
Wayne State University

Wayne State University Dissertations

1-1-2012

A new semantic similarity join method using
diffusion maps and long string table attributes
Bilal Hani Hawashin
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

Part of the Computer Sciences Commons

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Hawashin, Bilal Hani, "A new semantic similarity join method using diffusion maps and long string table attributes" (2012). Wayne
State University Dissertations. Paper 376.

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F376&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F376&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F376&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F376&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F376&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations/376?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F376&utm_medium=PDF&utm_campaign=PDFCoverPages

A NEW SEMANTIC SIMILARITY JOIN METHOD USING DIFFUSION
MAPS AND LONG STRING TABLE ATTRIBUTES

by

BILAL HAWASHIN

 DISSERTATION

 Submitted to the Graduate School

 of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

 for the degree of

DOCTOR OF PHILOSOPHY

 2011

 MAJOR: COMPUTER SCIENCE

 Approved by:

Advisor Date

© COPYRIGHT BY

BILAL HAWASHIN

2011

All Rights Reserved

 ii

DEDICATION

To my father, Hani Hawashin, who scarified the most for us. To my late mother, and to my

brother and sisters, this work is dedicated.

 iii

ACKNOWLEDGEMENTS

First, I would like to thank God for giving me the opportunity to start my Ph.D. program in 2007

and leading me to finish my Ph.D. program in 2011. I also would like to express my sincere

gratitude to my advisor and academic grandfather, Dr. Farshad Fotouhi, for all his

encouragement, support, and help during my Ph.D. program. I am really proud to be a student of

such a distinguished professor. With his advising and guidance, I successfully completed my

work and also had a great chance to make myself more capable. In addition, I am grateful to my

Dissertation Committee members: Dr. Chandan Reddy and Dr. Zaki Malik in the Department of

Computer Science at Wayne State University, and Dr. William Grosky in the Department of

Computer and Information Science at University of Michigan-Dearborn for being on my

committee and giving me constructive suggestions and valuable comments on my work.

I would like to give my special thanks to Dr. Traian Marius Truta in the Department of Computer

Science at Northern Kentucky University for working with me as a co-author in some of my

research papers. I would like to thank all my friends here at Wayne State University for giving

me lots of help to early adapt to school life. I also would like to thank my academic colleagues in

my lab for their academic cooperation and close friendships.

I would like to thank my family and friends, especially those who supported me before I came to

here. I would not be able to start the PhD program without your support. Finally, the financial

support of Alzaytoonah University of Jordan is gratefully acknowledged.

 iv

TABLE OF CONTENTS

Dedication . ii

Acknowledgements . .iii

List of Tables . viii

List of Figures . ix

CHAPTER 1 INTRODUCTION AND PROBLEM STATEMENT . 1

1.1 Motivation . .1

1.2 Applications of Similarity Join . 2

1.3 String Similarity Measurement. .3

1.3.1 Character Based Similarity Measurements. .4

1.3.2 Token Based Similarity Measurements. 4

1.4 Problem Statement. . 4

1.5 Organization. . 9

CHAPTER 2 RELATED WORK . .10

 2.1 Similarity Join Using Machine Learning Methods . 11

 2.1.1 Supervised Methods. 11

 2.1.1.1 Supervised Methods with Large Training Files . 11

 2.1.1.2 Supervised Methods with Small Training Files . 12

 2.1.2 Unsupervised Methods. . 12

 2.1.2.1 Clustering Methods. 13

 2.1.2.2 Distance Methods. .14

 v

2.1.3 Hyprid Methods. 14

2.2 Privacy Preserving Similarity Join. 15

2.3 Similarity Join Using Long Attributes. 15

2.4 Similarity Join Using Dimensionality Reduction Methods. .16

CHAPTER 3 SEMANTIC SIMILARITY JOIN METHOD USING LONG ATTRIBUTED UNDER
 SUPERVISED LEARNING . 17

3.1 Introduction. 17

3.2 Semantic Methods for Joining Long Attributes. . 19

3.2.1 Diffusion Maps. . 20

3.2.2 Latent Semantic Indexing. . . 22

3.2.3 EigenVectors. 23

3.2.4 SoftTFIDF with Cosine Similarity. . 23

3.2.5 TF.IDF with Cosine Similarity. . 24

3.3 Comparing Semantic Methods. 25

3.3.1 Pubmed Dataset. .25

3.3.2 Internet Movies Database. .25

3.4 Long String Vs Short String Evaluation. .36

3.5 Summary. .37

CHAPTER 4 A PRIVACY PRESERVING SEMANTIC SIMILARITY JOIN USING LONG ATTRIBUTES
 UNDER SIMILARITY THRESHOLDS. 38

4.1 Introduction. 38

4.2 Semantic Methods for Joining Long Attributes Under Similarity Thresholds. 40

4.2.1 Diffusion Maps. . 40

4.2.2 Latent Semantic Indexing. 41

4.2.3 Locality Preserving Projection. . 41

4.3 Privacy Preserving Protocol for Semantic Similarity Join Using Long Attributes Under Similarity
Thresholds. 42

4.4 Experiments . . . 45

 vi

4.4.1 Amazon Products. . . 45

4.4.2 Internet Movie Database. . . 45

4.5 Summary. . . .52

CHAPTER 5 PRIVACY PRESERVING SIMILARITY JOIN METHOD USING LONG ATTRIBUTES
 UNDER SUPERVISED LEARNING 54

5.1 Introduction. . 54

5.2 Pubmed Dataset. . . 55

5.3 Privacy Preserving Semantic Similarity Join Protocol Using Long Attributes Under Supervised Learning. 55

5.4 Privacy Preserving Semantic Similarity Join Protocol Using Long Attributes Under Multi-Label
 Supervised Learning . . 65

5.5 Summary. 67

CHAPTER 6 A SIMILARITY JOIN METHOD USING LONG ATTRIBUTES UNDER
 UNSUPERVISED LEARNING. 68

6.1 Introduction. 68

6.2 Comparing Semantic Similarity Join Methods Using Long Attributes Under Unsupervised Learning. 70

6.3 Long String Vs Short String Evaluation. 75

6.4 Similarity Join Method Using Long Attributes Under Unsupervised Learning. 77

6.5 Dynamically Expandable Semantic Similarity Join Protocol Using Long Attributes 80

6.5.1 Detecting Records of Non-Existing Clusters. 81

6.5.2 Reclustering Analysis. .84

6.6 Summary. 87

CHAPTER 7 CONCLUSIONS AND FUTURE WORK. .89

7.1 Summary. .89

7.2 Contributions. 89

7.3 Future Work Directions. 91

Appendix A. .93

Bibliography. .95

 vii

Abstract. .103

Autobiographical Statement. 105

 viii

LIST OF TABLES

Table 3.1: Dataset Descriptions for Phase 1. 26

Table 3.2: The Contingency Table to Describe the Components of the Performance Measurements. 30

Table 3.3: Preprocessing Time of the Three Candidate Semantic Methods on Pubmed Dataset. 32

Table 3.4: Performance of Long and Short String Methods. 37

Table 4.1: Datasets Description. . . 47

Table 6.1: Operation Time (in seconds) for the Candidate Methods in the Two Datasets. .75

Table 6.2: KMeans Clustering Using Long and Short Attributes. .76

Table 6.3: Algorithm 6.2 Accuracy on Three Datasets. 80

Table 6.4: Comparing Existing-Cluster records and New-Cluster records using Cosine Distance. 83

Table 6.5: Comparing Existing-Cluster records and New-Cluster records using Silhouette measurement. 83

Table 6.6: Comparing Existing-Cluster records and New-Cluster records according to the Satisfying Records
 Percentage .84

Table 6.7: Reclustering Frequency using Various Thresholds and Numbers of Satisfying Records on IMDB. 87

Table 6.8: Reclustering Frequency using Various Thresholds and Numbers of Satisfying Records on Pubmed. . . .87

 ix

LIST OF FIGURES

 Figure 1.1: My Contribution. . . 8

 Figure 3.1: F1 Measurement for Diff, LSI, and Eigenvectors. 31

 Figure 3.2: Operation Time for Diff, LSI, and Eigenvectors. . .32

 Figure 3.3: Training Time for Diff, LSI, and Eigenvectors. 32

 Figure 3.4: Classification Running Time for Diff, LSI, and Eigenvectors. 34

 Figure 3.5: F1 Measurement for four candidate semantic methods using Pubmed dataset.34

 Figure 3.6: Preprocessing and Classification Time for four candidate semantic methods using
 Pubmed dataset. . 34

 Figure 3.7: F1 Measurement for three candidate semantic methods using IMDB Dataset. 35

 Figure 3.8: Preprocessing and Classification Time for three candidate semantic methods using
 IMDB Dataset. . 35

 Figure 4.1: Finding best number of dimensions for Diff, LSI, and LPP experimentally
 using IMDB dataset. . 48

 Figure 4.2: Finding the best semantic method among Diff, LSI, and LPP experimentally
 using IMDB dataset49

 Figure 4.3: Finding the best semantic method among Diff, LSI, and LPP experimentally
 using Amazon Products dataset. . .49

 Figure 4.4: Operation Time for Diff and LSI with various number of dimensions
 using Both IMDB and Amazon Products datasets. 51

 Figure 4.5: The effect of adding random records on the F1 measurment upon using Diff.52

 Figure 4.6: The effect of adding random records on the number of suggested matches upon using
 Diff . . . 52

 Figure 5.1: Comparing selective random records with random records. 57

 Figure 5.2: The Privacy Layers of our Supervised Protocol.57

 Figure 5.3: Selecting the optimal number of Diff reduced dimensions. 61

 Figure 5.4: The effect of adding selective random records and changing Epsilon value on
 the F1 measurment upon using diffusion maps. . . .64

 Figure 5.5: Comparing various multi-label classifiers with a single label classifier using various
 Epsilon values. 66

 Figure 5.6: The effect of changing epsilon and and adding selective random records proportional to
 the dataset size on the multi-label classification using RBF classifier 67

 x

 Figure 6.1: Determining the best number of clusters for KMeans under diffusion maps space.73

 Figure 6.2. Comparing the purity of the KMeans clustering under Diff, ICA, LSI,
 and Eigenvectors on Amazon Products dataset. 74

 Figure 6.3. Comparing the purity of the KMeans clustering under Diff, ICA, LSI,
 and eigenvectors on IMDB dataset. 74

1

CHAPTER 1

INTRODUCTION AND PROBLEM STATEMENT

1.1 Motivation

 With the rapid growth of the data everyday, a new important and challenging issue is to

integrate data from different and heterogeneous resources. Furthermore, there are some

organizations that has different departments or parts that use different systems with lack of

co-ordination. One important data type that is used commonly in such systems is the String

data type. String data is everywhere, and many applications use it. Examples are product

catalogs (for books, music, software, etc.), electronic white and yellow page directories, and

specialized information sources such as patent databases and customer’s data. The

integration of string data in relational databases is done typically by the join operation. The

commonly used join method is the exact join (also called equi-join or natural join), which is

joining two rows from two different tables (and could be from the same table) if they have

the same exact value(s) in their join attribute(s), However, exact join will not be suitable

when the databases are heterogeneous. Some reasons are as follows.

• The data in heterogeneous databases could have different conventions in some fields such

as name, date, and address. For example, a customer’s name could be John A. Smith in some

database and Smith, John in another.

• There could be inconsistent data, which means that incorrect data could occur in some

database, such as having two different birthdates for the same person.

2

• The attributes used to refer to the same entity in different databases could be different,

because the attributes used in some database depends on the domain. For example, the

attribute Major could be important for a university database but is not very important in a

bank database.

• The string data could contain typographical errors, as they are commonly entered by

humans. For example, we could have Jonh Smith instead of John Smith. A research done by

Kukich [40] used a set of large databases and showed that they contain 1% - 3.2% typing

errors, 1.5% - 2.5% spelling errors, and in interesting but important note, Kukich showed

that the percentage of spelling errors in Dutch surnames for example was 38%.

 In this work, we assume that the tables to be joined have the same schema, which means

that the fields in these two tables are identical. Other area of study concerns about solving

the differences when the fields are not the same. For example, when we have the field Name

in one table and the fields First Name and Last Name in another table, or Address in one

table and Street, City, Zip Code, and Country in another table. In this work, the

concentration is on joining the records that refer to the same entity after solving any

difference in the data representation that could occur between them. This problem is

commonly called Similarity Join or Approximate Join[41][42].Another definition is to join

the pairs of records whose similarity is greater than a user defined similarity threshold T.

1.2 Applications of Similarity Join

 The problem of Similarity Join has been widely studied in the previous decades and

referred to by many different terms such as: record linkage, entity matching, duplicate

detection, merge-purge, data deduplication, instance identification, database hardening,

name matching, conference resolution, and identity uncertainty. This area has many

3

applications in different domains, such as Artificial Intelligence, Database, Statistics,

Signal Processing, Information Retrieval, and Metadata Interoperability. Our

concentration in this work is on its applications in the databases domain.

1.3 String Similarity Measurement Function

 String Distance Measurement Function is a mapping from two strings x and y into a real

number r that represents the distance between the two strings. String Distance Measurement

Function is the opposite of the string distance measurement function (or shortly, distance

function). Clearly, the more the distance between the two strings, the less the similarity

between them.

 Metric distance function d is the distance function that satisfies the following four

properties.

1. d(x, y) ≥ 0,

2. d(x, y) = 0 if and only if x = y,

3. d(x, y) = d(y, x),

4. d(x, z) ≤ d(x, y) + d(y, z),

Whereas x and y are two points in the space.

 Many measurements have been proposed in order to find the similarity (or distance)

between two strings. Such measurements could be divided into three main categories:

Character Based Measurements, Token Based Measurements, and Phonetic Based

Measurements.

http://en.wikipedia.org/wiki/If_and_only_if

4

1.3.1 Character Based Measurements

 Those measurements compare the two strings character by character in order to specify

the distance (or similarity) between them. The main methods under this category are the

following.

• Edit Distance [43].

• Jaro and Jaro-Winkler Distance Metrics [47][48].

1.3.2 Token Based Measurements

 The previous measurements are not suitable in some cases. For example, when there is

different order of the words. So, other measurements have been proposed to compare words

or parts of the words (QGrams) instead of characters. Those measurements are called Token

Based Measurements. Examples of these measurements are the following.

• QGrams with TF.IDF [44][45].

• Jaccard Similarity [46].

 Finally, other measurements are under Phonetic Based Measurements, which consider

two strings similar if they have similar sounds. One example of such measurements is

Soundex[49].

1.4 Problem Statement

 As stated before, many similarity measurements have been proposed in the past years.

Examples are Edit Distance[43], Q Grams[44][45], Jaccard Similarity[46], Jaro[47], and

Jaro-Winkler[48], and Soundex[49]. Most of such measurements are mainly used to find the

5

similarity (distance) between short string values. We used the term Short String Attributes to

refer to string attributes with limited number of characters, such as person name and person

address. Besides, we used the term Long String Attributes to refer to string attributes of

unlimited length, such as product description, research paper abstract, user feedback, and

movie summary.

 Although many works have studied Similarity Join with short attributes, a few works have

included the use of long attributes to assist the similarity join process and enhance the

performance. Obviously, long attributes contain much more information than short

attributes. Therefore, there is a great potential that using such attributes to detect similar

records could improve the overall similarity join accuracy. Furthermore, long attributes exist

in most of the databases, and finding an efficient method to perform similarity join using

long attributes would complement the existing work that concentrates on short attributes.

 One issue here is how to differentiate long attributes from short attributes. For this

purpose, we conducted a preliminary experiments on the IMDB database[17]. This database

contains a set of movies, and it will be explained in details in chapter 3. We used the well

known Edit Distance method [43] to detect similar records using both Movie Name and

Movie Summary attributes separately. The average number of characters per Movie Name

was 16.2 characters, while the average number of characters per Movie Summary was 912.7

characters. The average edit distance for similar string pairs using Movie Name was 2.7,

while the average edit distance for similar string pairs using Movie Summary was 626.3,

which is extremely high. This does not mean necessarily that using short attributes is better

than using long attributes. In contrast, as we will show later, using long attributes would

improve the similarity join performance significantly when a suitable semantic similarity

6

method is used. Therefore, it is clear that not all similarity methods and measurements are

applicable to long attributes. This introduces my contribution.

 First, we proposed an efficient semantic similarity join method for joining tables

according to their long attributes under supervised learning, when a training set exists. The

training set has examples of similar record pairs, which would assist in detecting similar

record pairs in the testing set. Such similarity join method for long attributes would assist or

replace the existing short attribute similarity join methods. As part of this method, we found

the best semantic similarity measurement for long string values under supervised learning.

 Second, we proposed a privacy preserving similarity join protocol for joining tables using

their long attributes under similarity thresholds, when no training set is available. Basically,

the sources involved in the similarity join process may not want to share their data, and may

seek to share the similar records only. In this case, the content of a source needs to be hidden

and protected from being disclosed to other sources. A few works have been done in this

area, and most of the work concentrated on methods that are applicable to short attributes

only. As we explained in our first contribution, using long attributes in the similarity join

can increase the similarity join accuracy. Up to our knowledge, no work proposed a privacy

preserving similarity join method when the join attribute is a long attribute. Therefore, we

proposed an efficient privacy preserving similarity join protocol using long attributes under

similarity thresholds.

 Third, we proposed a privacy preserving similarity join protocol when the join attribute is

long attribute under supervised learning, when a training set is available. Using a small

training set can significantly improve the similarity join performance. Again, up to our

7

knowledge, no work has been done to propose a privacy preserving similarity join protocol

for long attributes under supervised learning, even though this would improve the similarity

join accuracy when there are privacy constraints. We proposed this protocol and we

enhanced its performance by using selective records instead of random records. We

improved the similarity join performance furthermore by using mulit-label supervised

learning instead of single-label learning as the former method is closer to many real-life

applications.

 Fourth, we proposed an efficient semantic similarity join method to be used with long

attributes under unsupervised learning, when neither training set nor similarity thresholds

are used. This scenario is common in many practical applications, as it would be very

expensive or even impossible to have a training set or adopt a similarity threshold.

Furthermore, we proposed a solution for expandable clusters (groups). This case is common

because databases are not static, and their content is updated by every transaction.

Therefore, the number of clusters may increase by time. Up to our knowledge, no previous

work proposed an efficient solution to similarity join method that considers database

expansion.

Both Algorithm 1.1 and Fig. 1.1 provide our new semantic similarity join method.

8

Figure 1.1: My Contribution.

Algorithm1.1: NEW SEMANTIC SIMILARITY JOIN METHOD USING
 DIFFUSION MAPS AND LONG STRING TABLE
 ATTRIBUTES

Input: Two sources A and B, each has a long attribute X.

Output: Semantically joining similar records.

Algorithm:

(1) If privacy constraints exist

(2) If a training set exists

(3) PRIVACY_PRESERVING_SEMANTIC_SJ_SUPERVISED

(4) Else

(5) PRIVACY_PRESERVING_SEMANTIC_SJ_UNSUPERVISED

(6) End;

(7) Else

(8) If a training set exists

(9) SEMANTIC_SJ_SUPERVISED

(10) Else

(11) SEMANTIC_SJ_UNSUPERVISED

(12) End;

(13) End;

9

1.5 Organization

 The rest of this dissertation is organized as follows. Chapter 2 illustrates the related

work. Chapter 3 describes our semantic similarity join method using long attributes under

supervised learning. Chapter 4 presents our privacy preserving semantic similarity join

method using long attributes under similarity thresholds. Chapter 5 presents our privacy

preserving semantic similarity join method using long attributes under supervised

learning. Chapter 6 describes our semantic similarity join method using long attributes

under unsupervised learning and expandable databases. Finally, Chapter 7 concludes this

dissertation and provides the future work directions.

10

CHAPTER 2

RELATED WORK

 In order to find similar records, many methods have been proposed. The proposed

methods are divided into the following two basic categories according to their objectives.

• Enhancing Similarity Join Accuracy.

• Minimizing Number of Record Comparisons.

 Our concentrating in this dissertation is on the first research area that studies how to

enhance the accuracy of the similarity join methods. For the second research area, one can

refer to [81][82]. The methods that aim at enhancing similarity join accuracy could be

divided into three main categories:

• Machine Learning Methods.

• Probabilistic Methods.

• Rule Based Methods.

 Our concentration in this work is on Machine Learning Methods, because such methods

were used extensively in our work and because of the fast growing rate of this area in the

recent years.

11

2.1 Similarity Join Using Machine Learning Methods

 These methods could be divided into the following three parts.

• Supervised Methods.

• Unsupervised Methods.

• Hybrid Methods (Semi Supervised Methods).

2.1.1 Supervised Methods

 These methods use a training file to build a model that could be used later with testing

cases. Such methods are divided according to the size of the used training file into the

following two types.

• Supervised Methods with large training files.

• Supervised Methods with small training files.

2.1.1.1 Supervised Methods with Large Training Files

 As stated earlier, these methods depend on the existence of a large training dataset that

has prelabeled pairs of records. [50] proposed learning the affine gap edit distance

parameters for each field alone using the Expectation Minimization algorithm (EM) using

the training data. The learned parameters for each field are the parameters that produce the

minimum classification error according to that field. Next, the distance vectors for all record

pairs in the training file are found using the learned parameters and used by SVMlight as a

training data. Finally, the trained SVMlight can decide about any record pair given its

distance vector. He showed that this method outperformed other approaches such as

considering the record a single large field. Later, [51] proposed a method to build an

12

approximate operator tree depending on a training data. The training data contains pairs of

records each of which is labeled as match or non-match. Some algorithms were proposed in

this work to get approximate result for the similarity join operator. Other method is

proposed by [24], which used a set of operations such as equal, abbreviation, concatenation,

and synonym in order to transform one string field into another. A training file with matched

pairs and non matched pairs is used, and the transformation graph using the previous

operations is found for each pair. Every operation is given a weight according to its

appearance in the transformation graphs of matched and non matched pairs. Finally, a

transformation graph is constructed for the testing pair and the probability of a match given

the operations in this transformation graph is calculated using the probabilities of the

operations in the training transformation graphs. [53] proposed making a graph for all the

records in the database, linking together those classified as matched, and consider all the

records belonging to the same connected component a match. However, this method is not

always correct as the transitivity assumption does not always hold.

2.1.1.2 Supervised Methods with Small Training File

 The problem of the first part is that it requires a large number of records in the training

set. If a training set of small number of records is available, the most confusing records

could be selected and labeled manually. This would provide more information with very

much smaller training data. Such methods fall under the category of active learning.

Example for this is ALIAS which is proposed by Sarawagi and Bhamidipaty[54].

2.1.2 Unsupervised Methods

 Unsupervised methods do not use a training dataset. These methods are more practical as

13

it is not always easy to find a training set. However, the accuracy of these methods is not as

high as that obtained by supervised methods. Unsupervised Methods could be divided into

the following two major parts.

• Clustering Methods.

• Distance Methods.

2.1.2.1 Clustering Methods

 Clustering is grouping similar records together according to a similarity measurement and

optimization criteria. [55] considered each record pair is a point in an n dimensional space,

where n is the number of fields in each of the two tables. The point that represents the rows I

and j is represented as Pi,j = [d1,d2,…,dn], such that d1 is the dissimilarity between the rows I

and j according to the first field, and so on. After representing all the pairs accordingly, they

are clustered into three clusters: Matched, Unmatched, and Possibly Matched. The cluster

that is closest to the origin is the Matched cluster, and the cluster that is the furthest from the

origin is the Unmatched one. The Possibly Matched one is in the middle, and called

sometimes The Reject Region, where the method failed to give a decision. Related work is

done in [56] and studied the Entity Resolution Problem. Clear example for problem is the

paper resolution problem, where each paper represents a group of references. As stated

earlier, the objective is to cluster papers according to their similarity. This method used

iteration to link duplicate references in different papers according to two criteria: the

similarity between the two references and the similarity of the context (papers) in which the

two references appear, instead of using the references similarity only.

14

2.1.2.2 Distance Methods

 Many methods have been proposed in this category. Examples are [57][58]. Guha[59]

proposed ranked list merging, which is to find the distance between two records according to

one field, and to repeat this step with other fields. The result will be n ranked lists, assuming

that we have n attributes. Next, those records are merged such that the resulting list has the

minimum aggregate rank distance when compared to all n lists. This list can show the top k

matching records. Other methods have been proposed in order to find the distance between

hierarchial data, such as Customer Address. One of the main used distances in this context is

the Tree Edit Distance, as the hierarchial data could be represented as labeled trees.

However, this methods is expensive. Therefore, some distance approximations have been

proposed such as using pqGram Distance[60] which is an efficient approximation for the

tree edit distance, and is sensitive to the place where the two trees differ, as the leave

difference is less important than the higher nodes difference.

 Final issue here is how to determine the cut-off value for the match, and one solution is to

use a training data to conclude this value. However, this will have the disadvantage of using

a training set again, and the aim of using distance based methods is to avoid using data sets.

[61] discussed this issue and argued that the very high degree of similarity means that the

pair is matched. Similarly, the very low degree indicates that it is mismatched. However, the

difficulty and confusion lies in the similarity values located in the middle.

2.1.3 Hybrid Methods

 Some methods are composed of both supervised and unsupervised methods. Such

methods have more accuracy than the unsupervised techniques and more time efficient in

15

many cases. For example, a clustering algorithm could be applied first to classify a small

portion of the record pairs as matched or unmatched, and then this portion serves as a

training set to some classifier that will classify the remaining portion of the record pairs.

[62] proposed an online learning algorithm to combine many basic similarity functions with

weights using average perception weighting. After applying the function and finding the

pairwise similarity matrix among all the rows in the two tables, they compared three

clustering Hierarchical Agglomerative Clustering techniques(HAC): single link HAC, group

average HAC, and complete link HAC, according to their ability to find the matched

records. The results showed that the complete link HAC outperformed the other two

clustering methods.

2.2 Privacy Preserving Similarity Join

 A few researchers have concentrated on performing similarity join under Privacy

Constraints. Examples of such works includes [29], which introduced a protocol to perform

similarity join using phonetic encodings, [30], which proposed a privacy preserving record

matching protocol on both data and schema levels, [31], which concentrated on the e-health

applications and its intrinsic private nature, and [32], which used a Term Frequency – Inverse

Document Frequency (TF.IDF) based comparison function and a secure blocking schema.

Other methods concentrated on using encryption to preserve privacy such as [33][34].

2.3 Similarity Join Using Long Attributes

 Regarding the use of long string attributes in the similarity join process, and up to our

knowledge, no work has been done to study the effect of the long attributes in the similarity

join process, even though they could improve the accuracy significantly. Furthermore, no

16

work has found the best similarity measurement to be used with such attributes during the

similarity join process in order to complement the existing work, which is concentrated on

the short attributes. Such lack of literature work on a promising method was the motivation

to my work in this dissertation.

2.4 Similarity Join Using Dimensionality Reduction Methods

 Regarding the use of dimensionality reduction methods for similarity join, [52] used the

LSI method with short string fields in order to join the values in such fields semantically.

Other than this work, up to our knowledge, no work has included the dimensionality

reduction methods as part of the similarity join methods. It should be noted that our

concentration here is on relational databases. Dimensionality reduction methods have been

used widely in unrelational databases such as document clustering and classification [20].

17

CHAPTER 3

SEMANTIC SIMILARITY JOIN METHOD USING LONG
ATTRIBUTES UNDER SUPERVISED LEARNING

3.1 Introduction

As stated previously, many similarity join measurements have been proposed in the

literature. Although much research has been done in similarity join of short attributes, a

few works have included the use of long attributes to assist the similarity join process and

enhance the performance. Obviously, long string values contain much more information

than short string values. Therefore, it is worthwhile to study the effect of using long

attributes on the similarity join performance. Besides, most databases include attributes of

long string values. However, many proposed similarity join methods use measurements

that are not suitable for such long values. Two main reasons are the cost of using such

measurements with long string values and the deficiency in detecting the semantic

correlations among terms by concentrating only on the syntax representation of the terms.

For example, the complexity of the edit distance measurement depends on the lengths of

the two strings to be compared. Therefore, the longer the strings, the more the similarity

join running time. Besides, edit distance deals with the character representation of the

strings, without considering the semantic relationships between them. It is worthwhile to

find an efficient semantic method for joining long string values and study its effect on the

similarity join performance. Applications of such semantic methods could be in joining

values of long attributes such as paper abstracts, movies summaries, product descriptions,

user comments, and so on.

18

In this chapter, we studied diffusion maps [1], latent semantic indexing [2],

eigenvectors [3], SoftTFIDF with cosine similarity [7], TF.IDF with cosine similarity

[18], and a variant of diffusion maps. Most of these methods have strong theoretical

foundations and have proved their superiority in many applications. Therefore, we

compared their performance as candidate semantic similarity join methods for long

attributes under supervised learning. It should be noted that many short string

measurements were not included in this comparison because of their high running time

cost and low accuracy when applied to long string values. In order to evaluate the

performance, we used two datasets, Pubmed Medical Dataset [27] and IMDB Movies

dataset [17]. The SVM classifier was used with the Pubmed dataset, whereas bagging was

used with the IMDB dataset because it is more commonly used with datasets having a

large number of classes.

Our work in this chapter is divided into two phases. First, finding the best semantic

method for joining values of long attributes. Second, comparing the performance of this

method with the existing, commonly used, short string methods. For phase one, we used

TF.IDF weighting [18] and Chi-square dimensionality reduction method [19] to eliminate

noisy and insignificant words. Later, the diffusion maps method was compared with LSI

and eigenvector–based dimensionality reduction methods to find the best method with the

best number of dimensions. The best method was compared with SoftTFIDF with cosine

similarity, TF.IDF with cosine similarity, and a variant of diffusion maps with the

previously selected best number of dimensions. Both the Abstract attribute from the

Pubmed dataset and the Movie Summary attribute from the IMDB Movies Dataset were

used in this phase. Regarding phase two, after obtaining the best semantic method, we

19

compared its performance on joining values of long attributes with the performance of

SoftTFIDF method on joining values of short attributes, as SoftTFIDF is a superior short

string method [7]. Both the Title and the Keywords attributes from the Pubmed dataset

were used with the SoftTFIDF method, while the Abstract attribute from Pubmed was

used with the best semantic method obtained from phase one. Supervised learning using

an SVM or bagging was used to compare the performance of the previous methods after

each phase.

The contributions of this work are as follows:

• Adopting the use of long attributes to replace or assist the short attributes to increase

the similarity join accuracy under supervised learning.

• Finding an efficient semantic method that can be used for joining values of long

attributes.

• Proposing a scalable solution for large datasets and large dimensionality.

The rest of this chapter is organized as follows. Section 3.2 describes the candidate

semantic methods to be compared. Section 3.3 describes phase one of the work, which

compares the semantic methods for joining long attributes. Section 3.4 illustrates phase

two of the work, which compares the best long string method with SoftTFIDF, which is

one of the top short string methods [7], and Section 3.5 is the summary.

3.2 Semantic Methods for Joining Long Attributes

In the following subsections, we will describe candidate semantic methods for joining

long string values. These methods will be compared later in this chapter.

20

3.2.1 Diffusion Maps

Diffusion maps is a dimensionality reduction method proposed by Lafon [1]. Initially,

a weighted graph is constructed whose nodes are labeled with long string values and

whose edge labels correspond to the similarity between the corresponding node values. A

similarity function called the kernel function, W, is used for this purpose. The first-order

neighborhood structure of the graph is constructed using a Markov matrix P. In order to

find similarities among non-adjacent nodes, forward running in time of a random walk is

used. A Markov chain is computed for this purpose by raising the Markov matrix P to

various integer powers. For instance, according to Pt , the tth power of P, the similarity

between two long string values x and y represents the probability of a random walk from

x to y in t time steps. Finally, SVD() dimensionality reduction function is used to find

the eigenvectors and the corresponding eigenvalues of Pt,t≥1. The approximate pairwise

long string value similarities are computed using the significant eigenvectors only. The

similarity between any two long string values using such a method is called diffusion

maps similarity. The mathematical details of diffusion maps are given below.

 Consider a dataset C of N long string values, represented as vectors. Let x,y be any two

vectors in C, 1≤i,j≤N. A weighted matrix σW (x,y) can be constructed as

σW (x,y) = exp(-
σ

),cos(yxD) , (3.1)

where σ specifies the size of the neighborhoods that defines the local data geometry. As

suggested in [20],

21

Dcos(x,y) = 1−
||||.||||

.
yx

yx
. (3.2)

We can create a new kernel as follows:

α
σW (x,y)=

)()(
),(
yqxq

yxW
α
σ

α
σ

σ , (3.3)

Where α deals with the influence of the density in the infinitesimal

transitions of the diffusion, and

∑
∈

=
Cy

yxWxq),()(σσ . (3.4)

Suppose σd (x)=∑ Cy
yxW

ε
α

σ),(, (3.5)

We can normalize the previous kernel to get an anisotropic transition kernel p(x,y), as

follows:

σ
p (x,y) =

)(
),(

xd
yxW

σ

α
σ . (3.6)

 σ
p (x,y) can be considered a transitional kernel of a Markov chain on C. The diffusion

distance Dt between x and y at time t of the random walk is

Dt
2(x,y) =∑ −

Cz
tt

z
zypzxp

ε φ)(
)),(),((

0

2

, (3.7)

where φ 0 is the stationary distribution of the Markov chain.

22

After using SVD(), the Markov chain eigenvalues and eigenvectors can be obtained.

Therefore, the diffusion distance Dt can be written as:

Dt
2(x,y) = 2

1

2
))()((yx

jjj

t

j
ϕϕλ −∑

≥

. (3.8)

We can reduce the number of dimensions by finding the summation up to a specific

number of dimensions z. Thus, the mapping would be:

))(),...,(),((:
2211

xxxx
zz

ϕλϕλϕλω → . (3.9)

We used the values of σ and α to be 10 and 1 respectively for experiments, as used in

[22]. The detailed diffusion maps based algorithm for joining long string values is

described later in this chapter.

3.2.2 Latent Semantic Indexing (LSI)

LSI [2] uses the Singular Value Decomposition operation to decompose the term long

string value matrix M, that contains terms as rows and long string values as columns, into

three matrices: T, a term by dimension matrix, S a singular value matrix, and D, a long

string value by dimension matrix. The original matrix can be obtained through matrix

multiplication of TSDT. In order to reduce the dimensionality, the three matrices are

truncated to z user selected reduced dimensions. Dimensionality reduction reduces noise

and reveals the latent semantics present in the dataset. When the components are

truncated to z dimensions, a reduced representation matrix, Mz is formed as

23

Mz = TzSzDz
T . (3.10)

3.2.3 EigenVectors

 Here, the eigenvectors and their corresponding eigenvalues are extracted directly from

the term long string value matrix [3]. Originally, each long string value is represented as a

combination of all eigenvectors and their eigenvalues. A reduced number of eigenvectors,

with their corresponding eigenvalues, is selected that captures most of the dataset

information.

3.2.4 SoftTFIDF with Cosine Similarity

 The SoftTFIDF [7] method is a modification of the well known TF.IDF weighting. In

SoftTFIDF method, the pairs that are similar, but not identical, are included in the TF.IDF

equation. According to this method, each string value is treated as a set of terms. The

SoftTFIDF similarity between two string values X and Y is given as follows:

SoftTFIDF(X,Y)= ∑
∈),,(

),(),(),(
YXCLOSEw

YwDYwVXwV
θ

, (3.11)

Whereas V(w,X) represents the TF.IDF weighting of the term w in the string value X,

V(w,Y) represents the TF.IDF weighting of the term w in the string value Y, and

CLOSE(),, YXθ represents all terms w∈ X such that there is some term v∈Y such that

D’(w,v)>θ . D(w,v) denotes Jaro-Winkler distance between the terms w and v.

D(w,Y) = Yv∈max (D(w,v)). For our experiments, we used θ = 0.9 as adopted in [7].

This method is a superior method for joining short string values [7], and therefore, it is

worthwhile to study its performance on long string values.

24

 It should be noted that we used this method twice in our experiments. First, in phase

one, to study its performance as a candidate semantic method for joining long string

values. Second, in phase two, as a superior method for short attributes to compare its

performance on joining short string values with the performance of our semantic method

on joining long string values.

3.2.5 TF.IDF with Cosine Similarity

 TF.IDF with cosine similarity is a well known method that has been used extensively

for document similarity. The TF.IDF weighting of term w appearing in a long string value

x is given as follows:

TF.IDF(w,x)=log(tfw,x+1).log(idfw), (3.12)

where tfw,x is the frequency of the term w in the long string value x, idfw is
wn

N , where N is

the number of long string values in the database C, and nw is the number of long string

values in the database that contains the term w in their corresponding attribute.

As any document is considered a long string value, this method is a candidate semantic

method for long string values. The cosine similarity of two long string value vectors x and

y is given as follows:

Cosine_Similarity(x,y) =
||||.||||

.
yx

yx
. (3.13)

25

3.3 Comparing Semantic Methods

 In order to evaluate the previous methods on long string values, two datasets were

used, the Pubmed Medical Dataset and the IMDB Movies Dataset. Table 3.1 below

describes the use of these datasets in phase1. The following is a brief description of each

dataset.

3.3.1 Pubmed Dataset

 This dataset includes indexed bibliographic medical citations and abstracts. It is

collected by the U.S. National Library of Medicine (NLM). It includes references from

more than 4500 journals. For our experiments in phase1, we used 4000 abstracts from this

dataset. We labeled every abstract to one class out of 23 classes proposed by [21].

PUBMED citations and abstracts could be accessed by PUBMED via

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi or by the NLM Gateway via

http://gateway.nlm.nih.gov/gw/Cmd.

3.3.2 Internet Movies Database

 We collected 999 movie summaries from the IMDB Movies database, which is

available online via http://imdb.com. Every movie has one or more summaries, written by

various users. All summaries that belong to the same movie are considered of the same

class, with an average of three summaries for each class.

 For our experiments, we used an Intel® Xeon® server of 3.16GHz CPU and 2GB

RAM, with Microsoft Windows Server 2003 Operating System. Also, we used Microsoft

Visual Studio 6.0 to read the datasets, Matlab 2008a for the implementations of the

candidate semantic methods, and Weka 3.6.2 for the SVM and Bagging classifiers to get

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi
http://gateway.nlm.nih.gov/gw/Cmd
http://imdb.com/

26

the method’s performance. The semantic similarity join algorithm using long attributes

under supervised learning is described hereafter and given in Algorithm 3.1 below.

Table 3.1: Datasets Description for Phase1

Dataset
Used Number

of Records

Number of

Classes

Pubmed 4000 23

IMDB 999 3000

 For the Abstract attribute in Pubmed Dataset, we removed the stopwords and converted

the text into lowercase. The term long string value frequency matrix was generated. Later,

TF.IDF weighting matrix was computed, as displayed in line 02 of the algorithm. As the

number of features in that matrix was around 12000 features, we used Chi-square

dimensionality reduction method, presented in line 03 of the algorithm, and we selected

2% of the features (230 features) with the highest importance. The selected features were

equally representing the 23 categories. The Movie Summary attribute in the IMDB

dataset was manipulated similarly. The size of M_Reduced after using Chi-square method

is R X D, such as R < T.

 In lines 04 through 08 of the algorithm, we computed the kernel matrix using equation

3.2, given in [20], because it gives the best document clustering performance with k-

means. We expected that such an equation would be efficient with supervised learning

similarity join methods as well. Later, we used the Lafon implementation of diffusion

maps. The function call is represented in line 09 of the algorithm. The resulting matrix Y

represents the reduced diffusion maps matrix, where each long string value is represented

27

as a row with z user selected reduced dimensions. Later, the testing long string value is

processed. The TF.IDF weighting is computed for the same R terms obtained from line

03, when Chi-square method was applied to the training term long string value matrix.

The resulting vector is of R cells, such that r[i] represents the TF.IDF weighting of the ith

term in the testing long string value. The kernel of the testing value g, called g_kernel, is

computed in line 15, and the resulting vector has D dimensions, where D is the number of

training long string values in the input matrix M, such that g_kernel[i] represents the

cosine similarity between Chi-square reduced representation of the testing value and Chi-

square reduced representation of training long string value i. The diffusion maps

representation for the testing value g is calculated in line 17 as adopted in [28]. The

resulting vector would serve as a testing record that will be used with Y as inputs to the

classifier. Finally, the classifier will predict the category for the testing long string value

g, as represented in line 18. If the number of testing long string values is more than one,

lines 12-17 are repeated for every testing long string value. The conversion process for N

testing values is efficient, with complexity O(c.N), such that c is a constant representing

max(number of training long string values, Chi-square reduced number of terms). Both

numbers are constants and user defined, and they are not dependent on the number of

testing long string values.

Regarding LSI, we used the term long string value matrix M as an input to the SVDs()

Matlab built-in function, along with the desired number of reduced dimensions, z. The

resulting Long String Values by reduced dimensions matrix V can be used as a classifier

training matrix. In order to convert testing records, we used the Matlab formulas given in

[28].

28

 For the eigenvectors method, we extracted the eigenvectors from the input term long

string value matrix M using the Eigs() function. The detailed Matlab equations used are

found in [28].

 For SoftTfIDf, we wrote an implementation using C++. The training matrix was the

pairwise SoftTFIDF similarities of the training long string values. The testing matrix was

the SoftTFIDF similarity between the testing long string values and the training long

string values.

After using each of the semantic methods, the SVM classifier is used with 10 fold cross

validation to get the performance under that method space.

 The performance measurements used for this study were classifier F1 rating,

preprocessing time, and running time. Preprocessing time includes dataset preprocessing

time, semantic method time, and classifier training time. Running time indicates classifier

testing time. They are defined as follows:

• Classifier F1 rating is the harmonic mean of the classifier recall and the precision. It is

given as

 F1=
PR

PR
+

**2 , (3.14)

where R represents the recall, which is the ratio of the relevant data among the retrieved

data, and P represents the precision, which is the ratio of the accurate data among the

retrieved data. Their formulas are given as follow:

R =
FPTP

TP
+

, if TP+FN > 0, otherwise undefined. (3.15)

P =
FNTP

TP
+

, if TP+FN > 0, otherwise undefined. (3.16)

29

Algorithm3.1: SIMILARITY JOIN ALGORITHM USING
 LONG ATTRIBUTES UNDER
 SUPERVISED LEARNING
Input: A vector g representing a test long string value.

 A T x D Term Long String Value Matrix M with
class label for each long string value.

Output: The class of the test long string value.

Algorithm:

(01) //process the training dataset

(02) M_weighted = find_TF.IDF _weighting(M)

(03) M_Reduced = Chi(M_Weighted, R) //R < T

(04) For i=1:D

(05) For j=1:D

(06) Dcos(i,j) = 1-Cosine_Similarity(M_Reducedi, M_Reducedj)

(07) End;

(08) End;

(09) [Y,S,V,A] = Diffusion_Maps(Dcos, 10, 1, Z)

(10) //|Y|= D x Z

(11) //process the testing record g

(12) g_reduced=Chi(g) //|g_reduced| = R

(13) g_weighted = find_TF.IDF_Weighting(g_reduced)

(14) For k=1:D

(15) g_kernel(k) = Cosine_Similarity(g_weighted, Dk)

(16) End;

(17) Diff_Representation=g_kernel*Y*S(1:Z,1:Z)

(18) Test_Class = Classifier_Predict(Training=Y, Testing

(19) = Diff_Representation)

30

In order to find these measurements, a two-by-two contingency table is used for each

category. Table 3.2 below represents the contingency table.

 To assess the global performance over all the 23 classes, the macro average F1

measurement was used in our experiments. It is found by averaging the per-class F1

values.

• Dataset preprocessing time represents the time needed to read the dataset and convert it

to a format accepted by the candidate semantic methods.

• Semantic method time represents the time needed to perform the semantic operation on

the dataset.

• Classifier training time represents the time needed by the classifier to build the model

using the output of the semantic method.

• Classifier testing time represents the time to classify the testing long string values.

 First, as some candidate semantic methods were dimensionality reductions methods,

we compared them separately to find the best method. We used the Pubmed dataset to

compare diffusion maps, latent semantic indexing, and eigenvectors on a reduced number

of dimensions varying between 30 and 120 dimensions. Fig. 3.1 depicts the F1 rating of

these three methods. As stated before, 4000 abstracts were used for this purpose.

Table 3.2: The Contingency Table to Describe the Components of the Performance
Measurements

31

 Figure 3.1: F1 Measurement for Diff, LSI, and Eigenvectors.

 Clearly, diffusion maps F1 measurement outperformed the other two methods.

Basically, diffusion maps is able to compute the relationships between attribute values, in

contrast with LSI and the Eigenvectors approaches that merely map attribute values to

terms. As attribute values could have overlapped terms, the ability of LSI and

eigenvectors to distinguish values of different classes is less than that of diffusion maps

[20].

 For the preprocessing time, Table 3.3 represents the dataset preprocessing time for the

three methods, whereas Fig. 3.2 and Fig. 3.3 represent the operation time and training

time for these methods. Regarding the classification running time consumed by the three

methods, Fig. 3.4 represents the results.

Obviously, by increasing the number of dimensions, diffusion maps algorithm tends to

consume more time than that consumed by the remaining two methods. However,

according to Fig. 3.1, the diffusion maps performance tends to be more stable after 60

dimensions. Even though both operation time and training time for diffusion maps on 60

dimensions is the largest among the three methods, these are one time only steps. For

classification time, the time required by diffusion maps with 60 dimensions is similar

32

to that needed by LSI and Eigenvectors.

Table 3.3: Preprocessing Time of the Three Candidate Semantic Methods on Pubmed Dataset

Method Time (Sec.)

Diffusion Maps 447

Latent Semantic Indexing 403

Eigenvectors 403

Figure 3.2: Operation Time for Diff, LSI, and Eigenvectors.

 Figure 3.3: Training Time for Diff, LSI, and Eigenvectors.

 Therefore, diffusion maps with 60 dimensions seems to represent the best trade-off

between time and accuracy.

33

 Later, we compared diffusion maps with 60 dimensions with three additional similarity

methods. We used TF.IDF with cosine similarity, SoftTFIDF with cosine similarity, and a

modification of diffusion maps, where the pairwise cosine similarity is applied to the

diffusion maps reduced representations of the long string values in both the training

dataset and the testing long string value. Other short string methods, such as edit distance

and Jaccard similarity, were not used in this context because of their high cost and low

accuracy with long string values. Fig. 3.5 and Fig. 3.6 represent the results. Fig. 3.5

depicts the F1 measurement for the classifier. In all the experiments on Pubmed dataset,

an SVM classifier was used. Fig. 3.6 represents the classification time and the

preprocessing time, which includes the data preprocessing, operation, and training steps.

Such steps are done once only. The term cosine similarity in both figures refers to

TF.IDF with cosine similarity.

 According to these two figures, diffusion maps with 60 dimensions showed the best

classification time, a comparable preprocessing time, with a small loss in the F1

measurement as compared to the remaining methods.

Experiments on the IMDB dataset showed similar trends. Diffusion maps with 120

dimensions were selected. Due to the huge number of classes used in the IMDB dataset, a

bagging classifier, which is more frequently used with such cases, is used. Out of

memory error occurred with the TF.IDF with cosine similarity method. Diffusion maps

with 120 dimensions showed the best classification time and a comparable preprocessing

time and F1 measurement. Fig. 3.7 and Fig. 3.8 represent the IMDB comparison results.

34

Figure 3.4: Classification Running Time for Diff, LSI, and Eigenvectors.

Figure 3.5: F1 Measurement for four candidate semantic methods for Pubmed dataset.

Figure 3.6: Preprocessing and Classification Time for four candidate semantic methods
for Pubmed dataset.

35

Figure 3.7: F1 Measurement for three candidate semantic methods for IMDB Dataset.
Out of Memory error occurred with the TF.IDF method.

Figure 3.8: Preprocessing and Classification Time for three candidate semantic methods
for IMDB Dataset. Out of Memory error occurred with the TF.IDF method.

 According to the previous experiments, both Diffusion Maps and SoftTFIDF showed

the best overall performance among the candidate semantic methods under study. In order

to find the best method, more experiments were conducted with larger dataset of 10000

Abstracts from Pubmed. We got Out of Memory error when using SoftTFIDF with 10000

36

Abstracts, while we got results when applying diffusion maps with the same number of

Abstracts. This showed that Diffusion Maps is the best candidate method for semantically

joining attributes containing huge number of long string values.

 3.4 Long string Vs Short string Evaluation

 In this phase, we compared Diffusion Maps Method on the Abstract Field with the

SoftTFIDF short string method with the Title and Keywords attributes. We used 10000

records in our evaluation from the Pubmed dataset. Table 3.4 represents the comparison

results. Obviously, using diffusion maps method with the Abstract attribute outperformed

the use of SoftTFIDF method on the Title and Keywords attributes, isolated or combined.

This is reasonable because the information provided by the Abstract attribute is much

more than that in both the Title and Keywords attributes. It is expected that the

preprocessing time for the Abstract attribute will be longer than for the Title and the

Keywords attributes, but this will be done once only. Regarding the running time,

diffusion maps was the fastest due to the reduced representations for long string values.

Besides, the use of a classifier provides a solution to frequently changing databases, and a

sufficient number of training values is all what is needed.

 Furthermore, our algorithm is able to deal with a huge number of records and large

dimensionality. The number of dimensions for every testing record is the number of

selected features using Chi-square when applied on the training long string values. This

number will be reduced more using the diffusion maps operation. Accordingly, this

algorithm will suffer less from the curse of dimensionality issue.

37

Table 3.4: Performance of Long and Short String Methods

3.5 Summary

In this chapter, we compared multiple semantic methods to find the best similarity

measurement for long string values under supervised learning. The diffusion maps

method showed a superior accuracy and a comparable overall preprocessing and running

time. Furthermore, we also proposed a semantic similarity join method using long

attributes under supervised learning, and we compared the performance of this method

for joining long string values with the performance of other existing short string methods

for joining short string values, and the results showed a significant difference in favor of

our proposed method.

38

CHAPTER 4

A PRIVACY PRESERVING SEMANTIC SIMILARITY
JOIN USING LONG ATTRIBUTES UNDER

SIMILARITY THRESHOLDS

4.1 Introduction

 In some cases, one or more sources may refuse partially or totally to share its whole data

with other sources during the similarity join process, and only a few researchers have

concentrated on performing similarity join under privacy constraints.

 Examples of such works includes [29], which introduced a protocol to perform similarity

join using phonetic encodings, [30], which proposed a privacy preserving record matching

protocol on both data and schema levels, [31], which concentrated on the e-health

applications and its intrinsic private nature, and [32], which used a Term Frequency – Inverse

Document Frequency (TF.IDF) based comparison function and a secure blocking schema.

Other methods concentrated on using encryption to preserve privacy such as [33][34].

 To our knowledge, the existing protocols were proposed to perform similarity join under

privacy constraints when the join attribute is a short attribute.

Again, long string values contain much more information than short string values, and we

showed chapter 3 that using long string values can improve the similarity join semantic

accuracy under supervised learning[35]. Adding to that, most databases include attributes of

long string values. However, the previously stated protocols use measurements that are not

suitable for such long values. Moreover, our previous work concentrated on using machine

learning methods, and such methods are not always applicable. Here, we use similarity

39

thresholds to decide matched records, which are much simpler and of comparable efficiency

if used carefully. Finally, the previous methods concentrated on the syntax representations of

the string values without considering the underlying semantics. It is worthwhile to find an

efficient semantic protocol for joining long string values under privacy constraints when

similarity thresholds are used.

 As part of our solution, we compare diffusion maps [1], latent semantic indexing [2], and

locality preserving projection [36]. These methods have strong theoretical foundations and

have proved their superiority in many applications. Therefore, we compare their performance

as candidate semantic similarity join methods for joining long attributes using similarity

thresholds. It should be noted that the existing protocols are not included in this comparison

because of their high running time cost and low accuracy when applied to long string values.

For example, [29][32][33][34] used methods that do not consider the semantic similarities

among the string values. While [30] introduced the use of embedded vectors for mapping,

their embedding method was applicable to short string attributes. In order to evaluate the

performance of our suggested methods, we use two datasets, Amazon Products dataset [37]

and IMDB Movies dataset [17]. We use various similarity threshold values to define the

matched records and evaluate the protocol.

The contributions of this work are as follows:

• Proposing an efficient privacy preserving protocol to perform similarity join when the join

attribute is a long attribute under privacy constraints, which can improve the privacy

preserving similarity join accuracy.

• Finding an existing method that can be used efficiently for joining values of long attributes

under privacy constraints when similarity thresholds are used.

40

• Considering the semantic similarities among the string values during the privacy

preserving similarity join process.

• Our protocol can assist the existing protocols, which are used mainly with short attributes,

to improve the overall privacy preserving similarity join performance.

The rest of this chapter is organized as follows. Section 4.2 describes the candidate semantic

methods to be compared with respect to joining long string values when similarity thresholds

are used. Section 4.3 describes our privacy preserving protocol for semantic similarity join.

Section 4.4 represents the experimental part where we compare the previous candidate

semantic methods and study the performance of our protocol upon using the best performing

methods from the previous comparison. Section 4.5 is the summary.

4.2 Semantic Methods for Joining Long Attributes Under Similarity Thresholds

 In the following subsections, we describe the candidate semantic methods for joining long

string values when similarity thresholds are used. Some methods were already described in

section 2 of chapter 3.

4.2.1 Diffusion Maps

 Diffusion maps is a dimensionality reduction method proposed by Lafon [1]. It was

previously described in chapter 3. Initially, a weighted graph is constructed whose nodes are

labeled with long string values and whose edge labels correspond to the similarity between

the corresponding node values. A similarity function called the kernel function, W, is used for

this purpose. The first-order neighborhood structure of the graph is constructed using a

Markov matrix P. In order to find similarities among non-adjacent nodes, forward running in

time of a random walk is used. A Markov chain is computed for this purpose by raising the

41

Markov matrix P to various integer powers. For instance, according to Pt, the tth power of P,

the similarity between two long string values x and y represents the probability of a random

walk from x to y in t time steps. Finally, Single Value Decomposition (SVD) dimensionality

reduction function is used to find the eigenvectors and the corresponding eigenvalues of Pt,t≥1.

The approximate pairwise long string value similarities are computed using the significant

eigenvectors only. The similarity between any two long string values using such a method is

called diffusion maps similarity. The mathematical details of diffusion maps are already given

in section 3.2. For more information, refer to [1].

4.2.2 Latent Semantic Indexing (LSI)

 As previously described in chapter 3, LSI [2] uses the Singular Value Decomposition

operation to decompose the term by long string value matrix M, which contains terms

(words) as rows and long string values as columns, into three matrices: T, a term by

dimension matrix, S, a singular value matrix, and D, a long string value by dimension matrix.

The original matrix can be obtained through matrix multiplication of TSDT. In order to reduce

the dimensionality, the three matrices are truncated to z user selected reduced dimensions.

Dimensionality reduction reduces noise and reveals the latent semantics in the dataset. When

the components are truncated to z dimensions, a reduced representation matrix, Mz is formed

according to equation 3.10. Refer to [2] for a detailed explanation of this method.

4.2.3 Locality Preserving Projection

 Locality preserving projection [36] is described briefly as follows. Given a set of long

string values represented in the vector space x1, x2, x3, …, xn in Rm, where m represents the

terms. This method finds a transformation matrix A that maps these long values into y1, y2,

42

y3, …, yn in a new reduced space Rl, l<m, such that yi = AT xi. This method is particularly

applicable when x1, x2, x3, …, xn ∈O, where O is a nonlinear manifold embedded in Rm.

Refer to [36] for a detailed explanation of this method.

4.3 Privacy Preserving Protocol for Semantic Similarity Join Using Long Attributes
Under Similarity Thresholds

 In this section, our proposed protocol is described. As stated before, this protocol is

efficient in joining tables using their long string attributes. Up to our knowledge, no protocols

were proposed to be used with such long attributes, and as proved in [35], using such

attributes provides a better semantic join accuracy than using short attributes.

In the algorithm, we have two parties A and B, each of which has a relation, Ra and Rb

respectively. First, the two parties share the similarity threshold value T that will be used later

to decide similar pairs. Next, each party generates the term by long string value matrix from

its long attribute, such that each row represents a term (word) and each column represents a

long string value. The result is Ma and Mb for A and B respectively. For example, if A

contains 1000 paper abstract values in its Paper Abstract attribute, each row in Ma represents

a term, and each column represents an abstract. Later, the TF.IDF weighting is applied to

both matrices. TF.IDF weighting is commonly used in information retrieval. TF.IDF

weighting of a term w in a long string value x is given in equation 3.12.

Upon applying TF.IDF, both WeightedMa and WeightedMb are generated. Every row in this

matrix represents a term, every column represents a long string value, and every entry

represents the weight of the term in that long string value.

In the next step, both parties share the MeanTF.IDF threshold value [38] to be used and apply

the MeanTF.IDF unsupervised feature selection method to both WeightedMa and

43

WeightedMb. This method assigns a numerical value for each term in both WeightedMa and

WeightedMb. The value of a term w is calculated as follows:

Val(w) =
N

xwIDFTF
N

x
∑

=1
),(.

, (4.1)

where TF.IDF(w,x) is the TF.IDF weight of the term w in the long string value x, and N

represents the number of long string values in the relation. The value of each term represents

its importance. The terms with the highest values are the most important terms. It should be

noted that terms and features are used alternatively in this context and have the same

meaning.

 The features from A with the highest values are concatenated with randomly generated

features by A and are sent to a third party, C. B does the same. Later, C finds the intersection

and returns those shared features, SF, that exist in both parties. Both parties remove their

randomly generated features from SF and generate new matrices, SFa and SFb, where each

row represents an important term from SF, each column represents a long string value, and

each entry represents the TF.IDF weighting. Later, every party adds random records to its

corresponding matrix to hide its origional data. It should be noted that in this step, every

record, including the randomly generated ones, is assigned a random index number. The

generated matrices, Rand_Weighted_a and Rand_Weighted_b are sorted according to their

index number to guarantee that the randomly generated records are randomly distributed in

both matrices. Next, both matrices are sent to C. C performs the semantic operation on both

matrices to produce Red_Rand_Weighted_a and Red_Rand_Weighted_b.These matrices have

the concept terms as rows and the long string values as columns. In the experiments section

of the paper, we will compare different candidate semantic methods when various thresholds

44

are used, and the best method will be used here. Also, we will study the effect of adding

random records on the semantic operation performance in the experimental part. The protocol

continues by finding the cosine similarities for all the pairs (x,y), x∈ Red_Rand_Weighted_a

and y∈ Red_Rand_Weighted_b, and if the cosine similarity is greater than a threshold T, the

pair of the two vectors is considered a match and inserted into Matched. Matched is returned

to both A and B to delete the pairs that include randomly generated records. Finally, both

parties can share their Matched list after deleting the random records.

 One issue with the protocol is having a randomly generated feature in the returned SF. This

could occur when the two parties generate randomly the same feature or when one party

generates a random feature that matches an important feature in the other party. In order to

calculate the probability of such scenarios, we assume that the randomly generated strings

have length up to k characters. For a specific length s, the number of generated strings is s26

for English alphabet. Therefore, the probability of generating a string that matches with an

existing feature is

P =
)26(

1

1

j

j

k

∑
=

, (4.2)

and the probability of generating the same random feature by both parties is P2 .

 For example, if we generate lengths up to 5 characters, the probability of the first scenario

will be around 10-19 and the probability of the second one is 10-38, which are very unlikely.

Furthermore, these cases will not affect the running of the algorithm, but will make SFa and

SFb different in the number of rows (features). However, adding a few features to one matrix

will not affect significantly the results because we use the main eigenvectors and eigenvalues

in the semantic methods.

45

4.4 Experiments

 In order to evaluate the previous methods on long string values, two datasets were used,

Amazon Products Dataset and the IMDB Movies Dataset. Table 4.1 below describes the use

of these datasets in the experimental part. The following is a brief description of each dataset.

4.4.1 Amazon Products

 We collected 700 records from Amazon website via http://amazon.com. In this work, we

are interested in the product descriptions, which provide detailed information about the

products. The product descriptions were divided into categories, such as computers,

perfumes, cars, and so on. All product descriptions that belong to the same category are

considered similar. The total number of categories in the collected dataset is 13 categories.

The categories of the collected descriptions were of various complexities.

4.4.2 Internet Movies Database (IMDB)

 We used 1000 records from the IMDB Movies database. For more details, please refer to

section 3.3.2.

 For our experiments, we used an Intel® Xeon® server with 3.16GHz CPU and 2GB

RAM, with Microsoft Windows Server 2003 Operating System. Also, we used Microsoft

Visual Studio 6.0 to read the datasets, Matlab 2008a for the implementations of the candidate

semantic methods. For diffusion maps, we used Lafon implementation[1]. Regarding LSI, we

used the Matlab svds() operation, and for locality preserving projection, we used

implementation provided in [39].

http://amazon.com/

46

Algorithm 4.1: SECURE PROTOCOL FOR SEMANTIC
SIMILARITY JOIN USING LONG
ATTRIBUTES UNDER SIMILARITY
THRESHOLDS

Input: Two parties A and B, each has a long attribute X.

Output: Set of matched records sent to both A and B.

Algorithm:
(1) Both A and B share the similarity threshold T to decide
 matched pairs.

(2) A and B generate their term by long string value
 matrices Ma and Mb from Ra.X and Rb.X.

(3) TF.IDF weighting is calculated from Ma and Mb to
 generate WeightedMa and WeightedMb.

(4) Both A and B share the MeanTF.IDF threshold value
 to perform MeanTF.IDF unsupervised feature
 selection.

(5) Both A and B return their selected features along with
 some randomly generated features to a third party C.

(6) C finds the shared features in both parties, SF, and
 returns them to both A and B.

(7) A and B generate reduced weighted matrices SFa and
 SFb from WeightedMa and WeightedMb using SF
 after removing the randomly generated features.

(8) A generates random records, each of which has SF

entries and add them randomly to SFa. B does
similarily.

(9) Every origional and random record in both SFa and
 SFb is assigned a random index number, and both
 parties keep track of the index numbers that belong to
 the randomly generated records.

(10) Both SFa and SFb are sorted according to the index
 number to generate Rand_Weighted_a and
 Rand_Weighted_b, which are sent later to C.

(11) C performs the semantic operation to generate
 Red_Rand_Weighted_a and
 Red_Rand_Weighted_b.

(12) C finds the pairwise cosine similarities among the
 generated two matrices.

(13) If the cosine similarity for a pair is greater than the
 predefined threshold T, this pair is inserted into
 Matched.

(14) C returns Matched to both A and B.

(15) Both A and B delete from Matched the randomly
 generated records.

47

Table 4.1: Datasets Description

Dataset
Used Number of

Records

Number of

Categories

Amazon Products 700 13

IMDB 1000 10

 In order to evaluate the performance, we used F1 measurement, preprocessing time,

operation time, and matching time. Please refer to section 3.3 for more details regarding F1

measurement.

• Preprocessing time is the time needed to read the dataset and generate matrices that could

be used later as an input to the semantic operation.

• Operation time is the time needed to apply the semantic method.

• Matching time is the time required by the third party, C, to find the cosine similarity

among the records provided by both A and B in the reduced space and compare the

similarities with the predefined similarity threshold.

 In phase one, we want to find the best semantic candidate method to be used with long

string values when similarity thresholds are used. We compared diffusion maps, latent

semantic indexing, and locality preserving projection. As every method is a dimensionality

reduction method, we used the optimal number of dimensions for each method that

maximizes the F1 measurement. Fig. 4.1 shows an example of selecting the optimal number

of dimensions for diffusion maps experimentally. In that Figure, we found the F1

measurement for various numbers of dimensions ranging from 5 to 25. We used a fixed

similarity threshold value in this case. Obviously, the maximum F1 measurement was

48

obtained using ten dimensions. The optimal number of dimensions for the remaining methods

was calculated similarly. The best number of dimensions for LSI was eight, while it was five

for LPP. Fig. 4.2 depicts the comparison of the three methods using various similarity

thresholds on IMDB dataset. According to the Figure, both LSI and Diffusion Maps worked

efficiently, with advantage given to LSI. The maximum F1 measurement for LSI was 0.81,

with threshold 0.7, while the maximum F1 measurement for Diffusion Maps was 0.71, with

threshold 0.5. Locality Preserving Projection showed the worse performance due to its linear

nature.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

5 10 15

Number of Dimensions

F 1
 M

ea
su

re
m

en
t

LSI

Diff_Maps

LPP

Figure 4.1: Finding best number of dimensions for diffusion maps, LSI, and LPP
experimentally. IMDB dataset was used. The best numbers of dimensions were ten, eight,

and five dimensions respectively, which resulted in the highest F1 Measurements.

 For Amazon Products dataset, Fig. 4.3 displays the results. Clearly, diffusion maps and

LSI outperformed LPP. The performance of LSI dropped significantly in this dataset in

comparison with diffusion maps. We concluded from phase one that both diffusion maps and

49

LSI showed efficient performance in joining long string values with advantage given to

diffusion maps due to its stable performance.

Figure 4.2: Comparing LSI, diffusion maps, and locality preserving projection to find the best
semantic method for long attributes. IMDB dataset was used. Both LSI and diffusion maps

showed the best performance.

Figure 4.3: Comparing LSI, diffusion maps, and locality preserving projection to find the
best semantic method for long attributes. Amazon Products dataset was used. Diffusion

maps showed the best performance.

 In phase two of the experimental part, we used diffusion maps and LSI, as they showed the

best performance in phase one. We used them separately with our protocol and studied the

protocol performance. We used both datasets in this phase. The evaluation measurements

used here are preprocessing time, operation time, and matching time. It should be noted that

50

the F1 measurement for both methods was studied in phase one, where both methods showed

efficient performance with advantage given to diffusion maps.

 Regarding the preprocessing time, it took 12 seconds to read 1000 records from IMDB,

while it took one second to find TF.IDF weighting, and 0.5 second to apply MeanTF.IDF.

Time to find shared features by A and B was negligible (approximately zero). For Amazon

Products dataset, similar trends were found.

 For operation time, Fig. 4.4 represents the results for LSI and diffusion maps with various

dimensions in both IMDB and Amazon Products datasets. Obviously, the time needed to

perform LSI is less than that in Diffusion Maps. The difference increases with the increase in

the number of dimensions. For Amazon Products dataset, similar trends were found.

 It is worthwhile to mention that this operation is done once only, and therefore, does not

highly affect the protocol performance. Also, it is not necessary to have large number of

dimensions for diffusion maps to get the optimal performance. The optimal number of

dimensions for diffusion maps in IMDB dataset was ten, while it was five for Amazon

Products dataset.

 Regarding the matching time, and due to the small number of dimensions used to represent

each long string value, this time was negligible, even with the Cartesian product comparison

of 5000 records. For Amazon Products dataset, similar trends were found.

 Moreover, we studied the effect of adding random records, as stated in steps 8-10 in the

algorithm, on the performance of the semantic operation, which is done in step 11. We added

various portions of random records that are dataset size dependant, and we found their effect

on both the F1 measurement and the number of suggested matches. Regarding F1

measurement, the performance increased slightly when small portion of the random records

51

were added, then it started to decrease. This is due to the mechanism of the semantic

operation itself. In diffusion maps, the important eigenvalues and eigenvectors are extracted

from the dataset. The more random records are inserted, the more their effect on the real

eigenvectors and eigenvalues. At some point, the algorithm will extract eigenvector(s) and

eigenvalue(s) that represent the random records, which will decrease the accuracy

significantly. Fig. 4.5 depicts this step. Regarding the number of suggested matches, trivially,

increasing the number of records by adding random records will increase the number of

candidate pairs, which in turn will increase the suggested matches. Adding random records

will increase the number of candidate pairs to be compared, which will increase the number

of suggested matches. Adding more random records will consume more time and place more

overhead. Fig. 4.6 illustrates this step. Overall, we conclude that adding random records

which compose 10% of the whole data size will hide the real data, without much effect on

both the semantic operation accuracy and running overhead.

0

2

4

6

8

10

12

14

16

5 10 15 20
Number of Dimensions

Ti
m

e
(S

ec
.)

Diffusion_Maps Amazon

LSI Amazon
Diffusion Maps IMDB

LSI IMDB

Figure 4.4: Operation Time for Diffusion Maps and LSI with various number of
dimensions. Both IMDB dataset and Amazon Products dataset were used. Operation time

for LSI was less than that in diffusion maps.

52

0.3
0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75

0% 10% 20% 30%

Add Random Records

F1
 M

ea
su

re
m

en
t

IMDB

Amazon_Products

Figure 4.5: The effect of adding random records on the F1 measurment upon using diffusion
maps. F1 measurement decreased rapily when the inserted random records size exceedes

10% of the dataset size.

0

50000

100000

150000

200000

250000

300000

0% 10% 20% 30%
Added Random Records

N
um

be
r o

f M
at

ch
es

IMDB

Amazon_Product

Figure 4.6: The effect of adding random records on the number of suggested matches upon
using diffusion maps. Adding more reocrds inroduced more overhead by increasing the

number of suggested matched records.

4.5 Summary

 In this chapter, we proposed an efficient privacy preserving similarity join protocol for

long string join attributes under similarity thresholds. We showed that diffusion maps

method provides the best performance, when compared with other semantic similarity

methods for long strings under similarity thresholds. Both mapping into the diffusion map

53

space and adding a small portion of randomly generated records can hide the original data

without affecting accuracy.

54

CHAPTER 5

 PRIVACY PRESERVING SIMILARITY JOIN METHOD
USING LONG ATTRIBUTES UNDER SUPERVISED

LEARNING

5.1 Introduction

 In our previous work in chapter 4[83], we proposed a privacy preserving protocol for

similarity join under similarity thresholds, while in chapter 3[35], we proposed using long

string attributes as join attributes to improve the semantic similarity join performance using

supervised learning, when a training set exists. However, we did not consider the privacy

issue under supervised learning. As shown in chapter 3, using supervised learning, if

applicable, would improve the similarity join performance significantly. However, if privacy

constraints exist, and up to our knowledge, no work has proposed including the supervised

learning in the privacy preserving protocol. It is worthwhile to propose a privacy preserving

similarity join protocol under supervised learning to benefit from the accuracy improvement

when privacy constraints exist. In order to evaluate this protocol, Pubmed dataset [27] was

used. The contribution of this work is as follows.

• Proposing an efficient privacy preserving similarity join protocol under supervised

learning and improving the its performance using both a training set and long

attributes.

• Comparing the effect of using multi-label supervised learning against single-label

supervised learning on the proposed protocol.

55

 The rest of this chapter is organized as follows. Section 5.2 briefly describes Pubmed

Dataset. Section 5.3 explains our privacy preserving similarity join protocol under supervised

learning. Section 5.4 studies the effect of using multi-label supervised learning on the

protocol performance, and section 5.5 is the summary.

5.2 Pubmed Dataset

 This dataset includes indexed bibliographic medical citations and abstracts. It is collected

by the U.S. National Library of Medicine (NLM). It includes references from more than

4500 journals. The total number of categories is 23 classes proposed by [27]. Appendix A

lists a description of the 23 classes. In our experiments, we used subsets of various numbers

of records and numbers of categories. For more information, please refer to section 3.3.1.

It should be noted that dividing the dataset into parts to simulate the data of different

sources would not make any difference from using the single undivided dataset, and this is

because of the diffusion maps kernel, which requires grouping the records from all sources

to find the pairwise distance among them. This would produce the same result as using a

single undivided dataset. Besides, in the supervised learning context, there is no need to

divide the data later because it will serve as a single training set for the testing records from

all the sources.

5.3 Privacy Preserving Semantic Similarity Join Protocol Using Long Attributes Under
Supervised Learning

 From our previous work in chapter 3[35], it is clear that Diffusion Maps is one of the best

methods to be used with long attributes using supervised learning methods. However, we

need to modify the method to provide more privacy. Initially, such a method provides a level

56

of privacy by mapping the data into the diffusion maps space. In order to increase the

privacy level, random records are to be added by every source before the sharing process in

order to hide the original data. However, using pure random records could be inefficient as it

is easy to detect. Our faked record should be as close to an original looking record as

possible, in order to make it harder to be detected. Moreover, having pure random records in

the training set and assigning them to random labels would affect the classifier learning

model and decrease the classification F1 measurement when a testing set is used. Therefore,

the added records need to be carefully selected to provide a privacy level and to protect the

classification accuracy from being decreased. Our selection method is described next.

In order to generate each random record in some source, the source needs to pick a record

from its original records randomly and change each value randomly. Epsilon is used as an

upper limit to the change in each value. The equation to generate a random record vector of

n values from an existing record is the following.

Random_Vector(i) = Existing_Vector(i) +/- Epsilon, (5.1)

where i=1: n, Epsilon is a user defined value representing the maximum value change, the

sign is selected to be positive or negative randomly, and Existing_Vector is the randomly

selected original record. It should be noted that a different existing original record is selected

as a seed for each new Random_Vector.

57

Figure 5.1: Comparing selective random records with random records. Clearly, using
selective random records achieved more F1 measurement.

Figure 5.2: The Privacy Layers of our Supervised Protocol.

 In order to study the effect of adding selective random records instead of pure random

records, we used both methods with various noise portions ranging from 10% to 50% added

to the training set, and we used the SVM classifier later to classify a testing set using that

training set. As displayed in Fig. 5.1, using selective random records preserved the classifier

accuracy, in contrast with the pure random records, which decreased the classification

accuracy significantly. Therefore, we adopted the use of selective random records in the

following experiments.

0.3

0.35

0.4

0.45

0.5

0.55

10% 30% 50%

Added Random Records

F 1
Me

as
ur

em
en

t

Selective Random
Records

Random Records

58

Regarding the effect of adding selective random records instead of pure random records on

privacy, and as explained before, using such selective random records would make it harder

to be detected and distinguished from the original records, and this improves the level of

privacy accordingly. Fig. 5.2 depicts the privacy layers of our privacy preserving supervised

protocol. In the top layer, mapping into diffusion maps space provides the first level of

privacy. Next, adding random records to the original records from each source would

provide other level of privacy by hiding the entities of the original records. Finally,

processing the random records to make them selective random records using the epsilon

value provides the third level of privacy. It should be noted that our privacy preserving

unsupervised protocol contains the top two layers only because it uses pure random records.

Using selective random records in our privacy preserving unsupervised protocol would

improve its privacy, and studying the effect of selective random records on that protocol is

left to the future work. The Privacy preserving Similarity Join Protocol for Long Attributes

Using Supervised Learning is given in Protocol 5.1 and is explained as follows.

We have two sources A and B, each of which has a relation, Ra and Rb respectively. First,

each source generates the term by long string value matrix from its long attribute X, such that

each row represents a term (word), each column represents a long string value, and each cell

value, which is the intersection of row i and column j, represents the frequency of term i in

the long string value j. The result is Ma and Mb for A and B respectively. For example, if A

contains 1000 Disease Descriptions in its Disease Description attribute X, each row in Ma

represents a term, each column represents a disease, and each cell value represents the

frequency of the term in the disease description. Later, the TF.IDF weighting is applied to

both matrices. TF.IDF weighting was already described in Equation 3.12.

59

 Upon applying TF.IDF, both WeightedMa and WeightedMb are generated. As in protocol

4.1, every row in this matrix represents a term, every column represents a long string value,

and every entry represents the weight of the term in that long string value.

 In the next step, both sources share the Chi-square threshold value [19] to be used and

apply this supervised feature selection method to both WeightedMa and WeightedMb, as used

in our previous work [35]. This method assigns a numerical value for each term in both

WeightedMa and WeightedMb. The value of a term w is calculated as follows:

Val(w) =
))()()((

))((

__

2

ntptntptntntptpt

ntptntptntptntpt

nnnnnnnn
nnnnnnnn
++++

−+++

−++−++

+−−+−−++ , (5.2)

Where npt+ and nnt+ are the number of documents in the positive category and the negative

category respectively in which term w appears at least once. The positive and negative

categories are used to find the accuracy measurements per class when multiple classes are

used such that the positive category indicates a class and the negative category indicates the

remaining classes. npt- and nnt- are the number of documents in the positive category and the

negative category respectively in which the term w doesn’t occur. The value of each term

represents its importance. The terms with the highest values are the most important terms.

 The features from A with the highest values are concatenated with randomly generated

features by A and are sent to a third source, C. B does the same. Later, C finds the intersection

and returns those shared features, SF, that exist in both sources. Both sources remove their

randomly generated features from SF and generate new matrices, SFa and SFb, where each

row represents an important term from SF, each column represents a long string value, and

each entry represents the TF.IDF weighting. Later, every source adds selective random

records to its corresponding matrix to hide its original data. The records are generated using

60

Equation 5.1 as described previously. Again, every record, including the randomly generated

ones, is assigned a random index number. The generated matrices, Rand_Weighted_a and

Rand_Weighted_b are sorted according to their index number to guarantee that the randomly

generated records are randomly distributed in both matrices. Next, both matrices are sent to

C. C performs the semantic method, which is the Diffusion Maps as suggested in chapter 3

[35] for joining long string values using supervised learning. Applying the semantic method

on both A and B produces Red_Rand_Weighted_a and Red_Rand_Weighted_b. These

matrices have the concept terms as rows and the long string values as columns. In our

experiments, we used Diffusion Maps based semantic join as described in our previous work.

Later in this section, we will conduct more experiments to study the effect of adding selective

random records and changing epsilon value on the semantic operation performance. The

protocol continues by training a classifier using all the pairs (x,y), x∈ Red_Rand_Weighted_a

and y∈ Red_Rand_Weighted_b. Again, one major difference between this protocol and

Protocol 4.1 is that every long string value in the attribute X in Protocol 5.1 has a label that

refers to its category, in contrast with Protocol 1 that manipulates unlabeled long string

values. Upon training the classifier, A sends its testing records, along with some random

records, to C for classification. C classifies the records and returns their predictions. B sends

its testing records similarly. After excluding the random records, both A and B shares the

labels of their original records, and the original records belonging to the intersected labels are

shared between the two sources.

 In this work, we used the Pubmed medical dataset to evaluate the protocol performance.

Besides, we used an Intel® Xeon® server of 3.16GHz CPU and 2GB RAM, with Microsoft

Windows Server 2003 Operating System. Also, we used Microsoft Visual Studio 6.0 to read

61

the datasets, Matlab 2008a for the implementation of the Diffusion Maps, and Weka 3.6.2

for the SVM classifier to get the method’s performance.

In order to evaluate the performance of Diffusion Maps as a semantic method for joining

sources using their long attributes under privacy constraints, we used the same performance

measurements used in chapter 3.3[35], which are F1 measurement, operation time, classifier

training time, and classifier testing time.

Initially, we labeled a subset of 816 records manually, and used them as a small labeled

dataset, which includes 17 disease classes. Besides, every record was allowed to have single

label only. In order to find the best diffusion maps reduced number of dimensions, we used

various dimensions and we calculated the corresponding F1 measurement. No noise was

added in this phase, as this was done in the single source level, where no privacy was

needed. We used Weka SVM Classifier and 10-Fold Cross Validation in order to get the F1

measurement. The optimal number of dimensions in our experiments was eighty, as the F1

measurement tends to be stable after this value. Fig. 5.3 depicts the results.

Diffusion Maps Classification for Noise 0

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

20 50 80 110 140

Num. of Dimensions

F 1 M
ea

su
re

m
en

t

Diffusion Maps

Figure 5.3: Selecting the optimal number of diffusion maps reduced dimensions. SVM
with 10-Fold cross validation was used on a subset of Pubmed containing 816 records.
Eighty dimensions were selected as the performance becomes stable after that number.

62

Protocol 5.1:SECURE SUPERVISED PROTOCOL FOR
SEMANTIC SIMILARITY JOIN USING LONG
ATTRIBUTES

Input: Two sources A and B, each has a long
 attribute X.

 A small training set TR that has labeled long
 string values.

Output: A Set of matched records sent to both A and
 B.

Protocol:
(1) A and B generate their term by long string value

matrices Ma and Mb from TRa and TRb.

(2) TF.IDF weighting is calculated from Ma and Mb to
 generate WeightedMa and WeightedMb.

(3) Both A and B share the Chi-square supervised feature

selection threshold, and each source performs Chi-square

on its own terms.

(4) Both A and B return their selected features along with

some randomly generated features to a third source C.

(5) C finds the shared features in both sources, SF, and
 returns them to both A and B.
(6) A and B generate reduced weighted matrices SFa
 and SFb from WeightedMa and WeightedMb using
 SF after removing the randomly generated features.

(7) A generates selective random records, each of which has

SF entries using Equation 5.1 and adds them randomly to
SFa. B does similarily.

(8) Every original and random record in both SFa and
 SFb Is assigned a random index number, and both
 sources keep track of the index numbers that belong
 to the selective random generated records.

(9) Both SFa and SFb are sorted according to the index
 number to generate Rand_Weighted_a and
 Rand_Weighted_b, which are sent later to C.

 (10) C performs the semantic operation to generate
 of Red_Rand_Weighted_a and Red_Rand_Weighted_b.

(11) C trains a classifier on the training set which is composed
 of Red_Rand_Weighted_a and Red_Rand_Weighted_b.

(12) Both A and B sends their X long values, after converting
 them to a suitable form as discussed in [26] , into C
 for classification. Random records are sent also to C to
 hide the original entities.

(13) C classifies the records of A and returns the labels back. C
 classifies the records of B similarily.

(14) A deletes the random records and extract the labels of the
 original records in X. B does similarly.

(15) A and B send their labels to C, and C returns the shared
 labels to both A and B.

(16) A and B share the original records that belongs to the
 shared labels.

63

 Regarding the preprocessing time, it took three seconds to read the 816 training records

from Pubmed, while it took negligible time to find TF.IDF weighting, and 204 second to

apply Chi-square. Time to find shared features by A and B was negligible (approximately

zero). For operation time, diffusion maps required three seconds, while for training time, it

took 12 seconds to train the SVM classifier using 80 dimensions and 10 folds cross

validation.

In the next step, we studied the effect of adding noise to the classification performance. We

added various noise percentages from 10% to 30% to the training set, and we used various

epsilon values from 1 to 100 to generate the random records. The SVM classifier was used to

classify 4000 testing records using that modified training set. Figure 5.4 summarizes the

findings.

Obviously, increasing the noise percentage can provide more privacy but it would decrease

the F1 measurement. This is reasonable because it is affecting the SVM training model.

Likewise, increasing the epsilon value (up to a maximum limit) would improve the privacy

and decrease the F1 measurement. However, a large increase in epsilon value would have

negative effect on the privacy, because the records will be easy to detect and excluded as

faked. Selecting the noise percentage and epsilon value is domain dependant and depends on

the application privacy requirements versus the join accuracy.

64

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45

1 10 100

Epsilon Value

F 1
 M

ea
su

re
m

en
t

10% Selective Random

30% Selective Random

50% Selective Random

Figure 5.4: The effect of adding selective random records and changing Epsilon value on the
F1 measurment upon using diffusion maps. F1 measurement decreased as the selective

random records portion and epsilon value increase.

Besides, it is worthwhile mentioning that it took two seconds to read the 4000 testing

records and negligible time to find the TF.IDF weighting. For the classifier testing time, it

took two seconds to classify those testing records using the previous training set of 816

records.

Protocol5.2:SECURE PROTOCOL FOR SEMANTIC
SIMILARITY JOIN USING LONG
ATTRIBUTES FOR SUPERVISED
LEARNING.

Input: A new test case arriving a source.

Output: Classifying this test case to the up to date
 knowledge and joining it according to
 semantic similarity.

Protocol:

(1) The training model is sent to both A and B.

(2) For every new test case arriving any source, the
 training model is used to classify it.

(3) This test case is joined to the shared records of its
same label.

65

Protocol 5.2 is used after Protocol 5.1 in order to join every new testing record arriving at

any source. It is worth mentioning that Protocol 5.1 is used once, while Protocol 5.2 is used

with every testing record.

5.4 Privacy Preserving Semantic Similarity Join Protocol Using Long Attributes Under
Multi-Label Supervised Learning

 One limitation of the previous supervised solution is its constraint on the number of labels

per record. So far, we forced every record in the training and testing sets to have one label.

However, this is not always correct. In many real life applications, a record can belong to

various entities and refer to multiple labels simultaneously. For example, a disease could be

a virus disease (Label 1) and affect infants only (Label 2). Using multi-label classification

would provide a model which is closer to real-life applications.

 Again, to our knowledge, no work has been done to benefit from multi-label classification

techniques in the privacy preserving supervised protocol for similarity join. Therefore, we

studied the performance of various multi label classifiers for privacy preserving semantic

similarity join. We compared RBF Networks, SVM, and kNN multi label classifiers. We

used a subset of the Pubmed dataset consisting of an 800 records training set, with 10%

selective random records to be added later, and a 3000 records testing set. Each record is

allowed to have up to four labels. We used k = 3, and we used the polynomial kernel SMO

for SVM. Finally, we used the SVM single label classification results as a baseline. Fig. 5.5

depicts the results. Clearly, using multi label classification outperformed single label

classification in terms of F1 measurement. This is reasonable because the ideal performance

of any single label classifier will not exceed
N
1 of its corresponding multi label classifier,

where N is the maximum allowed number of labels for each record.

66

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

1 10 100

Epsilon

F 1 M
ea

su
rem

en
t

kNN Multi Label

SVM Multi Label

RBF Multi Label

SMO Single Label

Figure 5.5: Comparing various multi-label classifiers with a single label classifier using
various Epsilon values. Multi-label classification significantly outperformed single-label
classification, and RBF Network classifier has the best F1 measurement. 10% Noise was

used.

 Besides, the RBF Network classifier outperformed both SVM and kNN classifiers in this

dataset. This is due to its non linear nature, in contrast with the polynomial SVM and lazy

kNN. The Pubmed dataset, due to its overlapped topics and some noisy records, needs a non

linear classifier to produce the best classification accuracy. One more advantage of an RBF

Network classifier is that it is not highly affected by the parameter optimization step. An

SMO classifier has an RBF non-linear kernel option, which could be comparable to that of

an RBF Networks classifier; however, it performs poorly without the parameter optimization

step.

 In order to study the effect of adding selective random records and changing epsilon value

on the multi-label classification accuracy, we used the RBF Network classifier with various

epsilon values ranging from 1 to 100, and various portions of the selective random records

ranging from 10% to 50%. Fig. 5.6 illustrates the findings. We noted that both increasing the

portion of the added selective random records and increasing the epsilon value decreased the

classifier F1 measurement. However, as we discussed previously, we do not need to add a

67

large portion of the records nor largely increase the epsilon value. Adding a small portion

with a small epsilon value would provide an adequate level of privacy without affecting the

F1 measurement. Furthermore, the added portion of random records and the epsilon value

are domain dependant, and depend on the domain error tolerance and the required level of

privacy.

0.45

0.46

0.47

0.48

0.49

0.5

0.51

1 10 100

Epsilon Value

F 1 M
ea

su
re

m
en

t

Noise 10%

Noise 30%

Noise 50%

Figure 5.6: The effect of changing epsilon and and adding selective random records
proportional to the dataset size on the multi-label classification. RBF classifier was used.

Obviously, increasing the added selective random records and increasing epsilon decreases
F1 measurement.

5.5 Summary

 In this chapter, we proposed a similarity join privacy preserving protocol using long

attributes under supervised learning. We proposed an efficient privacy preserving protocol

for long string join attributes that uses Diffusion Maps and selective random records, which

are hard to detect and does not affect the classification accuracy. Moreover, we enhanced the

performance by using the multi-label supervised learning, when every record can refer to

multiple entities simultaneously.

68

CHAPTER 6

A SIMILARITY JOIN METHOD USING LONG
ATTRIBUTES UNDER UNSUPERVISED LEARNING

 6.1 Introduction

 In many real-life cases, it is very expensive or even impossible to create a training set to

assist the similarity join method. In this case, similarity join method could be done under

unsupervised learning. Many methods have been proposed to solve unsupervised similarity

join [55][56][57][58]. Up to our knowledge, all these solutions are used mainly with short

attributes.

 We showed in our work in chapter 3 [35] that using long attributes would improve the

similarity join performance under supervised learning. Therefore, it is worthwhile to study

the use of long attributes in unsupervised similarity join. Unfortunately, most of the

proposed preprocessing methods are not suitable for long attributes. Our first objective is to

compare the effect of using long attributes and short attributes on the unsupervised

similarity join performance.

 On the other hand, databases are intrinsically dynamic. Records are inserted, updated, and

deleted frequently. This could change the number of clusters accordingly. Most of the

previous work assumed the database static. Therefore, our second objective is to provide a

similarity join method that is efficient with expandable databases.

69

 Our work is divided into four phases. First, finding the best semantic method for joining

long attributes under unsupervised learning. Second, comparing the effect of using long

attributes against using short attributes in the similarity join performance under

unsupervised learning. Third, providing and evaluating our similarity join unsupervised

method. Fourth, providing a solution that is efficient with expandable databases. It should be

noted that many short string preprocessing methods were not included in this comparison

because of their high running time cost and low accuracy when applied to long string values.

In phase one, we are comparing diffusion maps[1], latent semantic indexing[2],

eigenvectors[3], and independent component analysis[76]. In phase two, we compared the

best method from phase one with TF.IDF and SoftTF.IDF[13]. KMeans[77] was used to

cluster the output of each method. In order to evaluate the performance, we used three

datasets, Amazon Product Descriptions[37], IMDB Movies dataset[17] , and Pubmed[27].

The contributions of this work are as follows:

• Adopting the use of long attributes to replace or assist the short attributes to increase the

similarity join preprocessing methods under unsupervised learning.

• Finding an efficient semantic preprocessing method that can be used for joining values of

long attributes when no training set exists.

• Providing an efficient solution for expandable databases.

 The rest of this chapter is organized as follows. Section 6.2 compares various semantic

methods for joining long attributes under unsupervised learning. Section 6.3 compares the

effect of using long attributes against short attributes on the similarity join performance.

Section 6.4 explains our proposed similarity join method using long attributes under

70

unsupervised learning. Section 6.5 introduces the expandable databases scenario and

provides a solution for such an issue. Finally, section 6.6 is the summary.

6.2 Comparing Semantic Similarity Join Methods Using Long Attributes Under
 Unsupervised Learning

 In this section, we are going to compare various semantic preprocessing methods using

long string attributes. The best method will be used as part of our solution. We are

comparing diffusion maps, latent semantic indexing, eigenvectors, and independent

component analysis. For more details about these methods, refer to [1][2][3][76]. We use

only dimensionality reduction methods as candidate semantic preprocessing methods

because the clustering process is very sensitive to the number of dimensions. Using non-

dimensionality reduction methods such as TF.IDF with cosine similarity as input to the

clustering algorithm will increase significantly the clustering time. In order to evaluate the

previous methods in joining long string values, two datasets are used, which are Amazon

products and IMDB. For detailed descriptions of these two datasets, please refer to sections

4.4 and 3.3 respectively. It should be noted that the number of records in the datasets is

irrelevant to the performance of the algorithms as records are processed sequentially.

 For our experiments, we used an Intel® Xeon® server of 3.16GHz CPU and 2GB RAM,

with Microsoft Windows Server 2003 Operating System. Also, we used Microsoft Visual

Studio 6.0 to read the datasets, Matlab 2008a for the implementations of the candidate

semantic methods and KMeans.

 In this phase, for the movie summary attribute in IMDB Dataset, we removed the

stopwords and converted the text into lowercase. The term long string value frequency

matrix was generated. Later, TF.IDF[18] weighting matrix was computed. Later, we used

mean TF.IDF unsupervised dimensionality reduction method[38] to eliminate insignificant

71

words, and we selected the 2% of the features with the highest importance. The values in the

Product Description attribute from Amazon Products datasets were processed similarily.

 For Diffusion Maps, we used Lafon Matlab implementation[1]. We used the values of σ

and α to be 10 and 1 respectively as used in [35]. Regarding LSI, we used the SVDs()

Matlab built-in function. For the eigenvectors method, we used the Eigs() Matlab function.

For ICA, we used FastICA package [78].

 The performance measurements used for this phase were Silhouette value, Purity,

Clustering time, and Operation time. They are defined as follows:

Silhouette Value for a point x, which is assigned to cluster c of n points, is a measurement of

the assignment suitability for this point during the clustering process. It is calculated using

the following formulas:

Silh (x) = 1-
)(
)(

ib
ia , If a(i) < b(i) (6.1)

Silh (x) =
)(
)(

ia
ib -1, Otherwise (6.2)

Where a(i) =
n

yxdist
cy

∑
∈

),(
, (6.3)

and b(i) = min (
n

yxdist
cy

∑
∉

),(
). (6.4)

 Purity measures the overall clustering accuracy in correspondence with the actual cluster

labels. Let C = {C1, C2, C3, …, Ck} represents the set of clusters, and let L = {L1, L2, L3, …,

Lm} represents the set of labels (classes). Purity is calculated using the following formula:

72

Purity(C,L) =
n

LC
k

mkm∑ ∩)(max
, (6.5)

Where n is the total number of points in the dataset.

 Clustering Time is the time required to perform the clustering algorithm.

 Operation Time is the time required to perform the dimensionality reduction operation on

the dataset.

 After using each of the semantic methods, the KMeans clustering algorithm was used to

get the performance for each method. We used KMeans, which is an example of a

partitional clustering method, because it outperformed both hierarchical and suffix tree

clustering methods [79]. During the clustering process, we experimentally selected the

optimal number of reduced dimensions and the optimal number of clusters for KMeans. In

detail, we used a fixed initial value for the number of clusters and used KMeans with that

value to cluster the output of the diffusion maps algorithm using various numbers of

dimensions. After finding the optimal number of diffusion maps dimensions, we used it with

KMeans clustering with various number of clusters. We used the highest silhouette value

after clustering with KMeans to indicate the optimal number of diffusion maps dimensions

and optimal number of clusters. Figure 6.1 displays this step. The other semantic

preprocessing methods were manipulated similarly. Later, we used both clustering time and

cluster purity to evaluate the accuracy of the resulting clusters. The comparison of the

semantic preprocessing methods according to the clustering time for Amazon and IMDB

showed no significant differences among the compared methods. This is because of the

similarity in the output of these methods according to the number of reduced dimensions.

Figure 6.2 and Figure 6.3 show the comparison of the four methods according to the purity

73

in Amazon and IMDB respectively. Clearly, diffusion maps showed the best performance.

The performance of the other methods could vary depending on the complexity of the

dataset. This is clear in Figure 6.3 when the methods were applied to the IMDB dataset,

which is relatively easy and contains disjoint clusters. According to that figure, the four

methods showed high performance, and the performance decreased in LSI, ICA, and

eigenvectors when using the Amazon dataset, which is more complex and contains

overlapped clusters. diffusion maps proved to have the most stable performance. Table 6.1

shows the operation time The methods were ordered as follows:

LSI < EIG < Diff < ICA. This is due to the larger amount of information contained in the

input matrix of the ICA and diffusion maps, which are document-by-document matrices, in

contrast with the simple, relatively sparse input matrices to LSI and eigenvectors. diffusion

maps operation time is not very slow, in contrast with ICA, and could be compensated with

the gain in accuracy upon using this method. As diffusion maps showed the best

performance, it was adopted in our solution.

Figure 6.1: Determining the best number of clusters for KMeans under diffusion maps
space. The best number of dimensions was nine dimensions. We used 700 product

descriptions from Amazon Products dataset.

74

Figure 6.2. Comparing the purity of the KMeans clustering under diffusion Maps, ICA,
LSI, and eigenvectors. Diffusion Maps showed the best performance. We used 700 product

descriptions from Amazon Products dataset.

Figure 6.3. Comparing the purity of the KMeans clustering under diffusion Maps, ICA,
LSI, and eigenvectors. Diffusion Maps showed the best performance. We used 1000 movie

summaries from IMDB dataset.

75

Table 6.1. Operation Time (in seconds) for the Candidate Methods in the Two Datasets

Method IMDB Amazon

Diffusion Maps 2.5 1.35

LSI 0.24 0.1

ICA 10 3.6

Eigenvectors 0.45 0.23

6.3 Long String VS Short String Evaluation

 For phase two, we compared the best semantic preprocessing method for long attributes

with top existing preprocessing method for short attributes. According to phase one,

diffusion maps proved to be the best semantic method, among the compared ones, for long

attributes, when no training set exists. In this phase, clustering using long attributes

represented in diffusion maps space was compared with clustering using short attributes

represented using existing short methods. The performance measurements used in this phase

were purity and clustering time. We used Product Title and Product Description attributes

from Amazon products dataset to represent short attribute and long attribute respectively.

We used 700 records for this purpose. For long attributes, we used KMeans to cluster the

Product Description values that are represented in diffusion maps space. For short attributes,

we used Product Title values that are represented using pairwise SoftTF.IDF [7] similarities,

pairwise SoftTF.IDF similarities reduced using diffusion maps, pairwise TF.IDF similarities

reduced using diffusion maps. KMeans was used to cluster the output of the three methods.

76

It should be noted that we did not use many existing unsupervised similarity join methods

such as [56][57][58] because of their poor performance with long string values. We used

two performance measurements, purity and clustering time. Table 2 depicts the results.

Table 6.2: KMeans Clustering Using Long and Short Attributes

Method Purity ClusTime

Prod Desc (Diff) 0.69 0.05

Prod Title (SoftTF.IDF) 0.405 1.2

Prod Title (SoftTF.IDF+ Diff) 0.41 0.08

Prod Title (TF.IDF + Diff) 0.51 0.1

 Clearly, KMeans clustering of long string values represented by diffusion maps proved to

have the best purity, which is reasonable because long attributes tend to have much more

information than short attributes, which will increase the clustering accuracy. According to

the clustering time, all the previous methods were comparable except the SoftTF.IDF alone.

The reason is that this method is not a dimensionality reduction method, and the number of

dimensions affects significantly the clustering time performance. Overall, we conclude that

using diffusion maps semantic method with long attributes showed a better performance

than using the existing unsupervised similarity join methods that use short attributes.

6.4 Similarity Join Method Using Long Attributes Under Unsupervised Learning

 After showing that using long string attributes with diffusion maps and clustering the

output using kMeans can provide an efficient performance in comparison with other

77

unsupervised similarity join methods, we adopt this in our algorithms. In this section, we

provide and discuss our unsupervised similarity join method, and evaluate its performance

on new testing records. Basically, our method is composed of two algorithms, Algorithm

6.1 and Algorithm 6.2. Algorithm 6.1 takes as an input an initial set of unlabelled records

and apply the similarity join operation on them using long attributes and diffusion maps.

The output of this algorithm is a set of clusters, where every cluster represents a set of

records that are joined according to their semantic similarity. Algorithm 6.2 takes as an

input the set of clusters from Algorithm 6.1, optimizes it, and for every newly arriving

testing record, it will apply the similarity join on it. In other words, it will assign it to one

of the existing clusters. We explain the details of each algorithm next.

 In Algorithm 6.1, the input is a dataset represented as a term document matrix, where

each record represents a term (word) and every column represents a long string value. The

output is a set of clusters, where every cluster represents a set of semantically similar items.

 We assume here that record labels are not known. In the algorithm, after preprocessing

the dataset by applying the TF.IDF weighting and reducing the dimensionality using the

Mean TF.IDF unsupervised dimensionality reduction method, the diffusion maps method is

applied to obtain the reduced representations of the long string values, Y, as stated in line 11.

Every row in Y represents a long string value, and every column in Y represents a reduced

dimension. Later, the KMeans algorithm is applied to cluster the long string values in the

reduced space, and the silhouette value is calculated. We need to select the optimal values of

both Z in line 11 and Num_Clusters in line 14 experimentally in order to maximize the

silhouette value. After obtaining the optimal Z and Num_Clusters, Kmeans is applied using

78

both values to output the optimal set of clusters. It should be noted that this algorithm is

applied once only, and it is applied to any initial set of unlabelled records.

 After obtaining the set of clusters using Algorithm 6.1, Algorithm 6.2 is used to assign

every newly arriving record to its suitable cluster among the existing clusters. Algorithm 6.2

converts the arriving testing record into its reduced diffusion maps representation. Next, it

finds the cosine similarity between the reduced testing record representation and all the

cluster centroids. The testing record is assigned to the cluster whose centroid is the closest.

 In the evaluation part, it should be noted that Algorithm 6.1 was already evaluated in the

previous section and it outperformed the compared unsupervised similarity join methods. In

order to evaluate the Algorithm 6.2, we inserted various numbers of records belonging to

existing clusters, and we computed the similarity join accuracy, which represents the record-

cluster assignment accuracy. Three datasets were used in this experiment, which are

IMDB[17], Amazon Products[37], and Pubmed[27], and the results are illustrated in Table

6.3.

 Clearly, the algorithm can assign the newly arriving records to the existing clusters with a

high accuracy. It is obvious also that its accuracy is data-dependant. The algorithm works

better with datasets of disjoined clusters, such as IMDB, than those of overlapped ones,

such as Amazon Products.

79

Algorithm 6.1:DIFFUSION MAPS BASED SEMANTIC
 PREPROCESSING USING LONG
 STRING VALUES

Input: The term by long string value matrix M for the set
 of unlabeled D records

Output: Candidate similar records Y_Clustered_Opt
 represented as clusters.

Algorithm:

(01) //process the dataset

(02) M_weighted = find_TF.IDF _weighting(M)

(03) M_Red = MeanTF.IDF(M_Weighted, R) //R < T

(04) For i=1:D

(05) For j=1:D

(06) Dcos(i,j) = 1-Cosine_Similarity(M_Redi,M_Redj)

(07) End;

(08) End;

(09) Fix Num_Clusters

(10) For Z = Initial_Z : Final_Z

(11) [Y,S,V,A] = Diffusion_Maps(Dcos, 10, 1, Z)

(12) //|Y|= D x Z

(13) //Cluster the reduced records

(14) Y_Clustered=KMeans(Y, Num_Clusters)

(15) New_Silh[] = Find_Silh(Y_Clustered)

(16) End;

(17) //Use Z_Opt that resulted in largest New_Silh[] value

(18) [Y_Opt,S,V,A] = Diffusion_Maps(Dcos, 10, 1, Z_Opt)

(19) For Num_Clusters = Initial_Clusters : Final_Clusters

(20) Y_Clustered_Opt = KMeans(Y_Opt, Num_Clusters)

(21) New_Silh[] = Find_Sillh(Y_Clustered_Opt)

(22) End;

(23) //Use Num_Clusters_Opt corresponding to largest

(24) New_Silh[] value

(25) Y_Clustered_Opt = KMeans(Y_Opt, Num_Clusters_Opt)

(26) Return Y_Clustered_Opt

80

Table 6.3: Algorithm 6.2 Accuracy on Three Datasets.

Method Avg. Accuracy

IMDB 0.89

Pubmed 0.76

Amazon Products 0.73

6.5 Dynamically Expandable Semantic Similarity Join Protocol Using Long
 Attributes

 The classification categories are not always static. Commonly, new categories could be

created over time. Our protocol should have the ability to expand to include such new

categories. There are many real life applications that need such expansion. Hereafter, we

list two examples.

Example 6.1: New Diseases Detection

 Recently, new diseases have been brought to the world’s attention. The ability to detect

Protocol6.2: SIMILARITY JOIN METHOD UNDER
 UNSUPERVISED LEARNING

Input: A new testing record t arriving a source.

Output: Join the testing record to one cluster

Protocol:

(1) Convert the new test record t into the Diffusion Maps
 reduced representation t_red.

(2) For c = 1: Num_Clusters

(3) Cos_Sim[i] = Find_Cos_Sim(t_red, centroid[c])

(4) End;

(5) Add the testing record t to the cluster with max
Cos_Sim[i].

81

new diseases is crucial. The existing protocols should be able to detect when test cases that

belong to new non existing labels are being introduced. Such ability can speed the detection

process and minimizes its consequences. Moreover, the retraining process is also important

to consider the newly added categories when classifying new test cases.

Example 6.2: Dividing Movie Classifications

 In many cases, one starts with an initial number of categories, and later, one category is

divided into two categories or more. For example, in the past, movie categories were

limited. However, over time, each category started to contain many subcategories, and the

differences among these subcategories have been increased. This process is a continuous

process, and the existing protocols are supposed to detect when the category needs to be

divided, and to retrain itself on the new subcategories. Protocol 6.3 represents the basic

model for such an expandable supervised protocol.

 In the following two subsections, we compare various methods to detect records of non-

existing categories and study the effect of reclustering.

6.5.1 Detecting Records of Non-Existing Clusters

 Here, our goal is to detect when records of new non-existing clusters are being

introduced. In order to do this, we compare two detection measurement: Cosine Distance

and Sillhouette value. These two measurements are computed in equations 3.2 and 6.1

respectively. These two measurements are computed for every arriving record. In the

Cosine Distance, the maximum value of the detection measurement is returned, as there

will be a value for each cluster . If the measurement is less than a predefined threshold, we

consider the record belonging to a non-existing cluster.

82

 In order to compare the two measurements, we used both records of existing clusters and

records of new clusters and computed their detection measurement values using both

methods. Clearly, the efficient detection measurement is supposed to distinguish records of

existing clusters and records of new clusters by showing a significant difference between

their average measurement values. We used IMDB[17], PUBMED[27], and Amazon

Products[37] datasets. It should be noted that in this scenario, the arriving records are

processed sequentially, which makes the dataset size irrelevant to the performance. The

results of using Cosine Distance and Silhoutte measurements are displayed in Table 6.4 and

Table 6.5 respectively.

Protocol6.3: Expandable Secure Protocol for Semantic
 Similarity Join using Long Attributes for
 Supervised Learning.

Input: A new test case arriving a source.

Output: Determine if there is a need to divide a category
 or introduce a new one.
Protocol:

(1) The source classifies the test case using the training
model, as proposed in Protocol5.2, and join it to the
shared records of its same label.

(2) The source updates a shared flag, which is used to
detect the confidence of the assignment and the state
of the category after the assignment.

(3) If the flag exceeds a defined threshold, divide that
corresponding cluster into two clusters using a
clustering protocol, change the labels assigned to the
records in that divided cluster to reflect the new
clusters.

(4) Retrain the Classifier using the new labels, and share
the updated training model among the sources.

83

Table 6.4: Comparing Existing-Cluster records and New-Cluster records using Cosine

Distance

 Avg. Cos Dist

Existing-Cls

Avg. Cos Dist

New-Cls

Percentage

Drop

IMDB 0.95 0.77 19%

Pubmed 0.91 0.82 10%

Amazon 0.91 0.88 3%

Table 6.5: Comparing Existing-Cluster records and New-Cluster records using Silhouette
measurement.

 Avg. Silh

Existing-Cls

Avg. Silh New-

Cls

Percentage

Drop

IMDB 0.86 0.57 34%

Pubmed 0.81 0.7 14%

Amazon 0.77 0.67 13%

 Apparently, using sillhoutte measurement resulted in a better isolation between both

record types. Another observation is that the drop percentage when a new-cluster record is

introduced is dataset dependent, as not all datasets have the same properties.

84

6.5.2 Reclustering Analysis

 Reclustering is needed when the number of records belonging to a non-existing cluster

becomes large. Reclustering would create a new cluster(s) to minimize the clustering error.

When a criteria reaches a user-defined threshold, reclustering is applied. The criteria could

be the number of records with detection measurement less than a specific value. For

example, if the number of inserted records with silhoutte value less than 0.5 exceeds 50,

reclustering is needed. Various domains could use various thresholds depending on their

error tolerance. In order to find a suitable threshold value, we inserted a sample of records

that belong to existing clusters, computed the silhouette measurement after each insertion,

and found the minimum sillhoutte value. This value was used as the threshold value. In

order to illustrate the motivation behind using a reclustering criteria, we conducted an

experiment that calculates the percentage of records with a sillhoutte value less than the

threshold. We used both types of records(existing-cluster and new-cluster) separately in

two different groups. Two dataset were used here, IMDB and Pubmed. We denote the

records that satisfied the reclustering criteria as Satisfying Records. Table 6.6 represents

the results.

Table 6.6: Comparing Existing-Cluster records and New-Cluster records according to the
percentage of satisfying records among them.

 % Records Satisfying Criteria in

Existing Clusters

% Records Satisfying Criteria in

New Clusters

IMDB 12% 69%

Pubmed 27% 48%

85

 From Table 6.6, it is clear that records of non-existing clusters have lower sillhoutte

values than those of existing clusters, and that using the minimum sillhouette value of the

sample as a threshold value is promising.

 Next, we studied the cost and effect of the reclustering process. Two methods were

proposed here: labeling the new records manually, or using a clustering method to label

them. Only the records that satisfied the reclustering criteria are labeled. Ideally, all the new-

cluster records are supposed to satisfy the criteria and none of the existing-cluster records

are supposed to satisfy it. From Table 6.6, we can see that around 55% of the new-cluster

records satisfied the criteria, and 20% of the existing-cluster records did. Regarding the

percentage of the new-cluster records, it needs to be representative to have accurate results.

If none of the new-cluster records that belong to a cluster c satisfied the criteria, the cluster

will not be represented. Commonly, the new-cluster records that satisfy the criteria are

representative set of the new clusters. Regarding the existing-cluster records percentage,

they would not affect the results as they would be eliminated during the labeling phase.

 Obviously, using the manual labeling method would result in better accuracy and more

execution time that using a clustering method for labeling. For comparison reasons, we

estimated the manual labeling accuracy to be 0.9, and the time to be 3 minutes per a long

string value(Assuming its average length is 75 words). After labeling the records, the feature

selection method needs to be repeated to include the new cluster(s). Initially, the long string

values are represented as a vector of the important terms in the existing clusters. In order to

ensure a fair comparison, the important terms from the new cluster needs to be extracted and

included in the representation of the long string values. In IMDB dataset, after inserting 300

new-cluster records of three new clusters into the origional dataset, which is composed of

86

1000 records of 10 classes, the feature selection method took 1013 seconds for 13 classes

(In comparison to 809 seconds for the 10 basic classes), while In Pubmed dataset, after

inserting 300 new-cluster records of three new clusters into the original dataset, which is

composed of 200 records of 5 classes, the feature selection method took 34 seconds for 8

classes (In comparison to 17 seconds for the 5 basic classes). It should be noted that the

feature selection method is affected mainly with the number of records, and this explains the

difference in the running time in the two datasets. Finally, to study the effect of the

reclustering process in the record-cluster accuracy for those records that belong to the newly

created cluster, we inserted 490 records and the accuracy was 0.75, which is sufficient in

many domains.

 Regarding the second method, which uses clustering to assign the new records, we used

the sillhoutte measurement with various numbers of new clusters. For each number of

clusters, it took approximately 20 seconds to compute the silhoutte value. If we used 5

numbers, the process would take 100 seconds to label all the records, which is far less than

the 180 seconds taken by human to label a single record. However, the decrease in time

would cause a decrease in the labeling accuracy. The labeling accuracy for the clustering

method when we used the silhouette value is dataset dependant, and is 0.65 correct on

average. Therefore, we prefer to use the first method because of the error propagation

problem that could occur in the second method due to incorrect clustering assignment.

 Finally, as an estimation to the frequency of reclustering, we inserted random records

from IMDB and Pubmed, and we used various similarity thresholds and various numbers of

satisfied records. We recorded the order of that number of satisfying records among the

87

random records. Table 6.7 and Table 6.8 represent the results for IMDB and Pubmed

respectively.

Table 6.7: Reclustering Frequency using Various Thresholds and Numbers of Satisfying
Records on IMDB

Threshold 0.8 0.7 0.6

Number
Satisfying
Records

25 50 75 25 50 75 25 50 75

Order 50 112 161 105 194 328 169 400 -

 Table 6.8: Reclustering Frequency using Various Thresholds and Numbers of Satisfying
Records on Pubmed

Threshold 0.8 0.7 0.6

Number
Satisfying
Records

25 50 75 25 50 75 25 50 75

Order 57 110 160 90 155 218 80 176 292

6.6 Summary

 In this work, we proposed an efficient similarity join method using long attributes under

unsupervised learning. This method can create initial set of semantically joined records, and

can join newly arriving records to the suitable cluster according to its similarity.

Furthermore, we proposed a model for similarity join under expandable databases. In this

part, we compared some detection methods and studied both the reclustering process time

and the effect of reclustering in the join performance of future testing records.

88

89

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Summary

 Similarity Join is grouping pairs of records whose similarity is greater than a threshold T.

It has many applications in various fields. Although many works has studied Similarity Join

with short string attributes, a few works have included the use of long string attributes to

assist the similarity join process and enhance the performance. Obviously, long string

attributes contain much more information than short string attributes. Therefore, using such

attributes to detect similar records could improve the overall similarity join accuracy.

Furthermore, long attributes exist in most of the databases, and finding an efficient method

to perform similarity join using long attributes would complement the literature work that

concentrates on short attributes.

7.2 Contributions

Our contributions are explained as follows.

• First, we proposed an efficient semantic similarity join method for joining tables

according to their long attributes under supervised learning, when a training set exists.

The training set has examples of similar record pairs, which would assist in detecting

similar record pairs in the testing set. Such similarity join method for long attributes

would assist or replace the existing short attribute similarity join methods. As part of this

method, we found the best semantic similarity measurement for long string values.

90

• Second, we proposed a privacy preserving similarity join protocol for joining tables

using their long attributes under similarity thresholds, when no training set is available.

Basically, the sources involved in the similarity join process may not want to share their

data, and may want to share the similar records only. In this case, the content of a source

is supposed to be hidden and protected from being disclosed to other sources. A few

works have been done in this area, and most of the work concentrated on methods that

are applicable on short attributes only. As we explained in our first contribution, using

long attributes in the similarity join can increase the similarity join accuracy. Up to our

knowledge, no work proposed a privacy preserving similarity join method when the join

attribute is a long attribute. Our proposed protocol showed its efficient performance for

long attributes, which improved the overall similarity join accuracy under privacy

constraints.

• Third, we proposed a privacy preserving similarity join protocol when the join attribute

is long attribute using supervised learning, when a training set is available. Using a small

training set can significantly improve the similarity join performance. Again, up to our

knowledge, no work has been done to propose a privacy preserving similarity join

protocol for long attributes under supervised learning, even though this would improve

the similarity join accuracy when there are privacy constraints. Furthermore, we

enhanced the performance by using selective records instead of random records.

Moreover, we improved the similarity join performance by using mulit-label supervised

learning, as the latter is closer to many real-life applications.

• Fourth, we proposed an efficient semantic similarity join method to be used with long

attributes under unsupervised learning, when no training set exists. This scenario is

91

common in many practical applications, as it would be very expensive or even impossible

to have a training set. Furthermore, we proposed a solution for scenarios that allow the

number of groups (clusters) to expand by time. This case is also common because

databases are not static, and their content is updated with every transaction. Up to our

knowledge, no previous work proposed an efficient solution to similarity join method that

considers database expansion.

7.3 Future Work Directions

 Some future work directions are suggested as follows.

• We proposed a baseline model for similarity join with expandable databases and

studied some reclustering detection methods and the effect of reclustering on

performance. However, this area needs much more work to enhance both the detection

method and the reclustering method.

• Using Diffusion Maps to reduce the dimensionality and extract the semantic

relationships among long string values proved its efficiency. However, this method could

pose overhead when the dataset is large. Even though this case is rare, as the training set

needs not to be very large for the best join performance, but in some cases, especially

when the number of record labels (or clusters) is large, the training set will be large. A

future work could be done to find a scalable Diffusion Maps algorithm.

• In my work, I compared some dimensionality reduction methods according to their

ability in joining long string values. I compared Diffusion Maps, Latent Semantic

Indexing, Locality Preserving Projection, Independent Component Analysis, and Eigen

Vectors. Diffusion Maps showed the best performance. In order to optimize the results,

more dimensionality reduction methods need to be compared with Diffusion Maps.

92

• Semantic Similarity Join Under Privacy Constraints is a promising future work

direction. Most of the existing works have concentrated on hiding the data itself. A clear

example of this is encryption. However, in many cases, the shared information needs to

be represented and joined together semantically. Semantic Encryption of Concepts would

achieve such objective.

93

APPENDIX A
The 23 subcategories of MeSH category C ‘Diseases’

C01 Bacterial Infections and Mycoses

C02 Virus Diseases

C03 Parasitic Diseases

C04 Neoplasms

C05 Musculoskeletal Diseases

C06 Digestive System Diseases

C07 Stomatognathic Diseases

C08 Respiratory Tract Diseases

C09 Otorhinolaryngologic Diseases

C10 Nervous System Diseases

C11 Eye Diseases

C12 Urologic and Male Genital Diseases

C13 Female Genital Diseases and Pregnancy Complications

C14 Cardiovascular Diseases

C15 Hemic and Lymphatic Diseases

C16 Neonatal Diseases and Abnormalities

C17 Skin and Connective Tissue Diseases

C18 Nutritional and Metabolic Diseases

C19 Endocrine Diseases

C20 Immunologic Diseases

C21 Disorders of Environmental Origin

C22 Animal Diseases

94

C23 Pathological Conditions, Signs and Symptoms

95

BIBLIOGRAPHY

[1] R.R. Coifman and S. Lafon, “Diffusion Maps,” Applied and Computational Harmonic Analysis,

vol. 12(1), pp. 5 - 30, 2006.

[2] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman, “Indexing by Latent

Semantic Analysis,” Journal of the American Society for Information Science, vol. 41(6), pp. 391-

407, 1990.

[3] C.A. Kumar and S. Srinivas, “Latent Semantic Indexing Using Eigenvalue Analysis for Efficent

Information Retreival,” Intl. Journal of Applied Mathmatics and Computer Science., vol. 16(4),

pp. 551- 558, 2006.

[4] S. Sarawagi,, “Special Issue on Data Cleaning,” IEEE Data Eng. Bull., vol. 23(4), 2000.

[5] Y. M. Cheong, J. C. Tay, “Approximate String Matching for Multiple-Attribute, Large-Scale

Customer Address Databases,” In Proc. of the Int. Conf. on Asian Digital Libraries (ICADL), pp.

168-172, 2003.

[6] McCallum , K. Nigam ,and L. Ungar ,”Efficient Clustering of High-Dimensional Data Sets with

Application to Reference Matching,” In Proc. of the Intl. Conf on Knowledge Discovery and Data

Mining (ACM SIGKDD), pp. 169-178, 2000.

[7] W. Cohen, P. Ravikumar, and S. Fienberg, “A Comparison of String Distance Metrics for Name-

Matching Tasks,” In Proc. of the Intl. Joint Conf. on Artificial Intelligence (IJCAI), pp. 73- 78,

2003.

[8] W.W. Cohen, “Data Integration Using Similarity Joins and a Word- Based Information

Representation Language,” In Proc. of the ACM Trans. Information Systems, vol. 18(3), pp. 288-

321, Jul. 2000.

[9] V. Levenstine, “Binary Codes Capable of Correcting Spurious Insertions and Deletions of Ones,”

Problems of Information Transmission, vol.1 pp. 8-17, 1965.

96

[10] J.R. Ullmann, “A Binary n-Gram Technique for Automatic Correction of Substitution, Deletion,

Insertion, and Reversal Errors in Words,” The Computer Jornal, vol. 20(2), pp. 141-147, 1977.

[11] E. Ukkonen, “Approximate String Matching with q-Grams and Maximal Matches,” Theoretical

Computer Science, vol. 92(1), pp. 191 - 211, 1992.

[12] R.C. Russell Index, U.S. Patent 1,261,167, http://patft.uspto. gov/netahtml/srchnum.htm, 1918.

[13] R.C. Russell Index, U.S. Patent 1,435,663, http://patft.uspto. gov/netahtml/srchnum.htm, 1922.

[14] P. Jaccard, “Étude Comparative de la Distribution Florale Dans Une Portion des Alpes et des

Jura,” Bulletin del la Société Vaudoise des Sciences Naturelles, vol. 37, pp.547 - 579, 1901.

[15] M.A. Jaro, “Unimatch: A Record Linkage System: User’s Manual,” technical report, US Bureau

of the Census, Washington, D.C., 1976.

[16] W. E. Winkler, “The State of Record Linkage and Current Research Problems,” Statistics of

Income Division, Internal Revenue Service Publication R99/04, 1999.

[17] Internet Movies Database. http://www.imdb.com. Accessed April, 2010.

[18] Y. Yang, “Expert Network: Effective and Efficient Learning From Human Decisions in Text

Categorization and Retrieval,” In Proc. of the Intl Conf on Research and Development in

Information Retrieval (ACM SIGIR), pp. 13–22, 1994.

[19] Y., Yang and J. O. Pedersen, “A Comparative Study on Feature Selection in Text Categorization,”

In Proc. of the Intl. Conf. on Machine Learning (ICML), pp. 412-420, 1997.

[20] F. Ataa-Allah, W. I. Grosky, and D. Aboutajdine, “Document Clustering Based on Diffusion Maps

and a Comparison of the k-Means Performances in Various Spaces,” In Proc. of the IEEE

Symposium on Computers and Communications (IEEE ISCC), pp.579-584, Jul. 2008.

[21] T. Joachims, “Text Categorization with Support Vector Machines:Learning with Many Relevant

Features,” Proc. of the European Conference on Machine Learning (ECML), pp. 137–142, 1998.

[22] R. Agrawal, C.H. Wu, W. I. Grosky, and F. Fotouhi, “Diffusion Maps-Based Image Clustering,”

In Proc. of the Intl. Workshop On Research Issues in Digital Libraries (IWRIDL), pp.1393-1403,

2006.

http://patft.uspto/
http://patft.uspto/

97

[23] M., Bilenko and R.J., Mooney, “Adaptive Duplicate Detection Using Learnable String Similarity

Measures,” In Proc of the Intl. Conf. on Knowledge Discovery and Data Mining (ACM SIGKDD),

pp. 39-48, 2003.

[24] S. N., Minton, C., Nanjo, C. A., Knoblock, M., Michalowski, and M., Michelson, “A

Heterogeneous Field Matching Method for Record Linkage,” In Proc. of the Intl. Conf. on Data

Mining (IEEE ICDM), pp. 314-321, 2005.

[25] I., Battacharya and L., Getoor, “Iterative Record Linkage for Cleaning and Integration,” In Proc.

of the ACM SIGMOD Workshop on Data Mining and Knowledge Discovery, pp. 11-18, 2004.

[26] M. Bilenko, S. Basu, and M. Sahami, “Adaptive Product Normalization: Using Online Learning

for Record Linkage in Comparison Shopping,” In Proc. of the Intl. Conf. on Data Mining (IEEE

ICDM), pp. 58- 65, 2005.

[27] Pubmed Dataset. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi or

 http://gateway.nlm.nih.gov/gw/Cmd.

[28] P. Praks, L. Machala, and V. Snasel, “On SVD-free Latent Semantic Indexing for Iris Recognition

of Large Databases,” Springer, In: V. A. Petrushin and L. Khan (Eds.) Multimedia Data mining

and Knowledge Discovery (Part V, Chapter 24), 2007.

[29] A., Karakasidis, and V.S. Verykios, “Privacy Preserving Record Linkage Using Phonetic Codes,”

In Proc. of BCI, pp. 101-106, 2009.

[30] M., Scannapieco, I., Figotin, E., Bertino, and A. K., Elmagarmid, “Privacy Preserving Schema and

Data Matching,” In Proc. of ACM SIGMOD, pp. 653-664, 2007.

[31] T., Churces and P. Christen, “Some Methods for Blindfolded Record Linkage,” BMC Medical

Informatics and Decision Making, vol. 4(9), pp. 1-17, 2004.

[32] A., Al-Lawati, D., Lee, and P., McDaniel, “Blocking-aware Private Record Linkage,” In Proc. of

ACM SIGMOD workshop on Information Quality in Information Systems, pp. 59-69, 2005.

[33] R., Agrawal, A., Evfimievski, and R., Srikant, “Information Sharing Across Private Databases,” In

Proc. of ACM SIGMOD Intl. Conf. on Management, pp. 86-97, 2003.

http://gateway.nlm.nih.gov/gw/Cmd

98

[34] M.J., Freedman, K., Nissim, and B., Pinkas, “Efficient Private Matching and Set Intersection,” In

Proc. of EUROCRYPT, pp. 1-19, 2004.

[35] B., Hawashin, F., Fotouhi, and W., Grosky, “Diffusion Maps: A Superior Semantic Method to

Improve Similarity Join Performance,” In Proc. of ICDM MMIS Workshop, pp. 9-16, 2010.

[36] X., He and P., Niyogi, “Locality Preserving Projections,” Advances in Neural Information

Processing Systems, Cambridge, MA: MIT. Press, 2003.

[37] Amazon Website: http://amazon.com. Accessed Nov. 2010.

[38] B., Tang, M., Shepherd, E., Milios, and M., Heywood, “Comparing and Combing Dimension

Reduction Techniques For Efficient Test Clustering,” In Proc. of SIAM Workshops, 2005.

[39] http://www.zjucadcg.cn/dengcai/Data/data.html.

[40] K., Kukich, “Techniques For Automatically Correcting Words in Text,” ACM Computing

Surveys. vol. 24(4), pp. 377– 439, 1992.

[41] W.W. Cohen, “Data Integration Using Similarity Joins and a Word-Based Information

Representation Language,” ACM Trans. Information Systems, vol. 18(3), pp. 288-321, 2000.

[42] N., Koudas and D., Srivastava, “Approximate Joins: Concepts and Techniques,” In Proc. of the

Intl. Conf. on Very Large Databases (VLDB) , pp.13-63, 2005.

[43] E., Monge and C. P., Elkan, “The Field Matching Problem: Algorithms and Applications,” In

Proc. of the Intl. Conf. on Knowledge Discovery and Data Mining (KDD), pp. 267 – 270, 1996.

[44] W.W. Cohen, “Integration of Heterogeneous Databases without Common Domains Using Queries

Based on Textual Similarity,” In Proc. of ACM SIGMOD, pp. 201-212, 1998.

[45] L. Gravano, P.G. Ipeirotis, N. Koudas, and D. Srivastava, “Text Joins in an RDBMS for Web Data

Integration,” In Proc. of Intl. World Wide Web Conf. (WWW), pp. 90-101, 2003.

[46] I.P. Fellegi and A.B. Sunter, “A Theory for Record Linkage,” J. Am. Statistical Assoc., vol.

64(328), pp. 1183-1210, 1969.

[47] M.A. Jaro, “Advances in Record-Linkage Methodology as Applied to Matching the 1985 Census

of Tampa, Florida,” J. Am. Statistical Assoc., vol. 84(406), pp. 414-420, 1989.

http://www.zjucadcg.cn/dengcai/Data/data.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Srivastava:Divesh.html
http://www.informatik.uni-trier.de/~ley/db/conf/vldb/vldb2005.html#KoudasS05
http://citeseer.ist.psu.edu/monge96field.html

99

[48] W.E. Winkler, “Improved Decision Rules in the Felligi-Sunter Model of Record Linkage,”

Technical Report, Statistical Research Report Series RR93/12, US Bureau of the Census,

Washington, D.C., 1993.

[49] R.C. Russell Index, U.S. Patent 1,261,167, http://patft.uspto. gov/netahtml/srchnum.htm, Apr.

1918.

[50] M., Bilenko and R.J., Mooney, “Adaptive Duplicate Detection Using Learnable String Similarity

Measures,” In Proc. of Intl. Conf. on Knowledge Discovery and Data Mining(ACM SIGKDD), pp.

39-48, 2003.

[51] S., Chaudhuri , B. C., Chen , V. Ganti , and R. Kaushik, “Example-Driven Design of Efficient

Record Matching Queries,” In Proc. of the Intl. Conf. on Very Large Databases (VLDB), pp. 327-

338, 2007.

[52] Michael Szymon Spiz, “Using Latent Semantic Indexing for Data Deduplication,” Industrial

Conference on Data Mining, pp. 37- 48, 2006.

[53] A.E. Monge and C.P. Elkan, “An Efficient Domain-Independent Algorithm for Detecting

Approximately Duplicate Database Records,” In Proc. of ACM SIGMOD DMKD Workshop, pp.

23-29, 1997.

[54] S. Sarawagi and A. Bhamidipaty, “Interactive Deduplication Using Active Learning,” In Proc. of

ACM Intl. Conf. on Knowledge Discovery and Data Mining (ACM SIGKDD), pp. 269-278, 2002.

[55] P.S. Bradley and U.M. Fayyad. “Refining Initial Points for K-Means Clustering,” In Proc. of Intl.

Conf. on Machine Learning(ICML), pp. 91-99, 1998.

[56] I., Battacharya and L., Getoor, “Iterative Record Linkage for Cleaning and Integration,” In Proc.

of ACM SIGMOD Workshop on Data Mining and Knowledge Discovery, pp. 11-18, 2004.

[57] W.W. Cohen, “Data Integration Using Similarity Joins and a Word-Based Information

Representation Language,” ACM Trans. Information Systems, vol. 18(3), pp. 288-321, 2000.

[58] N. Koudas, A. Marathe, and D. Srivastava, “Flexible String Matching against Large Databases in

Practice,” In Proc. of Intl. Conf. Very Large Databases (VLDB), pp. 1078-1086, 2004.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Spiz:Michael_Szymon.html

100

[59] S., Guha, N., Koudas, A., Marathe, and D., Srivastava, “Merging The Results of Approximate

Match Operations,” In Proc. of Intl. Conf. Very Large Databases (VLDB), pp. 636-647, 2004.

[60] N. Augsten, M. Bhlen, and J. Gamper, “Approximate Matching of Hierarchical Data Using pq-

grams,” In Proc. of Intl. Conf. on Very Large Databases (VLDB), pages 301–312, 2005.

[61] A. Chatterjee and A. Segev, “Approximate Matchings in Scientific Databases,” In Proc. of

HICSS, pp. 448-458, 1994.

[62] M. Bilenko, S. Basu, and M. Sahami, “Adaptive Product Normalization: Using Online Learning

for Record Linkage in Comparison Shopping,” In Proc. of the Intl. Conf. on Data Mining (IEEE

ICDM), pp. 58-65, 2005

[63] M., Bilenko, B., Kamath, and R. J., Mooney, “Adaptive Blocking: Learning to Scale Up Record

Linkage,” In Proc. of Intl. Conf. on Data Mining(IEEE ICDM), pp. 87 – 96, 2006.

[64] R., Baxter, P., Christen, and T., Churches. “A Comparison of Fast Blocking Methods for Record

Linkage,” In Proc. of ACM SIGKDD Workshop on Data Cleaning, Record Linkage and Object

Consolidation, pp. 25-27, 2003.

[65] M.A. Herna´ndez and S.J. Stolfo, “Real-World Data Is Dirty: Data Cleansing and the Merge/Purge

Problem,” Data Mining and Knowledge Discovery, vol. 2(1), pp. 9-37, 1998.

[66] P., Christen and T., Churches, “Joint Computer Science Technical Report,” Technical Report, TR-

CS-02-05: Febrl – Freely extensible biomedical record linkage. Canberra: Australian National

University. 2002. http://cs.anu.edu.au/techreports/2002/TR-CS-02-05.html

[67] W.W. Cohen and J. Richman, “Learning to Match and Cluster Large High Dimensional Data Sets

for Data Integration,” In Proc. of Int’l Conf. Knowledge Discovery and Data Mining (ACM

SIGKDD), pp. 475-480, 2002.

[68] Y. M. Cheong and J. C. Tay, “Approximate String Matching for Multiple-Attribute, Large-Scale

Customer Address Databases,” In Proc. of Intl. Conf. on Asian Digital Libraries (ICADL), pp.

168-172, 2003.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chatterjee:Abhirup.html
http://www.informatik.uni-trier.de/~ley/db/conf/hicss/hicss1994-3.html#ChatterjeeS94
http://citeseerx.ist.psu.edu/viewdoc/summary;jsessionid=05C61B0BAC472B18871C2AC292BC405B?cid=3748497
http://citeseerx.ist.psu.edu/viewdoc/summary;jsessionid=05C61B0BAC472B18871C2AC292BC405B?cid=3748497
http://www.pubmedcentral.nih.gov/redirect3.cgi?&&auth=0n12wCOInmF7w3wN-8NsYDmLxt022qHs-DNRGAQoK&reftype=extlink&artid=140019&article-id=140019&iid=1824&issue-id=1824&jid=42&journal-id=42&FROM=Article%7CCitationRef&TO=External%7CLink%7CURI&rendering-type=normal&&http://cs.anu.edu.au/techreports/2002/TR-CS-02-05.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Cheong:Y=_M=.html

101

[69] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani, “Robust and Efficient Fuzzy Match for

Online Data Cleaning,” In Proc. of ACM SIGMOD, pp. 313-324, 2003.

[70] L. Gravano, P.G. Ipeirotis, H.V. Jagadish, N. Koudas, S. Muthukrishnan, and D. Srivastava,

“Approximate String Joins in a Database (Almost) for Free,” In Proc. of Intl. Conf. Very Large

Databases (VLDB), pp. 491-500, 2001.

[71] C. Xiao, W. Wang, X. LIN, and J.X. Yu, “Efficient Similarity Joins for Near Duplicate

Detection,” In Proc. of WWW, pp. 131-140, 2008.

[72] S. Chaudhuri, V. Ganti, and R. Kaushik. “A Primitive Operator for Similarity Joins in Data

Cleaning,” In Proc. of Intl. Conf. on Data Engineering (IEEE ICDE), pp. 5-5, 2006

[73] C., Xiao, W., Wang, and X., Lin, “Ed-Join: An Efficient Algorithm for Similarity Joins with Edit

Distance Constraints,” In Proc. of Intl. Conf. Very Large Databases (VLDB), pp. 933-944, 2008.

[74] A., McCallum , K., Nigam ,and L., Ungar, “Efficient Clustering of High-Dimensional Data Sets

with Application to Reference Matching,” In: Ramakrishnan R, Stolfo S (eds) Proc. of the ACM

SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, vol. 6. ACM Press, New-York,

NY, USA, 2000.

[75] R., Baxter, P., Christen, and T., Churches, “A Comparison of Fast Blocking Methods for Record

Linkage,” In Proc. of ACM SIGKDD Workshop on Data Cleaning, Record Linkage and Object

Consolidation, pp. 25-27, 2003.

[76] Comon, P. , “Independent Component Analysis: a New Concept?,” Signal Processing, Elsevier

vol. 36(3), pp. 287-314, 1994.

[77] Lloyd., S.P. , “Least squares quantization in PCM,” IEEE Trans. on Information Theory, vol

28(2), pp. 129-137, 1957.

[78] H., Gävert, J., Hurri, J., Särelä, and A., Hyvärinen, “FastICA Software Package for Matlab,” 1996

- 2005.

http://www.cse.unsw.edu.au/~lxue/WWW08.pdf
http://www.cse.unsw.edu.au/~lxue/WWW08.pdf
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/x/Xiao:Chuan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/w/Wang:Wei.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Lin:Xuemin.html
http://en.wikipedia.org/wiki/IEEE_Transactions_on_Information_Theory

102

[79] I., Yoo and X, Hu, “A Comprehensive Comparison Study of Document Clustering for a

Biomedical Digital Library MEDLINE,” In Proc. of ACM/IEEE-CS joint conference on Digital

Libraries, pp. 220 - 229, 2006.

[80] B., Hawashin, F., Fotouhi, T.M., Truta, and W., Grosky, “Efficient Privacy Preserving

 Protocols for Similarity Join”, Transactions on Data Privacy, vol 4(3), 2011. (To appear).

[81] P., Christen, “A Survey of Indexing Techniques for Scalable Record Linkage,” IEEE

 Trans. on Knowledge and Data Discovery, vol. PP (99), pp. 1 - 20, 2011.

[82] A., Elmagarmid, P., Ipeirotis, and V., Verykios, “Duplicate Record Detection: A Survey,” IEEE

Trans. Knowl. Data Eng., vol 19(1), pp. 1-16 , 2007.

[83] B., Hawashin, F., Fotouhi, and T. M., Truta, “ A Privacy Preserving Efficient Protocol for

Semantic Similarity Join Using Long String Attributes,” In Proc. of ACM EDBT/ICDT PAIS

Workshop, ACM Digital Library, doi 10.1145/1971690.1971696, 2011.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Ipeirotis:Panagiotis_G=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/v/Verykios:Vassilios_S=.html
http://www.informatik.uni-trier.de/~ley/db/journals/tkde/tkde19.html#ElmagarmidIV07
http://www.informatik.uni-trier.de/~ley/db/journals/tkde/tkde19.html#ElmagarmidIV07
http://www.mathcs.emory.edu/pais11/pdf/p-pais05.pdf
http://www.mathcs.emory.edu/pais11/pdf/p-pais05.pdf
http://dx.doi.org/10.1145/1971690.1971696

103

ABSTRACT

A NEW SEMANTIC SIMILARITY JOIN METHOD USING
DIFFUSION MAPS AND LONG STRING TABLE ATTRIBUTES

by

BILAL HAWASHIN

December 2011

Advisor: Dr. Farshad Fotouhi

Major: Computer Science

Degree: Doctor of Philosophy

 With the rapid increase of the distributed data sources, and in order to make information

integration, there is a need to combine the information that refers to the same entity from

different sources. However, there are no global conventions that control the format of the data,

and it is impractical to impose such global conventions. Also, there could be some spelling errors

in the data as it is entered manually in most of the cases. For such reasons, the need to find and

join similar records instead of exact records is important in order to integrate the data. Most of

the previous work has concentrated on similarity join when the join attribute is a short string

attribute, such as person name and address. However, most databases contain long string

attributes as well, such as product description and paper abstract, and up to our knowledge, no

work has been done in this direction. The use of long string attributes is promising as these

attributes contain much more information than short string attributes, which could improve the

similarity join performance. On the other hand, most of the literature work did not consider the

104

semantic similarities during the similarity join process.

To address these issues, 1) we showed that the use of long attributes outperformed the use of

short attributes in the similarity join process in terms of similarity join accuracy with a

comparable running time under both supervised and unsupervised learning scenarios; 2) we

found the best semantic similarity method to join long attributes in both supervised and

unsupervised learning scenarios; 3) we proposed efficient semantic similarity join methods using

long attributes under both supervised and unsupervised learning scenarios; 4) we proposed

privacy preserving similarity join protocols that supports the use of long attributes to increase the

similarity join accuracy under both supervised and unsupervised learning scenarios; 5) we

studied the effect of using multi-label supervised learning on the similarity join performance; 6)

we found an efficient similarity join method for expandable databases.

105

AUTOBIOGRAPHICAL STATEMENT

BILAL HAWASHIN

EDUCATION

• Doctor of Philosophy (Computer Science), December 2011
 Wayne State University, Detroit, Michigan, United States

• Master of Science (Computer Science), September 2003
 New York Institute of Technology, Irbid, Jordan

• Bachelor of Science (Computer Science), February 2002
 University of Jordan, Amman, Jordan

PUBLICATIONS

Bilal Hawashin, Farshad Fotouhi, and William Grosky, “Diffusion Maps: A Superior Semantic
Method to Improve Similarity Join Performance,” In Proc. of IEEE ICDM MMIS Workshop, pp.
9-16, 2010.

Bilal Hawashin, Farshad Fotouhi, and Traian Marius Truta, “ A Privacy Preserving Efficient
Protocol for Semantic Similarity Join Using Long String Attributes”, In Proc. of ACM
EDBT/ICDT PAIS Workshop, 2011.

Bilal Hawashin, Farshad Fotouhi, Traian Marius Truta, and William Grosky, “Efficient Privacy
Preserving Protocols for Similarity Join”, Transactions on Data Privacy, 2011. (To appear).

Bilal Hawashin, Farshad Fotouhi, and William Grosky, “An Efficient Unsupervised
Similarity Join Method using Diffusion Maps”. (To be submitted)

TEACHING EXPERIENCE

Full Time Instructor at Department of Computer Information Systems, Jordan University
of Science and Technology, Irbid, Jordan. 2003 – 2007.

AWARDS AND HONORS

• Golden Key Honor Society. Wayne State University Chapter of 2011.

http://www.mathcs.emory.edu/pais11/pdf/p-pais05.pdf
http://www.mathcs.emory.edu/pais11/pdf/p-pais05.pdf

	Wayne State University
	1-1-2012
	A new semantic similarity join method using diffusion maps and long string table attributes
	Bilal Hani Hawashin
	Recommended Citation

	3.2.1 Diffusion Maps
	3.2.2 Latent Semantic Indexing (LSI)
	3.2.3 EigenVectors
	3.2.4 SoftTFIDF with Cosine Similarity
	3.2.5 TF.IDF with Cosine Similarity
	3.3.1 Pubmed Dataset
	3.3.2 Internet Movies Database
	4.2.1 Diffusion Maps
	4.2.2 Latent Semantic Indexing (LSI)
	4.2.3 Locality Preserving Projection
	4.4.1 Amazon Products
	4.4.2 Internet Movies Database (IMDB)
	5.2 Pubmed Dataset
	5.3 Privacy Preserving Semantic Similarity Join Protocol Using Long Attributes Under Supervised Learning
	5.4 Privacy Preserving Semantic Similarity Join Protocol Using Long Attributes Under Multi-Label Supervised Learning
	5.5 Summary
	6.5 Dynamically Expandable Semantic Similarity Join Protocol Using Long
	 Attributes
	6.5.1 Detecting Records of Non-Existing Clusters
	6.5.2 Reclustering Analysis

	Appendix A
	The 23 subcategories of MeSH category C ‘Diseases’
	BIBLIOGRAPHY

