
Wayne State University

Wayne State University Dissertations

1-1-2014

The Design, Analysis, & Application Of Multi-
Modal Real-Time Embedded Systems
Masud Ahmed
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

Part of the Computer Sciences Commons, and the Electrical and Computer Engineering
Commons

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Ahmed, Masud, "The Design, Analysis, & Application Of Multi-Modal Real-Time Embedded Systems" (2014). Wayne State University
Dissertations. Paper 1063.

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1063&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1063&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1063&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1063&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1063&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1063&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1063&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations/1063?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1063&utm_medium=PDF&utm_campaign=PDFCoverPages

THE DESIGN, ANALYSIS, & APPLICATION OF MULTI-MODAL
REAL-TIME EMBEDDED SYSTEMS

by

MASUD AHMED

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2014

MAJOR: COMPUTER SCIENCE

Approved by:

Advisor Date

c© COPYRIGHT BY

MASUD AHMED

2014

ALL RIGHTS RESERVED

DEDICATION

To my

MOTHER and FATHER

with love.

ii

ACKNOWLEDGEMENTS

I am very grateful to my supervisor, Nathan W. Fisher of the Computer Science Department at

Wayne State University, for his great advice, patient encouragement, consistent support, and also

for insightful criticism. He has been the ideal thesis supervisor, and he has made the PhD possible.

This dissertation had been supported by an NSF CAREER Grant (CNS-0953585), an NSF CSR

Grant (CNS-1116787), and a grant from Wayne State University’s Office of Vice President of

Research.

I want to thank the members of my PhD dissertation committee, Dr. Weisong Shi and

Dr. Hongwei Zhang of the Computer Science Department at Wayne State University, and Dr.

Shengquan Wang of University of Michigan-Dearborn. Additionally, I am sincerely thankful to

Wayne State University Computer Science Department professors and staff for their dedication,

all the hard work, and for providing me the means to prepare myself for the future as a computer

scientist.

I want to take this opportunity to thank my friend Mohammad Saiful Islam for inspiring me to

pursue doctoral degree. I also want to thank Kazi Saidul Hasan, Mohammed Abul Monzur Azad,

Mehrab Monjur, and Mohammad Ashrafuzzaman Khan for helping me through the graduate

admission process. I am grateful to my CoPaRTS lab colleagues, Anwar Mohammadi, Guoyao

Xu, Bo Peng, and Pradeep Hettiarachchi, for their continuous support. The opportunities to work

with Dr. Moris Behnam in Summer 2009 and Dr. Joel Goossens in Summer 2012 were great

honor for me. I owe to my friend Chowdhury Sayeed Hyder for helping me pass difficult phases

of graduate life.

Finally, I would like to give my special grateful thanks to my mother (Masuda Sharif), my

wife (Honey-Um-Maria), my sister (Fatema Islam), my brother (Tanvir Ahmed), my father-in-

law (Abdur Rab Khan), and to all my family members for their love, support, encouragement,

and for pushing me forward to make our dreams come true.

iii

TABLE OF CONTENTS

Dedication . ii

Acknowledgements . iii

List of Tables . ix

List of Figures . x

List of Algorithms . xii

Chapter 1: INTRODUCTION . 1

1.1 Real-time System Overview . 1

1.2 Applications . 4

1.2.1 Control Systems for Real-Time Computing 4

1.2.2 CPS . 5

1.2.3 Satellite Systems . 5

1.3 Multi-Modal System (MMS) . 6

1.3.1 Aspects of a Multi-Modal System (MMS) 6

Real-Time Workload . 6

Processing Platform . 7

Scheduling Algorithms . 8

Schedulability Analysis . 8

1.3.2 Research Challenges for Multi-Modal Real-Time Systems 9

1.3.3 Thesis . 10

1.3.4 Contribution and Organization . 10

Chapter 2: MODELS & DEFINITIONS . 13

2.1 Definitions . 13

2.1.1 Jobs . 13

2.1.2 Tasks . 14

iv

2.1.3 Scheduling Algorithms . 14

2.2 Models . 16

2.2.1 Explicit-Deadline Periodic (EDP) Resource Model 16

2.2.2 Task Model . 17

2.2.3 Workload Functions . 17

2.3 A Multi-Modal System . 18

2.3.1 Mode-Change Request . 19

2.3.2 Mode-Change Protocols . 20

2.3.3 Variation of Tasks . 20

Chapter 3: LITERATURE SURVEY . 22

3.1 Processing Resources of MMS . 22

3.2 Mode-Change Protocols . 23

3.2.1 Synchronous Protocols . 25

3.2.2 Asynchronous Protocols . 25

3.3 Schedulability of MMS . 26

3.3.1 Demand/Supply Analysis . 27

3.3.2 Response Time Analysis . 28

3.4 Parallel Schedulability Analysis of MMS . 28

3.5 Parameters of MMS . 29

Chapter 4: MOTIVATION FOR MMS . 31

4.1 Peak-Temperature of a System . 32

4.2 Equations for Peak-Temperature . 34

4.3 Multi-Modal Systems . 37

4.4 Appendix . 38

4.4.1 Prior Work on Thermal-Aware Real-Time Systems 38

Chapter 5: MODE CHANGE PROTOCOL OF MMS 42

5.1 Proposed Mode-Change Protocol . 43

v

5.1.1 Modes . 44

5.2 Mode-Change Request (MCR) Model . 44

Chapter 6: EDF SCHEDULABILITY OF MMS . 48

6.1 Concrete Mode Changes . 49

6.1.1 Definitions . 49

6.1.2 Deriving MCR Service-Bound Function 51

6.1.3 Deriving the Mode-Change DBF . 54

6.1.4 Deriving the Carry-In Demand Function 58

6.1.5 A Sufficient Schedulability Condition 60

6.2 Non-Concrete Sequences of MCR . 65

6.2.1 Definitions . 65

6.2.2 A Sufficient Schedulability Test . 66

6.2.3 Reducing the Time Complexity . 76

6.3 Algorithms . 82

6.4 Simulations . 85

6.5 Conclusion . 87

Chapter 7: FP SCHEDULABILITY OF MMS . 88

7.1 Invalidity of Standard FP Critical Instant Theorem 89

7.2 Tasks Priority . 90

7.3 FP Schedulability Analysis . 91

7.3.1 Individual Mode Schedulability . 93

7.3.2 Inter-Mode Schedulability . 97

Maximum Carry-In for Concrete MCRs 98

Max Carry-In for Non-Concrete MCRs 100

7.4 Simulations . 108

7.4.1 Case Study . 108

7.4.2 Schedulability Comparison . 110

vi

7.5 Conclusion . 112

Chapter 8: RESOURCE ESTIMATION OF MMS . 119

8.1 Motivation . 119

8.2 Notion of Optimality . 120

8.3 Minimizing the Maximum Resource . 121

8.3.1 The MinMaxCap algorithm . 123

8.3.2 Complexity and Correctness . 124

8.4 Simulations . 125

8.5 Conclusion . 126

Chapter 9: PARALLEL SCHEDULABILITY ANALYSIS 127

9.1 Parallel Performance Metrics . 128

9.2 Parallel Schedulability Analysis . 129

9.2.1 Schedulability Conditions . 130

9.3 Parallel Schedulability Using Message Passing 132

9.3.1 Processing Platforms . 132

9.3.2 Problem Formulation . 132

Parallel Platform . 133

Workload Distribution . 134

Algorithm Description . 136

9.3.3 Parallel Performance . 139

9.3.4 Experimental Results . 142

9.4 Parallel Schedulability Using GPU . 146

9.4.1 GPU-Based Schedulability . 147

GPU Platform . 147

Testing Set Distribution . 149

9.4.2 Algorithms . 152

SUBI-GPU Algorithm . 153

vii

CheckConditions-GPU Subroutine . 153

GetCarry-GPU Subroutine . 156

MaxCarry-GPU Subroutine . 157

9.4.3 Experimental Results . 157

9.5 Conclusion . 159

Chapter 10: CONCLUSION & FUTURE WORK . 161

10.1 Summary Results . 162

10.1.1 Multi-Modal System . 162

10.1.2 EDF Schedulability Analysis . 162

10.1.3 FP Schedulability Analysis . 163

10.1.4 Parallel Schedulability Analysis . 163

10.1.5 Resource Estimation . 164

10.1.6 Radar Simulation . 164

10.2 Future Work . 164

10.2.1 MMS with mixed-criticality tasks systems 165

10.2.2 MMS for multiprocessors . 165

List of Publications . 166

References . 168

Abstract . 178

Autobiographical Statement . 181

viii

LIST OF TABLES

Table 6.1 EDF Schedulability Comparison: Tasks Properties. 85

Table 7.2 Radar Case Study: Mode Resources. 109

Table 7.1 Radar Case Study: Tasks Distribution in Modes. 109

Table 7.3 FP Schedulability Comparison: Tasks Properties. 111

Table 8.1 Tasks Distribution in Modes. 125

Table 9.1 Experiment Setup . 142

Table 9.2 Notations in GPU Based Schedulability 151

ix

LIST OF FIGURES

Figure 1.1 Components of a control computing system. 5

Figure 1.2 A possible job generation sequence of a sporadic task. 6

Figure 1.3 A possible execution pattern of an EDP resource. 7

Figure 1.4 Input/output of a schedulability analysis. 9

Figure 2.1 Real-time jobs with same execution requirement e. 14

Figure 2.2 FP vs. EDF schedule for two tasks τ1 and τ2. 15

Figure 2.3 EDP resource with period-of-repetition equal to deadline. 16

Figure 2.4 Visual depiction of demand-bound and supply-bound functions 18

Figure 2.5 Tasks at the time a mode-change request. 21

Figure 4.1 Execution pattern in thermal-aware periodic resources 33

Figure 5.1 Components of a mode. 43

Figure 5.2 Different types of tasks. 45

Figure 5.3 Execution pattern of a multi-modal real-time subsystem 47

Figure 6.1 Minimum supply in x before mcrk. 52

Figure 6.2 The minimum supply during transition. 53

Figure 6.3 Jobs (d(i)
l > φ) that maximizes mcdbf. 55

Figure 6.4 Jobs (d(i)
l ≤ φ) that maximizes mcdbf.. 55

Figure 6.5 Worst case arrival for finished tasks (d(i)
` ≤ φ) 56

Figure 6.6 Aborted jobs maximizing mcdbf. 57

Figure 6.7 Arrows depict possible distributions of [tb, tf] 61

Figure 6.8 EDF Schedulability Comparison: Efficacy of SUBI vs SURG. 86

Figure 6.9 EDF Schedulability Comparison: Scalability of SUBI vs SURG 86

x

Figure 7.1 Longer response time with FP in presence of common tasks. 89

Figure 7.2 Busy intervals: arrows depict possible distributions of [ts, td] 93

Figure 7.3 Deadline miss event for BI3. 96

Figure 7.4 Radar Simulation Results . 110

Figure 7.5 FP Schedulability Comparison: SURG vs SUBI. 112

Figure 7.6 Worst case arrival for aborted tasks. 113

Figure 8.1 Resource optimization for multi-modal systems. 120

Figure 8.2 Comparison of SURG and SUBI: Resource usages 126

Figure 9.1 Busy intervals for each of the schedulability conditions SCZ 131

Figure 9.2 Execution time vs. number of processors. 143

Figure 9.3 Parallel overhead vs. number of processors. 143

Figure 9.4 Speedup vs. number of processors. 145

Figure 9.5 Efficiency vs. number of processors. 145

Figure 9.6 Parallel workload distribution for checking schedulability. 149

Figure 9.7 Execution time vs. number of modes (q) 157

Figure 9.8 Speedup vs. number of modes (q) . 158

Figure 9.9 Performance of SUBI with varying blocks and threads. 159

xi

LIST OF ALGORITHMS

Algorithm 1 MaxCarry(S). 83

Algorithm 2 SUBI(S). 84

Algorithm 3 MinMaxCap(τ, τ trans, ϑ, α, δ,N,Ω). 123

Algorithm 4 SUBI-PAR(M) . 136

Algorithm 5 CheckConditions-PAR(rk, Z, i, j, φ, Ci). 138

Algorithm 6 MaxCarry-PAR(M, k, rk). 140

Algorithm 7 SUBI-GPU(M, B) . 152

Algorithm 8 CheckConditions-GPU(Z, ζ, B). 154

Algorithm 9 GetCarry-GPU(M, ζ, B). 155

Algorithm 10 MaxCarry-GPU(M, B). 156

xii

1

CHAPTER 1: INTRODUCTION

1.1 Real-time System Overview

There are many systems (e.g., embedded systems, cyber-physical systems) which require timing

constraints to ensure a certain quality-of-service. Research communities address these systems

with timing constraints under a broad research area of real-time systems. In real-time systems, the

correctness of a computation is dependent on the logical correctness of the results as well as the

time at which these results are produced. Timing constraints of real-time systems are commonly

specified in the form of deadlines within which individual activities should complete execution.

For some systems, maintaining timing constraints are not as important as for some safety critical

real-time systems (e.g., power plant). Based on the strictness of timing constraints, real-time

systems may be categorized into two important groups: hard real-time systems and soft real-time

systems.

For hard real-time systems, meeting deadlines of all activities are of supreme importance; fail-

ure to do so may cause critical failures and in some cases cause catastrophic hazard to human life

([2, 17]). A wide variety of applications use hard real-time systems including railway switching

systems, automotive control systems (e.g., anti-lock braking systems and adaptive cruise control

systems), flight control systems, space mission control, and nuclear power plants. When tim-

ing constraints are violated in power plant controllers, the plant could get overheated or even

discharge radioactive substances into the surrounding environment. When deadlines are compro-

mised in avionics, an airplane could lose control, potentially causing a catastrophic damage and

losing invaluable human lives. Therefore, deadlines for these critical devices are indispensable in

all circumstances.

In soft-real-time systems, the consequences of an occasional missed deadline are not always

as severe as for hard real-time systems. Each soft real-time application may have specific timing

requirements, and violating these timing requirements may result in undesirable consequences.

2

For instances, frequent deadline misses may degrade the system’s appropriate quality of service.

When timing requirements are violated in the case of cellular networks, ongoing calls could be

dropped; if enough calls are dropped off frequently, the cell phone provider will lose valuable

customers of their business. If an adaptive video streams frequently displays black screen in

every event of system’s property changes (e.g., change of network bandwidth over time), the user

may lose patience for the internet service provider. As a result, these soft real-time systems may

require certain performance guarantee (e.g., QoS) even in the presence of occasional deadline

misses.

In addition to meeting all timing constraints for real-time systems, the ability to change sys-

tem properties (e.g., processing capacity, network bandwidth, memory capacity) at runtime is a

fundamental requirement of many real-time embedded devices for dynamic and efficient usage of

device resources. For instance, an adaptive video-streaming application may change computation

requirements due to changes in encoding/decoding requirements. A real-time control system may

need to change system runtime environment in event of an unfavorable scenario. These changes

in a system can be both application level and hardware capability. Different application levels

sometimes are denoted as software modes, whereas different hardware capabilities of the same

system are denote as hardware modes.

Modern processors support various power management features which can be effectively uti-

lized for creating hardware modes. Dynamic voltage scaling (DVS) approach has become a

standard capability for modern processors as a power management feature. DVS allows con-

trolling the execution capability in the CPU from the operating system. Using DVS, user level

application can change the processor’s operating features, which in turn can reduce energy con-

sumption as well as the production of heat. Intel and AMD processors (Intel SpeedStepr and

AMDPowerNOW!TM) support this technology. Some low-end processors support other tech-

niques: auto-clock stop mode [7], enhanced auto-clock freeze mode [7], and auto-halt power-

down mode [7]. These very basic features of low-end processors can play a vital role in managing

devices processing resource efficiently.

Most of the real-time and embedded system devices use low-end processors due to manu-

3

facturing cost and volume constraints; therefore, these devices may not include the sophisticated

dynamic-voltage-scaling capabilities of the higher-end processors. Low-power state [7], which

is a basic power management feature, can be used conveniently for multiple hardware modes.

Keeping the processor in a low-power state during idle periods as a DTM technique might lower

instantaneous temperature [68] of the system, as well as the energy consumption. Meisner et

al. [50] deployed similar techniques (with the name PowerNap) for eliminating idle powers in a

large datacenter. They developed circuitry which would resume the processors from low-power

mode if there is a activity detected by the NIC. However, erratically putting the processor in

a low-power mode makes it extremely difficult to analyze the schedulability of hard real-time

systems tasks.

Example of software modes can be found in server systems (e.g., databases, web server),

intelligent personal assistant, and also in interactive design tools. Smartphones, digital video

recorders, tablet computers, and many others support multiple simultaneously-executing adap-

tive multimedia streams on a shared computational platform. Different quality-of-service re-

quirements for each multi-media stream may be modeled as software modes. For guaranteed

QoS level for all participating streams, applications must ensure timing constraints during the ex-

ecution of each mode. In addition, a transition period (i.e., duration between two modes) requires

special attention as during the transition both the old-mode and the new-mode may be active; so,

the processing resource may have to deal with transient workload which may be higher than the

execution of a normal mode.

Additionally, many real-time systems may need to support multiple simultaneously-executing

subsystems upon a shared computational platform. Upon such devices, guaranteeing a QoS level

for co-executing applications is crucially important in many respects. In order to obtain a guar-

anteed service, applications upon a shared platform must be isolated from each other temporally

which is frequently denoted as temporal-isolation. Temporal isolation is indispensable to en-

sure that each application receives an acceptable level of quality of service (QoS). However, in

the presence of temporal isolation, simultaneously running applications essentially run on non-

continuous processing resource. These non-continuous resources may be efficiently modeled by

4

hardware modes [63].

In this thesis, we attempt to address multi-modal system schedulability considering both soft-

ware/hardware modes that will provide a guarantee of service upon a shared computing platform.

Before describing multi-modal systems in detail, the following subsections list some of the stake-

holders which benefit directly from multi-modal system research.

1.2 Applications

1.2.1 Control Systems for Real-Time Computing

Control systems have the inherent ability of maintaining stability even in dynamic and unpre-

dictable operating environments. Such control systems often require switching execution modes

based on the feedback from observable variables (e.g., temperature, memory status, network sta-

tus, and battery status) on the system. For developing a control system with hardware/software,

system designers need to make sure that timing requirements for all real-time tasks are always ful-

filled. Ensuring timing constraints during transition requires special attention as the system may

get overloaded due to simultaneous presence of jobs from both old mode and new mode tasks.

Therefore, determination of the minimum CPU requirements with guaranteed schedulability for

multi-modal systems received special attention over the past few years. Figure 1.1 represents a

control system where r is the desired output and y is the observed output from the plant. C, P ,

and F correspondingly denote controller, actuator/plant, and a set of sensors for measuring the

output. In this dissertation, we address schedulability of a multi-modal system which are inte-

gral part of control-systems for real-time computing. The multi-modal model presented in this

dissertation forms the basis of the design of a thermal-aware real-time system with predictable

temporal and thermal performance.

5

Figure 1.1: Components of a control computing system.

1.2.2 CPS

Cyber-physical systems are an integral part of industrial automation, automotive control systems,

and power plants. As these systems exist in dynamic environments, the system must have the abil-

ity to change modes in order to adapt to different environmental contexts (e.g., an adaptive cruise

control system may have different functional modes depending on travel conditions [61]). Ideally,

each subsystem comprising a cyber-physical system could be allocated a dedicated continuously-

available processing platform upon which software mode changes (i.e., changes in the underly-

ing tasks, algorithms, or execution behavior) would provide the cyber support for controlling the

physical plant in a dynamic environment. However, provisioning a dedicated and continuously-

available processing platform for each subsystem may grossly over-provision the computational

resources required to control the physical plant and increase the size, weight, and power of the

system.

1.2.3 Satellite Systems

There are many types of embedded systems which could be found military and earth observation

satellites, communications satellites [71], navigation satellites, weather satellites, and research

satellites used for various purposes. To ensure the correct operation [19, 20], a satellite sys-

tem may maintain many constraints including hard deadlines. To avoid unforeseen events, the

satellite systems may deploy control systems for which possessing multiple operating modes is a

fundamental requirement. Satellite communication may specially be benefitted from multi-modal

systems as different types of communication (e.g., beacon, transponder, and repeater) may share

6

hardware resource with varying frequency (uplink/downlink) requirements.

1.3 Multi-Modal System (MMS)

In this section, we present a short summary on contributions of this dissertation. First we discuss

in brief different components of a multi-modal system (Subsection 1.3.1), research challenges

(Subsection 1.3.2), thesis statement (Subsection 1.3.3), and finally how we address these chal-

lenges (Subsection 1.3.4).

1.3.1 Aspects of a Multi-Modal System (MMS)

Real-Time Workload

Workload is generated by the real-time application which typically associates a deadline for each

activity. The firmness of the deadline depends on the underlying system. In this dissertation, to

represent the recurring workload typical to control/CPS application, we model real-time work-

load by the sporadic tasks model [51]. A sporadic task τ (i)
` is characterized by three parameters:

worst-case execution requirement e(i)
` , (relative) deadline d(i)

` , and minimum inter-arrival sepa-

ration p(i)
` (also called the period). The interpretation is that a sporadic task τ (i)

` may produce a

sequence of jobs, separated by at least p(i)
` time units, where each job has the maximum execution

time e(i)
` units, and must complete within d(i)

` time units after its arrival (see Figure 1.2).

Figure 1.2: A possible job generation sequence of a sporadic task.

7

Processing Platform

In real time systems, a processing resource can be both uniprocessor and multiprocessor platform.

In a uniprocessor resource, executions requirements are serviced through one execution unit (e.g.,

single core microprocessor, microcontroller). On the other hand, a multiprocessor platform may

be either a multi-core processor or consist of more than one processor. In this dissertation, we

target uniprocessor resource as the target platform for a real-time system; we plan to extend our

techniques for uniprocessor resources to multiprocessor resources in future work. A processing

platform may be completely occupied by a single application, or it may be shared by multiple

applications at the same time. For the later case, a real-time scheduling algorithm may be required

for sharing the processing resource among applications.

In order to reduce the manufacturing volume and cost, real-time system designers are more

inclined to utilize low-end computing resources (e.g., microcontroller). As suggested earlier in

the introduction, these devices may not have the sophisticated dynamic-power/thermal manage-

ment (DPM/DTM) technology like DVS; however, very often these devices possess basic power

management feature in the form of low-power state. Prior research work developed external

circuitry (e.g., PowerNap [50]) to utilize these basic power management features to put the pro-

cessing resource in a low-power state opportunistically. EDP resource model can address such

discontinuous processing behavior with a higher degree of optimism.

Π(i) 2Π(i)∆(i) Π(i) + ∆(i) 2Π(i) + ∆(i)

Θ(i)
∆(i)Π(i)

t = 0

Figure 1.3: A possible execution pattern of an EDP resource.

In the EDP resource model, a processing resource Ω(i) is represented by Π(i), Θ(i), and ∆(i)

where Π(i) is the resource period, Θ(i) is the resource capacity, and ∆(i) is the resource deadline.

The interpretation is that the processor will be executed in active-mode only Θ units of time in

each successive Π(i)-length intervals. For EDP, processing allocation must occur within ∆(i) time

8

the start of the resource period. Figure 1.3 shows the execution pattern. In this dissertation, we

use the EDP model as the basis for representing a hardware mode.

Scheduling Algorithms

Scheduling algorithm determines which job gets the hardware at any instant of time. For en-

suring all the timing constraints (in the form of deadlines of jobs), a deterministic scheduling

algorithm is important. Most scheduling algorithms operate as follows: at any time instant, each

active job is assigned a priority, and the scheduling algorithm chooses for execution the cur-

rently active job with the highest priority. Among the scheduling algorithms studied in real-time

systems are divided into two important groups: Dynamic-Priority scheduling and Fixed-Priority

scheduling. The example of dynamic priority includes Earliest Deadline First (EDF) [73], Least

Laxity First [30], Pfair-based algorithms [13], and Earliest Deadline with Zero Laxity [27]. Rate

Monotonic [49] and Deadline Monotonic [12] are the example of fixed-priority algorithms. In

this dissertation, we consider EDF and FP for the multi-modal system.

Schedulability Analysis

Schedulability analysis is an essential tool for real-time system design. Schedulability analy-

sis for a particular scheduling algorithm takes a real-time multi-modal system as an input, and

checks whether all timing constraints are met under the particular algorithm. The analysis re-

turns “Yes”/“No” response by analyzing the real-time workload and processing resource. If the

response is “Yes”, then the real-time system will not miss any deadline under any circumstance;

however, if the response is “No”, then the real-time system may miss a deadline during its execu-

tion. To decide schedulability of a multi-modal systems, the schedulability analysis must evaluate

all modes, and during the transition between any pair of modes. Therefore, schedulability anal-

ysis is computationally expensive. In this dissertation, we consider FP and EDF schedulability

analysis of multi-modal system for ensuring timing constraints at design time.

9

Figure 1.4: Input/output of a schedulability analysis.

1.3.2 Research Challenges for Multi-Modal Real-Time Systems

While multiple modes enable flexibility and increase dynamism, switching modes may result

in severe performance degradation (e.g., temporary black screen while changing power savings

modes in laptops and smartphones). For systems that maintain performance guarantees using

recurring tasks with deadlines, a smooth transition with timing constraints is possible using a

schedulability analysis. Traditional research on real-time systems has commonly addressed the

issues of schedulability under mode changes and temporal isolation, separately and indepen-

dently. On the other hand, research on temporal isolation in real-time scheduling (often called

server-based or hierarchical scheduling), while permitting the analysis of real-time subsystems

that co-execute upon a shared computation platform, has often assumed that the application and

resource requirements of each subsystem are fixed during runtime. Recently researchers have

started to address the problem of guaranteeing hard deadlines of temporally-isolated subsystems

in multi-modal systems. However, most of this recent research suffers from two fundamental

drawbacks:

1. Full support for both resource-level mode changes and application-level mode-changes

does not exist.

2. The proposed algorithms for determining schedulability under mode changes have exponential-

time complexity.

Full support for both resource-level and application-level mode-changes are important to

achieve temporal isolation while executing multiple hard real-time systems (i.e., subsystems)

upon a shared platform. Individual support for either resource-level or application-level mode-

10

changes is not effective enough for their desired purpose with the absence of another. For ex-

ample, application-level only mode-changes cannot exploit modes with lighter resources without

presence of hardware modes. On the other hand, hardware resource mode is not usable if the

application does not possess the capability of utilizing them. Schedulability analysis developed

independently may not provide real-time guarantees where both hardware-level and application-

level modes are present. So in this thesis, we develop schedulability analysis for multi-mode

system considering both hardware and software modes together.

1.3.3 Thesis

The thesis of this dissertation is:

The determination of resource parameters with guaranteed schedulability for real-

time systems that may change execution requirements over time is computationally

expensive. However, decoupling schedulability analysis from determining the min-

imum processing-resource parameters of a real-time multi-modal system results in

the pseudo-polynomial complexity for the combined goals of determining both MMS

schedulability and optimal resource parameters.

1.3.4 Contribution and Organization

To support this thesis, this dissertation makes the following contributions:

• Using the theoretical analysis for characterizing the peak-temperature of a periodic re-

source, we show the benefit of intelligently choosing parameters of a multi-modal system

in Chapter 4. This analysis suggests that a periodic resource with higher ratio of capacity

to period-of-repetition generates a higher peak-temperature.

• We propose the discrete hardware/software real-time multi-mode model in Chapter 5 suit-

able for real-time embedded system that may need to maintain certain quality-of-service in

11

changing environments. The protocol is also suitable for real-time control system which

would ensure predictable system behavior in both favorable and unfavorable scenarios.

• We derive a sufficient schedulability analysis test for the setting where the sequence of

mode changes is a priori fixed and each mode has its workload scheduled by the earliest-

deadline-first (EDF) scheduling algorithm [49] in Chapter 6. This setting is referred to as

concrete mode-change request setting.

• We derive a pseudo-polynomial schedulability analysis test for the setting where mode

changes are not a priori fixed (called non-concrete sequences) and each mode is scheduled

by EDF in Section 6.2. The time complexity of our proposed test is a significant improve-

ment over previous tests that require exponential-time in the worst case. In Chapter 7, we

extended the schedulability analysis for fixed-priority tasks.

• In Chapter 8, we develop MinMaxCap algorithm to minimize resource usages of a multi-

modal system. We are not aware of any result that addresses the optimality in terms of

resource usages with respect to any objective function. We exploit the schedulability anal-

ysis (Chapter 6) developed in this thesis to obtain set of optimized hardware resource modes

ensuring system schedulability.

• To accelerate the schedulability analysis of a multi-modal system as well as determination

of minimum parameters, we developed a parallel algorithm suitable for message-passing

parallel systems to check the invariants (Chapter 9) of the schedulable real-time MMS. To

improve further, we develop algorithm for checking schedulability of MMS using mas-

sively parallel graphical processing unit (GPU) platform.

The thesis of this dissertation is motivated by the requirements of control computing under

real-time setting. A computing control system is very convenient in achieving predictability

and stability in unfavorable scenarios. A multi-modal system is a fundamental requirement of a

computing control system. Each of the contributions of this thesis addresses an issue related to the

development of a real-time multi-modal system for control computing upon a single processing

12

resource. Multicore processors are very common and available for embedded computing; so an

interesting topic for future research will be multi-modal systems upon multicore CPU.

13

CHAPTER 2: MODELS &

DEFINITIONS

In this thesis, we are interested in analyzing characteristics of real-time multi-modal systems. For

making the thesis more readable, proper definitions of used terms are very much essential. This

chapter presents definitions and notations for the task model, workload functions, and periodic

resource model that were used throughout the thesis. At the end of this chapter, we discuss

different components of a multi-modal system.

2.1 Definitions

2.1.1 Jobs

In real-time systems, there are basic units of work known as jobs, which need to be executed

by the processing unit. Each such job has a deadline. In this thesis, only preemptive model of

scheduling is addressed; that is, a job executing on the processor may be interrupted, and its

execution resumed at a later point in time. For the ease of presentation, we assume that there is

no penalty for preemption. (Bertogna et al. [15] and Baruah [11] developed techniques to address

preemption which can be integrated into the techniques of this dissertation.) Each real-time job

is characterized by three parameters: a release time, an execution requirement, and a deadline;

with the interpretation that the job needs to be executed for an amount equal to its execution

requirement between its release time and its deadline.

Definition 1 (Job) A real-time job j = (a, e, d) is characterized by three parameters an arrival

time a, an execution requirement e, and a deadline d, with the interpretation that this job must

receive e units of execution over the interval [a, d).

14

Figure 2.1: Real-time jobs with same execution requirement e.

2.1.2 Tasks

A real-time system is usually modeled as a set of concurrent tasks. Each task generates an infinite

succession of jobs. There are different models available for defining a task. For this report, we

consider the sporadic task model, and we define sporadic tasks systems in the next subsection.

2.1.3 Scheduling Algorithms

Most scheduling algorithms operate as follows: at any instant of time, an active job is assigned

a priority, and the scheduling algorithm chooses for execution the currently active job with the

highest priority. This priority assignment can statically assigned to each task at the design time

(i.e., fixed-priority), or task priority can be changed dynamically. Among the scheduling algo-

rithms studied in real-time systems are: Earliest Deadline First (EDF) [73], Rate Monotonic [49],

Deadline Monotonic [12], Least Laxity First [30], Pfair-based algorithms [13], and Earliest Dead-

line with Zero Laxity [27]. In this thesis, we consider EDF and fixed-priority (FP) scheduling

algorithm.

§EDF. The earliest-deadline-first (EDF) is a dynamic scheduling algorithm. At each instant of

time, EDF chooses for execution the currently-active job with the smallest deadline. EDF is an

optimal scheduling algorithm for scheduling arbitrary collections of independent real-time jobs in

the following sense - if there exists a schedule for a given collection of independent preemptible

jobs such that meet all their deadlines, then the schedule generated by EDF for this collection of

jobs will meet their all deadlines too.

§FP. The fixed-priority scheduling of periodic and sporadic task systems, all the jobs generated

15

by each task are required to be the same priority, which should be different from the priorities

assigned to jobs generated by other tasks in the system. Hence, the run-time scheduling problem

essentially reduces to the problem of associating a unique priority with each task in the system.

t
EDF

FP
preemption

τ1
τ2

Figure 2.2: FP vs. EDF schedule for two tasks τ1 and τ2.

Figure 2.2 shows EDF and FP schedule for a same set of jobs. Forward diagonally hatched

rectangles are representing execution requirements for jobs of τ2 whereas backward diagonally

hatched rectangles are representing jobs of τ1. Downward arrows point deadlines for correspond-

ing jobs. For FP, task τ1 is assumed higher priority than τ2. Job arrival sequences for both tasks

are depicted above the timeline whereas job execution schedules for EDF and FP are shown be-

low the timeline. As shown in the figure, due to priority of individual job, the EDF schedule has

one preemption whereas FP schedule contains two preemptions.

Before we further describe the scheduling approaches, we define some terms commonly used

in describing properties of real-time scheduling algorithms.

1. Feasible: A schedule is said to be feasible if all jobs from each tasks are completed ac-

cording to timing constraints.

2. Schedulable: A set of tasks is said to be schedulable if a scheduling algorithm can produce

a feasible schedule.

3. Optimal: A scheduling algorithm is said to be an optimal if the algorithm is able to produce

a feasible schedule for any schedulable task set.

16

2.2 Models

2.2.1 Explicit-Deadline Periodic (EDP) Resource Model

The EDP resource model [32, 70] is a general resource model for characterizing the execution of

a system upon a periodically-available and non-continuously-executing resource. The processing

resource available to each mode M (i) is represented by an EDP resource Ω(i) ≡
(
Π(i),Θ(i),∆(i)

)

where Π(i) is the period-of-repetition (also known as resource-period), Θ(i) is the resource ca-

pacity, and ∆(i) is the resource deadline. The interpretation of these parameters is that the EDP

resource Ω(i) guarantees mode M (i) a total execution of at least Θ(i) units over successive Π(i)-

length intervals within ∆(i)(≤ Π(i)) units of time. Furthermore, we assume that EDF is used to

schedule the workload at any point when the resource is providing execution. The ratio Θ(i)/Π(i)

is frequently denoted as interface-bandwidth I(i). Real-time researchers utilize supply-bound

function to quantify the minimum supply at any interval.

Figure 2.3: EDP resource with period-of-repetition equal to deadline.

Definition 2 (Supply-Bound Function) For any t > 0, the supply-bound function sbf(Ω(i), t)

quantifies the minimum execution supply that a modeM (i) is guaranteed to receive from Ω(i) over

any interval of length t ≥ 0. Easwaran et al. [32] have quantified sbf(Ω(i), t) as follows:

sbf(Ω(i), t) =

yΘ(i) + max
(
0, t− x− yΠ(i)

)
, if t ≥ ∆(i) −Θ(i)

0, otherwise.
(2.1)

17

where y =
⌊
t−(∆(i)−Θ(i))

Π(i)

⌋
and x = (Π(i) + ∆(i) − 2Θ(i)). The solid line in Figure 2.4 shows

supply-bound function of Ω(i) for the corresponding interval length.

2.2.2 Task Model

A sporadic task system τ (i) def
= {τ (i)

1 , . . . , τ
(i)
ni } is a collection of ni sporadic tasks where each task

τ
(i)
` ∈ τ (i) is characterized by three parameters: worst-case execution requirement e(i)

` , (relative)

deadline d(i)
` , and minimum inter-arrival separation p(i)

` (also called period). A sporadic task τ (i)
`

may produce a sequence of jobs, separated by at least p(i)
` time units, where each job has the

maximum execution time e(i)
` units, and must complete within d(i)

` time units after its arrival. We

consider constrained deadline tasks; that is, d(i)
` ≤ p

(i)
` . The utilization of a task τ (i)

` is defined as

u
(i)
`

def
= e

(i)
` /p

(i)
` and the task system utilization u(i) equals

∑
` u

(i)
` .

2.2.3 Workload Functions

A sporadic task τ (i)
` specify only the minimum inter-arrival separation between jobs using the

parameter p(i)
` ; therefore, there can be infinite combinations of valid job sequence possible for

a single sporadic tasks. Real-time system research usually looks for the worst-case job arrival

sequence, and develops demand-bound function to quantify the worst case execution demand

and request-bound function to quantify the worst case execution requests over any interval.

Definition 3 (Demand-Bound Function) For any t > 0 and task τ (i)
` , the demand-bound func-

tion dbf(τ (i)
` , t) quantifies the maximum cumulative execution requirement of all jobs of τ (i)

` that

could have both the arrival time and the deadline in any interval of length t.

Baruah et al. [10] have shown that the demand-bound function for sporadic tasks can be calculated

in a very similar way for that of strictly periodic tasks as follows:

dbf(τ (i)
` , t) = max

(
0,

⌊
t− d(i)

`

p
(i)
`

⌋
+ 1

)
· e(i)

` . (2.2)

18

t

Θ

2Θ

3Θ

t

Θ(i)

E
x
ec

u
ti

o
n

2Θ(i)

3Θ(i)

sbf(Ω(i), t)

0
Π(i) + ∆(i) − 2Θ(i)

2Π(i) + ∆(i) − 2Θ(i)

3Π(i) + ∆(i) − 2Θ(i)

Θ(i)

d
(i)
1

dbf(τ
(i)
1
, t)

p
(i)
1

e
(i)
1

Figure 2.4: Visual depiction of the demand-bound function for a sporadic task and sup-
ply bound function for a periodic resource.

Figure 2.4 gives a visual depiction of the demand-bound function for a sporadic task τ (i)
` .

The step function denotes a plot of dbf(τ (i)
` , t) as a function of t. The dashed line represents

supply-bound function sbf(Ω(i), t). As defined in the above definition and Figure 2.4, the dbf is a

right continuous function with discontinuities at time points of the form t ≡ d
(i)
` + a · p(i)

` where

a ∈ N. It has been shown [10] that the condition dbf(τ (i)
` , t) ≤ sbf(Ω(i),∀t ≥ 0 is necessary and

sufficient for a sporadic task system τ to be EDF-schedulable (under preemptive settings) upon a

uniprocessor platform of unit speed.

Definition 4 (Request-Bound Function) For any t > 0 and task τ (i)
` , the request-bound func-

tion rbf(τ (i)
` , t) quantifies the maximum cumulative execution requirements of all jobs of τ (i)

` that

can have the arrival time in any interval of length t. Lehoczky et al. [47] have shown that for a

sporadic task τ (i)
` , the rbf can be calculated as rbf(τ (i)

` , t) =
⌈
t/p

(i)
`

⌉
· e(i)

` .

2.3 A Multi-Modal System

In this section, we discuss different concepts of multi-modal systems. A system can have multiple

modes (e.g., Initialization mode, Check mode, Emergency mode, Alarm mode, Fault recovery

19

mode, etc.) for which the behavior of the system and processing resource may vary from each

other. In order to ensure a constraint, a mode may specify both its software (real-time workload

of tasks) and the corresponding hardware requirements (characterized by periodic resources). At

any instant of time, the multi-mode system either executes in only one of its modes, or the system

is in a transition between modes. The system may switch between different modes. We denote

this event as a mode-change request (MCR).

2.3.1 Mode-Change Request

A mode-change request is an event that triggers a transition to a new mode from the currently

executing mode. The mode that a system executed before the mode-change is defined as old-

mode or origin-mode, and the newly arrived mode is known as new-mode or destination-mode.

A mode-change request can be either an external event or an interval event. Whenever a

system detects a mode-changing event, the system initiates the process using a mode-change

request. The system then switches to a new-mode. This switching between modes may result

a transient state with additional workload. System designer occasionally provisions optional

transition period. The length of transition period after a mode-change request is known as the

offset. For a successful mode-change, we consider following three properties:

1. Schedulability: the multi-modal system must ensure all deadline constraints during the

transition as well as during the normal execution of any mode.

2. Periodicity: the multi-modal system must provision some important tasks to execute with-

out any effect from the mode-change request.

3. Promptness: for some important new mode tasks (e.g., those are in emergency mode), the

system must finish execution within their deadlines.

The term “periodicity” and “promptness” are defined in Real and Crespo [64]. After mode

change, system designers occasionally support delaying new-mode tasks to start a fixed dura-

tion. This transition period is known as offset.

20

2.3.2 Mode-Change Protocols

After a mode-change request, the system may have to change both software (i.e., tasks set) and

hardware (i.e., periodic-resources) modes. Some less important tasks would be aborted, and

some important new-mode tasks may need to start immediately. These changes are done accord-

ing tom mode-change protocols. Based on the promptness of new-mode added tasks, Real and

Crespo [64] divided the protocols for mode-changes into two groups as follows:

1. Synchronous protocols: In a synchronous mode-change protocol, the new mode-tasks

cannot start execution as long as there are unfinished jobs from old-mode tasks.

2. Asynchronous protocols: In an asynchronous mode-change protocol, new mode tasks are

allowed to execute with old-mode tasks.

The way the system may handle common tasks between old-mode and new-mode tasks, the

protocols may be divided into two groups:

1. Protocols with periodicity: In a mode-change protocol with periodicity, common tasks

between new-mode and old-mode execute independent of mode-change request.

2. Protocols without periodicity: In a mode-change protocol without periodicity, common

tasks between new-mode and old-mode may be suspended at the time of mode-change

request. These suspended tasks may resume its execution after the transition period.

2.3.3 Variation of Tasks

At the time of mode-change request, tasks may have different importance. Based on the impor-

tance, tasks may be classified into categories as follows:

1. Aborted tasks: There may be some less important tasks which may be removed from the

system immediately at the time of mode-change request. We denote these tasks as aborted

tasks.

21

Figure 2.5: Tasks at the time a mode-change request.

2. Finished tasks: Immediate removal of some tasks at the time of mode-change request may

leave the system at an inconsistent state. We denote these tasks as finished tasks for which

the last job at the time of mode change request is allowed to finish its execution.

3. Unchanged tasks: Some important tasks that are common between old-mode and new-

mode may need to continue without any effect from the mode-change request for the correct

operation. We denote these tasks an unchanged tasks.

With the definition presented in this chapter, this thesis particularly emphasizes unchanged

tasks and aborted tasks with mode-change protocols for real-time systems scheduled using either

EDF or FP. We consider promptness of a mode-change request which can be achieved by al-

lowing pre-calculated offset (e.g., transition period) after a mode-change request. Our proposed

mode-change protocol will allow periodicity for unchanged tasks and finished tasks during/after

a mode-change request. This objective is motivated by the requirements of predictable and sta-

ble computing in cyber-physical systems using control computing developed on top of real-time

multi-modal systems.

22

CHAPTER 3: LITERATURE SURVEY

In this chapter, we present prior research used for real-time multi-modal systems. Some of these

techniques are limited to work only with either software or hardware modes, others may exploit

underlying hardware resources (e.g., software and hardware modes are coupled). We present pre-

vious research on these both kinds of systems along with processing resources, mode-change pro-

tocols, and serial schedulability analysis related to multi-modal systems. In the thesis, we present

also expedited schedulability analysis using parallel computing, which is especially beneficial

while optimizing resource usages of a multi-modal system; therefore, we include a summary of

previous work on both parallel schedulability analysis and multi-modal system at the end of this

chapter.

3.1 Processing Resources of MMS

Low-end microprocessors and micro-controllers, which are prevalent in today’s industry automa-

tion ranges from toys to nuclear power plant controllers, help managing factories, guide weapon

systems, and ensure flow of information worldwide. This is partially due to the fact that in many

cases the design of a real-time system is constrained by the volume, size, and the packaging cost

requirements of an embedded system. In real-time system research, these low-end processors as

well as non-continuous usages of modern processors (due to sharing processing resources among

applications) can be modeled using periodic-resources [32]. Periodic resources can inherently

support discrete execution capabilities, which enable us to design hardware modes to be incor-

porated with software modes and mode-change protocols. There have been recent research on

real-time systems targeted for controlled usages [42] of processing capability/power on top of

periodic-resources for both achieving stability and temporal isolation while sharing processing

resources among applications. The next section addresses mode-change protocols which define

the behavior of a system at the time of a mode-change request.

23

3.2 Mode-Change Protocols

Numerous mode-change protocols exist for ensuring timing guarantees during transitions be-

tween modes on both uniprocessor [60, 64, 67, 77] and multiprocessor [54, 55] systems under

the assumption of a dedicated processing platform. For this thesis, we restrict our attention to the

uniprocessor setting. For application-level mode-changes, Tindell et al. [76] introduced a simple

protocol where new-mode tasks wait until the processor finishes jobs from old-mode tasks. This

approach is known as a synchronous mode-change protocol. Tindell et al. [77] defined a closed-

form expression for calculating the waiting time (also known as offset) after which a new-mode

task can generate jobs. Pedro et al. [60] and Real et al. [64] explored asynchronous mode-change

protocols (i.e., old-mode tasks may execute concurrently with new-mode tasks) and determined

the effects of introducing an offset during a mode-change on the schedulability. Guangming [40]

studied the problem of calculating the best time to introduce new tasks into an EDF-scheduled

system.

For ensuring temporal isolation between real-time subsystems co-executing on the same

processing platform, numerous server-based frameworks have been proposed (e.g., constant-

bandwidth server (CBS) [1], sporadic server [72], periodic-resource model [70], and bounded-

delay resource-partitions [34]). However, most of these frameworks and their associated schedu-

lability analysis assume that the application and resource requirements of the subsystems execut-

ing upon the server are priori fixed before the actual deployment. Subsequent work has attempted

to remove this assumption. Frameworks such as elastic scheduling [21] and rate-based earliest

deadline (RBED) [18] permit a subsystem to change its application or resource requirements

adaptively; however, each of these previous results are soft real-time; that is - they do not guaran-

tee all deadlines are met under transitions between executing modes. An adaptive hard real-time

extension of CBS, called variable-bandwidth server (VBS) has been developed; however, VBS

does not consider resource-level mode-changes and does not permit arbitrary mode-changes. (In-

stead, an application mode-change must pass an admission control test and be deferred until the

mode-change is safe).

24

In the past two years, there has been increased research attention on developing hard real-time

frameworks and analysis that support temporal isolation, and allow both resource and application

mode-changes. Stoimenov et al. [74] developed a real-time calculus (RTC) approach for analyz-

ing the application demand of a subsystem during a single application-level mode-change. In a

complementary paper, Santinelli et al. [66] developed an RTC characterization of the resource

supply of a resource-level mode-change. Taken together, these two results can be used to analyze

the schedulability of a subsystem under a single mode-change; however, the results, in general,

do not address carry-in; therefore, the results do not hold for a subsystem that might go through

successive mode-changes. The result may be used with multiple successive mode-changes, only

if there exists a subsystem idle time between each mode-change; the drawback is that such an

approach is very conservative as the subsystem may have to delay a mode-change for a long

duration until an idle time is found. In a later paper, Stoimenov et al. [75] investigated resource-

level mode-changes in a Time Division Multiple Access (TDMA) server; however, schedulability

analysis for application-level mode-changes was not investigated. Inam et al. [44] implemented

simple mode-change protocol upon FreeRTOS for systems scheduled hierarchically. For this

work, a task executing through mode-change requests without interruption (i.e., unchanged task)

is not possible. None of the schedulability analysis in the aforementioned description have known

tractable time complexity. (The authors do not mention the time complexity.) In contrast, our ap-

proach addresses successive application/resource mode-changes and has pseudo-polynomial time

complexity.

One set of recent result has addressed multiple resource and application-level mode-changes

(without waiting for idle times); Phan et al. [62, 63] proposed a general compositional model

and associated analysis techniques for processing multiple bursty/complex event/data streams

using state-based models such as timed automaton. However, as the analysis requires traversing

a reachability graph, their approach is highly exponential, and does not scale efficiently with in-

creasing number of modes. In contrast, we consider a more specialized model for resource and

application modes which permits a more precise and efficient calculation of subsystem schedula-

bility with less pessimism. In a followup paper, Phan et al. [61] simulated adaptive cruise control

25

system by modeling it as a multi-modal system.

3.2.1 Synchronous Protocols

Synchronous protocols are characterized by higher priority of old-mode tasks, and new-mode

tasks cannot start as long as there are old-mode tasks. Tindell and Alonso [76] worked with

synchronous mode-change protocol. In their setting, the system wait for an idle instant after the

arrival of a mode-change request. Once an idle instance is found, the system activates mode-

change actions and allows new-mode tasks to release jobs. The protocol is also known as idle-

time protocol. This protocol is simple and easy to implement; however, mode-change promptness

is compromised due to the dependency of the first idle instant after a mode-change request. This

is because of the system waiting time up to the worst-case response time of jobs if MCR co-

incides with the worst job arrival sequence in the old-mode. Longer mode-change response is

undesirable especially if new-mode tasks with shorter deadline are waiting for execution. Syn-

chronous protocols are not suitable for unchanged tasks that may execute through mode-change

requests uninterruptedly. Multi-modal systems proposed by Nelis et al. [54, 55] are the examples

of synchronous protocols upon multiprocessor platform.

3.2.2 Asynchronous Protocols

In asynchronous protocols, new-mode tasks do not wait for old mode tasks to finish. Both

new-mode and old-mode tasks can co-execute together during and after transition period. Shah

et al. [67] developed an asynchronous protocol where tasks in each mode executed by Rate-

Monotonic Algorithm [49]. In their settings, mode-changes are characterized by addition of new

tasks, deletion of existing tasks, or changes in the parameters of tasks (e.g., increasing the sam-

pling rate to obtain a more accurate result). The authors considered resource sharing between

tasks using binary semaphore for synchronization. To avoid deadlocks while accessing critical

section, the priority-ceiling protocol [67] was utilized. The mode-change protocol checks suffi-

cient processor capacity and characteristics of priority ceiling protocol before adding a new task

26

(the role of mode-change protocol is very similar to an admission controller) in the system. How-

ever, the authors cannot exploit the resources released by aborted tasks at the time of MCR as

utility based schedulability is considered for ensuring all deadlines.

Asynchronous protocols [60, 77] allow prompt mode-changes. These set of protocols are

capable of ensuring periodicity of participating tasks at the time of mode-change requests. Pedro

et al. [60] argued that if there is a transient overload at the beginning of a mode-change, where

the total instantaneous utilization may increase above the limit (due to new-mode jobs released

immediately after mode-changes), the system will be unschedulable. For such systems, an offset

is a flexible requirement provided that the system meets its overall requirements. Using offset,

their proposed protocol delays newly added tasks and changed tasks from the start of a mode-

change request. This reduces interferences that new tasks experience from higher priority old

mode tasks; therefore, the protocol allows tasks sets to finish before deadlines. This in turn

minimizes pessimism of the timing analysis, and increase the schedulability of a system. A

very similar protocol by Tindell et al. [77] delays (i.e., offset) only new-mode tasks, but allows

unchanged and changed tasks from old-mode to continue in new-mode maintaining inter-arrival

separation constraints between jobs. Both of these approaches assume the offset is known at

design time which may not be practical. Determining/optimizing offset is a difficult problem and

requires significant computational effort.

3.3 Schedulability of MMS

In this section, we discuss existing schedulability analysis technique for multi-modal systems.

While schedulability analysis is essential for ensuring timing integrity of any real-time system,

there is no unique approach for developing such analysis due to many dimensions of the prob-

lem of schedulability in real-time systems. As a result, there exists numerous schedulability

analysis for different types of multi-modal systems. Developing schedulability analysis depends

mainly on tasks system, processing resource, and scheduling algorithm itself. As EDF and Fixed-

Priority scheduling are the two main focuses of this thesis, following subsections present existing

27

schedulability analysis for real-time multi-modal systems under these two categories. For EDF

scheduling algorithm, typically demand-supply analysis is used, whereas response time analysis

is more applicable for Fixed-Priority scheduling algorithm.

3.3.1 Demand/Supply Analysis

For demand/supply-based schedulability analysis, system designers need to ensure overall exe-

cution demand over any interval is always less than corresponding execution supply from pro-

cessing resources. This type of analysis quantifies the maximum workload (demand) generated

by the tasks system for any interval that needs to be completed to avoid possible deadline misses.

In case of multi-modal systems, tasks sets that generate workload may change at the time of a

mode-change request; therefore, the demand-supply analysis is not straightforward, and requires

to consider transient workload that can be carried forward from past mode-changes. The unfin-

ished workload from past modes is also known as carry-in, and it contributes to the instantaneous

demand at the new-mode. The main difficulty with quantifying carry-in is its dependency on

all previous modes processing resources. Therefore, the subroutine for determining the carry-

in of a mode is complex, computationally expensive, and may require invocation of itself as a

subroutine.

Stoimenov et al. [74] developed a demand/supply based schedulability analysis using real-

time calculus (RTC) approach. The authors considered a single application-level mode-change.

Therefore, this multi-modal system may not be usable with control systems. Phan et al. [63]

performed a schedulability analysis for multi-modal systems using finite-state automaton. The

authors developed equations for calculating upper bound on the workload that may come from the

previous mode, and devised equations for quantifying the minimum execution (supply function)

unit for a given interval. Using these two functions, authors quantified the minimum processing

supply requested by each component that will ensure schedulability using finite state automaton.

However, the suggested method needs to construct a tree of reachable states from the initial set

of states; therefore, this method is not suitable for a system with large number of modes as the

28

computation is highly expensive. Furthermore, the authors set constraints on the duration of

how long the system can stay in a particular mode in the form of minimum and maximum mode

duration. This assumption may not be suitable in control system where the systems may remain

in stable states throughout the lifetime. In this thesis, we are working for developing a multi-

modal real-time system taking control systems into consideration where periodic-resource [32]

for each mode will serve a set of sporadic task system using only EDF.

3.3.2 Response Time Analysis

In this technique, the time to finish a job in the worst case is calculated. This finish time is

known as response-time. In most research on fixed-priority scheduling for real-time systems, the

response-time is defined iteratively (i.e., a function of response time that is calculated in the previ-

ous iteration). For ensuring the schedulability, the response time of any job must be smaller than

the deadline of the corresponding task. Tindell et al. [77] developed closed recursive equation

to calculate response-time of tasks after a mode-change. Real et al. [64] explored response-time

analysis and evaluated the effect of offset after a mode-change to reduce the pessimism of a

schedulability analysis in case of a multi-modal system.

3.4 Parallel Schedulability Analysis of MMS

Checking schedulability of multi-modal systems warrants higher computation time as a result of

dependencies between modes. This dependency is due to transition between modes provisioned

by a system designer. For schedulability, each mode must evaluate all valid transitions at it to

accommodate the maximum carry-in it can start with. As a result, a large number of modes

pose a computational challenge to existing algorithms for sequential schedulability analysis. A

parallel schedulability analysis can be promising and practical alternative to traditional sequential

techniques.

An efficient parallel schedulability analysis can reduce significantly the time for design-space

29

exploration [3, 78] that may utilize schedulability tests for ensuring timing constraints while

determining optimized resource parameters of a multi-mode real-time system. Schedulability

analysis using parallel algorithms is a relatively unexplored area for multi-modal real-time appli-

cations. For uni-modal systems, there have been solutions with well-defined sets of conditions

where each condition must pass a set of test cases. In most scenarios, the evaluation of these test

case elements can be performed independently. From the perspective of parallel computing, the

independent execution behavior makes the problem of uni-modal schedulability less challenging.

The only non-trivial parallel schedulability analysis that we are aware of is by Feng et al. [33]

and Nunna et al. [56] for uni-modal schedulability of dependent tasks represented using directed

acyclic graphs (DAG). However, the schedulability analysis of multi-modal real-time systems is

complex; the analysis not only depends on each mode itself, but also on the schedulability of all

other modes along with mode-change sequences. Therefore, a sequential schedulability analysis

may not sufficiently scale if it is used as a tool for determining optimal system parameters (e.g.,

hardware-resources, offset). In this thesis, we address a fundamental gap in the literature on

parallel schedulability analysis suitable for design-space exploration for real-time multi-modal

systems.

The performance of a parallel algorithm depends heavily on the underlying workload dis-

tribution policy. Balanced distribution of workload along with the minimal overhead due to

communication/synchronization is indispensable to reduce the parallel execution time. For load

balancing upon a parallel platform, different centralized [39] and distributed techniques [22] (e.g.,

sender/receiver-initiated [31]) may be used for distributing workload among processing nodes for

checking schedulability; however, added overhead for this approach is not negligible. We propose

a decentralized load-balancing technique that reduces the overhead of data distribution.

3.5 Parameters of MMS

Efficient schedulability analysis can reduce the design time significantly while finding system pa-

rameters, (also known as design-space exploration [78]), by repeated applications of the schedu-

30

lability test for the problem. Design-space exploration is computationally expensive. Under

real-time settings, design-space exploration has the additional penalty of checking schedulabil-

ity. Faster execution time for the design-space exploration is desirable as faster execution times

allow more models to be evaluated in a short time duration. This is important to reduce product

time-to-market.

So far developed design-space exploration for a multi-modal system have not addressed the

optimal (hardware) resource usages for modes. Phan et al. [63] for the first time worked with

temporal-isolation and determined resources for each mode of a multi-modal system using the

exploration of a reachability graph developed from all possible mode transitions. The algorithm

may take exponential time to decide the schedulability along with the determination of resource

usages. The reasons for higher computational complexity may be because of the fact that the

authors combined both schedulability analysis and determination of the CPU requirements (ca-

pacity) for modes together. Although the algorithm may take exponential time to determine the

resource usages of each mode, but it cannot ensure the minimum resource usages. Optimal so-

lutions may vary due to different objective functions such as minimizing peak-temperature or

minimizing the total energy consumption. In this thesis, we address the objective function of

minimizing the maximum resource usages.

31

CHAPTER 4: MOTIVATION FOR MMS

In this chapter, we present theoretical benefits of executing periodic resource with different

hardware resources. The continuous execution of a hardware resource directly influences the

peak-temperature of the system; therefore, over the years, thermal-aware designs have become

a prominent research issue for real-time application development. In order to avoid excessive

heat generation or to reduce energy consumption, the system must utilize the processing re-

source prudently. Prior research work obtained resource efficiency by varying resource usages

(which is analogous to change hardware mode) over time. In the following section, we show

how different hardware modes can contribute to the peak system temperature. We show that

higher bandwidth of a periodic resource generates a higher peak-temperature. So minimizing

the maximum bandwidth of hardware-modes of a multi-modal system is an appropriate objective

for minimizing peak-temperature of a periodic resource. Recently, a number of research groups

have attempted to address thermal and energy constraints using control systems for processing

real-time tasks [37, 36].

The development of control systems often requires the underlying system to support multiple

hardware and software execution modes. Such a control system must switch between the different

modes to maintain stability in a dynamic and unpredictable environment. However, each of

the previously-proposed real-time control systems is soft real-time; that is, the system cannot

guarantee that every deadline will be met, but is designed with the objective to minimize the

number of deadline misses. We are unaware of a single feedback control system with hardware

and software modes that is hard real-time, in that it guarantees that no deadline will be missed.

The current non-existence of such a control system is due to a fundamental gap in the research

literature on effective and efficient multi-modal models and schedulability analysis (i.e., analysis

that determines whether a system meets all deadlines) for systems where both hardware and

software may change execution modes. In this thesis, we take an initial step towards the design

of such a hard real-time control system by providing a theoretical framework and associated

32

time-efficient schedulability analysis.

In the following subsections, we develop equations to calculate the peak-temperature of

a periodic resource. These equations suggest that higher bandwidth may result higher peak-

temperature. This is an indication of the necessity of varying resource usages over time which

can be efficiently modeled using a multi-modal system. In the appendix of this chapter, we

present a brief overview of prior work on thermal-aware real-time system design.

4.1 Peak-Temperature of a System

To control the instantaneous temperature, one possible way is to utilize the processing resource

efficiently. Previous work attempts to minimize the peak-temperature by opportunistic usages of

CPU resources. However, erratically turning on/off the processing resources makes the thermal

analysis extremely difficult. We consider a variant of periodic-resource to model the temper-

ature of a non-continuous resource. Besides, finding the peak-temperature is difficult as both

heating and cooling systems are complicated dynamic processes which depend on the surround-

ing environment. We could approximately model this process by applying Fourier’s Law of

heat conduction [23, 43, 52, 53], where thermal coefficients can be obtained by using the RC

(resistor-capacitor) thermal model. Fourier’s Law of heat conduction states that the rate of cool-

ing is proportional to the difference in temperature between the object and the environment. We

assume that the environment has a fixed temperature, and that temperature is scaled so that the

ambient temperature is zero. Previous real-time research with thermal constraints [79, 80, 81]

has also worked with the identical ambient temperature assumptions.

If we define T (t) as the temperature at the time instant t, then T (t) can be calculated (shown

in [26]) as follows

T (t) =

t∫

t0

(s(τ))γ e
−β(t−τ)

dτ

+ T (t0)e

−β(t−t0)

(4.1)

33

where

s(t) =

ϕ, if t occurs during active−mode;

ϕPoff if t occurs during inactive−mode;

The function s(t) can be think of as the function of time for calculating speed. The parameter

β and γ are processor specific constants. Typical settings for these two is β ≈ 0.228, γ ≈ 3 (e.g.,

see [26]). The value of ϕ takes speed value using which processor would executes workload

during active mode. In our setting, active processor speed is normalized to 1; therefore, the value

of ϕ is set equal to 1. Poff is the fraction of speed that inactive mode executes at (compared to the

speed during active mode) where 0 ≤ Poff < 1.

Θ

Π

Π + Θ 2Π + Θ

2Π

t1 t2 t3 t5t4 t6

t
Θ

t = 0

Figure 4.1: Execution pattern in thermal-aware periodic resources. Solid rectangles in
the bottom portion of the figure depicting capacity each of which has a
length of Θ(j) time unit.

To analyze the thermal effect, we assume that the periodic resource provides all capacity at

the beginning of the Π(j)-length interval. The system is ready for execution at the time instant

t0. We assume that temperature at this time is normalized to zero and is equal to the surrounding

ambient temperature. The processor will also start executing at time instant t0. Assuming the

processor starts its execution from an even numbered time instant, we define t2i = iΠ(j) and

t2i+1 = iΠ(j) + Θ(j) + ∆(j) for each value of i ∈ N. Therefore, the gap from an even time instant

to an odd time instant is Θ(j) + ∆(j), whereas from an odd time instant to an even time instant -

the interval length is Π(j) −Θ(j) −∆(j). Figure 4.1 illustrates the time instants when ∆(j) equals

zero. The processor generates heat during its execution interval (from an even time instant to

an odd time instant) and dissipates heat in the remainder of the period-of-repetition. Since the

34

peak temperature will occur at the end of the execution in every period-of-repetition, it suffices to

consider the times t ∈ {t2i+1|i ≥ 0} as the time instants where the peak temperature may occur.

4.2 Equations for Peak-Temperature

We will use Equation 4.1 to derive the temperature at the beginning and at the ending point of each

execution cycle with the assumption that the initial temperature of the processor and the ambient

temperature is normalized to zero - which means T (t0) = 0. Under the settings described in the

previous section, we obtain the following theorem to calculate peak-temperature after a periodic

interval:

Theorem 1 Given i ∈ N, the temperature of a periodic processor with the parameter Π(j) > 0

and Θ(j) ≥ 0 at the time instant t2i+1 can be obtained

T (t2i+1)

=
ϕγ

β

(
1− e−β(Θ(j)+∆(j))

) 1−
(
e−βΠ(j)

)i+1

1− e−βΠ(j)

+ (ϕPoff)γ

β
e−β(Θ(j)+∆(j))

(
1− e−β(Π(j)−Θ(j)−∆(j))

)
1−
(
e−βΠ(j)

)i
1−e−βΠ(j)

(4.2)

Proof: The proof is induction on the periodic time instants indexed by i.

(Base Case): Consider i = 0; at the time instant t0, the temperature T (t0) is equal to the ambient

temperature (assumed to be zero). For showing the base case, we find the temperature at t1. Here,

it is to be noted that s(t) = ϕ for all t ∈ [t0, t1) as the processor will be executing the workload

with a constant speed in this interval. We know from the definition of t2i in Section 5.1 that

35

t1 = Θ(j) + ∆(j) and t0 = 0.

T (t1)

=

t1∫

t0

sγ(t)e−β(t1−t)dt + T (t0)e−β(t1−t0)

=

Θ(j)+∆(j)∫

0

ϕγe−β(Θ(j)+∆(j)−t)dt+ 0 · e−β(Θ(j)+∆(j))

= ϕγ

β

(
1− e−β(Θ(j)+∆(j))

)
+ 0 · e−β(Θ(j)+∆(j))

= ϕγ

β

(
1− e−β(Θ(j)+∆(j))

)
1−(e−βΠ(j)

)1

1−(e−βΠ(j)
)

+ (ϕPoff)γ

β e−β(Θ(j)+∆(j))
(

1− e−β(Π(j)−Θ(j)−∆(j))
)

1−(e−βΠ(j)
)0

1−(e−βΠ(j)
)

(4.3)

The last step follows by noting that 1− (e−βΠ(j)
)0 equals zero.

(Induction Hypothesis): Assume that Equation 4.2 is true for i = 1, 2,m. Therefore

T (t2m+1)

= ϕγ

β

(
1− e−βΘ(j)

)
1−(e−βΠ(j)

)m+1

1−e−βΠ(j)

+ (ϕPoff)γ

β e−β(Θ(j)+∆(j))
(

1− e−β(Π(j)−Θ(j)−∆(j))
) 1−

(
e−βΠ(j)

)m
1−e−βΠ(j)

(4.4)

(Induction): In order to find the temperature at t2(m+1)+1 using the Equation 4.1, we will use the

temperature at t2(m+1) as the base temperature. From the definition, we know t2m+1 = mΠ(j) +

Θ(j) + ∆(j), t2(m+1) = (m+ 1)Π(j) and t2(m+1)+1 = (m+ 1)Π(j) + Θ(j) + ∆(j). Temperature at

36

t2(m+1) can be obtained by the following equation:

T (t2(m+1))

=

t2(m+1)∫

t2m+1

(ϕPoff)γe−β(t2(m+1)−t)dt+ T (t2m+1)e−β(t2(m+1)−t2m+1)

=

(m+1)Π(j)∫

mΠ(j)+Θ(j)+∆(j)

(ϕ× Poff)γe−β(t2(m+1)−t)dt+ T (t2m+1)e−β(t2(m+1)−t2m+1)

= (ϕPoff)γ

β

(
1− e−β(Π(j)−Θ(j)−∆(j))

)

+ e−β(Π(j)−Θ(j)−∆(j)) ×
[

ϕγ

β

(
1− e−β(Θ(j)+∆(j))

)
.
1−(e−βΠ(j)

)m+1

1−e−βΠ(j)

+
(ϕPoff)γ

β
e−β(Θ(j)+∆(j))

(
1− e−β(Π(j)−Θ(j)−∆(j))

) 1−
(
e−βΠ(j)

)m
1−e−βΠ(j)

]

= e−β(Π(j)−Θ(j)−∆(j)) ϕγ

β

(
1− e−βΘ(j)

)
1−(e−βΠ(j)

)m+1

1−e−βΠ(j)

+ (ϕPoff)γ

β

(
1− e−β(Π(j)−Θ(j)−∆(j))

)
1−
(
e−βΠ(j)

)m+1

1−e−βΠ(j)

Therefore,

T (t2(m+1)+1)

=

t2(m+1)+1∫

t2(m+1)

sγ(t)e−β(t2(m+1)+1−t)dt+ T (t2(m+1))e
−β(t2(m+1)+1−t2(m+1))

=

(m+1)Π(j)+Θ(j)+∆(j)∫

(m+1)Π(j)

ϕγe−β((m+1)Π(j)+Θ(j)+∆(j)−t)dt+ T (t2(m+1))e
−β(Θ(j)+∆(j))

= ϕγ

β

(
1− e−βΘ(j)

)

+[e−β(Π(j)−Θ(j)−∆(j)) ϕγ

β

(
1− e−βΘ(j)

)
1−(e−βΠ(j)

)m+1

1−e−βΠ(j)

+ (ϕPoff)γ

β

(
1− e−β(Π(j)−Θ(j)−∆(j))

)
1−
(
e−βΠ(j)

)m+1

1−e−βΠ(j)]× e−β(Θ(j)+∆(j))

= ϕγ

β

(
1− e−βΘ(j)

)

+[e−β(Π(j)−Θ(j)−∆(j)) ϕγ

β

(
1− e−βΘ(j)

)
1−(e−βΠ(j)

)m+1

1−e−βΠ(j)

+ (ϕPoff)γ

β

(
1− e−β(Π(j)−Θ(j)−∆(j))

)
1−
(
e−βΠ(j)

)m+1

1−e−βΠ(j)]× e−β(Θ(j)+∆(j))

37

T (t2(m+1)+1)

= ϕγ

β

(
1− e−βΘ(j)

)
1−(e−βΠ(j)

)m+2

1−e−βΠ(j)

+ (ϕPoff)γ

β
e−β(Θ(j)+∆(j))

(
1− e−β(Π(j)−Θ(j)−∆(j))

)
1−
(
e−βΠ(j)

)m+1

1−e−βΠ(j)

which proves the theorem.

Corollary 1 The asymptotic temperature of a thermal-aware periodic resource with the parame-

ters ϕ > 0, Π(j) > 0, ∆(j) ≥ 0, and Θ(j) ≥ 0 is

T (Π(j),Θ(j))

= ϕγ

β
(1−e−β(Θ(j)+∆(j)))

(1−e−βΠ(j)
)

+ (ϕ×Poff)γ

β
× e−β(Θ(j)+∆(j)) × 1−e−β(Π(j)−Θ(j)−∆(j))

1−e−βΠ(j) .
(4.5)

Proof: The corollary follows directly from the Theorem 1. As the highest temperature will occur

at the end of the execution in every period-of-repetition and the Equation 4.2 is non-decreasing

over i, we can find the asymptotic peak-temperature by taking limi→∞ of Equation 1, resulting in

Equation 4.5; thus, the corollary is proved.

4.3 Multi-Modal Systems

From Equation 4.5, the free parameters, which may be conveniently tuned by a system designer

are period-of-repetition Π(j) and capacity Θ(j) for achieving a safe upper-bound on the tempera-

ture of a system. These two parameters contribute directly to the system temperature. The higher

ratio of the capacity to the period-of-repetition implies higher peak-temperature (this ratio is fre-

quently denoted as interface-bandwidth). To address peak-temperature, a system designer may

wish to opportunistically change interface-bandwidth based on instantaneous workload utilizing

some control-theoretic algorithms [28, 38]. We refer such instantaneous resource provisioning

using control algorithm as control-computing. This control-computing can be very useful for en-

suring predictable performance guarantee in case of unpredictable thermal computing. However,

38

control-computing for real-time systems are not straight-forward especially which maintains hard

timing constraints.

Hard real-time systems require strict accountability of the software workload, and process-

ing capacity of the systems. Typical control computing requires adaptability to different hard-

ware modes (e.g., defined may be using discrete interface-bandwidth) responding software mode

changes (e.g., changing task systems). This changes in hardware and software (i.e., multi-modal

systems) makes accountability, in turn schedulability analysis, extremely difficult. As a result, so

far developed control computing supports only soft real-time systems. In this thesis, we simplify

the multi-modal system schedulability using some practicable observations from control-systems

(discussed in Chapter 5). To address the accountability of software and hardware for hard real-

time guarantee, we observe that coupling each software mode to a hardware mode is very prac-

tical (efficient resource usages comes from software changes triggers hardware mode change,

and vice versa) and makes the schedulability analysis computationally efficient. Therefore, we

include these assumptions in our proposed mode-change protocol, developed schedulability anal-

ysis, and implemented algorithm for optimizing resource usages of multi-modal systems (suitable

for control computing).

The support of multi-modal hard-real-time systems enables thermal-aware control comput-

ing for hard-real-time systems, which is not in scope of this dissertation. Interested readers are

referred to papers [41, 42] for further exploration.

4.4 Appendix

4.4.1 Prior Work on Thermal-Aware Real-Time Systems

Chen et al.[26] explored proactive speed scheduling for periodic real-time tasks to meet both

timing and thermal constraints. They solved the problem of minimizing peak-temperature in

two different ways: 1. timing optimization approach, and 2. thermal-optimization approach.

The authors define converging initial temperature as the initial temperature of a CPU in a given

39

period where the temperature at end of the period also equals to the initial temperature. The

timing optimization approach aims to minimize converging initial temperature so that the system

can tolerate higher thermal constraints to complete more workload. The thermal-optimization

approach targets for the minimization of the response time during a period regardless of the

temperature at the beginning of the period. By experiments, the authors showed that both of

these approaches outperformed reactive scheduling in minimizing peak-temperature. The authors

proved that feasible speed with a converging initial temperature is a necessary condition of the

schedulability under thermal constraints. Therefore, the authors first determined a feasible speed

by analyzing workload that would keep the temperature unchanged; afterwards, they proved

that without having a feasible speed with converging initial temperature, it was impossible to

obtain a feasible speed which might keep the temperature below the user defined threshold for

temperature.

In another seminal work [25], Chen and Hung worked on temperature awareness in schedul-

ing upon uniprocessor or homogeneous multiprocessors (Single-Chip Multiprocessor, Multi-

Chip Multiprocessor) using dynamic voltage scaling where the cooling process was modeled

by Fourier’s law. For multiprocessor systems, the authors evaluated different approaches pro-

posed for partitioned scheduling, including the first-fit, the next-fit, the best-fit, and the worst-fit

algorithms (see Johnson’s thesis [45] for more about near optimal bin packing algorithms). The

authors determined an approximation ratio for the maximum temperature for both homogeneous

and heterogeneous multiprocessor. They showed in the paper that Largest Task First (LTF) strat-

egy performed better for minimizing peak-temperature and could have a 1.13 approximation upon

uniprocessor, 3.072 for homogeneous and 6.444 for multiprocessor. Using analytical analysis, the

authors concluded that LTF’s better performance came from the fact that it derived solutions with

more balanced load distribution. From the perspective of temperature minimization, this paper

has a shortcoming; this paper minimizes temperature as second objective. First objective was to

minimize the energy consumption.

Chantem et al. [24] made very interesting observations for maximizing workload under ther-

mal constraints. While working with proactive scheduling, the authors found a means for maxi-

40

mizing the work completed for processors with discrete speed levels and non-negligible transition

overheads. The authors determined a work conserving speed schedule such that the peak temper-

ature constraints were met and the total work completed was maximized using a dynamic voltage

scaling (DVS) control policy for processors with discrete speed levels. The authors also showed

that a schedule that would complete the maximum amount of work must be a periodic speed

schedule. For obtaining this result, the authors first proved that a schedule that completed the

maximum amount of work would allow the chip temperature to reach the highest temperature

at the end of the application of highest speed in the sequence. But the authors did not provide

any formula for quantifying highest temperature even with basic speed settings. This thesis fills

this gap, and develops a formula for calculating the upper bound using approximation ratio on

peak temperature that can be reached from given workload with the guarantees of meeting all

deadline constraints. The problem considered in this thesis is orthogonal to Chantems’s work

in a sense that Chantem works for maximizing workload under thermal constraints whereas this

thesis minimizes the peak-temperature for a given workload.

Wang et al. [79, 80, 81] studied schedulability analysis under the reactive setting. The authors

worked with a very simple idea: the processor runs at the highest speed when there is backlogged

workload and the temperature is below the threshold. Otherwise, following speed scaling actions

will be taken: Whenever the backlogged workload is empty, the processor idles; Whenever the

temperature hits threshold, the processing speed is reduced (through DVS or appropriate clock

throttling) to an equilibrium speed (denoted by SE) that keeps the temperature constant. Authors

provided formula for calculating equilibrium speed. In a very similar publication [79], the author

obtained a closed-form delay formula for the leaky bucket task arrival model and showed this sim-

ple reactive speed control decreased the response time of tasks compared with any constant-speed

scheme. The authors argued that these techniques can easily be implemented using the thermal

management facilities on many currently available microprocessors. Reactive speed scaling has

the inherent disadvantage of having the system running above the threshold for quite some time

at the vicinity of the transitions to equilibrium speed.

The previous work on proactive and reactive scheme assumed both simple task models and the

41

existence of “ideal” processor speeds which may not be available even for the recent top-of-the-

line microprocessors. In this chapter, we developed equation to calculate peak-temperature of a

proactive scheduler. We remove some ideal assumptions by working with only two discrete speed

modes and the more general sporadic task model. Furthermore, we account for the transition

overhead due to switching between modes.

42

CHAPTER 5: MODE CHANGE

PROTOCOL OF MMS

Previous research on real-time multi-mode systems has assumed that the system is executing

upon a dedicated processing platform. Recently researchers have started to address the prob-

lem of guaranteeing hard deadlines of temporally-isolated subsystems in multi-modal systems.

However, most of this recent research does not have full support for both resource-level mode

changes and application-level mode changes does not exist. The lack of support for both resource

and application mode changes severely limits the ability of the subsystem to adapt to dynamic

internal and external events. In this thesis, we address this drawback by providing a multi-modal

system for application executing in a temporally-isolated environment under both resource and

application-level mode changes.

In this chapter, we propose a mode-change protocol taking control systems into account.

A viable protocol for changing modes facilitates the development of real-time control systems.

Adaptive control systems possess the ability of maintaining stability even in dynamic and unpre-

dictable operating environments. Control systems switch between modes observing environmen-

tal variables (e.g., temperature). Each mode may consist of different tasks with different QoS

levels. In the case of a real-time task set, a system designer needs to ensure all timing constraints

are met for the selected task set during operation. For a hard real-time task set, extra attention is

required during the transition period as the system may get overloaded due to jobs from both old

mode and new mode tasks. Therefore, an effective mode change protocol with schedulability test

is essential in developing real-time control computing systems.

43

5.1 Proposed Mode-Change Protocol

To exploit continuously improved hardware capability, a real-time system may consist of multiple

real-time subsystems (also known as compositional systems). A subsystem may have may have

their own local scheduler different from the system (upper) level scheduler. To be schedulable,

all subsystems must specify their worst case requirements carefully so that top level scheduler

can determine budget for each subsystem. For this thesis, we exclusively focus on the subsystem-

level schedulability.

For each subsystem, we consider real-time application workload (software) and the process-

ing resource (hardware) to have multiple modes. We denote τ def
= {τ (i)|1 ≤ i ≤ q} as the

set of all software modes. The real-time workload of τ (i) is modeled by the sporadic tasks

model [51]. In order to ensure temporal isolation and also hard deadlines, we explicitly couple

each software mode τ (i) to a hardware mode Ω(i), and constitute a subsystem mode M (i), where

i ∈ {1, . . . , q}. The processing resource Ω(i) is modeled by the explicit-deadline periodic (EDP)

resource model [32]. Throughout this thesis, we assume that timing parameters are natural num-

bers. This assumption may not be restrictive as all timing parameters can be expressed in terms

of the number of clock ticks.

Figure 5.1: Components of a mode.

44

5.1.1 Modes

We consider each subsystem mode to be specified by a three-tuple
(
τ (i),Ω(i), N (i)

)
which respec-

tively characterizes the real-time workload generated by a sporadic task system, the minimum

processor execution guaranteed by an EDP resource, and the minimum mode duration in terms

of “number of resource periods” N (i). The interpretation of N (i) is that the subsystem remains

in mode M (i) for at least N (i) · Π(i) time units. If N (i) equals zero, then there could be a new

mode change request as soon as it enters in the new modes. Having N (i) equals to zero may be

problematic especially for control systems that looks for stability while ensuring hard real-time

constraints (N (i) equals zero will allow a control system to quickly change modes in a short pe-

riod of time where each new mode may release their own workload, but the allocated hardware

resource in a mode may not get enough time to handle this cumulative workload in time). In ad-

dition, changing hardware modes of a processing resource using DVFS may not be instantaneous

which can be easily model based on the requirements using positive N (i).

5.2 Mode-Change Request (MCR) Model

At runtime, the subsystem switches between modes during a sequence mcr0, mcr1, mcr2, . . .

of mode-change requests. The k’th mode-change request mcrk (for k > 0) is characterized by a

three-tuple (M (i),M (j), tk) where tk represents the transition time,M (i) is the old mode executing

prior to tk, andM (j) is the new mode executing after tk (whereM (i) 6= M (j) and i, j ∈ {1, . . . q}).
We assume that if i < j, then mcri occurs prior to mcrj (i.e., ti ≤ tj); that is, the mode-

change requests are indexed in ascending-time order. Mode-change request mcr0
def
= (M (0), ·, 0)

represents transition from the null-mode M (0) to any mode in {M (1), . . . ,M (q)} at subsystem-

start time (assumed to be zero). After mcrk = (M (i),M (j), tk) has been issued at time tk, there

may be a transition period during which jobs generated by M (i) have not completed and M (j) has

not yet begun to generate jobs.

In order to facilitate quick changes of modes, the system designer may allow a transition

45

Figure 5.2: Different types of tasks.

period, called the offset. For any M (i),M (j) ∈ {M (1), . . . ,M (q)}, we denote the length of the

transition period (called the offset) by δ(ij). (Note, if there is no transition period, we set δ(ij) = 0.)

During the transition period after mcrk, only (non-aborted) jobs of τ (i) are permitted to execute.

At and after time tk + δ(ij), the task system τ (j) may generate and execute jobs along with any

remaining execution of jobs from τ (i). While some jobs from M (i) may continue to execute in

the transition period after tk, the subsystem designer may choose to abort some jobs. We denote

by α(ij)(⊆ τ (i)) the set of tasks of τ (i) which abort non-completed jobs at the transition time (e.g.,

tk) for any mode change from M (i) to M (j). The subsystem designer may want some tasks that

are common to both mode M (i) and M (j) to be unaffected by the mode change request mcrk.

We denote these unchanged tasks by τ (ij)(⊆ τ (i) ∩ τ (j)). At last, there may be some tasks that

are common in both modes, but have some properties changed, we treat these tasks as finished

tasks in the old mode. During the transition period after mcrk, the EDP resource may also change

execution behavior. We denote the resource parameters for the transition period between M (i)

and M (j) by Ω(ij) def
= (Π(ij),Θ(ij),∆(ij)). We assume that the offset δ(ij) is some multiple of Π(ij).

Figure 5.3 illustrates a possible resource execution pattern between successive mode changes.

46

Given the above definitions, we may observe four phases with respect to mode-change request

mcrk = (M (i),M (j), tk) (and the previous request mcrk−1 = (M (h),M (i), tk−1)):

1. [tk−1 + δ(hi), tk): jobs of τ (i) are executed upon Ω(i);

2. [tk, tk + δ(ij)): non-aborted jobs (τ (i) \ α(ij)) with remaining execution at tk execute upon

Ω(ij);

3. [tk + δ(ij), tk+1): Incompleted non-aborted jobs (τ (i) \ α(ij)) at tk + δ(ij) and jobs of τ (j)

execute upon Ω(j);

4. [tk−1 + δ(hi), tk+1): unchanged tasks (τ (ij)) act independent of mode change request.

The above task classifications follow the taxonomy found in the real-time mode-change survey

by Real and Crespo [64].

In a general subsystem, the interval of separation between successive mode-change requests

may be determined by upper and lower bounds on the amount of time that a subsystem may

execute in a given mode (e.g., the multi-mode abstraction proposed by Phan et al. [63]). In

this thesis, we restrict the mode-change requests and transition intervals to occur only at period

boundaries in the EDP model and drop the specification of an upper bound on the separation of

mode-change requests. That is, for any mode-change request mcrk = (M (i),M (j), tk), δ(ij) must

be a multiple of Π(ij). Furthermore, for any two successive mode-change requests mcrk−1 =

(M (h),M (i), tk−1) and mcrk = (M (i),M (j), tk), we require that

tk = tk−1 + δ(hi) + aΠ(i) (5.1)

for some a ∈ N+ where a ≥ N (i). The assumption that mode-change request occur at pe-

riod boundaries is precisely valid in control systems such as energy-aware or thermal-aware

systems where there might be DPM techniques that inactivate the processing resource in peri-

odic intervals. For control systems, the mode change may occur precisely at the periodic sam-

pling/actuation boundaries (Hettiarachchi et al. [42]). We also assume that a non-aborted job may

span no more than one mode-change request; i.e.,

47

M (h) M (i) M (j)

Θ(h) Θ(h)

tk−1 tk = tk−1 + δ(hi) + χΠ(i)

δ(hi) δ(ij)

tk−1 − 2Π(h) tk + Π(ij)

Θ(hi) Θ(hi) Θ(ij) Θ(j)

tk−1 + Π(hi)

Θ(ij)

t
tk−1 − Π(h)

Figure 5.3: Execution pattern of a multi-modal real-time subsystem. The shaded areas
indicate times during which tasks of each mode execute on the processor.

tk+1 − tk ≥ max(d(h)
max, d

(hi)
max). (5.2)

where d(h)
max

def
= max

τ
(h)
` ∈τ (h)\α(hi)

{
d

(h)
`

}
represents the maximum (non-aborted) job deadline from

mode M (h) to M (i) and d
(hi)
max

def
= max

τ
(h)
` ∈τ (hi)

{
d

(hi)
`

}
represents the maximum (unchanged) job

deadline from M (h) to M (i). To the best of our knowledge, all known real-time mode-change

protocols implicitly or explicitly require this constraint.

Although unfinished tasks would not span more than one mode change request, these tasks

along with aborted tasks can leave transient effect in case of successive mode-change requests. If

there are no cascading mode-changes and transient effect from carry-in, then the schedulability

analysis becomes easier (identical to unimodal systems) and converges very quickly. We are

interested in the worst case effect rather than the better one. Given the possibility of cascading

mode-change, the worst case is going to be how many times mode-changes need to be evaluated

before this transient effect disappears. We utilize an iterative (instead of recursive exploration of

reachability graph [63]) approach and develop a pseudo-polynomial asymptotic upper bound on

multi-modal schedulability analysis in the next chapter.

48

CHAPTER 6: EDF SCHEDULABILITY

OF MMS

EDF schedulability analysis requires quantification of the maximum workload (demand) in an

interval that needs to be completed for checking possible deadline misses. In case of multi-

modal systems, a task set that generates workload cannot be assumed fixed for any interval due to

arbitrary mode switching. Besides, transient workload that can be carried forward from the pre-

vious mode (also known as carry-in) contributes to the instantaneous demand at the new mode.

The main difficulty with quantifying carry-in is due to its dependency on application workload

and processing capacity (supply) of all previously executed modes. Therefore, the method for

determining carry-in is complex and often requires invoking itself as a recursive subroutine.

Phan et al. [63] modeled the problem as finite state automaton, and constructed a reachability

graph for determining the minimum resource requirements. An obvious disadvantage of this

method is time-complexity which is exponential. Stoimenov et al. [74] also worked with EDF-

schedulability analysis for a very simplistic model which may not be suitable for control systems.

In this chapter, we develop a schedulability analysis technique for multi-modal real-time systems

where modes and associated mode changing protocol are chosen taking control systems into ac-

count.

We first derive a sufficient schedulability analysis for a setting where the sequence of mode

changes is a priori known and each mode has its workload scheduled by the earliest-deadline-first

(EDF) scheduling algorithm. We refer this setting as concrete mode-change request setting. While

concrete sequences of mode changes are unlikely to be present in most multi-mode and control

systems, schedulability analysis developed for such sequences can be extended (as discussed in

Section 6.2) to the more practical scenario of non-concrete sequences of mode change requests

(i.e., sequences in which the mode-changes requests are not a priori known).

49

6.1 Concrete Mode Changes

In this section, we consider the following problem:

Concrete-MM-Sched Problem: Given modesM (1), . . . ,M (q), resources Ω(ij), off-

set δ(ij), unchanged tasks τ (ij), and aborted tasks α(ij) for all i, j ∈ {1, . . . , q} (i 6= j),

and concrete sequence of mode-change request mcr0,mcr1,mcr2, . . . that satisfies

Equations 5.1 and 5.2, determine whether all jobs (under all legal job arrival se-

quence) are EDF-schedulable (i.e., EDF always meets each job’s deadline).

6.1.1 Definitions

A major challenge for schedulability analysis of multi-mode subsystems (over uni-mode sys-

tems) is dealing with the execution of non-aborted jobs from the old mode while a new mode

is executing. If all tasks abort jobs at the mode-change request, then the analysis would be

identical to traditional uni-mode schedulability analysis. However, aborting jobs are not always

appropriate, especially if aborting jobs may leave the subsystem in an unstable state. Thus, to

be able to accurately determine the schedulability of multi-mode subsystems, we must precisely

quantify the workload and demand that may carry-in from the old mode to the new mode for a

mode-change request mcrk = (M (i),M (j), tk). The following definitions with respect to mcrk

are useful in quantifying this workload. The definitions are with respect to a concrete sequence

of mode-change requests mcr0, mcr1, . . ., mcrk−1, mcrk, We will make use of an indica-

tor function µ≥0(x) which is zero if x < 0 and is one otherwise; we will also use the notation

(x)+
def
= max(0, x).

Definition 5 (Carry-In Execution for mcrk) The carry-in execution for mode-change request

mcrk is the maximum remaining execution of non-aborted jobs from mode M (i) for tasks τ (i) \
{τ (ij) ∪ α(ij)} at time tk + δ(ij) that arrive prior to tk and maximum remaining execution of

unchanged tasks (i.e., τ (ij)) that have arrival before tk + δ(ij). We denote this value by ci(mcrk).

50

Definition 6 (Mode-Change DBF for mcrk) For mcrk−1 = (M (h),M (i), tk−1) and mcrk =

(M (i),M (j), tk), and x, φ ∈ R≥0, the mode-change demand function for any mcrk is the maxi-

mum total execution demand of jobs of τ (i) in the interval [tk − x, tk + φ] (and any carry-in jobs

when tk − x corresponds to the end of a transition for mcrk−1 – i.e., tk − x = tk−1 + δ(hi)). For

a task τ (i)
` ∈ τ (i), we denote its contribution to the total demand by mcdbf(mcrk, τ

(i)
` , x, φ). The

total demand of all jobs for the mode change is denoted by mcdbf(mcrk, x, φ).

In other words, to be included in the demand, the jobs of finished or aborted tasks must arrive

in the interval [tk − x, tk) and have deadline in the interval [tk − x, tk + φ]. For unchanged tasks

of τ (ij), the mode-change demand function includes jobs that have an arrival and deadline in the

interval [tk − x, tk + φ] (i.e., we permit unchanged tasks that arrive after tk to be included in the

execution demand). The mode-change demand also includes the entire execution requirements of

all non-aborted jobs generated in [tk−x, tk) that have deadlines prior to tk+φ, if τ (i)
` ∈ τ (i)\α(ij);

otherwise, the demand includes the execution of non-aborted jobs that arrive and have deadline

in [tk − x, tk] and only the possible completed portion of aborted jobs that arrive in [tk − x, tk)
and have deadlines in (tk, tk+φ], if τ (i)

` ∈ α(ij) (see Figure 6.6). If x equals tk− tk−1−δ(hi), then

the total demand also includes the carry-in execution for mcrk−1 {i.e., ci(mcrk−1)}. The demand

mcdbf(mcrk, x, φ) may be computed by

∑
τ

(i)
` ∈τ (i) mcdbf(mcrk, τ

(i)
` , x, φ) + µ≥0(x− (tk − tk−1 − δ(hi))) · ci(mcrk−1). (6.1)

Definition 7 (Carry-In DBF) The carry-in demand-bound function for mode-change request

mcrk = (M (i),M (j), tk) and φ ∈ R≥0 is the maximum remaining execution of jobs of tasks

τ (i) \ α(ij) that arrive prior to tk (or prior to tk + δ(ij) for τ (ij) tasks) and have deadline in the

interval [tk, tk + φ] for any mcrk = (M (i),M (j), tk). We denote this quantity by cidbf(mcrk, φ).

In the next three definitions, we define the minimum resource-execution supply function for

three different scenarios: 1) before an MCR; 2) during the transition; and 3) after the MCR

transition.

51

Definition 8 (Pre-Mode-Change SBF) The mode-change supply-bound function, prior to any

mode-change request mcrk = (M (i),M (j), tk), is the minimum execution guaranteed by Ω(i)

over the interval [tk − x, tk]. We denote this service by βiprior(x).

Definition 9 (Transition-Mode-Change SBF) The mode-change supply-bound function, dur-

ing the transition period mode-change request mcrk, is the minimum execution guaranteed by

Ω(ij) and Ω(j) over the interval [tk, tk + φ]. We denote this service by βi,jtrans(φ).

Definition 10 (Post-Mode-Change SBF) The mode supply-bound function, following any mode-

change request mcrk = (M (i),M (j), tk), is the minimum execution guaranteed by Ω(ij) to carry-

in jobs of M (i) and by Ω(j) to M (j) (and any carry-in jobs) over the interval [tk + δ(ij) − x, tk +

δ(ij) + y] (for 0 ≤ x ≤ δ(ij)). We denote this service by βi,jpost(x, y).

6.1.2 Deriving MCR Service-Bound Function

In this subsection, we derive lower bounds on the supply functions of Definitions 8, 9, and 10.

We start with a lower bound for βiprior(x).

Lemma 1 For mcrk = (M (i),M (j), tk) and x ≥ 0,

βiprior(x) ≥ aΘ(i) + min
(

Θ(i),
(
x−

(
(a+ 1)Π(i) −Θ(i)

))
+

)
(6.2)

where a def
=
⌊

x
Π(i)

⌋
.

Proof: By Equation 5.1, tk will coincide with the end of a resource period. The minimum execu-

tion over an interval beginning at tk and extending to the left for x time units when the execution

is provided at the beginning of every resource period. Figure 6.1 depicts this scenario. Therefore,

for any interval of length x, at least a def
=
⌊

x
Π(i)

⌋
capacities for a full resource periods follows

min
(

Θ(i),
(
x−

(
(a+ 1)Π(i) −Θ(i)

))
+

)
(forward diagonally shaded region in Figure 6.1).

52

x
tk

t

M (i)

tk − Π(i)tk − 2Π(i)tk − 3Π(i)

Θ(i)

Figure 6.1: Minimum supply in x before mcrk.

The following corollary may be immediately obtained by taking a linear lower-bound of right-

hand side of Equation 6.2. (A similar lower bound is due to Shin and Lee [70].)

Corollary 2 For mcrk = (M (i),M (j), tk) and x ≥ 0,

βiprior(x) ≥ x · Θ(i)

Π(i)
− Θ(i)

Π(i)

(
Π(i) −Θ(i)

)
. (6.3)

The next two lemmas give bounds for the transition and post mode-change supply-bound

functions. The proofs of these lemmas are similar to Lemma 1.

Lemma 2 For mcrk = (M (i),M (j), tk), y ≥ 0, and x : 0 ≤ x ≤ δ(ij),

βi,jpost(x, y) ≥ aΘ(ij) + min
(

Θ(ij),
(
x−

(
(a+ 1)Π(ij) −Θ(ij)

))
+

)

+ fΘ(j) + min
(

Θ(j),
(
y −

(
fΠ(j) + ∆(j) −Θ(j)

))
+

) (6.4)

where a def
=
⌊

x
Π(ij)

⌋
and f def

=
⌊

y
Π(j)

⌋
.

Proof: We will quantify the minimum supply for [tk + δ(ij) − x, tk + δ(ij) + y] by determining

the minimum supply for the intervals [tk + δ(ij) − x, tk + δ(ij)] and [tk + δ(ij), tk + δ(ij) + y]

separately. First, we consider [tk + δ(ij) − x, tk + δ(ij)]. By Equation 5.1, tk will coincides

with the end of a resource period; furthermore, δ(ij) is a multiple of Π(ij). Thus, tk + δ(ij) also

coincides with the end of a resource period. The minimum execution over an interval beginning

at tk +δ and extending to the left for x time units when the execution is provided at the beginning

53

of every resource period. Figure 6.1 depicts this scenario for Ω(i); the same scenario holds for

Ω(ij). Therefore, for any interval of length x, at least a def
=
⌊

x
Π(ij)

⌋
capacities for a full resource

periods follows min
(

Θ(ij),
(
x−

(
(a+ 1)Π(ij) −Θ(ij)

))
+

)
(forward diagonally shaded region

in Figure 6.1).

Now consider the interval [tk + δ(ij), tk + δ(ij) + y]. The minimum supply for an interval that

starts from tk + δ(ij) will occur if the resource is available as late as possible. The full resource

capacity must be supplied within ∆j after the start of any period-of-repetition. Figure 6.2 is

showing the sequence that produce minimum supply for an interval of length x where ts
def
=

tk + δij . Therefore, for any interval length of x, at least f def
=
⌊

y
Π(j)

⌋
capacities for f full period-

of-repetitions are followed by min
(

Θ(j),
(
y −

(
fΠ(j) + ∆(j) −Θ(j)

))
+

)
.

x
ts

t

M (j)

ts + 3Π(j)ts + 2Π(j)

Θ(j)

∆(j)

ts + Π(j)

Figure 6.2: The minimum supply during transition.

Corollary 3 For mcrk = (M (i),M (j), tk) and x ≥ 0,

βi,jpost(x, y) ≥ x · Θ(ij)

Π(ij) − Θ(ij)

Π(ij)

(
Π(ij) −Θ(ij)

)

+y · Θ(i)

Π(i) − Θ(i)

Π(i)

(
∆(i) −Θ(i)

)
.

(6.5)

Lemma 3 For mcrk = (M (i),M (j), tk) and φ ≥ 0,

βi,jtrans(φ) ≥ bΘ(ij) + min
(

Θ(ij),
(
min(φ, δ(ij))−

(
bΠ(ij) + ∆(ij) −Θ(ij)

))
+

)

+dΘ(j) + min
(

Θ(j),
(
(φ− δ(ij))+ −

(
dΠ(j) + ∆(j) −Θ(j)

))
+

) (6.6)

54

where b def
=
⌊

min(φ,δ(ij))

Π(ij)

⌋
and d def

=
⌊

(φ−δ(ij))+

Π(j)

⌋
.

Proof: We omit the proof for this Lemma as it is nearly identical to Lemma 2.

6.1.3 Deriving the Mode-Change DBF

In this section, we derive upper bounds on the demand function of Definition 6 for the different

types of tasks present for mode change mcrk = (M (i),M (j), tk) (i.e., finished, unchanged, and

aborted tasks). We first derive an upper bound for the finished tasks (tasks that will not be

continued in next mode, but the last job is allowed to finish its execution). The bounds obtained

in this subsection are similar to general results of Phan et al. [63]; however, our results are more

specific to the sporadic task and periodic resource models permitting a more precise analysis of

carry-in in later subsections. Furthermore, Phan et al. [63] do not consider aborted jobs in their

analysis.

Lemma 4 For mcrk = (M (i),M (j), tk), τ (i)
` ∈ τ (i)\{τ (ij)∪α(ij)}, and x, φ ≥ 0, if d(i)

` > φ, then

mcdbf
(

mcrk, τ
(i)
` , x, φ

)
is maximized by job arrival sequence where the last job of τ (i)

` arrives

at tk + φ− d(i)
` and previous jobs arrive as late as legally allowed.

Proof: Let J be the set of jobs that arrive according to the sequence described in the lemma

with arrivals in [tk − x, tk) and deadlines in [tk − x, tk + φ]. Assume a different sequence of

jobs J ′ of τ (i) other than J maximizes the demand over the interval. We will show by induction

over the jobs of J ′ that we may transform J ′ into J without decreasing the total demand. We

denote the sequence of jobs (in decreasing order of arrival) as j0, j1, . . . for J and j′0, j
′
1, . . . for

J ′. Let j′k denote the latest arriving job of sequence J ′ that does have the same arrival-time as

jk in J (i.e, ji and j′i arrive at identical times for i = 0, 1, . . . , k − 1). As jk arrives as late as

legally possible, it must be that j′k has an earlier arrival time than jk. Since jk has both deadline

and arrival in [tk − x, tk + φ], moving j′k’s arrival time to correspond to jk will ensure that j′k is

still in the interval and does not violate the minimum interval constraint for τ (i)
` . Let’s call this

55

new sequence with j′k moved to the corresponding jk arrival as J ′′. It is clear that the demand of

J ′′ does not decrease when compared to J ′. By repeated application of this transformation, we

may change J ′ to J without ever decreasing the demand which implies that J also maximizes

demand. Figure 6.3 depicts the sequence corresponding to J .

φx
tktk − x

λ
(i)

l

p
(i)

l
− d

(i)

l

tk − p
(i)

l
− λ

(i)

l

t

M (i)

Figure 6.3: Jobs (d(i)
l > φ) that maximizes mcdbf.

The next lemma obtains the maximum requests from finished tasks with d(i)
` ≤ φ which can

be shown via a similar technique to Lemma 4. Figure 6.4 is depicting the job arrival sequence

which would maximizes mode change demand for a given x and φ.

Lemma 5 For mcrk = (M (i),M (j), tk), τ (i)
` ∈ τ (i) \ {τ (ij) ∪ α(ij)}, and x, φ ≥ 0, if d(i)

` ≤ φ,

then mcdbf
(

mcrk, τ
(i)
` , x, φ

)
is maximized by job arrival sequence where the last job of τ (i)

`

generated in [tk − x, tk) occurs an arbitrarily small ε > 0 prior to tk and previous jobs arrive as

late as legally allowed.

φx
tktk − x

p
(i)

l
− d

(i)

l

tk − p
(i)

l

t

Mi

tk − p
(i)

l
+ d

(i)

l
tk + d

(i)

l

Mj

Figure 6.4: Jobs (d(i)
l ≤ φ) that maximizes mcdbf..

The detailed proof for this lemma is identical to that of Lemma 4; therefore, we provide only

a sketch as shown in figure 6.5. Assume a job sequence J ′ maximizes mode change demand

56

which is not same as the one (let say J) described in Lemma 5. Figure 6.5 shows how J ′ can be

transformed to J (as in Lemma 4) to prove this Lemma using induction.

J
′

J

j
′
k

jk

time
tk

M (i) M (j)
≥ p

(i)
�

Figure 6.5: Worst case arrival for finished tasks (d(i)
` ≤ φ). Downward arrow denotes

deadline for each job, while rectangular region depicts execution require-
ments.

Lemmas 4 and 5 permit the calculation of the mode change carry-in demand for the non-

aborted jobs using the following corollary. The corollary follows by simply counting the number

of jobs in the sequences described by Lemmas 4 and 5.

Corollary 4 For mcrk = (M (i),M (j), tk), τ (i)
` ∈ τ (i) \ {τ (ij) ∪ α(ij)}, and x, φ ≥ 0,

mcdbf
(

mcrk, τ
(i)
` , x, φ

)
≤
⌊

(x−λ(i)
`)+

p
(i)
`

⌋
· e(i)

` + µ≥0

(
x− λ(i)

`

)
· e(i)

` (6.7)

where λ(i)
`

def
=
(
d

(i)
` − φ

)
+

.

Proof: For the arrival sequence of Lemmas 4 and 5, observe that tk − λ(i)
` corresponds to arrival

of the last job of τ (i)
` in [tk−x, tk] that has deadline at or before tk+φ. If x−λ(i)

` < 0, then no job

of τ (i)
` may arrive and have deadline in the interval [tk − x, tk + φ]. Note that the right-hand-side

of Equation 6.7 correctly evaluates to zero for this case.

If x − λ
(i)
` ≥ 0, then we include the execution of the last job arriving at tk − λ

(i)
` (i.e., the

second term of the right-hand-side of Equation 6.7) and the execution of jobs arriving and having

deadline in the interval [tk − x, tk − λ(i)
`] (i.e., the first term of the right-hand-side of Equation

6.7)

We now describe the calculation of the demand for aborted jobs. The following lemma quan-

tifies the highest demand from aborted jobs for a mode change request.

57

φx
tk

p
(i)

l
− d

(i)

l

tk − x

t

M (i)

tk − x + p(i) + d
(i)

l

tk − x+

⌊
x

p
(i)

l

⌋
p
(i)
l

Figure 6.6: Aborted jobs maximizing mcdbf.

Lemma 6 For mcrk = (M (i),M (j), tk), τ (i)
` ∈ α(ij), and x, φ ≥ 0,

mcdbf
(

mcrk, τ
(i)
` , x, φ

)

≤
⌊

x

p
(i)
`

⌋
· e(i)

` + µ≥0

(
(x−

⌊
x

p
(i)
`

⌋
p

(i)
`) + φ− d(i)

`

)

·min

(
x−

⌊
x

p
(i)
`

⌋
p

(i)
` , e

(i)
`

)
.

(6.8)

Proof: The mcdbf function considers jobs that have both arrival and deadline in the given

interval. A job from α(ij) aborts immediately at the time of mode change request. For any

interval of length x, at most
⌊

x

p
(i)
`

⌋
jobs have their period completely contained in the x-length

interval (i.e., if a job arrives at t and both t and t+p(i)
` are in the x-length interval, it is completely-

contained). There are at most
⌈

x

p
(i)
`

⌉
jobs that can arrive in such an interval (the last one may be

only partially contained). Equation 6.8 includes the execution for the completely-contained jobs

in the first term.

The last partially-contained job in the interval [tk − x, tk] can arrive at the earliest at tk − x+⌊
x

p
(i)
`

⌋
p

(i)
` . If x−

⌊
x

p
(i)
`

⌋
+φ− d(i)

` is positive, the last job (
⌈

x

p
(i)
`

⌉
-th) can get partial execution of

at most min

(
x−

⌊
x

p
(i)
`

⌋
p

(i)
` , e

(i)
`

)
based on the interval length. Equation 6.8 accounts for

⌊
x

p
(i)
`

⌋

complete jobs along with the last (partially-executed) job which proves our lemma. (A similar

observation is made by Pedro and Burns [60] in the context of application-only mode changes.)

Figure 6.6 illustrates the sequence described in the proof.

Now we consider the last set of tasks τ (ij) which remains unaffected by the mode change

request from M (i) to M (j). As there are no constraints on new job generation immediately after

58

mode change, the mcdbf function for τ (ij) represents the execution of the maximum number of

jobs of τ (ij) that can arrive and have deadline within the interval [tk − x, tk + φ]. Note that this is

the same as the dbf (according to Definition 3) and is summarized in the following lemma.

Lemma 7 For mcrk = (M (i),M (j), tk), τ (i)
` ∈ τ (ij), and x, φ ≥ 0,

mcdbf
(

mcrk, τ
(i)
` , x, φ

)
= dbf(τ (i)

` , x+ φ). (6.9)

6.1.4 Deriving the Carry-In Demand Function

We are now prepared to obtain an upper bound on the carry-in demand function, as described in

the following lemma.

Lemma 8 Consider φ ≥ 0 and successive mode change requests mcr0,mcr1, . . . ,mcrk−1,mcrk

where mcrk−1 =
(
M (h), M (i), tk−1) and mcrk = (M (i),M (j), tk). If there are no deadline misses

prior to tk−1, we may obtain an upper-bound on the carry-in demand for mode-change request

mcrk,

cidbf(mcrk, φ) ≤ sup
0≤x≤tk−tk−1−δ(hi)

∑
τ

(i)
` ∈τ (i)

mcdbf
(

mcrk, τ
(i)
` , x, φ

)

+ µ≥0

(
x− (tk − tk−1 − δ(hi))

)
· ci(mcrk−1)

− βiprior(x)

(6.10)

such that ci(mcrk−1) is upper bounded by the maximum of

∑
τ

(hi)
` ∈τ (hi)

e
(hi)
` +

∑
τ

(hi)
` ∈τ (hi)

⌈(
δ(hi)−(p

(hi)
` −d(hi)

`)
)

p
(hi)
`

⌉
e

(hi)
`

+
∑

τ
(h)
` ∈ϑ(hi)

e
(h)
` − βh,itrans(δ

(hi))

+

(6.11)

59

and

cidbf
(

mcrk−1,max(δ(hi) + d
(hi)
max, d

(h)
max)

)

− ∑
τ

(hi)
` ∈τ (hi)

dbf
(
τ

(hi)
` ,max(δ(hi) + d

(hi)
max, d

(h)
max)− δ(hi) − p(hi)

`

)

−βh,itrans(δ
(hi))

+

. (6.12)

Proof:

Let t be the latest of time after tk−1 + δ(hi) and the last time prior to tk during which the

processor is executing jobs with deadline later than tk+φ (i.e., the processor is not busy executing

jobs with deadline earlier than tk +φ). Let x be tk− t. Thus, if t equals tk−1 + δ(hi) (i.e., x equals

tk − tk−1 − δ(hi)), clearly, the amount of carry-in from M (i) to M (j) is at most the carry-in

from mode M (h) (i.e., ci(mcrk−1)), plus the total demand generated minus the service received

over [tk−1 + δ(hi), tk + φ]. If t is later than tk−1 + δ(hi) (i.e., x < tk − tk−1 − δ(hi)), then the

carry-in from M (i) to M (j) is at most the total demand generated minus the service received over

[tk−1 + δ(hi), tk + φ]. The upper bound for these two cases is quantified by Equation 6.10.

To see that Equation 6.11 is an upper bound on the carry-in from mode M (h) to M (i), observe

that if there are no deadline misses prior to mcrk−1, then all jobs with deadlines prior to tk−1

have completed execution. Thus, only (non-aborted) jobs of τ (h) with deadline after tk−1 can

contribute to the carry-in to M (i). (Note the constraint of Equation 5.2 prevents carry-in jobs

from previous mode changes). For tasks of τ (hi), the contribution of these tasks to ci(mcrk−1) is

maximized if each job of τ (hi)
` ∈ τ (hi) arrives just prior to tk−1 + δ(hi). This accounts for the first

summation in Equation 6.11. For all tasks τ (h)
` ∈ ϑ(hi), there is at most one job of τ (h)

` active at

time tk−1. These jobs may contribute to the execution of ci(mcrk−1) only if the total execution

of ϑ(hi) and jobs of τ (hi) that may interfere over [tk−1, tk−1 + δ(hi)) (given that the last job of τ (hi)
`

arrives just prior to tk−1 + δ(hi)) is greater than the total supply over the transition period. This

accounts for the term inside the large ()+ in Equation 6.11.

To see that Equation 6.12 is also an upper bound on the carry-in from mode M (h) to M (i),

observe that each job carried-in (according to Definition 14) from M (h) to M (i) must have a

60

deadline by tk−1 + max(δ(hi) + d
(hi)
max, d

(h)
max); therefore, cidbf (mcrk−1, max(δ(hi) + d

(hi)
max, d

(h)
max))

is clearly an upper bound on the execution demand of jobs of τ (h) \ α(hi) over the interval

[tk−1, tk−1 + δ(hi)]. Unfortunately, this expression may overestimate the contribution from un-

changed tasks τ (hi) since it could include jobs that arrive after tk−1 + δ(hi). Therefore, we may

need to subtract some execution from this expression. According to Equation 6.9 of Lemma 7,

the execution contribution of an unchanged task τ (hi)
` to cidbf(mcrk−1,max(δ(hi) +d

(hi)
max, d

(h)
max))

is upper-bounded by mcdbf(mcrk−1, τ
(hi)
` , x, max(δ(hi) + d

(hi)
max, d

(h)
max)) for some x > 0 which is

equal to dbf(τ (hi)
` , x + max(δ(hi) + d

(hi)
max, d

(h)
max)). Baruah et al. [8] show that the sequence that

corresponds to this demand has a job of τ (hi)
` arriving at tk−1 − x and subsequent jobs as soon as

legally possible. This sequence also corresponds to the maximum number of jobs that can arrive

over [tk−1 − x, tk−1 + δ(hi)). In this sequence, the latest time that first job after tk−1 + δ(hi) may

arrive is tk−1 + δ(hi) + p
(hi)
` . Thus, subtracting the maximum execution of jobs of τ (hi)

` arriving

and having deadline in [tk−1 +δ(hi) +p
(hi)
` , tk−1 +max(δ(hi) +d

(hi)
max, d

(h)
max)] gives us a more precise

upper bound on the total execution for τ (hi)
` . Finally, we subtract the minimum execution received

over [tk−1, tk−1 + δ(hi)] to obtain the bound expressed in Equation 6.12.

6.1.5 A Sufficient Schedulability Condition

For the schedulability analysis, we need to make sure the overall demand over any interval is

always less than corresponding supply (i.e., βi,jpost(x, y), βi,jtrans(φ), and βiprior(x)). We will estab-

lish Theorem 2 which will check the schedulability conditions for a sequence of concrete mode

change requests.

61

Theorem 2 For a concrete sequence of mode-change requests mcr0,mcr1, . . ., the subsystem

is EDF-schedulable, if, for all k = 0, 1, . . ., the following five conditions hold for mcrk =

(M (i),M (j), tk)

∑
τ

(j)
` ∈τ (j)

dbf(τ (j)
` , t) ≤ sbf(Ω(j), t), ∀t : 0 < t ≤ tk+1 − tk − δ(ij); (6.13a)

cidbf(mcrk, φ) ≤ βi,jtrans(φ), ∀φ : 0 < φ ≤ δ(ij); (6.13b)

cidbf(mcrk, δ(ij) + t) +
∑

τ
(j)
` ∈τ (j)\τ (ij)

dbf(τ (j)
` , t)− βi,jtrans(δ(ij)) (6.13c)

≤ βi,jpost(0, t), ∀t : 0 < t ≤ tk+1 − tk − δ(ij);

∑
τ

(j)
` ∈τ (j)\τ (ij)

dbf(τ (j)
` , t) +

∑
τ

(ij)
` ∈τ (ij)

dbf(τ (ij)
` , t+ s) (6.13d)

≤ βi,jpost(s, t), ∀s, t : 0 < t ≤ tk+1 − tk − δ(ij), 0 < s ≤ δ(ij);

∑
τ

(ij)
` ∈τ (ij)

dbf(τ (ij)
` , t) ≤ sbf(Ω(ij), t), ∀t : 0 < t < δ(ij); (6.13e)

Proof: This theorem is proved by contrapositive. Assume the subsystem is not EDF-schedulable

and misses its first deadline after the k-th mode change request mcrk = (M (i),M (j), tk). This

deadline miss can occur either during the transition period ([tk, tk + δ(ij)]) or during the operation

tk

time
M (j)M (i)

a

16b d
s φ

e

tk + δ(ij)

c
φ

φ

xx
x

x

Figure 6.7: Arrows depict possible distributions of [tb, tf]

62

of M (j) after the transition. Suppose that tf < tk+1 denotes the earliest instant at which the EDF

schedule misses the deadline. Without loss of generality, we further assume that tb denotes the

latest time-instant before tf the subsystem is executing jobs with deadline greater than tf or is idle

(i.e., there are no backlogged jobs awaiting execution). During the interval [tb, tf], the subsystem

executes jobs arriving at or after tb with deadline before or at tf . These are precisely the jobs

whose execution requirements contribute to demand over [tb, tf]. Let say η(tb, tf) and β(tb, tf) is

denoting the maximum demand and the minimum supply (respectively) over the interval [tb, tf].

As a deadline miss occurs at tf , it must be the case that η(tb, tf) > β(tb, tf). We consider five

different cases based tf as follows (Figure 6.7):

1. tk + δ(ij) < tf : This case covers the scenario if deadline miss occurs during the normal

operation of modeM (j). Depending on the position of tb, we further consider the following

two different cases:

(a) tk + δ(ij) ≤ tb < tf : If tb occurs after the mode change request and transition, tasks

from M (i) are not allowed to generate new jobs. Therefore, only jobs from new-

mode tasks contribute to η(tb, tf). Furthermore, any carry-in from M (i) to M (j) with

deadline earlier than tf must have completed prior to tb.

η(tb, tf) > β(tb, tf)

⇒ dbf(τ (j), tf − tb) > sbf(Ω(j), tf − tb)
⇒ dbf(τ (j), t) > sbf(Ω(j), t) where t = tf − tb

(6.13)

The second line above follows from the fact that maximum execution requirements

from τ (j) over the interval [tb, tf] is upper bounded by dbf(τ (j), tf − tb) according

to the definition of dbf. Similarly, sbf(Ω(j), t) is a lower bound on the supply over

[tb, tf]. The above equation is the negation of Equation 6.13a.

(b) tb < tk: As tb occurs during the operation of modes prior to M (j), the η(tb, tf) may

include jobs from all past modes and M (j); however, according to Equation 5.2, only

the jobs from M (i) except aborted tasks can contribute to the carry-in at the mode

63

M (j) (otherwise, the first deadline could occur before tf). Since tb occurs earlier than

tk, the resource must be backlogged at time tk. So, we may analyze the interval from

tk to tf and replace each unfinished (non-aborted) job of M (i) at tk by a new job

with same absolute deadline and remaining execution requirements, but arrival time

is redefined to tk. These newly replaced jobs are the carry-in jobs; let J c denotes the

set of these carry-in jobs and all jobs generated from τ (ij) in the interval [tk, tk +δ(ij))

with deadlines prior or at tf . As there is a deadline miss at tf , and the subsystem

executes only jobs of τ (i) and J c, these jobs contribute to the demand over [tk, tf]. By

assumption,

η(tk, tf) > β(tk, tf)

⇒ dbf(τ (j) \ τ (ij), tf − tk − δ(ij)) +
∑

j∈Jc ej

> βi,jtrans(δ
(ij)) + βi,jpost(0, tf − tk + δ(ij)).

An upper bound on carry-in demand and the demand from unchanged tasks τ (ij) for

the interval of length tk − tf after mode change is cidbf(mcrk, tf − tk) according

to the definition of cidbf. Furthermore,
∑

τ
(j)
` ∈τ (j)\τ (ij) dbf(τ (j)

` , t) quantifies demand

from the new tasks of τ (j). If t def
= tf − tk − δ(ij), then by the above discussion

cidbf(mcrk, δ(ij) + t)− βi,jtrans(δ(ij)) +
∑

τ
(j)
` ∈τ (j)\τ (ij)

dbf(τ (j)
` , t) > βi,jpost(0, t).

The above condition is the negation of 6.13c for t def
= tf − tk − δ(ij).

(c) tk ≤ tb < tk + δ(ij): If tb occurs at or after the mode change request, but before

the transition is complete, we may observe that all carry-in jobs of M (i) with dead-

line prior to tf have completed by tb; otherwise, we would be in the previous case

(i.e., tb < tk). Therefore, only jobs from new-mode tasks contribute to η(tb, tf). By

64

assumption,

η(tb, tf) > β(tb, tf)

⇒ dbf(τ (j) \ τ (ij), tf − tk − δ(ij)) + dbf(τ (ij), tf − tb)
> βi,jpost(tk + δ(ij) − tb, tf − tk − δ(ij))

⇒ dbf(τ (j) \ τ (ij), t) + dbf(τ (ij), t+ s) > βi,jpost(s, t)

where t = tf − tk − δ(ij) and s = tk + δ(ij) − tb

(6.14)

The left-hand-side of the second line follows from the fact that jobs of τ (j)\τ (ij) can-

not generate jobs until tk + δ(ij); thus, their maximum execution requirements over

the interval [tb, tf] is upper bounded by dbf(τ (j) \ τ (ij), tf − tk − δ(ij)) according to

the definition of dbf. The above condition is the negation of 6.13d.

2. tk < tf ≤ tk + δ(ij): This case covers the cases if deadline miss occurs during transition.

For this there are two subcases depending on where tb is located.

(a) tb ≤ tk: As tb occurs during the operation of modes prior to M (j), this case is similar

to the case (1)b; so, we analyze the interval from tk to tf . By assumption,

η(tk, tf) > β(tk, tf)

⇒ cidbf(mcrk, tf − tk) > βi,jtrans(tf − tk)
⇒ cidbf(mcrk, φ) > βi,jtrans(φ) where φ = tf − tk

The above condition is the negation of 6.13b for t def
= tf − tk − δ(ij).

(b) tk < tb < tf : If tb occurs at or after the mode change request, we may observe that

all carry-in jobs of M (i) with deadline prior to tf have completed by tb; otherwise,

we would be in the previous case (i.e., tb < tk). Therefore, only unchanged jobs from

new-mode tasks contribute to η(tb, tf). The minimum supply for this interval is given

65

by sbf(Ω(ij), tf − tb).

η(tb, tf) > β(tb, tf)

⇒ dbf(τ (ij), tf − tb) > sbf(Ω(ij), tf − tb)
⇒ dbf(τ (ij), t) > sbf(Ω(ij), t) where t = tf − tb

(6.15)

The above equation is the negation of Equation 6.13e.

With all of these cases, it is clear that the subsystem is EDF-schedulable if the subsystem satisfies

above mentioned five conditions for all time intervals.

6.2 Non-Concrete Sequences of MCR

In the previous section, we obtained schedulability conditions for any concrete sequence of

MCRs. In this section, we remove the assumption that the mode changes are a priori known

and consider non-concrete sequences; the following summarizes our problem for this setting:

EDF-Multi-Mode-Sched Problem: Given modes M1, . . . ,M
(q), resources Ω(ij),

offset δ(ij), unchanged tasks τ (ij), and aborted tasks α(ij) for all i, j ∈ {1, . . . , q}
(i 6= j), determine whether all jobs (under all legal job arrival sequences and all

possible legal mode-change requests according to Equations 5.1 and 5.2) are EDF-

schedulable.

6.2.1 Definitions

The analysis of a non-concrete sequence will differ from the concrete sequence via the calcula-

tion of carry-in for past modes. For a concrete sequence, the maximum carry-in is determined

from the fixed sequence of previous MCRs. As the exact time of an MCR is not known a priori

for non-concrete sequences, the analysis needs to consider the maximum possible carry-in that

could be generated from previous modes. That is, we must obtain an upper bound on any pos-

sible mode change from any mode M (i) to any other mode M (j) over all possible sequences of

66

MCRs, mcr0,mcr1,mcr2, We now define equivalent carry-in execution and demand for a

non-concrete sequence of MCRs.

Definition 11 (Non-Concrete Carry-In Execution) The non-concrete carry-in execution from

mode M (i) to any other mode M (j) at time tk is an upper bound on the maximum possible re-

maining execution (over any legal sequence of MCRs) of non-aborted jobs from mode M (i) for

tasks ϑ(ij) (i.e., τ (i) \ {τ (ij) ∪ α(ij)}) at time tk + δ(ij) that arrive prior to tk and the maximum

total execution of unchanged tasks (i.e., τ (ij)) that have arrival before tk + δ(ij). We denote this

value by ci(M (i),M (j)) over any legal sequence of mode changes prior to tk.

Definition 12 (Non-Concrete Carry-In DBF) The non-concrete carry-in demand-bound func-

tion for a mode change from M (i) to M (j) at time tk and φ ∈ R≥0 is the maximum remaining

execution (over any legal sequence of MCRs prior to tk) of jobs of tasks τ (i) \ α(ij) that arrive

prior to tk (or prior to tk + δ(ij) for τ (ij) tasks) and have deadline in the interval [tk, tk + φ]. We

denote this quantity by cidbf(M (i),M (j), φ).

6.2.2 A Sufficient Schedulability Test

Using a very similar concepts developed in the previous section, we now obtain demand supply

relation for a non-concrete sequence of mode changes. The following lemma establishes an upper

bound on the non-concrete carry-in demand.

Lemma 9 For φ ≥ 0 and a mode change from M (i) to M (j), if all modes executing prior to the

mode change did not miss a deadline, then

cidbf(M (i),M (j), φ) ≤ Ψ̃
(
M (i),M (j), φ, ci(M (i),M (j))

)
(6.16)

67

where Ψ̃(M (i),M (j), φ, ζ) is defined as

sup
x>0

∑
τ

(i)
` ∈ϑ(ij)

[⌊
(x−λ(i)

`)+

p
(i)
`

⌋
+ 1

]
× e(i)

`

+
∑

τ
(i)
` ∈α(ij)

⌊
x

p
(i)
`

⌋
× e(i)

` +
∑

τ
(i)
` ∈α(ij)

min

(
x−

⌊
x

p
(i)
`

⌋
p

(i)
` , e

(i)
`

)

+
∑

τ
(i)
` ∈τ (ij)

dbf(τ (i)
` , x+ φ) + µ≥0

(
x−N (i)Π(i)

)
· ζ − βiprior(x)

(6.17)

and ci(M (i),M (j)) is obtained from the convergence of the sequence ciM
(i),M(j)

0 , ciM
(i),M(j)

1 ,

ciM
(i),M(j)

2 , . . . for all i, j(i 6= j) ∈ {1, . . . , q}. For any g ∈ N, M (i), and M (j) (i 6= j), if

g = 0, then ciM
(i),M(j)

g = 0; otherwise, if g > 0, then ciM
(i),M(j)

g is the minimum of W (ij) and

f (ij)(max
h=1,...,q
h6=i

{ciM
(h),M(i)

g−1 }) where W (ij) equals

∑
τ

(ij)
` ∈τ (ij)

e
(ij)
` +

(∑
τ

(ij)
` ∈τ (ij)

⌈(
δ(ij)−(p

(ij)
` −d(ij)

`)
)

p
(ij)
`

⌉
e

(ij)
` +

∑
τ

(i)
` ∈ϑ(ij)

e
(i)
` − βi,jtrans(δ(ij))

)

+

(6.18)

and f (ij)(ζ) is equal to

Ψ̃(M (i),M (j),max(δ(ij) + d
(ij)
max, d

(i)
max), ζ)

− ∑
τ

(ij)
` ∈τ (ij)

dbf
(
τ

(ij)
` ,max(δ(ij) + d

(ij)
max, d

(i)
max)− δ(ij) − p(ij)

`

)
− βi,jtrans(δ(ij))

+

. (6.19)

The convergence of the above sequence occurs at the smallest g ∈ N such that ∀i, j(i 6= j) ∈
{1, . . . , q}, ciM

(i),M(j)

g = ciM
(i),M(j)

g−1 .

Some remarks on Lemma 9: The function f (ij)(ζ) calculates an upper bound on carry-in of a

mode change request from M (i) (assuming the carry-in into M (i) from a previous mode is ζ) to

the next modeM (j). This function acts in the very similar way to the Equation 6.12 for a concrete

sequence of mode-change requests. Whereas Equation 6.12 evaluates only a finite number of x

values, f (ij)(ζ) invokes Ψ̃ which evaluates all possible values of x as the potential MCR instants.

68

(This is necessary as the exact MCR instants are not known priori). Determining the carry-in

after any sequence of mode-change requests for a non-concrete sequence is complex as the carry

that each mode can forward to the next mode depends on the carry-in with which it starts with.

Before we prove Lemma 9, we need to prove some additional helper lemmas. In the next

lemma, we show that if we have an upper bound on the carry-in for a previous mode change

request, Ψ̃ may be used as upper bound on cidbf for any mode change request.

Lemma 10 For any sequence of mode changes, mcr0,mcr1, . . ., consider mcrk = (M (i),M (j), tk)

(where k ≥ 1), if ζ ≥ ci(mcrk−1) and φ > 0, then ψ̃(M (i),M (j), φ, ζ) ≥ cidbf(mcrk, φ).

Proof: Observe that the right-hand-sides of cidbf and ψ̃ within the sup expression are essentially

equivalent functions except for the µ≥0

(
x− (tk − tk−1 − δ(hi))

)
· ci(mcrk−1) in Equation 6.10

and the corresponding term µ≥0

(
x−NiΠ

(i)
)
· ζ in Equation 6.17. However, the constraint of

Equation 5.1 implies that µ≥0

(
x− (tk − tk−1 − δ(hi)

)
evaluates to one, only if x ≥ NiΠ

(i).

Thus, if the µ of Equation 6.10 evaluates to one, then so does the µ of Equation 5.1. Since

ζ ≥ ci(mcrk−1), the function in the right-hand-side of Equation 6.17 is at least the value of the

function on the right-hand-side of Equation 6.10 for the same value of x. Furthermore, the domain

of x considered in the supremum of Equation 6.17 is a superset of the domain for Equation 6.10.

Thus, clearly ψ̃(M (i),M (j), φ, ζ) is an upper bound on cidbf(mcrk, φ).

The next lemma shows that W (ij) (i.e., Equation 6.18) is an upper bound on the amount of

carry-in from mode M (i) to M (j).

Lemma 11 For any sequence of mode changes mcr0,mcr1,mcr2, . . ., consider a mode change

from M (i) to M (j) (i.e., mcrk = (M (i),M (j), tk)). If the carry-in (ci(mcrk)) from M (i) to M (j) is

greater than W (ij), then some job generated in mode M (i) or during the transition (i.e., between

tk and tk + δ(ij)) misses a deadline.

Proof: We prove this lemma by contradiction. The proof is similar to the bound in Equation 6.11.

Assume that the carry-in ci(mcrk) is greater than W (ij), but no job of M (i) misses a deadline.

Only (non-aborted) jobs of τ (i) with deadline after tk can contribute to the carry-in to M (i), since

69

d
(i)
` ≤ p

(i)
` for all τ (i)

` ∈ τ (i). (Note the constraint of Equation 5.2 prevents carry-in jobs from

previous mode changes). For all tasks of τ (i) \ {τ (ij) ∪ α(ij)}, there is at most one such job; the

total execution of these jobs is
∑

τ
(i)
` ∈τ (i)\{τ (ij)∪α(ij)} e

(i)
` . For tasks τ (ij)

` of τ (ij), an upper bound

on the execution that this task contributes to the carry-in is the execution requirement of τ (ij)
`

times the total number of jobs that can arrive in the interval [tk, tk + δ(ij)] plus the execution of

at most one job that can arrive prior to tk. Adding together the total execution of all non-aborted

jobs from M (i) and subtracting the minimum supply over the transition gives the upper bound of

Equation 6.11. Thus, if more than W (ij) execution is carried-in, then it must come from a job

generated prior to tk with remaining execution. However, by the above discussion, this is not

possible unless a job misses a deadline.

In the next two lemmas, we establish two properties of the function Ψ̃ described in Equa-

tion 6.17.

Lemma 12 For any M (i), M (j), and φ, ζ ∈ N, the functions Ψ̃(M (i),M (j), φ, ζ), W (ij), and

f (ij)(ζ) are integer valued function.

Proof: Lemma 12 always holds due to the fact that all task characteristics are natural integers.

Furthermore, ceiling/floor function is used for calculating demand and supply.

Lemma 13 For any M (i), M (j), and φ > 0, the functions Ψ̃(M (i),M (j), φ, ζ) and f (ij)(ζ) are

monotonically non-decreasing on ζ .

Proof: This lemma follows from the fact that ζ is directly added in the definition of Ψ̃(M (i),

M (j), φ, ζ) depending on the value of N (i) and Π(i) which is independent of ζ; so, there is no way

of getting lower value from the function Ψ̃(M (i),M (j), φ, ζ) for any pair of modes M (i) and M (j)

at a given φ with higher value of ζ than that of smaller ζ . Since f (ij)(ζ) changes only with Ψ̃ (the

remainder is fixed), f (ij) is also monotonically non-decreasing.

For any pair of modes M (i) and M (j), the Equations 6.18 and 6.19 calculate the maximum

carry-in with which M (i) can start with, and can affect the demand even after mode change to the

next mode M (j). Using these two equations, we show that the carry-in is always bounded from

the above by ci(M (i),M (j)).

70

Lemma 14 For any sequence of ` mode changes, mcr0,mcr1, . . . ,mcr`, the carry-in after the

mcr` = (M (i),M (j), t`) must be less or equal to ciM
(i),M(j)

` if the subsystem does not miss any

deadline before t`.

Proof: The proof is by induction on `.

Base Case: The base case is ` = 1. To show that ci(mcr1) ≤ ciM
(i),M(j)

1 , we must show that

both ci(mcr1) ≤ W (ij) and ci(mcr1) ≤ f (ij)(0) are satisfied. Note that ci(mcr0) is equal to zero.

By the fact that there are no deadline misses prior to t1 and Lemma 11, the first condition is

satisfied. For the second condition, Lemma 10 implies that ψ̃(M (i),M (j), φ, 0) ≥ cidbf(mcr1, φ)

for all φ ≥ 0 since 0 ≥ ci(mcr0). As the right-hand-side of Equation 6.12 for ci(mcr1) is

identical to f (ij)(0) except for the first term (i.e., cidbf(mcr1,max(δ(ij) + d
(ij)
max, d

(i)
max)) versus

Ψ̃(M (i),M (j),max(δ(ij) + d
(ij)
max, d

(i)
max), 0)), f (ij)(0) is clearly an upper bound on ci(mcr1). The

base case follows.

Induction hypothesis: Assume that the carry-in is always less than ciM
(i),M(j)

` for any sequence

of length ` or less non concrete mode change requests.

Induction: The ciM
(i),M(j)

`+1 is the minimum ofW (ij) and f (ij)(ciM
(i),M(j)

`). In case ciM
(i),M(j)

`+1 is de-

termined by W (ij), the induction step follows trivially as ci(mcr`+1) must be always less or equal

toW (ij) for a schedulable subsystem (by Lemma 11). Thus, we must consider if ciM
(i),M(j)

` corre-

sponds to f (ij)(max
h=1,...,q∧h6=i

{ciM
(i),M(j)

` }). The function f (ij)(ζ) is monotonically non-decreasing

on ζ . By induction hypothesis ci(mcr`) ≤ ciM
(i),M(j)

` . Thus, max
h=1,...,q∧h6=i

{ciM
(h),M(i)

` } ≥ ci(mcr`).

Thus, Lemma 10 implies that ψ̃(M (i),M (j), φ, max
h=1,...,q∧h6=i

{ciM
(h),M(i)

` }) ≥ cidbf(mcr`, φ) for all

φ ≥ 0. As the right-hand-side of Equation 6.12 for ci(mcr`) is identical to

f (ij)(max
h=1,...,q∧h6=i

{ciM
(h),M(i)

` }) except for the first term, f (ij)(max
h=1,...,q∧h6=i

{ciM
(h),M(i)

` })

≥ ciM
(i),M(j)

` implies that ciM
(i),M(j)

` is clearly an upper bound on ci(mcr1). The theorem fol-

lows.

Corollary 5 For any pair of modes M (i) and M (j), the convergence ciM
(i),M(j)

of the sequence

ciM
(i),M(j))

0 , ciM
(i),M(j)

1 , ciM
(i),M(j)

2 , . . . exists.

71

Proof: The corollary follows from the fact that ciM
(i),M(j)

` is both integer-valued and monotoni-

cally non-decreasing in `, asW (ij) and f (ij) are integer-valued and monotonically non-decreasing

(by Lemmas 12 and 13). Furthermore, ciM
(i),M(j)

` is upper bounded byW (ij) implying that it must

converge.

Corollary 6 For any sequence of mode changes mcr0,mcr1, . . ., consider mcr` = (M (i),M (j), t`),

it must be that ciM
(i),M(j) ≥ ci(mcr`) for all ` ∈ N.

Proof: By Lemma 14, ciM
(i),M(j)

` ≥ ci(mcr`). Corollary shows the sequence of ci` is monotoni-

cally non-decreasing and converges. Thus, ciM
(i),M(j) ≥ ciM

(i),M(j)

` implying the corollary.

We are finally prepared to prove Lemma 9.

Proof of Lemma 9 Consider any mode change mcrk = (M (i),M (j), tk). Corollary 6 implies that

ciM
(i),M(j) ≥ ci(mcrk). By Lemma 10, ψ̃(M (i),M (j), φ, ciM

(i),M(j)

) ≥ cidbf(mcrk, φ). Since

cidbf(M (i),M (j), φ) equals the carry-in possible over all such mcrk, it must be that ψ̃(M (i),

M (j), φ, ciM
(i),M(j)

) ≥ cidbf(M (i),M (j), φ) is also true.

The following theorem on schedulability for non-concrete MCRs follows from repeated ap-

plications of Lemma 9, the observation that Ψ̃ is monotonically non-decreasing, and Theorem

2. The proof is very similar to the Theorem 2; However, the detailed proof is included in the

following for making the thesis complete.

72

Theorem 3 For any possible sequence of mode-change requests, the subsystem is EDF-schedulable,

if the following five conditions hold for any two distinct modes M (i) and M (j),

∑
τ

(j)
` ∈τ (j)

dbf(τ (j)
` , t) ≤ sbf(Ω(j), t), ∀t > 0, (6.20a)

Ψ̃(M (i),M (j), φ, ciM
(i),M(j)

) ≤ βi,jtrans(φ)

∀φ : 0 < φ ≤ δ(ij), (6.20b)

Ψ̃(M (i),M (j), δ(ij) + t, ciM
(i),M(j)

)− βi,jtrans(δ(ij)) (6.20c)

+
∑

τ
(j)
` ∈τ (j)\τ (ij)

dbf(τ (j)
` , t) ≤ βi,jpost(0, t), ∀t > 0

∑
τ

(j)
` ∈τ (j)\τ (ij)

dbf(τ (j)
` , t) +

∑
τ

(ij)
` ∈τ (ij)

dbf(τ (ij)
` , t+ s) (6.20d)

≤ βi,jpost(s, t), ∀s, t : 0 < t, 0 < s ≤ δ(ij)

∑
τ

(ij)
` ∈τ (ij)

dbf(τ (ij)
` , t) ≤ sbf(Ω(ij), t), ∀t : 0 < t < δ(ij), (6.20e)

Proof: This theorem is proved by contrapositive. The minor difference with Theorem 2 is

that the sequence of mode changes are not fixed. Assume the subsystem is not EDF-schedulable

and misses its first deadline while executing mode M (j) after the k-th mode change request at

time tk (i.e., mcrk = (M (i),M (j), tk)). Let mcr0,mcr1, . . . ,mcrk−1,mcrk be the sequence of

MCRs that led to the deadline miss. This deadline miss can occur either during the transition

period ([tk, tk + δ(ij)]) or during the operation of M (j) after the transition. Suppose that tf <

tk+1 denotes the earliest instant at which the EDF schedule misses the deadline. Without loss of

generality, we further assume that tb is denoting the latest time-instant before tf the subsystem is

executing jobs with deadline greater than tf or is idle (i.e., there are no backlogged jobs awaiting

execution). During the interval [tb, tf], the subsystem executes jobs arriving at or after tb with

deadline before or at tf . These are precisely the jobs whose execution requirements contribute

to demand over [tb, tf]. Let say η(tb, tf) and β(tb, tf) is denoting the maximum demand and the

minimum supply over the interval [tb, tf]. As a deadline miss occurs at tf , it must be the case that

η(tb, tf) > β(tb, tf).

73

In the following section, we consider different cases based on the location of tf .

1. tk + δ(ij) < tf :

This case covers the scenario if a deadline miss occurs during the normal operation of

a mode M (j). Depending on the position of tb, we further consider the following two

different cases:

(a) tk + δ(ij) ≤ tb < tf :

If tb occurs after the mode change request and transition, tasks from M (i) are not

allowed to generate new jobs. Therefore, only jobs from new-mode tasks contribute

to η(tb, tf). Furthermore, any more carry-in from M (i) to M (j) with deadline earlier

than tf must have completed prior to tb.

η(tb, tf) > β(tb, tf)

⇒ dbf(τ (j), tf − tb) > sbf(Ω(j), tf − tb)
⇒ dbf(τ (j), t) > sbf(Ω(j), t) where t = tf − tb

(6.20)

The second line above follows from the fact that maximum execution requirements

from τ (j) over the interval [tb, tf] is upper bounded by dbf(τ (j), tf − tb) according

to the definition of dbf. Similarly, sbf(Ω(j), t) is a lower bound on the supply over

[tb, tf]. The above equation is the negation of Equation 6.13a.

(b) tb < tk:

As tb occurs during the operation of the previous mode M (i), η(tb, tf) may include

jobs from both M (i) and M (j). Except for unchanged tasks τ (ij), any other task from

M (i) cannot generate new jobs after tk. So, we may analyze the interval from tk

to tf and replace each unfinished (non-aborted) job of M (i) at tk by a new job with

same absolute deadline and remaining execution requirements, but the arrival time is

redefined to tk. These newly replaced jobs are the carry-in jobs; let J c denotes the set

of these carry-in jobs and all jobs generated from τ (ij) in the interval [tk, tk + δ(ij))

with deadlines prior or at tf . As there is a deadline miss at tf , and the subsystem

74

executes only jobs of τ (i) and J c, these jobs contribute to the demand over [tk, tf]. By

assumption,

η(tk, tf) > β(tk, tf)

⇒ dbf(τ (j) \ τ (ij), tf − tk − δ(ij)) +
∑

j∈Jc ej

> βi,jtrans(δ
(ij)) + βi,jpost(0, tf − tk + δ(ij)).

An upper bound on carry-in demand and the demand from unchanged tasks τ (ij) for

the interval of length tk − tf after mode change is cidbf(mcrk, tf − tk) according to

the definition of cidbf. Furthermore, ψ̃(M (i),M (j), tf − tk, ciM
(i),M(j)

) due to Lemma

9.
∑

τ
(j)
` ∈τ (j)\τ (ij)

dbf(τ (j)
` , t) quantifies demand from the new tasks of τ (j). If t def

= tf −

tk − δ(ij), then by the above discussion

ψ̃(M (i),M (j), t+ δ(ij), ciM
(i),M(j)

)− βi,jtrans(δ(ij))

+
∑

τ
(j)
` ∈τ (j)\τ (ij)

dbf(τ (j)
` , t) > βi,jpost)(0, t).

The above condition is the negation of 6.13c for t def
= tf − tk − δ(ij).

(c) tk ≤ tb < tk + δ(ij):

If tb occurs at or after the mode change request, but before the transition is complete,

we may observe that all carry-in jobs ofM (i) with deadline prior to tf have completed

by tb; otherwise, we would be in the previous case (i.e., tb < tk). Therefore, only jobs

from new-mode tasks contribute to η(tb, tf). By assumption,

75

η(tb, tf) > β(tb, tf)

⇒ dbf(τ (j) \ τ (ij), tf − tk − δ(ij)) + dbf(τ (ij), tf − tb)
> βi,jpost(tk + δ(ij) − tb, tf − tk − δ(ij))

⇒ dbf(τ (j) \ τ (ij), t) + dbf(τ (ij), t+ s)

> βi,jpost(s, t) where t = tf − tk − δ(ij)

and s = tk + δ(ij) − tb

(6.21)

The left-hand-side of the second line follows from the fact that jobs of τ (j)\τ (ij) can-

not generate jobs until tk + δ(ij); thus, their maximum execution requirements over

the interval [tb, tf] is upper bounded by dbf(τ (j) \ τ (ij), tf − tk − δ(ij)) according to

the definition of dbf. The above condition is the negation of 6.13d.

2. tk < tf ≤ tk + δ(ij):

This case covers the cases if deadline miss occurs during transition. For this there are two

subcases depending on where tb is located.

(a) tb ≤ tk:

As tb occurs during the operation of the previous mode M (i), η(tb, tf) may include

only non-aborted and unchanged jobs from M (i). In other words, the demand over

[tb, tf] equals the carry-in and unchanged jobs of M (i) with deadline at or before tf .

η(tb, tf) > β(tb, tf)

⇒ cidbf(mcrk, tf − tk) > βi,jtrans(tf − tk)
⇒ cidbf(mcrk, φ) > βi,jtrans(φ) where φ = tf − tk
⇒ ψ̃(M (i),M (j), φ, ciM

(i),M(j)

) > βi,jtrans(φ)

The above condition is the negation of 6.13b for t def
= tf − tk − δ(ij).

(b) tk < tb < tf :

If tb occurs at or after the mode change request, we may observe that all carry-in

76

jobs of M (i) with deadline prior to tf have completed by tb; otherwise, we would

be in the previous case (i.e., tb < tk). Therefore, only unchanged jobs from new-

mode tasks contribute to η(tb, tf). The minimum supply for this interval is given by

sbf(Ω(ij), tf − tb).

η(tb, tf) > β(tb, tf)

⇒ dbf(τ (ij), tf − tb) > sbf(Ω(ij), tf − tb)
⇒ dbf(τ (ij), t) > sbf(Ω(ij), t) where t = tf − tb

(6.22)

The above equation is the negation of Equation 6.13e.

With all of these cases, it is clear that the subsystem is EDF-schedulable if the subsystem

satisfies above mentioned five conditions for all time intervals.

6.2.3 Reducing the Time Complexity

For finding the worst-case mode-change carry-in demand, Theorem 3, as written, has to evalu-

ate potentially unbounded number of values of t for Equation 6.20. Furthermore, it is also not

immediately obvious how to efficiently compute Ψ̃ from Lemma 9 as it requires evaluating an ex-

pression over any infinite number of values for x and iteratively computing a converging sequence

of values for ci. In this subsection, we derive more efficient time bounds for our schedulability

test. The next section will use the lemmas derived in this section to efficiently implement our

schedulability test for non-concrete MCRs.

In the following three lemmas, we obtain upper bounds on times for which the right-hand-

side of Equation 6.17 need to be evaluated. The results are inspired by similar bounds obtained

by Baruah et al. [9] for uni-modal systems. We will abuse notation below and assume that a

zero in the denominator of a fraction evaluates to∞. We will also assume that for each M (i) the

utilization u(i) is at most Θ(i)/Π(i) as this is a necessary condition for schedulability on a periodic

resource [70].

77

Lemma 15 For φ ≥ 0, any mcrk = (M (i),M (j), tk) in arbitrary sequence of mode-change

requests, and p(i)
max

def
= max

τ
(i)
` ∈τ (i){p(i)

` }, if Ψ̃(M (i),M (j), φ, ζ) (Equation 6.17) is at least ξ ≥ 0,

then the x that maximizes the supremum in the right-hand-side of Equation 6.17 occurs at or

before the maximum of d(i)
max and the minimum of H(i) + d

(i)
max +N (i)Π(i) and

⌈
u(i) · p(i)

max + u(ij)φ+ ζ + Θ(i)(Π(i)−Θ(i))

Π(i) − ξ
Θ(i)

Π(i) − u(i)

⌉
. (6.23)

where H(i) def
= lcm

{
{p(i)

` }τ (i)
` ∈τ (i) ∪ {Π(i)}

}
.

Proof: We consider two cases: 1) u(i) equals Θ(i)/Π(i); and 2) u(i) is strictly less than Θ(i)/Π(i).

In the first case, we use techniques similar to [9] to show that H(i) + d
(i)
max +N (i)Π(i) is an upper

bound on x. Let Ψ̃x be the expression inside the sup of Equation 6.17 for a given x > 0. Assume

that Ψ̃x obtains its maximum value at some x equal to t+a ·H(i) +d
(i)
max +N (i)Π(i) where a ∈ Z+

and 0 ≤ t < H(i). Let x′ equal t+ d
(i)
max +N (i)Π(i). By definition, Ψ̃x equals

∑
τ

(i)
` ∈ϑ(ij)

[⌊
(x′+H(i)−λ(i)

`)+

p
(i)
`

⌋
+ 1

]
× e(i)

` +
∑

τ
(i)
` ∈α(ij)

⌊
x′+H(i)

p
(i)
`

⌋
× e(i)

`

+
∑

τ
(i)
` ∈α(ij)

min

(
x′ +H(i) −

⌊
x′+H(i)

p
(i)
`

⌋
p

(i)
` , e

(i)
`

)

+
∑

τ
(i)
` ∈τ (ij)

dbf(τ (i)
` , x′ +H(i) + φ) + ζ − β

(
priorM

(i), x′ +H(i)).

Since H(i) divided by any p
(i)
` or Π(i) is an integer, we have the following that Ψ̃x′ +

H(i)
∑

τ
(i)
` ∈τ (i)

e
(i)
`

p
(i)
`

− H(i) Θ(i)

Π(i) . However, we have assumed that u(i) equals Θ(i)/Π(i); this im-

plies that Ψ̃x′ equals Ψ̃x. Thus, we have shown in this case that the maximum occurs prior to

H(i) + d
(i)
max +N (i)Π(i).

For the second case, when u(i) is strictly less than Θ(i)/Π(i) we may obtain a potentially

tighter upper bound. Suppose that the right-hand side of Equation 6.17 obtains its supremum at

some x > d
(i)
max. According to Equation 6.17, we have

78

ξ <
∑

τ
(i)
` ∈ϑ(ij)

[⌊
(x−λ(i)

`)+

p
(i)
`

⌋
+ 1

]
× e(i)

` + ζ +
∑

τ
(i)
` ∈τ (ij)

dbf(τ (i)
` , x+ φ)

+
∑

τ
(i)
` ∈α(ij)

⌊
x

p
(i)
`

⌋
× e(i)

` +
∑

τ
(i)
` ∈α(ij)

min

(
x−

⌊
x

p
(i)
`

⌋
p

(i)
` , e

(i)
`

)
− βiprior(x)

⇒ ξ <
∑

τ
(i)
` ∈ϑ(ij)

[
(x−λ(i)

`)+

p
(i)
`

+ 1

]
× e(i)

` + ζ − βiprior(x)

+
∑

τ
(i)
` ∈τ (ij)

(
x+φ−d(i)

`

p
(i)
`

+ 1

)

+

e
(i)
` +

∑
τ

(i)
` ∈α(ij)

x

p
(i)
`

× e(i)
` +

∑
τ

(i)
` ∈α(ij)

e
(i)
`

⇒ ξ <
∑

τ
(i)
` ∈ϑ(ij)

[
x+p

(i)
`

p
(i)
`

e
(i)
`

]
+ ζ

+
∑

τ
(i)
` ∈τ (ij)

x+φ+p
(i)
`

p
(i)
`

e
(i)
` +

∑
τ

(i)
` ∈α(ij)

x+p
(i)
`

p
(i)
`

e
(i)
` − βiprior(x)

(Dropping subtracted values in the first and third terms)

⇒ 0 < xu(i) + φu(ij) + u(i) max
{
p

(i)
`

}
− xΘ(i)

Π(i) + Θ(i)

Π(i) (Π(i) −Θ(i))− ξ + ζ

(By Corollary 2)

Solving for x and noting that x must be an integer implies the upper bound of Equation 6.23.

We obtain upper bound for the conditions 6.20c, 6.20a and 6.20d in Lemmas 16, 18, and 18

correspondingly.

Lemma 16 For any distinct modes M (i) and M (j), and β def
= βi,jtrans(δ

(ij)), if Equation 6.20c of

Theorem 3 is violated, then the violation must occur for some t at or before the maximum of d(j)
max

and the minimum of lcm
{
{p(j)

` }τ (j)
` ∈τ (j) ∪ {Π(i)}

}
+ d

(j)
max and

∑
τ

(i)
` ∈τ (i)\α(ij)

e
(i)
` − β + δ(ij)u(ij) +

∑
τ

(j)
` ∈τ (j)

e
(j)
` + Θ(j)(∆(j)−Θ(j))

Π(j)

Θ(j)

Π(j) − u(j)

. (6.24)

79

Proof: This lemma is proved using the same technique that we used for Lemma 15. The proof

for the first part is skipped as it is same the previous one. The value that can be returned by

cidbf(M (i),M (j), δ(ij) + t) is upper bounded by the non-aborted jobs of M (i). Let us assume that

Equation 6.20c is violated for some t. Therefore,

βi,jpost(0, t) <
∑

τ
(i)
` ∈τ (i)\{τ (ij)∪α(ij)}

e
(i)
`

+
∑

τ
(ij)
` ∈τ (ij)

⌊
t+δ(ij)

pij`
+ 1
⌋
eij`

+
∑

τ
(j)
` ∈τ (j)\τ (ij)

dbf(τ (j)
` , t)

−βi,jtrans(δ(ij))

⇒ βi,jpost(0, t) <
∑

τ
(i)
` ∈τ (i)\{τ (ij)∪α(ij)}

e
(i)
`

+
∑

τ
(j)
` ∈τ (j)\τ (ij)

t−d(j)
` +p

(i)
`

p
(i)
`

e
(i)
`

+
∑

τ
(ij)
` ∈τ (ij)

eij` + (t+ δ(ij))U(τ (ij))

−βi,jtrans(δ(ij))

⇒ t
Θ(j)

Π(j)
−
[

Θ(j)

Π(j)

(
∆(j) −Θ(j)

)]

<
∑

τ
(i)
` ∈τ (i)\α(ij)

e
(i)
` − βi,jtrans(δ(ij))

+(t+ δ(ij))U(τ (ij)) +
∑

τ
(j)
` ∈τ (j)

e
(j)
`

(By Corollary 2)

Therefore, t must be less or equal to

∑
τ
(i)
`
∈τ(i)\α(ij)

e
(i)
` −β+δ(ij)U(τ (ij))+

∑
τ
(j)
`
∈τ(j)

e
(j)
` +

Θ(j)(∆(j)−Θ(j))

Π(j)

Θ(j)

Π(j)
−u(j)

80

Lemma 17 For any distinct modesM (j), if Equation 6.20a of Theorem 3 is violated, then the vio-

lation must occur for some t at or before the maximum of d
(j)
max and the minimum of

lcm
{
{p(j)

` }τ (j)
` ∈τ (j) ∪ {Π(j)}

}
+ d

(j)
max and

u(j) ×max
τ

(j)
` ∈τ (j)

{
p

(j)
` − d

(j)
`

}
+ Θ(j)(Π(j)+∆(j)−2Θ(j))

Π(j)

Θ(j)

Π(j) − u(j)

. (6.25)

Proof: For proving the lemma, we use the very similar techniques to Lemma 15 and 16. Let

say, Equation 6.20a is violated for some t. Therefore,

0 <
∑

τ
(j)
` ∈τ (j)

dbf(τ (j)
` , t)− sbf(Ω(j), t)

⇒ 0 <
∑

τ
(j)
` ∈τ (j)

⌊
t−d(j)

`

p
(j)
`

+ 1

⌋
× e(j)

`

−
[
t× Θ(j)

Π(j) − Θ(j)

Π(j) (Π(j) + ∆(j) − 2Θ(j))
]

⇒ 0 <
∑

τ
(j)
` ∈τ (j)

t−d(j)
` +p

(j)
`

p
(j)
`

× e(j)
`

−
[
t× Θ(j)

Π(j) − Θ(j)

Π(j) (Π(j) + ∆(j) − 2Θ(j))
]

⇒ 0 < t× u(j) + max
τ

(j)
` ∈τ (j)

{
p

(j)
` − d

(j)
`

}
× u(j)

−
[
t× Θ(j)

Π(j) − Θ(j)

Π(j) (Π(j) + ∆(j) − 2Θ(j))
]

⇒ t <

u(j)× max
τ
(j)
`
∈τ(j)

{
p

(j)
` −d

(j)
`

}
+

Θ(j)(Π(j)+∆(j)−2Θ(j))

Π(j)

Θ(j)

Π(j)
−u(j)

Above equations imply the Lemma.

Lemma 18 For any distinct mode change from M (i) to M (j) and integer s : 0 < s ≤ δ(ij), if

Equation 6.20d of Theorem 3 is violated, then the violation must occur for some t at or before

81

the maximum of d(j)
max and the minimum of lcm

{
{p(j)

` }τ (j)
` ∈τ (j) ∪ {Π(j)}

}
+ d

(j)
max and

s · u(ij) + u(j) × max
τ

(j)
` ∈τ (j)

{
p

(j)
` − d

(j)
`

}
− s·Θ(ij)

Π(ij) + Θ(j)(∆(j)−Θ(j))

Π(j) + Θ(ij)(Π(ij)−Θ(ij))

Π(ij)

Θ(j)

Π(j) − u(j)

. (6.26)

Proof: This lemma is proved using the same technique that we used for Lemma 16. Let us

assume that Equation 6.20d is violated for some t. Therefore,

βi,jpost(s, t)

<
∑

τ
(j)
` ∈τ (j)\τ (ij)

dbf(τ (j)
` , t)

∑
τ

(ij)
` ∈τ (ij)

dbf(τ (ij)
` , t+ s)

⇒ βi,jpost(s, t)

<
∑

τ
(j)
` ∈τ (j)\τ (ij)

t−d(j)
` +p

(i)
`

p
(i)
`

e
(i)
` +

∑
τ

(ij)
` ∈τ (ij)

t+s−d(ij)
` +p

(ij)
`

p
(ij)
`

e
(ij)
`

⇒ t
Θ(j)

Π(j)
−
[

Θ(j)

Π(j)

(
∆(j) −Θ(j)

)]
+ s

Θ(ij)

Π(ij)
−
[

Θij

Π(ij)

(
Π(ij) −Θ(ij)

)]

< s · U(τ (ij)) +
(
t+ max

τ
(j)
` ∈τ (j)

{
p

(j)
` − d

(j)
`

})
· U(τ (i)).

Solving the above for t implies the lemma.

Finally, the following corollary on the number of iterations for convergence of ci follows imme-

diately from Equation 6.18 of Theorem 3.

Corollary 7 The convergence of the sequence defined in Equation 6.19 occurs at g ≤∑
i≤q

max
j∈[1,q]
i 6=i

ci(ij)

where ci(ij) is the value defined in Equation 6.18.

Proof: This lemma is established using the property of cidbf(M (i),M (j), φ). Equation 6.19

calculates ci iteratively and this equation is monotonically increasing (see Lemma 13). The value

at g-th iteration determined from that of (g − 1)-th iteration. Therefore, for getting a different

value of ci in future iterations, ci value for at least one mode needs to be changed. The maxi-

mum carry-in demand that a mode M (i) can generate is maxj=1,...,q∧i 6=i ci(ij). The cidbf function

is monotonically non-decreasing, and integer valued function. Therefore, the maximum steps

82

required for calculating carry-in demand are finite and can be determined using the sum of the

maximum values for each pair of modes for all steps.

6.3 Algorithms

In this section, we join all the pieces together to develop a schedulability test algorithm for non-

concrete MCRs. First we construct the algorithm MaxCarry that calculates the maximum carry-

in for each pair of modes M (i) and M (j). We then present our algorithm called schedulability

using bounded iteration (SUBI) for checking the schedulability of any multi-modal subsystem

S with non-concrete MCRs. (Please note, that since Theorem 3 covers all possible sequence of

MCRs, any subsystem that satisfies Theorem 3 will also satisfy Theorem 2 for any fixed legal

concrete sequence of MCRs.)

§Maximum Carry. The algorithm MaxCarry (pseudocode shown in Algorithm 1) obtains an

upper bound on the maximum carry-in for each pair of modes M (i) and M (j). In each step

MaxCarry calculates a new upper bound for carry-in based on the upper bound obtained in previ-

ous iterations. The iteration continues until the carry-in bound for all pairs of modes is unchanged

from the previous iteration. The algorithm converges after a finite number of steps which is es-

tablished in Corollary 7. Let P denote maxi,j{max(δ(ij) +d
(ij)
max, d

(i)
max)}. The runtime complexity

of each iteration depends on the Ψ̃ function. The function Ψ̃ given ζ determines carry-in demand

using O (n×Q(P,B)) steps where n is the maximum total number of tasks in any mode and B

is the maximum value of Equation 6.18 and Q(φ, ζ) is Equation 6.23 as a function of φ and ζ .

Therefore, the time complexity of MaxCarry is O (nq2BQ(P,B)). B is obviously polynomial

in the mode parameters (and thus pseudo-polynomial in the representation). When Θ(i)

Π(i) − u(i) for

all M (i) is lower bounded by a fixed positive constant, Q(φ, ζ) is a pseudo-polynomial function;

thus, the total time complexity is pseudo-polynomial. (Note that a pseudo-polynomial function

given a pseudo-polynomial input returns a pseudo-polynomial value.)

§Schedulability Algorithm. The algorithm SUBI (presented in Algorithm 2) checks for schedu-

lability for non-concrete sequences of MCRs. This algorithm uses MaxCarry as a subroutine.

83

Algorithm 1 MaxCarry(S).
1: {Returns a [q × q] matrix ζ .}
2: ζ ⇐ 0
3: repeat
4: change⇐ false
5: for i = 1 to q do
6: ciimax ← max

h=1,...,q∧h6=i
{ζhi}

7: for j = 1 to q do
8: W (ij) is defined by Equation 6.18.
9: dimax ⇐ max

(
δ(ij) + d

(ij)
max, d

(i)
max

)

10: ci⇐ Ψ̃
(
M (i),M (j), dimax, ciimax

)
− βi,jtrans(δ(ij))

11: − ∑
τ

(ij)
` ∈τ (ij)

dbf
(
τ

(ij)
` , dimax − δ(ij) − p(ij)

`

)

12: if min(ci,W (ij)) > ζ(ij) then
13: ζ(ij) ⇐ min(ci,W (ij))
14: change⇐ true
15: end if
16: end for
17: end for
18: until change = false
19: return ζ

The algorithm checks all five conditions of Theorem 3 for schedulability. The for loop at Line 1

uses the condition of Equation 6.20a, the loop at Line 10 checks the condition of Equation 6.20b,

and the innermost loop starting at Line 27 checks the condition of Equation 6.20c. MaxCarry

is called prior to checking the conditions of Equations 6.20b and 6.20c, so that the maximum

carry-in can be used from the stored value. Equations 6.20d and 6.20e are checked in the second

main loop. The algorithm returns true only if all of the above mentioned five conditions do not

fail for any interval length of t.

Let R correspond to the maximum value of Equation 6.25 of Lemma 17, S correspond to the

maximum value of Equation 6.24 of Lemma 16 over all modes, V (s) correspond to the maxi-

mum value of Equation 6.26 of Lemma 18 (given a value of s), and δmax
def
= maxi,j∈{1,...,q}{δ(ij)}.

Observe that the maximum value for s in Lemma 18 is δmax. The first loop requiresO(nqR) steps;

MaxCarry requiresO (nq2BQ(P,B)); and the second loop requiresO (nq2 (P ×Q(P,B) +P×

84

Algorithm 2 SUBI(S).
1: for i = 1 to q do
2: T is set by Equation 6.25.
3: for t = 1 to T do
4: if sbf(Π(i),Θ(i), t) < dbf(τ (i), t) then
5: return false
6: end if
7: end for
8: end for
9: ζ ⇐ MaxCarry(S)

10: for i = 1 to q do
11: for j = 1 to q do
12: for φ = 0 to δ(ij) do
13: if Ψ̃(M(i),M(j), φ, ζ(ij)) > β

i,j
trans(φ) then

14: return false
15: end if
16: if dbf(τ (ij), φ) ≤ sbf(Ω(ij), φ) then
17: return false
18: end if
19: T is set by Equation 6.26
20: for t = 0 to T do
21: if Equation 6.20d is false for s = φ then
22: return false
23: end if
24: end for
25: end for
26: T is set by Equation 6.24.
27: for t = 0 to T do
28: carry⇐ Ψ̃(M (i),M (j), δ(ij) + t, ζ(ij))
29: −βi,jtrans(δ(ij))
30: if carry + dbf(τ (i) \ τ (ij), t) > βi,jpost(0, t) then
31: return false
32: end if
33: end for
34: end for
35: end for
36: return true

V (δmax)+S×Q(P+S,B). Thus, the total runtime is again pseudo-polynomial-time complexity

if Θ(i)

Π(i) − u(i) is lower bounded by a fixed positive constant for all M (i)

85

6.4 Simulations

In this section, we present the performance results for our proposed algorithm. We compare

SUBI with exponential-time schedulability analysis using reachability graph (SURG) proposed

by Phan et al. [63]. For the simulation, we implemented SURG and SUBI in MATLAB and

performed our simulations on a 2.33GHz Intel Core 2 Duo machine with 2.0GB RAM. During

the simulation, we have the following parameters and value ranges for the multi-modal subsystem

S:

Tasks Properties Modes
e(i) d(i) p(i) M (1) M (2) M (3)

1 1 10 10 y y y
2 3 30 30 y y n
3 4 40 40 n n y
4 1 10 10 y n n
5 1 20 20 n y y
6 3 24 24 n n y
7 2 20 20 y n n
8 1 10 10 n y n

Table 6.1: EDF Schedulability Comparison: Tasks Properties.

1. The number of modes (q) in the subsystem is 3.

2. The total number of tasks in the multi-modal tasks system is 8. Task properties and distri-

butions are described in Table 8.1.

3. During a mode transition, jobs from task τ1 are considered as aborted jobs. Tasks τ5 is

unchanged between MCRs involving M2/M3.

4. The resource period (Π) and deadline (∆) are set to 10 for all modes.

5. The offset δ(ij) is set to Π for both simulations. N (i) is set equal to 2 for all modes M (i).

6. A ‘y’ in the mode column indicates this task is present in the mode.

86

0 5 10 15 20 25 30
0

50

100
Success Rate

%
 S

ch
ed

u
la

b
le

0 5 10 15 20 25 30
0

10

20

30
Iteration Comparison

Total Capacity

A
vg

. T
im

e
(s

ec
)

SURG
SUBI

Figure 6.8: EDF Schedulability Comparison: Efficacy of SUBI vs SURG.

In the first simulation, we randomly generate a set of capacities (Θ(i)) where the total sum is

taken from the range [1, qΠ]. We execute SUBI and SURG for checking schedulability of the

subsystem S with R. The graph at the top of the Figure 6.8 presents the percentage of ‘YES’

responses out of 200 run on each distinct summation of capacities (i.e., the value on the x axis).

The dashed line depicts the results for SURG, and solid line is for SUBI. The graph at the

bottom in Figure 6.8 presents the average elapsed time for deciding the schedulability using over

randomly-generated capacities for each given utilization. For this particular subsystem, Figure

6.8 illustrates that SUBI does as well or better than SURG and is clearly more efficient.

0 5 10 15
0

500

1000

1500

2000
SUBI vs SURG

Number of Modes

E
la

p
se

d
 T

im
e

(s
ec

)

SUBI
SURG

Figure 6.9: EDF Schedulability Comparison: Scalability of SUBI vs SURG

87

For checking the scalability of SUBI, we perform a second simulation with a higher number

of modes (up to 15). In each step, we increase by one mode with four tasks chosen randomly

from Table 8.1 and perform schedulability test using SURG and SUBI with capacity equals to

the highest value (i.e., Π). The result is depicted in Figure 6.9. The dashed line with plus markers

shows the elapsed time in second for reaching a decision using SURG, whereas the solid line

depicts the results for SUBI. SURG is more general, and designed to compute the feasible

minimum capacity using reachability graph; thus, the higher running time of SURG is due to the

exponential-time complexity of traversing reachability graph.

6.5 Conclusion

In this chapter, we derived a EDF schedulability test for mode-change request for two settings:

concrete and non-concrete mode change requests. For non-concrete subsystems (i.e., the se-

quence of mode-changes are not known a priori), we obtain a schedulability analysis algorithm

that has pseudo-polynomial time complexity. The previous known algorithm which uses a reach-

ability graph requires exponential time complexity. Furthermore, our simulation results validate

the effectiveness and efficiency of algorithm and demonstrate that it scales as the number of

modes increases. Thus, our proposed approach can be used to quickly verify the schedulability

of control systems with a large number of modes. In the next chapter, we develop schedulability

analysis for FP schedulability analysis does not apply readily to FP-scheduled or non-preemptive

multi-modal systems. Later, we accelerate the schedulability analysis using parallel platform so

that these schedulability analysis can utilized for design-space exploration.

88

CHAPTER 7: FP SCHEDULABILITY

OF MMS

In the previous chapter, we developed the analysis for EDF scheduled multi-modal systems.

While EDF is an optimal scheduling algorithm (if there is a possible schedule for a set of jobs that

meet all deadlines, the schedule generated by EDF will also maintain all the timing constraints),

the implementation requires additional data-structures for accounting timing requirements at job

level. On the other hand, fixed-priority scheduling (e.g., rate monotonic, deadline monotonic)

are simpler and more commonly used in industrial automation, automotive control systems, and

power plants. Therefore, in this dissertation, we also present schedulability analysis for a multi-

modal system that schedule jobs using fixed-priority (FP) algorithm upon a non-continuous pro-

cessing platform modeled by periodic resources [32].

In addition, real-time systems that interacts with the physical environment (i.e., cyber-physical

systems) place additional constraints upon software aspects of the system. For instance, sensing

and actuation often require non-preemption to ensure correct data acquisition (e.g., an ultrasonic

sensor in a robotic car). However, none of the existing fixed-priority schedulability analysis for

multi-modal systems (e.g., [63, 74]) can address non-preemptible resource access. We consider

non-preemptible execution only with FP scheduled multi-modal systems as this issue is mostly

found in industrial automation where FP is prevalent. Non-preemptivity with EDF scheduled

multi-modal systems is also an interesting research problem which is left for future research.

In this chapter, we propose the fixed-priority schedulability analysis of multi-modal CPS

with strict timing requirements (hard real-time constraints). We emphasize the characteristics

(e.g., the minimum separation between successive mode-changes) of the multimode model by

Hettiarachchi et al. [42] for a thermal-aware processor control system where the software is spec-

ified by a sporadic task system [51] and the hardware is represented by the periodic resource

model [32, 70]. We develop a pseudo-polynomial schedulability analysis for the multi-modal

89

systems. A case-study of radar-assisted cruise control system is included to show the usability

of multimode system which consists of fixed priority non-preemptive tasks. For comparison, we

perform additional simulations which indicate that our algorithm achieves better efficiency over

the state-of-the-art [63] with no loss of schedulability. In the next section, we first show the

typical unimodal schedulability may produce wrong results for multi-modal systems.

7.1 Invalidity of Standard FP Critical Instant Theorem

Previous work on multi-modal system using FP assumed dedicated processing resource for the

application. For systems that can change hardware modes along with software modes, the critical

instant theorem does not hold as shown in the Figure 7.1. In Figure 7.1, two modes are depicted

where each mode specifies both software and its hardware requirements. Two unchanged tasks

[τ (12)
1

def
= (1, 4, 4) and τ (12)

2
def
= (1, 4, 4)] are common (forward diagonally hatched rectangles in

Figure 7.1) in between these two modes. M (2) has one additional finished task τ (2)
3

def
= (1, 10, 10).

The mode M (1) has the hardware requirement (6, 3, 3), whereas the M (2) specifies the maximum

hardware resource (6, 6, 6). In the left-hand-side, the new-mode task is released with typical

critical instant scenario and the response time is 4. At the bottom, vertically hatched rectangles

tR = 4 tR = 5

τ
(12)
1

τ
(12)
2

τ
(2)
3 τ

(2)
3

τ
(12)
2

τ
(12)
1

Uni-Modal Critical Instance Ω(2) = (6, 6, 6)

Ω(1) = (6, 3, 3)

tk

Ω(2) = (6, 6, 6)

Ω(1) = (6, 3, 3)

M (1) M (2) M (1) M (2)

τ
(12)
2

tk

Longer
Response

Figure 7.1: FP-Scheduled Multi-Modal System: Longer response time in presence of
common tasks.

90

depict availability for these periodic resources. The right-hand-side figure depicts a scenario

where common tasks are released 1 unit before the mode change request which eventually results

longer response time (5). To address this issue, Stoimenov et al. [74] consider two jobs for

unchanged tasks at transition which reduces the accuracy of the schedulability. Phan et al. [63]

explore a reachability graph for schedulability, which may take exponential time. In contrast, we

consider bounded busy-intervals to develop a pseudo-polynomial schedulability.

7.2 Tasks Priority

For priority of each task, we consider global priority ordering where the priority of a task τ (i)
k

is taken from a global fixed set of priorities ℘ def
= {℘(1), ℘(2) . . .} such that ℘(j) ∈ N+ for each

℘(j) ∈ ρ. We also define the function : M × τ → ℘ that takes a task and a mode (given in the

superscript of the task), and returns the task’s priority in the specified mode as follows:

(
(τ

(i)
`) ≥ (τ

(i)
k)
)
⇐⇒

(
τ

(i)
` 4 τ

(i)
k

)
(7.1)

and (
(τ

(i)
`) ≥ (τ

(j)
k)
)
⇐⇒

(
τ

(i)
` 4 τ

(j)
k

)
(7.2)

To be consistent, all tasks in τ (ij) must have the same priority values in both τ (i) and τ (j); oth-

erwise, the task will be a member of ϑ(ij). The function hp (A, τ`) is defined for τ` ∈ τ (i) and

a subset A ⊆ τ (i) as {τk ∈ A|τ` 4 τk} (note hp (A, τ`) includes τ`). We also define the set of

lower-priority tasks as lp (A, τ`)
def
= A\hp (A, τ`). For flexibility, we overload both hp (A, ρv) and

lp (A, ρv) with a priority value ρv ∈ ρ as {τ` ∈ A|(τ`) ≤ ρv} and A \ hp (A, ρv) respectively. We

assume uninterrupted execution for non-preemptive region of a task τ` withinM; therefore, the

maximum lower-priority blocking for a task τ` due to non-preemptive execution of lower-priority

tasks of the set A is denoted B(A, τ`). B(A, τ`) can be obtained from max
τk∈lp(A,τ`)

{nek}.

91

7.3 FP Schedulability Analysis

Traditional schedulability analysis for unimodal systems differs from multi-modal systems, that

support software/hardware modes, in ways the total requests and processing resource are quanti-

fied. To improve the accuracy of the schedulability analysis with less pessimism, characterizing

the minimum supply with respect to a mode-change is important. In the previous chapter, we

defined and quantified the minimum resource-execution supply function with respect to an MCR

which are summarized as follows.

Definition 13 (mcr-sbfs) For a mode-change request mcrk
def
= (M (i),M (j), tk), the functions

βiprior(t), βi,jtrans (t), and βi,jpost (s, t) quantify the minimum execution respectively prior to mcrk

(i.e., [tk− t, tk]) guaranteed by Ω(i), during the transition after mcrk (i.e., [tk, tk + t]) guaranteed

by Ω(ij) and Ω(j), and beyond the transition after mcrk (i.e., [tk +δij−s, tk +δij + t]) guaranteed

by Ω(ij) and Ω(j) where 0 ≤ s ≤ δij . Upper bounds for these functions can be obtained as follows

(derived in Section 6.1.2):

βiprior(t) ≥ aΘ(i) + min
(

Θ(i),
(
t−
(
(a+ 1)Π(i) −Θ(i)

))
+

)
(7.3)

βi,jtrans(t) ≥ bΘ(ij) + cΘ(j)

+ min
(

Θ(ij),
(
min(t, δij)−

(
bΠ(ij) + ∆(ij) −Θ(ij)

))
+

)

+ min
(

Θ(j),
(
(t− δij)+ −

(
cΠ(j) + ∆(j) −Θ(j)

))
+

)
(7.4)

βi,jpost(s, t) ≥
dΘ(ij) + min

(
Θ(ij),

(
s−

(
(d+ 1)Π(ij) −Θ(ij)

))
+

)

+fΘ(j) + min
(

Θ(j),
(
t−
(
fΠ(j) + ∆(j) −Θ(j)

))
+

)
(7.5)

where a def
=
⌊

t
Π(i)

⌋
, b def

=
⌊

min(t,δij)

Π(ij)

⌋
, c def

=
⌊

(t−δij)+

Π(j)

⌋
, d def

=
⌊

s
Π(ij)

⌋
, and f def

=
⌊

t
Π(j)

⌋
.

We now derive a schedulability test following the same framework as the derivations of suf-

ficient schedulability analysis for unimodal systems. We utilize both response-time and request-

92

supply analysis. For response-time analysis, we adapt the strategy developed by Davis et al. [29].

For request/supply analysis, we obtain conditions to miss a deadline while scheduled by FP.

Next, we take the contrapositive of these conditions to obtain schedulability tests for multi-modal

systems.

A deadline miss may occur due to intra-mode issues (e.g. insufficient resources), or inter-

modes issues (e.g., remaining execution from a mode change request). To generalize the analysis,

we define following terms for different types of deadline misses. Assuming the system is not

schedulable, we consider the following scenario for schedulability analysis:

Deadline-Miss-Event (DME): The subsystem misses the first deadline after the k-

th mode change request mcrk = (M (i),M (j), tk). Suppose that td < tk+1 denotes

the earliest instant at which the FP-schedule misses a deadline for a job (τf,d) of task

τf . Let ts (< td) denote the latest time-instant before td that the system does not have

any active job of higher or equal priority than that of τf .

We address the interval [ts, td] as a busy-interval. Based on the distribution of [ts, td] with respect

to mcrk, the tasks/resources that contribute to request/supply could be different (Figure 7.2).

• BI1: contained by the execution of a single mode M (j) (i.e., tk + δij ≤ ts, td ≤ tk+1).

• BI2: contained by a transition interval past mcrk (i.e., tk ≤ ts ≤ tk + δij and tk ≤ td ≤
tk + δij).

• BI3: starts at the transition period, but ends in M (j) (i.e., tk ≤ ts < tk + δij and tk + δij <

td ≤ tk+1).

• BI4: starts prior to tk (i.e., prior to M (j) of mcrk) and ends during transition (i.e., ts < tk <

td ≤ tk + δij).

• BI5: starts prior to tk (i.e., in any mode prior to M (j) of mcrk) and ends in M (j) (i.e.,

ts < tk, tk + δij < td ≤ tk+1).

93

tk

time
M (j)M (i)

a

16b d
s φ

e

tk + δ(ij)

c
φ

φ

xx
x

x

Figure 7.2: Busy intervals: arrows depict possible distributions of [ts, td]

We assume J is the set of higher or equal priority jobs that are active during the interval [ts, td].

The jobs of J may be blocked by non-preemptive execution of a lower-priority job; however, this

priority-inversion may occur once at the start of [ts, td]. We denote this lower-priority blocking

as b. We also assume that η(J, ts, ti) denotes the total execution requests in the interval [ts, ti]

for the job set J . As there is a missed deadline at td and the processor was continuously busy in

[ts, td], the following must be true for J :

∀ti ∈ [ts, td] : b+ η(J, ts, ti) > β(ts, ti) (7.6)

where β(ts, ti) is the supply received for the interval [ts, ti]. As we are considering non-preemptive

systems, there may be multiple jobs from the task with the missed deadline. Based on interval

distributions, the sets of tasks that constitute η(J, ts, t) are different. We start with BI1, BI2, and

BI3 as the analysis is similar to unimodal systems, which gradually develops the concepts for the

analysis with carry-in.

7.3.1 Individual Mode Schedulability

For BI1, BI2, and BI3, higher-priority old-mode jobs must be finished before ts (by definition of

busy interval). In these cases, the tasks that constitute η(J, ts, ti) are a subset of M (j). In the next

three lemmas, we develop necessary conditions of deadline misses for busy intervals of type BI1,

BI2, and BI3.

With BI1 and BI2, the task set remains the same (i.e., τ (j) and τ (ij), respectively) for the entire

busy interval; however, the analysis by Davis et al. [29] to address non-preemptivity will not

94

apply directly due to non-continuous execution of periodic resources. We define the largest busy-

interval and response time in the following theorem. We assume the active taskset τ (f) could be

either τ (j) or τ (ij) for BI1 or BI2.

Theorem 4 A critical instant, with type either BI1 or BI2, for a job of task τ (f)
` ∈ τ (f) may

occur when one of its jobs is released with higher-priority jobs immediately after the processing

resource starts executing the largest non-preemptive task in τ (f).

The proof for the preceding theorem is skipped as it follows from unimodal schedulability.

For the largest busy-interval, Davis et al. [29] considered continuous resource which will not

apply for periodic resources. We extend the analysis as follows:

For a MM system, the largest busy-interval L(f)
` for a task τ

(f)
` ∈ τ (f) with BI1 and BI2

depends on both request and supply as follows where m ∈ N:

L(f)
`,0

def
= B(τ (f), τ

(f)
`) + e

(f)
` 7.7a

L̄(f)
`,m

def
=

B(τ (f), τ

(f)
`) +

∑

τ
(f)
k ∈hp

(
τ

(f)
` ,τ (f)

)
⌈

L(f)

`,m

p
(f)
k

⌉
× e(f)

k

 7.7b

L(f)
`,m+1

def
= na +

⌊
¯L(f)

`,m

Θ(f)

⌋
× Π(f) + µ≥0(ps) · [Π(f) −Θ(f) + ps] 7.7c

(7.7)

where na def
= Π(f) + ∆(f) − 2Θ(f) and ps def

= L̄(f)
`,m −

⌊
¯L(f)

`,m

Θ(f)

⌋
× Θ(f). L(f)

` takes the value of L(f)
`,m

at the convergence for the minimum m such that L(f)
`,m = L(f)

`,m+1.

The recurrence initializes a busy-interval length with the maximum blocking time and the

execution time for a task τ (f)
` in Equation 7.7a. Equation 7.7b quantifies the total requests in a

busy-interval taken multiple jobs into account. As mentioned earlier, traditional response time

analysis is not sufficient due to the assumption of continuous resource execution; therefore, Equa-

tion 7.7c accounts for supply to complete the request calculated in Equation 7.7b. First part na

of Equation 7.7c is due to the maximum resource unavailability at the beginning of a mode. The

last part is due to the fraction of the resource cycle required for L̄(f)
`,m −

⌊
¯L(f)

`,m

Θ(f)

⌋
×Θ(f).

95

As shown by Davis et al. [29], the largest response time for non-preemptive setting is no

longer for the first job in case of synchronous arrival. To be schedulable, we need to make sure

that all the jobs meet their deadlines. We consider in total Y = dL(f)
` /p

(f)
` e numbers of jobs. The

response time for y-th job is denoted by R(f)
` (y). So, for any task τ (f)

` ∈ τ (f), the response time

R
(f)
`

def
= maxy=1...Y {R(f)

` (y)} must be less than d(f)
` . To calculate R(f)

` (y), we adapt an iterative

approach as follows (k ∈ N)

R
(f)
`,0 (y)

def
= B(τ (f), τ

(f)
`) + (y − 1)× e(f)

`

R̄
(f)
`,k (y)

def
= R

(f)
`,0 (y) +

∑

τ
(f)
c ∈hp

(
τ (f)\τ (f)

` ,τ
(f)
`

)
⌈
R

(f)
`,k (y)

p
(f)
c

⌉
× e(f)

c

R
(f)
`,k+1(y) = na +

⌊
R̄

(f)
`,k

Θ(f)

⌋
× Π(f)

+µ≥0(ps) · [Π(f) −Θ(f) + ps]

(7.8)

where na def
= Π(f) + ∆(f) − 2Θ(f) and ps def

= R̄
(f)
`,k (y) −

⌊
R̄

(f)
`,k (y)

Θ(f)

⌋
× Θ(f). Equation 7.8 looks for

the start time of y-th job. If the job is not fully non-preemptive, Equation 7.9 (Line 1) calculates

R
(f)
` (y) using the start of the next job.

R
(f)
` (y) =

R

(f)
` (y + 1)− (y − 1)× p(f)

` , if e
(f)
` > ne(f)

`

R
(f)
` (y)− (y − 1)× p(f)

` + e
(f)
` , otherwise.

(7.9)

Theorem 4 implies that we may consider the synchronous arrival sequence where each task

in the new mode produces a job at time tk + δij and subsequent jobs as soon as legally permitted

by the task specification. The analysis of Equations 7.8 and 7.9 are obtained by extending the

response time analysis of Davis et al. [29] to account for the non-availability of the periodic

resources and some preemptive execution.

With BI3, unchanged tasks may start during the transition. So, we may not be able to align all

jobs at the start of the busy interval especially all new-mode added tasks. The following theorem

addresses unchanged-task schedulability in BI3.

96

Theorem 5 For a mcrk = (M (i),M (j), tk), a task τf (∈ τ (ij)) will not miss a deadline due to BI3

if

∀s, φ ∈ R : (0 ≤ s < δij) ∧ (φ > 0) ∧ (s+ φ ≥ df) ::

∃t ∈ [max(s, s+ φ− df), s+ φ] ::
∑

τ
(ij)
c ∈hp(τ (ij),τf)

rbf
(
τ

(ij)
c , t

)
+

∑
τ

(j)
c ∈hp(τ (j)\τ (ij),τf)

rbf
(
τ

(j)
c , (t− s)+

)

+B(τ (ij), τf) ≤ βi,jpost (s, (t− s)+)

(7.10)

Proof: Assume there is a deadline miss due to BI3. Consider the scenario in Figure 7.3:

ts tk + δijtk td

φs

Figure 7.3: Deadline miss event for BI3.

As the processor is continuously busy with higher-priority tasks, the following must be true

by Equation 7.6:

∀ti ∈ [ts, td] : b+ η(τ (j), ts, ti) > β(ts, ti) (7.11)

The total request η(τ (j), ts, ti) is coming from higher-priority unchanged task and new-mode

added tasks. In order to achieve known upper bound, we apply job reorganization (similar to the

critical instant theorem for unimode scheduling) without reducing the total workload. We shift

all tasks to start as soon as legally allowed in the interval to achieve the maximum workload. This

shift will only increase the requests in the interval.

1. hp
(
τ (ij), τf

)
: Move the first job of all tasks to ts and allow all tasks to generate jobs as

soon as possible. This is valid as the processor is continuously busy and we are increasing

the workload.

2. hp
(
τ (j) \ τ (ij), τf

)
: Move the first job of all task to tk + δij and allow all tasks to generate

jobs as soon as legally allowed.

97

For 1), the first rbf of Equation 7.10 is an upper bound and for 2) the second rbf is an upper bound.

Furthermore, B(τ (ij), τf) is an upper bound on b and βi,jpost(s, t) is a lower bound on β(ts, ti). So,

the preceding transformation will violate existential quantifier at Line 2 for Equation 7.10.

Corollary 8 For a mcrk = (M (i),M (j), tk), a task τf (∈ τ (j) \ τ (ij)) will not miss a deadline due

to BI3 if

∀s, φ ∈ R : (0 ≤ s < δij) ∧ (φ > 0) ∧ (df ≤ φ) ::

∃t ∈ [s+ φ− df , s+ φ] ::
∑

τ
(ij)
c ∈hp(τ (ij),τf)

rbf
(
τ

(ij)
c , t

)
+

∑
τ

(j)
c ∈hp(τ (j),τf)

rbf
(
τ

(j)
c , t− s

)

+B(τ (ij), τf) ≤ βi,jpost(s, (t− s)+)

(7.12)

New-mode added tasks (i.e., τ (j) \ τ (ij)) will not miss a deadline before tk + δij + df ; therefore,

Corollary 8 differs in the bound of φ and t from Theorem 5.

For intra-mode schedulability, we did not have to consider remaining execution requests from

the old mode. We denote the execution requests that originate at some old mode but not fin-

ished at an MCR as carry-in. To prevent a scenario described by the intervals BI4 and BI5, we

must account for carry-in with the schedulability analysis. The subsequent section on inter-mode

schedulability will require reasoning about carry-in execution.

7.3.2 Inter-Mode Schedulability

To determine the schedulability with less pessimism, we must carefully quantify the workload

that may originate at the old mode but not completed. Over-estimation of carry-in results in

pessimism in the schedulability analysis, whereas the under-estimation may generate incorrect

results. For obtaining a better insight, we first characterize carry-in for a concrete sequence

of mode change requests mcr0,mcr1,mcr2, . . . where timestamps for each MCR are known a

priori. Next, we extend the results for the upper bound on carry-in for any sequence of MCRs.

We denote such sequence as (non-concrete) MCRs. We adopted a similar technique used in the

previous chapter (i.e., Fisher and Ahmed [35]) to calculate the carry-in for EDF.

98

Maximum Carry-In for Concrete MCRs

Definition 14 (carry-in) For mcrk = (M (i), M (j), tk), the carry-in ci(mcrk, τf) is the maximum

remaining execution at tk+δij from higher-priority finished tasks hp
(
τ (i), τf

)
with arrival before

tk and from unchanged tasks (i.e., hp
(
τ (ij), τf

)
) with arrival before tk + δij .

We quantify carry-in ci(mcrk, τf) in terms of request-bound-function. So, we define mode-

change-rbf that calculates rbf with respect to an MCR. The following paragraphs derive bounds

using mode-change-rbfs for different types of tasks.

Definition 15 (mode-change-rbf) Given mcr0,mcr1, . . ., for any mcrk = (M (i),M (j), tk), and

x, φ ∈ R≥0, the mcrbfk(τ
(i)
` , x, φ) is the maximum execution request of jobs of τ (i)

` in the interval

[tk − x, tk + φ].

Lemma 19 Given mcr0,mcr1,mcr2, . . ., for any mcrk = (M (i),M (j), tk), τ (i)
` ∈ ϑ(ij), and

x, φ ≥ 0, mcrbfk(τ
(i)
` , x, φ) is maximized by job arrival sequence where the last job of τ (i)

`

arrives just before tk and previous jobs arrive as late as legally allowed.

The proof of this lemma is left to the appendix since they are similar to the ones found in [35].

The following corollary computes the upper bound by counting jobs in that sequence:

Corollary 9 For mcrk = (M (i),M (j), tk), τ (i)
` ∈ ϑ(ij), and x, φ ≥ 0,

mcrbfk
(
τ

(i)
` , x, φ

)
≤
(⌊

x

p
(i)
`

⌋
+ 1

)
× e(i)

` . (7.13)

Lemmas 20 and 21 generalize the preceding technique to calculate an upper bound on the

execution requests for aborted and unchanged tasks. The proof for Lemma 20 can be found in

the appendix, whereas the proof for Lemma 21 is omitted since unchanged tasks behave identical

to standard unimode tasks in this scenario.

99

Lemma 20 For mcrk = (M (i),M (j), tk), τ (i)
` ∈ α(ij), x, φ ≥ 0, where s def

= x−
⌊

x

p
(i)
`

⌋
p

(i)
` ,

mcrbfk
(
τ

(i)
` , x, φ

)
≤
⌊

x

p
(i)
`

⌋
· e(i)

` + µ≥0(s) ·min
(

s, e(i)
`

)
. (7.14)

Lemma 21 For mcrk = (M (i),M (j), tk), x, φ ≥ 0,

mcrbfk
(
τ

(ij)
` , x, φ

)
= rbf(τ (ij)

` , x+ φ). (7.15)

The upper bounds on mcrbfk are independent of the actual timestamps of a mcrk, so we may

interchangeably denote this function simply by mcrbf (i.e., suffix removed). Observe that mcrbf

does not consider any of the preceding mode-change requests. So, we define Ψ(mcrk, φ, τf) that

accounts for carry-in and quantifies the maximum remaining execution of higher-priority finished

tasks hp
(
ϑ(ij), τf

)
that arrive prior to tk and the maximum remaining execution of unchanged

tasks hp
(
τ (ij), τf

)
that arrive before tk + φ. Using Lemmas 19, 20, 21 and Corollary 9, we may

obtain an upper bound on Ψ and ci as follows:

Lemma 22 Consider φ ≥ 0 and successive mode change requests mcr0,mcr1, . . .; for any

mcrk−1 =
(
M (h), M (i), tk−1) and mcrk = (M (i),M (j), tk), if there are no deadline misses prior

to tk−1, the upper-bound on carry-in rbf at φ after mcrk is as follows:

Ψ(mcrk, φ, τf) ≤ sup
0≤x≤tk−tk−1−δhi

∑
τ

(i)
` ∈hp(τ (i),τf)

mcrbf
(
τ

(i)
` , x, φ

)

+IF (x ≥ (tk − tk−1 − δhi),
ci(mcrk−1, τf), B(τ (h), τf)

)

−βiprior(x)

(7.16)

100

such that ci(mcrk−1, τf) is upper bounded by the minimum of

∑
τ

(hi)
` ∈hp(τ (hi),τf)

e
(hi)
` +

∑
τ

(h)
` ∈hp(ϑ(hi),τf)

e
(h)
`

+
∑

τ
(hi)
` ∈hp(τ (hi),τf)

⌊
δhi

p
(hi)
`

⌋
e

(hi)
`

+B(τ (h), τf)− βi,jtrans(δhi)

+

(7.17)

and

max

 Ψ(mcrk−1, δhi, τf)− βh,itrans(δhi) ,

∑
τ

(h)
` ∈hp(τ (hi),τf)

e
(h)
`

 . (7.18)

For improving readability, the detailed proof is sent to the appendix. For intuition, Equation 7.16

calculates the maximum carrying considering all possible busy intervals around tk. Equation 7.18

gives the carry-in that the modeM (i) may start with after the immediate previous MCR for which

Equation 7.17 is the upper bound.

Max Carry-In for Non-Concrete MCRs

Calculation of carry-in developed so far requires the full knowledge of all past MCRs which may

not be practicable. In case of non-concrete MCRs, the carry-in can be upper-bounded by applying

an iterative calculation. We use the notations cii,j to denote the maximum carry-in execution and

Ψi,j as carry-in request-bound function for a mode change from M (i) to any other mode M (j).

Definition 16 (max-carry-in) The cii,j(τf) for a mode change fromM (i) to any other modeM (j)

is an upper bound at time tk + δij on the remaining execution, with priority as τf , from finished

tasks (that arrive prior to tk) and unchanged tasks (that arrive prior to tk + δij).

Definition 17 (max-mode-change-rbf) Given a mode M (i) starting with carry-in ζ , for a mode

change from M (i) to M (j) at time tk, the Ψi,j(ζ, φ, τf) is the maximum higher-priority remaining

execution (over any legal sequence of MCRs prior to tk) of ϑ(ij) (that arrive prior to tk) and of

τ (ij) (that arrive prior to tk + δij).

101

The preceding function can be calculated as the Ψi,j(ζ, φ, τf)
def
= supx>0 Ψi,j

x (ζ, φ, τf). An upper

bound on this function immediately follows from Equation 7.16:

Ψi,j
x (ζ, φ, τf)≤

∑
τ

(i)
` ∈hp(τ (i),τf)

mcrbf
(
τ

(i)
` , x, φ

)

+IF
(
x ≥ (tk − tk−1 − δimax), ζ, B(τ (i), τf)

)

−βiprior(x)

(7.19)

where δimax
def
= maxh δhi. As in Equation 7.19, the calculation of carry-in rbf at M (j) is dependent

on the carry-in ζ that the previous mode M (i) may receive as carry-in. So, unlike a concrete

sequence, the exact calculation of the carry-in at M (j) is difficult. So for the upper bound, we

evaluate the sequence cii,j0 (τf), cii,j1 (τf), cii,j2 (τf), . . . for all i, j(i 6= j) ∈ {1, . . . , q} where (for

any η ∈ N),

cii,jη (τf)
def
=

0, if η = 0,

min

Eij(τf), max

h=1,...,q
h6=i

Fij({cih,iη−1(τf)}, τf)

 , if η > 0.

(7.20)

where Eij(τf) equals

∑
τ

(ij)
` ∈hp(τ (ij),τf)

e
(ij)
` +

∑
τ

(i)
` ∈hp(ϑ(ij),τf)

e
(i)
`

+
∑

τ
(ij)
` ∈hp(τ (ij),τf)

⌊
δij

p
(ij)
`

⌋
e

(ij)
`

+B(τ (i), τf)− βi,jtrans(δij)

+

, (7.21)

and Fij(ζ, τf) equals

max

 Ψi,j(ζ, δij, τf)− βi,jtrans(δij) ,

∑
τ

(i)
` ∈hp(τ (ij),τf)

e
(i)
`

 . (7.22)

102

For any pair of modesM (i) andM (j), we need to show that the carry-in after `-th MCR is always

bounded from above by cii,j` (τf).

Lemma 23 For a mode-change request mcrk = (M (i), M (j), tk) following a sequence of k mode

change requests, mcr0,mcr1 . . .mcrk−1, the carry-in with priority as τf is at most cii,jk (τf) if there

is no deadline miss prior to tk.

A formal proof can be found in the appendix. Intuitively, we show that the sequence cii,j0 (τf),

cii,j1 (τf), cii,j2 (τf), . . . for all i, j(i 6= j) ∈ {1, . . . , q} is monotonically non-decreasing and the

maximum value for each cii,j` (τf) is bounded from above by Equation 7.21. The value of cii,j(τf)

can be obtained from the convergence of this sequence. The convergence occurs at the smallest

g ∈ N such that ∀i, j(i 6= j) ∈ {1, . . . , q}, cg(M (i),M (j), τf) = cg−1(M (i),M (j), τf). Using

carry-in, the following sections establish conditions for a missed deadline. We utilize ζj(τf)

which equals to max
i=1,...,q∧i 6=j

{cii,j(τf)}.
The largest busy-interval for BI4 and BI5 partially depends on carry-in. While calculating the

longest busy-interval, Equation 7.7 does not consider the carry-in. The following corollary is an

immediate extension:

Corollary 10 For a MM system, the busy-interval for a task τ (j)
` after a mode-change request

depends on both request and supply. The largest busy-interval L(j)
` is a recurrence as follows:

L(j)
`,0

def
= ζj(τ

(j)
`) +B(τ

(j)
` , τ (j)) + e

(j)
`

L̄(j)
`,m

def
= L(j)

`,0 +
∑

τ
(j)
k ∈hp

(
τ (j),τ

(j)
`

)
⌈

L(j)
`,m

p
(j)
k

⌉
× e(j)

k

L(j)
`,m+1

def
= na +

⌊
¯L(j)

`,m

Θ(j)

⌋
× Π(j) + µ≥0(s) · [Π(j) −Θ(j) + s]

(7.23)

where na def
= Π(j) + ∆(j) − 2Θ(j) and s def

= L̄(j)
`,m+1 −

⌊
¯L(j)

`,m+1

Θ(j)

⌋
×Θ(j).

Using the largest busy-interval length, we develop analysis for unchanged, finished, and new-

mode added tasks. The function Ψi,j
x (ζ, φ, τf) essentially considers rbf for all higher-priorities in

103

the interval length x+φ, so it will over-estimate for the task τf . We consider demand analysis for

only τf since its last job has deadline within the busy-interval and thus all of its jobs in the busy

interval have both arrivals and deadline in the interval. So, to reduce pessimism, we consider a

mix of demand-bound and request-bound analysis in the function Ψ̂ as follows:

Ψ̂i,j
x (ζ, φ, τf) ≤

∑
τ

(i)
` ∈hp(τ (i)\τf ,τf)

mcrbf
(
τ

(i)
` , x, φ

)

+
(⌊

(x+φ−df)+

pf

⌋
+ 1
)
× ef

+IF
(
x ≥ (tk − tk−1 − δimax), ζ, B(τ (i), τf)

)

−βiprior(x)

(7.24)

The second line of Equation 7.24 (i.e., (b(x+ φ− df)+/pfc +1) × ef) considers all jobs τf

that have arrival and deadline in x+ φ length interval. Our supply analysis requires deduction of

the transition period supply, for which, we utilize the following function:

RBFo(ζ, x, φ, τf) =

Ψ̂i,j
x (ζ, φ, τf)− βi,jtrans(δij), if Ψ̂i,j

x (ζ, δij, τf) ≥ βi,jtrans(δij)
∑

τ
(ij)
c ∈hp(τ (ij),τf)

rbf
(
τ

(ij)
c , (φ− δij)+

)
, otherwise.

(7.25)

The above equation considers jobs that could be generated after tk + δij if supply during

transition is greater than carry-in jobs. As the RBFo calculates request bound of tasks that may

belong to the old mode, we take the suffix ‘o’ as in ‘old’. Theorems 6 and 7 utilize RBFo

function to calculate contribution from old-mode finished tasks ϑ(ij) and unchanged tasks τ (ij)

while checking schedulability of M (j) after a mode change from M (i).

104

Theorem 6 For a mcrk = (M (i),M (j), tk), a finished task τ (i)
` (∈ ϑ(ij)) is schedulable if

∀φ ∈ [0, d
(i)
`],∀x : d

(i)
` ≤ x+ φ

∃t ∈ [max(x, x+ φ− d(i)
`), x+ φ],mt def

= (t− x− δij)+

RBFo(cii,j(τ (i)
`), x, t− x, τ (i)

`)

+
∑

τ
(j)
c ∈hp

(
τ (j)\τ (ij),τ

(i)
`

)rbf
(
τ

(j)
c ,mt

)
≤ βi,jpost(0,mt)

(7.26)

Proof: Theorem 6 checks whether a single job that may start at tk + φ − d
(i)
` would receive

enough execution supply to complete its requirement before tk + φ. The variable t in the above

equation denotes the length of intervals that start with tk − x and ends before tk + φ.

We sketch a proof of this theorem for a busy interval that originates (let us say at tk−x) while

executing in a previous mode and finishes (let us say at tk + φ) in M (j) where the length of the

busy-interval is x + φ. As there could be a single job of τ (i)
` in M (j), we consider all possible

scenarios related to the execution of a job of τ (i)
` that arrives in M (i), but missed its deadline in

the next mode M (j). The following is a case-based study:

1. §tk−(tk−1 +δhi) > x. The first case assumes that the origin tk−x is in immediate previous

mode M (i). Now we reorganize the jobs in [tk − x, tk + φ] without reducing the workload

to achieve a known sequence for the upper bound on requests. We align the jobs of τ (i)
`

with respect to tk + φ; that is all the previous jobs before the one that missed the deadline

arrive as late as legally allowed. The first job of each τ (ij)
k ∈ hp

(
τ (ij), τ

(i)
`

)
, could be

moved to tk − x and all the subsequent jobs could arrive as soon as legally possible. The

higher-priority aborted jobs and the finished task of τ (i) could be reorganized applying

the sequence of Lemmas 19 and 20 to obtain the largest interference while in M (i). The

exact upper bound on the request from higher-priority tasks is quantified in RBFo (i.e., the

first line of Equation 7.24). There could be blocking from lower-priority tasks which is

addressed at Line 3 of Equation 7.24. Now we may need to consider two additional cases

based on φ:

105

(a) §φ > δij . There could be jobs from new-mode tasks. For this case, the LHS of Line

4 of Equation 7.26 quantifies the upper bound of jobs considering the fact that all the

new-mode added tasks may generate at tk + δij . The RHS of Line 4 quantifies the

minimum supply in M (j).

(b) §φ ≤ δij . There will not be any job requests and execution supply inM (j) as the busy-

interval terminates before tk+δij . Both sides of the inequality at Line 4, Equation 7.26

are evaluated to zero for this case.

For the above two cases, the request will be evaluated greater than supply for a missed

deadline. So, if Equation 7.26 holds, there is no way a job from finished task would miss a

deadline in the new-mode after a mode-change request.

2. §tk−(tk−1 +δhi) ≤ x. This second case considers that the origin of the busy-interval could

be any previously executing mode before M (i). Without loss of generality, we further

assume that the system is in mode M (i) for x1 amount of time and for x−x1 in all previous

modes. In addition to the maximum startup carry-in cii,j(τ (i)
`), for the interval [tk−x1, tk+

φ], there could be at most b(x1 + φ)/p
(ij)
k ce

(ij)
k + min(e

(ij)
` , x1 +φ−b(x1 + φ)/p

(ij)
k cp

(ij)
`),

but we considered (1 + b(x1 + φ)/p
(ij)
k c)e

(ij)
k as a safe upper-bound for all possible x1

values.

Considering all the above cases, we may claim that if Equation 7.26 holds, no job will miss a

deadline.

Example 1 To illustrate Theorem 6, we utilize the multimode system in Figure 7.1. Assume

there are no transition periods between modes (i.e., δ12 = 0 and δ21 = 0) and N = 2 for all

modes. Now consider any two MCRs mcrk−1 = (M (1),M (2), tk−1) and mcrk = (M (2),M (1), tk)

separated by 20 units (e.g., tk−1 = 20 and tk = 40). We consider all tk + φ where φ ∈ [0, 10]

(Line 1 of Equation 7.26) as the deadline for the last job of τ (2)
3 in the new-mode M (1). Using

the second universal quantifier (Line 1), we evaluate all valid busy intervals of length x (e.g.,

φ = 1 requires all x ≥ 9). The existential quantifier for t (Line 2) checks whether the last

106

job receives sufficient supply over any possible busy interval. Finally, RBFo (Line 3) performs

request/demand based analysis for each t. For φ = 1 and x = 20, t must be in [20, 21]. For

t = 20, the last two terms of Equation 7.26 are zero as mt = 0, so the existential quantifier

becomes true as 6 + 6 + 2 + ζ < β2
prior(20) + β2,1

trans(0) + β2,1
post(0, 0) where the carry-in ζ for τ (2)

3

in M (2) is 3, and β2
prior(20) = 20.

For the Theorem 6, we consider a single job after an MCR as there could be only one job

possible from a finished task after a mode change. For unchanged tasks, we apply a similar

approach and consider each tk + φ as a possible candidate for a deadline miss. We start looking

for a single deadline miss from the end of a busy-interval. This is sufficient as all φ are considered

for a deadline misses.

Theorem 7 For a mcrk = (M (i),M (j), tk), an unchanged task τ (ij)
` (∈ τ (ij)) is schedulable if

∀0 < φ ≤ L(ij)
` ,∀x : d

(ij)
` ≤ x+ φ

∃t ∈ [max(x, x+ φ− d(ij)
`), x+ φ],mt def

= (t− x− δij)+

RBFo(cii,j(τ (ij)
`), x, t− x, τ (ij)

`)

+
∑

τ
(j)
c ∈hp

(
τ (j)\τ (ij),τ

(j)
`

)rbf
(
τ

(j)
c ,mt

)
≤βi,jpost(δij,mt).

(7.27)

Proof: The proof is very similar to the Theorem 6; therefore, we provide here a proof sketch for

a busy interval that originates (let say at tk−x) while executing in some previous mode and ends

at (let say tk + φ) in M (j). We consider the last job of an unchanged task τ (ij)
` for request/supply

analysis in a φ + x length interval. We reorganize jobs in [tk − x, tk + φ] to a known sequence

for the upper bound on requests. We align the jobs of τ (ij)
` with respect to tk + φ; that is, all

the previous jobs before the one that missed the deadline arrive as late as legally allowed. We

consider two cases as follows:

1. §tk − (tk−1 + δhi) > x. The first case assumes that the origin is in immediate previous

mode M (i). The first job of each τ (ij)
k ∈ hp

(
τ (ij), τ

(ij)
`

)
, where k 6= `, could be moved

107

to tk − x and all the subsequent jobs could arrive as soon as possible. The higher-priority

aborted jobs and the finished task of τ (i) could be reorganized following the sequence of

Lemma 19 to obtain the largest interference while in M (i). The exact upper bound on the

execution is quantified in RBFo (the first line of Equation 7.24).

2. §tk − (tk−1 + δhi) ≤ x. This second case considers the origin could be any executing

previous mode before M (i). Without loss of generality, we further assume that the system

is in mode M (i) for x1 amount of time, and x − x1 in all previous modes. In the inter-

val [tk − x1, tk + φ], there could be at most b(x1 + φ)/p
(ij)
k ce

(ij)
k + min(e

(ij)
` , x1 + φ −

b(x1 + φ)/p
(ij)
k cp

(ij)
`), but we quantified (1 + b(x1 + φ)/p

(ij)
k c)e

(ij)
k as a safe upper-bound.

Considering all the above cases, we may claim that if Equation 7.27 holds, then no way a job can

miss a deadline.

Using the same technique, the schedulability for new-mode added tasks with BI4 and BI5 can

be achieved as follows, using the upper-bound on busy-interval L(j)
` from Equation 7.23.

Corollary 11 For a mcrk = (M (i),M (j), tk), a new-mode task τ (j)
` ∈ τ (j) is schedulable if

∀φ ∈ [δij + d
(j)
` ,L(j)

`],∀x > 0

∃t ∈ [x+ φ− d(j)
` , x+ φ],mt def

= (t− x− δij)+

RBFo(cii,j(τ (j)
`), x, t− x, τ (j)

`)

+
∑

τ
(j)
c ∈hp

(
τ (j)\τ (ij),τ

(j)
`

)rbf
(
τ

(j)
c ,mt

)
≤ βi,jpost (0,mt) .

(7.28)

As in the preceding corollary, for new-mode added tasks we do not need to check φ < δij+d
(j)
`

as they are not allowed to generate jobs before tk + δij .

§Algorithm & Complexity. By implementing Theorems 5, 6 and 7, and Corollaries 8 and 11,

we develop our algorithm schedulability using bounded iteration (SUBI). Theorem 6, 7, and

Corollary 11 check all possible x in the old-mode. Using the similar technique by Fisher and

Ahmed [35], we include Lemma 26 in the Appendix that limits the number of x to be checked

108

in an old-mode. In addition, the length of busy-intervals are pseudo-polynomial when utilization

u(i) is less than Θ(i)/Π(i) of the resource. Therefore, the complexity of SUBI for checking all the

conditions are pseudo-polynomial.

§Hardware non-preemptivity. We have so far addressed non-preemptive execution from soft-

ware/application perspective. That is, the analysis assumes that other tasks within the same ap-

plication may not preempt a task in a non-preemptive region; however, the resource may not

be continuously available to the application. Our analysis continues to hold if we assume that

the hardware resource cannot be preempted during a non-preemptive region. However, if a sub-

system co-executed with other subsystems on the same processor, additional “resource-level”

schedulability analysis would be required to deal with such “overruns” (see [14] for details).

7.4 Simulations

We perform two sets of experiments: radar case study and schedulability comparison.

7.4.1 Case Study

To verify the effectiveness of the proposed schedulability, we develop a simple automotive adap-

tive cruise control (AACC) simulation for demonstrating the practicability of multimode system

with non-preemptive tasks. We simulate fixed priority non-preemptive tasks that interact with

the external environment through a 77GHz radar. The system estimates the distance of the front

vehicle (target), and alerts if the target vehicle is too close. The radar system (implemented us-

ing MATLAB Phased Array Toolbox [65]) uses frequency modulated continuous wave (FMCW)

technique [46] to measure the target distance and velocity. We performs Doppler estimation [46]

to measure distance and velocity of a target moving vehicle. We skip all the details parameter of

the radar transmitter/receiver as not relevant to this research, but could be found in Mathworks

website [65].

For FMCW radars, the sweep time (from the start of sending waveform through air to the

109

finish time of receiving reflected signal) depends on the required maximum distance. For exam-

ple, the sweep time is 7.33 µ-seconds [65] for the maximum distance of 200m, whereas it is 1.83

µ-seconds for 50m. We use two radar tasks: short range (SR) and long range (LR) depending on

the target distance (i.e., 45m). For moving targets, the accuracy depends also on the number of

sweeps used in the measurement. If the target is too close, a higher accuracy is desired; so, we

use 16 and 8 sweeps correspondingly with SR and LR radar tasks. Therefore, the worst case non-

preemptive executions time are approximately 40 µ-seconds and 80 µ-seconds for SR and LR

radar tasks, respectively. In addition, we introduce a control task (C) for tracking target distance

and controlling speed (properties listed in Table 7.1). To consume idle cycles, a low criticality

preemptive task (LC) with the least priority is always present for better resource utilization.

Table 7.2: Radar Case Study: Mode Resources.

Modes Capacity (µs) Period of Repetition (µs) Condition (m)
M (1) 100 100 D < 20
M (2) 100 100 D ∈ (20, 45]
M (3) 90 100 D > 45

We develop three modes for the AACC application to exploit SR and LR tasks with properties

listed in Tables 7.1 and 7.2. The mode transition occurs based on target distance (D in Table 7.2).

For comparison, we also simulate the AACC application using a single mode. Figure 7.4 demon-

strates 60 second simulation of AACC vehicle that follows a target approximately 40 ∼ 50m

from behind. The top graph is showing the percentage of error (measured distance - actual dis-

tance)/(actual distance) in the measurement. The bottom graph is showing reclaimed execution

Tasks WCET (µs) Priority Periods (µs)
e(i) M (1) M (2) M (3) Uni Mode

SR 40 1 160 200 0 0
LR 80 2 0 0 160 160
C 10 3 100 100 100 100

LC ∞ 4

Table 7.1: Radar Case Study: Tasks Distribution in Modes.

110

Figure 7.4: Radar Simulation: a) Error in distance measurement for unimode vs multi-
mode, b) Idle time reclamation for unimode vs. multimode.

through low criticality task which is at least 7% more for multimode. Using multimode, we ba-

sically exploit the smaller execution requirement of SR task. We perform other simulation with

target at most 40m away and observe higher reclamation with improved accuracy. This is due to

higher number of sweeps for M (1) and M (2) and less utilization. Prudent choices of modes and

parameters [4] may further improve efficacy which is discussed in the next chapter.

7.4.2 Schedulability Comparison

We are not aware of any multimode schedulability analysis that can address non-preemptive exe-

cution. To reaffirm the correctness, we perform simulations that compare SUBI with schedulabil-

ity analysis using reachability graph by Phan et al. [63]. We utilize synthetic tasks for comparison

with following parameters:

111

1. The total number of tasks in the system is 8. Task properties and priorities at each mode

are described in Table 7.3.

2. During a mode transition, jobs from task τ1 are considered as aborted jobs. Task τ5 is

unchanged between MCRs involving M2/M3.

3. The resource period (Π) and deadline (∆) are set to 10 for all modes. The offset δij is set

to Π and N (i) is set equal to 2 for all modes M (i).

In the simulation, we randomly generate a set of capacities (Θ(i)) where the total sum is

taken from the range [1, qΠ]. We execute SUBI and SURG for checking schedulability of the

subsystem. The graph at the top of the Figure 7.5 presents the percentage of ‘YES’ responses

out of 200 runs on each distinct summation of capacities (i.e., the value on the x axis). The

dashed line depicts the results for SURG, and solid line is for SUBI. The graph at the bottom

in Figure 7.5 presents the average elapsed time for deciding the schedulability over randomly-

generated capacities. For this particular subsystem, Figure 7.5 illustrates that SUBI does as well

as SURG and is clearly more computationally efficient.

Tasks Properties Priorities

e
(i)
` d

(i)
` p

(i)
` M1 M2 M3

1 1 10 10 1 - 1
2 3 30 30 2 2 -
3 4 40 40 - - 3
4 1 10 10 4 - -
5 1 20 20 - 3 3
6 3 24 24 - - 4
7 2 20 20 7 - -
8 3 30 30 - 1 -

Table 7.3: FP Schedulability Comparison: Tasks Properties.

112

0 5 10 15 20 25 30
0

20

40

60

80

100
Success

%
 S

ch
ed

u
la

b
le

SURG

SUBI

0 5 10 15 20 25 30
0

5

10

15

20

25
Time Comparison

Total Capacity

A
vg

. T
im

e
(s

ec
)

Figure 7.5: FP Schedulability Comparison: SURG vs SUBI.

7.5 Conclusion

In this report, we present an efficient FP-schedulability analysis for multi-modal systems. In

addition, our schedulability analysis for multi-modal systems can address non-preemptible exe-

cution of a task in a mode. Furthermore, we showed that our analysis can be done in tractable

time complexity; therefore, this result may be used to calculate more refined (near optimal) re-

source parameters by repetitive application of this schedulability with varying hardware parame-

ters which discussed in the next chapter (i.e., Ahmed and Fisher [4]).

Unlike SURG, we do not assume buffers for tasks; so, finished tasks cannot span more

than two mode-change requests. In addition, SURG supports hybrid scheduling where a group

of tasks (scheduled using EDF) of a mode are assigned to a single buffer, and all buffers are

scheduled using FP. Our future research will apply similar iterative approach, as shown in this

paper, for multi-modal system with hybrid scheduling to reduce complexity from exponential to

polynomial.

113

Appendix

Proof of Lemma 19 Let J be the set of jobs that arrive according to the sequence described in

the lemma with arrivals in [tk − x, tk). Assume a different sequence of jobs J ′ of τ (i) other than

J maximizes the total request over the interval. We will show by induction over the jobs of J ′

that we may transform J ′ into J without decreasing the total request. We denote the sequence

of jobs (in decreasing order of arrival) as j0, j1, . . . for J and j′0, j
′
1, . . . for J ′. Let j′k denote the

latest arriving job of sequence J ′ that does have the same arrival-time as jk in J (i.e, ji and j′i

arrive at identical times for i = 0, 1, . . . , k − 1). As jk arrives as late as legally possible, it must

be that j′k has an earlier arrival time than jk. Since jk has arrival in [tk − x, tk], moving arrival

time of j′k to that of jk will ensure that j′k is still in the interval and does not violate the minimum

interval constraint for τ (i)
` . Let’s call this new sequence with j′k moved to the corresponding jk

arrival as J ′′. It is clear that the total request of J ′′ does not decrease when compared to J ′. By

repeated application of this transformation, we may change J ′ to J without ever decreasing the

total request which implies that J also maximizes the total execution requests.

Proof of Lemma 20 The mcrbfk function needs to consider jobs that have only arrival in a given

interval. A job from α(ij) aborts at the time of a mode-change request; therefore, a regular rbf

for x will overestimate the total request. For any interval of length x, at most bx/p(i)
` c jobs have

their periods completely contained in the x-length interval (i.e., if a job arrives at t and both t and

t + p
(i)
` are in the x-length interval, it is completely-contained). There are at most dx/p(i)

` e jobs

that can arrive in such an interval (the last one may be only partially contained). Equation 7.14

includes the execution for the completely-contained jobs in the first term.

φx
tk

p
(i)

l
− d

(i)

l

tk − x

t

M (i)

tk − x + p(i) + d
(i)

l

tk − x+

⌊
x

p
(i)

l

⌋
p
(i)
l

Figure 7.6: Worst case arrival for aborted tasks.

114

The last partially-contained job in the interval [tk − x, tk] can arrive at the earliest at tk −
x + bx/p(i)

` cp
(i)
` . If x − bx/p(i)

` c is positive, the last job (dx/p(i)
` e-th) can get partial execution

of at most min(x − bx/p(i)
` cp

(i)
` , e

(i)
`) based on the interval length. Equation 7.14 accounts for

bx/p(i)
` c complete jobs along with the last (partially-executed) job which proves our lemma. (A

similar observation is made by Pedro et al. [60] in the context of application-only mode changes.)

Figure 7.6 illustrates the sequence described in the proof. Downward arrow denotes deadline for

each job, while rectangular region depicts execution requirements.

Proof of Lemma 22 Let t be the latest time after tk−1 + δ(hi) and the last time prior to tk during

which the processor is executing jobs with priority less than τf . Let x be tk − t. Thus, if t

equals tk−1 + δ(hi) (i.e., x equals tk − tk−1 − δ(hi)), clearly, the amount of carry-in from M (i)

to M (j) is at most the carry-in from mode M (h) (i.e., ci(mcrk−1)), plus the total higher or equal

priority requests generated minus the service received over [tk−1 + δ(hi), tk + φ]. If t is later than

tk−1 + δ(hi) (i.e., x < tk − tk−1 − δ(hi)), then the carry-in from M (i) to M (j) is at most the total

requests generated minus the service received over [tk−1 + δ(hi), tk + φ]. The upper bound for

these two cases is quantified by Equation 7.16.

To see that Equation 7.17 is an upper bound on the carry-in from mode M (h) to M (i), observe

that if there are no deadline misses prior to mcrk−1, then all jobs with deadlines prior to tk−1 have

completed execution. Thus, only (non-aborted) higher priority jobs of τ (h) can contribute to the

carry-in to M (i). (Note the constraint of Equation 5.2 prevents carry-in jobs from previous mode

changes). For higher or equal priority tasks of τ (hi), the contribution of these tasks to ci(mcrk−1)

is maximized if each job of τ (hi)
` ∈ τ (hi) arrives just prior to tk−1 + δ(hi). This accounts for the

first summation in Equation 7.17. For all tasks τ (h)
` ∈ ϑ(hi), there is at most one job of τ (h)

` active

at time tk−1. These jobs may contribute to the execution of ci(mcrk−1) only if the total execution

of ϑ(hi) and jobs of τ (hi) that may interfere over [tk−1, tk−1 + δ(hi)) (given that the last job of τ (hi)
`

arrives just prior to tk−1 + δ(hi)) is greater than the total supply over the transition period. This

accounts for the term inside the large ()+ in Equation 7.17.

To see that Equation 7.18 is also an upper bound on the carry-in from mode M (h) to M (i),

observe that each job carried-in (according to Definition 14) fromM (h) toM (i) must have priority

115

at least as τf ; therefore, by definition Ψ in Equation 7.16, Ψ(mcrk−1, δhi, τf) is clearly an upper

bound on the execution requests of jobs of τ (h) \ α(hi) over the interval [tk−1, tk−1 + δ(hi)]. We

subtract the minimum execution received over [tk−1, tk−1 + δ(hi)] to obtain the carry-in that is the

first part inside the max function in Equation 7.18. However, this carry-in is lower bounded by

the total higher priority unchanged tasks (i.e.,
∑

τ
(h)
` ∈hp(τ (h),τf)

e
(h)
`). This is due to all higher-

priority unchanged tasks may release jobs right before the transition period ends (i.e., tk−1 + δhi).

To prove Lemma 23, we need two additional helper lemmas. The next lemma shows that

Eij(τf) (i.e., Equation 7.21) is an upper bound on the amount of carry-in (with priority higher or

same as τf) from mode M (i) to M (j). The proof is similar to the second part of the Lemma 22.

Lemma 24 For any sequence of mode changes mcr0,mcr1,mcr2, . . ., consider a mode change

from M (i) to M (j) (i.e., mcrk = (M (i),M (j), tk)). If the actual carry-in (with priority higher or

same as τf) from M (i) to M (j) is greater than Eij(τf), then some job generated in mode M (i) or

during the transition (i.e., between tk and tk + δij) missed a deadline before tk + δij .

We prove this lemma by contradiction. The proof is similar to the bound in Equation 7.17.

Assume that the carry-in ci(mcrk) is greater than Eij(τf), but no job of M (i) misses a deadline.

Only (non-aborted) jobs of τ (i) with priority at least as τf can contribute to the carry-in to M (i),

since d(i)
` ≤ p

(i)
` for all τ (i)

` ∈ τ (i). (Note the constraint of Equation 5.2 prevents carry-in jobs from

previous mode changes). For all tasks of ϑ(ij), there is at most one such job; the total execution of

these jobs is
∑

τ
(i)
` ∈hp(ϑ(ij),τf)

e
(i)
` . For tasks τ (ij)

` of τ (ij), an upper bound on the execution that

this task contributes to the carry-in is the execution requirement of τ (ij)
` times the total number

of jobs that can arrive in the interval [tk, tk + δ(ij)] plus the execution of at most one job that

can arrive prior to tk. Adding together the total execution of all non-aborted jobs from M (i)

and subtracting the minimum supply over the transition gives the upper bound of Equation 7.17.

Thus, if more than Eij(τf) execution is carried-in, then it must come from a job generated prior

to tk with remaining execution. However, by the above discussion, this is not possible unless a

job misses a deadline.

116

In the next helper lemma, we establish two properties of the function Ψ described in Equa-

tion 7.24.

Lemma 25 Given M (i), M (j), and φ, ζ ∈ N, functions

P1: Ψi,j(ζ, φ, τf), Eij(τf), and Fij(ζ, τf) are integer-valued function.

P2: Ψi,j(ζ, φ, τf) and Fij(ζ, τf) are monotonically non-decreasing on ζ .

The property P1 always holds due to the fact that all task characteristics are natural integers.

Furthermore, floor and ceiling functions are used for calculating ratios in the demand and supply

functions. The second property follows from the fact that ζ is directly added in the definition of

Ψi,j(ζ, φ, τf) depending on the value of N (i) and Π(i) which are independent of ζ; so, there is no

way of getting lower value from the function Ψi,j(ζ, φ, τf) for any pair of modes M (i) and M (j)

at a given φ with higher value of ζ than smaller value of ζ . Since Fij(ζ, τf) changes only with Ψ

(the remainder is fixed with respect to ζ), Fij is also monotonically non-decreasing.

For any pair of modes M (i) and M (j), the Equations 7.21 and 7.22 calculate the maximum

carry-in for a mode-change from M (i) to M (j). Using these two equations, in the next lemma, we

show that the carry-in after `-th MCR is always bounded from above by cii,j` (τf).

Proof of Lemma 23 The proof is by induction on k. By definition, ci(mcrk, τf) denotes the carry

(with priority higher or same as τf) after the transition period past mcrk.

Base Case: The base case is k = 1. To show that ci(mcr1, τf) ≤ cii,j1 (τf), we must show that

both ci(mcr1, τf) ≤ Eij(τf) and ci(mcr1, τf) ≤ Fij(0, τf) are satisfied. Note that ci(mcr0, τf)

is equal to zero. By the fact that there are no deadline misses prior to t1 and Lemma 24,

the first condition is satisfied. For the second condition, Ψi,j(δij, 0, τf) by definition is greater

or equal to the maximum execution request for an interval length of δij after the MCR since

the carry-in at the beginning for M (i) is zero. Therefore, the carry-in must be smaller than(
Ψi,j(0, δij, τf)− βi,jtrans(δij),

∑
τ

(i)
` ∈hp(τ (i),τf)

e
(i)
`

)
.

Induction hypothesis: Assume that the carry-in with equal or priority higher than τf is always

less than cii,jk (τf) for any sequence of length k or less MCRs.

117

Induction: The cii,jk+1(τf) is the minimum of Eij(τf) and Fij
def
= maxh Fij(cih,ik (τf), τf). In

case cii,jk+1(τf) is determined by Eij(τf), the induction step follows trivially as ci(mcrk+1, τf)

must be always less or equal to Eij(τf) for a schedulable subsystem (by Lemma 24). Thus,

we must consider if cii,jk+1(τf) corresponds to Fij . The function Fij(ζ, τf) is monotonically non-

decreasing on ζ . By induction hypothesis, ci(mcrk, τf) ≤ cii,jk (τf). Thus, max
h=1,...,q∧h6=i

cih,ik (τf) ≥
ci(mcrk, τf). Beside, by definition max

h=1,...,q∧h6=i
Ψi,j(cih,ik (τf), φ, τf) is the upper bound on request

with priority higher or same as τf for all φ ≥ 0 after a mode change to M (i). As βi,jtrans(δij) is the

lower bound on the supply, max
h=1,...,q∧h6=i

Ψi,j(cih,ik (τf), φ, τf)−βi,jtrans(δij) is the upper bound on the

carry which is exactly Fij; therefore, cii,jk (τf) is clearly an upper bound on ci(mcrk, τf).

Lemma 26 For φ ≥ 0 and any mcrk = (M (i),M (j), tk) in arbitrary sequence of MCRs, if

Ψi,j(φ, ζ, τf) is at least ξ ≥ 0, then the value of x that maximizes the supremum in the right-

hand-side of Equation 7.24 occurs at or before the maximum of d(i)
max and the minimum of

lcm
τ

(i)
` ∈τ (i){p(i)

` }+ d
(i)
max and

u(i)(τf) · p(i)
max + u(ij)(τf) · φ+ ζ + e

(i)
max + Θ(i)(Π(i)−Θ(i))

Π(i)

+
∑

τ
(i)
` ∈hp(τ (i),τf)

e
(i)
` − ξ

Θ(i)

Π(i) − u(i)(τf)

(7.29)

where u(i)(τf)
def
=

∑
τ

(i)
` ∈hp(τ (i),τf)

u
(i)
` , and p(i)

max
def
= max

τ
(i)
` ∈τ (i)

{p(i)
` }.

Proof: When u(i)(τf) is at most Θ(i)/Π(i), it may be shown via techniques similar to Baruah et

al. [9] that lcm
τ

(i)
` ∈τ (i){p(i)

` } + d
(i)
max is an upper bound on x. However, when u(i)(τf) is strictly

less than Θ(i)/Π(i) we may obtain a potentially tighter upper bound. Suppose that the right-hand

side of Equation 7.24 obtains its supremum at some x > d
(i)
max. According to Equation 7.24, we

118

have
ξ <

∑

τ
(i)
` ∈hp(ϑ(ij),τf)

(⌊
x

p
(i)
`

⌋
+ 1

)
× e(i)

`

+
∑

τ
(i)
` ∈hp(τ (ij),τf)

(⌊
x+φ

p
(i)
`

⌋
+ 1

)
× e(i)

`

+
∑

τ
(i)
` ∈hp(α(ij),τf)

⌊
x

p
(i)
`

⌋
× e(i)

`

+
∑

τ
(i)
` ∈hp(α(ij),τf)

min

(
x−

⌊
x

p
(i)
`

⌋
p

(i)
` , e

(i)
`

)

+ζ + e
(i)
max − βiprior(x)

<
∑

τ
(i)
` ∈hp(ϑ(ij),τf)

e
(i)
`

p
(i)
`

× x

+
∑

τ
(i)
` ∈hp(τ (ij),τf)

e
(i)
`

p
(i)
`

× (x+ φ)

+
∑

τ
(i)
` ∈hp(α(ij),τf)

x

p
(i)
`

× e(i)
`

+
∑

τ
(i)
` ∈hp(α(ij),τf)

e
(i)
` +

∑

τ
(i)
` ∈hp(τ (i),τf)

e
(i)
`

+ζ + e
(i)
max − βiprior(x)

⇒ 0 < x · u(i)(τf) + φ · u(ij)(τf) + u(i)(τf) ·max
{
p

(i)
`

}
+ e

(i)
max

+
∑

τ
(i)
` ∈hp(τ (i),τf)

e
(i)
` − xΘ(i)

Π(i) + Θ(i)

Π(i) (Π(i) −Θ(i))− ξ + ζ

Solving for x and noting that x must be an integer implies the upper bound of Equation 7.29.

119

CHAPTER 8: RESOURCE

ESTIMATION OF MMS

In previous chapters, we assumed that subsystems are sharing a common hardware platform, and

coupled each software mode to a hardware mode for ensuring schedulability and the temporal

isolation among subsystems. We exploited the coupling of software and hardware modes to de-

velop a pseudo-polynomial algorithm for the problem of schedulability analysis of multi-modal

real-time systems. This pseudo-polynomial schedulability-test effectively decoupled the schedu-

lability analysis from choosing appropriate hardware resource for each software mode. As the

development of a new system usually starts with requirement specification, the software modes

may be chosen directly from the specification and from the nature of workload execution. The

schedulability of these software modes can be checked by assigning the highest hardware re-

source to each mode, then invoke the schedulability analysis developed in the previous section.

Checking schedulability for real-time systems may not be ultimate goal pursued by the real-time

system designer; an optimized schedulable real-time multi-modal system is always preferred over

barely schedulable system. In this chapter, we address the resource usages of multi-modal system

and achieve the notion of optimality for a MMS.

8.1 Motivation

In this section, we address how a multi-modal system can be optimized with respect to hardware

resource usages. First, we discuss about the source of unoptimized result. Notice that if the sys-

tem has ρ number of hardware modes against the total q number of subsystem modes the designer

tries to achieve, the total number of combinations could be qρ. We address each combination as a

configuration. The number of hardware modes depends on the underlying modeling techniques.

Consider an EDP-resource Ω with resource-period Π. Using resource-period Π, there could be

120

Π hardware modes. Each of q modes of a configuration can take each of Π hardware modes;

therefore, the total number of configurations can be as much as O(qΠ). The number of configura-

tions could be much higher in case we choose a different resource deadline (∆) than the resource

capacity. Among this exponential number of configurations, only a handful of configurations

may be valid. For instance, a system might not support the most computationally-expensive ex-

ecution pattern for the lowest energy mode. We can check the schedulability for each of these

configurations by invoking SUBI with desirable N (i) parameter. This exponential number of

configurations is not limited to only EDP-resources, similar situation is not uncommon for other

available modeling techniques (i.e. TDMA server, DVFS). The problem may arise due to the

granularity in choosing hardware modes.

8.2 Notion of Optimality

We first determine the notion of optimality with respect to the objective function (e.g. minimiz-

ing weighted sum of capacities of modes, minimizing the maximum capacity over all modes).

To the best of our knowledge, none of the previous results on real-time multi-modal systems

address the optimality in terms of resource usages with respect to any objective function. We

exploit the schedulability analysis developed in previous sections to obtain set of optimized hard-

ware resources ensuring system schedulability. A very naive solution could try all possible hard-

ware/software configurations (depicted in Figure 8.1) and use the schedulability test derived in

Multi-mode
Allocate

Schedulable?
yes

Optimized?
yes

nono

Start Specification
Resources End

to each mode

Figure 8.1: Resource optimization for multi-modal systems.

121

the previous chapters to find the optimal with respect to the corresponding objective function.

The process of determining optimization is also known design-space exploration [3, 78] in the

context of system design; a naive solution is depicted in Figure 8.1. We believe that the complex-

ity for determining optimized set of modes depend on the objective function. Our future work

will address the more general objective, minimizing weighted sum of capacities over all modes,

for which all configurations may need to check for optimality.

8.3 Minimizing the Maximum Resource

In this section, we address the objective function of minimizing the maximum resource usages

for a set of software modes, and develop an optimal solution with with pseudo-polynomial time

complexity for the objective function. A naive approach may be the repeated application of SUBI

with varying capacity for each application mode (e.g., depicted in Figure 8.1). As different val-

ues of Θ(i) generate different subsystems, we denote each subsystem by Sk def
= 〈τ , τ trans, ϑ, α,

δ, N,Ωk〉 where Ωk
def
= {Ω(1)

k . . .Ω
(q)
k , . . . ,Ω

(ij)
k , . . .}, Ω

(i)
k

def
= (Π(i),Θ

(i)
k ,∆

(i)), and ∆(i) def
= Θ

(i)
k .

In this notation, τ represents the vector of task systems (i.e., τ def
= [τ (1), . . . , τ (q)]); τ trans is a ma-

trix of task sets representing the unchanged tasks between any two modes; ϑ and α are matrices

of task sets representing respectively the finished tasks and the aborted tasks when transitioning

from mode M (i) to M (j); δ is a matrix of transition offsets; and N is a vector indicating the

minimum number of resource periods between two mode changes (i.e., N def
= [N (1), . . . , N (q)]).

We denote S(τ, τ trans, ϑ, α, δ,N,Ω) as the set of all such subsystems Sk; note that all the pa-

rameters except the resource capacities are identical in S. The size of S(τ, τ trans, ϑ, α, δ,N,Ω)

can beO((maxi∈{1,...,q}Π(i))q× (maxi,j∈{1,...,q}Π(ij))q
2
) which is exponential. In this exponential

search space, the total number of candidates may be restricted based on objective functions (e.g.

minimizing the maximum resource over all subsystem modes).

Multi-modal systems developed so far have not addressed the optimal (hardware) resource

allocation for each mode. Optimal solutions may vary due to different objective functions (e.g.,

minimizing peak-temperature or minimizing the total energy consumption). We address the ob-

122

jective function of minimizing the maximum resource usages, denoted as MinMax Resource, for

a set of application modes. In Chapter 4, we have shown that minimizing the capacity of a peri-

odic resource is useful for minimizing the peak-system temperature [6] in a system with simple

active/idle power modes. Our future work will address a more general objective of minimizing

weighted sum of capacities over all modes for which all combinations of resource usages may

need to be evaluated. Rest of the paper use the notation S(i)
k to denote a mode in Sk, and evaluate

the inequality Ω
(i)
k � Ω

(j)
k by the expression I(i)

k ≥ I
(j)
k . The following observation describes a

favorable characteristic of the SUBI algorithm:

Observation 1 Given τ , τ trans, δ, ϑ, α, Ω, and N , for any two subsystems S1,S2 ∈ S(τ,

τ trans, ϑ, α, δ,N,Ω) and ∀i : Ω
(i)
1 � Ω

(i)
2 , if SUBI(S2) returns NO, then SUBI(S1) will also

return NO.

The observation says that if SUBI returns NO response to a resource combination, we must

increase resource (i.e., bandwidth) for at least one mode for schedulability. This observation can

be further extended to achieve monotonicity for the SUBI algorithm over a subset of S. Given

τ , τ trans, ϑ, δ, α, and N , consider an ordered set {Sk|k ∈ N+} where ∀k,iΩ(i)
k � Ω

(i)
k+1. In other

words, this is a totally ordered subset of S. According to Observation 1, if the SUBI returns

NO for any Sk, then the algorithm also returns NO for all preceding elements before Sk which is

formalized as follows:

Lemma 27 For any given τ , ϑ, α, δ, and Π; SUBI is monotonically non-decreasing over a

totally-ordered set of subsystems {Sk|Sk ∈ S(τ, τ trans, ϑ, α, δ,N,Ω) ∧ k ∈ N+} where ∀k,iΩ(i)
k �

Ω
(i)
k+1.

The lemma follows from the fact that each of the service functions (i.e., β and sbf) is monoton-

ically increasing on Ω(i) and the demand functions (i.e., cidbf) are monotonically decreasing on

Ω(i). Thus, if conditions of Theorem 9 hold for a small value of Θ(i), conditions will continue to

hold for larger values of Θ(i). Using this monotonicity, we develop an algorithm for determining

an optimized multi-mode system.

123

Algorithm 3 MinMaxCap(τ, τ trans, ϑ, α, δ,N,Ω).
1: {Initialization}
2: Set all Ω(i) and Ω(ij) to max bandwidth 1 for all 1 ≤ i, j ≤ q (e.g., set Θ(i) to Π(i))
3: Check schedulability and return ∅ for an unschedulable result.
4: Set Isuccess to 1
5: unoptimized← {1 . . . q}
6: {Optimization loop starts from here.}
7: repeat
8: Use a binary search to determine the minimum Isuccess ∈ [maxu(i), Isuccess] which makes all

modes in unoptimized schedulable.
9: Determine optimized by checking for each element of unoptimized if reducing the capacity by

one results in unschedulability
10: Update Ω(i), Ω(ij), and Ω(ji) according to Isuccess for i ∈ optimized
11: Remove all modes in optimized from unoptimized
12: until unoptimized is empty OR remains unchanged from previous iteration
13: return S

8.3.1 The MinMaxCap algorithm

The pseudocode for the MinMaxCap is presented in Algorithm 3. The total number of appli-

cation modes is q. The algorithm starts with the highest bandwidth for each application mode,

and then optimizes all the subsystem modes gradually. Unoptimized modes are tracked by the

set unoptimized which is initialized by all mode indexes. Modes in the complement of the

set unoptimized have already optimized resource usages. The algorithm continues until the set

unoptimized is empty or remained unchanged from the previous step. Using a binary search

technique, the algorithm determines the minimum Isuccess for which all modes in unoptimized

are schedulable. The algorithm then updates unoptimized by determining the set optimized for

which further reduction in the bandwidth would result unschedulability. This could be accom-

plished by iterating each mode index i in unoptimized, and setting capacity Ω(i) to Isuccess, but

all other resources to b(Isuccess×Π(i)−1)c/Π(i), then, invoke SUBI, and include i in optimized

if the result is true. The total cost of this step is no more than O(q) invocations of SUBI.

124

8.3.2 Complexity and Correctness

The algorithm MinMaxCap optimizes resource usages of a multi-mode system where system

parameters are denoted by τ , τ trans, ϑ, δ, α, Ω, and N . To formalize, we prove the following

theorem:

Theorem 8 Given τ , τ trans, ϑ, α, Ω, δ, andN , the procedure MinMaxCap(τ, τ trans, ϑ, α, δ,N,Ω)

returns S∗ such that S∗ is EDF-schedulable and max
i

Ω
(i)
∗ is the minimum among all schedulable

multi-mode systems with respect to SUBI, i.e.,

max
i
I(i)
∗ ≤ max

i
I

(i)
k

where Sk denotes any schedulable subsystem. Furthermore, MinMaxCap(τ, τ trans, ϑ, α, δ,N,Ω)

has time complexity O (Tq2 lg Π) where T denotes the time complexity of the SUBI algorithm

and Π is the maximum resource period.

Proof: The proof is by contradiction. Assume that the returned multi-modal system S∗ from

MinMaxCap is not optimal with respect to the minimum maximum bandwidth over all modes;

there is another schedulable So for which the subsystem mode with the highest bandwidth is

minimized. That is maxi I
(i)
∗ > maxi I

(i)
o . Let us assume I def

= maxi I
(i)
o . Observe that unop-

timized modes comprise the set unoptimized. Initially the set unoptimized equals {1, . . . , q}.
For unoptimized, the algorithm finds the minimum Isuccess using a binary search for which

setting bandwidth to Isuccess make the system schedulable. The inequality I > maxi I
(i)
∗

implies that the returned Isuccess is greater than I; that is, the algorithm did not find any

I
′
< Isuccess for which setting resource of each mode in unoptimized to I ′ results schedu-

lability. As I < Isuccess, the system So cannot be schedulable (Observation 1) which is a

contradiction.

To see the complexity is O(Tq2 lg Π), observe that Line 9 finalizes at least one mode at each

iteration. At each iteration, binary search requires the total lg Π invocations of the algorithm

SUBI due to integer system parameters assumption. To determine the set optimized at Line 9,

125

Table 8.1: Tasks Distribution in Modes.
Tasks Properties Modes

e(i) d(i) p(i) M (1) M (2) M (3)

1 1 10 10 y y y
2 5 30 30 y y n
3 4 40 40 n n y
4 1 10 10 y n n
5 1 20 20 n y y
6 3 24 24 n n y
7 2 20 20 y n n
8 1 10 10 n y n

the algorithm requires at most q invocations of SUBI. As there are q number of modes, in the

worst case, the algorithm invokes SUBI at most O(q2 lg Π) times which result the complexity to

be O(Tq2 lg Π).

We optimized resource capacity; similarly one could apply this technique for any other pa-

rameters (e.g., transition period).

8.4 Simulations

In this section, we present the performance results for our proposed algorithm. We compare

SUBI with exponential-time schedulability analysis using reachability graph (SURG) proposed

by Phan et al. [63]. For the simulation, we implemented SURG and SUBI in MATLAB and

performed our simulations on a 2.33GHz Intel Core 2 Duo machine with 2.0GB RAM.

We performed set of experiments using tasks described in Table 8.1. We compare MinMaxCap

with the algorithm SURG by [63]. While checking schedulability, the SURG eventually calcu-

lates the required resource for each mode. Each multi-mode subsystem consists of 8 modes where

each mode select tasks randomly. The Π(i) is set to 10 for all modes. We measure the maximum

capacity returned from both algorithms. In Figure 8.2, we plot the maximum mode utilization

for subsystems in the horizontal axis. For each of the maximum mode utilizations, we generated

at least 15 schedulable multi-mode systems, and plotted the average maximum capacity in the

vertical axis. Figure 8.2 substantiates that MinMaxCap minimizes the resource usages over the

126

0.1 0.2 0.3 0.4 0.5 0.6
2

3

4

5

6

7

8

M
ax

(Θ
(i)

))

Maximum Mode Utilization (max(u(i)))

MinMaxRsrc
SURG

0.1 0.2 0.3 0.4 0.5 0.6
0

50

100

150

200

Maximum Mode Utilization (max(u(i)))

A
vg

. T
im

e
(s

ec
)

Figure 8.2: Comparison of SURG and SUBI: Resource usages

SURG and is clearly time efficient. Here, it is to be noted that SURG is more general, and can

support additional features (e.g., input/output buffer, arbitrary mode-change request); so the com-

parison is only valid for restricted settings of control systems. Using a fundamentally different

approach, we exploited these restricted settings to develop a pseudo-polynomial algorithm over

the previous algorithm.

8.5 Conclusion

In this chapter, we introduced an efficient algorithm for allocating resources to multi-mode real-

time systems. Simulation results validate the effectiveness and efficiency of our algorithms. Our

future work will address the general objective of minimizing energy consumption for real-time

systems supporting multiple application/resource modes.

127

CHAPTER 9: PARALLEL

SCHEDULABILITY ANALYSIS

In order to ensure temporal isolation and also hard deadlines, the schedulability analysis devel-

oped in the previous chapter requires coupling each software mode to a hardware mode. There

could be a very large number of software and hardware mode combinations for a given set of

software and hardware modes. Our approach in the previous chapter is an effort to reduce the

overall time complexity to less than exponential time. Even with this reduction, the algorithm

requires a significant amount of time to decide the schedulability when the number of modes in

the system is large. Besides, for real-time control systems, a larger number of modes is typically

desirable to permit greater adaptability in unfavorable environments. Checking schedulability

of multi-modal systems warrants higher computation time as a result of dependencies (due to

transitions) between modes; therefore, a large number of modes pose a computational challenge

for existing sequential schedulability analysis techniques. Thus, parallel schedulability analy-

sis is a promising and practical alternative to traditional sequential schedulability analysis for

multi-modal systems.

An efficient parallel schedulability analysis can also reduce significantly the time for resource

estimation (also known as design-space exploration [78]) that may utilize schedulability tests for

determining optimized resource parameters of a multi-mode system as mentioned in Section 8.2.

Schedulability analysis using parallel algorithms is a relatively unexplored area for multi-modal

real-time applications. For uni-modal systems, there have been solutions with well defined sets

of conditions where each condition must pass a set of test cases. In most scenarios, the evalua-

tion of these test case elements can be performed independently. From the perspective of parallel

computing, this independent execution behavior makes the problem of uni-modal schedulability

less challenging. However, the schedulability analysis of multi-modal real-time systems is com-

plex; the analysis not only depends on each mode itself, but also on the schedulability of all other

128

modes along with mode change sequences. Therefore, pseudo-polynomial schedulability analy-

sis developed in the previous chapter may be a workable solution for the schedulability of systems

(given a set of system parameters). However, a sequential implementation of the analysis may

not sufficiently scale to be used as an effective tool for determining optimal system parameters

(i.e., Chapter 8). In this thesis, we address a fundamental gap in the research literature on paral-

lel schedulability analysis algorithms suitable for design-space exploration (e.g., minimizing the

total aggregate hardware resources over all modes) for real-time multi-modal systems.

In this chapter, we propose the parallel algorithm for checking schedulability of multi-modal

systems suitable for suitable for a computing cluster (i.e., High Performance Computing Grid at

Wayne State University). This algorithm can be implemented using message passing interface

(MPI), open multi-processing (OpenMP API), or win/linux thread library (e.g., pthread). Finally,

we extend the parallel algorithm suitable for massive parallel computing and cost effective GPU

platforms. This chapter develops parallel algorithm only for checking EDF-schedulability. For

FP schedulability analysis of a MMS, one may develop identical parallel algorithm using tech-

niques outlined in this chapter. We first describe performance metrics in the following section

used for measuring performance of our proposed parallel schedulability analysis.

9.1 Parallel Performance Metrics

The asymptotic performance of a parallel algorithm is measured by using well known parallel

performance metrics which include parallel execution time, speedup, efficiency, and cost [39].

§Parallel Execution Time. The parallel execution time, denoted by Tm, is the time elapsed

between the start and the end of a parallel computation. The value of Tm depends on the actual

workload, number of processors m, and the parallel overhead. Tm decreases at a slower rate as

m increases. However, the parallel overhead also increases with m; therefore, after certain value

of m, Tm may not experience a noticeable decrease.

§Speedup. The speedup S is defined as the ratio of the serial execution time Ts of the best

sequential algorithm to the parallel execution time. That is, S def
= Ts

Tm
. The perfect speedup for

129

a parallel algorithm equals to m which may be difficult to achieve for algorithms that require

communication/synchronization for the correct operation. Due to overhead, S may decrease as

m increases.

§Efficiency. The Efficiency, denoted by E, is a measure of the fraction of time for which the

processors are usefully employed in solving the problem; it is defined as the ratio of the speedup

to the number of processors, E def
= S

m
. The efficiency accounts for the parallel overhead, and

usually decreases as m increases.

§Parallel Execution Cost. The cost of a parallel algorithm is the product of the parallel execution

time and the number of processors.

9.2 Parallel Schedulability Analysis

Our proposed solution is the first non-trivial parallel schedulability analysis algorithm for real-

time multi-mode systems. We provide a parallel algorithm for evaluating the schedulability con-

ditions developed in the previous chapter. Our contributions in this chapter are as follows:

• To achieve a balanced workload distribution, we adopt the most suitable and relatively sim-

ple workload distribution policy considering the nature of the conditions (Section 9.3.2). A

balanced distribution of workload (without introducing overhead) is the key for achieving

better speedup.

• To achieve a near-ideal speedup (equal to the number of processing nodes), we design the

algorithm such that the communication and synchronization overhead is minimized.

• To characterize the effectiveness of the proposed algorithm, we determine parallel perfor-

mance metrics (e.g., speedup, efficiency, and cost) and derive conditions to obtain better

speedup (Section 9.3.3).

• To substantiate the performance of the proposed algorithm, we perform experiments upon

a cluster of AMD Opteron computers (Section 9.3.4). We obtain high parallel efficiency

130

(over 90%) which establishes that the proposed algorithm can be used as an efficient

schedulability test for design-space exploration of real-time multi-mode systems.

9.2.1 Schedulability Conditions

In this section, we develop a parallel algorithm for checking schedulability conditions developed

in Chapter 6. Those conditions are suitable for checking schedulability sequentially. For example,

Ψ function needs to evaluate all possible busy interval lengths in previously executing mode. To

calculate Ψ parallely, we separate x from Ψ so that each processing node of a cluster can as

follows:
Ψ(M (i),M (j), ζ, φ)

def
= sup

x>0
{Ψx(M

(i),M (j), ζ, φ)}, (9.1)

Using Ψx functions, we rephrased these schedulability conditions which enable us to eval-

uate each of these conditions parallely with a workload distribution. Over any possible (legal)

sequence of mode-change requests, the system is EDF-schedulable, if the following five condi-

tions hold for any two distinct modes M (i) and M (j),

SC1 :
∑

τ
(j)
` ∈τ (j)

dbf(τ (j)
` , t) ≤ sbf(Ω(j), t), ∀t ∈ ΥSC1(j);

SC2 :
∑

τ
(j)
` ∈τ (j)\τ (ij)

dbf(τ (j)
` , t) +

∑
τ

(ij)
` ∈τ (ij)

dbf(τ (ij)
` , t+ s)

≤ βi,jpost(s, t),

∀s, t : (0 < s ≤ δij) ∧ (t ∈ ΥSC2(i,j,s));

SC3 :
∑

τ
(ij)
` ∈τ (ij)

dbf(τ (ij)
` , t) ≤ sbf(Ω(ij), t),∀t ∈ ΥSC3(i,j);

SC4 : Ψx(M
(i),M (j), Ci, φ) ≤ βi,jtrans(φ),

∀φ, x : (0 < φ ≤ δij) ∧ (x ∈ ΥSC4(i,j,φ));

(9.2)

131

tk

time
M (j)M (i)

a

16b d
s φ

e

tk + δ(ij)

c
φ

φ

xx
x

x

Figure 9.1: Busy intervals for each of the schedulability conditions SCZ .

SC5 :
∑

τ
(j)
` ∈τ (j)\τ (ij)

dbf(τ (j)
` , t) + Ψx(M

(i),M (j), Ci, δij + t)

−β(,M
trans

(i),M (j), δij) ≤ βi,jpost(0, t),

∀t, x : (0 < t ≤ Tij) ∧ (x ∈ ΥSC5(i,j,t));

where Ci
def
= max{h=1,...,q}∧h6=i{ci(M (h),M (i))}. ΥSC1(i), ΥSC2(i,j,s), ΥSC4(i,j,φ), ΥSC5(i,j,t), and Tij

are each a finite set of consecutive positive integers starting from one. Each of these sets are com-

monly referred as a testing-set. We use a generic notation of SCZ(i, j, φ) where Z ∈ {1, . . . , 5}
for the superscript of the testing sets. For example, the SC1(i, ∅, ∅) is the superscript for ΥSC1(i)

which is the testing set of SC1 in Equation 9.2. The last two parameters in this example have

the value of ∅ as they are not used by SC1. The number of testing sets associated with modes

M (i), M (j), and schedulability condition SCZ is denoted by TSZ(i, j). The testing set bounds

have been proven in Chapter 6 (i.e., Fisher and Ahmed [35]). Tij is specified by the number of

TS5(i, j) sets that exist and we will not refer to Tij further.

Now, we provide intuitive explanations for each condition of Equation 9.2. Before missing

a deadline by an EDF-schedule, the processor is continuously busy. This interval is known as

a busy interval. In the busy interval, the resource demand is greater than the processing supply.

Five conditions are used to avoid busy intervals where resource demand is greater than the supply

taking mode changes into account. We identified the five different kinds of busy intervals with

respect to a mode change request, which are depicted in Figure 9.1. SC1 ensures the schedula-

bility of an individual mode. SC2 and SC3 ensure that an individual mode is schedulable along

with the demand from unchanged tasks of the old mode after a mode change. SC4 ensures the

132

schedulability during the transition period while accounting for the carry-in demand from the

non-aborted jobs and the mode-change supply function. Similarly, SC5 ensures schedulability

after a transition. The last two conditions account for the carry-in from all past mode change

requests through the ci function while analyzing demand of each individual mode. Following

section develop a parallel algorithm suitable for MPI.

9.3 Parallel Schedulability Using Message Passing

9.3.1 Processing Platforms

We consider a parallel message-passing system composed of m identical processors, P = {P1,

. . . , Pm} where the subscript i ∈ {1, . . . ,m} for each processor Pi denotes the unique iden-

tifier (frequently denoted as rank) in the platform. The design of our parallel algorithm con-

siders the data parallel model in which the total workload (testing-set elements) is statically

mapped onto processors and each processor performs similar operations on different testing-

set elements. For communication/synchronization, we use the parallel message-passing con-

struct All-to-All-Reduction [39] by which all processors simultaneously involve in a communi-

cation/synchronization operation. The All-to-All-Reduction uses an associative operator (e.g.,

MAX, SUM, OR) to accumulate and combine the data from the buffer of each processor into a

single piece of data which is then replicated at all processors.

9.3.2 Problem Formulation

We design a parallel algorithm for solving the EDF-Multi-Mode-Sched Problem. We first

determine the complexity of a serial algorithm for checking all five conditions to realize the

size of the problem to be parallelized. The runtime complexity depends on the total aggre-

gate size of all the testing sets. Furthermore, conditions SC4 and SC5 require evaluating the

ci function to account for the carry-in execution. In the previous chapter, we showed that the

ci(M (i),M (j)) function, defined iteratively from the sequence ciM
(i),M(j)

0 , ciM
(i),M(j)

1 , ciM
(i),M(j)

2 ,

133

. . . for all i, j(i 6= j) ∈ {1, . . . , q}, can be calculated in a finite number of iterations which is

equal to the summation of execution requirements of all tasks. We define C as the maximum of

the following three values: 1) the summation of the execution requirements of all tasks over all

modes, 2) the maximum transition period (i.e., maximum δij) and 3) the maximum of the sizes

of the sets ΥSCZ(i,j,φ) and Tij for any i, j, φ and Z. The calculation of the ci(M (i),M (j)) for

each pair requires at most C inductive computations of ci where each such computation would

invoke the Ψx function at most C times. As there are q(q−1) pairs of modes, a serial function for

calculating the carry-in for all pairs would require O(q2nC2) time, where n is maxqi=1{ni}; the

term n is due to the calculation of demand (dbf) for every testing set element. The complexity

of checking all five conditions is dominated by the complexity of checking condition SC5 which

is also O (q2nC2); therefore, the complexity of the serial schedulability analysis is O (q2nC2).

This pseudo-polynomial complexity could be quite large as C is potentially exponential in the

representation of the multi-modal system. Thus, it is desirable to decrease the analysis time by

parallelizing the schedulability analysis.

Parallel Platform

We consider a parallel message-passing system composed of m identical processors, P = {P1

, . . . , Pm} where the subscript i ∈ {1, . . . ,m} for each processor Pi denotes the unique iden-

tifier (frequently denoted as rank) in the platform. The design of our parallel algorithm con-

siders the data parallel model in which the total workload (testing-set elements) is statically

mapped onto processors and each processor performs similar operations on different testing-

set elements. For communication/synchronization, we use the parallel message-passing con-

struct All-to-All-Reduction [39] by which all processors simultaneously involve in a communi-

cation/synchronization operation. The All-to-All-Reduction uses an associative operator (e.g.,

MAX, SUM, OR) to accumulate and combine the data from the buffer of each processor into a

single piece of data which is then replicated at all processors.

The performance of a parallel algorithm depends heavily on the underlying workload dis-

tribution policy. Balanced distribution of workload along with the minimal overhead due to

134

communication/synchronization is indispensable to reduce the parallel execution time. In the

next sub-section, we describe the workload distribution that allows us to obtain a completely

balanced workload distribution without any communication/synchronization overhead. Then, we

present the parallel algorithm for schedulability analysis and finally characterize its theoretical

performance.

Workload Distribution

We develop policies to distribute elements of each testing set ΥSCZ(i,j,φ) among the processors

for the parallel algorithm. Our approach emphasizes a balanced distribution of workload among

the processors to obtain a near-ideal speedup. Since the workload for the parallel algorithm is

entirely dependent upon the testing sets for the schedulability conditions of Equation 9.2, a naive

approach is to assign elements of each testing set ΥSCZ(i,j,φ) in a round-robin fashion to each of

the processors; i.e., processor P1 would test schedulability condition SCZ for the first testing-set

element, processor P2 would test SCZ for the second testing-set element, and so on. In general,

after evaluating a testing set element ti, processor Pk will skip the next m testing set elements

which implies that each processor will work with a single element among the m consecutive

members of ΥSCZ(i,j,φ). Thus, the total number of elements to be checked by each processor is at

least
⌊
|ΥSCZ (i,j,φ)|

m

⌋
and the maximum difference in workload between two successive processors

is one testing element. Now consider the next testing set; again, if the first processor P1 tests the

first element, then, in the worst case this processor may receive one more testing set element than

the other processors. Therefore, at the end of checking condition SCZ(i, j, φ) of Equation 9.2,

there may be a difference in workload of one testing element among processors. At the end of the

execution, this difference could be equal to the total number of testing sets for all five conditions

(which is Cq2). This uneven workload will reduce the speedup of the parallel algorithm. Thus, in

our approach we do not always allow the first processor P1 to test the first element of the testing

set, rather we keep track of the processor Pk that tests the last element in previous testing set.

Then, we allow the next processor Pk+1 to test the first element in the current testing set. To

support the equal distribution of testing set elements, each processor maintains a root distribution

135

variable rk, where rk ∈ {1, 2, . . . , q}. The variable rk indicates the starting element for Pk for

the next testing set. The set below represents the subset of elements of ΥSCZ(i,j,φ) for which Pk is

responsible for testing the condition SCZ while Pk’s root variable is rk.

Υ
SCZ(i,j,φ)
k,rk

=
{
x|(x ∈ ΥSCZ(i,j,φ)) ∧ (rk ≡ x mod m)

}
(9.3)

We now consider how to update the root variables to ensure a completely-balanced distri-

bution of the testing set elements. For processor Pk with root variable rk, we can determine

the processor that has r` equal to one for some ` ∈ {1, . . . ,m}. The expression r′k
def
= ((k − rk)

mod m)+1 identifies the rank of this processor. By distributing each of the elements of ΥSCZ(i,j,φ)

in a round-robin fashion (as described in Equation 9.13), the first processor to receive an element

has rank equal to `′ def
=
((
r′k + |ΥSCZ(i,j,φ)| − 1

)
mod m

)
+ 1. Rank `′ identifies the processor

that will receive the first element in the next testing set distribution. Thus, for any other processor

Pk to determine its new root variable, we must calculate ((k − `′) mod m) + 1. Thus, we must

use the following update rule:

rk =
((
k −

((
r′k + |ΥSCZ(i,j,φ)| − 1

)
mod m

)
+ 1
)

mod m
)

+ 1. (9.4)

After distributing the entire workload of all testing sets according to this rule, the difference

between any two processors with respect to the number of testing set elements assigned is at

most one. In addition to a completely-balanced workload distribution, we observe that the testing

set elements do not need to be distributed (via communication or initialization) to the processors.

In fact, since the testing set simply consists of consecutive integers, each processor independently

generates testing set elements as needed, according to the set defined in Equation 9.13. Thus, the

proposed distribution eliminates the communication overhead due to the workload distribution.

136

Algorithm 4 SUBI-PAR(M)

1: {Processor k executes:}
2: rk ← Initialize()
3: for i = 1 to q do
4: if CheckConditions-PAR(rk, 1, i, ∅, ∅, ∅) = false then
5: return false
6: end if
7: for j = 1 to q (j 6= i) do
8: if CheckConditions-PAR(rk, 3, i, j, ∅, ∅) = false then
9: return false

10: end if
11: for s = 0 to δij do
12: if CheckConditions-PAR(rk, 2, i, j, s, ∅) = false then
13: return false
14: end if
15: end for
16: end for
17: end for
18: ζ ← MaxCarry-PAR(M, k, rk)
19: for i = 1 to q do
20: Ci ← max{h=1,...,q}∧h6=i{ζhi}
21: for j = 1 to q (j 6= i) do
22: for φ = 0 to δij do
23: if CheckConditions-PAR(rk, 4, i, j, φ, Ci) = false then
24: return false
25: end if
26: end for
27: for all t = 0 to Tij do
28: if CheckConditions-PAR(rk, 5, i, j, t, Ci) = false then
29: return false
30: end if
31: end for
32: end for
33: end for
34: return true

Algorithm Description

We now present the pseudocode for SUBI-PAR, our proposed parallel algorithm for schedula-

bility analysis, in Algorithm 4. The algorithm is designed to run concurrently on all available

137

processors. The SUBI-PAR uses two subroutines CheckConditions-PAR and MaxCarry-PAR.

The algorithm starts with the initialization of the parallel execution. The rank of the processor

(denoted by k) and the total number of processors are determined at this point. A data distribution

root rk, associated with each processor Pk, is initialized to the unique rank k of the processing

platform. The algorithm then starts checking each testing set ΥSCZ(i,j,φ) of condition SCZ(i, j, φ)

for all legal values of i, j and Z using the function CheckConditions-PAR(rk, Z, i, j, φ, Ci) at

each processor Pk. If the function CheckConditions-PAR returns true for the current testing set,

the function will continue its execution to the next testing set; otherwise, the algorithm returns

false; that is, the multi-mode real-time systemM is not schedulable.

The evaluation of inequalities related to condition SC1 of Equation 9.2 is performed in Lines 4

to 6. The condition SC1 is evaluated for each of the q different modes. All remaining four con-

ditions of Equation 9.2 are defined for pairs of modes; therefore, we use two nested for-loops to

iterate through the testing sets associated with each such pair of modes. However, we separate the

code segment related to conditions SC4 and SC5 (Lines 19 to 33) from the rest as the former two

conditions require pre-computed carry-in executions calculated by the MaxCarry-PAR function

(Line 6). The function MaxCarry-PAR could potentially be invoked at the beginning of the al-

gorithm; in that case, all five conditions could be evaluated using one single block of nested loop.

However, the function MaxCarry-PAR is a costly operation, and we allow its execution only if

it is required. For unschedulable systems, it may be the case that the system will not satisfy one

of the first three conditions: SC1, SC2, or SC3; therefore, there is no need of invoking the costly

MaxCarry-PAR for such unschedulable systems.

The algorithm CheckConditions-PAR is a case-based implementation for evaluating each

condition SCZ(i, j, φ) using the condition variableZ. Depending on the value ofZ ∈ {1, 2, 3, 4, 5},
the function selects the appropriate schedulability condition for each testing set element x ∈
Υ

SCZ(i,j,φ)
k,rk

. The per-processor testing set Υ
SCZ(i,j,φ)
k,rk

is decided by its current data-distribution

root rk. As shown in Equation 9.13, this is an ordered set of evenly separated (of size m) pos-

itive integers starting from rk; therefore, we allow each processor to generate its dataset asso-

ciated with each inequality to reduce the overhead related to data distribution. After validating

138

Algorithm 5 CheckConditions-PAR(rk, Z, i, j, φ, Ci).
1: result← true
2: for all x in Υ

SCZ(i,j,φ)
k,rk

do
3: if Z = 1 then
4: if sbf(Ω(i), x) < dbf(τ (i), x) then
5: result← false; break;
6: end if
7: else if Z = 2 then
8: if dbf(τ (j) \ τ (ij), x) + dbf(τ (ij), x+ φ) > βi,jpost(φ, x) then
9: result← false; break;

10: end if
11: else if Z = 3 then
12: if dbf(τ (ij), x) > sbf(Ω(ij), x) then
13: result← false; break;
14: end if
15: else if Z = 4 then
16: if Ψx(M

(i),M (j), Ci, φ) > βi,jtrans(φ) then
17: result← false; break;
18: end if
19: else if Z = 5 then
20: carry←

(
Ψx(M

(i),M (j), Ci, δij + φ)− βi,jtrans(δij)
)

+

21: if carry + dbf(τ (i) \ τ (ij), φ) > βi,jpost(0, φ) then
22: result← false; break;
23: end if
24: end if
25: end for
26: Update rk using Equation 9.15.
27: return All-to-All-Reduce(result, AND)

the testing set, the data distribution root rk at the processor Pk is updated using Equation 9.15.

The function CheckConditions-PAR synchronizes schedulability results with all other execut-

ing processors using an All-to-All-Reduce operation with AND as the reduction operator. The

CheckConditions-PAR returns false even if there is a single violation.

The function MaxCarry-PAR evaluates the sequence ciM
(i),M(j)

0 , ciM
(i),M(j)

1 , ciM
(i),M(j)

2 , . . .

using a repeat-until loop to calculate the carry-in ci(M (i),M (j)) for all pairs of modes and stores

all the carry-in executions in a q × q-matrix ζ . For all pairs, we calculate ciM
(i),M(j)

g at each step

g from the value calculated at (g − 1)-th step, and store the value in ζij only if the new value

139

is greater than the previous one. The function marks the change by setting the change flag to

true. The newly calculated matrix ζ is synchronized using a All-to-All-Reduce operation with a

MAX operator for each individual q2 cell items. The function proceeds to the next step if there

is a change in previously calculated carry-in executions (the change is true). The algorithm

uses a All-to-All-Reduce operation with an OR operator to determine whether the change is set

to true by at least one processor. The function proceeds to next step only if the change has a

true value after the synchronization. Otherwise, the function returns with current values stored

in q × q-matrix ζ .

Finally, if the execution of the algorithm reaches Line 34 of SUBI-PAR, we may safely de-

clare that a multi-mode systemM is EDF-schedulable.

9.3.3 Parallel Performance

We investigate the asymptotic performance of our proposed parallel algorithm by using well

known parallel performance metrics which include parallel execution time, speedup, efficiency,

and cost [39]. The parallel execution time, denoted by Tm, is the time elapsed between the

start and the end of a parallel computation. The value of Tm depends on the actual workload,

number of processors m, and the parallel overhead. Tm decreases at a slower rate as m increases.

However, the parallel overhead also increases withm; therefore, after certain value ofm, Tm may

not experience a noticeable decrease. Tm for our algorithm is given by

Tm = O

(C2q2n

m
+ Cq2m+ n

)
(9.5)

The first term corresponds to the actual amount of work performed by each of the processors;

it is obtained by dividing the total serial workload by the number of processors. The second

term represents the overhead due to communication. The communication operation used in our

algorithm is the All-to-All reduction among m processors which has a complexity of O(mk),

where k is the size of the message on which reduction is performed [39]. Since the reduction

operation is invoked O(C) times with a message size of q2 (line of Algorithm 10) the overhead

140

Algorithm 6 MaxCarry-PAR(M, k, rk).
1: {Returns a [q × q] matrix ζ .}
2: ζ ← 0
3: Compute Eij using Equation 7.21.
4: repeat
5: change← false
6: for i = 1 to q do
7: ci(i)max ← max

h=1,...,q∧h6=i
{ζhi}

8: for j = 1 to q do
9: c← 0

10: d← max(δij + d
(ij)
max, d

(i)
max)

11: for all x in Υ
SC4(i,j,φ)
k,rk

do

12: c← max
(
c,Ψx(M

(i),M (j), ci(i)max, d)
)

13: end for
14: Update rk using Equation 9.15.
15: c← c− βi,jtrans(δij)
16: − ∑

τ
(ij)
` ∈τ (ij)

dbf
(
τ

(ij)
` , d− δij − p(ij)

`

)

17: if min(c, Eij) > ζij then
18: ζij ← min(c, Eij)
19: change← true
20: end if
21: end for
22: end for
23: All-to-All-Reduce(change, OR)
24: All-to-All-Reduce(ζ , MAX)
25: until change = false
26: return ζ

due to communication is given by O(Cq2m). The third term represents the overhead due to

workload imbalances; per the discussion after Equation 9.15, the difference, between any two

processors, in the number of testing set elements is at most one. This testing set element requires

O(n) to evaluate any SCZ .

The speedup S is defined as the ratio of the serial execution time Ts of the best sequential

algorithm to the parallel execution time. That is, S def
= Ts

Tm
. The perfect speedup for a parallel

algorithm equals to m which may be difficult to achieve for algorithms that require communica-

141

tion/synchronization for the correct operation. Due to overhead, S may decrease as m increases.

The speedup our algorithm is given by:

S ≈ C2q2n
C2q2n
m

+ Cq2m+ n
(9.6)

Efficiency, denoted by E, is a measure of the fraction of time for which the processors are

usefully employed in solving the problem; it is defined as the ratio of the speedup to the number

of processors, E def
= S

m
. The efficiency accounts for the parallel overhead, and usually decreases

as m increases. The efficiency of our proposed algorithm is given by:

E ≈ C2q2n

m(C
2q2n
m

+ Cq2m+ n)
(9.7)

As mentioned in the previous sections, the last two terms in the denominator of Equations 9.6

and 9.7 are due to the parallel overhead which increases with m. As long as the overhead is

smaller than the time required to perform the actual computation, the parallel algorithm remains

scalable. We now determine conditions to ensure the scalability of SUBI-PAR using the concept

of cost and cost-optimality. The cost is the sum of the time that each processor spends solving

the problem, including the time to perform the actual work and the overhead due to communi-

cation/synchronization. A parallel algorithm is cost-optimal [39] if the cost has the same growth

as the execution time of the fastest known serial algorithm. The following theorem develops

conditions to restrict the parallel overhead:

Theorem 9 SUBI-PAR is cost-optimal if m = O(
√
Cn).

Proof: By definition, the cost of a parallel algorithm is the product of the parallel execution time

and the number of processors. The cost of our parallel algorithm is given by:

cost = C2q2n+ Cq2m2 + nm (9.8)

For the problem considered in this thesis, the execution time of the fastest known serial algorithm

is O(C2q2n). As the growth for the first term of Equation 9.8 is the same as the growth of the

142

Table 9.1: Experiment Setup

Parameter Value
No. of Modes (q) {8, 12, 16, 20}
ni 8
Range of p(i)

` [2500, 6000]

Deadline d(i)
` p

(i)
` × 0.8

Utilization u(i) 0.45
Π(i) 1250
Θ(i) 1.5u(i)Π(i)

∆(i) Π(i)

δij 1250
N (i) 2
No. of Processors {1, . . . , 24}

execution time of the fastest serial algorithm, our parallel algorithm is cost-optimal if the second

and the third term have the same growth as O(C2q2n); that is, m2 = O(Cn) (for the second

term) and m = O(C2q2) (for the last term). A reasonable assumption of n ≤ C holds since C is

an upper bound on the execution of tasks and each task has an execution of at least one. Since

nC grows slower than C2q2, the algorithm is cost-optimal if the first condition is satisfied; that

is m = O(
√
Cn) which implies that as long as m grows slower than

√
Cn, SUBI-PAR remains

cost-optimal; thus, the theorem follows.

From the analysis in the previous paragraph, it is evident that whenever m grows slower than
√
Cn, the overhead of the SUBI-PAR algorithm is less than O(C2q2n). It may be also shown

that the speedup of SUBI-PAR for a computationally large problem (C � n) is close to m (near-

perfect speedup) as the first term in the denominator of Equation 9.6 dominates for a larger C.

9.3.4 Experimental Results

We perform experiments on a cluster of AMD Opteron computers which is part of the Wayne

State University grid. Each computer has two 2.4GHz dual core processors and 4 or 16GB of

RAM. The computers are connected through a Gbit Ethernet. We used MPICH-1.2.7 as the

143

standard message passing interface. Value ranges for the parameters of the multi-modal system

are listed in Table 9.1. We have previously established the efficacy of the schedulability analysis

in [35] over the previous state-of-the-art (Phan et al. [63]); therefore, we measure the efficiency

of SUBI-PAR in this chapter.

For the simulation, we generate a set of 12 tasks from the parameters described in the Ta-

 0

 2000

 4000

 6000

 8000

 10000

 0 5 10 15 20 25

E
xe

cu
tio

n
T

im
e

(s
ec

)

Number of Processors

q=8
q=12
q=16
q=20

Figure 9.2: Execution time vs. number of processors.

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25

O
ve

rh
ea

d
(s

ec
)

Number of Processors

q=8
q=12
q=16
q=20

Figure 9.3: Parallel overhead vs. number of processors.

144

ble 9.1. Of the generated tasks, three are unchanged tasks and two are aborted tasks. We select

at least eight tasks from the set for each mode M (i). The resource parameter of a mode is set

based on the parameters described in the Table 9.1. In order to check the performance, we con-

sidered multi-mode systems with varying number of modes q ∈ {8, 12, 16, 20}. The SUBI-PAR

algorithm, for each multi-mode system, is executed at least five times to reduce the effect on

the execution time due to interference from other jobs in the grid. Among them, we took the

minimum execution time for each multi-mode system. While checking the schedulability, the

SUBI-PAR algorithm uses a total number of processors from the range [1, 24]. In Figure 9.2, we

present the execution time of the SUBI-PAR algorithm for parallel systems with various numbers

of processors. In this figure, the horizontal axis represents the total number of processorsmwhile

the vertical axis represents the execution time. Clearly, SUBI-PAR requires a smaller execution

time for a larger number of processors. Note that the decrease in the execution time with the

higher number of processors is not linear. This is due to the parallel overhead of our algorithms.

To calculate the overhead of the parallel execution, we consider the algorithm called SUBI

(Schedulability Using Bounded Iteration) developed in the previous chapter as the best known

serial algorithm for the problem. We execute this algorithm for each multi-mode system using

the same hardware resource setting in the grid. The overhead To is calculated using the formula

mTm − Ts, where Ts is the execution time of SUBI. Figure 9.3 shows the overhead versus the

number of processors used. Like most parallel algorithms, the parallel overhead of our proposed

algorithm increases with q due to the increased communication/synchronization cost. However,

the overhead does not obtain a noticeable increase after a certain limit on m. This limit depends

on the number of modes (e.g., for q = 8, the limit is 20).

Figure 9.4 and Figure 9.5 show the parallel performance metrics for the SUBI-PAR. The

speedup is calculated with respect to the execution time of SUBI. Figure 9.4 shows the speedup

with respect to the number of processors. The speedup is close to the number of processors.

Although it is not discernible in Figure 9.4, the speedup is slightly better for a larger number of

modes. In Figure 9.5, we present the efficiency of the SUBI-PAR with respect to the total number

of processors used. The parallel efficiency is calculated from the speedup and the number of

145

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25

Sp
ee

du
p

Number of Processors

q=8
q=12
q=16
q=20

Figure 9.4: Speedup vs. number of processors.

processors used. The efficiency varies between 90 − 98% in our experiments. Like the speedup

factor, efficiency varies with the number of modes and parameters associated with each mode.

We obtain better efficiency for higher number of modes. One possible explanation could be the

amount of workload to share among processors which increases with the number of modes.

In Figures 9.4 and 9.5, there are spikes at m = 2 due to the higher interference from other

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25

Pa
ra

lle
l E

ff
ic

ie
nc

y

Number of Processors

q=8
q=12
q=16
q=20

Figure 9.5: Efficiency vs. number of processors.

146

running jobs in grid. Each computer node in the grid has four cores, and the grid job scheduler

assigns a single core for each processor requested unless explicitly specified. For m = 2, only

two cores of a computer node are used by SUBI-PAR, and the remaining two cores may be

utilized by other running jobs in the grid. Cores in the same node share memory and cache;

therefore, the interference from outside jobs is higher for m = 2 than for m being a multiple of

four where each node is occupied only by our schedulability test during its execution.

So far, we developed an algorithm for the parallel schedulability analysis of real-time sys-

tems with multiple hardware and software modes. The proposed parallel schedulability test is

designed such that the overhead associated with the parallel execution is minimized to obtain

better speedup/efficiency. The experimental results substantiate the efficacy of the proposed al-

gorithm for parallel schedulability analysis; therefore, the algorithm can be used as an effective

tool for the exploration of design-space while searching for optimal parameters of a multi-mode

real-time system.

9.4 Parallel Schedulability Using GPU

To accelerate the schedulability analysis, in the previous section, we developed a parallel algo-

rithm using message passing interface (MPI) to check the invariants [35] of the schedulable real-

time multi-modal systems. Although this parallel algorithm greatly improves the total execution

time, scaling essentially requires adding potentially expensive computational nodes. Today’s

massively parallel general-purpose Graphical Processing Unit (GPU) platforms are often a more

cost effective alternative to scaling the number of general-purpose computer nodes. As GPUs are

increasingly common for handheld devices, an efficient GPU-based schedulability analysis could

also be used online to reconfigure the system by re-evaluating system schedulability if mode

parameters change dynamically.

GPU architectures are being increasingly used as parallel processing platforms for solv-

ing large scale problems suitable for the SIMD (Single Instruction Multiple Data) execution

model [39]. The scheduler of the GPU utilizes many threads, organized into warps [58, 57],

147

that execute the same set of instructions with different data. As a result, branching in the cur-

rently executing instruction set of a warp and synchronization among different warps may affect

the projected performance. In addition, synchronization requirements among GPU blocks may

create possible deadlock scenarios [59] which distinguishes the GPU from many other parallel

processing platforms. For load balancing upon a GPU platform, different centralized [39] and

distributed techniques [22] (e.g., sender/receiver-initiated [31]) may not be suitable due to added

overhead. We propose a decentralized load-balancing technique that reduces the overhead of

data distribution. Experimental results establish that the speedup of our GPU-based algorithm is

greater than the previous parallel implementation [5].

9.4.1 GPU-Based Schedulability

An important step in designing parallel algorithms is to decide the workload distribution among

available processors. Workload distribution must account for the properties of the underlying

processing platforms in order to achieve higher speedup. In this section, we first describe the

GPU platform and then develop policies that take into account advantages and limitations of

the GPU platform while distributing testing sets among processing elements. We emphasize a

balanced workload distribution to decrease the overhead due to communication/synchronization

and thus reduce the execution time.

GPU Platform

The CPU directs image processing tasks to the GPU, which relies heavily on arithmetic and log-

ical operations, where image data is sent as a stream through a hardware graphics pipeline. This

pipeline renders a stream in separate parts to construct an image. A GPU device has streaming

multiprocessors (SM) each of which contains a fixed set of processing cores. This streaming

architecture executes single instruction multiple data (SIMD) in parallel where each SM is com-

putationally independent from any other SM, making it ideal for problems requiring large data

sets processing. The Compute Unified Device Architecture (CUDA) [59] provides the API to

148

submit tasks to and receive results from the graphics processor. The computations are performed

by calling a method from the CPU that hosts the GPU device known as a kernel function. Pro-

cessing threads are created and grouped together in blocks. The number of threads and blocks

are parameters of the kernel function. A block is executed by the GPU scheduler in subsets of 32

parallel threads (known as a warp). Each block and thread have a unique index during the kernel

execution. The platform maintains the built-in variables blockIdx and threadIdx to identify

these indices.

Any structure placed on the GPU global memory can be accessed by the GPU threads and the

CPU. Shared memory structures are local to each streaming multiprocessor with access restricted

to a block of threads. Maximizing the number of accesses to shared memory rather than the global

memory is an important optimization since access to the shared memory can be 100 times faster

than the global memory. This approach needs to be balanced with the amount of overhead spent

on transferring information back and forth between the GPU and CPU memory structures. The

cost effective performance of the GPU and ease of use by extending an API based on the C

programming language are strong contributors to the success of the CUDA architecture. Ease of

use is attributed to the GPU scheduler. The scheduler automatically manages the execution of

threads with some explicit synchronization. Thousands of threads can be scheduled efficiently,

taking advantage of the available parallelism. Careful tuning of design parameters such as the

amount of shared memory used, the number of threads, and the number of blocks can result in

significant performance gains.

In order to efficiently utilize the full computational power of a GPU, we evaluate each of the

five schedulability conditions using a group of blocks {P0, . . . ,PG−1}, where G is the number

of groups on the GPU. The number of blocks in each Pg is denoted by B. We invoke a GPU

kernel for each condition SCZ once. Our policy is to evaluate each testing set by a single group

Pg, which implies that no two groups evaluate the same testing set. Since the size of testing sets

varies with each condition SCZ , the system designer may change B when evaluating different

SCZ to obtain similar execution times for all testing sets. The number of testing sets also varies

significantly with SCZ . Therefore, the system designer may utilize different G with different

149

SCZ , but we restrict B and G to be fixed during the evaluation of a single SCZ (i.e., throughout

the execution of a single kernel invocation). The blocks per group B must be an integer and

each group should contain at least one block (i.e., B ≥ 1). Without loss of generality, we fix the

number of threads per block to T . So we denote each group by Pg def
= {Pg0 ,Pg1 . . . ,PgB−1}, where

Pgβ is a block composed of threads {Pgβ,0 . . .Pgβ,T−1}.

Testing Set Distribution

In Section 5.1, we denoted by ΥSCZ(i,j,φ) the individual testing set of the condition SCZ for the

pair (M (i),M (j)) at an interval of length φ. We use the notation ΥSCZ and ΥSCZ(i,j) respectively

to denote the set of all testing sets associated with the condition SCZ and all testing sets of the

pair (M (i),M (j)) for condition SCZ . These notations are defined as follows

ΥSCZ(i,j) =
{

ΥSCZ(i,j,φ)|0 < φ ≤ TSZ(i, j)
}

(9.9)

and

ΥSCZ =
{

ΥSCZ(i,j)|(0 ≤ i, j < q) ∧ (i 6= j)
}
. (9.10)

Each testing set of ΥSCZ can be uniquely identified by i, j, and φ. To obtain a unique index

ΥSCZ(1,2,1) ΥSCZ(1,2,3)

ΥSCZ(1,3,2)

b = 0 b = 1 b = 2

(1, 2)

(1, 3)

(1, 4)

(2, 1)

Υ
SCZ(1,3,3)
0,0

γ = 0

γ = 1

γ = 2

ΥSCZ(2,1,2)

(4, 3) ΥSCZ(4,3,1)

Figure 9.6: Parallel workload distribution for checking schedulability.
G,B and T are assumed to be 3. Each row represents testing sets of ΥSCZ(i,j) (associated with
mode pair M (i) and M (j)) where each rectangle denotes an individual testing set ΥSCZ(i,j,φ).

Shaded rectangles belong to ΥSCZ
0 which is assigned to the group 0. The bottom rectangle at the

right depicts the distribution of the testing set ΥSCZ(1,3,3) among all threads of the group 0.

150

for each testing set ΥSCZ(i,j,φ), we define the following function:

XZ(i, j, φ) =
i−1∑

x=1

q∑

1≤y≤q
x6=y

TSZ(x, y) +

j−1∑

y=1
i 6=y

TSZ(i, y) + φ. (9.11)

We distribute all testing sets among the available groups (recall that each testing set is exe-

cuted by a single group). A testing set ΥSCZ(i,j,φ) ∈ ΥSCZ will be assigned to a particular group

based on the index function XZ(i, j, φ). The testing sets corresponding to a group Pg can be

determined as follows:

ΥSCZ
g =

{
ΥSCZ(i,j,φ)| (g ≡ XZ(i, j, φ) mod G)

}
. (9.12)

The elements of ΥSCZ(i,j,φ) ∈ ΥSCZ
g are distributed among the blocks of a group Pg. Each

testing set is divided into partitions of size
⌈

ΥSCZ (i,j,φ)

B

⌉
(the workload distribution is depicted in

Figure 9.6). A block Pgβ is responsible for the β-th partition of that testing set and distributes

the partition among its threads Pgβ,γ ∈ Pgβ . We emphasize a balanced distribution of partition

elements among these threads to increase speedup. We consider a round-robin distribution [39]

of a partition among threads of Pgβ . We take into account the continuation of the last partition:

that is, we start assigning the first element of a partition to a thread Pgβ,γ where the previous thread

Pgβ,γ−1 evaluates the last element of the previous partition. In order to achieve this, each thread

Pgβ,γ maintains a root variable r where r ∈ {0, . . . , (T −1)} (motivated by Ahmed et al. [5]). The

variable r indicates the index of the first element assigned to Pgβ,γ from the next partition. The set

below represents the partition of ΥSCZ(i,j,φ) assigned to a thread Pgβ,γ where Pgβ,γ’s root variable is

r.

Υ
SCZ(i,j,φ)
κ,r =

{
x|(x ∈ ΥSCZ(i,j,φ)) ∧ (r ≡ x mod T) ∧(
β ×

⌈
ΥSCZ (i,j,φ)

B

⌉
≤ x < (β + 1)

⌈
ΥSCZ (i,j,φ)

B

⌉)} (9.13)

151

Table 9.2: Notations in GPU Based Schedulability

Expression Description
τ (i) Real-time workload of M (i)

Ω(i) Minimum resource of M (i)

τ
(i)
` The `-th sporadic task of τ (i)

e
(i)
` Execution requirement of τ (i)

`

d
(i)
` Relative deadline of τ (i)

`

p
(i)
` Period of τ (i)

`

u
(i)
` Utilization of τ (i)

`

Π(i) Resource period for Ω(i)

Θ(i) Resource capacity of Ω(i)

∆(i) Resource deadline of Ω(i)

G Total number of groups
B Total number of blocks in a group
T Total number of threads per block
Pg The g-th group
Pgβ The β-th block of group Pg
Pgβ,γ The γ-th thread of block Pgβ
r Data distribution root variable for Pgβ,γ

ΥSCZ(i,j,φ) Testing sets for the pair (M (i),M (j)) at φ
ΥSCZ Set of testing sets for condition SCZ

ΥSCZ
g Testing sets of SCZ for group g

Υ
SCZ(i,j,φ)
ψ(g,β,γ),r Elements for which thread Pgβ,γ is responsible.

where κ = ψ(g, β, γ) such that

ψ(g, β, γ) = g ×B × T + β × T + γ. (9.14)

Note that the function ψ(g, β, γ) gives a system-wide unique identifier to each thread Pgβ,γ . For

Pgβ,γ with root variable r, we determine Pgβ,ρ that has r = 0 for some ρ ∈ {0, . . . , (T − 1)}. The

expression X def
= ((γ − r) mod T) identifies this thread. By distributing each of the elements

of Υ
SCZ(i,j,φ)
k,r in a round-robin fashion, the first thread to receive an element has the index equal

to ρ′ def
=
((
X +

⌈
ΥSCZ (i,j,φ)

B

⌉)
mod T

)
. To ensure a load balanced distribution, ρ′ identifies the

152

Algorithm 7 SUBI-GPU(M, B)

1: {CPU executes:}
2: G← q
3: proceed← true
4: for Z = 1 to 5 do
5: if Z = 4 then
6: ζ ← MaxCarry-GPU(M, B)
7: end if
8: Invoke CheckConditions-GPU(Z, ζ, B) with G groups.
9: Perform AND on returned values from line 8 to set proceed.

10: if proceed = false then
11: break;
12: end if
13: G← q(q − 1)
14: end for
15: return proceed

thread that will receive the first element in the next partition. Thus, for any other thread Pgβ,γ to

determine its new root variable, we must calculate ((γ−ρ′) mod T). The update rule for r after

the execution of a partition at each thread is

r =
(
γ −

((
X +

⌈
ΥSCZ (i,j,φ)

B

⌉)
mod T

))
mod T. (9.15)

9.4.2 Algorithms

In this section, we develop a parallel algorithm for checking schedulability of a real-time multi-

modal system using policies defined in the previous section. The main algorithm is SUBI-GPU,

which utilizes three subroutines to perform the schedulability analysis. Conditions SC4 and SC5

require the maximum carry-in for all pairs of modes, which are calculated by MaxCarry-GPU.

Table 9.2 lists the notations to describe the algorithms.

153

SUBI-GPU Algorithm

The pseudo-code for SUBI-GPU is given in Algorithm 7, which is designed to execute in the

CPU. SUBI-GPU invokes CheckConditions-GPU for each of the five conditions with varying

numbers of groups denoted by G, where G = q if Z = 1, and G = q(q − 1) otherwise. As

discussed in the section for workload distribution, the number of testing sets and their sizes

varies significantly over different conditions. For example, SC1 requires only the evaluation of

q testing sets whereas all other conditions require at least q(q − 1) testing sets (the condition

SC5 requires the largest number of testing sets, which is
∑

i,j≤q TS5(i, j)). Therefore, the system

designer may want to use a varying number of groups for different SCZ as a higher number of

groups may increase the parallel efficiency of a GPU platform; however, a total number of groups

greater than the number of testing sets for any SCZ may not be a good policy as all groups with

a group identifier g greater than the number of testing sets will not find any work to complete;

thus, these groups will increase the overhead.

CheckConditions-GPU Subroutine

The pseudo-code for CheckConditions-GPU is given in Algorithm 8. CheckConditions-GPU

is designed to execute in the GPU to check each condition SCZ . The number of groups G is

passed to CheckConditions-GPU as an argument, but the actual GPU block should be a mul-

tiple of B if B > 1. The built-in variables blockIdx and threadIdx are initialized by the

runtime system and accessed within the kernel. A block’s group index g equals
⌊
blockIdx

B

⌋
and

its block index β within a group equals (blockIdx mod B). The thread index γ is initialized

by the construct threadIdx. We create a function Init(blockIdx, threadIdx, B) on line 2 that

initializes (g, β, γ) using the aforementioned rules. The root variable r is initialized with the

GPU thread identifier threadIdx. The for-loop in lines 4 to 33 iterates over each pair for all

pairs of modes (optionally, this for-loop could be replaced by two cascaded for-loops iterating

over i, j < q and i 6= j). After identifying (i, j), the loop in lines 6 to 32 iterates over all testing

sets assigned to group Pg. For each ΥSCZ(i,j,φ), the thread Pgβ,γ considers its partition Υ
SCZ(i,j,φ)
k,r

154

Algorithm 8 CheckConditions-GPU(Z, ζ, B).
1: {Thread Pgβ,γ executes:}
2: (g, β, γ)← Init(blockIdx, threadIdx, B)
3: r ← threadIdx

4: for all (i, j) of q(q − 1) pairs do
5: Ci ← max{h=1,...,q}∧h6=i{ζhi}
6: for all ΥSCZ(i,j,φ) in ΥSCZ

g do
7: for all x in Υ

SCZ(i,j,φ)
κ,r do

8: if Z = 1 then
9: if sbf(Ω(i), x) < dbf(τ (i), x) then

10: return false
11: end if
12: else if Z = 2 then
13: if dbf(τ (j) \ τ (ij), x) + dbf(τ (ij), x+ φ) > βi,jpost(φ, x) then
14: return false
15: end if
16: else if Z = 3 then
17: if dbf(τ (ij), x) > sbf(Ω(ij), x) then
18: return false
19: end if
20: else if Z = 4 then
21: if Ψx(M

(i),M (j), Ci, φ) > βM
(i),M(j)

trans (x) then
22: return false
23: end if
24: else if Z = 5 then
25: carry← Ψx(M

(i),M (j), Ci, φ) - βM
(i),M(j)

trans (δ(ij))
26: if carry + dbf(τ (i) \ τ (ij), x) > βi,jpost(0, x) then
27: return false
28: end if
29: end if
30: end for
31: Update r using Equation 9.15.
32: end for
33: end for
34: return true

only where k def
= ψ(g, β, γ) and iterates over each element x of this partition using the for-loop

in lines 7 to 30. Based on Z, CheckConditions-GPU chooses the appropriate condition using a

nested if-then-else block. Although a subroutine with branching does not perform well inside a

155

Algorithm 9 GetCarry-GPU(M, ζ, B).
1: {Each thread Pgβ,γ executes:}
2: (g, β, γ)← Init(blockIdx, threadIdx, B)
3: change← false

4: i←
⌊

g
q−1

⌋

5: if i < g mod (q − 1) then
6: j ← g mod (q − 1)
7: else
8: j ← g mod (q − 1) + 1
9: end if

10: Compute Eij using Equation 6.18.
11: ci(i)max ← max

h=1,...,q∧h6=i
{ζhi}

12: c← 0
13: d← max(δ(ij) + d

(ij)
max, d

(i)
max)

14: for all x in Υ
SC4(i,j,δ(ij))
κ,r do

15: c← max
(
c,Ψx(M

(i),M (j), ci(i)max, d)
)

16: end for
17: c← c − ∑

τ
(ij)
` ∈τ (ij)

dbf
(
τ

(ij)
` , d− δ(ij) − p(ij)

`

)
− βM(i),M(j)

trans (δ(ij))

18: if min(c, Eij) > ζij then
19: ζij ← min(c, Eij)
20: change← true
21: end if
22: return (ζij, change)

GPU thread, we use an if-then-else form for ease of presentation. An actual implementation of

CheckConditions-GPU can use five separate subroutines instead of nested if-then-else. The al-

gorithm returns with false if SCZ does not hold for any x. These returned values are collected by

SUBI-GPU from the GPU global memory. After completing each partition, each thread updates

its r (line 31) to obtain a balanced distribution.

We now develop algorithms that calculate the maximum carry-in for all pairs of modes. The

maximum carry-in that a mode M (i) can forward to M (j), taking into account all possible pre-

vious mode-change requests, is given by ci(M (i),M (j)). The ci(M (i),M (j)) is calculated using

the sequence ciM
(i),M(j)

0 , ciM
(i),M(j)

1 , ciM
(i),M(j)

2 , . . ., ciM
(i),M(j)

η , In Chapter 6, we showed that

the maximum value of η is limited by the total execution requirements of any mode which is

156

max1≤i≤q
∑

1≤`≤n(i)
e

(i)
` . The entire sequence may not be evaluated using a single kernel invo-

cation of the GPU as the calculation of ciM
(i),M(j)

η requires the synchronization of results from

all participating blocks. This calculation also depends on values calculated at the immediate

previous step (ciM
(h),M(i)

η for all h, i ≤ q); therefore, an implementation of ci using a single

kernel invocation may require inter-block synchronization. Xiao and Feng [82] addressed the

inter-block synchronization which may occur at the end of a thread-execution; however, the same

technique may not be suitable for the scenario where synchronization among threads of different

blocks may occur inside a loop. These inter-block synchronizations may result in deadlock when

all the GPU blocks are not executed concurrently by a GPU scheduler. We instead divide the

calculation of ci into two procedures: GetCarry-GPU and MaxCarry-GPU. MaxCarry-GPU is

a CPU function that iterates over η and invokes the GPU function GetCarry-GPU to calculate

ciM
(i),M(j)

η where values calculated at the (η − 1)-th step is given as an argument.

GetCarry-GPU Subroutine

The device subroutine GetCarry-GPU is presented in Algorithm 9. Variables (g, β, γ) are ini-

tialized at the beginning by Init(blockIdx, threadIdx, B). Each group calculates carry-in for a

single pair of modes. Lines 5 to 9 determine mode indices (i, j) from the group index g. For each

pair of modes (i, j), there is a single testing set (ΥSC4(i,j,φ)) to be evaluated. The block Pgβ , in

the group Pg, is assigned a partition of consecutive testing set elements. Next, GetCarry-GPU

calculates ciM
(i),M(j)

η according to Equations 7.21 and 7.22; and stores the new value in ζij if it

Algorithm 10 MaxCarry-GPU(M, B).
1: {CPU executes:}
2: {Returns a [q × q] matrix ζ .}
3: ζ ← 0
4: repeat
5: proceed← false.
6: Invoke GetCarry-GPU(M, ζ, B) using q(q − 1) groups.
7: Perform OR on change from q(q − 1) groups to set proceed.
8: until proceed = false
9: return ζ

157

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4 5 6 7 8 9 10 11 12

E
xe

cu
tio

n
T

im
e

(s
ec

)

Number of Modes (q)

PSA(MPI)
PSA(OpenMP)

SSA
GPU

Figure 9.7: Execution time vs. number of modes (q)

is greater than the old value. The function marks the change by setting the change flag to true

(lines 18 to 21).

MaxCarry-GPU Subroutine

The MaxCarry-GPU subroutine presented in Algorithm 10 calculates ci for all pairs of modes

M (i) andM (j) using a repeat-until loop that invokes GetCarry-GPU with q(q−1) groups at each

iteration. GetCarry-GPU at each group calculates ciM
(i),M(j)

η for different pairs of modes from

the value calculated at the previous step and stores the new value in ζij . To determine proceed,

MaxCarry-GPU performs an associative or operation (line 7) on all values of change returned

from all groups. This step determines whether change is set to true by at least one thread.

The function proceeds to the next step only if proceed is true. Otherwise, the function exits

with the current values stored in ζ . The last step is analogous to All-to-All-Reduce with an OR

operator [39].

9.4.3 Experimental Results

We compared SUBI with two existing algorithms: a serial schedulability analysis (denoted as

SSA) by Fisher and Ahmed [35] and a parallel schedulability analysis (PSA) by Ahmed et al. [5].

PSA was executed upon a cluster of AMD Opteron computers on the Wayne State University

158

grid. Each node has two 2.4GHz dual-core processors with 16GB of RAM. We have used two

well-known parallel programming interfaces, MPI and OpenMP, to implement PSA. Both MPI

and OpenMP implementations were executed on 2 processors (4 cores) in the cluster whereas

SSA was executed on a single core from the same cluster. For SUBI, we used a GeForce GT 440

GPU upon a computer with a 2.33GHz Intelr CoreTM 2 Duo processor and 2.0GB RAM. The

GT 440 has two streaming multiprocessors (SM) each of which contains 48 cores. For generating

the multi-modal systems, we have used the following parameters and value ranges:

1. The number of modes q of a multi-modal system is taken from the range {4, . . . , 12}.

2. For the real-time workload of a multi-modal system, the UUniFast algorithm [16] is used to

randomly generate a pool of 16 sporadic tasks by uniform distribution with total utilization

1. Each task period p(i)
` is uniformly drawn from {200, . . . , 2500} and d(i)

` is set to p(i)
` .

3. For each mode M (i), 6 tasks have been chosen randomly from the pool of tasks using a

uniform distribution.

We performed two sets of experiments. For the first set of experiments, we varied q from 4 to

12. We then measured the execution times for the SUBI algorithm upon the GPU platform, SSA

upon a single node on the cluster, and both OpenMP and MPI implementations of PSA upon the

 0

 10

 20

 30

 40

 50

 60

 70

 80

 4 5 6 7 8 9 10 11 12

Sp
ee

dU
p

Number of Modes (q)

PSA(MPI)
PSA(OpenMP)

SSA

Figure 9.8: Speedup vs. number of modes (q)

159

 0

 5

 10

 15

 20

 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

E
xe

cu
tio

n
T

im
e

(s
ec

)

Number of Threads (T)

B=1
B=2
B=3

Figure 9.9: Performance of SUBI with varying blocks and threads.

cluster. For each q, we have generated 25 multi-modal systems based on the policy described

in the previous section. In Figure 9.7, the horizontal axis represents the total number of modes

q while the vertical axis represents the mean execution time associated with each q. Among

the implementations, the MPI version of PSA performs better upon a computer cluster than the

OpenMP implementation and SSA; however, the execution time (including data transfer time) of

SUBI is significantly less than that of any PSA implementation.

9.5 Conclusion

In this chapter, we proposed a parallel schedulability analysis of real-time multi-modal systems

that obtains significant speedup over existing schedulability analysis algorithms. The proposed

algorithm takes advantage of favorable features (e.g., shared memory, parallel platform archi-

tecture) and avoids limitations (e.g., difficulty in achieving inter-block synchronization upon a

GPU) of a parallel platform. The increased speedup will be especially beneficial for the process

of determining the minimum resource parameters of a multi-modal system by repetitive appli-

cation of a schedulability analysis with varying resources. This process is referred to as design-

space exploration. We later extended the parallel schedulability analysis for a GPU platform.

A fast schedulability analysis can further enhance the development of interactive tools (e.g., an

intelligent personal assistant software for GPU enabled handheld devices) on top of real-time

160

multi-modal systems.

161

CHAPTER 10: CONCLUSION &

FUTURE WORK

Multi-modal systems is very effective to maintain stability in a dynamic and unpredictable en-

vironment. With the presence of dynamic power management (DPM) features even with low

end processors, there will be more and more multi-modal real-time systems in future to exploit

dynamic environment for guaranteed service. Researchers have been working on control com-

puting [37, 36] systems to achieve this goal. To achieve control computing systems, multi-modal

execution is the prerequisite. Each of the previously-proposed real-time control systems is soft

real-time; that is, the system cannot guarantee that every deadline will be met, but is designed

with the objective to minimize the number (or the effect) of deadline misses. We are unaware

of a single feedback control computing system with hardware and software modes that is hard

real-time, in that it guarantees that no deadline will be missed.

The current non-existence of such a control computing system is due to a fundamental gap

in the research literature on effective and efficient multi-modal systems and schedulability anal-

ysis. This is due to the fact that real-time applications that meet all deadlines in the presence of

changing execution modes is inherently difficult due to the challenge in predicting the aggregate

computational resources that will be available to the real-time application over any interval of

time. Therefore, all existing multimode schedulability analysis that handles both resource and

application mode changes is highly exponential and not scalable for subsystems with a moderate

or large number of modes. In this dissertation, we take an initial step towards the design of such a

hard-real-time control system by providing a theoretical framework and associated time-efficient

schedulability analysis.

The proposed multi-modal system and schedulability developed in this thesis was imple-

mented by Hettiarachchi et al. [42]. The goal was to obtain performance guarantees in an un-

predictable thermal environment. Towards this challenge, we have presented a control theoretic

162

framework for thermal stress analysis in real-time systems. Our proposed method employs a

nested feedback control system, which is based on optimum control theory. For our system, we

derived strong guarantees for any real-time execution mode. Our method has the distinct advan-

tage of being able to verify thermal aspects of a system before it is put into operation. In addition,

we show via simulations that our framework performs as well as previous approaches which have

no formal guarantee on the thermal. Our implementation upon a hardware testbed validates our

proposed model and control framework. While related to the dissertation topic, the challenge of

designing multi-modal control systems is not in the scope of research described in this disserta-

tion. We refer the reader to papers by Hettiarachchi et al. [42] for details on multi-modal control

system design. Following sections summarize the contribution of this dissertation.

10.1 Summary Results

10.1.1 Multi-Modal System

We proposed a model for hardware and software modes in a real-time system. We consider a

system consisting of multiple subsystems, and exclusively focus on the subsystem-level schedu-

lability. We consider that both the real-time application workload and the processing resource

have multiple modes. In order to ensure schedulability along with temporal isolation, we couple

each application mode with a processing resource to constitute a subsystem mode. Therefore,

each subsystem mode is characterized by a pair: an explicit deadline periodic resource (i.e.,

hardware execution behavior) and a sporadic task system (i.e., software execution behavior).

10.1.2 EDF Schedulability Analysis

We derived EDF schedulability analysis for mode-change request for two settings: concrete and

non-concrete mode change requests. For non-concrete systems (i.e., the sequence of mode-

changes are not known a priori), we obtain a schedulability analysis algorithm that has pseudo-

polynomial time complexity. The previous known algorithm which uses a reachability graph

163

requires exponential time complexity. Our simulation results validate the effectiveness and effi-

ciency of algorithm and demonstrate that it scales as the number of modes increases.

10.1.3 FP Schedulability Analysis

We present an efficient FP-schedulability analysis for our proposed multi-modal systems. In addi-

tion, our schedulability analysis for multi-modal systems can address non-preemptible execution

of a task in a mode. Furthermore, we showed that our analysis can be done in tractable time

complexity; therefore, this result may be used to calculate more refined (near optimal) resource

parameters by repetitive application of this schedulability with varying hardware parameters as

shown in Ahmed and Fisher [4].

10.1.4 Parallel Schedulability Analysis

We proposed a parallel algorithm for the EDF schedulability analysis of real-time systems with

multiple hardware and software modes. The proposed parallel schedulability test is designed such

that the overhead associated with the parallel execution is minimized to obtain better speedup

or efficiency. The experimental results substantiate the efficacy of the proposed algorithm for

parallel schedulability analysis; therefore, the algorithm can be used as an effective tool for the

exploration of design space while searching for optimal parameters of a multimode real-time

system.

We extended the parallel schedulability analysis for GPU computing that obtained signifi-

cant speedup over general implementation (using MPI and OpenMP) of parallel schedulability

analysis algorithms. The proposed GPU based algorithm takes advantage of favorable features

(e.g., shared memory, SIMD architecture) and avoids limitations (e.g., difficulty in achieving

inter-block synchronization) of a GPU platform. The increased speedup will be beneficial for de-

termining the minimum resource parameters of a multi-modal system by repetitive application of

a schedulability analysis with varying resources. This process is also referred as design-space ex-

ploration. A fast schedulability analysis can further enhance the development of interactive tools

164

(e.g., intelligent personal assistant software for handheld devices) on top of real-time multi-modal

systems.

10.1.5 Resource Estimation

Multi-modal systems developed so far have not addressed the optimal (hardware) resource alloca-

tion for each mode. By leveraging the developed schedulability analysis in the above subsections,

we address the problem of minimizing a multimode real-time system with respect to resource us-

ages over all modes. Optimal solutions may vary due to different objective functions (e.g., min-

imizing peak-temperature or minimizing total energy consumption). In [6], we have shown that

optimizing the capacity of a periodic resource is useful for minimizing the peak-system temper-

ature in a system with simple active/idle power modes. So, we addressed the objective function

of minimizing the maximum resource usages for a set of application modes.

10.1.6 Radar Simulation

We model an automotive adaptive cruise control system using the frequency modulated continu-

ous wave (FMCW) technique [46]. This experiment performs range and Doppler estimation of

a moving vehicle. The radar system opportunistically (as specified in the mode) estimates the

distance between the vehicle it is mounted on and the vehicle in front of it, and alerts the driver

when the two become too close.

10.2 Future Work

Mixed criticality and multiprocessors are the two promising features which received considerable

research attention in real-time community over the past few years. Multi-modal systems powered

with either multiprocessor or mixed-criticality tasks will be very effective tool for system designer

to model dynamic systems with timing constraints.

165

10.2.1 MMS with mixed-criticality tasks systems

In order to reduce the size and cost of an embedded system, real-time researchers have been

considering multiple components (e.g., cruise control, anti-lock braking system, and audio/video

for automotive systems) to be assembled upon a single computing device. These components

may not share the same level of criticality (e.g., the criticality of ABS is higher than onboard

audio system). For such systems, different levels of certification of the system with varying

degrees of rigorousness are desired. Mixed-criticality of a task is represented by different worst

case execution time (WCET) at different critical levels. Whenever a higher priority task has

its execution time that exceeds its WCET at the current criticality level, the system changes

the criticality level to the next higher level, and discards all jobs with criticality less than the

current criticality level. With these changes in criticality level, essentially changes in computation

requirements occur which may be modeled by real-time multi-modal systems. In this project,

we will consider the state-of-the-art for multi-modal systems and corresponding schedulability

analysis as an effective tool for analyzing mixed criticality tasks systems.

10.2.2 MMS for multiprocessors

Schedulability analysis for a multi-modal system upon a multiprocessor is going to be studied.

Each mode associates a software component with hardware requirements. Software component

is modeled by constrained deadline sporadic tasks, whereas the hardware part will be modeled

more-general multiprocessor periodic resource model [69] or bounded-delay multi-partition [48].

For better understanding, we start with a simple hardware model (a set of bounded-delay uni-

processors where delay equals to zero) for the multiprocessor. This assumption also reduces

pessimism. Each mode executes the workload upon the underlying hardware using EDF. Our

goal is to design schedulable multi-modal systems upon multiprocessor, which are eventually

suitable for control systems. Control systems requires typically higher number of modes, there-

fore, a schedulability analysis with pseudo-polynomial complexity is desirable for such systems

to reduce system design time.

166

LIST OF PUBLICATIONS

JOURNAL

1. Masud Ahmed, Nathan Fisher, Tractable Schedulability Analysis and Resource Al-

location for Real-time Multimodal Systems, ACM Transactions on Embedded Com-

puting Systems., Volume 13, Issue 2s, January 2014.

2. Pradeep M. Hettiarachchi, Nathan Fisher, Masud Ahmed, Le Yi Wang, Shinan Wang,

and Weisong Shi. The Design and Analysis of Thermal-Resilient Hard-Real-Time

Systems, ACM Transactions on Embedded Computing Systems, 2013, To Appear.

3. Masud Ahmed, Nathan Fisher, Shengquan Wang, and Pradeep Hettiarachchi. Mini-

mizing peak temperature in embedded real-time systems via thermal-aware periodic

resources, Sustainable Computing: Informatics and Systems, 3(1), pp. 226-240,

2011.

CONFERENCE & WORKSHOP

1. Masud Ahmed, Pradeep M. Hettiarachchi, and Nathan Fisher. Analysis for Real-

Time Multi-Modal FP-Scheduled Systems with Non-Preemptible Regions, Submitted

in RTAS, 2014.

2. Nathan Fisher, Masud Ahmed, and Pradeep M. Hettiarachchi. Open Problems in

Multi-Modal Scheduling Theory for Thermal-Resilient Multicore Systems, 5th Real-

Time Scheduling Open Problems Seminar (RTSOPS), Madrid, Spain, July, 2014.

(The “most wanted problem” award)

3. Masud Ahmed, Safraz Rampersaud, Nathan Fisher, Daniel Grosu and Loren Schwiebert.,

GPU-Based Parallel EDF-Schedulability Analysis of Multi-Modal Real-Time Sys-

tems, Proc. of 15th IEEE International Conference on High Performance Computing

and Communications, November, 2013, Zhangjiajie, China.

167

4. Masud Ahmed, Camille Williams, Bo Peng, and Nathan Fisher. Real-Time Multi-

Modal Implementation of a Robotic Toy Car. The 2nd Open Demo Session of Real-

Time Systems (RTSS@Work), Puerto-Rico, 2012.

5. Masud Ahmed and Nathan Fisher and Daniel Grosu. A Parallel Algorithm for EDF-

Schedulability Analysis of Multi-Modal Real Time Systems, Proc. of the 18th IEEE

International Conference on Embedded and Real-Time Computing Systems and Ap-

plications (RTCSA), Seoul, 2012.

6. Pradeep M. Hettiarachchi and Nathan Fisher and Masud Ahmed and Le Yi Wang

and Shinan Wang and Weisong Shi. The Design and Analysis of Thermal-Resilient

Hard-Real-Time Systems, Proc. of the IEEE Real-Time and Embedded Technology

and Applications Symp., Beijing, 2012.

7. Nathan Fisher and Masud Ahmed. Tractable Real-Time Schedulability Analysis for

Mode Changes under Temporal Isolation, Proc. of the 9th IEEE Symp. on Embedded

Systems for Real-Time Multimedia, Taipei, October 2011. (Best paper candidate

award)

168

REFERENCES

[1] Luca Abeni and Giorgio Buttazzo. Integrating multimedia applications in hard real-time

systems. In Proceedings of the Real-Time Systems Symposium, pages 3–13, Spain, Decem-

ber 1998. IEEE Computer Society Press.

[2] Luca Abeni and Giorgio Buttazzo. Resource reservation in dynamic real-time systems.

Real-Time Systems, 27(2):70–77, 1999.

[3] S.G. Abraham and S.A. Mahlke. Automatic and efficient evaluation of memory hierarchies

for embedded systems. In Proc. of 32nd Annual International Sympages on Microarchitec-

ture, pages 114 –125, 1999.

[4] Masud Ahmed and Nathan Fisher. Tractable schedulability analysis and resource allocation

for real-time multi-modal systems. ACM Trans. Embed. Comput. Syst., 13(2s), 2014.

[5] Masud Ahmed, Nathan Fisher, and Daniel Grosu. A parallel algorithm for edf-

schedulability analysis of multi-modal real time systems. Technical report, 2012.

[6] Masud Ahmed, Nathan Fisher, Shengquan Wang, and Pradeep Hettiarachchi. Minimiz-

ing peak temperature in embedded real-time systems via thermal-aware periodic resources.

Sustainable Computing: Informatics and Systems, 3(1):226–240, 2011.

[7] Samar Al-Khairi. Power management features on the embedded ultra low-power

intel486tm processor. Technical report, Intel, IL, USA, 1997. Available at

http://www.intel.com/design/intarch/papers/lp486.htm.

[8] S. Baruah, R. Howell, and L. Rosier. Algorithms and complexity concerning the preemptive

scheduling of periodic, real-time tasks on one processor. Real-Time Systems: The Interna-

tional Journal of Time-Critical Computing, 2:301–324, 1990.

169

[9] S. Baruah, R. Howell, and L. Rosier. Feasibility problems for recurring tasks on one pro-

cessor. Theoretical Computer Science, 118(1):3–20, 1993.

[10] S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling hard-real-time sporadic tasks on

one processor. In Proceedings of the 11th Real-Time Systems Symposium, pages 182–190,

Orlando, Florida, 1990. IEEE Computer Society Press.

[11] Sanjoy Baruah. The limited-preemption uniprocessor scheduling of sporadic task systems.

In Real-Time Systems, 2005.(ECRTS 2005). Proceedings. 17th Euromicro Conference on,

pages 137–144. IEEE, 2005.

[12] Sanjoy Baruah. Schedulability analysis of global deadline-monotonic scheduling. Unpub-

lished manuscript, Available at http://www.cs.unc.edu/∼baruah, 2007.

[13] Sanjoy Baruah and Shun-Shii Lin. Pfair scheduling of generalized pinwheel task systems.

IEEE Transactions on Computers, 47(7), July 1998.

[14] M. Behnam, T. Nolte, and R.J. Bril. Tighter schedulability analysis of synchronization

protocols based on overrun without payback for hierarchical scheduling frameworks. In

Engineering of Complex Computer Systems (ICECCS), 16th IEEE International Conference

on, pages 35–44, April 2011.

[15] M. Bertogna, O. Xhani, M. Marinoni, F. Esposito, and G. Buttazzo. Optimal selection of

preemption points to minimize preemption overhead. In Real-Time Systems (ECRTS), 2011

23rd Euromicro Conference on, pages 217–227, July 2011.

[16] E. Bini and G. Buttazzo. Biasing effects in schedulability measures. In Proceedings of

the 16th Euromicro Conference on Real-Time Systems, pages 196–203. IEEE Computer

Society, 2004.

[17] Enrico Bini and Giorgio Buttazzo. Schedulability analysis of periodic fixed priority systems.

IEEE Transactions on Computers, 53(11):1462–1473, 2004.

170

[18] S. Brandt, S. Banachowski, C. Lin, and T. Bisson. Dynamic integrated scheduling of hard

real-time , soft real-time and non-real-time processes. In Proceedings of the 24th IEEE

Real-Time Systems Symposium, pages 396–407, 2003.

[19] Alan Burns, Ken Tindell, and Andy Wellings. Effective analysis for engineering real-time

fixed priority schedulers. Software Engineering, IEEE Transactions on, 21(5):475–480,

1995.

[20] Alan Burns, Andy J Wellings, CM Bailey, and E Fyfe. The olympus attitude and orbital

control system a case study in hard real-time system design and implementation. In Ada-

Europe’93, pages 19–35. Springer, 1993.

[21] Giorigo Buttazzo and Luca Abeni. Adaptive rate control through elastic scheduling. In

Proceedings of the 24th IEEE Conference on Decision and Control, volume 5, pages 4883–

4888, 2000.

[22] T. L. Casavant and J. G. Kuhl. A taxonomy of scheduling in general-purpose distributed

computing systems. IEEE Trans. Softw. Eng., 14(2):141–154, 1988.

[23] Thidapat Chantem, Robert P. Dick, and X. Sharon Hu. Temperature-aware scheduling and

assignment for hard real-time applications on MPSoCs. In Design, Automation and Test in

Europe, pages 288–293, 2008.

[24] Thidapat Chantemand, Hu X. Sharon, and Robert P. Dick. Online work maximization under

a peak temperature constraint. In ISLPED ’09: Proceedings of the 14th ACM/IEEE inter-

national symposium on Low power electronics and design, pages 105–110, New York, NY,

USA, 2009. ACM.

[25] Jian-Jia Chen, Chia-Mei Hung, and Tei-Wei Kuo. On the minimization of the instantaneous

temperature for periodic real-time tasks. In IEEE Real-Time and Embedded Technology and

Applications Symposium, pages 236–248, 2007.

171

[26] Jian-Jia Chen, Shengquan Wang, and Lothar Thiele. Proactive speed scheduling for frame-

based real-time tasks under thermal constraints. In IEEE Real-Time and Embedded Tech-

nology and Applications Symposium (RTAS), 2009.

[27] Michele Cirinei and Theodore P. Baker. Edzl scheduling analysis. In Proceedings of the Eu-

roMicro Conference on Real-Time Systems, Pisa, Italy, July 2007. IEEE Computer Society

Press.

[28] Control theory. Control theory — Wikipedia, the free encyclopedia, 2010. [Online; ac-

cessed September 5, 2014].

[29] Robert L. Davis, Alan Burns, Reinder J. Bril, and Johan J. Lukkien. Controller area network

(CAN) schedulability analysis: Refuted, revisited, and revised. volume 35, pages 239–272.

Kluwer Academic Publishers, 2007.

[30] Michael L. Dertouzos. Control robotics: The procedural control of physical processes. In

IFIP Congress, pages 807–813, 1974.

[31] Derek L. Eager, Edward D. Lazowska, and John Zahorjan. Adaptive load sharing in homo-

geneous distributed systems. IEEE Trans. Softw. Eng., 12(5):662–675, 1986.

[32] Arvind Easwaran, Madhukar Anand, and Insup Lee. Compositional analysis framework

using EDP resource models. In Proceedings of the IEEE Real-time Systems Symposium,

Tuscon, Arizona, December 2007.

[33] Jimin Feng, S. Chakraborty, B. Schmidt, Unmesh Weiguo Liu, and U.D. Bordoloi. Fast

schedulability analysis using commodity graphics hardware. In Proc. of 13th IEEE Inter-

national Conference on Embedded and Real-Time Computing Systems and Applications,

pages 400–408, 2007.

[34] Xiang (Alex) Feng and Al Mok. A model of hierarchical real-time virtual resources. In

Proceedings of the IEEE Real-Time Systems Symposium, pages 26–35. IEEE Computer

Society, 2002.

172

[35] Nathan Fisher and Masud Ahmed. Tractable real-time schedulability analysis for mode

changes under temporal isolation. In Proc. of the 9th IEEE Sympages on Embedded Systems

for Real-Time Multimedia, Taipei, 2011.

[36] Xing Fu, Xiaorui Wang, and Eric Puster. Simultaneous thermal and timeliness guarantees in

distributed real-time embedded systems. Journal of Systems Architecture, 2010. To Appear.

[37] Yong Fu, Nicholas Kottenstette, Yingming Chen, Chenyang Lu, Xenofon D. Koutsoukos,

and Hongan Wang. Feedback thermal control for real-time system. In Proceedings of the

Real-Time and Embedded Technology and Applications Systems Symposium, Stockholm,

Sweden, April 2010. IEEE Computer Society Press.

[38] Yong Fu, Nicholas Kottenstette, Chenyang Lu, and Xenofon D. Koutsoukos. Feedback

thermal control of real-time systems on multicore processors. In Proceedings of the Tenth

ACM International Conference on Embedded Software, pages 113–122, New York, NY,

USA, 2012. ACM.

[39] Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar. Introduction to Parallel

Computing, Second Edition. Addison Wesley, USA, 2003.

[40] Qian Guangming. An earlier time for inserting and/or accelerating tasks. Real-Time Sys-

tems, 41:181–194, 2009.

[41] P.M. Hettiarachchi, N. Fisher, and L.Y. Wang. Achieving thermal-resiliency for multicore

hard-real-time systems. In Real-Time Systems (ECRTS), 2013 25th Euromicro Conference

on, pages 37–46, July 2013.

[42] Pradeep M. Hettiarachchi, Nathan Fisher, Masud Ahmed, Le Yi Wang, Shinan Wang, and

Weisong Shi. The design and analysis of thermal-resilient hard-real-time systems. In Proc.

of the IEEE Real-Time and Embedded Technology and Applications Sympages, Beijing,

2012.

173

[43] Wei-Lun Hung, Yuan Xie, Narayanan Vijaykrishnan, Mahmut T. Kandemir, and Mary Jane

Irwin. Thermal-aware task allocation and scheduling for embedded systems. In ACM/IEEE

Conference of Design, Automation, and Test in Europe, pages 898–899. IEEE Computer

Society, 2005.

[44] R. Inam, M. Sjodin, and R.J. Bril. Mode-change mechanisms support for hierarchical freer-

tos implementation. In Emerging Technologies Factory Automation (ETFA), 2013 IEEE

18th Conference on, pages 1–10, 2013.

[45] D. S. Johnson. Near-optimal Bin Packing Algorithms. PhD thesis, Department of Mathe-

matics, Massachusetts Institute of Technology, 1973.

[46] C. Karnfelt. 77 ghz acc radar simulation platform. In IEEE International Conferences on

Intelligent Transport Systems Telecommunications (ITST), 2009.

[47] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm: Exact charac-

terization and average case behavior. In Proceedings of the Real-Time Systems Symposium

- 1989, pages 166–171, Santa Monica, California, USA, December 1989. IEEE Computer

Society Press.

[48] Giuseppe Lipari and Enrico Bini. A framework for hierarchical scheduling on multiproces-

sors: from application requirements to run-time allocation. In Proc. of the IEEE Real-Time

Systems Symp. IEEE Computer Society, 2010.

[49] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard real-time

environment. Journal of the ACM, 20(1):46–61, 1973.

[50] David Meisner, Brian T. Gold, and Thomas F. Wenisch. Powernap: eliminating server idle

power. In Proceeding of the 14th international conference on Architectural support for

programming languages and operating systems, ASPLOS ’09, pages 205–216, New York,

NY, USA, 2009. ACM.

174

[51] A. K. Mok. Fundamental Design Problems of Distributed Systems for The Hard-Real-Time

Environment. PhD thesis, Laboratory for Computer Science, Massachusetts Institute of

Technology, 1983. Available as Technical Report No. MIT/LCS/TR-297.

[52] Srinivasan Murali, Almir Mutapcic, David Atienza, Rajesh Gupta, Stephen Boyd, Luca

Benini, and Giovanni De Micheli. Temperature control of high-performance multi-core

platforms using convex optimization. In DATE, pages 110–115, 2008.

[53] Srinivasan Murali, Almir Mutapcic, David Atienza, Rajesh Gupta, Stephen Boyd, and Gio-

vanni De Micheli. Temperature-aware processor frequency assignment for mpsocs using

convex optimization. In IEEE/ACM international conference on Hardware/software code-

sign and system synthesis, pages 111–116, New York, NY, USA, 2007. ACM.

[54] Vincent Nelis and Joel Goossens. Mode change protocol for multi-mode real-time systems

upon identical multiprocessors. Proceeding of the Euromicro Conference on Real-Time

Systems, 0:151–160, 2009.

[55] Vincent Nelis, Joel Goossens, and Bjorn Andersson. Two protocols for scheduling multi-

mode real-time systems upon identical multiprocessor platforms. Real-Time Systems, Eu-

romicro Conference on, 0, 2008.

[56] S. Nunna, U.D. Bordoloi, S. Chakraborty, pages Eles, and Zebo Peng. Exploiting gpu on-

chip shared memory for accelerating schedulability analysis. In Proc. of the International

Sympages on Electronic System Design (ISED), pages 147 –152, 2010.

[57] NVIDIA. Nvidias next generation CUDA compute architecture: Fermi, Feb 2010. Avail-

able at http://www.nvidia.com/content/PDF/fermi white papers/NVIDIA Fermi Compute

Architecture Whitepaper.pdf.

[58] NVIDIA. NVIDIA CUDA C programming guide, Feb 2011. Available at

http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA C Pro

gramming Guide.pdf.

175

[59] NVIDIA. CUDA in action - research and apps, Feb 2012. Available at

http://developer.nvidia.com/cuda–action–research–apps.

[60] P. Pedro and A. Burns. Schedulability analysis for mode changes in flexible real-time sys-

tems. In Proc. of the 10th Euromicro Workshop on Real-Time Systems, pages 172–179,

Berlin, 1998.

[61] Linh T. X. Phan and Insup Lee. Towards a compositional multi-modal framework for adap-

tive cyber-physical systems. In Proc. of the 17th IEEE International Conference on Em-

bedded and Real-Time Computing Systems and Applications, pages 67–73. IEEE Computer

Society, 2011.

[62] L.T.X. Phan, S. Chakraborty, and I. Lee. Timing analysis of mixed time/event-triggered

multi-mode systems. In Proc. of the IEEE Real-Time Systems Sympages, pages 271–280,

December 2009.

[63] L.T.X. Phan, Insup Lee, and O. Sokolsky. Compositional analysis of multi-mode systems.

In Proc. of the 22nd Euromicro Conference on Real-Time Systems, pages 197–206, Brussels,

2010.

[64] Jorge Real and Alfons Crespo. Mode change protocols for real-time systems: A survey and

a new proposal. Real-Time Systems, 26(2):161–197, 2004.

[65] MATLAB Phased Array Toolbox. AACC using FMCW Technology,

www.mathworks.com/help/phased/examples/automotive-adaptive-cruise-control-using-

fmcw-technology.html, 2014.

[66] Luca Santinelli, Giorgio Buttazzo, and Enrico Bini. Multi-moded resource reservations. In

Proc. of the 17th IEEE Real-Time and Embedded Technology and Applications Sympages,

pages 37–46, Chicago, 2011.

176

[67] Lui Sha, Ragunathan Rajkumar, Ragunathan Rajkumar, John Lehoczky, John Lehoczky,

Krithi Ramamritham, and Krithi Ramamritham. Mode change protocols for priority-driven

preemptive scheduling. Real-Time Systems, 1:243–264, 1988.

[68] Eugene Shih, Paramvir Bahl, and Michael J. Sinclair. Wake on wireless: an event driven en-

ergy saving strategy for battery operated devices. In Proceedings of the 8th annual interna-

tional conference on Mobile computing and networking, pages 160–171, Atlanta, Georgia,

USA, 2002. ACM, New York, NY, USA.

[69] Insik Shin, Arvind Easwaran, and Insup Lee. Hierarchical scheduling framework for virtual

clustering of multiprocessors. In Proceedings of the EuroMicro Conference on Real-Time

Systems, Prague, Czech Republic, July 2008. IEEE Computer Society Press.

[70] Insik Shin and Insup Lee. Compositional real-time scheduling framework with periodic

model. ACM Transactions on Embedded Computing Systems, 7(3), April 2008.

[71] D.G. Smith, R.C. Dixon, and J.S. Vanderpool. Multi-band, multi-mode spread-spectrum

communication system, December 2 1997. US Patent 5,694,414.

[72] B. Sprunt, L. Sha, and J. P. Lehoczky. Aperiodic task scheduling for hard real-time systems.

Real-Time Systems, 1:27–69, 1989.

[73] John A. Stankovic, Marco Spuri, Krithi Ramamritham, and Giorgio C. Buttazzo. Dead-

line Scheduling for Real-Time Systems: EDF and Related Algorithms. Kluwer Academic

Publishers, 101 Philip Drive, Assinippi Park Norwell, MA 02061, USA, 1998.

[74] Nikolay Stoimenov, Simon Perathoner, and Lothar Thiele. Reliable mode changes in real-

time systems with fixed priority or edf scheduling. In Proc. of the Conference on Design,

Automation and Test in Europe, pages 99–104, France, 2009.

[75] Nikolay Stoimenov, Lothar Thiele, Luca Santinelli, and Giorgio Buttazzo. Resource adap-

tations with servers for hard real-time systems. In Proc. of the 10th ACM International

Conf. on Embedded Software, pages 269–278, New York, 2010.

177

[76] K. W. Tindell and A. Alonso. A very simple protocol for mode changes in priority preemp-

tive systems. Technical report, Universidad Politecnica de Madrid, 1996.

[77] K.W. Tindell, A. Burns, and A.J. Wellings. Mode changes in priority preemptively sched-

uled systems. In Proc. of the 13th IEEE Real-Time Systems Sympages, pages 100 –109,

Arizona, 1992.

[78] Manish Vachharajani. Microarchitecture Modeling for Design-Space Exploration. PhD

thesis, Princeton University,USA, 2004.

[79] S. Wang and R. Bettati. Delay analysis in temperature-constrained hard real-time systems

with general task arrivals. In IEEE Real-Time Systems Symposium, 2006.

[80] S. Wang and R. Bettati. Reactive speed control in temperature-constrained real-time sys-

tems. In Euromicro Conference on Real-Time Systems, 2006.

[81] S. Wang and R. Bettati. Reactive speed control in temperature-constrained real-time sys-

tems. Real-Time Systems Journal, 39(1-3):658–671, 2008.

[82] Shucai Xiao and Wu-Chun Feng. Inter-block gpu communication via fast barrier synchro-

nization. In Proc. of the IEEE Parallel and Distributed Processing Symposium, pages 1–12,

Atlanta, 2010.

178

ABSTRACT

THE DESIGN, ANALYSIS, & APPLICATION OF MULTI-MODAL REAL-TIME

EMBEDDED SYSTEMS

by

MASUD AHMED

December 2014

Advisor: Dr. Nathan Fisher

Major: Computer Science

Degree: Doctor of Philosophy

For many hand-held computing devices (e.g., smartphones, tablet computers, and GPS re-

ceivers), multiple operational modes are preferred because of their flexibility. In addition to their

designated purposes, some of these devices provide a platform for different types of services,

which include rendering of high-quality multimedia. Upon such devices, temporal isolation

among co-executing applications is very important to ensure that each application receives an

acceptable level of quality-of-service. In order to provide strong guarantees on services, mul-

timedia applications and real-time control systems maintain timing constraints in the form of

deadlines for recurring tasks. A flexible real-time multi-modal system will ideally provide sys-

tem designers the option to change both resource-level modes and application-level modes. Ex-

isting schedulability analysis for a real-time multi-modal system (MMS) with software/hardware

modes are computationally intractable. In addition, a fast schedulability analysis is desirable in

a design-space exploration that determines the “best” parameters of a multi-modal system by

repeated application of the MMS schedulability analysis. The thesis of this dissertation is:

The determination of resource parameters with guaranteed schedulability for real-

time systems that may change computational requirements over time is expensive in

terms of runtime. However, decoupling schedulability analysis from determining the

179

minimum processing resource parameters of a real-time multi-modal system results

in pseudo-polynomial complexity for the combined goals of determining both MMS

schedulability and optimal resource parameters.

Effective schedulability analysis and optimized resource usages are essential for an MMS that

may co-execute with other application upon a low-end shared platform to reduce size and cost of

an embedded system. Traditional real-time systems research has commonly addressed the issues

of schedulability under mode changes and temporal isolation, separately and independently. For

instance, schedulability analysis of real-time multi-mode systems has commonly assumed that

the system is executing upon a dedicated processing platform. On the other hand, research on

temporal isolation in real-time scheduling (often called server-based or hierarchical scheduling),

while permitting the analysis of real-time subsystems that co-execute upon a shared computation

platform, has often assumed that the application and resource requirements of each subsystem are

fixed during runtime. Only recently have researchers started to address the problem of guarantee-

ing hard deadlines of temporally-isolated subsystems in multi-modal systems. However, most of

this recent research suffers from two fundamental drawbacks: 1) full support for both resource-

level mode changes or application-level mode changes does not exist, and/or 2) the proposed

algorithms for determining schedulability under mode changes have exponential-time complex-

ity. As a result, current literature on multi-modal systems cannot guarantee optimal resource

usages under mode changes. In this dissertation, first we address the two fundamental drawbacks

by providing a theoretical framework and associated tractable schedulability analysis for hard

real-time subsystems executing upon a temporally-isolated environment under both resource and

application-level mode changes. Then, by leveraging the developed schedulability analysis, we

address the problem of optimizing a multi-mode real-time system with respect to resource usages

over all modes.

To accelerate the schedulability analysis of a multi-modal system, as well as determination of

the minimum parameters, we develop a parallel algorithm using message passing parallel systems

to check the invariants of the schedulable real-time MMS. This parallel algorithm significantly

improves the execution time for checking the schedulability of a single set of parameters (e.g.,

180

our parallel algorithm requires only approximately 45 minutes to analyze a 16-mode system upon

8 cores, whereas the analysis takes 9 hours when executed on a single core). However, even this

reduction is still expensive for applying techniques such as design-space exploration (DSE) that

repeatedly applies schedulability analysis to determine the optimal system resource parameters.

Today’s massively parallel GPU platforms can be a cost-effective alternative to scaling the num-

ber of computer nodes and further reducing the computation time for multi-modal schedulability

analysis. As massively-parallel Graphical Processing Units (GPU) are increasingly common for

handheld devices, an efficient GPU-based schedulability analysis can also be used online to re-

configure the system by re-evaluating schedulability if parameters change dynamically. In this

dissertation, we also extend our parallel schedulability analysis algorithm to a GPU implemen-

tation. Finally, we performed a case-study of radar-assisted cruise control system to show the

usability of multimode system which consists of fixed priority non-preemptive tasks.

181

AUTOBIOGRAPHICAL STATEMENT

Masud Ahmed completed his B.Sc.Engg degree in Computer Science & Engineering (Electrical

Engineering as minor) on June 2005 from Bangladesh University of Engineering & Technology

(BUET) which is the top university in Bangladesh. He joined Commlink Info Tech Ltd, Dhaka as

Member, R&D, and promoted to Senior Member, R&D. He left Commlink for graduate studies

starting from Fall 2008 at Wayne State University.

Masud Ahmed received his M.S. degree in Computer Science from Wayne State University,

Detroit, Michigan on 2011. He completed his Ph.D. in Computer Science at Wayne State Univer-

sity under the supervision of Prof. Nathan W. Fisher on December 2014. His research interests

include real-time systems, embedded systems, and parallel computing. While pursuing graduate

degrees, he worked as Graduate Teaching Assistant and Graduate Research Assistant in Com-

puter Science department.

Masud started working for Mathworks from January 2013. He worked as a Software Engineer

Intern at Carsley & Associates in Summer 2010. He was a student member of ACM and IEEE.

	Wayne State University
	1-1-2014
	The Design, Analysis, & Application Of Multi-Modal Real-Time Embedded Systems
	Masud Ahmed
	Recommended Citation

	tmp.1429889045.pdf.YMamR

