Hessian formulations given in Eq. (5.9). Subsequently,

the standard coordinate descent method is used to solve this equation to obtain the Newton

direction.

argmin
∆

1

2
‖ H 1

2vec(∆) +H− 1

2 b ‖22 + ‖ Ωt +∆ ‖1,Λ (5.8)

In this Eq. (5.9), H = ∇2g(Ωt) and b = vec(∇g(Ωt)). The Hessian and Gradient matrices

G and H can be written as given in Eq. (5.9).

S =
1

n
(Y −Xβ0)

T (Y −Xβ0) (5.9)

G = ∇g(Ωt) = S − Ω−1
t

H = ∇2g(Ωt) = Ω−1
t ⊗ Ω−1

t

In Algorithm 5.2, we describe the algorithm used for solving Eq. (5.5). The algorithm

81

is based on obtaining the Newton direction D∗
t by solving a lasso problem using coordinate

descent, and using the obtained Newton direction along with an Armijo-rule based step size

selection (α) to obtain the next positive definite iterate (Ωt). The calculation of the Newton

direction is simplified when Ω is a diagonal matrix, as the Hessian matrix H = Ω−1
t ⊗ Ω−1

t

is also a diagonal matrix, therefore the time complexity for the Newton direction update

reduces from O(k3) to O(k2), which is why this is referred to as a second-order approximation

method.

We now discuss the complexity of the SLIREC algorithm by analyzing the complexity of

both the stages involved. The time needed to generate the event matrix representation using

the KM approach is constant in general and does not depend upon the number of events in

the dataset. The block-coordinate descent method used in the bi-regularized linear regression

model needs np units of time for the coordinate descent step and the computation of the

events inverse covariance matrix takes k2 units of time. Hence, the overall time complexity

of the SLIREC algorithm can be calculated as O(np+ k2).

Algorithm 5.2: Efficient Solver for Eq. (5.5) in SLIREC

1 Input: Event matrix Y ∈ R
n×k, parameters σ, β, δ

2 Output: Events inverse covariance matrix Ωt+1 ∈ R
k×k

3 for t = 1, . . . , do
4 for α = 1, β, β2, . . . do
5 Compute the Cholesky factorization LLT = Ωt + αD∗

t ;
6 if Ωt + αD∗

t ≻ 0 then
7 Compute f(Ωt + αD∗

t) from L and Ωt + αD∗
t ;

8 if f(Ωt + αD∗
t) ≤ f(Ωt) + ασδ then

9 break;
10 end

11 end
12 Ωt+1=Ωt + αD∗

t ;

13 end

14 end

82

5.3.4 Theoretical Analysis

In this section, we discuss the proof for the line search condition which ensures the descent

property by finding the next positive definite iterate. The Armijo line search rule is stated

in Eq. (5.10) where we try step sizes α ∈ {β0, β1, . . .} with a constant decrease rate 0 < β <

1, until we find the smallest k with α = βk such that Ωt + αD∗
t is positive definite and

satisfies the decrease condition for 0 < σ < 0.5. We now provide the theorem and proof for

the Armijo condition.

f(Ωt + αD∗
t) ≤ f(Ωt) + ασδ (5.10)

δ = tr(∇g(Ωt)
TD∗

t)+ ‖ Ωt +D∗
t ‖1,Λ − ‖ Ωt ‖1,Λ

Theorem 3. For the symmetric inverse covariance matrix Ωt ≻ 0, and the symmetric
Newton direction D∗

t , there exists an ᾱ > 0 such that for all α < ᾱ, the matrix Ωt + αD∗
t

satisfies the line search condition given in Eq. (5.10).

Proof. We use the fact that the matrix weighted norm satisfies the inequality given in
Eq. (5.11). This inequality can be proved trivially by considering the convex nature of
the ‖ · ‖1,Λ norm.

‖ Ωt + αD∗
t ‖1,Λ =‖ α(Ωt +D∗

t) + (1− α)Ωt ‖1,Λ (5.11)

≤ α ‖ Ωt +D∗
t ‖1,Λ +(1− α) ‖ Ωt ‖1,Λ

f(Ωt + αD∗
t)− f(Ωt) = g(Ωt + αD∗

t)− g(Ωt) (5.12)

+ ‖ Ωt + αD∗
t ‖1,Λ − ‖ Ωt ‖1,Λ

≤ g(Ωt + αD∗
t)− g(Ωt)

+ α(‖ Ωt +D∗
t ‖1,Λ − ‖ Ωt ‖1,Λ)

= αtr((∇g(Ωt))
TD∗

t) +O(α2)

+ α(‖ Ωt +D∗
t ‖1,Λ − ‖ Ωt ‖1,Λ)

= ασδ

This proof shows that the Armijo line search condition is satisfied by finding the next positive
definite iterate which ensures the descent of the objective function.

We now explain the conditions which ensures that the approximation method used in

SLIREC algorithm converges to a global optimum. Subsequently, we define the necessary

conditions needed to be satisfied for convergence.

83

Theorem 4. There exists a unique minimizer Ω̂ for Eq. (5.7).

Proof. This can be proved using the fact that H = ∇2g(Ω) = Ω−1 ⊗ Ω−1 is convex since
‖ Ω ‖1,Λ is convex and -log|Ω| is strongly convex; hence we have that f(Ω) is strongly

convex and the minimizer Ω̂ for this function is unique from the property of strong convex
functions.

We now briefly state the conditions required for the convergence of the solution Ωt in

Eq. (5.7) using some of the theory of strictly convex functions. In this regard, we also provide

the Newton update step for the constrained minimization problems.

Theorem 5. Assume f is strictly convex and f has a unique minimizer Ω̂ and that ∇2f(Ω)
is Lipschitz continuous. Then for all Ωt sufficiently close to Ω̂, the sequence Ωt generated by
Eq. (5.13) converges quadratically to Ω̂.

Ωt+1 = argmin
Ω
∇f(Ωt)

T (Ω− Ωt) (5.13)

+
1

2
(Ω− Ωt)

T∇2f(Ωt)(Ω− Ωt)

Proof. The objective function used in the SLIREC algorithm in Eq. (5.7) is convex and
non-smooth, so before proving the convergence; we need to modify the formulation of this
optimization problem. This conversion can be done by dividing the index set with λij 6= 0
into three subsets which are given in Eq. (5.14). Using these three subsets which represent
positive (P), negative (N) and zero sets (Z) respectively, we can now define a constrained
minimization problem in Eq. (5.15) which satisifes all the conditions mentioned above, and
whose optimum corresponds to the same as the global optimum of Eq. (5.7); hence proving
the convergence.

P = {(i, j)|Ωij > 0} (5.14)

N = {(i, j)|Ωij < 0}
Z = {(i, j)|Ωij = 0}

argmin
Ω
− log|Ω|+ tr(SΩ) + Σ(i,j)∈PλijΩij − Σ(i,j)∈NλijΩij (5.15)

s.t. Ωij > 0 ∀(i, j) ∈ P

Ωij < 0 ∀(i, j) ∈ N

Ωij = 0 ∀(i, j) ∈ Z

This completes explaining the conditions associated with attaining the global optimum and
the convergence of the approximation method used in the SLIREC algorithm.

84

5.4 Experimental Results

In this section, we compare the performance of our proposed SLIREC algorithm against

both survival and linear regression-based algorithms. Table 5.2 provides the description

of the datasets used in our experiments. Primary biliary cirrhosis (PBC) dataset is from

the Mayo Clinic trial in cirrhosis of the liver. Breast and Colon cancer datasets are from

the German Breast Cancer Study Group. The Diffuse Large B-Cell Lymphoma (DLBCL)

dataset consists of Lymphochip DNA microarrays from 240 biopsy samples of DLBCL tumors

for studying the survival status over 21 years. The Norway Stanford Breast Cancer Data

(NSBCD) consists of breast cancer measurements for 115 women with breast cancer observed

for 188 months to monitor the death time. The Lung dataset consists of the gene expression

profiles of 86 early stage lung adenocarcinoma patients for a period of 110 months. The

electronic health record (EHR) is a proprietary dataset consists of clinical and behavioral

variables for patients monitored for heart failure readmissions at a major hospital in the US.

These datasets except for the EHR dataset were obtained from these websites 3 and 4.

Table 5.2: Description of the datasets used.

Dataset # Instances # Features # Events Censored(%)
PBC 418 17 109 61
Breast 686 8 270 56
Colon 888 13 364 50
whas1 481 14 180 52
whas500 500 22 162 43
DLBCL 240 7399 134 42
NSBCD 115 549 26 67
Lung 86 7129 24 72
EHR 789 183 297 54

5.4.1 Implementation Details

We implemented our entire code for the proposed SLIREC algorithm in the R program-

ming language using several CRAN repositories. The computation of the event matrix was

3https://www.umass.edu/statdata/statdata/stat-survival.html
4http://user.it.uu.se/~liuya610/download.html

85

done using the pseudo R package which generates the pseudo-observations for survival analy-

sis. The structured regularization component of SLIREC was implemented using the mrce R

package. The second-order approximation method was implemented using the quic R pack-

age. The survcomp, survival, ipred R packages were used for obtaining the survival AUC,

standard deviation and Brier score metrics. The CoxBoost, randomforestSRC, superpc and

Coxnet R packages were used to implement the CoxBoost, RSF, SuperPC and regularized

Cox regression algorithms, respectively. The linear regression based methods which can be

applied for predicting multiple response variables of the event matrix were obtained using

the Multi-Label Dimensionality Reduction (MLDR) Matlab package available from here5.

5.4.2 Evaluating Importance of Structured Regularization

In this section, we evaluate the importance of the structured regularization component of

SLIREC by comparing its performance with various linear regression based methods which

vary in their ability to infer the underlying structure. This experiment is feasible because

after applying the event matrix generation step on the right censored data, we obtained a

unique multi-response representation which can be used to fit linear regression based methods

and our structured regularization based linear regression method. In this experiment, we

compare with three different baseline linear regression based methods which are CCA, OPLS

and SSL, respectively. These methods are briefly described below.

• Canonical Correlation Analysis (CCA) [29]: CCA is a method used to identify correla-

tions between two sets of multi-dimensional variables, which are the survival covariates

and the event matrix. This projected representation obtained by CCA is used in a

multi-response linear regression framework.

• Orthonormalized Partial Least Squares (OPLS) [30]: OPLS is a method which consid-

ers two identical sets of multi-dimensional variables as done for CCA, and it creates

orthogonal score vectors maximizing the covariance between different sets of variables.

The projected representation obtained by OPLS is then used within a multi-response

5http://www.yelab.net/software/MLDR/

86

linear regression framework.

• Shared Subspace Learning (SSL) [31]: SSL extracts shared structures for multi-response

prediction by capturing the correlation among the different columns of the event ma-

trix by extracting a lower dimensional subspace. Subsequently, the projections of the

survival covariates and the event matrix onto the extracted lower-dimensional subspace

are used within a multi-response linear regression framework.

We obtained the prediction matrix Ŷ given in Eq. (5.3) using CCA, OPLS, SSL and SLIREC

methods. The survival prediction matrix Ŷ can then be used to obtain the time-based

AUC(Tc) values for modeling each response variable of Y using Eq. (3.20). This vector

consists of the AUC(Tc) values and is computed over each individual unique time-to-event

for these datasets. In this manner, this vector of AUC(Tc) values obtained for each dataset

using each of the four algorithms can be visualized using a boxplot shown in Figure 5.3.

From this figure, one can observe that, in all the cases, SLIREC performs the best, and its

range of values is either better or comparable to those of SSL. The better performance of

SLIREC and SSL is attributed to the fact that both these methods consider the structure of

the event matrix and use this knowledge during prediction. CCA and OPLS, on the other

hand, cannot leverage on this rich structural knowledge which reflects in their comparatively

lower AUC values. This demonstrates the importance of using structured regularization

based methods for building predictive models for right censored data.

5.4.3 Evaluation using Survival Models

In this section, we evaluate the performance of SLIREC by comparing its performance

with several other state-of-the-art survival regression algorithms which are described below.

• Elastic-net (EN-COX) [16]: EN-COX integrates the elastic net penalty with the Cox

partial log-likelihood loss function. KEN-COX [57] supplements EN-COX with an ad-

ditional feature kernel term to capture more feature specific information of the survival

covariates.

• Laplacian Net Cox (LAPNET-COX) [17]: LAPNET-COX computes the graph Lapla-

87

Models

CCA OPLS SSL SLIREC

tim
e-

ba
se

d
A

U
C

0.62

0.64

0.66

0.68

(a) Breast
Models

CCA OPLS SSL SLIREC

tim
e-

ba
se

d
A

U
C

0.5

0.55

0.6

0.65

(b) Colon

Models

CCA OPLS SSL SLIREC

tim
e-

ba
se

d
A

U
C

0.6

0.65

0.7

0.75

0.8

0.85

(c) DLBCL

Models

CCA OPLS SSL SLIREC

tim
e-

ba
se

d
A

U
C

0.55

0.6

0.65

0.7

0.75

0.8

(d) EHR

Models

CCA OPLS SSL SLIREC

tim
e-

ba
se

d
A

U
C

0.65

0.7

0.75

0.8

0.85

0.9

(e) Lung

Models

CCA OPLS SSL SLIREC

tim
e-

ba
se

d
A

U
C

0.55

0.6

0.65

0.7

0.75

0.8

0.85

(f) NSBCD

Models

CCA OPLS SSL SLIREC

tim
e-

ba
se

d
A

U
C

0.6

0.65

0.7

0.75

0.8

(g) Whas1
Models

CCA OPLS SSL SLIREC

tim
e-

ba
se

d
A

U
C

0.6

0.65

0.7

0.75

0.8

(h) Whas500

Figure 5.3: Performance comparison using CCA, OPLS, SSL and SLIREC methods on
various survival datasets.

88

cian over the survival covariates and integrates this into the elastic-net Cox algorithm.

The graph Laplacian is used here to capture structural knowledge of the data.

• Elastic Net Buckley James (EN-BJ) [25]: EN-BJ uses a semi-parametric accelerated

failure time (AFT) model with the elastic net regularization.

• Random Survival Forests (RSF) [28] and CoxBoost [67]: RSF and CoxBoost are ensem-

ble based methods which use survival trees and boosting for prediction, respectively.

We report the survival AUC (and standard deviation values) obtained from various survival

regression methods in Table 5.3. The regularization parameters were determined using a

tuning set, after evaluating a sequence of values and the optimal value corresponding to the

minimum MSE is chosen. Following this the values in Table 5.3 was obtained after using

these regularization parameters and five-fold cross-validation to obtain standard deviation

estimates. The results indicate that SLIREC performs better than competing algorithms in 6

out of 9 datasets, and performs competitively in the remaining cases. The better performance

of SLIREC is attributed to its ability to use effective structured regularization, augmenting

the predictive ability of the base sparse linear regression model.

5.4.4 Goodness of Survival Prediction

We also present the results on assessing the goodness of the survival predictions obtained

from the SLIREC algorithm and other competing survival regression algorithms using the

Brier score metric. As mentioned earlier, we prefer survival models with lower Brier score

values. In Table 5.4, we present the integrated brier score (IBS) values for different bench-

mark datasets using various survival regression methods. The values in Table 5.4 indicate

that SLIREC provides more effective predictions for 7 out of 9 datasets considered. This

indicates that our approach can be used to obtain reliable survival predictions which are

often needed in several real-world applications.

5.4.5 Scalability Experiments

In this section, we present the experimental results which assess the improvement in the

runtime of SLIREC algorithm before and after applying the second-order approximation

89

Table 5.3: Survival AUC and standard deviation values for the SLIREC algorithm compared
to other survival regression models.

Dataset EN-COX KEN-COX LAPNET-COX EN-BJ RSF CoxBoost SLIREC

Breast
0.671
(0.017)

0.682
(0.087)

0.664
(0.014)

0.680
(0.065)

0.679
(0.029)

0.686
(0.014)

0.691
(0.014)

Colon
0.646
(0.054)

0.635
(0.019)

0.642
(0.021)

0.663
(0.027)

0.638
(0.051)

0.661
(0.016)

0.661
(0.016)

PBC
0.742
(0.031)

0.790
(0.025)

0.778
(0.030)

0.764
(0.028)

0.742
(0.088)

0.738
(0.018)

0.804
(0.005)

DLBCL
0.693
(0.028)

0.713
(0.028)

0.691
(0.049)

0.733
(0.058)

0.755
(0.121)

0.752
(0.009)

0.763
(0.071)

EHR
0.705
(0.015)

0.707
(0.013)

0.696
(0.091)

0.684
(0.034)

0.717
(0.070)

0.660
(0.126)

0.697
(0.082)

Lung
0.733
(0.014)

0.778
(0.030)

0.752
(0.005)

0.818
(0.088)

0.780
(0.062)

0.769
(0.011)

0.840
(0.013)

NSBCD
0.717
(0.011)

0.704
(0.004)

0.727
(0.011)

0.781
(0.047)

0.725
(0.051)

0.808
(0.074)

0.808
(0.155)

Whas1
0.753
(0.019)

0.766
(0.022)

0.741
(0.014)

0.763
(0.046)

0.726
(0.039)

0.755
(0.013)

0.786
(0.064)

Whas500
0.832
(0.020)

0.772
(0.015)

0.793
(0.061)

0.825
(0.029)

0.803
(0.029)

0.830
(0.044)

0.825
(0.036)

Table 5.4: Integrated Brier score values for the SLIREC algorithm compared to other survival
regression models.

Dataset EN-COX KEN-COX LAPNET-COX EN-BJ RSF CoxBoost SLIREC
Breast 0.573 0.558 0.551 0.421 0.588 0.581 0.419
Colon 0.495 0.434 0.477 0.448 0.506 0.510 0.492
PBC 0.652 0.573 0.515 0.495 0.611 0.635 0.331
DLBCL 0.634 0.658 0.619 0.664 0.631 0.668 0.672
EHR 0.319 0.445 0.382 0.403 0.419 0.690 0.183
Lung 0.620 0.696 0.677 0.523 0.514 0.248 0.215
NSBCD 0.544 0.547 0.546 0.546 0.562 0.381 0.371
Whas1 0.503 0.562 0.493 0.454 0.471 0.533 0.432
Whas500 0.631 0.585 0.602 0.440 0.623 0.359 0.314

technique described in Section 5.3.3. We consider two datasets in this experiment which are

Lung and DLBCL. We iteratively sample instances with varying feature dimensionality from

these datasets, and mark these values on the x-axis. We also measure the time taken (in

seconds) for execution of SLIREC algorithm before and after applying the approximation

technique for these sets of instances, and plot the corresponding time taken in seconds on

the y-axis.

90

From Figure 5.4 and Figure 5.5, we observe that the runtime of SLIREC after applying

the approximation is significantly smaller than the one before applying it. It is also observed

that the runtime for SLIREC with the approximation does not vary significantly despite in-

creasing the feature dimensionality. This is due to the acceleration provided by second-order

approximation or Newton-based methods which are known to obtain super-linear conver-

gence rates. This proves the importance of our approximation technique while applying the

SLIREC algorithm on different datasets.

features

0 1000 2000 3000 4000 5000 6000 7000

ti
m

e
(s

)

0

500

1000

1500

2000

2500 Before

After

Figure 5.4: Measuring improvement in runtime before and after applying the approximation
scheme in SLIREC for Lung dataset.

91

features

0 1000 2000 3000 4000 5000 6000 7000

ti
m

e
(s

)

0

2000

4000

6000

8000

10000
Before

After

Figure 5.5: Measuring improvement in runtime before and after applying the approximation
scheme in SLIREC for DLBCL dataset.

92

CHAPTER 6: ACTIVE LEARINNG BASED SURVIVAL REGRESSION

6.1 Motivation

In this chapter, we present an approach for learning a model from time-to-event data

which evaluates the impact of adding an instance to the model. This is an important problem

because the quality of training data chosen determines the goodness of the learned model.

Some methods which can be applied for acquiring a good set of training examples include

active learning and semi-supervised learning methods. Semi-supervised learning methods

rely on using side information in the form of pairwise constraints or co-training methods

to build models. Active learning is different from semi-supervised learning, as the model

learning process is more dynamic here, with instances being queried for labels at the end

of each iteration. The oracle (labeling expert) is constantly involved in the active learning

framework which is not the case with semi-supervised learning methods, as the expert-based

information is provided at the beginning itself.

In the literature, active learning methods have been used more frequently for the binary

classification problem rather than the regression problem where the outcome variable is

continuous. The problem of learning a model from survival data is unique as it is both a

classification as well as a regression problem. It can be viewed as a classification problem

considering the fact that there are two well- defined classes which are events (positive class)

and censored (negative class). Simultaneously, it can also be viewed as a regression problem,

as we are trying to predict a continuous valued time-to-event label. In Figure 6.1, we provide

a small illustration of learning a survival regression model on a sample synthetic dataset

where it can be viewed as both a classification and a regression problem.

In Figure 6.1, we fit a Cox regression model with a Weibull base hazard rate using a single

covariate on a set of points which consists of both events and censored instances. We then

learn the Cox model on this data and plot the subsequent predicted time-to-event values.

This is the regression component of learning the survival model. We also represent both

93

Covariate

-3 -2 -1 0 1 2 3

T
im

e
-t

o
-e

v
e

n
t

0

2

4

6

8

10

12
Cox PH model fit

Inferred function

Events

Censored

Figure 6.1: Survival Regression viewed as a binary classification problem.

the censored instances and the events present in the data in this plot which gives us the

perception of this being a binary classification problem, where we have to classify if a given

instance will be censored or be a possible event. This phenomenon of survival regression

where it can be interpreted as a classification problem makes it conducive to apply binary

classification based active learning methods such as uncertainty based sampling.

The reformulated classification problem of learning a survival model from data which

consists of both events and censored instances can be viewed as a problem of learning a

model from the data consisting of both labeled instances (events) and a unlabeled instances

(censored instances). In such a scenario, we can build a model on a small training sample

consisting of few events and censored instances whose labels are obtained from an oracle

(ground truth). This model can then be applied on the remaining data to identify those

instances which can be added to the model. Subsequently, the sampled instances are queried

for their time-to-event labels using the oracle. In each iteration, a fixed number of instances

are sampled and queried for their labels before being added to the model. This iterative

learning procedure is carried on until the learning model stabilizes. This is called the active

94

Time‐to‐
event
data

Learn
Survival
Model

Identify
instances
to query

Training
data

Pool of
Instances

Add to Train

Apply Model

Query
Oracle

Figure 6.2: Active learning cycle for time-to-event data.

learning cycle and is given in Figure 6.2.

The advantage of using an active learning approach compared to using a semi-supervised

learning method is that this allows the model to select instances which should be queried

for labels and added to the training data. In this context, this method helps in building

a model which is more intelligible compared to using a semi-supervised learning method.

This form of learning also benefits by utilizing the information in censored instances more

explicitly. In addition, the active learning framework does not depend on the base survival

model being used which makes it very flexible to use it with different kinds of survival

regression algorithms. In this chapter, we study this active learning method using several

Cox regression algorithms. In the next section, we provide the motivation of using a Cox

regression method and we also provide some real-world examples which would benefit by

using active learning-based survival models.

Active learning from time-to-event data can be very useful in a wide range of applications

where a domain expert (oracle) can be involved in the model building process. For example,

in healthcare applications, the survival model can select instances by learning from a small

95

labeled set of instances and then query the expert to receive the time-to-event label before

including it in the model. This expert feedback can help in refining the model which is

particularly useful for healthcare applications such as predicting 30-day readmission risk [45,

68]. In such applications, the domain expert can integrate domain knowledge into the survival

model to build a more robust model.

Active learning in this domain is particularly challenging because the model must choose

an instance from both censored and uncensored set of instances in the dataset and query the

expert to obtain the time-to-event label. In general censored data mining tasks, censored

instances are either deleted or the missing values are imputed to convert it into an uncensored

problem. An important challenge here lies in utilizing the censored instance completely while

building the active learning based survival regression model without deleting or modifying

the instance.

Over the past few years, data mining methods have been tuned to predict from cen-

sored data. Machine learning methods such as neural networks [69], random forests [28]

and support vector machine [70] based approaches have been applied to deal with censored

data. These methods in particular can handle non-linear relations between the covariates

in censored data. Survival regression methods such as Cox proportional hazards [6] and

Accelerated failure time (AFT) [59] models are also used to build regression models from

censored data.

Cox regression differs from other methods mentioned above since it estimates the relative

risk rather than the absolute risk of occurrence of the event. In the healthcare scenario, this

is highly useful for a doctor to compare two patients from the same cohort to identify who

is at a relatively higher risk. Cox regression also has a simple formulation which consists of

just estimating two quantities (i) the unspecified baseline hazard function and (ii) a linear

function of the set of covariates. The major contributions of this chapter are as follows.

• We present an Active Regularized Cox regression (ARC) framework which effectively

integrates active learning and Cox regression using a novel model discriminative gra-

96

dient sampling strategy and robust regularization. Regularization helps in providing

good generalizability in ARC and the model discriminative gradient sampling encour-

ages selecting appropriate instances to be labeled by the domain expert. ARC is tested

on electronic health records (EHR), synthetic and publicly available survival datasets.

• Experimental results over different datasets indicate that ARC outperforms competing

methods and attains very competitive AUC values. To our knowledge, this is the first

work which combines active learning with Cox regression for predicting time-to-event

outcomes in the 30-day readmission problem [45, 68] for heart failure.

This chapter is organized as follows. In Section 6.2, we present the preliminaries needed

to comprehend the ARC algorithm. In Section 6.3, the algorithm for the coordinate ma-

jorization descent (CMD) based regularized Cox regression (RegCox) is provided and the

proposed ARC algorithm is explained. The model discriminative gradient-based sampling

strategy used in this approach is also explained. In Section 6.4, experimental analysis is

conducted to evaluate ARC against different kinds of survival regression algorithms.

6.2 Preliminaries

In this section, we introduce the preliminaries on Cox regression and the notations needed

to interpret the active regularized Cox regression (ARC) method. This is followed by re-

viewing some of the concepts of the Cox regression framework.

Cox regression is one of the most widely used survival analysis methods. It is a semi-

parametric regression model which can accommodate both discrete and continuous measures

of event times. It assumes that conditioned on the covariatesX all risks are statistically inde-

pendent, and that the hazard probability of the primary risk for individuals with covariates

X is a function of the following parametrized form.

h(t|X) = h0(t)× exp(X · β) (6.1)

h(t|X) = h0(t)
︸ ︷︷ ︸

base hazard rate

× exp(X1β)× . . .× exp(Xmβ)
︸ ︷︷ ︸

proportional hazards

In Eq. (6.1), X · β =
∑m

µ=1 Xµβµ with time independent parameters β = (β1, . . . βm).

97

Table 6.1: Notations used in this chapter.

Name Description
X n x m matrix of feature vectors
T n x 1 vector of failure times
K number of unique failure times
δ n x 1 binary vector of censored status
Ri set of all instances at risk at time Ti (Tj > Ti)
β m x 1 regression coefficient vector
L(β) partial log-likelihood
h(t|X) conditional hazard probability
h0(t) base hazard rate
S0(t) base survival rate
S(t|X) conditional survival probability
Ke column-wise kernel matrix

The function h0(t) is called the base hazard rate. It is the base hazard rate one would find

for the trivial covariates X = (0, 0, . . . 0). The proportional hazards (PH) assumption in

Cox regression also basically states that different covariates contribute each an independent

multiplicative factor each to the primary risk hazard rate.

The effect of covariates are taken to be mutually independent and also independent

of time. However, it is easy to incorporate time-dependent covariates also into the Cox

regression model. In Cox regression, the goal is to find the most probable parameters β =

(β1, . . . , βm) and the most probable base hazard function h0(t).

β is estimated using the maximum likelihood estimation over the partial log-likelihood

function. The base hazard function on the other hand is estimated using Eq. (3.5). This base

hazard function is estimated for an arbitrary time t after calculating β. During estimation

the Cox regression model does not assume knowledge of absolute risk and estimates only the

relative risk.

This model is also referred to as the CoxPH (Proportional Hazards) model because of

the proportional hazards assumption which states that the hazard for any individual is a

fixed proportion of the hazard for any other individual. In Eq. (3.5), the formulae for

98

estimating the base survival function S0(t) and the conditional survival probability S(t|Xi)

were provided. This function models the probability of survival for an instance whereas

the hazard probability models the probability of occurrence of the event of interest for an

instance. Cox regression is one of the most popular survival regression models and its simple

formulation makes it easier to integrate it with various other data mining techniques.

6.3 Active Learning with Regularized Survival Analysis

In this section, we explain the proposed Active Regularized Cox regression (ARC) frame-

work. In Section 6.3.1, we explain a simple regularized Cox regression algorithm (RegCox)

which uses the elastic net regularizer. A scalable coordinate majorization descent (CMD)

based algorithm for solving this problem is provided. This is followed by explaining the

model discriminative gradient based sampling strategy used in active learning. Finally, the

ARC framework which combines active learning and regularized Cox regression using model

discriminative gradient based sampling is explained.

6.3.1 RegCox: Regularized Cox Regression

Cox regression models have the tendency to overfit the dataset, which limits their gen-

eralizability to different scenarios [54]. Regularization is used to overcome the overfitting

tendency of the models. The corresponding problem can be solved using unconstrained

optimization methods such as gradient descent and coordinate descent (CD). However, in

practice, these methods do not scale well. To alleviate this problem, we present a coordinate

majorization descent (CMD) based algorithm for solving RegCox which is more efficient and

scalable than the regular CD solver.

L(β) = n−1

K∑

i=1

−Xiβ + log(
∑

m∈Ri

exp(Xmβ)) (6.2)

L
′

j(β) = n−1

K∑

i=1

{−X(i, j) +

∑

m∈Ri
X(m, j)exp(Xmβ)

∑

m∈Ri
exp(Xmβ)

}

In this section, we present the RegCox framework which is a generic regularized Cox

regression framework which can use any standard regularizer such as the elastic net, kernel

99

elastic net [57] etc. We consider solving RegCox here with the specific instance of the

elastic net regularization. In Eq. (6.2), L(β) is the partial log-likelihood loss function in Cox

regression and L
′

j(β) is the gradient of log-likelihood with respect to the jth attribute. G(β)

is the composite function consisting of the log-likelihood and regularization term.

G(β) = L(β) +
m∑

j=1

λ(α|βj|+
1

2
(1− α)β2

j) (6.3)

G(βj) = L(βj, k 6= j) + λ(α|βj|+
1

2
(1− α)β2

j)

To apply the CMD optimization, we define the objective function G(βj) in Eq. (6.3) for

fixed λ, α and βk. The majorization minimization principle [71] is applied here and instead

of minimizing G(βj) in Eq. (6.3) an update of βj is found such that the univariate function

G(βj) is decreased. To write this updating formula for βj some additional notation is defined

using Dj in Eq. (6.4).

Dj =
K∑

i=1

1

4n
{max
m∈Ri

(X(m, j))− min
m∈Ri

(X(m, j))}2 (6.4)

βnew
j =

S(Djβj − L
′

j(β), λα)

Dj + λ(1− α)

S(z, t) = (|z| − t)+sign(z)

In Eq. (6.2), the formulae for computing the jth component of the log-likelihood gradient

vector is provided. We use this notation to represent this gradient (L
′

j(β) =
∂
∂β
Lj(β)). Ri

represents the risk set at time point i. K represents the number of unique failure times. λ is

the regularization parameter and α is the elastic net parameter (0 < α < 1). S(z, t) is the

soft-thresholding function. The equation for estimating the regression coefficient vector βnew

in RegCox using coordinate majorization descent (CMD) optimization is also provided.

In Algorithm 6.1, the regression coefficient vector for the jth coordinate is estimated by

keeping all other coordinate values fixed. The regularization parameter λ is determined

through cross validation. The EN-COX is another instance of RegCox which we consider

100

in our ARC framework. LASSO-COX [21] can be considered as a special case of the elastic

net regularizer for the value of α set to 1.

The third regularized Cox regression algorithm we consider in RegCox is the kernel

elastic net Cox regression (KEN-COX). Kernel elastic net Cox regression supplements EN-

COX [16] with a column wise kernel matrix information. A RBF kernel matrix (Ke) is

computed over the features (columns) of the dataset, and this information is plugged into

the elastic net regularizer. The formulation is provided in Eq. (6.5). In this formulation,

we use a notation where X(:, i) represents the ith column vector of the matrix X. Finally,

the fourth regularized Cox regression algorithm we consider in the ARC framework is the

Laplacian net COX (LAPNET-COX) algorithm.

KEN-COX and LAPNET-COX can be solved by using the CMD procedure used for solv-

ing RegCox. The only modification required in Algorithm 6.1 is modifying the denominator

in the equation for estimating βnew
j . The details and algorithm for solving KEN-COX are

provided in [57]. The algorithm for the Laplacian net Cox (LAPNET-COX) algorithm can

be found in [43].

Algorithm 6.1: Regularized Cox Regression (RegCox)

1 Input: Training Feature Vectors X, Censored variable δ, Time-to-event T ,
Regularization parameter λ

2 Output: Regression coefficient vector β

3 Initialize β;
4 for iter=1:1:max do
5 Compute L(β), G(β) from X, T ,λ and α using Eq. (6.2) and Eq. (6.3);
6 for j = 1, . . . ,m do
7 Set the objective function G(βj) and apply the CMD procedure;
8 Compute the updating factor Dj for computing βnew

j using Eq. (6.4);

9 βnew
j =

S(Djβj−L
′

j(β),λα)

Dj+λ(1−α)
;

10 end
11 Update β=βnew;

12 end

101

β = arg min
β

L(β) + λ(α ‖ β ‖1) + λ(1− α)βTKeβ (6.5)

Ke(i, j) = exp(
− ‖ X(:, i)−X(:, j) ‖22

2σ2
)

6.3.2 Model Discriminative Gradient-Based Sampling

In this section, we explain the model discriminative gradient-based sampling strategy

used by RegCox in ARC. In general regression problems, solving for the optimal parameter

β which can minimize the empirical error is a widely used search approach. In this approach,

the parameters are repeatedly updated according to the negative gradient of the loss L(β)

with respect to each training example (Xi, Ti, δi). The equation for obtaining β is provided

in Eq. (6.6). In this equation, α is called the learning rate.

β = β − α
∂LX+(β)

∂β
(6.6)

In active learning, model change is estimated after adding a new example X+ to the

training data with censored status δ+ and time-to-event value T+. The empirical risk on the

enlarged training set D+ = D ∪ (X+, T+, δ+) is defined using Eq. (6.7).

C(X+) = α
∂LX+(β)

∂β
(6.7)

The goal of our sampling strategy in active learning is then to choose the example that

could maximally change the current model and this selection function can be formulated as

X∗ = arg max
X+∈pool

‖ C(X+) ‖ (6.8)

However, in practice we do not know the true label (time-to-event) (T+) of the sampled

data point X+ in advance. Therefore, we are not able to estimate the model change directly.

Instead, the expected change is calculated over all possible K unique time-to-event labels

from {T1, T2, . . . , TK} to approximate the true change.

X∗ = arg max
X∈pool

K∑

k=1

h(Tk|X) ‖ ∂LX(β)

∂β
‖ (6.9)

102

The impact of adding an instance X from the pool to the training data is calculated in

Eq. (6.9). The absolute value of the gradient of the loss function with respect to the instance

is weighted by the hazard probability h(Tk|X) for that instance. This value is accumulated

over all unique time-to-event values to obtain an estimate of the impact of X on the model.

Finally, the instance X∗ which can induce the maximum model change over all the instances

in the pool is selected and assumed to be the most discriminative instance for active learning.

6.3.3 Proposed ARC Algorithm

Algorithm 6.2: ARC Algorithm

1 Input: Training Set Train, Unlabelled pool Pool, Time-to-event T , Censored
status δ, Active learning rounds max

2 Output: Final labelled set Train

3 for p=1:1:max do
4 Model = RegCox(Train, δ, T);
5 for each instance in Pool do
6 Use model discriminative gradient sampling for each instance in Pool;
7 end

8 X∗=argmaxX∈pool

∑K
k=1 h(Tk|X) ‖ ∂LX(β)

∂β
‖;

9 Query oracle for label (time-to-event) of X∗;
10 Train ← Train ∪ X∗;
11 Pool ← Pool \ X∗;

12 end

In Algorithm 6.2, the basic ARC framework is explained. In line 4, the RegCox model

is built using the training data and time-to-event values. In lines 5-7, the model is applied

to all the instances in the unlabelled pool where Eq. (6.9) is applied. In line 8, the instance

which makes the highest impact on the model is selected and the time-to-event label for this

instance is requested. Finally, in lines 10, 11 the training data is updated to build the model

at the end of the current active learning round.

Convergence and Complexity of ARC: The coordinate majorization descent (CMD)

method mentioned earlier is used in RegCox and it is known to converge efficiently [71] which

guarantees the convergence of ARC. However, convergence rates may vary with the kind of

regularizer used. The time complexity of Cox regression is O(mK) where m is the number

103

EHR
features(X)

Time to
Event (T)

Censored
Status

Column wise kernel
matrix (Ke)

 Partial log
 likelihood

Compute
Gradient

Unlabeled pool
(pool)

Domain Expert
(Oracle)

Output survival
AUC and rmse

 L

 /L

Train Cox
Model

Update training
data

End of active
learning round

Labelling request
for instance

Gradient based
discriminative

Sampling

Elastic Net
Regularization

Figure 6.3: Block diagram of the active learning framework with KEN-COX regression.

of columns, K is the number of unique time-to-event values. The complexity of ARC can be

computed as O(nmK + nK) where n is the number of instances. The additional nK term

here is because of the model discriminative gradient sampling step which is applied on the

pool of unlabeled instances.

6.3.4 Flow Diagram of ARC

In Figure 6.3, ARC (KEN) combines KEN-COX with the model discriminative gradient-

based sampling strategy . In the ARC (KEN) algorithm, a kernel matrix (Ke) is built

on the features of the dataset and this is integrated with the log-likelihood function of

Cox regression. A kernel elastic net regularization is employed to avoid overfitting. Model

discriminative gradient-based sampling is then performed using the trained KEN-COX model

and the instances available in the unlabeled pool to select the instance to be labelled by the

end user/expert. The survival AUC and MSE values are output at the end of each active

learning round.

104

6.4 Experimental Results

In this section, we present the experimental results obtained after applying ARC on

various diverse datasets. Several real and synthetic survival datasets are used along with

electronic health records to assess the performance of ARC. The data processing is explained

in the experimental setup subsection. We provide different results which assess the goodness

of fit, discriminative ability and learning rates.

6.4.1 Datasets Description

In this section, we demonstrate the performance of ARC on the following datasets. In

Table 6.2, we provide the details of the datasets considered for our experiments.

Table 6.2: Description of the datasets.

Dataset # Instances # Features Censored(%) # Events
PBC 418 17 61 109
Breast 686 8 56 270
Colon 888 13 50 364
whas1 481 14 51.7 180
whas500 500 22 43 162
DLBCL 240 7399 42.5 134
NSBCD 115 549 66.96 26
Lung 86 7129 72.1 24
EHR 789 183 54.3 297
Syn1 500 15 40 300
Syn2 500 50 40 300
Syn3 100 50 40 60

• Survival datasets : Breast, Primary biliary cirrhosis (PBC) and Colon are survival

datasets which are used directly from the standard survival R package. PBC data

is from the Mayo Clinic trial in primary biliary cirrhosis (PBC) of the liver con-

ducted between 1974 and 1984. Breast cancer dataset is from the German Breast

Cancer Study Group. Colon cancer dataset is obtained from the survival R package.

Whas1, Whas500 are Worcester Heart Attack Study datasets and DLBCL, NSBCD

and Lung are high-dimensional gene-expression survival datasets. These datasets have

the time-to-event and censored attributes provided along with the covariate values.

105

These datasets can be accessed from6 and 7.

• EHRs : We consider electronic health records (EHRs) of heart failure diagnosed pa-

tients for our analysis. This dataset was obtained for patients diagnosed with primary

heart failure from Henry Ford Health System, Detroit, Michigan, USA for a duration

of 10 years. For pre-processing this data, we construct features for all the distinct lab

variables. To tackle the problem of multiple lab values for the same patient, we rep-

resent each lab by a set of summary statistics and apply a logarithmic transformation

on these values to normalize them.

Time-to-event (30-day readmission) values are calculated using the prior admission

and discharge dates. Patients are right censored using the 30 day readmission study

period. This implies that if the difference between the last known follow up date and

the previous admission date for a patient exceeds 30 days without the onset of a heart

failure readmission, then this patient is right censored.

We present a snapshot of the distribution of readmission probabilities over this EHR

dataset. In Figure 6.4, the readmission probabilities are plotted over a small sample of

the EHR dataset for 30, 60 and 90 day readmission for heart failure. EN-COX model

was trained on 200 random instances from one of our EHR datasets and the predicted

survival probability values were obtained on a validation sample of 1000 instances.

This hazard probability plot can help the readers understand the readmission trends

present in this EHR dataset.

• Synthetic datasets : We generate synthetic datasets by setting the pairwise correlation

ρ between any pair of covariates to vary from -0.5 to 0.5. We generate the feature

vectors using this correlation and a normal distribution N(0, 1). Feature vectors of

different dimensionality are generated to construct four synthetic datasets. For each of

these synthetic datasets, the generated failure times T are calculated using a Weibull

distribution with γ set to 1.5. The Weibull distribution is used here to generate positive

6https://www.umass.edu/statdata/statdata/stat-survival.html
7http://user.it.uu.se/~liuya610/download.html

106

responses (failure times) to suit the constraints of synthetic survival data. Censoring

for each dataset was set randomly to achieve 40% censoring in each synthetic dataset.

100 200 300 400 500 600 700 800 900 1000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Patient Indices

R
e
a
d
m
i
s
s
i
o
n

P
r
o
b
a
b
i
l
i
t
i
e
s

90 day Readmission

60 day Readmission

30 day Readmission

High Risk Patients

Figure 6.4: Readmission probabilities for patients computed within 30, 60 and 90 days post
discharge from index hospitalization.

6.4.2 Implementation Details

The ARC framework is implemented in R using the CoxNet package. While presenting

the experimental results here, we test ARC in an academic setting without the involvement

of a real domain expert. The instances which are sampled through the model discriminative

gradient-based sampling scheme in ARC are automatically assigned to their appropriate

time-to-event labels by our program. We report the results obtained using five-fold cross

validation where we use four folds to build the active learning model. We divide the data

in these four folds into the labelled and unlabelled pool respectively and conduct the active

learning process to obtain a model with best possible training instances. We then use the

fifth fold as a hold-out set on which we report the Survival AUC and MSE metrics. This is

done in a cyclic fashion to report the standard deviation values also. We employ a notation

through the remaining part of this chapter to represent different active learning algorithms

in ARC. ARC (LASSO) represents integrating LASSO-COX with active learning. Similarly

ARC (KEN) and ARC (LAPNET) represent integrating KEN-COX and LAPNET-COX

107

with active learning respectively. KEN-COX uses an additional σ parameter in its RBF

kernel which is set to 0.3 for all the experiments. The codes for the ARC algorithm are

available here. 8

6.4.3 Goodness of Prediction

In Table 6.3, we provide the survival AUC and the standard deviation (std) values ob-

tained through five-fold cross validation after running the ARC framework on several public

and synthetic survival datasets.

Table 6.3: Comparison of Survival AUC (std) values in ARC w.r.t. different regularizers.

Dataset ARC (LASSO) ARC (EN) ARC (KEN) ARC (LAPNET)

PBC
0.809
(0.022)

0.807
(0.020)

0.806
(0.058)

0.796
(0.046)

Breast
0.663
(0.034)

0.649
(0.053)

0.676
(0.043)

0.676
(0.044)

Colon
0.673
(0.030)

0.661
(0.027)

0.683
(0.059)

0.719
(0.034)

whas1
0.806
(0.042)

0.796
(0.017)

0.816
(0.094)

0.792
(0.003)

whas500
0.806
(0.032)

0.817
(0.012)

0.795
(0.024)

0.771
(0.076)

DLBCL
0.544
(0.065)

0.623
(0.035)

0.649
(0.066)

0.611
(0.028)

NSBCD
0.718
(0.058)

0.719
(0.091)

0.650
(0.061)

0.693 (0.041)

EHR
0.664
(0.028)

0.679
(0.037)

0.691
(0.082)

0.688
(0.011)

Syn1
0.541
(0.027)

0.638
(0.032)

0.602
(0.078)

0.658
(0.047)

Syn2
0.844
(0.025)

0.873
(0.033)

0.893
(0.045)

0.914
(0.062)

Syn3
0.676
(0.014)

0.680
(0.078)

0.676
(0.098)

0.590
(0.097)

We compare the goodness of fit of ARC (LASSO), ARC (EN), ARC (KEN) and ARC

(LAPNET). The Martingale Residuals based mean squared error is also calculated for the

8https://github.com/MLSurvival/

108

Cox-based models using Eq. (6.10).

MSE =

∑n
i=1(δi − (exp(XT

i β)h0(T
′

)))2

n
(6.10)

The mean square error (MSE) and std values for the survival regression models are

calculated using five-fold cross validation. The MSE is used to assess the goodness of fit

obtained by the Cox regression model. These values are also provided in Table 6.4.

Table 6.4: Comparison of MSE (std) values of ARC w.r.t. different regularizers.

Dataset ARC (LASSO) ARC (EN) ARC (KEN) ARC (LAPNET)

PBC
0.338
(0.068)

0.280
(0.025)

0.278
(0.060)

0.293
(0.059)

Breast
0.374
(0.035)

0.374
(0.026)

0.320
(0.106)

0.375
(0.021)

Colon
0.405
(0.058)

0.387
(0.030)

0.376
(0.024)

0.396
(0.033)

whas1
0.429
(0.077)

0.432
(0.043)

0.429
(0.053)

0.427
(0.046)

whas500
0.381
(0.045)

0.368
(0.051)

0.375
(0.029)

0.366
(0.050)

DLBCL
0.334
(0.035)

0.279
(0.034)

0.246
(0.025)

0.261
(0.031)

NSBCD
0.277
(0.052)

0.235
(0.041)

0.229
(0.048)

0.242
(0.050)

EHR
0.455
(0.038)

0.414
(0.032)

0.426
(0.069)

0.448
(0.063)

Syn1
0.404
(0.080)

0.398
(0.072)

0.396
(0.065)

0.397
(0.054)

Syn2
0.375
(0.056)

0.330
(0.065)

0.350
(0.072)

0.301
(0.066)

Syn3
0.403
(0.138)

0.263
(0.031)

0.288
(0.083)

0.289
(0.044)

The results in Table 6.3 and Table 6.4 shows that for all regularizers used ARC performs

competitively. This also shows that ARC is a regularizer independent framework and it can

accommodate any kind of regularizer to learn an active learning model.

109

6.4.4 Comparison of Sampling Strategies

In Figure 6.5, the learning curves are plotted over 20 active learning rounds for 6 datasets

and the x-axis represents the active learning rounds and the y-axis represents the concordance

index (Survival AUC). Depending on the size of the dataset being considered, we set the

sampling size for each round in batch mode active learning. For each dataset, we consider

integrating LASSO-COX, EN-COX, KEN-COX with two non-censoring sampling methods

which are random sampling and uncertainty sampling.

Random sampling selects instances to include in the active learning model at random.

Uncertainty-based sampling selects those instances which the model is most uncertain about.

We obtained these instances by building a naive bayesian classifier considering survival re-

gression as a binary classification problem. Subsequently, those instances with low posterior

probability difference margin were sampled and added to the model.

The learning curves in Figure 6.5 indicate that ARC (LASSO), ARC (EN), ARC (KEN)

obtain models with good discriminative ability. The learning curves suggests that qualitative

instances are being sampled from the pool and added to the training data in the active

learning rounds. The results over all the datasets also show the effectiveness of ARC based

sampling in comparison to uncertainty and random sampling.

6.4.5 Importance of Censored Samples

In this section, we evaluate the contribution of the censored instances towards building the

active learning model. This is important in order to understand how the model is capturing

the censoredness of the instances while building the active learning model during successive

iterations. We capture these statistics of the number of sampled instances with each of the

four algorithms for the Breast and Colon survival datasets. The sampled instances are then

divided into censored and event instances and these are plotted below.

Figure 6.6, clearly demonstrates how the active learning model is sampling more number

of censored instances than events as the number of rounds increases. This indicates that the

model is trying to extract the censoredness which non-active learning methods cannot do.

110

0 2 4 6 8 10 12 14 16 18 20
0.5

0.55

0.6

0.65

0.7

0.75

Active Learning Rounds

S
u
r
v
i
v
a
l

A
U
C

ARC (LASSO)

ARC (KEN)

ARC (EN)

RANDOM

UNCERTAINTY

(a) Breast

0 2 4 6 8 10 12 14 16 18 20
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Active Learning Rounds

S
u
r
v
i
v
a
l

A
U
C

ARC (LASSO)

ARC (KEN)

ARC (EN)

RANDOM

UNCERTAINTY

(b) Colon

0 2 4 6 8 10 12 14 16 18 20
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

Active learning Rounds

S
u
r
v
i
v
a
l

A
U
C

ARC (LASSO)

ARC (KEN)

ARC (EN)

RANDOM

UNCERTAINTY

(c) EHR

0 2 4 6 8 10 12 14 16 18 20

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Active Learning Rounds

S
u
r
v
i
v
a
l

A
U
C

ARC (LASSO)

ARC (KEN)

ARC (EN)

RANDOM

UNCERTAINTY

(d) Syn1

0 2 4 6 8 10 12 14 16 18 20
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Active Learning Rounds

S
u
r
v
i
v
a
l

A
U
C

ARC (LASSO)

ARC (KEN)

ARC (EN)

RANDOM

UNCERTAINTY

(e) Syn2

0 2 4 6 8 10 12 14 16 18 20

0.65

0.7

0.75

0.8

0.85

Active Learning Rounds

S
u
r
v
i
v
a
l

A
U
C

ARC (LASSO)

ARC (KEN)

ARC (EN)

RANDOM

UNCERTAINTY

(f) Syn3

Figure 6.5: Comparison of the active learning rates of ARC with 4 different regularizers over
real-world and synthetic datasets.

This justifies the importance of using active learning-based methods for right censored data.

111

0 5 10 15 20 25
Active Learning Rounds

0

50

100

150

200

N
o
.

o
f

S
a
m

p
le

s

Censored

Events

(a) Breast (ARC KEN)

0 5 10 15 20 25
Active Learning Rounds

0

50

100

150

200

N
o
.

o
f

S
a
m

p
le

s

Censored

Events

(b) Breast (ARC LAPNET)

0 5 10 15 20 25
Active Learning Rounds

0

50

100

150

200

250

N
o
.

o
f

S
a
m

p
le

s

Censored

Events

(c) Colon (ARC KEN)

0 5 10 15 20 25
Active Learning Rounds

0

50

100

150

200

250

N
o
.

o
f

S
a
m

p
le

s

Censored

Events

(d) Colon (ARC LAPNET)

Figure 6.6: Censoredness plot for Breast and Colon datasets.

112

CHAPTER 7: CONCLUSIONS AND FUTURE WORK

In this chapter, we summarize the major contributions of the methods proposed in this

dissertation, and we present ideas to extend each of these algorithms.

In Chapter 3, we proposed two different regularizers to capture intra-event correlation

from survival data. These regularizers were integrated with the partial log-likelihood loss

function of the Cox regression. The first regularizer we presented was intended to capture

feature correlation among the attributes. This was called the Feature regularized (FEAR-

COX) Cox regression. The second regularizer we used was the graph-based OSCAR regular-

izer which used the feature graph information present in the dataset to capture structured

sparsity and we integrated it with Cox regression to obtain the OSCAR-COX algorithm. We

compared the discriminative ability of these algorithms with respect to state-of-the-art regu-

larized Cox regression models such as the fused-lasso, adaptive-lasso and laplacian net based

Cox regression. We conducted feature analysis of the sparse set of features selected by these

regularized Cox regression models. The results obtained indicate that our methods are effec-

tive at building better discriminative models, and the improvements affirm the importance of

using novel regularizers with Cox regression. In addition, the sparse set of features obtained

by our regularized Cox regression models can be useful for clinicians to assess important

biomarkers during intervention studies conducted for readmission analytics. We can extend

this work by building regularized Cox regression models with time-varying covariates which

is generally observed in recurrent longitudinal patient data in hospitals. Another interesting

direction would be to study the impact of these regularizers with respect to different hazard

based survival models such as Weibull survival models.

In Chapter 4, we proposed a set of methods for performing survival analysis by cal-

ibrating the time-to-event labels for censored instances in the dataset. We motivated the

necessity for this application by considering the two-dimensional correlation structure in cen-

sored data which needs to be inferred by a method before labelling these censored instances.

These methods are very useful in several real-world scenarios such as (i) mining clinical

113

data to identify patient readmissions (ii) following projects in crowdfunding to determine

their success. Traditional survival learners cannot be used directly for such data, since the

time-to-event label information that is used for censored instances is incomplete. Erroneous

time-to-event labels in such instances could misguide the learning algorithm which is unde-

sirable. To overcome this problem, we introduce a transformation process which makes it

easy for a domain expert to convert highly censored data to calibrated censored data which

is more reliable for predictive analytics. We studied two methods in this paper, namely, Reg-

ularized Inverse Covariance-based Calibration (REC) and Transposable Regularized Inverse

Covariance-based Calibration (TREC).REC uses a column-based regularization to account

for intra-event correlation. TREC uses a composite row and column-based regularization

to account for both inter-event and intra-event correlation. The experimental results reveal

that both these methods help in improving the survival AUC of algorithms in comparison

to other data imputation schemes. This work can be extended to interval-based censoring

to identify methods to calibrate censored instances in that domain.

In Chapter 5, we proposed a novel solution for the problem of learning a linear regres-

sion model for data with right censoring. The uniqueness of our approach was that it can

extract knowledge about the structure of the events and censored instances and induce this

knowledge into the prediction model. This feature made our approach adaptable to variable

proportions of censored instances and events in the data. The proposed SLIREC model was

formulated as a bi-convex optimization problem and the block-coordinate descent method

was used for solving it. We also used an approximation technique based on the proximal-

Newton method in our computation to obtain orders of magnitude faster convergence. We

evaluated the performance of Structured regularization linear regression model for censored

data (SLIREC) using several diverse benchmark datasets consisting of high-dimensional gene

expression measurements and electronic health records. Our experimental results demon-

strated the efficiency of the structured regularization component of SLIREC compared to

various linear regression and survival regression algorithms using metrics such as time-based

114

AUC, survival AUC and Brier score. We plan to extend this work by incorporating other ma-

trix based regularizers such as the nuclear norm within the SLIREC framework for inferring

the structure and assessing the improvement obtained.

In Chapter 6, we presented an active learning based method for building a survival

model which assesses the importance of an instance before adding it to the model. This

Active Regularized Cox regression (ARC) framework which integrates active learning with

Cox regression using a novel model discriminative gradient based sampling strategy. This

is useful in healthcare applications such as readmission risk prediction where in ARC can

identify patient records to be labelled by a domain expert which can help in building survival

models with expert feedback. In ARC, the domain expert provides a time-to-event label for

the instance sampled by the model. This labelled instance is then added to the training data

and the model is updated with the sampled set of instances at the end of each active learning

round. We conducted several experiments to study the performance of ARC using four

regularized Cox regression algorithms on various synthetic and public survival datasets. The

results indicate that ARC is effective at building predictive models with good discriminative

ability.

115

APPENDIX : LIST OF PUBLICATIONS

Journal Publications

1. Yan Li, Bhanukiran Vinzamuri and Chandan K. Reddy“Constrained Elastic Net based

Knowledge Transfer for Healthcare Information Exchange.” Springer Data Mining and

Knowledge Discovery Journal (DMKD), 29(4), pages 1094—1112, 2015.

2. Bhanukiran Vinzamuri, Yan Li and Chandan K. Reddy “Calibrated Survival Analysis

using Regularized Inverse Covariance Estimation for Right Censored Data” Journal

Under Revision.

3. Bhanukiran Vinzamuri and Chandan K. Reddy “ Feature Grouping-based Regression

and its application for Survival Analysis”. Journal Under Revision

Conference Publications

1. Ping Wang, Karthik Padthe, Bhanukiran Vinzamuri and Chandan K. Reddy “ CRISP:

Consensus Regularized Selection based Prediction”. Proceedings of ACM International

Conference on Information and Knowledge Management (CIKM), Indianapolis, USA,

2016.

2. Yan Li, Bhanukiran Vinzamuri and Chandan K. Reddy “Regularized Weighted Linear

Regression for High-dimensional Censored Data.” Proceedings of SIAM Conference on

Data Mining (SDM), Miami, FL USA, 2016.

3. Bhanukiran Vinzamuri, Yan Li and Chandan K. Reddy “Active Learning based Sur-

vival Regression for Censored Data”. Proceedings of ACM Conference on Information

and Knowledge Management (CIKM) Shanghai China, pages 241–250, 2014.

4. Vineeth Rakesh, Dilpreet Singh, Bhanukiran Vinzamuri and Chandan K. Reddy “Per-

sonalized Recommendation of Twitter Lists using Content and Network Information”

116

In Proceedings of the AAAI International Conference on Weblogs and Social Media

(ICWSM), Michigan, USA, 2014.

5. Bhanukiran Vinzamuri and Chandan K. Reddy “Cox regression with correlation based

regularization for electronic health records”. Proceedings of IEEE International Con-

ference on Data Mining (ICDM), Dallas TX USA, pages 757–766, 2013.

6. Bhanukiran Vinzamuri, Jaegul Choo and Chandan K. Reddy “ Structured Regulariza-

tion based Linear Regression for Right Censored Data”. Submitted

7. Bhanukiran Vinzamuri, Karthik Padthe and Chandan K. Reddy “Feature Grouping

using Weighted ℓ1 norm for High-Dimensional Data” Submitted.

Book Chapters

1. Chandan K. Reddy and Bhanukiran Vinzamuri “A Survey of Partitional and Hier-

archical Clustering Algorithms.” Data Clustering: Algorithms and Applications (87),

pages 87-110, 2013.

117

REFERENCES

[1] John P Klein and Melvin L Moeschberger. Survival analysis: techniques for censored

and truncated data. Springer Science & Business Media, 2005.

[2] David W Hosmer Jr, Stanley Lemeshow, and Susanne May. Applied survival analysis:

Regression modelling of time to event data, 2008.

[3] Ching-Fan Chung, Peter Schmidt, and Ana D Witte. Survival analysis: A survey.

Journal of Quantitative Criminology, 7(1):59–98, 1991.

[4] H Koul, V v Susarla, and J Van Ryzin. Regression analysis with randomly right-censored

data. The Annals of Statistics, pages 1276–1288, 1981.

[5] Chandan K Reddy and Yan Li. A review of clinical prediction models. In Healthcare

Data Analytics, pages 343–378. Chapman and Hall/CRC, 2015.

[6] Peter Sasieni. Cox regression model. Encyclopedia of Biostatistics, 1999.

[7] Eric Bair, Trevor Hastie, Debashis Paul, and Robert Tibshirani. Prediction by

supervised principal components. Journal of the American Statistical Association,

101(473):119–137, 2012.

[8] Wei Pan. A multiple imputation approach to cox regression with interval-censored data.

Biometrics, 56(1):199–203, 2000.

[9] Komal Kapoor, Mingxuan Sun, Jaideep Srivastava, and Tao Ye. A hazard based ap-

proach to user return time prediction. In Proceedings of the 20th ACM SIGKDD inter-

national conference on Knowledge discovery and data mining, pages 1719–1728, 2014.

[10] Jing Wang, Siamak Faridani, and Panagiotis Ipeirotis. Estimating the completion time

of crowdsourced tasks using survival analysis models. Crowdsourcing for search and

data mining (CSDM), pages 31–38, 2011.

[11] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance

estimation with the graphical lasso. Biostatistics, 9(3):432–441, 2008.

[12] Peter J Green. On use of the em for penalized likelihood estimation. Journal of the

Royal Statistical Society. Series B (Methodological), 52(3):443–452, 1990.

118

[13] Nicolas Städler and Peter Bühlmann. Missing values: sparse inverse covariance estima-

tion and an extension to sparse regression. Statistics and Computing, 22(1):219–235,

2012.

[14] Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. Spectral regularization algo-

rithms for learning large incomplete matrices. Journal of machine learning research,

11(10):2287–2322, 2010.

[15] Xiao-Li Meng and Donald B Rubin. Maximum likelihood estimation via the ecm algo-

rithm: A general framework. Biometrika, 80(2):267–278, 1993.

[16] Noah Simon, Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization

paths for coxs proportional hazards model via coordinate descent. Journal of statistical

software, 39(5):1–13, 2011.

[17] Wei Zhang, Takayo Ota, Viji Shridhar, Jeremy Chien, Baolin Wu, and Rui Kuang.

Network-based survival analysis reveals subnetwork signatures for predicting outcomes

of ovarian cancer treatment. PLoS Comput Biol, 9(3):1–16, 2013.

[18] Shivapratap Gopakumar, Tu Dinh Nguyen, Truyen Tran, Dinh Phung, and Svetha

Venkatesh. Stabilizing sparse cox model using statistic and semantic structures in elec-

tronic medical records. In Pacific-Asia Conference on Knowledge Discovery and Data

Mining, pages 331–343. Springer, 2015.

[19] Kyu Ha Lee, Sounak Chakraborty, and Jianguo Sun. Survival prediction and variable

selection with simultaneous shrinkage and grouping priors. Statistical Analysis and Data

Mining: The ASA Data Science Journal, 8(2):114–127, 2015.

[20] Hao Helen Zhang and Wenbin Lu. Adaptive lasso for cox’s proportional hazards model.

Biometrika, 94(3):691–703, 2007.

[21] Robert Tibshirani et al. The lasso method for variable selection in the cox model.

Statistics in medicine, 16(4):385–395, 1997.

[22] Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical learning with

sparsity: the lasso and generalizations. CRC Press, 2015.

119

[23] Daniela M Witten and Robert Tibshirani. Survival analysis with high-dimensional

covariates. Statistical methods in medical research, 4:1–23, 2009.

[24] John P Klein, Hans C Van Houwelingen, Joseph G Ibrahim, and Thomas H Scheike.

Handbook of survival analysis. CRC Press, 2013.

[25] Sijian Wang, Bin Nan, Ji Zhu, and David G Beer. Doubly penalized buckley–james

method for survival data with high-dimensional covariates. Biometrics, 64(1):132–140,

2008.

[26] Julian Wolfson, Sunayan Bandyopadhyay, Mohamed Elidrisi, Gabriela Vazquez-Benitez,

David M Vock, Donald Musgrove, Gediminas Adomavicius, Paul E Johnson, and

Patrick J O’Connor. A naive bayes machine learning approach to risk prediction using

censored, time-to-event data. Statistics in medicine, 34(21):2941–2957, 2015.

[27] Andreas Mayr and Matthias Schmid. Boosting the concordance index for survival data–a

unified framework to derive and evaluate biomarker combinations. PloS one, 9(1):834–

843, 2014.

[28] Hemant Ishwaran, Udaya B Kogalur, Eugene H Blackstone, and Michael S Lauer. Ran-

dom survival forests. The annals of applied statistics, 2(3):841–860, 2008.

[29] David R Hardoon, Sandor Szedmak, and John Shawe-Taylor. Canonical correlation

analysis: An overview with application to learning methods. Neural computation,

16(12):2639–2664, 2004.

[30] Liang Sun, Shuiwang Ji, and Jieping Ye. Canonical correlation analysis for multilabel

classification: A least-squares formulation, extensions, and analysis. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 33(1):194–200, 2011.

[31] Shuiwang Ji, Lei Tang, Shipeng Yu, and Jieping Ye. Extracting shared subspace for

multi-label classification. In Proceedings of the 14th ACM SIGKDD international con-

ference on Knowledge discovery and data mining, pages 381–389, 2008.

[32] Chandan K Reddy and Charu C Aggarwal. Healthcare data analytics, volume 36. CRC

Press, 2015.

120

[33] Debprakash Patnaik, Patrick Butler, Naren Ramakrishnan, Laxmi Parida, Benjamin J

Keller, and David A Hanauer. Experiences with mining temporal event sequences from

electronic medical records: initial successes and some challenges. In Proceedings of the

17th ACM SIGKDD international conference on Knowledge discovery and data mining,

pages 360–368, 2011.

[34] Jimeng Sun, Fei Wang, Jianying Hu, and Shahram Edabollahi. Supervised patient sim-

ilarity measure of heterogeneous patient records. ACM SIGKDD Explorations Newslet-

ter, 14(1):16–24, 2012.

[35] Pranjul Yadav, Michael Steinbach, Vipin Kumar, and Gyorgy Simon. Mining electronic

health records (ehr): A survey. 2015.

[36] Wenjiang J Fu. Penalized regressions: the bridge versus the lasso. Journal of computa-

tional and graphical statistics, 7(3):397–416, 1998.

[37] Howard D Bondell and Brian J Reich. Simultaneous regression shrinkage, variable

selection, and supervised clustering of predictors with oscar. Biometrics, 64(1):115–

123, 2008.

[38] Xi Chen, Weike Pan, James T Kwok, and Jaime G Carbonell. Accelerated gradient

method for multi-task sparse learning problem. In Proceedings of Ninth IEEE Interna-

tional Conference on Data Mining, pages 746–751. IEEE, 2009.

[39] Jieping Ye and Jun Liu. Sparse methods for biomedical data. ACM SIGKDD Explo-

rations Newsletter, 14(1):4–15, 2012.

[40] Sen Yang, Lei Yuan, Ying-Cheng Lai, Xiaotong Shen, Peter Wonka, and Jieping Ye.

Feature grouping and selection over an undirected graph. In Graph Embedding for

Pattern Analysis, pages 27–43. Springer, 2013.

[41] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Dis-

tributed optimization and statistical learning via the alternating direction method of

multipliers. Foundations and Trends R© in Machine Learning, 3(1):1–122, 2011.

[42] Hui Zou. The adaptive lasso and its oracle properties. Journal of the American statistical

121

association, 101(476):1418–1429, 2006.

[43] Hokeun Sun, Wei Lin, Rui Feng, and Hongzhe Li. Network-regularized high-dimensional

cox regression for analysis of genomic data. Statistica Sinica, 24(3):14–33, 2014.

[44] Robert Tibshirani, Michael Saunders, Saharon Rosset, Ji Zhu, and Keith Knight. Spar-

sity and smoothness via the fused lasso. Journal of the Royal Statistical Society: Series

B (Statistical Methodology), 67(1):91–108, 2005.

[45] Adrian F Hernandez, Melissa A Greiner, Gregg C Fonarow, Bradley G Hammill, Paul A

Heidenreich, Clyde W Yancy, Eric D Peterson, and Lesley H Curtis. Relationship

between early physician follow-up and 30-day readmission among medicare beneficia-

ries hospitalized for heart failure. Journal of American Medical Association (JAMA),

303(17):1716–1722, 2010.

[46] Marlow B Hernandez, Randall S Schwartz, Craig R Asher, Elsy V Navas, Victor Tot-

falusi, Ivan Buitrago, Ankush Lahoti, and Gian M Novaro. Predictors of 30-day read-

mission in patients hospitalized with decompensated heart failure. Clinical cardiology,

36(9):542–547, 2013.

[47] David E Lanfear, Edward L Peterson, Janis Campbell, Hemant Phatak, David Wu,

KarenWells, John A Spertus, and L Keoki Williams. Relation of worsened renal function

during hospitalization for heart failure to long-term outcomes and rehospitalization. The

American journal of cardiology, 107(1):74–78, 2011.

[48] Yan Li, Bhanukiran Vinzamuri, and Chandan K Reddy. Constrained elastic net based

knowledge transfer for healthcare information exchange. Data Mining and Knowledge

Discovery, 29(4):1094–1112, 2015.

[49] Wessel N Van Wieringen, David Kun, Regina Hampel, and Anne-Laure Boulesteix.

Survival prediction using gene expression data: a review and comparison. Computational

statistics & data analysis, 53(5):1590–1603, 2009.

[50] Joseph S Ross, Gregory K Mulvey, Brett Stauffer, Vishnu Patlolla, Susannah M Bern-

heim, Patricia S Keenan, and Harlan M Krumholz. Statistical models and patient

122

predictors of readmission for heart failure: a systematic review. Archives of internal

medicine, 168(13):1371–1386, 2008.

[51] Badri Padhukasahasram, Chandan K Reddy, Yan Li, and David E Lanfear. Joint impact

of clinical and behavioral variables on the risk of unplanned readmission and death after

a heart failure hospitalization. PloS one, 10(6):1–11, 2015.

[52] Yan Li, Vineeth Rakesh, and Chandan K Reddy. Project success prediction in crowd-

funding environments. In Proceedings of the Ninth ACM International Conference on

Web Search and Data Mining, pages 247–256, 2016.

[53] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review

and new perspectives. IEEE transactions on pattern analysis and machine intelligence,

35(8):1798–1828, 2013.

[54] ACC Coolen and L Holmberg. Principles of survival analysis, 2013.

[55] Genevera I Allen and Robert Tibshirani. Transposable regularized covariance models

with an application to missing data imputation. The Annals of Applied Statistics,

4(2):764–790, 2010.

[56] Vineeth Rakesh, Jaegul Choo, and Chandan K Reddy. Project recommendation using

heterogeneous traits in crowdfunding. In Ninth International AAAI Conference on Web

and Social Media, pages 337–346, 2015.

[57] Bhanukiran Vinzamuri and Chandan K Reddy. Cox regression with correlation based

regularization for electronic health records. In Proceedings of the IEEE 13th Interna-

tional Conference on Data Mining, pages 757–766, 2013.

[58] Jonathan Buckley and Ian James. Linear regression with censored data. Biometrika,

66(3):429–436, 1979.

[59] LJ Wei. The accelerated failure time model: a useful alternative to the cox regression

model in survival analysis. Statistics in medicine, 11(14-15):1871–1879, 1992.

[60] Cheryl L Faucett, Nathaniel Schenker, and Jeremy MG Taylor. Survival analysis using

auxiliary variables via multiple imputation, with application to aids clinical trial data.

123

Biometrics, 58(1):37–47, 2002.

[61] Seyoung Kim and Eric P Xing. Tree-guided group lasso for multi-response regression

with structured sparsity, with an application to eqtl mapping. The Annals of Applied

Statistics, 6(3):1095–1117, 2012.

[62] Francis Bach, Rodolphe Jenatton, Julien Mairal, and Guillaume Obozinski. Structured

sparsity through convex optimization. Statistical Science, 27(4):450–468, 2012.

[63] Jason Lee, Yuekai Sun, and Michael Saunders. Proximal newton-type methods for

convex optimization. In Advances in Neural Information Processing Systems, pages

836–844, 2012.

[64] Chien-Fu Jeff Wu. Jackknife, bootstrap and other resampling methods in regression

analysis. the Annals of Statistics, pages 1261–1295, 1986.

[65] Per Kragh Andersen and Maja Pohar Perme. Pseudo-observations in survival analysis.

Statistical methods in medical research, 4:1–29, 2009.

[66] Paul Tseng and Sangwoon Yun. A coordinate gradient descent method for nonsmooth

separable minimization. Mathematical Programming, 117(1-2):387–423, 2009.

[67] Harald Binder. Coxboost: Cox models by likelihood based boosting for a single survival

endpoint or competing risks. R package version, 1, 2013.

[68] Devan Kansagara, Honora Englander, Amanda Salanitro, David Kagen, Cecelia

Theobald, Michele Freeman, and Sunil Kripalani. Risk prediction models for hospital

readmission: a systematic review. Journal of American Medical Association (JAMA),

306(15):1688–1698, 2011.

[69] Elia Biganzoli, Patrizia Boracchi, and Ettore Marubini. A general framework for neural

network models on censored survival data. Neural Networks, 15(2):209–218, 2002.

[70] Faisal M Khan and Valentina Bayer Zubek. Support vector regression for censored

data (svrc): a novel tool for survival analysis. In Proceedings of IEEE International

Conference on Data Mining, pages 863–868, 2008.

[71] Kenneth Lange, David R Hunter, and Ilsoon Yang. Optimization transfer using surro-

124

gate objective functions. Journal of computational and graphical statistics, 9(1):1–20,

2000.

125

ABSTRACT

NOVEL MACHINE LEARNING METHODS FOR MODELING
TIME-TO-EVENT DATA

by

Bhanukiran Vinzamuri

August 2016

Advisor: Dr. Chandan K. Reddy

Major: Computer Science

Degree: Doctor of Philosophy

Predicting time-to-event from longitudinal data where different events occur at different

time points is an extremely important problem in several domains such as healthcare, eco-

nomics, social networks and seismology, to name a few. A unique challenge in this problem

involves building predictive models from right censored data (also called as survival data).

This is a phenomenon where instances whose event of interest are not yet observed within a

given observation time window and are considered to be right censored. Effective models for

predicting time-to-event labels from such right censored data with good accuracy can have

a significant impact in these domains. However, existing methods in the literature cannot

capture various complexities present in real-world survival data such as feature groups and

intra and inter-event correlations. To address such challenges, we briefly summarize the

major contributions of the methods proposed here as (i) modeling intra-event correlations in

survival data using structured sparsity-based regularizers, (ii) learning novel representations

for survival data by inferring inter-event and intra-event correlations, (iii) extending linear

regression-based methods to learn predictive models from right censored data and (iv) iden-

tifying censored instances and events from the data which are contributing extensively to

learning a model with lesser number of training instances using active learning. We present

126

optimization-based algorithms corresponding to each of the aforementioned contributions in

this dissertation utilizing diverse techniques such as regularization, representation learning

and active learning. Our methods are tested on different real-world longitudinal datasets such

as electronic health records (EHRs), crowdfunding data, gene-expression data and several

publicly available synthetic survival datasets. The results demonstrate the goodness of these

methods when compared to state-of-the-art survival analysis, classification and regression

methods from the literature.

127

AUTOBIOGRAPHICAL STATEMENT

Bhanukiran Vinzamuri completed his B. Tech and Masters by Research in Computer Science

from International Institute of Information Technology, Hyderabad (IIIT-H) in India in 2011.

He enrolled in the PhD in Computer Science program at Wayne State University in August

2012. He has completed an internship at Mayo Clinic in 2015. His primary research interests

include data mining, machine learning, biostatistics and healthcare informatics. He has

published papers at top-tier conferences such as IEEE ICDM, ACM CIKM, SIAM SDM

and journals such as Springer DMKD. He has also served as a co-reviewer for more than 50

conference and journal papers in Computer Science.

	Wayne State University
	1-1-2016
	Novel Machine Learning Methods For Modeling Time-To-Event Data
	Bhanukiran Vinzamuri
	Recommended Citation

	tmp.1481066073.pdf.pZgoN

