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CHAPTER 1 

INTRODUCTION AND PROBLEM STATEMENT 

1.1 Motivation 

    With the rapid growth of the data everyday, a new important and challenging issue is to 

integrate data from different and heterogeneous resources. Furthermore, there are some 

organizations that has different departments or parts that use different systems with lack of 

co-ordination. One important data type that is used commonly in such systems is the String 

data type. String data is everywhere, and many applications use it. Examples are product 

catalogs (for books, music, software, etc.), electronic white and yellow page directories, and 

specialized information sources such as patent databases and customer’s data. The 

integration of string data in relational databases is done typically by the join operation. The 

commonly used join method is the exact join (also called equi-join or natural join), which is 

joining two rows from two different tables ( and could be from the same table ) if they have 

the same exact value(s) in their join attribute(s), However, exact join will not be suitable 

when the databases are heterogeneous. Some reasons are as follows. 

• The data in heterogeneous databases could have different conventions in some fields such 

as name, date, and address. For example, a customer’s name could be John A. Smith in some 

database and Smith, John in another. 

• There could be inconsistent data, which means that incorrect data could occur in some 

database, such as having two different birthdates for the same person. 
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• The attributes used to refer to the same entity in different databases could be different, 

because the attributes used in some database depends on the domain. For example, the 

attribute Major could be important for a university database but is not very important in a 

bank database. 

• The string data could contain typographical errors, as they are commonly entered by 

humans. For example, we could have Jonh Smith instead of John Smith. A research done by 

Kukich [40] used a set of large databases and showed that they contain 1% - 3.2% typing 

errors, 1.5% - 2.5% spelling errors, and in interesting but important note, Kukich showed 

that the percentage of spelling errors in Dutch surnames for example was 38%. 

    In this work, we assume that the tables to be joined have the same schema, which means 

that the fields in these two tables are identical. Other area of study concerns about solving 

the differences when the fields are not the same. For example, when we have the field Name 

in one table and the fields First Name and Last Name in another table, or Address in one 

table and Street, City, Zip Code, and Country in another table. In this work, the 

concentration is on joining the records that refer to the same entity after solving any 

difference in the data representation that could occur between them. This problem is 

commonly called Similarity Join or Approximate Join[41][42].Another definition is to join 

the pairs of records whose similarity is greater than a user defined similarity threshold T. 

1.2 Applications of Similarity Join 

    The problem of Similarity Join has been widely studied in the previous decades and 

referred to by many different terms such as: record linkage, entity matching, duplicate 

detection, merge-purge, data deduplication, instance identification, database hardening, 

name matching, conference resolution, and identity uncertainty. This area has many 
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applications in different domains, such as Artificial Intelligence, Database, Statistics, 

Signal Processing, Information Retrieval, and Metadata Interoperability. Our 

concentration in this work is on its applications in the databases domain. 

1.3 String Similarity Measurement Function 

    String Distance Measurement Function is a mapping from two strings x and y into a real 

number r that represents the distance between the two strings. String Distance Measurement 

Function is the opposite of the string distance measurement function (or shortly, distance 

function). Clearly, the more the distance between the two strings, the less the similarity 

between them. 

    Metric distance function d is the distance function that satisfies the following four 

properties. 

1. d(x, y) ≥ 0, 

2. d(x, y) = 0   if and only if   x = y, 

3. d(x, y) = d(y, x), 

4. d(x, z) ≤ d(x, y) + d(y, z), 

Whereas x and y are two points in the space. 

    Many measurements have been proposed in order to find the similarity (or distance) 

between two strings. Such measurements could be divided into three main categories: 

Character Based Measurements, Token Based Measurements, and Phonetic Based 

Measurements.  

http://en.wikipedia.org/wiki/If_and_only_if
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1.3.1 Character Based Measurements 

    Those measurements compare the two strings character by character in order to specify 

the distance (or similarity) between them. The main methods under this category are the 

following. 

• Edit Distance [43]. 

• Jaro and Jaro-Winkler Distance Metrics [47][48]. 

1.3.2 Token Based Measurements 

    The previous measurements are not suitable in some cases. For example, when there is 

different order of the words. So, other measurements have been proposed to compare words 

or parts of the words (QGrams) instead of characters. Those measurements are called Token 

Based Measurements. Examples of these measurements are the following. 

• QGrams with TF.IDF [44][45]. 

• Jaccard Similarity [46]. 

    Finally, other measurements are under Phonetic Based Measurements, which consider 

two strings similar if they have similar sounds. One example of such measurements is 

Soundex[49].  

1.4 Problem Statement 

    As stated before, many similarity measurements have been proposed in the past years. 

Examples are Edit Distance[43], Q Grams[44][45], Jaccard Similarity[46], Jaro[47], and 

Jaro-Winkler[48], and Soundex[49]. Most of such measurements are mainly used to find the 
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similarity (distance) between short string values. We used the term Short String Attributes to 

refer to string attributes with limited number of characters, such as person name and person 

address. Besides, we used the term Long String Attributes to refer to string attributes of 

unlimited length, such as product description, research paper abstract, user feedback, and 

movie summary.  

    Although many works have studied Similarity Join with short attributes, a few works have 

included the use of long attributes to assist the similarity join process and enhance the 

performance. Obviously, long attributes contain much more information than short 

attributes. Therefore, there is a great potential that using such attributes to detect similar 

records could improve the overall similarity join accuracy. Furthermore, long attributes exist 

in most of the databases, and finding an efficient method to perform similarity join using 

long attributes would complement the existing work that concentrates on short attributes.  

   One issue here is how to differentiate long attributes from short attributes. For this 

purpose, we conducted a preliminary experiments on the IMDB database[17]. This database 

contains a set of movies, and it will be explained in details in chapter 3. We used the well 

known Edit Distance method [43] to detect similar records using both Movie Name and 

Movie Summary attributes separately. The average number of characters per Movie Name 

was 16.2 characters, while the average number of characters per Movie Summary was 912.7 

characters. The average edit distance for similar string pairs using Movie Name was 2.7, 

while the average edit distance for similar string pairs using Movie Summary was 626.3, 

which is extremely high. This does not mean necessarily that using short attributes is better 

than using long attributes. In contrast, as we will show later, using long attributes would 

improve the similarity join performance significantly when a suitable semantic similarity 
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method is used. Therefore, it is clear that not all similarity methods and measurements are 

applicable to long attributes. This introduces my contribution. 

    First, we proposed an efficient semantic similarity join method for joining tables 

according to their long attributes under supervised learning, when a training set exists.  The 

training set has examples of similar record pairs, which would assist in detecting similar 

record pairs in the testing set. Such similarity join method for long attributes would assist or 

replace the existing short attribute similarity join methods. As part of this method, we found 

the best semantic similarity measurement for long string values under supervised learning. 

    Second, we proposed a privacy preserving similarity join protocol for joining tables using 

their long attributes under similarity thresholds, when no training set is available. Basically, 

the sources involved in the similarity join process may not want to share their data, and may 

seek to share the similar records only. In this case, the content of a source needs to be hidden 

and protected from being disclosed to other sources. A few works have been done in this 

area, and most of the work concentrated on methods that are applicable to short attributes 

only. As we explained in our first contribution, using long attributes in the similarity join 

can increase the similarity join accuracy. Up to our knowledge, no work proposed a privacy 

preserving similarity join method when the join attribute is a long attribute. Therefore, we 

proposed an efficient privacy preserving similarity join protocol using long attributes under 

similarity thresholds. 

    Third, we proposed a privacy preserving similarity join protocol when the join attribute is 

long attribute under supervised learning, when a training set is available. Using a small 

training set can significantly improve the similarity join performance. Again, up to our 
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knowledge, no work has been done to propose a privacy preserving similarity join protocol 

for long attributes under supervised learning, even though this would improve the similarity 

join accuracy when there are privacy constraints. We proposed this protocol and we 

enhanced its performance by using selective records instead of random records. We 

improved the similarity join performance furthermore by using mulit-label supervised 

learning instead of single-label learning as the former method is closer to many real-life 

applications. 

    Fourth, we proposed an efficient semantic similarity join method to be used with long 

attributes under unsupervised learning, when neither training set nor similarity thresholds 

are used. This scenario is common in many practical applications, as it would be very 

expensive or even impossible to have a training set or adopt a similarity threshold. 

Furthermore, we proposed a solution for expandable clusters (groups). This case is common 

because databases are not static, and their content is updated by every transaction. 

Therefore, the number of clusters may increase by time. Up to our knowledge, no previous 

work proposed an efficient solution to similarity join method that considers database 

expansion.  

Both Algorithm 1.1 and Fig. 1.1 provide our new semantic similarity join method.  
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Figure  1.1:  My Contribution. 

 

 

 

 

 

 

 

 

 

 

Algorithm1.1: NEW SEMANTIC SIMILARITY JOIN METHOD USING  
                       DIFFUSION MAPS AND LONG STRING TABLE   
                       ATTRIBUTES 

Input:    Two sources A and B, each has a long attribute X. 
 

Output: Semantically joining similar records. 

Algorithm: 

(1) If privacy constraints exist 

(2)      If a training set exists 

(3)          PRIVACY_PRESERVING_SEMANTIC_SJ_SUPERVISED 

(4)       Else 

(5)         PRIVACY_PRESERVING_SEMANTIC_SJ_UNSUPERVISED 

(6)       End; 

(7)     Else 

(8)      If a training set exists 

(9)           SEMANTIC_SJ_SUPERVISED 

(10)       Else 

(11)         SEMANTIC_SJ_UNSUPERVISED 

(12)      End; 

(13)   End; 

 

 



 

 
 

9 

1.5 Organization 

    The rest of this dissertation is organized as follows. Chapter 2 illustrates the related 

work. Chapter 3 describes our semantic similarity join method using long attributes under 

supervised learning. Chapter 4 presents our privacy preserving semantic similarity join 

method using long attributes under similarity thresholds. Chapter 5 presents our privacy 

preserving semantic similarity join method using long attributes under supervised 

learning. Chapter 6 describes our semantic similarity join method using long attributes 

under unsupervised learning and expandable databases. Finally, Chapter 7 concludes this 

dissertation and provides the future work directions. 
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CHAPTER 2 

RELATED WORK 

 

    In order to find similar records, many methods have been proposed. The proposed 

methods are divided into the following two basic categories according to their objectives. 

• Enhancing Similarity Join Accuracy. 

• Minimizing Number of Record Comparisons. 

   Our concentrating in this dissertation is on the first research area that studies how to 

enhance the accuracy of the similarity join methods. For the second research area, one can 

refer to [81][82]. The methods that aim at enhancing similarity join accuracy could be 

divided into three main categories: 

• Machine Learning Methods. 

• Probabilistic Methods. 

• Rule Based Methods. 

    Our concentration in this work is on Machine Learning Methods, because such methods 

were used extensively in our work and because of the fast growing rate of this area in the 

recent years. 
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2.1 Similarity Join Using Machine Learning Methods 

    These methods could be divided into the following three parts. 

• Supervised Methods. 

• Unsupervised Methods. 

• Hybrid Methods (Semi Supervised Methods). 

2.1.1 Supervised Methods  

    These methods use a training file to build a model that could be used later with testing 

cases. Such methods are divided according to the size of the used training file into the 

following two types. 

• Supervised Methods with large training files. 

• Supervised Methods with small training files. 

2.1.1.1 Supervised Methods with Large Training Files 

    As stated earlier, these methods depend on the existence of a large training dataset that 

has prelabeled pairs of records. [50] proposed learning the affine gap edit distance 

parameters for each field alone using the Expectation Minimization algorithm (EM)  using 

the training data. The learned parameters for each field are the parameters that produce the 

minimum classification error according to that field. Next, the distance vectors for all record 

pairs in the training file are found using the learned parameters and used by SVMlight as a 

training data. Finally, the trained SVMlight can decide about any record pair given its 

distance vector. He showed that this method outperformed other approaches such as 

considering the record a single large field. Later, [51] proposed a method to build an 
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approximate operator tree depending on a training data. The training data contains pairs of 

records each of which is labeled as match or non-match. Some algorithms were proposed in 

this work to get approximate result for the similarity join operator.  Other method is 

proposed by [24], which used a set of operations such as equal, abbreviation, concatenation, 

and synonym in order to transform one string field into another. A training file with matched 

pairs and non matched pairs is used, and the transformation graph using the previous 

operations is found for each pair. Every operation is given a weight according to its 

appearance in the transformation graphs of matched and non matched pairs. Finally, a 

transformation graph is constructed for the testing pair and the probability of a match given 

the operations in this transformation graph is calculated using the probabilities of the 

operations in the training transformation graphs. [53] proposed making a graph for all the 

records in the database, linking together those classified as matched, and consider all the 

records belonging to the same connected component a match. However, this method is not 

always correct as the transitivity assumption does not always hold.  

2.1.1.2 Supervised Methods with Small Training File 

    The problem of the first part is that it requires a large number of records in the training 

set. If a training set of small number of records is available, the most confusing records 

could be selected and labeled manually. This would provide more information with very 

much smaller training data. Such methods fall under the category of active learning.  

Example for this is ALIAS which is proposed by Sarawagi and Bhamidipaty[54]. 

2.1.2 Unsupervised Methods 

    Unsupervised methods do not use a training dataset. These methods are more practical as 
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it is not always easy to find a training set. However, the accuracy of these methods is not as 

high as that obtained by supervised methods. Unsupervised Methods could be divided into 

the following two major parts. 

• Clustering Methods. 

• Distance Methods. 

2.1.2.1 Clustering Methods 

    Clustering is grouping similar records together according to a similarity measurement and 

optimization criteria.  [55] considered each record pair is a point in an n dimensional space, 

where n is the number of fields in each of the two tables. The point that represents the rows I 

and j is represented as Pi,j = [d1,d2,…,dn], such that d1 is the dissimilarity between the rows I 

and j according to the first field, and so on. After representing all the pairs accordingly, they 

are clustered into three clusters: Matched, Unmatched, and Possibly Matched. The cluster 

that is closest to the origin is the Matched cluster, and the cluster that is the furthest from the 

origin is the Unmatched one. The Possibly Matched one is in the middle, and called 

sometimes The Reject Region, where the method failed to give a decision. Related work is 

done in [56] and studied the Entity Resolution Problem. Clear example for problem is the 

paper resolution problem, where each paper represents a group of references. As stated 

earlier, the objective is to cluster papers according to their similarity. This method used 

iteration to link duplicate references in different papers according to two criteria: the 

similarity between the two references and the similarity of the context (papers) in which the 

two references appear, instead of using the references similarity only. 
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2.1.2.2 Distance Methods 

    Many methods have been proposed in this category. Examples are [57][58]. Guha[59] 

proposed ranked list merging, which is to find the distance between two records according to 

one field, and to repeat this step with other fields. The result will be n ranked lists, assuming 

that we have n attributes. Next, those records are merged such that the resulting list has the 

minimum aggregate rank distance when compared to all n lists. This list can show the top k 

matching records. Other methods have been proposed in order to find the distance between 

hierarchial data, such as Customer Address. One of the main used distances in this context is 

the Tree Edit Distance, as the hierarchial data could be represented as labeled trees. 

However, this methods is expensive. Therefore, some distance approximations have been 

proposed such as using pqGram Distance[60] which is an efficient approximation for the 

tree edit distance, and is sensitive to the place where the two trees differ, as the leave 

difference is less important than the higher nodes difference. 

    Final issue here is how to determine the cut-off value for the match, and one solution is to 

use a training data to conclude this value. However, this will have the disadvantage of using 

a training set again, and the aim of using distance based methods is to avoid using data sets. 

[61] discussed this issue and argued that the very high degree of similarity means that the 

pair is matched. Similarly, the very low degree indicates that it is mismatched. However, the 

difficulty and confusion lies in the similarity values located in the middle. 

2.1.3 Hybrid Methods 

    Some methods are composed of both supervised and unsupervised methods. Such 

methods have more accuracy than the unsupervised techniques and more time efficient in 
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many cases. For example, a clustering algorithm could be applied first to classify a small 

portion of the record pairs as matched or unmatched, and then this portion serves as a 

training set to some classifier that will classify the remaining portion of the record pairs. 

[62] proposed an online learning algorithm to combine many basic similarity functions with 

weights using average perception weighting. After applying the function and finding the 

pairwise similarity matrix among all the rows in the two tables, they compared three 

clustering Hierarchical Agglomerative Clustering techniques(HAC): single link HAC, group 

average HAC, and complete link HAC, according to their ability to find the matched 

records. The results showed that the complete link HAC outperformed the other two 

clustering methods.  

2.2 Privacy Preserving Similarity Join 

           A few researchers have concentrated on performing similarity join under Privacy 

Constraints.    Examples of such works includes [29], which introduced a protocol to perform 

similarity join using phonetic encodings, [30], which proposed a privacy preserving record 

matching protocol on both data and schema levels, [31], which concentrated on the e-health 

applications and its intrinsic private nature, and [32], which used a Term Frequency – Inverse 

Document Frequency (TF.IDF) based comparison function and a secure blocking schema. 

Other methods concentrated on using encryption to preserve privacy such as [33][34]. 

2.3 Similarity Join Using Long Attributes 

    Regarding the use of long string attributes in the similarity join process, and up to our 

knowledge, no work has been done to study the effect of the long attributes in the similarity 

join process, even though they could improve the accuracy significantly.  Furthermore, no 
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work has found the best similarity measurement to be used with such attributes during the 

similarity join process in order to complement the existing work, which is concentrated on 

the short attributes. Such lack of literature work on a promising method was the motivation 

to my work in this dissertation.  

2.4 Similarity Join Using Dimensionality Reduction Methods 

    Regarding the use of dimensionality reduction methods for similarity join, [52] used the 

LSI method with short string fields in order to join the values in such fields semantically. 

Other than this work, up to our knowledge, no work has included the dimensionality 

reduction methods as part of the similarity join methods. It should be noted that our 

concentration here is on relational databases. Dimensionality reduction methods have been 

used widely in unrelational databases such as document clustering and classification [20].   
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CHAPTER 3 

SEMANTIC SIMILARITY JOIN METHOD USING LONG 
ATTRIBUTES UNDER SUPERVISED LEARNING 

3.1 Introduction 

As stated previously, many similarity join measurements have been proposed in the 

literature. Although much research has been done in similarity join of short attributes, a 

few works have included the use of long attributes to assist the similarity join process and 

enhance the performance. Obviously, long string values contain much more information 

than short string values. Therefore, it is worthwhile to study the effect of using long 

attributes on the similarity join performance. Besides, most databases include attributes of 

long string values. However, many proposed similarity join methods use measurements 

that are not suitable for such long values. Two main reasons are the cost of using such 

measurements with long string values and the deficiency in detecting the semantic 

correlations among terms by concentrating only on the syntax representation of the terms.  

For example, the complexity of the edit distance measurement depends on the lengths of 

the two strings to be compared. Therefore, the longer the strings, the more the similarity 

join running time. Besides, edit distance deals with the character representation of the 

strings, without considering the semantic relationships between them. It is worthwhile to 

find an efficient semantic method for joining long string values and study its effect on the 

similarity join performance. Applications of such semantic methods could be in joining 

values of long attributes such as paper abstracts, movies summaries, product descriptions, 

user comments, and so on. 
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In this chapter, we studied diffusion maps [1], latent semantic indexing [2], 

eigenvectors [3], SoftTFIDF with cosine similarity [7], TF.IDF with cosine similarity 

[18], and a variant of diffusion maps. Most of these methods have strong theoretical 

foundations and have proved their superiority in many applications. Therefore, we 

compared their performance as candidate semantic similarity join methods for long 

attributes under supervised learning. It should be noted that many short string 

measurements were not included in this comparison because of their high running time 

cost and low accuracy when applied to long string values. In order to evaluate the 

performance, we used two datasets, Pubmed Medical Dataset [27] and IMDB Movies 

dataset [17]. The SVM classifier was used with the Pubmed dataset, whereas bagging was 

used with the IMDB dataset because it is more commonly used with datasets having a 

large number of classes. 

Our work in this chapter is divided into two phases. First, finding the best semantic 

method for joining values of long attributes. Second, comparing the performance of this 

method with the existing, commonly used, short string methods. For phase one, we used 

TF.IDF weighting [18] and Chi-square dimensionality reduction method [19] to eliminate 

noisy and insignificant words. Later, the diffusion maps method was compared with LSI 

and eigenvector–based dimensionality reduction methods to find the best method with the 

best number of dimensions. The best method was compared with SoftTFIDF with cosine 

similarity, TF.IDF with cosine similarity, and a variant of diffusion maps with the 

previously selected best number of dimensions. Both the Abstract attribute from the 

Pubmed dataset and the Movie Summary attribute from the IMDB Movies Dataset were 

used in this phase. Regarding phase two, after obtaining the best semantic method, we 
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compared its performance on joining values of long attributes with the performance of 

SoftTFIDF method on joining values of short attributes, as SoftTFIDF is a superior short 

string method [7]. Both the Title and the Keywords attributes from the Pubmed dataset 

were used with the SoftTFIDF method, while the Abstract attribute from Pubmed was 

used with the best semantic method obtained from phase one. Supervised learning using 

an SVM or bagging was used to compare the performance of the previous methods after 

each phase. 

The contributions of this work are as follows: 

•  Adopting the use of long attributes to replace or assist the short attributes to increase 

the similarity join accuracy under supervised learning. 

•  Finding an efficient semantic method that can be used for joining values of long 

attributes. 

• Proposing a scalable solution for large datasets and large dimensionality. 

The rest of this chapter is organized as follows. Section 3.2 describes the candidate 

semantic methods to be compared. Section 3.3 describes phase one of the work, which 

compares the semantic methods for joining long attributes. Section 3.4 illustrates phase 

two of the work, which compares the best long string method with SoftTFIDF, which is 

one of the top short string methods [7], and Section 3.5 is the summary. 

3.2 Semantic Methods for Joining Long Attributes  

In the following subsections, we will describe candidate semantic methods for joining 

long string values. These methods will be compared later in this chapter.  
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3.2.1 Diffusion Maps 

Diffusion maps is a dimensionality reduction method proposed by Lafon [1]. Initially, 

a weighted graph is constructed whose nodes are labeled with long string values and 

whose edge labels correspond to the similarity between the corresponding node values. A 

similarity function called the kernel function, W, is used for this purpose. The first-order 

neighborhood structure of the graph is constructed using a Markov matrix P. In order to 

find similarities among non-adjacent nodes, forward running in time of a random walk is 

used. A Markov chain is computed for this purpose by raising the Markov matrix P to 

various integer powers. For instance, according to Pt , the tth power of P, the similarity 

between two long string values  x and y represents the probability of a random walk from 

x to y in t time steps. Finally,   SVD( ) dimensionality reduction function is used to find 

the eigenvectors and the corresponding eigenvalues of  Pt,t≥1.  The approximate pairwise 

long string value similarities are computed using the significant eigenvectors only. The 

similarity between any two long string values using such a method is called diffusion 

maps similarity. The mathematical details of diffusion maps are given below. 

     Consider a dataset C of N long string values, represented as vectors. Let x,y be any two 

vectors in C, 1≤i,j≤N.  A weighted matrix σW (x,y) can be constructed as 

σW (x,y) = exp( - 
σ

),cos( yxD ) ,                                                                                      (3.1) 

where σ  specifies the size of the neighborhoods that defines the local data geometry. As 

suggested in [20], 
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Dcos(x,y) = 1−
||||.||||

.
yx

yx
.                                                                                             (3.2) 

We can create a new kernel as follows: 

α
σW (x,y)=

)()(
),(
yqxq

yxW
α
σ

α
σ

σ ,                                                                                                  (3.3) 

Where α  deals with the influence of the density in the infinitesimal  

transitions of the diffusion, and 

∑
∈

=
Cy

yxWxq ),()( σσ .                                                                                                       (3.4) 

Suppose σd (x)=∑ Cy
yxW

ε
α

σ ),( ,                                                                                (3.5) 

We can normalize the previous kernel to get an anisotropic transition kernel p(x,y), as 

follows: 

σ
p  (x,y) = 

)(
),(

xd
yxW

σ

α
σ .                                                                                                      (3.6) 

 σ
p (x,y) can be considered a transitional kernel of a Markov chain on C. The diffusion 

distance Dt between x and y at time t of the random walk is 

Dt
2(x,y) =∑ −

Cz
tt

z
zypzxp

ε φ )(
)),(),((

0

2

,                                                                            (3.7) 

where φ 0  is the stationary distribution of the Markov chain. 
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After using SVD( ), the Markov chain eigenvalues and eigenvectors can be obtained. 

Therefore, the diffusion distance Dt can be written as: 

Dt
2(x,y) = 2

1

2
))()(( yx

jjj

t

j
ϕϕλ −∑

≥

.                                                                                         (3.8) 

We can reduce the number of dimensions by finding the summation up to a specific 

number of dimensions z. Thus, the mapping would be: 

))(),...,(),((:
2211

xxxx
zz

ϕλϕλϕλω → .                                                                                (3.9) 

We used the values of σ  and α to be 10 and 1 respectively for experiments, as used in 

[22]. The detailed diffusion maps based algorithm for joining long string values is 

described later in this chapter. 

3.2.2 Latent Semantic Indexing (LSI) 

LSI [2] uses the Singular Value Decomposition operation to decompose the term long 

string value matrix M, that contains terms as rows and long string values as columns, into 

three matrices: T, a term by dimension matrix, S a singular value matrix, and D, a long 

string value by dimension matrix. The original matrix can be obtained through matrix 

multiplication of TSDT. In order to reduce the dimensionality, the three matrices are 

truncated to z user selected reduced dimensions. Dimensionality reduction reduces noise 

and reveals the latent semantics present in the dataset.  When the components are 

truncated to z dimensions, a reduced representation matrix, Mz is formed as 
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Mz = TzSzDz
T  .                                                                                                   (3.10) 

3.2.3 EigenVectors 

    Here, the eigenvectors and their corresponding eigenvalues are extracted directly from 

the term long string value matrix  [3]. Originally, each long string value is represented as a 

combination of all eigenvectors and their eigenvalues. A reduced number of eigenvectors, 

with their corresponding eigenvalues, is selected that captures most of the dataset 

information. 

3.2.4 SoftTFIDF with Cosine Similarity 

    The SoftTFIDF [7] method is a modification of the well known TF.IDF weighting. In 

SoftTFIDF method, the pairs that are similar, but not identical, are included in the TF.IDF 

equation. According to this method, each string value is treated as a set of terms. The 

SoftTFIDF similarity between two string values X and Y is given as follows: 

SoftTFIDF(X,Y)= ∑
∈ ),,(

),(),(),(
YXCLOSEw

YwDYwVXwV
θ

,                                                                 (3.11) 

Whereas V(w,X) represents the TF.IDF weighting of the term w in the string value X, 

V(w,Y) represents the TF.IDF weighting of the term w in the string value Y, and  

CLOSE( ),, YXθ  represents all terms w∈ X such that there is some term v∈Y such that 

D’(w,v)>θ . D(w,v) denotes Jaro-Winkler distance between the terms w and v. 

D(w,Y) = Yv∈max (D(w,v)). For our experiments, we used  θ  = 0.9 as adopted in [7]. 

This method is a superior method for joining short string values [7], and therefore, it is 

worthwhile to study its performance on long string values. 
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    It should be noted that we used this method twice in our experiments. First, in phase 

one, to study its performance as a candidate semantic method for joining long string 

values.  Second, in phase two, as a superior method for short attributes to compare its 

performance on joining short string values with the performance of our semantic method 

on joining long string values. 

3.2.5  TF.IDF with Cosine Similarity 

    TF.IDF with cosine similarity is a well known method that has been used extensively 

for document similarity. The TF.IDF weighting of term w appearing in a long string value 

x is given as follows: 

TF.IDF(w,x)=log(tfw,x+1).log(idfw),                                                                             (3.12) 

where tfw,x is the frequency of the term w in the long string value x, idfw  is 
wn

N , where N is 

the number of long string values in the database C, and nw is the number of long string 

values in the database that contains the term w in their corresponding attribute. 

As any document is considered a long string value, this method is a candidate semantic 

method for long string values. The cosine similarity of two long string value vectors x and 

y is given as follows: 

Cosine_Similarity(x,y) = 
||||.||||

.
yx

yx
.                                                                          (3.13) 
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3.3 Comparing Semantic Methods 

     In order to evaluate the previous methods on long string values, two datasets were 

used, the Pubmed Medical Dataset and the IMDB Movies Dataset. Table 3.1 below 

describes the use of these datasets in phase1. The following is a brief description of each 

dataset. 

3.3.1  Pubmed Dataset 

    This dataset includes indexed bibliographic medical citations and abstracts. It is 

collected by the U.S. National Library of Medicine (NLM). It includes references from 

more than 4500 journals. For our experiments in phase1, we used 4000 abstracts from this 

dataset. We labeled every abstract to one class out of 23 classes proposed by [21]. 

PUBMED citations and abstracts could be accessed by PUBMED via 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi  or by the NLM Gateway via 

http://gateway.nlm.nih.gov/gw/Cmd. 

3.3.2 Internet Movies Database 

    We collected 999 movie summaries from the IMDB Movies database, which is 

available online via http://imdb.com. Every movie has one or more summaries, written by 

various users. All summaries that belong to the same movie are considered of the same 

class, with an average of three summaries for each class. 

    For our experiments, we used an Intel® Xeon® server of  3.16GHz CPU and 2GB 

RAM, with Microsoft Windows Server 2003 Operating System. Also, we used Microsoft 

Visual Studio 6.0 to read the datasets, Matlab 2008a for the implementations of the 

candidate semantic methods, and Weka 3.6.2 for the SVM and Bagging classifiers to get 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi
http://gateway.nlm.nih.gov/gw/Cmd
http://imdb.com/


 

 
 

26 

the method’s performance. The semantic similarity join algorithm using long attributes 

under supervised learning is described hereafter and given in Algorithm 3.1 below. 

Table 3.1: Datasets Description for Phase1 

Dataset 
Used Number 

of Records 

Number of 

Classes 

Pubmed 4000 23 

IMDB  999 3000 

 

    For the Abstract attribute in Pubmed Dataset, we removed the stopwords and converted 

the text into lowercase. The term long string value frequency matrix was generated. Later, 

TF.IDF weighting matrix was computed, as displayed in line 02 of the algorithm. As the 

number of features in that matrix was around 12000 features, we used Chi-square 

dimensionality reduction method, presented in line 03 of the algorithm, and we selected 

2% of the features (230 features) with the highest importance. The selected features were 

equally representing the 23 categories. The Movie Summary attribute in the IMDB 

dataset was manipulated similarly. The size of M_Reduced after using Chi-square method 

is R X  D, such as R < T. 

    In lines 04 through 08 of the algorithm, we computed the kernel matrix using  equation 

3.2, given in [20], because it gives the best document clustering performance with k-

means. We expected that such an equation would be efficient with supervised learning 

similarity join methods as well. Later, we used the Lafon implementation of diffusion 

maps. The function call is represented in line 09 of the algorithm. The resulting matrix Y 

represents the reduced diffusion maps matrix, where each long string value is represented 
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as a row with z user selected reduced dimensions. Later, the testing long string value is 

processed. The TF.IDF weighting is computed for the same R terms obtained from line 

03, when Chi-square method was applied to the training term long string value matrix. 

The resulting vector is of R cells, such that r[i] represents the TF.IDF weighting of the ith 

term in the testing long string value. The kernel of the testing value g, called g_kernel, is 

computed in line 15, and the resulting vector has D dimensions, where D is the number of 

training long string values in the input matrix M, such that g_kernel[i] represents the 

cosine similarity between Chi-square reduced representation of the testing value and Chi-

square reduced representation of training long string value i.  The diffusion maps 

representation for the testing value g is calculated in line 17 as adopted in [28]. The 

resulting vector would serve as a testing record that will be used with Y as inputs to the 

classifier. Finally, the classifier will predict the category for the testing long string value 

g, as represented in line 18. If the number of testing long string values is more than one, 

lines 12-17 are repeated for every testing long string value. The conversion process for N 

testing values is efficient, with complexity O(c.N), such that c is  a constant representing 

max(number of training long string values, Chi-square reduced number of terms). Both 

numbers are constants and user defined, and they are not dependent on the number of 

testing long string values. 

Regarding LSI, we used the term long string value matrix M as an input to the SVDs( ) 

Matlab built-in function, along with the desired number of reduced dimensions, z. The 

resulting Long String Values by reduced dimensions matrix V can be used as a classifier 

training matrix. In order to convert testing records, we used the Matlab formulas given in 

[28]. 
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    For the eigenvectors method, we extracted the eigenvectors from the input term long 

string value matrix M using the Eigs( ) function. The detailed Matlab equations used are 

found in [28]. 

    For SoftTfIDf, we wrote an implementation using C++.  The training matrix was the 

pairwise SoftTFIDF similarities of the training long string values. The testing matrix was 

the SoftTFIDF similarity between the testing long string values and the training long 

string values. 

After using each of the semantic methods, the SVM classifier is used with 10 fold cross 

validation to get the performance under that method space. 

    The performance measurements used for this study were classifier F1 rating, 

preprocessing time, and running time. Preprocessing time includes dataset preprocessing 

time, semantic method time, and classifier training time. Running time indicates classifier 

testing time. They are defined as follows: 

• Classifier F1 rating is the harmonic mean of the classifier recall and the precision. It is 

given as 

       F1= 
PR

PR
+

**2 ,                                                                                                             (3.14) 

where R represents the recall, which is the ratio of the relevant data among the retrieved 

data, and P represents the  precision, which is the ratio of the accurate data among the 

retrieved data. Their formulas are given as follow: 

R = 
FPTP

TP
+

,  if TP+FN > 0, otherwise undefined.                                                     (3.15) 

P =  
FNTP

TP
+

, if TP+FN > 0, otherwise undefined.                                                      (3.16) 
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Algorithm3.1: SIMILARITY JOIN ALGORITHM USING   
                        LONG ATTRIBUTES UNDER  
                        SUPERVISED LEARNING 
Input:    A vector g representing a test long string value. 

    A T x D Term Long String Value Matrix M with 
class label for each   long string value. 

 
Output: The class of the test long string value. 

Algorithm: 

(01)    //process the training dataset 

(02)    M_weighted = find_TF.IDF _weighting(M) 

(03)    M_Reduced = Chi(M_Weighted, R)  //R < T 

(04)    For i=1:D 

(05)      For j=1:D  

(06)      Dcos(i,j) = 1-Cosine_Similarity(M_Reducedi, M_Reducedj) 

(07)      End; 

(08)    End; 

(09)    [Y,S,V,A] = Diffusion_Maps(Dcos, 10, 1, Z)           

(10)    //|Y|= D x Z 

(11)    //process the testing record g 

(12)    g_reduced=Chi(g) //|g_reduced| = R  

(13)    g_weighted = find_TF.IDF_Weighting(g_reduced) 

(14)    For k=1:D 

(15)        g_kernel(k) = Cosine_Similarity(g_weighted, Dk) 

(16)    End; 

(17)    Diff_Representation=g_kernel*Y*S(1:Z,1:Z) 

(18)    Test_Class = Classifier_Predict(Training=Y, Testing  

(19)    = Diff_Representation) 
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In order to find these measurements, a two-by-two contingency table is used for each 

category. Table 3.2 below represents the contingency table.  

    To assess the global performance over all the 23 classes, the macro average F1 

measurement was used in our experiments. It is found by averaging the per-class F1 

values. 

• Dataset preprocessing time represents the time needed to read the dataset and convert it 

to a format accepted by the candidate semantic methods. 

• Semantic method time represents the time needed to perform the semantic operation on 

the dataset. 

• Classifier training time represents the time needed by the classifier to build the model 

using the output of the semantic method. 

• Classifier testing time represents the time to classify the testing long string values. 

    First, as some candidate semantic methods were dimensionality reductions methods, 

we compared them separately to find the best method. We used the Pubmed dataset to 

compare diffusion maps, latent semantic indexing, and eigenvectors on a reduced number 

of dimensions varying between 30 and 120 dimensions. Fig. 3.1 depicts the F1 rating of 

these three methods. As stated before, 4000 abstracts were used for this purpose. 

Table 3.2: The Contingency Table to Describe the Components of the Performance 
Measurements 

 



 

 
 

31 

 

                     Figure 3.1: F1 Measurement for Diff, LSI, and Eigenvectors. 

     Clearly, diffusion maps F1 measurement outperformed the other two methods. 

Basically, diffusion maps is able to compute the relationships between attribute values, in 

contrast with LSI and the Eigenvectors approaches that merely map attribute values to 

terms. As attribute values could have overlapped terms, the ability of LSI and 

eigenvectors to distinguish values of different classes is less than that of diffusion maps 

[20]. 

    For the preprocessing time, Table 3.3 represents the dataset preprocessing time for the 

three methods, whereas Fig. 3.2 and Fig. 3.3 represent the operation time and training 

time for these methods. Regarding the classification running time consumed by the three 

methods, Fig. 3.4 represents the results. 

Obviously, by increasing the number of dimensions, diffusion maps algorithm tends to 

consume more time than that consumed by the remaining two methods. However, 

according to Fig. 3.1, the diffusion maps performance tends to be more stable after 60 

dimensions. Even though both operation time and training time for diffusion maps on 60 

dimensions is the largest among the three methods, these are one time only steps. For 

classification time, the time required by diffusion maps with 60 dimensions is similar 
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to that needed by LSI and Eigenvectors. 

Table 3.3: Preprocessing Time of the Three Candidate Semantic Methods on Pubmed Dataset 

Method Time (Sec.) 

Diffusion Maps 447 

Latent Semantic Indexing 403 

Eigenvectors 403 

 

 

 

 

 

Figure 3.2: Operation Time for Diff, LSI, and Eigenvectors. 

                            

 

 

 

            

                      Figure 3.3:  Training Time for Diff, LSI, and Eigenvectors. 

    Therefore, diffusion maps with 60 dimensions seems to represent the best trade-off 

between time and accuracy. 
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    Later, we compared diffusion maps with 60 dimensions with three additional similarity 

methods. We used TF.IDF with cosine similarity, SoftTFIDF with cosine similarity, and a 

modification of diffusion maps, where the pairwise cosine similarity is applied to the 

diffusion maps reduced representations of the long string values in both the training 

dataset and the testing long string value. Other short string methods, such as edit distance 

and Jaccard similarity, were not used in this context because of their high cost and low 

accuracy with long string values.  Fig. 3.5 and Fig. 3.6 represent the results. Fig. 3.5 

depicts the F1 measurement for the classifier. In all the experiments on Pubmed dataset, 

an SVM classifier was used. Fig. 3.6 represents the classification time and the 

preprocessing time, which includes the data preprocessing, operation, and training steps. 

Such steps are done once only.  The term cosine similarity in both figures refers to 

TF.IDF with cosine similarity. 

    According to these two figures, diffusion maps with 60 dimensions showed the best 

classification time, a comparable preprocessing time, with a small loss in the F1 

measurement as compared to the remaining methods. 

Experiments on the IMDB dataset showed similar trends. Diffusion maps with 120 

dimensions were selected. Due to the huge number of classes used in the IMDB dataset, a 

bagging classifier, which is more frequently used with such cases, is used. Out of 

memory error occurred with the TF.IDF with cosine similarity method. Diffusion maps 

with 120 dimensions showed the best classification time and a comparable preprocessing 

time and F1 measurement. Fig. 3.7 and Fig. 3.8 represent the IMDB comparison results. 

 

                            



 

 
 

34 

         

Figure 3.4:   Classification Running Time for Diff, LSI, and Eigenvectors. 

                                      

Figure 3.5:   F1 Measurement for four candidate semantic methods for Pubmed dataset. 
                                  

 

 

 

 

 

Figure 3.6:   Preprocessing and Classification Time for four candidate semantic methods 
for Pubmed dataset. 
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Figure 3.7: F1 Measurement for three candidate semantic methods for IMDB Dataset. 
Out of Memory error occurred with the TF.IDF method. 

                                  

 

 

 

 

 

Figure 3.8: Preprocessing and Classification Time for three candidate  semantic methods 
for IMDB Dataset. Out of Memory error occurred with the TF.IDF method. 

 

     According to the previous experiments, both Diffusion Maps and SoftTFIDF showed 

the best overall performance among the candidate semantic methods under study. In order 

to find the best method, more experiments were conducted with larger dataset of 10000 

Abstracts from Pubmed. We got Out of Memory error when using SoftTFIDF with 10000 
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Abstracts, while we got results when applying diffusion maps with the same number of 

Abstracts. This showed that Diffusion Maps is the best candidate method for semantically 

joining attributes containing huge number of long string values. 

      3.4 Long string Vs Short string Evaluation 

    In this phase, we compared Diffusion Maps Method on the Abstract Field with the 

SoftTFIDF short string method with the Title and Keywords attributes. We used 10000 

records in our evaluation from the Pubmed dataset. Table 3.4 represents the comparison 

results. Obviously, using diffusion maps method with the Abstract attribute outperformed 

the use of SoftTFIDF method on the Title and Keywords attributes, isolated or combined. 

This is reasonable because the information provided by the Abstract attribute is much 

more than that in both the Title and Keywords attributes. It is expected that the 

preprocessing time for the Abstract attribute will be longer than for the Title and the 

Keywords attributes, but this will be done once only. Regarding the running time, 

diffusion maps was the fastest due to the reduced representations for long string values.  

Besides, the use of a classifier provides a solution to frequently changing databases, and a 

sufficient number of training values is all what is needed. 

    Furthermore, our algorithm is able to deal with a huge number of records and large 

dimensionality. The number of dimensions for every testing record is the number of 

selected features using Chi-square when applied on the training long string values. This 

number will be reduced more using the diffusion maps operation. Accordingly, this 

algorithm will suffer less from the curse of dimensionality issue. 
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Table 3.4:     Performance of Long and Short String Methods 

 

3.5 Summary 
 

In this chapter, we compared multiple semantic methods to find the best similarity 

measurement for long string values under supervised learning. The diffusion maps 

method showed a superior accuracy and a comparable overall preprocessing and running 

time. Furthermore, we also proposed a semantic similarity join method using long 

attributes under supervised learning, and we compared the performance of this method 

for joining long string values with the performance of other existing short string methods 

for joining short string values, and the results showed a significant difference in favor of 

our proposed method. 
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CHAPTER 4 

A PRIVACY PRESERVING SEMANTIC SIMILARITY 
JOIN USING LONG ATTRIBUTES UNDER 

SIMILARITY THRESHOLDS 
 

4.1 Introduction 

 

    In some cases, one or more sources may refuse partially or totally to share its whole data 

with other sources during the similarity join process, and only a few researchers have 

concentrated on performing similarity join under privacy constraints. 

    Examples of such works includes [29], which introduced a protocol to perform similarity 

join using phonetic encodings, [30], which proposed a privacy preserving record matching 

protocol on both data and schema levels, [31], which concentrated on the e-health 

applications and its intrinsic private nature, and [32], which used a Term Frequency – Inverse 

Document Frequency (TF.IDF) based comparison function and a secure blocking schema. 

Other methods concentrated on using encryption to preserve privacy such as [33][34]. 

    To our knowledge, the existing protocols were proposed to perform similarity join under 

privacy constraints when the join attribute is a short attribute.  

Again, long string values contain much more information than short string values, and we 

showed chapter 3 that using long string values can improve the similarity join semantic 

accuracy under supervised learning[35]. Adding to that, most databases include attributes of 

long string values. However, the previously stated protocols use measurements that are not 

suitable for such long values. Moreover, our previous work concentrated on using machine 

learning methods, and such methods are not always applicable. Here, we use similarity 



 

 
 

39 

thresholds to decide matched records, which are much simpler and of comparable efficiency 

if used carefully.  Finally, the previous methods concentrated on the syntax representations of 

the string values without considering the underlying semantics. It is worthwhile to find an 

efficient semantic protocol for joining long string values under privacy constraints when 

similarity thresholds are used. 

    As part of our solution, we compare diffusion maps [1], latent semantic indexing [2], and 

locality preserving projection [36]. These methods have strong theoretical foundations and 

have proved their superiority in many applications. Therefore, we compare their performance 

as candidate semantic similarity join methods for joining long attributes using similarity 

thresholds. It should be noted that the existing protocols are not included in this comparison 

because of their high running time cost and low accuracy when applied to long string values. 

For example, [29][32][33][34] used methods that do not consider the semantic similarities 

among the string values.  While [30] introduced the use of embedded vectors for mapping, 

their embedding method was applicable to short string attributes. In order to evaluate the 

performance of our suggested methods, we use two datasets, Amazon Products dataset [37] 

and IMDB Movies dataset [17]. We use various similarity threshold values to define the 

matched records and evaluate the protocol. 

The contributions of this work are as follows: 

•  Proposing an efficient privacy preserving protocol to perform similarity join when the join 

attribute is a long attribute under privacy constraints, which can improve the privacy 

preserving similarity join accuracy. 

•  Finding an existing method that can be used efficiently for joining values of long attributes 

under privacy constraints when similarity thresholds are used. 
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• Considering the semantic similarities among the string values during the privacy 

preserving similarity    join process. 

• Our protocol can assist the existing protocols, which are used mainly with short attributes,    

to improve the overall privacy preserving similarity join performance. 

The rest of this chapter is organized as follows. Section 4.2 describes the candidate semantic 

methods to be compared with respect to joining long string values when similarity thresholds 

are used. Section 4.3 describes our privacy preserving protocol for semantic similarity join. 

Section 4.4 represents the experimental part where we compare the previous candidate 

semantic methods and study the performance of our protocol upon using the best performing 

methods from the previous comparison.  Section 4.5 is the summary. 

4.2 Semantic Methods for Joining Long Attributes Under Similarity Thresholds 

    In the following subsections, we describe the candidate semantic methods for joining long 

string values when similarity thresholds are used. Some methods were already described in 

section 2 of chapter 3. 

4.2.1 Diffusion Maps 

    Diffusion maps is a dimensionality reduction method proposed by Lafon [1]. It was 

previously described in chapter 3. Initially, a weighted graph is constructed whose nodes are 

labeled with long string values and whose edge labels correspond to the similarity between 

the corresponding node values. A similarity function called the kernel function, W, is used for 

this purpose. The first-order neighborhood structure of the graph is constructed using a 

Markov matrix P. In order to find similarities among non-adjacent nodes, forward running in 

time of a random walk is used. A Markov chain is computed for this purpose by raising the 



 

 
 

41 

Markov matrix P to various integer powers. For instance, according to Pt, the tth power of P, 

the similarity between two long string values  x and y represents the probability of a random 

walk from x to y in t time steps. Finally, Single Value Decomposition (SVD) dimensionality 

reduction function is used to find the eigenvectors and the corresponding eigenvalues of Pt,t≥1. 

The approximate pairwise long string value similarities are computed using the significant 

eigenvectors only. The similarity between any two long string values using such a method is 

called diffusion maps similarity. The mathematical details of diffusion maps are already given 

in section 3.2. For more information, refer to [1]. 

4.2.2 Latent Semantic Indexing (LSI) 

    As previously described in chapter 3, LSI [2] uses the Singular Value Decomposition 

operation to decompose the term by long string value matrix M, which contains terms 

(words) as rows and long string values as columns, into three matrices: T, a term by 

dimension matrix, S, a singular value matrix, and D, a long string value by dimension matrix. 

The original matrix can be obtained through matrix multiplication of TSDT. In order to reduce 

the dimensionality, the three matrices are truncated to z user selected reduced dimensions. 

Dimensionality reduction reduces noise and reveals the latent semantics in the dataset.  When 

the components are truncated to z dimensions, a reduced representation matrix, Mz is formed 

according to equation 3.10. Refer to [2] for a detailed explanation of this method. 

4.2.3 Locality Preserving Projection 

    Locality preserving projection [36] is described briefly as follows. Given a set of long 

string values represented in the vector space  x1, x2, x3, …, xn in Rm, where m represents the 

terms. This method finds a transformation matrix A that maps these long values into y1, y2, 
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y3, …, yn in a new reduced space Rl, l<m, such that yi = AT xi. This method is particularly 

applicable when x1, x2, x3, …, xn ∈O, where O is a nonlinear manifold embedded in Rm. 

Refer to [36] for a detailed explanation of this method. 

4.3  Privacy Preserving Protocol for Semantic Similarity Join Using Long Attributes 
Under Similarity Thresholds 

    In this section, our proposed protocol is described. As stated before, this protocol is 

efficient in joining tables using their long string attributes. Up to our knowledge, no protocols 

were proposed to be used with such long attributes, and as proved in [35], using such 

attributes provides a better semantic join accuracy than using short attributes. 

In the algorithm, we have two parties A and B, each of which has a relation, Ra and Rb 

respectively. First, the two parties share the similarity threshold value T that will be used later 

to decide similar pairs. Next, each party generates the term by long string value matrix from 

its long attribute, such that each row represents a term (word) and each column represents a 

long string value. The result is Ma and Mb for A and B respectively. For example, if A 

contains 1000 paper abstract values in its Paper Abstract attribute, each row in Ma represents 

a term, and each column represents an abstract.  Later, the TF.IDF weighting is applied to 

both matrices. TF.IDF weighting is commonly used in information retrieval. TF.IDF 

weighting of a term w in a long string value x is given in equation 3.12. 

Upon applying TF.IDF, both WeightedMa and WeightedMb  are generated. Every row in this 

matrix represents a term, every column represents a long string value, and every entry 

represents the weight of the term in that long string value. 

In the next step, both parties share the MeanTF.IDF threshold value [38] to be used and apply 

the MeanTF.IDF unsupervised feature selection method to both WeightedMa and 
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WeightedMb. This method assigns a numerical value for each term in both WeightedMa and 

WeightedMb. The value of a term w is calculated as follows: 

Val(w) = 
N

xwIDFTF
N

x
∑

=1
),(.

,                                                                                                  (4.1) 

where TF.IDF(w,x) is the TF.IDF weight of the term w in the long string value x, and N  

represents the number of long string values in the relation. The value of each term represents 

its importance. The terms with the highest values are the most important terms. It should be 

noted that terms and features are used alternatively in this context and have the same 

meaning. 

    The features from A with the highest values are concatenated with randomly generated 

features by A and are sent to a third party, C. B does the same. Later, C finds the intersection 

and returns those shared features, SF, that exist in both parties. Both parties remove their 

randomly generated features from SF and generate new matrices, SFa and SFb, where each 

row represents an important term from SF, each column represents a long string value, and 

each entry represents the TF.IDF weighting. Later, every party adds random records to its 

corresponding matrix to hide its origional data. It should be noted that in this step, every 

record, including the randomly generated ones, is assigned a random index number. The 

generated matrices, Rand_Weighted_a and Rand_Weighted_b are sorted according to their 

index number to guarantee that the randomly generated records are randomly distributed in 

both matrices. Next, both matrices are sent to C. C performs the semantic operation on both 

matrices to produce Red_Rand_Weighted_a and Red_Rand_Weighted_b.These matrices have 

the concept terms as rows and the long string values as columns. In the experiments section 

of the paper, we will compare different candidate semantic methods when various thresholds 
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are used, and the best method will be used here. Also, we will study the effect of adding 

random records on the semantic operation performance in the experimental part. The protocol 

continues by finding the cosine similarities for all the pairs (x,y), x∈  Red_Rand_Weighted_a  

and y∈  Red_Rand_Weighted_b,  and if the cosine similarity is greater than a threshold T, the 

pair of the two vectors is considered a match and inserted into Matched.  Matched is returned 

to both A and B to delete the pairs that include randomly generated records. Finally, both 

parties can share their Matched list after deleting the random records. 

    One issue with the protocol is having a randomly generated feature in the returned SF. This 

could occur when the two parties generate randomly the same feature or when one party 

generates a random feature that matches an important feature in the other party. In order to 

calculate the probability of such scenarios, we assume that the randomly generated strings 

have length up to k characters. For a specific length s, the number of generated strings is s26 

for English alphabet. Therefore, the probability of generating a string that matches with an 

existing feature is 

P =
)26(

1

1

j

j

k

∑
=

,                                                                                                                       (4.2) 

and the probability of generating the same random feature by both parties is P2 . 

    For example, if we generate lengths up to 5 characters, the probability of the first scenario 

will be around 10-19 and the probability of the second one is 10-38, which are very unlikely. 

Furthermore, these cases will not affect the running of the algorithm, but will make SFa and 

SFb different in the number of rows (features). However, adding a few features to one matrix 

will not affect significantly the results because we use the main eigenvectors and eigenvalues 

in the semantic methods. 
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4.4 Experiments 

    In order to evaluate the previous methods on long string values, two datasets were used, 

Amazon Products Dataset and the IMDB Movies Dataset. Table 4.1 below describes the use 

of these datasets in the experimental part. The following is a brief description of each dataset. 

4.4.1 Amazon Products 

     We collected 700 records from Amazon website via http://amazon.com. In this work, we 

are interested in the product descriptions, which provide detailed information about the 

products. The product descriptions were divided into categories, such as computers, 

perfumes, cars, and so on. All product descriptions that belong to the same category are  

considered similar. The total number of categories in the collected dataset is 13 categories. 

The categories of the collected descriptions were of various complexities. 

4.4.2 Internet Movies Database (IMDB) 

    We used 1000 records from the IMDB Movies database. For more details, please refer to 

section 3.3.2.  

     For our experiments, we used an Intel® Xeon® server with  3.16GHz CPU and 2GB 

RAM, with Microsoft Windows Server 2003 Operating System. Also, we used Microsoft 

Visual Studio 6.0 to read the datasets, Matlab 2008a for the implementations of the candidate 

semantic methods. For diffusion maps, we used Lafon implementation[1]. Regarding LSI, we 

used the Matlab svds( ) operation,  and for locality preserving projection, we used 

implementation provided in [39]. 

 

http://amazon.com/
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Algorithm 4.1: SECURE PROTOCOL FOR SEMANTIC               
SIMILARITY JOIN USING LONG 
ATTRIBUTES UNDER  SIMILARITY 
THRESHOLDS 

 
Input: Two parties A and B, each has a long attribute X.   
 
Output: Set of matched records sent to both A and B. 
 
Algorithm: 
(1) Both A and B share the similarity threshold T to decide  
      matched pairs. 
 
(2) A and B generate their term by long string value   
     matrices Ma and Mb from Ra.X and Rb.X. 
 
(3) TF.IDF weighting is calculated from Ma and Mb to  
       generate WeightedMa and WeightedMb. 
 
(4) Both A and B share the MeanTF.IDF threshold value  
      to perform MeanTF.IDF unsupervised feature   
      selection. 
 
(5) Both A and B return their selected features along with  
        some randomly generated features to a third party C. 
 
(6)  C finds the shared features in both parties, SF, and  
       returns them to both A and B. 
 
(7)  A and B generate reduced weighted matrices SFa and  
      SFb from WeightedMa and WeightedMb using SF   
      after removing  the randomly generated features. 
 
(8) A generates random records, each of which has SF 

entries and add them randomly to SFa. B does 
similarily.  

 
(9)  Every  origional and random record in both SFa and   
      SFb is assigned a random index number, and both   
      parties keep track of the index numbers that belong to   
      the randomly  generated records. 
 
(10) Both SFa and SFb are sorted according to the index   
        number to generate Rand_Weighted_a and  
        Rand_Weighted_b, which are sent later to C. 
 
(11)  C performs the semantic operation to generate     
        Red_Rand_Weighted_a and           
        Red_Rand_Weighted_b. 
 
(12) C finds the pairwise cosine similarities among the  
        generated two matrices. 
 
(13) If the cosine similarity for a pair is greater than the  
        predefined threshold T, this pair is inserted into  
        Matched. 
 
(14) C returns Matched to both A and B. 
 
(15) Both A and B delete from Matched the randomly  
        generated records.  
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Table 4.1: Datasets Description 

Dataset 
Used Number of 

Records 

Number of 

Categories 

Amazon Products 700 13 

IMDB 1000 10 

 

    In order to evaluate the performance, we used F1 measurement, preprocessing time, 

operation time, and matching time. Please refer to section 3.3 for more details regarding F1 

measurement. 

• Preprocessing time is the time needed to read the dataset and generate matrices that could   

be used later as an input to the semantic operation. 

• Operation time is the time needed to apply the semantic method. 

• Matching time is the time required by the third party, C, to find the cosine similarity 

among the records provided by both A and B in the reduced space and compare the 

similarities with the predefined similarity threshold. 

    In phase one, we want to find the best semantic candidate method to be used with long 

string values when similarity thresholds are used. We compared diffusion maps, latent 

semantic indexing, and locality preserving projection. As every method is a dimensionality 

reduction method, we used the optimal number of dimensions for each method that 

maximizes the F1 measurement. Fig. 4.1 shows an example of selecting the optimal number 

of dimensions for diffusion maps experimentally. In that Figure, we found the F1 

measurement for various numbers of dimensions ranging from 5 to 25. We used a fixed 

similarity threshold value in this case. Obviously, the maximum F1 measurement was 
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obtained using ten dimensions. The optimal number of dimensions for the remaining methods 

was calculated similarly. The best number of dimensions for LSI was eight, while it was five 

for LPP. Fig. 4.2 depicts the comparison of the three methods using various similarity 

thresholds on IMDB dataset. According to the Figure, both LSI and Diffusion Maps worked 

efficiently, with advantage given to LSI. The maximum F1 measurement for LSI was 0.81, 

with threshold 0.7, while the maximum F1  measurement for Diffusion Maps was 0.71, with 

threshold 0.5. Locality Preserving Projection showed the worse performance due to its linear 

nature. 
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Figure 4.1: Finding best number of dimensions for diffusion maps, LSI, and LPP 
experimentally. IMDB dataset was used. The best numbers of dimensions were ten, eight, 

and five dimensions respectively, which resulted in the highest F1 Measurements. 

 

    For Amazon Products dataset, Fig. 4.3 displays the results. Clearly, diffusion maps and 

LSI outperformed LPP. The performance of LSI dropped significantly in this dataset in 

comparison with diffusion maps. We concluded from phase one that both diffusion maps and 
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LSI showed efficient performance in joining long string values with advantage given to 

diffusion maps due to its stable performance. 

 

Figure 4.2: Comparing LSI, diffusion maps, and locality preserving projection to find the best 
semantic method for long attributes. IMDB dataset was used. Both LSI and diffusion maps 

showed the best performance. 
 

 

Figure 4.3: Comparing LSI, diffusion maps, and locality preserving projection to find the 
best semantic method for long attributes. Amazon Products dataset was used. Diffusion 

maps showed the best performance. 

    In phase two of the experimental part, we used diffusion maps and LSI, as they showed the 

best performance in phase one. We used them separately with our protocol and studied the 

protocol performance. We used both datasets in this phase. The evaluation measurements 

used here are preprocessing time, operation time, and matching time. It should be noted that 
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the F1 measurement for both methods was studied in phase one, where both methods showed 

efficient performance with advantage given to diffusion maps. 

    Regarding the preprocessing time, it took 12 seconds to read 1000 records from IMDB, 

while it took one second to find TF.IDF weighting, and 0.5 second to apply MeanTF.IDF. 

Time to find shared features by A and B was negligible (approximately zero). For Amazon 

Products dataset, similar trends were found. 

    For operation time, Fig. 4.4 represents the results for LSI and diffusion maps with various 

dimensions in both IMDB and Amazon Products datasets. Obviously, the time needed to 

perform LSI is less than that in Diffusion Maps. The difference increases with the increase in 

the number of dimensions. For Amazon Products dataset, similar trends were found. 

    It is worthwhile to mention that this operation is done once only, and therefore, does not 

highly affect the protocol performance. Also, it is not necessary to have large number of 

dimensions for diffusion maps to get the optimal performance. The optimal number of 

dimensions for diffusion maps in IMDB dataset was ten, while it was five for Amazon 

Products dataset. 

    Regarding the matching time, and due to the small number of dimensions used to represent 

each long string value, this time was negligible, even with the Cartesian product comparison 

of 5000 records. For Amazon Products dataset, similar trends were found. 

    Moreover, we studied the effect of adding random records, as stated in steps 8-10 in the 

algorithm, on the performance of the semantic operation, which is done in step 11. We added 

various portions of random records that are dataset size dependant, and we found their effect 

on both the F1 measurement and the number of suggested matches. Regarding F1 

measurement, the performance increased slightly when small portion of the random records 
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were added, then it started to decrease. This is due to the mechanism of the semantic 

operation itself. In diffusion maps, the important eigenvalues and eigenvectors are extracted 

from the dataset. The more random records are inserted, the more their effect on the real 

eigenvectors and eigenvalues. At some point, the algorithm will extract eigenvector(s) and 

eigenvalue(s) that represent the random records, which will decrease the accuracy 

significantly. Fig. 4.5 depicts this step. Regarding the number of suggested matches, trivially, 

increasing the number of records by adding random records will increase the number of 

candidate pairs, which in turn will increase the suggested matches. Adding random records 

will increase the number of candidate pairs to be compared, which will increase the number 

of suggested matches. Adding more random records will consume more time and place more 

overhead. Fig. 4.6 illustrates this step. Overall, we conclude that adding random records 

which compose 10% of the whole data size will hide the real data, without much effect on 

both the semantic operation accuracy and running overhead. 
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Figure 4.4:  Operation Time for Diffusion Maps and LSI with various number of 
dimensions. Both IMDB dataset and Amazon Products dataset were used. Operation time 

for LSI was less than that in diffusion maps. 
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Figure 4.5: The effect of adding random records on the F1 measurment upon using diffusion 
maps. F1 measurement decreased rapily when the inserted random records size exceedes 

10% of the dataset size. 
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Figure 4.6:   The effect of adding random records on the number of suggested matches upon 
using diffusion maps. Adding more reocrds inroduced more overhead by increasing the 

number of suggested matched records. 

4.5 Summary 

    In this chapter, we proposed an efficient privacy preserving similarity join protocol for 

long string join attributes under similarity thresholds. We showed that diffusion maps 

method provides the best performance, when compared with other semantic similarity 

methods for long strings under similarity thresholds. Both mapping into the diffusion map 
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space and adding a small portion of randomly generated records can hide the original data 

without affecting accuracy. 
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CHAPTER 5 

 PRIVACY PRESERVING SIMILARITY JOIN METHOD 
USING LONG ATTRIBUTES UNDER SUPERVISED 

LEARNING 

 

5.1 Introduction 

    In our previous work in chapter 4[83], we proposed a privacy preserving protocol for 

similarity join under similarity thresholds, while in chapter 3[35], we proposed using long 

string attributes as join attributes to improve the semantic similarity join performance using 

supervised learning, when a training set exists. However, we did not consider the privacy 

issue under supervised learning. As shown in chapter 3, using supervised learning, if 

applicable, would improve the similarity join performance significantly. However, if privacy 

constraints exist, and up to our knowledge, no work has proposed including the supervised 

learning in the privacy preserving protocol. It is worthwhile to propose a privacy preserving 

similarity join protocol under supervised learning to benefit from the accuracy improvement 

when privacy constraints exist. In order to evaluate this protocol, Pubmed dataset [27] was 

used. The contribution of this work is as follows. 

• Proposing an efficient privacy preserving similarity join protocol under supervised 

learning and improving the its performance using both a training set and long 

attributes. 

• Comparing the effect of using multi-label supervised learning against single-label 

supervised learning on the proposed protocol. 
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    The rest of this chapter is organized as follows. Section 5.2 briefly describes Pubmed 

Dataset. Section 5.3 explains our privacy preserving similarity join protocol under supervised 

learning. Section 5.4 studies the effect of using multi-label supervised learning on the 

protocol performance, and section 5.5 is the summary. 

5.2 Pubmed Dataset 

    This dataset includes indexed bibliographic medical citations and abstracts. It is collected 

by the U.S. National Library of Medicine (NLM). It includes references from more than 

4500 journals. The total number of categories is 23 classes proposed by [27]. Appendix A 

lists a description of the 23 classes. In our experiments, we used subsets of various numbers 

of records and numbers of categories. For more information, please refer to section 3.3.1. 

It should be noted that dividing the dataset into parts to simulate the data of different 

sources would not make any difference from using the single undivided dataset, and this is 

because of the diffusion maps kernel, which requires grouping the records from all sources 

to find the pairwise distance among them. This would produce the same result as using a 

single undivided dataset. Besides, in the supervised learning context, there is no need to 

divide the data later because it will serve as a single training set for the testing records from 

all the sources. 

5.3  Privacy Preserving Semantic Similarity Join Protocol Using Long Attributes Under   
Supervised Learning 

    From our previous work in chapter 3[35], it is clear that Diffusion Maps is one of the best 

methods to be used with long attributes using supervised learning methods. However, we 

need to modify the method to provide more privacy. Initially, such a method provides a level 
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of privacy by mapping the data into the diffusion maps space. In order to increase the 

privacy level, random records are to be added by every source before the sharing process in 

order to hide the original data. However, using pure random records could be inefficient as it 

is easy to detect. Our faked record should be as close to an original looking record as 

possible, in order to make it harder to be detected. Moreover, having pure random records in 

the training set and assigning them to random labels would affect the classifier learning 

model and decrease the classification F1 measurement when a testing set is used. Therefore,  

the added records need to be carefully selected to provide a privacy level and to protect the 

classification accuracy from being decreased. Our selection method is described next. 

In order to generate each random record in some source, the source needs to pick a record 

from its original records randomly and change each value randomly. Epsilon is used as an 

upper limit to the change in each value. The equation to generate a random record vector of 

n values from an existing record is the following. 

Random_Vector(i) = Existing_Vector(i) +/- Epsilon,                                                        (5.1) 

where i=1: n,  Epsilon is a user defined value representing the maximum value change, the 

sign is selected to be positive or negative randomly, and Existing_Vector is the randomly 

selected original record. It should be noted that a different existing original record is selected 

as a seed for each new Random_Vector. 
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Figure 5.1: Comparing selective random records with random records. Clearly, using 
selective random records achieved more F1 measurement. 

                               

Figure 5.2: The Privacy Layers of our Supervised Protocol. 

 In order to study the effect of adding selective random records instead of pure random 

records, we used both methods with various noise portions ranging from 10% to 50% added 

to the training set, and we used the SVM classifier later to classify a testing set using that 

training set. As displayed in Fig. 5.1, using selective random records preserved the classifier 

accuracy, in contrast with the pure random records, which decreased the classification 

accuracy significantly. Therefore, we adopted the use of selective random records in the 

following experiments. 
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Regarding the effect of adding selective random records instead of pure random records on 

privacy, and as explained before, using such selective random records would make it harder 

to be detected and distinguished from the original records, and this improves the level of 

privacy accordingly.  Fig. 5.2 depicts the privacy layers of our privacy preserving supervised 

protocol. In the top layer, mapping into diffusion maps space provides the first level of 

privacy. Next, adding random records to the original records from each source would 

provide other level of privacy by hiding the entities of the original records. Finally, 

processing the random records to make them selective random records using the epsilon 

value provides the third level of privacy. It should be noted that our privacy preserving 

unsupervised protocol contains the top two layers only because it uses pure random records. 

Using selective random records in our privacy preserving unsupervised protocol would 

improve its privacy, and studying the effect of selective random records on that protocol is 

left to the future work. The Privacy preserving Similarity Join Protocol for Long Attributes 

Using Supervised Learning is given in Protocol 5.1 and is explained as follows. 

We have two sources A and B, each of which has a relation, Ra and Rb respectively. First, 

each source generates the term by long string value matrix from its long attribute X, such that 

each row represents a term (word), each column represents a long string value, and each cell 

value, which is the intersection of row i and column j, represents  the frequency of term i in 

the long string value j. The result is Ma and Mb for A and B respectively. For example, if A 

contains 1000 Disease Descriptions in its Disease Description attribute X, each row in Ma 

represents a term, each column represents a disease, and each cell value represents the 

frequency of the term in the disease description.  Later, the TF.IDF weighting is applied to 

both matrices. TF.IDF weighting was already described in Equation 3.12. 
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 Upon applying TF.IDF, both WeightedMa and WeightedMb  are generated. As in protocol 

4.1, every row in this matrix represents a term, every column represents a long string value, 

and every entry represents the weight of the term in that long string value. 

 In the next step, both sources share the Chi-square threshold value [19] to be used and 

apply this supervised feature selection method to both WeightedMa and WeightedMb, as used 

in our previous work [35]. This method assigns a numerical value for each term in both 

WeightedMa and WeightedMb. The value of a term w is calculated as follows: 

Val(w) = 
))()()((

))((

__

2

ntptntptntntptpt

ntptntptntptntpt

nnnnnnnn
nnnnnnnn
++++

−+++

−++−++

+−−+−−++  ,                                          (5.2) 

Where npt+ and nnt+ are the number of documents in the positive category and the negative 

category respectively in which term w appears at least once. The positive and negative 

categories are used to find the accuracy measurements per class when multiple classes are 

used such that the positive category indicates a class and the negative category indicates the 

remaining classes.  npt- and nnt- are the number of documents in the positive category and the 

negative category respectively in which the term w doesn’t occur. The value of each term 

represents its importance. The terms with the highest values are the most important terms. 

  The features from A with the highest values are concatenated with randomly generated 

features by A and are sent to a third source, C. B does the same. Later, C finds the intersection 

and returns those shared features, SF, that exist in both sources. Both sources remove their 

randomly generated features from SF and generate new matrices, SFa and SFb, where each 

row represents an important term from SF, each column represents a long string value, and 

each entry represents the TF.IDF weighting. Later, every source adds selective random 

records to its corresponding matrix to hide its original data. The records are generated using 
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Equation 5.1 as described previously. Again, every record, including the randomly generated 

ones, is assigned a random index number. The generated matrices, Rand_Weighted_a and 

Rand_Weighted_b are sorted according to their index number to guarantee that the randomly 

generated records are randomly distributed in both matrices. Next, both matrices are sent to 

C. C performs the semantic method, which is the Diffusion Maps as suggested in chapter 3 

[35] for joining long string values using supervised learning. Applying the semantic method 

on both A and B produces Red_Rand_Weighted_a and Red_Rand_Weighted_b. These 

matrices have the concept terms as rows and the long string values as columns. In our 

experiments, we used Diffusion Maps based semantic join as described in our previous work. 

Later in this section, we will conduct more experiments to study the effect of adding selective 

random records and changing epsilon value on the semantic operation performance. The 

protocol continues by training a classifier using all the pairs (x,y), x∈ Red_Rand_Weighted_a  

and y∈  Red_Rand_Weighted_b. Again, one major difference between this protocol and 

Protocol 4.1 is that every long string value in the attribute X in Protocol 5.1 has a label that 

refers to its category, in contrast with Protocol 1 that manipulates unlabeled long string 

values. Upon training the classifier, A sends its testing records, along with some random 

records, to C for classification. C classifies the records and returns their predictions. B sends 

its testing records similarly. After excluding the random records, both A and B shares the 

labels of their original records, and the original records belonging to the intersected labels are 

shared between the two sources. 

 In this work, we used the Pubmed medical dataset to evaluate the protocol performance.  

Besides, we used an Intel® Xeon® server of  3.16GHz CPU and 2GB RAM, with Microsoft 

Windows Server 2003 Operating System. Also, we used Microsoft Visual Studio 6.0 to read 



 

 
 

61 

the datasets, Matlab 2008a for the implementation of the Diffusion Maps, and Weka 3.6.2 

for the SVM classifier to get the method’s performance. 

In order to evaluate the performance of Diffusion Maps as a semantic method for joining 

sources using their long attributes under privacy constraints, we used the same performance 

measurements used in chapter 3.3[35], which are F1 measurement, operation time, classifier 

training time, and classifier testing time.   

Initially, we labeled a subset of 816 records manually, and used them as a small labeled 

dataset, which includes 17 disease classes. Besides, every record was allowed to have single 

label only. In order to find the best diffusion maps reduced number of dimensions, we used 

various dimensions and we calculated the corresponding F1 measurement. No noise was 

added in this phase, as this was done in the single source level, where no privacy was 

needed. We used Weka SVM Classifier and 10-Fold Cross Validation in order to get the F1 

measurement. The optimal number of dimensions in our experiments was eighty, as the F1 

measurement tends to be stable after this value. Fig. 5.3 depicts the results. 
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Figure 5.3: Selecting the optimal number of diffusion maps reduced dimensions. SVM 
with 10-Fold cross validation was used on a subset of Pubmed containing 816 records. 
Eighty dimensions were selected as the performance becomes stable after that number. 
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Protocol 5.1:SECURE SUPERVISED PROTOCOL FOR   
SEMANTIC SIMILARITY JOIN USING LONG 
ATTRIBUTES  

Input:     Two sources A and B, each has a long  
                 attribute  X.  
                  
                A small training set TR that has labeled long     
                  string values. 
   
Output:   A Set of matched records sent to both A and   
                 B. 
 
Protocol: 
(1) A and B generate their term by long string value   

matrices Ma and Mb from TRa and TRb. 
 
(2) TF.IDF weighting is calculated from Ma and Mb to  
       generate WeightedMa and WeightedMb. 
 
(3) Both A and B share the Chi-square supervised feature   

selection threshold,  and each source performs Chi-square 

on its own terms. 
 
(4) Both A and B return their selected features along with 

some randomly generated features to a third source C. 
 
(5) C finds the shared features in both sources, SF, and   
        returns them to both A and B. 
(6) A and B generate reduced weighted matrices SFa  
       and SFb  from WeightedMa and WeightedMb using   
       SF after removing  the randomly generated features. 
 
(7) A generates selective random records, each of which has 

SF entries using Equation 5.1 and adds them randomly to 
SFa. B does similarily.  

 
(8) Every original and random record in both SFa and   
       SFb Is assigned a random index number, and both   
       sources keep track of the index numbers that belong  
       to the selective random generated records. 
 
(9)   Both SFa and SFb are sorted according to the index   
        number to generate Rand_Weighted_a and  
        Rand_Weighted_b, which are sent later to C. 
    

    (10) C performs the semantic operation to generate     
        of Red_Rand_Weighted_a and Red_Rand_Weighted_b. 
 
(11) C trains a classifier on the training set which is composed   
       of Red_Rand_Weighted_a and Red_Rand_Weighted_b. 
 
(12) Both A and B sends their X long values, after converting  
        them to a suitable form as discussed in [26] , into C   
        for  classification. Random records are sent also to C to  
        hide  the original entities. 
  
(13) C classifies the records of A and returns the labels back. C   
       classifies the records of B  similarily. 
 
(14)  A deletes the random records and extract the labels of the 
        original records in X. B does similarly. 
  
(15)  A and B send their labels to C, and C returns the shared  
        labels to both A and B. 
 
(16) A and B share the original records that belongs to the  
       shared labels. 
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  Regarding the preprocessing time, it took three seconds to read the 816 training records 

from Pubmed, while it took negligible time to find TF.IDF weighting, and 204 second to 

apply Chi-square. Time to find shared features by A and B was negligible (approximately 

zero). For operation time, diffusion maps required three seconds, while for training time, it 

took 12 seconds to train the SVM classifier using 80 dimensions and 10 folds cross 

validation. 

In the next step, we studied the effect of adding noise to the classification performance. We 

added various noise percentages from 10% to 30% to the training set, and we used various 

epsilon values from 1 to 100 to generate the random records. The SVM classifier was used to 

classify 4000 testing records using that modified training set. Figure 5.4 summarizes the 

findings. 

Obviously, increasing the noise percentage can provide more privacy but it would decrease 

the F1 measurement. This is reasonable because it is affecting the SVM training model. 

Likewise, increasing the epsilon value (up to a maximum limit) would improve the privacy 

and decrease the F1 measurement. However, a large increase in epsilon value would have 

negative effect on the privacy, because the records will be easy to detect and excluded as 

faked. Selecting the noise percentage and epsilon value is domain dependant and depends on 

the application privacy requirements versus the join accuracy. 
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Figure 5.4: The effect of adding selective random records and changing Epsilon value on the 
F1 measurment upon using diffusion maps. F1 measurement decreased as the selective 

random records portion and epsilon value increase. 

Besides, it is worthwhile mentioning that it took two seconds to read the 4000 testing 

records and negligible time to find the TF.IDF weighting. For the classifier testing time, it 

took two seconds to classify those testing records using the previous training set of 816 

records.  

Protocol5.2:SECURE PROTOCOL FOR SEMANTIC 
SIMILARITY JOIN USING LONG 
ATTRIBUTES FOR SUPERVISED 
LEARNING. 

Input:           A new test case arriving a source.  

Output:       Classifying this test case to the up to date 
                    knowledge and joining it according to   
                    semantic similarity. 
 

Protocol: 

(1)   The training model is sent to both A and B. 

(2)    For every new test case arriving any source, the   
        training model is used to classify it. 

(3) This test case is joined to the shared records of its 
same label.  
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Protocol 5.2 is used after Protocol 5.1 in order to join every new testing record arriving at 

any source. It is worth mentioning that Protocol 5.1 is used once, while Protocol 5.2 is used 

with every testing record. 

5.4 Privacy Preserving Semantic Similarity Join Protocol Using Long Attributes Under 
Multi-Label  Supervised Learning 

    One limitation of the previous supervised solution is its constraint on the number of labels 

per record. So far, we forced every record in the training and testing sets to have one label. 

However, this is not always correct. In many real life applications, a record can belong to 

various entities and refer to multiple labels simultaneously. For example, a disease could be 

a virus disease (Label 1) and affect infants only (Label 2). Using multi-label classification 

would provide a model which is closer to real-life applications. 

   Again, to our knowledge, no work has been done to benefit from multi-label classification 

techniques in the privacy preserving supervised protocol for similarity join. Therefore, we 

studied the performance of various multi label classifiers for privacy preserving semantic 

similarity join. We compared RBF Networks, SVM, and kNN multi label classifiers. We 

used a subset of the Pubmed dataset consisting of an 800 records training set, with 10% 

selective random records to be added later, and a 3000 records testing set. Each record is 

allowed to have up to four labels. We used k = 3, and we used the polynomial kernel SMO 

for SVM. Finally, we used the SVM single label classification results as a baseline. Fig. 5.5 

depicts the results. Clearly, using multi label classification outperformed single label 

classification in terms of F1 measurement. This is reasonable because the ideal performance 

of any single label classifier will not exceed 
N
1  of its corresponding multi label classifier, 

where N is the maximum allowed number of labels for each record. 



 

 
 

66 

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

1 10 100

Epsilon

F 1 M
ea

su
rem

en
t

kNN Multi Label

SVM Multi Label

RBF Multi Label

SMO Single Label

 

Figure 5.5: Comparing various multi-label classifiers with a single label classifier using 
various Epsilon values. Multi-label classification significantly outperformed single-label 
classification, and RBF Network classifier has the best F1 measurement. 10% Noise was 

used. 

 Besides, the RBF Network classifier outperformed both SVM and kNN classifiers in this 

dataset. This is due to its non linear nature, in contrast with the polynomial SVM and lazy 

kNN. The Pubmed dataset, due to its overlapped topics and some noisy records, needs a non 

linear classifier to produce the best classification accuracy. One more advantage of an RBF 

Network classifier is that it is not highly affected by the parameter optimization step. An 

SMO classifier has an RBF non-linear kernel option, which could be comparable to that of 

an RBF Networks classifier; however, it performs poorly without the parameter optimization 

step. 

 In order to study the effect of adding selective random records and changing epsilon value 

on the multi-label classification accuracy, we used the RBF Network classifier with various 

epsilon values ranging from 1 to 100, and various portions of the selective random records 

ranging from 10% to 50%. Fig. 5.6 illustrates the findings. We noted that both increasing the 

portion of the added selective random records and increasing the epsilon value decreased the 

classifier F1 measurement.  However, as we discussed previously, we do not need to add a 
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large portion of the records nor largely increase the epsilon value. Adding a small portion 

with a small epsilon value would provide an adequate level of privacy without affecting the 

F1 measurement. Furthermore, the added portion of random records and the epsilon value 

are domain dependant, and depend on the domain error tolerance and the required level of 

privacy. 
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Figure 5.6: The effect of changing epsilon and and adding selective random records 
proportional to the dataset size on the multi-label classification. RBF classifier was used. 

Obviously, increasing the added selective random records and increasing epsilon decreases 
F1 measurement. 

5.5 Summary 

    In this chapter, we proposed a similarity join privacy preserving protocol using long 

attributes under supervised learning. We proposed an efficient privacy preserving protocol 

for long string join attributes that uses Diffusion Maps and selective random records, which 

are hard to detect and does not affect the classification accuracy. Moreover, we enhanced the 

performance by using the multi-label supervised learning, when every record can refer to 

multiple entities simultaneously.  



 

 
 

68 

 

CHAPTER 6 

A SIMILARITY JOIN METHOD USING LONG 
ATTRIBUTES UNDER UNSUPERVISED LEARNING 

 

        6.1  Introduction 

    In many real-life cases, it is very expensive or even impossible to create a training set to 

assist the similarity join method. In this case, similarity join method could be done under 

unsupervised learning. Many methods have been proposed to solve unsupervised similarity 

join [55][56][57][58]. Up to our knowledge, all these solutions are used mainly with short 

attributes.  

    We showed in our work in chapter 3 [35] that using long attributes would improve the 

similarity join performance under supervised learning. Therefore, it is worthwhile to study 

the use of long attributes in unsupervised similarity join. Unfortunately, most of the 

proposed preprocessing methods are not suitable for long attributes. Our first objective is to 

compare the effect of using long attributes and short attributes on the unsupervised 

similarity join performance. 

    On the other hand, databases are intrinsically dynamic. Records are inserted, updated, and 

deleted frequently. This could change the number of clusters accordingly. Most of the 

previous work assumed the database static. Therefore, our second objective is to provide a 

similarity join method that is efficient with expandable databases. 
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    Our work is divided into four phases. First, finding the best semantic method for joining 

long attributes under unsupervised learning. Second, comparing the effect of using long 

attributes against using short attributes in the similarity join performance under 

unsupervised learning. Third, providing and evaluating our similarity join unsupervised 

method. Fourth, providing a solution that is efficient with expandable databases. It should be 

noted that many short string preprocessing methods were not included in this comparison 

because of their high running time cost and low accuracy when applied to long string values. 

In phase one, we are comparing diffusion maps[1], latent semantic indexing[2], 

eigenvectors[3], and independent component analysis[76]. In phase two, we compared the 

best method from phase one with TF.IDF and SoftTF.IDF[13]. KMeans[77] was used to 

cluster the output of each method. In order to evaluate the performance, we used three 

datasets, Amazon Product Descriptions[37], IMDB Movies dataset[17] , and Pubmed[27]. 

The contributions of this work are as follows:    

•           Adopting the use of long attributes to replace or assist the short attributes to increase the 

similarity join preprocessing methods under unsupervised learning. 

•           Finding an efficient semantic preprocessing method that can be used for joining values of 

long attributes when no training set exists. 

•           Providing an efficient solution for expandable databases. 

   The rest of this chapter is organized as follows. Section 6.2 compares various semantic 

methods for joining long attributes under unsupervised learning. Section 6.3 compares the 

effect of using long attributes against short attributes on the similarity join performance. 

Section 6.4 explains our proposed similarity join method using long attributes under 



 

 
 

70 

unsupervised learning. Section 6.5 introduces the expandable databases scenario and 

provides a solution for such an issue. Finally, section 6.6 is the summary.      

6.2 Comparing Semantic Similarity Join Methods Using Long Attributes Under    
         Unsupervised Learning 
 
   In this section, we are going to compare various semantic preprocessing methods using 

long string attributes. The best method will be used as part of our solution. We are 

comparing diffusion maps, latent semantic indexing, eigenvectors, and independent 

component analysis. For more details about these methods, refer to [1][2][3][76]. We use 

only dimensionality reduction methods as candidate semantic preprocessing methods 

because the clustering process is very sensitive to the number of dimensions. Using non-

dimensionality reduction methods such as TF.IDF with cosine similarity as input to the 

clustering algorithm will increase significantly the clustering time. In order to evaluate the 

previous methods in joining long string values, two datasets are used, which are Amazon 

products and IMDB. For detailed descriptions of these two datasets, please refer to sections 

4.4 and 3.3 respectively. It should be noted that the number of records in the datasets is 

irrelevant to the performance of the algorithms as records are processed sequentially.  

    For our experiments, we used an Intel® Xeon® server of  3.16GHz CPU and 2GB RAM, 

with Microsoft Windows Server 2003 Operating System. Also, we used Microsoft Visual 

Studio 6.0 to read the datasets, Matlab 2008a for the implementations of the candidate 

semantic methods and KMeans.  

    In this phase, for the movie summary attribute in IMDB Dataset, we removed the 

stopwords and converted the text into lowercase. The term long string value frequency 

matrix was generated. Later, TF.IDF[18] weighting matrix was computed. Later, we used 

mean TF.IDF unsupervised dimensionality reduction method[38] to eliminate insignificant 
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words, and we selected the 2% of the features with the highest importance. The values in the 

Product Description attribute from Amazon Products datasets were processed similarily. 

    For Diffusion Maps, we used Lafon Matlab implementation[1]. We used the values of σ  

and α to be 10 and 1 respectively as used in [35]. Regarding LSI, we used the SVDs( ) 

Matlab built-in function. For the eigenvectors method, we used the Eigs( ) Matlab function. 

For ICA, we used FastICA package [78]. 

    The performance measurements used for this phase were Silhouette value, Purity, 

Clustering time, and Operation time. They are defined as follows: 

Silhouette Value for a point x, which is assigned to cluster c of n points, is a measurement of 

the assignment suitability for this point during the clustering process.  It is calculated using 

the following formulas: 

Silh (x) = 1-
)(
)(

ib
ia ,             If a(i) < b(i)                                                                                (6.1) 

Silh (x) = 
)(
)(

ia
ib -1,            Otherwise                                                                                    (6.2) 

Where a(i) = 
n

yxdist
cy

∑
∈

),(
,                                                                                            (6.3) 

and b(i) = min ( 
n

yxdist
cy

∑
∉

),(
).                                                                                    (6.4) 

    Purity measures the overall clustering accuracy in correspondence with the actual cluster 

labels. Let C  = {C1, C2, C3, …, Ck} represents the set of clusters, and let L = {L1, L2, L3, …, 

Lm} represents the set of labels (classes). Purity is calculated using the following formula: 
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Purity(C,L) = 
n

LC
k

mkm∑ ∩ )(max
,                                                                                    (6.5) 

Where n is the total number of points in the dataset. 

    Clustering Time is the time required to perform the clustering algorithm. 

    Operation Time is the time required to perform the dimensionality reduction operation on 

the dataset.  

    After using each of the semantic methods, the KMeans clustering algorithm was used to 

get the performance for each method. We used KMeans, which is an example of a 

partitional clustering method, because it outperformed both hierarchical and suffix tree 

clustering methods [79].  During the clustering process, we experimentally selected the 

optimal number of reduced dimensions and the optimal number of clusters for KMeans. In 

detail, we used a fixed initial value for the number of clusters and used KMeans with that 

value to cluster the output of the diffusion maps algorithm using various numbers of 

dimensions. After finding the optimal number of diffusion maps dimensions, we used it with 

KMeans clustering with various number of clusters. We used the highest silhouette value 

after clustering with KMeans to indicate the optimal number of diffusion maps dimensions 

and optimal number of clusters. Figure 6.1 displays this step. The other semantic 

preprocessing methods were manipulated similarly. Later, we used both clustering time and 

cluster purity to evaluate the accuracy of the resulting clusters.  The comparison of the 

semantic preprocessing methods according to the clustering time for Amazon and IMDB 

showed no significant differences among the compared methods. This is because of the 

similarity in the output of these methods according to the number of reduced dimensions.   

Figure 6.2 and Figure 6.3 show the comparison of the four methods according to the purity 
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in Amazon and IMDB respectively.  Clearly, diffusion maps showed the best performance. 

The performance of the other methods could vary depending on the complexity of the 

dataset. This is clear in Figure 6.3 when the methods were applied to the IMDB dataset, 

which is relatively easy and contains disjoint clusters. According to that figure, the four 

methods showed high performance, and the performance decreased in LSI, ICA, and 

eigenvectors when using the Amazon dataset, which is more complex and contains 

overlapped clusters. diffusion maps proved to have the most stable performance.   Table 6.1 

shows the operation time The methods were ordered as follows: 

LSI < EIG < Diff < ICA. This is due to the larger amount of information contained in the 

input matrix of the ICA and diffusion maps, which are document-by-document matrices, in 

contrast with the simple, relatively sparse input matrices to LSI and eigenvectors. diffusion 

maps operation time is not very slow, in contrast with ICA, and could be compensated with 

the gain in accuracy upon using this method. As diffusion maps showed the best 

performance, it was adopted in our solution.  

 

Figure 6.1:  Determining the best number of clusters for KMeans under diffusion maps 
space. The best number of dimensions was nine dimensions. We used 700 product 

descriptions from Amazon Products dataset. 
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Figure 6.2.  Comparing the purity of the KMeans clustering under diffusion Maps, ICA, 
LSI, and eigenvectors. Diffusion Maps showed the best performance. We used 700 product 

descriptions from Amazon Products dataset. 

 

 

Figure 6.3. Comparing the purity of the KMeans clustering under diffusion Maps, ICA, 
LSI, and eigenvectors. Diffusion Maps showed the best performance. We used 1000 movie 

summaries from IMDB dataset. 
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Table 6.1. Operation Time (in seconds) for the Candidate Methods in the Two Datasets 

Method IMDB Amazon 

Diffusion Maps 2.5 1.35 

LSI 0.24 0.1 

ICA 10 3.6 

Eigenvectors 0.45 0.23 

 

6.3 Long String VS Short String Evaluation 

    For phase two, we compared the best semantic preprocessing method for long attributes 

with top existing preprocessing method for short attributes. According to phase one, 

diffusion maps proved to be the best semantic method, among the compared ones, for long 

attributes, when no training set exists. In this phase, clustering using long attributes 

represented in diffusion maps space was compared with clustering using short attributes 

represented using existing short methods. The performance measurements used in this phase 

were purity and clustering time. We used Product Title and Product Description attributes 

from Amazon products dataset to represent short attribute and long attribute respectively. 

We used 700 records for this purpose. For long attributes, we used KMeans to cluster the 

Product Description values that are represented in diffusion maps space. For short attributes, 

we used Product Title values that are represented using pairwise SoftTF.IDF [7] similarities, 

pairwise SoftTF.IDF similarities reduced using diffusion maps, pairwise TF.IDF similarities 

reduced using diffusion maps. KMeans was used to cluster the output of the three methods. 
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It should be noted that we did not use many existing unsupervised similarity join methods 

such as [56][57][58] because of their poor performance with long string values. We used 

two performance measurements, purity and clustering time. Table 2 depicts the results.  

Table 6.2: KMeans Clustering Using Long and Short Attributes 

Method Purity ClusTime 

Prod Desc (Diff) 0.69 0.05 

Prod Title (SoftTF.IDF) 0.405 1.2 

Prod Title (SoftTF.IDF+ Diff) 0.41 0.08 

Prod Title (TF.IDF + Diff) 0.51 0.1 

 

    Clearly, KMeans clustering of long string values represented by diffusion maps proved to 

have the best purity, which is reasonable because long attributes tend to have much more 

information than short attributes, which will increase the clustering accuracy. According to 

the clustering time, all the previous methods were comparable except the SoftTF.IDF alone. 

The reason is that this method is not a dimensionality reduction method, and the number of 

dimensions affects significantly the clustering time performance.  Overall, we conclude that 

using diffusion maps semantic method with long attributes showed a better performance 

than using the existing unsupervised similarity join methods that use short attributes. 

6.4 Similarity Join Method Using Long Attributes Under Unsupervised Learning 

    After showing that using long string attributes with diffusion maps and clustering the 

output using kMeans can provide an efficient performance in comparison with other 
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unsupervised similarity join methods, we adopt this in our algorithms. In this section, we 

provide and discuss our unsupervised similarity join method, and evaluate its performance 

on new testing records. Basically, our method is composed of two algorithms, Algorithm 

6.1 and Algorithm 6.2. Algorithm 6.1 takes as an input an initial set of unlabelled records 

and apply the similarity join operation on them using long attributes and diffusion maps. 

The output of this algorithm is a set of clusters, where every cluster represents a set of 

records that are joined according to their semantic similarity. Algorithm 6.2 takes as an 

input the set of clusters from Algorithm 6.1, optimizes it, and for every newly arriving 

testing record, it will apply the similarity join on it. In other words, it will assign it to one 

of the existing clusters. We explain the details of each algorithm next. 

    In Algorithm 6.1, the input is a dataset represented as a term document matrix, where 

each record represents a term (word) and every column represents a long string value. The 

output is a set of clusters, where every cluster represents a set of semantically similar items. 

    We assume here that record labels are not known. In the algorithm, after preprocessing 

the dataset by applying the TF.IDF weighting and reducing the dimensionality using the 

Mean TF.IDF unsupervised dimensionality reduction method, the diffusion maps method is 

applied to obtain the reduced representations of the long string values, Y, as stated in line 11.  

Every row in Y represents a long string value, and every column in Y represents a reduced 

dimension. Later, the KMeans algorithm is applied to cluster the long string values in the 

reduced space, and the silhouette value is calculated. We need to select the optimal values of 

both Z in line 11 and Num_Clusters in line 14 experimentally in order to maximize the 

silhouette value. After obtaining the optimal Z and Num_Clusters, Kmeans is applied using 
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both values to output the optimal set of clusters. It should be noted that this algorithm is 

applied once only, and it is applied to any initial set of unlabelled records. 

    After obtaining the set of clusters using Algorithm 6.1, Algorithm 6.2 is used to assign 

every newly arriving record to its suitable cluster among the existing clusters. Algorithm 6.2 

converts the arriving testing record into its reduced diffusion maps representation. Next, it 

finds the cosine similarity between the reduced testing record representation and all the 

cluster centroids. The testing record is assigned to the cluster whose centroid is the closest. 

    In the evaluation part, it should be noted that Algorithm 6.1 was already evaluated in the 

previous section and it outperformed the compared unsupervised similarity join methods. In 

order to evaluate the Algorithm 6.2, we inserted various numbers of records belonging to 

existing clusters, and we computed the similarity join accuracy, which represents the record-

cluster assignment accuracy. Three datasets were used in this experiment, which are 

IMDB[17], Amazon  Products[37], and Pubmed[27], and the results are illustrated in Table 

6.3.  

   Clearly, the algorithm can assign the newly arriving records to the existing clusters with a 

high accuracy. It is obvious also that its accuracy is data-dependant. The algorithm works 

better with datasets of disjoined clusters, such as IMDB, than those of overlapped ones, 

such as Amazon Products. 
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Algorithm 6.1:DIFFUSION MAPS BASED SEMANTIC   
                           PREPROCESSING USING LONG  
                           STRING VALUES 

Input: The term by long string value matrix M for the set  
            of unlabeled D records 
 
Output: Candidate similar records Y_Clustered_Opt   
                represented as clusters. 
 
Algorithm: 

(01)    //process the dataset 

(02)    M_weighted = find_TF.IDF _weighting(M) 

(03)    M_Red = MeanTF.IDF(M_Weighted, R)  //R < T 

(04)    For i=1:D 

(05)      For j=1:D  

(06)        Dcos(i,j) = 1-Cosine_Similarity(M_Redi,M_Redj) 

(07)      End; 

(08)    End; 

(09)    Fix Num_Clusters  

(10)    For Z = Initial_Z : Final_Z 

(11)        [Y,S,V,A] = Diffusion_Maps(Dcos, 10, 1, Z)           

(12)        //|Y|= D x Z 

(13)        //Cluster the reduced records 

(14)        Y_Clustered=KMeans(Y, Num_Clusters)  

(15)        New_Silh[ ] = Find_Silh(Y_Clustered) 

(16)    End; 

(17)    //Use Z_Opt that resulted in largest New_Silh[ ] value 

(18)    [Y_Opt,S,V,A] = Diffusion_Maps(Dcos, 10, 1, Z_Opt) 

(19)    For Num_Clusters = Initial_Clusters : Final_Clusters 

(20)        Y_Clustered_Opt = KMeans(Y_Opt, Num_Clusters)  

(21)        New_Silh[ ] = Find_Sillh(Y_Clustered_Opt) 

(22)     End; 

(23)     //Use Num_Clusters_Opt corresponding to largest   

(24)    New_Silh[ ] value 

(25)    Y_Clustered_Opt = KMeans(Y_Opt, Num_Clusters_Opt) 

(26)    Return Y_Clustered_Opt  
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Table 6.3: Algorithm 6.2 Accuracy on Three Datasets. 

Method Avg. Accuracy 

IMDB 0.89 

Pubmed 0.76 

Amazon Products 0.73 

6.5 Dynamically Expandable Semantic Similarity Join Protocol Using Long 
          Attributes  

    The classification categories are not always static. Commonly, new categories could be 

created over time. Our protocol should have the ability to expand to include such new 

categories.  There are many real life applications that need such expansion. Hereafter, we 

list two examples. 

Example 6.1: New Diseases Detection 

    Recently, new diseases have been brought to the world’s attention. The ability to detect 

Protocol6.2: SIMILARITY JOIN METHOD UNDER 
                        UNSUPERVISED LEARNING 

Input:  A new testing record t arriving a source. 

Output:  Join the testing record to one cluster 

Protocol: 

(1) Convert the new test record t into the Diffusion Maps  
         reduced representation t_red. 

(2) For c = 1: Num_Clusters 

(3) Cos_Sim[i] = Find_Cos_Sim(t_red, centroid[c]) 

(4) End; 

(5) Add the testing record t to the cluster with max 
Cos_Sim[i]. 
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new diseases is crucial. The existing protocols should be able to detect when test cases that 

belong to new non existing labels are being introduced. Such ability can speed the detection 

process and minimizes its consequences. Moreover, the retraining process is also important 

to consider the newly added categories when classifying new test cases. 

Example 6.2: Dividing Movie Classifications 

    In many cases, one starts with an initial number of categories, and later, one category is 

divided into two categories or more. For example, in the past, movie categories were 

limited. However, over time, each category started to contain many subcategories, and the 

differences among these subcategories have been increased. This process is a continuous 

process, and the existing protocols are supposed to detect when the category needs to be 

divided, and to retrain itself on the new subcategories. Protocol 6.3 represents the basic 

model for such an expandable supervised protocol. 

    In the following two subsections, we compare various methods to detect records of non-

existing categories and study the effect of reclustering. 

6.5.1 Detecting Records of Non-Existing Clusters 

    Here, our goal is to detect when records of new non-existing clusters are being 

introduced. In order to do this, we compare two detection measurement: Cosine Distance 

and Sillhouette value. These two measurements are computed in equations 3.2 and 6.1 

respectively. These two measurements are computed for every arriving record. In the 

Cosine Distance, the maximum value of the detection measurement is returned, as there 

will be a value for each cluster . If the measurement is less than a predefined threshold, we 

consider the record belonging to a non-existing cluster.  
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    In order to compare the two measurements, we used both records of existing clusters and 

records of new clusters and computed their detection measurement values using both 

methods. Clearly, the efficient detection measurement is supposed to distinguish records of 

existing clusters and records of new clusters by showing a significant difference between 

their average measurement values. We used IMDB[17], PUBMED[27], and Amazon 

Products[37] datasets. It should be noted that in this scenario, the arriving records are 

processed sequentially, which makes the dataset size irrelevant to the performance. The 

results of using Cosine Distance and Silhoutte measurements are displayed in Table 6.4 and 

Table 6.5 respectively. 

 

Protocol6.3: Expandable Secure Protocol for Semantic 
                        Similarity Join using Long Attributes for 
                        Supervised Learning. 

Input:  A new test case arriving a source. 

Output:  Determine if there is a need to divide a category 
                        or introduce a new one. 
Protocol: 

(1) The source classifies the test case using the training 
model, as proposed in Protocol5.2, and join it to the 
shared records of its same label. 

 

(2) The source updates a shared flag, which is used to 
detect the confidence of the assignment and the state 
of the category after the assignment. 

 

(3) If the flag exceeds a defined threshold, divide that 
corresponding cluster into two clusters using a 
clustering protocol, change the labels assigned to the 
records in that divided cluster to reflect the new 
clusters. 

 

(4) Retrain the Classifier using the new labels, and share 
the updated training model among the sources. 
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Table 6.4: Comparing Existing-Cluster records and New-Cluster records using Cosine 

Distance 

 Avg. Cos Dist  

Existing-Cls 

Avg. Cos Dist 

New-Cls 

Percentage 

Drop 

IMDB 0.95 0.77 19% 

Pubmed 0.91 0.82 10% 

Amazon 0.91 0.88 3% 

Table 6.5: Comparing Existing-Cluster records and New-Cluster records using Silhouette 
measurement. 

 Avg. Silh      

Existing-Cls 

Avg. Silh New-

Cls 

Percentage 

Drop 

IMDB 0.86 0.57 34% 

Pubmed 0.81 0.7 14% 

Amazon 0.77 0.67 13% 

 

     Apparently, using sillhoutte measurement resulted in a better isolation between both 

record types. Another observation is that the drop percentage when a new-cluster record is 

introduced is dataset dependent, as not all datasets have the same properties.  
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6.5.2 Reclustering Analysis 

    Reclustering is needed when the number of records belonging to a non-existing cluster 

becomes large. Reclustering would create a new cluster(s) to minimize the clustering error. 

When a criteria reaches a user-defined threshold, reclustering is applied. The criteria could 

be the number of records with detection measurement less than a specific value. For 

example, if the number of inserted records with silhoutte value less than 0.5 exceeds 50, 

reclustering is needed. Various domains could use various thresholds depending on their 

error tolerance. In order to find a suitable threshold value, we inserted a sample of records 

that belong to existing clusters, computed the silhouette measurement after each insertion, 

and found the minimum sillhoutte value. This value was used as the threshold value. In 

order to illustrate the motivation behind using a reclustering criteria, we conducted an 

experiment that calculates the percentage of records with a sillhoutte value less than the 

threshold. We used both types of records(existing-cluster and new-cluster) separately in 

two different groups. Two dataset were used here, IMDB and Pubmed. We denote the 

records that satisfied the reclustering criteria as Satisfying Records. Table 6.6 represents 

the results. 

Table 6.6: Comparing Existing-Cluster records and New-Cluster records according to the 
percentage of satisfying records among them. 

 % Records Satisfying Criteria in 

Existing Clusters 

% Records Satisfying Criteria in 

New Clusters 

IMDB 12% 69% 

Pubmed 27% 48% 
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    From Table 6.6, it is clear that records of non-existing clusters have lower sillhoutte 

values than those of existing clusters, and that using the minimum sillhouette value of the 

sample as a threshold value is promising. 

    Next, we studied the cost and effect of the reclustering process. Two methods were 

proposed here:  labeling the new records manually, or using a clustering method to label 

them. Only the records that satisfied the reclustering criteria are labeled. Ideally, all the new-

cluster records are supposed to satisfy the criteria and none of the existing-cluster records 

are supposed to satisfy it. From Table 6.6, we can see that around 55% of the new-cluster 

records satisfied the criteria, and 20% of the existing-cluster records did. Regarding the 

percentage of the new-cluster records, it needs to be representative to have accurate results. 

If none of the new-cluster records that belong to a cluster c satisfied the criteria, the cluster 

will not be represented. Commonly, the new-cluster records that satisfy the criteria are 

representative set of the new clusters. Regarding the existing-cluster records percentage, 

they would not affect the results as they would be eliminated during the labeling phase.  

    Obviously, using the manual labeling method would result in better accuracy and more 

execution time that using a clustering method for labeling. For comparison reasons, we 

estimated the manual labeling accuracy to be 0.9, and the time to be 3 minutes per a long 

string value(Assuming its average length is 75 words). After labeling the records, the feature 

selection method needs to be repeated to include the new cluster(s). Initially, the long string 

values are represented as a vector of the important terms in the existing clusters. In order to 

ensure a fair comparison, the important terms from the new cluster needs to be extracted and 

included in the representation of the long string values. In IMDB dataset, after inserting 300 

new-cluster records of three new clusters into the origional dataset, which is composed of 
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1000 records of 10 classes, the feature selection method took 1013 seconds for 13 classes 

(In comparison to 809 seconds for the 10 basic classes), while In Pubmed dataset, after 

inserting 300 new-cluster records of three new clusters into the original dataset, which is 

composed of 200 records of 5 classes, the feature selection method took 34 seconds for 8 

classes (In comparison to 17 seconds for the 5 basic classes). It should be noted that the 

feature selection method is affected mainly with the number of records, and this explains the 

difference in the running time in the two datasets. Finally, to study the effect of the 

reclustering process in the record-cluster accuracy for those records that belong to the newly 

created cluster, we inserted 490 records and the accuracy was 0.75, which is sufficient in 

many domains. 

    Regarding the second method, which uses clustering to assign the new records, we used 

the sillhoutte measurement with various numbers of new clusters. For each number of 

clusters, it took approximately 20 seconds to compute the silhoutte value. If we used 5 

numbers, the process would take 100 seconds to label all the records, which is far less than 

the 180 seconds taken by human to label a single record. However, the decrease in time 

would cause a decrease in the labeling accuracy. The labeling accuracy for the clustering 

method when we used the silhouette value is dataset dependant, and is 0.65 correct on 

average. Therefore, we prefer to use the first method because of the error propagation 

problem that could occur in the second method due to incorrect clustering assignment.  

    Finally, as an estimation to the frequency of reclustering, we inserted random records 

from IMDB and Pubmed, and we used various similarity thresholds and various numbers of 

satisfied records. We recorded the order of that number of satisfying records among the 
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random records. Table 6.7 and Table 6.8 represent the results for IMDB and Pubmed 

respectively. 

 

Table 6.7: Reclustering Frequency using Various Thresholds and Numbers of Satisfying 
Records on IMDB 

Threshold 0.8 0.7 0.6 

Number 
Satisfying 
Records 

25 50 75 25 50 75 25 50 75 

Order 50 112 161 105 194 328 169 400 - 

  Table 6.8: Reclustering Frequency using Various Thresholds and Numbers of Satisfying 
Records on Pubmed 

Threshold 0.8 0.7 0.6 

Number 
Satisfying 
Records 

25 50 75 25 50 75 25 50 75 

Order 57 110 160 90 155 218 80 176 292 

 

6.6 Summary 

    In this work, we proposed an efficient similarity join method using long attributes under 

unsupervised learning. This method can create initial set of semantically joined records, and 

can join newly arriving records to the suitable cluster according to its similarity. 

Furthermore, we proposed a model for similarity join under expandable databases. In this 

part, we compared some detection methods and studied both the reclustering process time 

and the effect of reclustering in the join performance of future testing records.  
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

 

7.1 Summary 

    Similarity Join is grouping pairs of records whose similarity is greater than a threshold T. 

It has many applications in various fields. Although many works has studied Similarity Join 

with short string attributes, a few works have included the use of long string attributes to 

assist the similarity join process and enhance the performance. Obviously, long string 

attributes contain much more information than short string attributes. Therefore, using such 

attributes to detect similar records could improve the overall similarity join accuracy. 

Furthermore, long attributes exist in most of the databases, and finding an efficient method 

to perform similarity join using long attributes would complement the literature work that 

concentrates on short attributes.  

7.2 Contributions 

Our contributions are explained as follows. 

•     First, we proposed an efficient semantic similarity join method for joining tables 

according to their long attributes under supervised learning, when a training set exists.  

The training set has examples of similar record pairs, which would assist in detecting 

similar record pairs in the testing set. Such similarity join method for long attributes 

would assist or replace the existing short attribute similarity join methods. As part of this 

method, we found the best semantic similarity measurement for long string values. 
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•     Second, we proposed a privacy preserving similarity join protocol for joining tables 

using their long attributes under similarity thresholds, when no training set is available. 

Basically, the sources involved in the similarity join process may not want to share their 

data, and may want to share the similar records only. In this case, the content of a source 

is supposed to be hidden and protected from being disclosed to other sources. A few 

works have been done in this area, and most of the work concentrated on methods that 

are applicable on short attributes only. As we explained in our first contribution, using 

long attributes in the similarity join can increase the similarity join accuracy. Up to our 

knowledge, no work proposed a privacy preserving similarity join method when the join 

attribute is a long attribute. Our proposed protocol showed its efficient performance for 

long attributes, which improved the overall similarity join accuracy under privacy 

constraints. 

•     Third, we proposed a privacy preserving similarity join protocol when the join attribute 

is long attribute using supervised learning, when a training set is available. Using a small 

training set can significantly improve the similarity join performance. Again, up to our 

knowledge, no work has been done to propose a privacy preserving similarity join 

protocol for long attributes under supervised learning, even though this would improve 

the similarity join accuracy when there are privacy constraints. Furthermore, we 

enhanced the performance by using selective records instead of random records. 

Moreover, we improved the similarity join performance by using mulit-label supervised 

learning, as the latter is closer to many real-life applications. 

•     Fourth, we proposed an efficient semantic similarity join method to be used with long 

attributes under unsupervised learning, when no training set exists. This scenario is 
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common in many practical applications, as it would be very expensive or even impossible 

to have a training set. Furthermore, we proposed a solution for scenarios that allow the 

number of groups (clusters) to expand by time. This case is also common because 

databases are not static, and their content is updated with every transaction. Up to our 

knowledge, no previous work proposed an efficient solution to similarity join method that 

considers database expansion.  

7.3 Future Work Directions 

            Some future work directions are suggested as follows. 

•     We proposed a baseline model for similarity join with expandable databases and 

studied some reclustering detection methods and the effect of reclustering on 

performance. However, this area needs much more work to enhance both the detection 

method and the reclustering method.  

•     Using Diffusion Maps to reduce the dimensionality and extract the semantic 

relationships among long string values proved its efficiency. However, this method could 

pose overhead when the dataset is large. Even though this case is rare, as the training set 

needs not to be very large for the best join performance, but in some cases, especially 

when the number of record labels (or clusters) is large, the training set will be large. A 

future work could be done to find a scalable Diffusion Maps algorithm. 

•     In my work, I compared some dimensionality reduction methods according to their 

ability in joining long string values. I compared Diffusion Maps, Latent Semantic 

Indexing, Locality Preserving Projection, Independent Component Analysis, and Eigen 

Vectors. Diffusion Maps showed the best performance. In order to optimize the results, 

more dimensionality reduction methods need to be compared with Diffusion Maps.  
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•     Semantic Similarity Join Under Privacy Constraints is a promising future work 

direction. Most of the existing works have concentrated on hiding the data itself. A clear 

example of this is encryption. However, in many cases, the shared information needs to 

be represented and joined together semantically. Semantic Encryption of Concepts would 

achieve such objective.  
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APPENDIX  A 
The 23 subcategories of MeSH category C ‘Diseases’ 

 

C01 Bacterial Infections and Mycoses 

C02 Virus Diseases 

C03 Parasitic Diseases 

C04 Neoplasms 

C05 Musculoskeletal Diseases 

C06 Digestive System Diseases 

C07 Stomatognathic Diseases 

C08 Respiratory Tract Diseases 

C09 Otorhinolaryngologic Diseases 

C10 Nervous System Diseases 

C11 Eye Diseases 

C12 Urologic and Male Genital Diseases 

C13 Female Genital Diseases and Pregnancy Complications 

C14 Cardiovascular Diseases 

C15 Hemic and Lymphatic Diseases 

C16 Neonatal Diseases and Abnormalities 

C17 Skin and Connective Tissue Diseases 

C18 Nutritional and Metabolic Diseases 

C19 Endocrine Diseases 

C20 Immunologic Diseases 

C21 Disorders of Environmental Origin 

C22 Animal Diseases 
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C23 Pathological Conditions, Signs and Symptoms 
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ABSTRACT 

A NEW SEMANTIC SIMILARITY JOIN METHOD USING 
DIFFUSION MAPS AND LONG STRING TABLE ATTRIBUTES 

by 

BILAL HAWASHIN 

December 2011 

Advisor: Dr. Farshad Fotouhi 

Major: Computer Science 

Degree: Doctor of Philosophy 

   With the rapid increase of the distributed data sources, and in order to make information 

integration, there is a need to combine the information that refers to the same entity from 

different sources. However, there are no global conventions that control the format of the data, 

and it is impractical to impose such global conventions. Also, there could be some spelling errors 

in the data as it is entered manually in most of the cases. For such reasons, the need to find and 

join similar records instead of exact records is important in order to integrate the data. Most of 

the previous work has concentrated on similarity join when the join attribute is a short string 

attribute, such as person name and address. However, most databases contain long string 

attributes as well, such as product description and paper abstract, and up to our knowledge, no 

work has been done in this direction. The use of long string attributes is promising as these 

attributes contain much more information than short string attributes, which could improve the 

similarity join performance. On the other hand, most of the literature work did not consider the 
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semantic similarities during the similarity join process. 

To address these issues, 1) we showed that the use of long attributes outperformed the use of 

short attributes in the similarity join process in terms of similarity join accuracy with a 

comparable running time under both supervised and unsupervised learning scenarios; 2) we 

found the best semantic similarity method to join long attributes in both supervised and 

unsupervised learning scenarios; 3) we proposed efficient semantic similarity join methods using 

long attributes under both supervised and unsupervised learning scenarios; 4) we proposed 

privacy preserving similarity join protocols that supports the use of long attributes to increase the 

similarity join accuracy under both supervised and unsupervised learning scenarios; 5) we 

studied the effect of using multi-label supervised learning on the similarity join performance; 6) 

we found an efficient similarity join method for expandable databases. 
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