
Wayne State University
DigitalCommons@WayneState

Wayne State University Dissertations

1-1-2011

Post Processing Wrapper Generated Tables For
Labeling Anonymous Datasets
Emdad Ahmed
Wayne State University

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Ahmed, Emdad, "Post Processing Wrapper Generated Tables For Labeling Anonymous Datasets" (2011). Wayne State University
Dissertations. Paper 193.

http://digitalcommons.wayne.edu?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F193&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F193&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F193&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations/193?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F193&utm_medium=PDF&utm_campaign=PDFCoverPages

POST PROCESSING WRAPPER GENERATED TABLES
FOR LABELING ANONYMOUS DATASETS

by

EMDAD AHMED

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2011

MAJOR: COMPUTER SCIENCE

Approved by:

Advisor Date

DEDICATION

To my parents and family with love. Specially to my late father, who dreamed my higher

education abroad.

ii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deep and sincere thanks and gratitude to my

advisor, Dr. Hasan M. Jamil. His passionate guidance, spacious research vision, tremendous

support and extreme patience, his depth and breadth of knowledge have facilitated me to

become a researcher. His unending encouragement, persistence and positive way of thinking

have helped me to make the impossible possible. I enjoyed our numerous discussions and

brainstorming sessions, and I am very thankful for his constant dedication and availability to

me. His sincere, kind and sound advice has helped me to grow as a researcher, educator and

individual.

Very warm thanks to Dr. Farshad Fotouhi, whose precious advice, experience and sup-

port have been always available to me during my five years spent in the department. His

example of great leadership as the department chair has taught me many valuable quali-

ties. I am extremely grateful to him for providing me the opportunity to teach and co-teach

many undergraduate and graduate courses and for his kind accommodation of my teaching

preferences.

Many, many thanks to Dr. Shiyong Lu for his constructive comments and suggestions

on my research and his participation in our early efforts on using Taverna to experiment

with Web access as Scientific Workflow, started as a course project in his database research

seminar. I enjoyed his teaching of graduate courses in databases and learned a lot from his

very successful teaching style. Thanks for being such a great teacher. I also would like to

thank him for his advice on my job search and career start-up.

I am very thankful to Dr. Geoffrey S. Nathan to serve as external committee member of

my dissertation committee.

I am very grateful to Dr. Hasan M. Jamil, Dr. Shiyong Lu, Dr. Farshad Fotouhi, and

Dr. Geoffrey S. Nathan for serving on my dissertation committee and providing wonderful

recommendation letters.

iii

I am very thankful to Dr. Mustafa Atay, Dr. Hasan M. Jamil, Dr. Loren Schwiebert, Dr.

Nathan Fisher, Dr. Farshad Fotouhi and Fernando Martincic who supervised my teaching

assignments, and the following faculty from whom I have taken courses: Dr. Shiyong Lu,

Dr. Hasan M. Jamil, Dr. Frank Stomp, Dr. Sorin Draghichi, Dr. Andrian Marcus, Dr. Farshad

Fotouhi, Dr. John Liu and Dr. Eivan Avrutsky.

I am very grateful to Dr. Lori Pile and Marla Spain for giving me valuable feedback on

my work on Gene Regulatory Networks. I was able to publish two IEEE papers out of it.

I would like to thank my fellow students for their encouragement and friendship: Dr. Shaz-

zad Hosain, Anupam Bhattacharjee, Aminul Islam, Shafkat Amin, Kazi Zakia Sultana, Shahri-

yar Hossain, Saikat Dey.

I would like to thank other fellow students for their constant moral support for me:

Salahuddin M. Aziz, Sharrukh Zaman, Yousof Gawasmeh, Saied Haiderian, Munirul Islam,

Indranil Palit, Masud Ahmed, Farhana Dewan and the list continues to my memory.

I would also like to thank the following staff for the great service and support in these

past few years: Deb Mazur, Judy Lechvar, Rachel Gillett, Alfred Glenn, Matt Orr, Gladys P.

Maxwell, Jeff Fleming and Derrick White.

Conor Shaw-Draves of writing center of Wayne State University deserves special thanks

and appreciation for the dissertation proofreading.

Finally, my special thanks and appreciation to my parents; my wife Kaniz Fatima; and

my daughters Ardeena and Ariyana for their love, encouragement and constant supports

throughout my life. Thanks for always being there for me.

iv

TABLE OF CONTENTS

Dedication . ii

Acknowledgements . iii

List of Tables . viii

List of Figures . x

CHAPTER 1 Introduction . 1

1.1 Web Wrapper . 1

1.2 Web Data Extraction and Labeling . 2

1.3 Problem Statement/Description . 5

1.4 Use of Web Search Engine . 6

1.5 Research Motivation, Challenges, Goals and Contributions 6

1.6 Organization of this Dissertation . 8

CHAPTER 2 Related Work . 9

2.1 Web Wrapper . 9

2.2 Labeler Component of RoadRunner . 10

2.3 PANKOW and C-PANKOW . 13

2.4 DeLa . 14

2.5 ODE . 16

2.6 ViPER . 16

2.6.1 Inter Column Label Assignment . 16
v

2.6.2 Inner Column Label Assignment . 17

2.7 Multi Annotator . 17

2.8 Comparison with other Annotation Tools . 18

2.9 Misc. Related Work . 18

CHAPTER 3 Column Name Identification . 20

3.1 Problem Statement . 20

3.2 Motivating Example . 22

3.3 Labeling . 23

3.3.1 Example of Candidate Set of Labels . 25

3.3.2 Language Patterns . 26

3.3.3 Labeling Algorithm . 27

3.3.4 Probabilistic Labeling of Anonymous Datasets 31

3.3.5 Affinity Based Speculative Labeling . 33

3.4 Statistical Fingerprints . 35

3.5 Minimal Set of Patterns Required to Disambiguate Column Labeling 39

3.6 Proof by PMI . 43

3.7 Proof from Probabilistic Model of Weakly Annotated Data 45

3.7.1 Label Role Inference . 46

3.7.2 Missing Attribute Inference . 48

3.8 Complexity Analysis of LADS . 48

3.9 Proof of Lemma . 49

3.10 Error Estimation Due to Model Violation . 52

CHAPTER 4 Results, Discussions and Implementation 56

4.1 Sample Result of Labeling . 56
vi

4.2 Correction Factor for Annotation using Algorithm LADS 56

4.3 The Overall Algorithm . 61

4.4 Experiment with Large Datasets . 61

4.5 Non-ideal Datasets and Impact of DSC Violation 63

4.6 Implementation . 65

CHAPTER 5 Conclusions and Future Work . 68

Bibliography . 71

Abstract . 79

Autobiographical Statement . 81

vii

LIST OF TABLES

Table 3.1 Anonymous datasets about computer network switch 22

Table 3.2 Anonymous datasets about computer network switch, src: shopping.com 22

Table 3.3 Anonymous datasets about computer network switch, src: ebay.com . . . 22

Table 3.4 Possible labels for different Domain . 25

Table 3.5 Manually computed set of labels, src: BAMM datasets 31

Table 3.6 An anonymous datasets about music, containing a single relation R . . . 33

Table 3.7 No. of answers to speculative queries among different search engines . . . 35

Table 3.8 LAA Based on Different Search Engine Result 35

Table 3.9 Sample anonymous datasets from Watch domain, source wristwatch.com 37

Table 3.10 Hits count to annotate A1 Label . 38

Table 3.11 Hits count to annotate A2 Label, using word approach 40

Table 3.12 Experimental results for different patterns 41

Table 3.13 Probabilities for Anonymous Attribute A1 41

Table 3.14 Probabilities for Anonymous Attribute A2 41

Table 3.15 Greedy Labeling . 50

Table 4.1 Anonymous Datasets from Synthetic Domain 56

Table 4.2 Probabilistic Labeling on Synthetic Domain 57

Table 4.3 Anonymous Datasets from Movie Domain 57

Table 4.4 Probabilistic Labeling on Movie Domain 57

Table 4.5 Anonymous Datasets from Watch Domain 58

Table 4.6 Probabilistic Labeling on Watch Domain 58
viii

Table 4.7 Anonymous Datasets from Automobile Domain 58

Table 4.8 Probabilistic Labeling on Automobile Domain 59

Table 4.9 Anonymous Datasets from Political Domain 60

Table 4.10 Probabilistic Labeling on Political Domain 60

Table 4.11 Anonymous Datasets from Music Domain 62

Table 4.12 Probabilistic Labeling on Music Domain 63

Table 4.13 Anonymous Datasets from Movie Domain 64

Table 4.14 Probabilistic Labeling on Movie Domain 64

Table 4.15 Probabilistic Labeling of A2 with Different % of Repeat from A1 64

ix

LIST OF FIGURES

Figure 1.1 Resource Discovery/Description Mechanism 5

Figure 2.1 The Labeling Algorithm of RoadRunner 12

Figure 3.1 Deep Web Database Abstraction Model 21

Figure 3.2 Statistical distribution of ‘is a’ patterns for Washington 24

Figure 3.3 Web Form Interface . 29

Figure 3.4 Statistical Fingerprints for Armani and Longines 37

Figure 3.5 Statistical Fingerprints for Longines and L51580966 39

Figure 3.6 Probability of A1 for different pattern 42

Figure 3.7 Probability of A2 for different pattern 43

Figure 3.8 Degree of Violation vs No. of correct label 55

Figure 4.1 Probabilisitc Labeling on FIFA Datasets 63

Figure 4.2 Screen shot of sample labeling on Synthetic Datasets 66

x

1

CHAPTER 1

INTRODUCTION

In this chapter first we present the notions of Web Wrappers and the post processing

part of the wrapper, i.e., how to annotate or label the extracted tabular Web data and our

strategy for marshalling Web resources into conceptual back end data. Next, our research

motivation, challenges, goals and contributions are stated. Finally, an organization of the rest

of the dissertation is outlined.

1.1 Web Wrapper

Data extraction from HTML pages is performed by software modules, usually called wrappers.

A wrapper identifies and extracts relevant pieces of text inside a Web page, and recognizes

them in a more structured format. A wrapper is a set of data extraction rules that converts

semi-structured or unstructured data (such as XML and HTML data) into structured data

(such as table and views in relational databases). Note that DB is used for structured data

and IR, IE are used for unstructured data.

A wrapper can be seen as a procedure that is designed for extracting the content of

a particular information source and delivering the content of interest in a self describing

representation. In the database community, a wrapper is a software component that converts

data and queries from one model to another. In the Web environment, its purpose should be

to convert information implicitly stored as an HTML document into information explicitly

stored as a data structure for further processing. A wrapper for a Web source accepts queries

about information in the pages of that source, fetches relevant pages from the source, extracts

the requested information and returns the result. It consists of a set of extraction rules and

the code required to apply these rules and is specific to one source. To extract information

from several independent sources, a library of wrappers are needed.

A wrapper is an interface that (a) conveys requests from one system to a second system,

(b) conveys replies from the second system to the first system, and (c) performs any necessary

2

lexical/ logical mapping. The other layer of a data integration system that does not exist in

a traditional system is the wrapper layer. Unlike a traditional query execution engine that

communicates with a local storage manager to fetch the data, the query execution plan in a

data integration system must obtain data from remote sources. A brief survey of Web data

extraction tools can be found in [48].

1.2 Web Data Extraction and Labeling

Data extraction from Web pages has been an active research topic since 1997. In the liter-

ature, data extraction techniques for HTML and semi-structured data in general have been

exhaustively studied and a number of automatic and semi-automatic approaches have been

proposed. However, in real-life scenarios, data extraction capabilities are only half of the

game. Password protected sites, cookies, non-HTML data formats, JavaScript, Session ids,

Web Form interactions and dynamic changes on Web sites are the obstacles that make Web

data extraction difficult in real-life application scenarios [35].

Many Web documents contain an abundance of recognizable constants that together de-

scribe the essence of a document’s content. For these kinds of data-rich, multiple-record

documents (e.g., advertisements, movie reviews, weather reports, travel information, spots

summaries, financial statements, etc.) we can apply a conceptual-modeling approach to ex-

tract and structure data automatically. We can automatically produce a database schema

and recognizers for constants and keywords, and then invoke routines to recognize and ex-

tract data from unstructured Web documents and structure it according to the generated

database schema, which can later be used in declarative ad hoc queries [27,29–31].

Most of the existing Web data extraction systems cannot assign field labels to the extracted

data records. Recently, some automatic approaches to assigning the semantic meaning for

data have been proposed. Most of the systems are heuristic based and can solve the problem

partially. Here in our research, we wish to develop a complete framework for tabular data

annotation. Information Extraction (IE) and labeling/annotation are two separate processes.

Note that we are not working on wrapper generation at all. The wrapper generation technol-

ogy is mature enough and a lot of work has been done in this field. But to the best of our

knowledge, very little work has been done in terms of column name identification and data

3

annotation, which is a classification process. We will show that our labeling process yields

better results on structured data such as wrapper generated Web page tables.

The database community has devoted a large amount of work on integration of data either

materialized within data warehouses or non-materialized through mediation systems. For an

exhaustive list of Data Integration projects world wide, refer to [70]. However, the quantity of

data sources made available and their significant increase explain the need for non-materialized

access to Web data [47].

There is a high demand for collecting data of interest from multiple Web databases. For

example, a comparison-shopping system (e.g., shopping.com, pricegrabber.com, pricelist.com,

ebay.com etc.) needs to collect the price, availability and other information of the same

product from multiple providers. Such kinds of applications require that the collected data

be semantically labeled so that they can be appropriately organized/stored for subsequent

analysis. In this research we wish to automate the labeling of the data generated from dynamic

Web pages for scalable later use. Our work is further motivated by recent initiative of Google

Base beta version for structured query over Web data [41].

Despite the Web wrapper’s long track record, automatic labeling of extracted data has only

recently begun to be addressed. Since wrappers are built automatically, the values that they

extract are anonymous and human intervention is still required to associate a meaningful name

to each data item. The automatic annotation of data extracted by automatically generated

wrappers is a novel research problem, and it represents a step toward the automatic extraction

and manipulation of Web data [8]. An urgent need in Web Data Integration is the discovery

of suitable resources and the marshalling of those resources to work together to perform a

task [51].

To minimize user effort in an Information Retrieval (IR), IE process and enable tools to

scale with the growth of the Web, we explore the problem of automatically interacting with

online information sources in the hidden Web. This problem has four aspects:

• Information Discovery: How to automatically locate the Web sites containing struc-

tured data of interest to the user?

4

• Information Extraction: How to induce wrappers to extract relevant data objects

from discovered Web sources?

• Information Understanding: Having extracted data objects with complex struc-

tures, how to automatically or semi-automatically annotate or label the fields of the

extracted data?

• Information Integration: How to integrate the various data objects from multiple

sources with or without knowing their schemas?

In this research we concentrate our investigation on the Information Understanding aspect,

i.e., how to annotate or label the fields of the extracted data. This is a novel research problem

and it still waits for a good solution.

A lot of work has been done with regard to Web data extraction and wrapper genera-

tion. But most of the work exports the Web data as anonymous datasets, without assigning

meaningful labels. To the best of our knowledge, there are only two generic methods for the

automatic labeling of anonymous datasets: DeLa (Data Extraction and Label Assignment)

and the Labeler component of RoadRunner. The previous approaches to labeling have two

drawbacks. First, typical Web pages often omit labels, which are understood from the context

by a human. Second, this approach restricts one to using only those labels chosen by the Web

content providers, which may NOT be the most appropriate or most descriptive ones. Our

method, on the other hand, does not suffer from either problem. Our probabilistic model

estimates the appropriateness of a label regardless of where it comes from, allowing the user

to provide her own set of labels.

We propose a novel and a highly effective method for automatically labeling anonymous

datasets based on a simple probabilistic model that takes into account the affinity between

a set of values (i.e., an anonymous attribute) and potential attribute labels. Therefore the

anonymous datasets can be materialized into a suitable relational Database (DB) [3]. The

probabilities are estimated by counting the number of answers to speculative queries, obtained

from popular Web search engines such as Google, Yahoo and MSN. Estimating probabilities

based on hit counts is referred to as Web Statistics. Intuitively, a speculative query formulates

5

a hypothesis that a given term is a good label for an attribute in the anonymous datasets.

The Web search engines are used as an oracle to determine how plausible such a hypothesis

is. Our approach is to search the Web for documents containing certain text patterns i.e.,

(Hearst) patterns commonly used to enumerate instances of classes of objects. We exploit

these patterns to mine frequently occurring terms that can be used as labels.

The present research work is our ongoing work for developing automatic techniques for

labeling attributes in a page, where we have identified and proposed ontology based and

declarative workflow query language for ad hoc Web data integration on the fly [4,6]. In our

previous work [7,16–20,28,32,69], we have implemented a number of prototype systems such

as WebFusion, PickUp, FastWrap, OntoBuilder, OntoMatch, etc., that are much

more scalable approaches toward Web data integration.

1.3 Problem Statement/Description

Figure 1.1: Resource Discovery/Description Mechanism

Figure 1.1 shows our overall envisioned system, resource capability discovery/description

management system. Labeling component is the core of the system. In response to the user

query submitted in Web form, we will have tabular data. Semantic enrichment of the tabular

data will be made semi-automatically and through human knowledge. Tabular schema will

6

also be stored in the resource description repository. Resource Definition Statements (RDS)

will be used to state what the system should expect from the Web resources. Thus our resource

capability discovery/description will be focused toward handling Web forms and representing

table schema. The rest of the report deals with the above two ideas.

Research hypothesis: Given a candidate set of labels (using σ function) and anonymous

datasets (using ω function), can Web search engines such as Google, Yahoo, MSN be used as µ

function to assign labels for the anonymous datasets? This research supports this hypothesis.

1.4 Use of Web Search Engine

In general the approach that we have taken to assign column label is to use the hit counts

from Web search engines to disambiguate column labeling. In the literature the method has

been termed ‘self annotating Web’ [21, 22], that is Web pages are used to annotate Web

pages. For this approach, we can draw an analogy between Computer Network and Web

Database. We had begun our journey from modern telecom network (connection oriented

service), then we developed Internet Protocol (IP) (connectionless service), again we are in

need of a telephone like network for Quality of Service (QoS). Similar cycle has been observed

while labeling anonymous datasets. We had begun our journey from raw, unstructured text,

then we developed structured text as DB (during the 1970’s), again we are in need of raw,

unstructured text (Web page text) for Labeling.

1.5 Research Motivation, Challenges, Goals and Contributions

Our research focuses on issues related to Web information retrieval and Web information

integration. In particular, we are focusing on categorizing and classifying data collections

into meaningful groups. This direction of research is essential in the field of autonomous

information integration and data aggregation where autonomous systems collect information

from Internet resources having no proper labels. In such situations, query systems fail to

identify required information and cause the production of wrong responses. Our focus in this

research is on generating useful labels for groups of data items to facilitate successful query

computation. We try to do post processing, categorize items in a column that better describes

the objects. In the absence of ontology, instead we use linguistic patterns. In the absence of

7

an existing ontology in a domain how to come up with terminology that are representative

terms of the domain? BioFlow is a language to address Web data integration in an ad hoc

manner. BioFlow deals with Web mashups and screen scraping techniques. We want to give

a database abstraction for the Web, treat each Web page as relation. Relations have column

names, Web tables may or may NOT have column names. Given a Web table, how to label

the columns with different terminology? By solving our approach, the Web will become a

synthetic extension of traditional database systems. This dissertation goal is to address all

the above challenges from both theoretical and practical perspectives with the main focus on

a generic, correct and efficient solution to the problem of labeling anonymous datasets. We

bridge the gap between the Terminology Layer and Data Layer via the formalization of our

proposed solution viz. Labeling Anonymous Datasets (Lads).

This dissertation makes the following research contributions:

• In this dissertation, we research the problem of labeling anonymous datasets. Our main

focus is on a generic, correct and efficient solution to the problem of labeling anonymous

datasets. We first formalize the problem as part of Deep Web Database Abstraction

model

• We review the existing work on label assignment and propose to make it fully automatic

• We propose and define a novel label assignment problem

• We propose a specific method, Web search engine based annotator, to solve the problem

without the support of domain ontology. In our proposed method, domain ontologies are

not required any more. Specifically we bridge the gap between two orthogonal research

viz. wrapper generation and label extraction for value added services such as online

comparison shopping.

• We run experiments to test the proposed methods and show that the proposed methods

are effective

8

• We categorize tabular Web data into three types: disjoint set column (DSC), repeated

prefix/suffix column (RPS) and numeric column (NUM)

• We design a couple of efficient Labeling algorithms to facilitate the implementa-

tion of new operator (i.e., link and combine) [38] in relational databases: (1) LADS

(2) NLADS (3) GLADS (4) LADSComplete [2]

• We make a procedural implementation of our approach in a Java framework

• Our algorithm Lads [5], [2] is guaranteed to work for disjoint set columns

1.6 Organization of this Dissertation

The remaining chapters of the dissertation are organized as follows: Chapter 2 reviews the

researches on Web Wrapper and data annotation/labeling that are most closely related to our

work; Chapter 3 presents our implementation on column name identification; Chapter 4 fo-

cuses on results, discussions and implementation; Finally, Chapter 5 concludes the dissertation

and lists some of the remaining interesting research problems.

9

CHAPTER 2

RELATED WORK

2.1 Web Wrapper

Considerable research has been done in the area of Web Data Extraction viz. wrapper genera-

tion. In this chapter we will discuss some of the state-of-the-art works in wrapper generation,

then confine ourselves to reviewing the research that is most closely related to the work we

have done here. Wrapper Generation function ω for Web data can be stated as follows [48].

Definition 2.1.1 (Wrapper Generation) Given a Web page S containing a set of implicit

objects, determine a mapping ω that populates a data repository R with the objects in S,

i.e., ω : S 7→ R. The mapping ω must also be capable of recognizing and extracting data from

any other page S ′ similar to S. ♦

In [67], the authors present a novel method called Information Extraction Knowledge Adap-

tation (IEKA) to solve the wrapper adaptation problem. They have analyzed the problem by

identifying two kinds of features, namely site-invariant and site-dependent features.

Researchers have addressed the problem of extracting data from Web sites, however, very

little work on the semantic labeling of the extracted content has been made. In this section,

we briefly discuss some of the authoritative works in this field. In Data Extraction and

Label Assignment (DeLa) [66], the main idea of the labeling process is that “form elements

will probably re-appear in the corresponding fields of the data objects.” To assign labels to

the columns of the data table containing the extracted data objects, i.e., to understand the

meaning of the data attributes, DeLa employed four heuristics, but it is not very clear how

the heuristics in DeLa are combined. There are many common cases where DeLa system

cannot label data fields. For example, the DeLa heuristics miss a common case where a data

field does not have a label (for example, the job title field on most job sites is a heading with

no prompt or label). Also, the DeLa heuristic would be confused by sites with multiple fields

of the same data type (for example, the bedrooms, bathrooms, and maximum occupancy fields

10

in vacation rentals) [15]. Arlotta et al. in the RoadRunner project have [8] developed

several heuristics for labeling, however their system will fail in cases when descriptive labels

are missing adjacent to data values. Visual Perception-based Extraction of Records (ViPER)

mainly developed two heuristics: inter-column label assignment heuristic and inner-column

label assignment heuristic to assign column label to data items [61]. These two heuristics

are good to annotate a column where a repeated prefix or a repeated suffix will be found,

those will be used to label the column. Automatic Data Extraction and Labeling (Adel)

[49] system can automatically extract records from Web sites and semantically label the fields

or mapping them to a schema. There are some shortcomings for the Adel system, such as:

Adel is not able to process forms, instead it manually retrieves list pages and provides them to

the system. The most significant challenge for automatic labeling is to deal with inconsistent

data formats. Adel failed in several cases due to lack of data transformation rules such as

“sedan 4dr” and “4dr sedan” refer to the same concept. Our system can uniformly label those

as “body.” [52] proposed a multi annotator approach to tackle the annotation problem with

each six basic annotator to exploit a different type of features. One of their approaches uses

Common Knowledge annotator. Using our approach, we eliminate the need for externally

supplied knowledge base as we use Web search engines as a collective knowledge source. All

these approaches can NOT solve the problem of “local interface schema inadequacy problem”

(some attributes in the results are not entirely contained in the Web form interface). [58]

presents two algorithms: (i) Structural analysis of HTML form, and (ii) Confirming field

annotations with probing. Our labeling method heavily depends on the correct extraction of

Web form labels for which we also refer to work in HiWE [56] and labelEx [53].

2.2 Labeler Component of RoadRunner

The problem the RoadRunner project [25] solved may be stated as follows: “Given a set of

sample HTML pages belonging to the same class, find the nested type of the source datasets

and extract the source datasets from which the pages have been generated.” Since Web pages

are designed to be presented on a browser to a human user, usually labels and values are

visually close to each other. Therefore, first the Labeler computes the coordinates of the

bounding boxes of every label and data-value in a given sample page. Then it tries to find

11

the optimal association label/data-value by analyzing their spatial relationships. Arlotta et

al. [8] have developed several heuristics to establish the correct associations:

• labels and values are close to each other

• usually a label is aligned vertically, horizontally or centrally to its associated values

• labels are usually placed either to the left or above values

• it is not allowed that either a label or a value is between another value and its label.

The wrappers produced by [24] need a post-processing phase to annotate with more semantic

labels for the extracted attributes, which are initially anonymous.

The algorithm implemented by Labeler is illustrated in Figure 2.1: it takes as input a

wrapper and a set of sample pages; as output, it produces a set of label/variant associations

for the given wrapper. Initially it chooses an arbitrary order for the set of labels L =

{li, i = 1 . . . Nl} and for the set of variants V = {vj , j = 1 . . . Nv} of the wrapper. Then it

calls the function Labels to compute a set of label/variant associations (li/vj) on each of the

given samples.

Labels tries to exploit the spatial relationships between labels and data-values in the

graphical rendering of one Web page as displayed in Web browser. It computes an Nl × Nv

matrix M of scores, that contains positive real numbers such that M [i, j] is a measure of

the “goodness” of li as label for vj ; as smaller are the scores as better are the associa-

tions. Some associations are immediately discarded without further evaluation by setting

the corresponding score in M to +∞. Namely (li/vj) can be discarded if any of the fol-

lowing conditions hold: (i) li is below or to the right of vj ; (ii) the distance between li

and vj is greater than Dmax pixels; (iii) li is placed on the diagonal of vj ; (iv) there ex-

ists another variant/invariant which is located between li and vj . The first three conditions

reflect the fact that a label is usually placed above or to the left of the corresponding data-

value, never too far from it. The last condition considers that anything between a data-value

and its label would keep the reader from intuitively associating them. Given a pair (l/v)

and the corresponding bounding-boxes on a page s, the score function is defined as follows:

12

SCORE(l, v, s) = DISTANCE(l, v, s)× sin(2×ALIGNMENT (l, v, s)). In the following,

Algorithm Labeler
Parameters : Dmax, the maximum allowed distance from a variant to its label;

α, a threshold for the SCORE function;
Input : a wrapper w, a set of samples S = {s1, . . . , sn};
Output: a set {(l/v)} of associations;
begin
Let L = {li, i = 1, . . . , Nl} , V = {vj , j = 1, . . . , Nv}

be respectively the labels and the variants in w;
Let Ak be LABELS(L, V, sk), k = 1, . . . , n;
Let A be the set of associations (l/v) such that l is associated only to v

and v is associated only to l in
⋃

k=1,...,nAk;
return A;

a set {(li/vj)} LABELS(a set of labels L, a set of variants V , a sample s)
begin

Let M be an Nl ×Nv matrix such that
M [i, j] = +∞, if validPosition(li, vj , s) or inbetween(li, vj , L, V, s) or score(li, vj , s) ≥ αDmax

= score(li, vj , s) otherwise
Let A be the empty set;
do begin

add (limin/vjmin) to A such that M [imin, jmin] is the minimum of M
set M [imin, h] and M [k, jmin] to +∞, h = 1, . . . , Nl, k = 1, . . . , Nv;

while (∃M [i, j] 6= +∞);
return A;

end
boolean validPosition (label l, variant v, sample s)
return (in the graphical rendering of s, l is placed either above or to the left of v

and their distance is less than Dmax);
boolean inbetween (label L, variant V , sample s)
return (there exists either a label or a value whose bounding-box

in the graphical rendering of s is between those of l and v);
<+ distance(label l, variant v, sample s)
return (the minimum distance between bounding boxes of l and v in the rendering of s);
<+ score(label l, variant v, sample s)
return SCORE(l, v, s) = DISTANCE(l, v, s)× sin(2×ALIGNMENT (l, v, s))

Figure 2.1: The Labeling Algorithm of RoadRunner

we discuss some of the limitations of the section 2.2. The approach needs that textual la-

bels describing the meaning of the extracted fields are present in the Web page. However,

many data are published on Web pages leaving their meaning implicit. It is worth saying

that labels may be present as images and not as texts as we have seen in book and movie

rating/ranking information. In fact, often pages do not include explicit labels for those data

whose semantics can be clearly understood from the context (e.g., the title of a book in a

page describing details about that book). In our research, we have addressed that problem

13

by introducing a new paradigm called Web Search Engine Based Annotator. Specifically, we

could label the unlabeled data-values in the anonymous datasets by looking for labels in the

Web search results.

2.3 PANKOW and C-PANKOW

PANKOW (Pattern-based ANnotation through Knowledge On the Web) uses statistical and

pattern-matching techniques to automatically discover relevant concepts in the document. In

particular, PANKOW generates instances of lexico-syntactic patterns indicating a certain se-

mantic or ontological relation and counts their occurrences in the WWW using the GoogleTM

API. In the following, we briefly discuss the general process of PANKOW, consisting of three

steps:

Input: A set of entities (instances or concepts) to be classified with regard to an ontology.

Step 1: The system iterates through the set of entities to be classified and generates instances

of patterns, one for each concept in the ontology. For example, the instance ‘South Africa’

and the concepts Country and Hotel are composed using a pattern schema of a set of patterns

and resulting in pattern instances like ‘South Africa is a country ’ and ‘South Africa is a hotel ’

or ‘countries such as South Africa’ and ‘hotels such as South Africa’.

Result 1: Set of pattern instances

Step 2: Then, GoogleTM is queried for the pattern instances through its Web service API.

The API delivers as its results

Result 2: The counts for each pattern instance

Step 3: The system sums up the query results to a total for each concept

Result 3: The statistical fingerprint for each entity, i.e., the results of aggregating for each

entity, the number of Google hit counts for all pattern instances conveying the relation of

interest.

Given an unknown instance or concept on a certain Web page, patterns respectively indicat-

ing an instance-of or subconcept relation are instantiated for the new instance or concept and

each concept in the target ontology. Finally, given the statistical fingerprint of the instance or

concept, PANKOW follows a principle of disambiguation by maximal evidence thus assigning

the instance or concept to that concept in the statistical fingerprint.

14

C-PANKOW (Context-driven PANKOW) [21] alleviates several shortcomings of PANKOW.

First, by downloading abstracts and processing them off-line, C-PANKOW avoids the gener-

ation of a large number of linguistic patterns and a correspondingly large number of Google

queries. Second, by linguistically analyzing and normalizing the downloaded abstracts, C-

PANKOW increases the coverage of the pattern matching mechanism and overcomes the

several limitations of the earlier pattern generation process. Third, C-PANKOW uses the

annotation context in order to distinguish the significance of a pattern match for the given

annotation task. In the following, we present the C-PANKOW algorithm. The complexity of

C-PANKOW is linear in the number of instances and hence in the size of the document. The

number of queries sent to the Google API is constant for each instance to be annotated.

Algorithm 1 C−PANKOW: Context-driven PANKOW
C − PANKOW (document d)
/ ∗ recognize all the instances in input document ∗ /
I = recognizeInstances(d)
for each i ∈ I do

for each (p, c) ∈ P do
/ ∗ download the n first Google abstracts matching the exact query c(i) ∗ /
Abstracts = downloadGoogleAbstracts(c(i), n));
for each a in Abstracts do
/ ∗ calculate the similarity between the document and the Google abstract a ∗ /
sim = calculateSimilarity(a, d);
if (sim > t) then

if (p.matches(a)) then
c = p.getConcept();
Res[c] = Res[c] + sim;

end if
end if

end for
end for
annotate(i,maxargc Res[c]);

end for

2.4 DeLa

In Data Extraction and Label Assignment (DeLa), the main idea of the labeling process is

that “form elements will probably re-appear in the corresponding fields of the data objects.”

To assign labels to the columns of the data table containing the extracted data objects, i.e.,

15

to understand the meaning of the data attributes, [66] employed the following four heuristics:

Heuristic 1: Match form element labels to data attributes. The search form of a Web

site through which users submit their queries provides a sketch of the underlying relational

database of the Web site. If we make the assumption that the Web site designers try their best

to answer user queries with the most relevant data, keyword queries submitted through one

specific form element will re-appear in the corresponding attribute values of the data objects.

Therefore for each form element with its keyword queries, if the keywords mostly appear in

one specific column of the data table, then we can assign the label of that form element to

the column.

Heuristic 2: Search for voluntary labels in table headers. The HTML specification defines

some tags such as <TH> and <THEAD> for page designers to voluntarily list the heading for

the columns of their HTML tables. Moreover, those labels are usually placed nearby the data

objects. Therefore, the HTML code near (usually on the top of) the contained data objects

is examined for possible voluntary labels. We need to augment header using an ontology, i.e.,

representative terms of a domain. In many situations the table header alone is not enough

to describe the semantics of that table. Another approach is then used, namely: the table

header is used to extract the corresponding concept from the domain ontology and search for

that concept and all related synonyms in the text.

Heuristic 3: Search for voluntary labels encoded together with data attributes. Some Web

sites encode the labels of data attributes together with the attribute values. Therefore, for

each column of the data table we try to find the maximal-prefix and maximal-suffix shared

by all cells of the column and assign the meaningful prefix to that column and the meaningful

suffix to the column next to that column as the labels.

Heuristic 4: Label data attributes in conventional formats. Some data have a conventional

format, e.g., a date is usually organized as “dd-mm-yy”, “dd/mm/yy”, email usually has the

symbol “@”, price usually has the symbol “$”, etc. Thus, such information is used to recognize

the corresponding data attributes. Note that the form elements and the data attributes do

not need to be perfectly matched. Therefore, the label assigner may NOT be able to assign

meaningful labels to all of the data attributes. DeLa also allow users to add a label to

16

unassigned attributes and to modify the assigned labels. DeLa demonstrated the feasibility

of heuristic-based label assignment and the effectiveness of the employed heuristics, which set

the stage for more fully automatic data annotation of Web sites.

2.5 ODE

[63] presents Ontology-Assisted Data Extraction, a complete Data Extraction workflow sys-

tem. The algorithm labelAssignment shown below is used to find the label sequence with

the largest probability.

Algorithm 2 labelAssignment()
1: Assign labels for d1, find top k labels with largest probability, set s1j , 1 ≤ j ≤
k accordingly

2: for i = 2 to n do
3: for j = 1 to k do
4: Assign labels for di, given s(i−1)j as previous label sequence, and
5: append each label to sij to make a new sequence
6: end for
7: Find k label sequences with the largest probability from the newly generated
8: label sequence and set sij 1 ≤ j ≤ k, correspondingly
9: end for

10: Label the data value using the label sequence sn1, which has the largest probability

2.6 ViPER

Visual Perception-based Extraction of Records (ViPER) mainly developed two heuristics,

inter-column label assignment heuristics and inner-column label assignment heuristics, to

assign column label to data items [61].

2.6.1 Inter Column Label Assignment

[61] have considered three types of fix column inter relations which refer to label assignment

strategies: left-to-right, right-to-left and in case of vertical orientations up-to-down assign-

ment. Given a fix column Ci with data item s and its predecessor column Ci−1 and successor

column Ci+1, it tests whether there exists data items from column Ci−1 or Ci+1 which are

rendered in the same horizontal axis with respect to the bounding box of s.

17

2.6.2 Inner Column Label Assignment

Columns are scanned for fix non-numerical sub-tokens appearing in each of the merged token

trees. Suppose a field value appears as “Save: $10.00 (13%).” The fix token here (save:),

which is not numeric type, is removed from individual rows and added as label.

In addition to the above two heuristics, [61] also advocates for column splitting, basically

based on repeated prefix string. We may also use ontologies to improve text segmentation.

For example, if we know that the term “Canon” appears only in the “Manufacturer” field and

“8MP” appears only in the “Mega pixels” field, we can split “Canon X300 8MP” into two

text segments, thereby adding more semantics on the labeled data.

2.7 Multi Annotator

[52] have proposed a multi annotator approach to tackle the annotation problem with each

basic annotator exploiting a different type of features. Multi annotator approach first aligns

the data units into different groups such that the data in the same group have the same

semantics. Then for each group, they annotate it from different aspects and aggregate the

different annotations to predict a final annotation label. [52] have defined six basic annotators

to label data units, with each of them considering a special type of patterns/features: Table

Annotator; Query-based Annotator; Schema value Annotator; Frequency-based Annotator;

In-text prefix Annotator and Common knowledge Annotator. Some of the basic annotators

they use are also used by DeLa. However, their work differs significantly from DeLa. First,

the data alignment method is not based on HTML tag tree. Instead, they utilize new features

that can be automatically obtained from the result page including the content and data types

of the data units. Second, it uses both the local interface schema (LIS) as well as an integrated

interface schema (IIS) of multiple Web databases of the same domain, whereas DeLa uses

only local interface schema. Third, they use a probabilistic model to combine the results of

different annotators while it is not clear how the heuristics in DeLa are combined. They report

that every annotator contributes positively to the overall performance of labeling. They also

illustrate how the use of the integrated interface schema can help alleviate the local interface

schema inadequacy problem and the inconsistent label problem.

18

2.8 Comparison with other Annotation Tools

In the following, we compare our work with some other tools that have been reported in

the literature. [36] addresses the issue of semantic annotation using horizontal and vertical

contexts. Horizontal context look for information left to and right to the targeted instance.

Our label assignment is based on left horizontal context only. This approach is sufficient

specially for DSC columns. We have found that right horizontal context may be appropriate

for numeric column (example from Hotel domain: 5 BR (BR refer to Bed Room)). [68]

reports extracting data from lists and grouping them by rows and columns. They perform list

data extraction in two procedures: separator selection and clustering based list extraction.

Clusters indicate columns of the list. Our work post process the clusters and assign suitable

label for the columns. [37] reports fully automatic Web data extraction tool ViPER. They

have introduced the notion of user vocabulary that has been inspired by the idea of social

bookmarking. Their annotation/labeling process is manual, i.e., user has to indicate which

tag will belong to which column. Using our method the labeling process can be made fully

automatic. [45] report MSAA (Multi-Source Automatic Annotation) using 4 types of validate

queries: “C : instance”; “C = instance”; “C (instance)” and “C instance”. The last validate

query is the same as ours “L V” pattern. We have reduced the number of validate queries

from four types to one and still our solution is very promising. As our target is free text Web

pages, we believe that label value co-occur as “L V”, i.e., in free text Web page this is the

most dominant pattern.

2.9 Misc. Related Work

[27, 31] have suggested a different approach to the problem of schema matching, one which

may work better for the heterogeneous HTML tables encountered on the Web. Embley et

al. have transformed the table location problem and the schema matching problem into an

extraction problem by making use of so-called extraction ontologies and inferred the semantic

correspondence between a source table and a target schema. [54,55] have shown an approach

Tartar for automatic table data annotation.

19

[50] report five heuristics for Local Label Assignment. Out of five heuristics, four heuristics

are the same as DeLa heuristics, one new heuristic they introduced is as follows: search for

labels in source code, basically to look for a label in the Cascading Style Sheet (CSS) code.

But there is no guideline as how far from data value we will look for a label in the CSS code,

the heuristic seems not to be very useful. Their notion of Global Label Assignment is similar

in vision as ours, i.e., look for labels in other data sources.

[11–14] in a bid to uncover the relational Web have presented WebTables. In the

project they extracted 14.1 billion HTML tables from several billion page portion of Google’s

general purpose Web crawl and estimated that 154 million of these tables contain high-quality

relational-style data. According to their finding, the number of columns are in the range

2, . . . , 9, which comes from more than 55% of the tables. We will make use of this range figure

in the complexity analysis of our algorithm Lads in Section 3.8. Related recent published

works in our research group are as follows: [9, 10,18,28,39,40,44,62].

20

CHAPTER 3

COLUMN NAME IDENTIFICATION

This chapter discusses our main contribution for the thesis, autonomous label assignment

for wrapper generated tables. We have developed an algorithm, Lads, which can holistically

assign label for tabular Web document. We classify Web tables into three categories: disjoint

set column (DSC), repeated prefix/suffix column (RPS) and numeric column (NUM). Our

algorithm, Lads, yields very promising results for labeling disjoint set columns [5], [2].

3.1 Problem Statement

We want to give a database abstraction for the Web and treat each Web page as relation.

Relation has column names but Web table may or may NOT have column names. Given a

Web table, how to label the columns with different terminology?

Structured Web databases can be queried via query forms or through Web service inter-

faces. We uniformly refer to both access methods as “query interfaces.” Through query inter-

faces, data consumers (e.g., end users) are able to express their information needs (IN) by im-

posing selection conditions on certain attributes of interest. Our system views a Web database

as a single relational tableDB with a set of queriable attributesAq = {attrq1, attrq2, . . . , attrqn}

(query interface schema) and a set of result attributes Ar = {attrr1, attrr2, . . . , attrrm} (re-

sult schema). Each attrqi ∈ Aq represents the queriable attribute through the query interface,

while the result attributes attrrj ∈ Ar correspond to the attributes displayed in the result

pages. We define Query Condition as follows.

Definition 3.1.1 (QC) A Query Condition (QC) is a 3-tuple: {L,Ξ,V}, where L, Ξ and V

are set of labels, relational operators and instance data values respectively. Ξ is any relational

operator such as =,≤,≥, 6= etc. ♦

Each Query Condition can be modeled using SQL syntax as:

SELECT {attrr1, attrr2, . . . , attrrm}

21

FROM DB

WHERE attrq1 = valq1, attrq2 = valq2, . . . , attrqn = valqn

where valqi is the corresponding attribute value filled into the query form. We model the

dynamic Web site as S ⊆ Q×R, where Q is the query interface schema and can be represented

as Q ⊆ F × P and R is the result schema, can be represented as R ⊆ L × V [46]. The

semantics of the above definition are as follows: we have a set of Web form labels F and a

set of corresponding parameters P. In response to the query submitted in Web form, we will

have tabular data which will have a set of values V. The label L of the values V may or may

NOT be present in the Web page. The following Figure 3.1 depicts the overall scenario of

the problem that we are going to model and address. Our model assumes that in response to

Figure 3.1: Deep Web Database Abstraction Model

user query submitted in Web form, we will have tabular Web data. Actually according to a

literature survey, the depth of a document is about five, i.e., in order to find actual tabular

Web data, we have to navigate about five links/forms.

Suppose a user wants to purchase computer network switch. In order to illustrate our

model, we present the following tables: 3.1, 3.2 and 3.3 from comparison shopping sites

www.shopping.com, www.pricegrabber.com and www.ebay.com. Due to space limitations, we

choose only to show the tables as anonymous datasets. Readers should be convinced that the

tables have been extracted from hidden Web by filling in Web form from the respective Web

sites. Using our method we can efficiently label the columns A1 and A2 as brand and model

respectively.

22

Table 3.1: Anonymous datasets about computer network switch

A1 A2 A3 A4 A5 A6

D-Link DGS-2208 8-port 10/100/1000 4.5 stars $38.79
Linksys EG005W 5-Port 10/100/1000 4 stars $38.99
Cisco WSC2960G48TCL 48-port 1000 $3090.00

Table 3.2: Anonymous datasets about computer network switch, src: shopping.com

A1 A2 A3 A4 A5 A6

D-Link DGS-2208 8-port 10/100/1000 3 stars $30 - $80
Linksys EG008W 8-Port 10/100/1000 3.5 stars $60 - $100
Cisco WSC296024TTL 24-port 1000 $500 -$1,922

Table 3.3: Anonymous datasets about computer network switch, src: ebay.com

A1 A2 A3 A4 A5 A6

D-Link DGS-2208 8-port 10/100/1000 $58.31 25d 23h 51m
Linksys EG008W 8-Port 10/100/1000 $54.99 9d 5h 1m
Cisco WSC296024TTL 24-port 1000 $2739.99

3.2 Motivating Example

The problem of column name identification degenerates to finding labels extracted from Web

form labels as well as from user SQL query variables, then associating the extracted labels to

the attributes in anonymous datasets extracted by Web wrappers. Once the labels have been

identified, then assign the labels to the tabular data to assign column label. The problem

is how to relate a label to the data value instances of an output Web page table? In other

words, given a set of data values (homogeneous), how to come up with a suitable name/label

for the data values? Example: given { Toyota, GM, Ford, Fiat, Honda}, assign label of the

data as make. Another example: given { 2000, 1999, 1980 }, assign label of the data as year.

More examples: given {Apple,Orange,Banana}, assign label of the data as fruit. One more

example is as follows: given the set containing {India, Pakistan, USA,UK}, then it has to

be labeled with the category country name.

In response to user query Q submitted in the Web form F , we will have tabular data T .

Semantic enrichment of the tabular data will be made semi-automatically and through human

knowledge. One of the major fundamental research problem is how to find L, given Q,F ,P

and V. Lets consider the following motivating example.

23

Example 3.2.1 (Motivating Example 1) Consider the following user SQL query for

the site S1, i.e., http://www.amazon.com

SELECT Title, Rating

FROM Site S1

WHERE Title like "Discrete Mathematics"

AND Rating=5;

♦

amazon.com site shows results pages, one example as Discrete Mathematics by Kenneth Rosen,

but there is no label as title, which is understood by user from the context.

3.3 Labeling

Labeling is mostly interesting at the result interface schema (RS). The main task for a wrap-

ping tool on result level is to identify dynamic content (values) and to assign a suitable label

to all content items. The latter use-case is called Labeling. Labeling use case is based on the

identification of a concept-instance relationship. The distinguishing between static structure

(i.e., labels are invariant) and dynamic content (i.e., data values are variant) is done by wrap-

ping tools such as RoadRunner, PickUp, FastWrap. The assignment of a suitable label

is an open problem, which we will solve by using a series of steps including Web knowledge.

Both the sets, the label set L (for example BAMM datasets [42]) as well as the value set

V (for example RoadRunner datasets [43]) are known – the task of the label assignment

function µ is to identify correspondence between li ∈ L and vj ∈ V. A knowledge source can

be applied in this scenario as a ranker among different relationships. Thus a Web knowledge

source is queried with each possible pair (li, vj) in order to get a measure for the probabil-

ity of this semantic relationship. Best knowledge sources for this use case are Web search

engines or Web encyclopedia due to their huge amount of information content including in-

stances. A probability measure can be derived approximately from the number of results the

knowledge source delivers. The main idea herein is to approximate semantics by considering

information about the statistical distribution of certain syntactic structures over the Web.

The ontological instance in question is then annotated semantically according to a principle

24

of maximal evidence, i.e., with the label having the largest number of hits. Let’s assume that

Figure 3.2: Statistical distribution of ‘is a’ patterns for Washington

the string ‘Washington’ appears in a Web table and we have no idea about how to annotate it.

Figure 3.2 shows the Google hits for the following four expressions: Washington is a State,

Washington is a Capital, Washington is a University, Washington is a President. The best k

candidate labels are then presented to the user to choose the label that fits. Intuitively, given

this figure 3.2, we would naturally tend to annotate Washington as a state as it seems to be

its main meaning on the Web. This idea can be traced back in the seminal work Pointwise

Mutual Information for Information Retrieval (PMI-IR) by Turney (2001) [65]. We have done

some experiments with Web search engines such as Google, Yahoo and MSN. The details are

discussed in the section Affinity Based Speculative Labeling.

Let’s consider another example. Suppose we have to label/annotate ‘Michael Jordan’ to

one of the following professional categories: {BasketballP layer, Footballer, Politician}. We

25

Table 3.4: Possible labels for different Domain

Domain Manually selected labels

Book Title, Author, Price, ISBN, Publisher, Publication Date
Automobile Make, Model, Price, Year, Mileage, Color
Music Artist, Title, Album
Movie Actor, Director, DirectedBy, Film, Movie, Title
Watch Band, Brand, Display, Gender, Model, Price
Political President, VP, Party, Senator, Governor
Demographic City, County, Country, Population, Capital
Athlete Name, Gender, DOB, Country, Discipline
Research Publication Title, Author, Date, Journal, Conference, Publisher, Pages, Volume
Digital Camera Brand, Model, Series, Color, Type, Image Sensor, Megapixel, Zoom
Online Social Network Name, Email, Education, Employment, Gender, Age, Country, City, Hometown, Zip
Product Information Brand, Model, Merchant, Type, Attribute

can issue a number of search queries as follows: Michael Jordan (Basketball Player), Michael

Jordan (Footballer), Michael Jordan (Politician). This is exactly the disambiguation and

representation strategy used in WikiPedia. So our approach is not a brand new one, but we

are tailoring it to label columns on the fly to facilitate Web data integration.

3.3.1 Example of Candidate Set of Labels

Each site will have a predetermined set of labels, which represent the search capabilities in

a site (in our case those will be extracted from Web form labels as well as from user SQL

query variables), those will be used to label the anonymous datasets. We consider the set of

potential labels as controlled vocabulary for the domain of interest. It is like an ontology that

will provide a common vocabulary to support the sharing and reuse of knowledge, which has

schema only, not any instances of data. We consider the labels as a set of lexical tokens or

terms. Also note that we are going to label a single Web table at a time. Labels are useful

for building concept taxonomies (like age which can be infant, adolescent, old etc). Table 3.4

shows the candidate set of labels by which we have done our experiment. Our laborious method

of column labeling will help to build an ontology, which is useful in intelligent information

integration [1], later can help users to write queries. We will discuss these issues further in

the section Candidate Label Selection.

26

3.3.2 Language Patterns

The rationale for using language patterns is that certain English text fragments indicate

semantic relationships between terms. First, Hearst has applied regular expression patterns

indicating lexico-syntactic patterns [34] for extraction of semantic relations from the text.

Her underlying idea is very simple and can be easily applied to the Web to derive relational

information from the Web. Normal regular expressions capture recurring expressions and map

the results of the matching expression to a semantic structure, such as taxonomic relations

between concepts. Cimiano and Staab [22] have used these patterns in their system PANKOW

(Pattern-based ANnotation through Knowledge On the Web) in context with Google in order

to annotate Web pages. The PANKOW system uses the number of pages returned by Google

in order to classify a specific concept from a given ontology. They have extended the work in

C-PANKOW. Useful patterns reused from Hearst in our labeling context are the following:

P1 <L> <V>

H1 <L>s such as <V |L’>

H2 such <L>s as <V |L’>

H3 <L>s, (especially | including) <V |L’>

H4 <V |L’> (and | or) other <L>s

D1 the <V |L>

D2 the < L|V >

A <V |L’>, a <L>

C <V |L’> is a <L>

“L V” patterns have previously been used in OntoBuilder [32] to find labels in Web forms.

The Idea was that the annotation of objects either precede them or are above them as in

tables, and never below or behind. And we are exploiting that observation. The above

patterns would match the following expressions:

artist Miles Davis (P1)

artist such as Miles Davis (H1)

album such as Kind of Blue (H1)

such albums as A Love Supreme (H2)

27

artists, especially Miles Davis (H3)

John Coltrane and other artists (H4)

the Kind of Blue album (D1)

the album Kind of Blue (D2)

3.3.3 Labeling Algorithm

Before presenting the algorithm, the following definition of Speculative Query will be helpful

to make understand how we pose queries to Web search engines.

Definition 3.3.1 (Speculative Query) A speculative query consists of 3 parts: {L,P,V},

where L, P and V are set of labels, patterns and instance data values respectively. ♦

In order to overcome the limitation of keyword based search paradigm, we formulate specula-

tive queries to Web search engines as exact phrase matching. Example: “artist Miles Davis”

is a speculative query.

Assume we are given wrapper generated anonymous datasets. The step by step procedure

to solve the labeling problem in our context is as follows:

• Step1: Extract label from Web form (refers to work in HiWE [56] and labelEx [53]) as

well as from user SQL query variable (select clause)

• Step2: Formulate and execute speculative queries to Web search engines (e.g., Google,

Yahoo and MSN)

• Step3: Prune and rank results (i.e., compute statistical fingerprints) [22]

The following screen shot figure 3.3 shows the advanced book search option of amazon.com.

The set of labels that can be extracted from the Web form are:

{Keywords,Author, T itle, ISBN,Publisher, Subject}

Also, we wish to capture labels from user SQL query variable. An example is as follows:

SELECT Title, Rating

FROM amazon.com

28

Algorithm 3 LADS: Labeling Anonymous Datasets
INPUT
L(1 . . .m) : A set of labels
A(1 . . . n) : A set of anonymous attributes
Precondition m > n
P(1 . . . k) : A set of patterns
V(1 . . . t, 1 . . . n) : Tabular Data V alue
VARIABLE
N : Google hit counts
H(1 . . . n, 1 . . .m) : 2D array to store hit counts
R→ 1 . . . t Random indexes between 1 . . . t generate one time
Formulate Speculative query : L× P × V → N
for i = 1 to n do
H[i][1..m] = 0
for each r ∈ R do
iV alue = Vri

for j = 1 to m do
lV alue = L[j]
for p = 1 to k do
QueryV ar = lV alue+ P [p] + iV alue
N ← GoogleExecuteQuery(QueryV ar)
H[i][j]+ = N

end for
end for

end for
end for
for i = 1 to n do
Let z be index(1..m) of highest count in H[i][1..m]
A[i] = L[z]

end for

WHERE Title like "Discrete Mathematics"

AND Rating=5;

By analyzing the advanced search option of amazon.com site, we see that the Title attribute

can be mapped to query Interface Schema (IS), whereas the Rating attribute can be mapped

to Result Schema (RS). For the above SQL query example with the query Interface that are

available in the amazon.com site, user query can be satisfied only for the Title attribute,

NOT for the Rating attribute. Consequently, the user will see a lot of tuples containing all

the Ratings returned in response to query, whereas she may only be interested to see records

corresponds to Rating 5. The above phenomena leads to what we called local interface schema

29

Figure 3.3: Web Form Interface

inadequacy problem, i.e., for the above example, amazon.com site can NOT take Rating as

an input parameter to be submitted in the Web form, whereas from book search result page,

Rating can be found. The following definition of Local Interface Schema (LIS) will be helpful

to clarify the concept.

Definition 3.3.2 (LIS) Local Interface Schema (LIS) is a set of attributes. For a Web

database, the query form often contains some attributes of the underline database. ♦

Formally, we denote a local search interface schema (LIS) as Si = {F1, F2, . . . , Fk}, where

each Fj is a Web form label attribute. When a query is submitted against the search interface,

the entities in the returned results also do have a certain “hidden” schema, denoted as Se =

{f1, f2, . . . , fn}, where each fj(j = 1, . . . , n) is an attribute to be discovered. Note that this

“hidden schema” is NOT the same as hidden attributes that are invisible on a query interface

that have fixed values assigned to them in each query [59]. The schema of the retrieved data

30

and the interface schema usually share a significant number of attributes. Therefore, if an

attribute ft in the search results does have a matched attribute Ft in the LIS, all the data

units identified with ft can be labeled by the name of Ft. However it is often the case as in

our SQL user query example above that Se is not entirely contained in Si. Therefore we are

in need of IIS and AMT which are defined as follows.

Definition 3.3.3 (IIS) Integrated Interface Schema (IIS). For Web databases belonging to

a given domain, IIS contains all the information of each LIS. That is through schema mapping,

we can integrate each LIS into a holistic IS. ♦

Definition 3.3.4 (AMT) Attribute Map Table (AMT) Let X be the set of attributes in

LIS, and Y be the set of attributes in IIS. Then AMT ⊆ X×Y such that a condition θ holds,

is called an Attribute Map Table. ♦

Intuitively, AMT contains all mapping relationships between IIS and LIS.

We have manually computed candidate set of labels for 4 domains: Book, Automobile,

Movie and Music (BAMM) from UIUC Web data integration repositories [42]. We have

shown the set of labels in the table 3.5. The datasets have been crafted from around 50

deep Web sources. The candidate set of labels for the above mentioned 4 DOMAIN can be

thought to be robust and satisfies most user queries. Again, the user is free to pose queries

to site using her own set of labels. It is our argument that what the user will choose as input

candidate labels are nothing but a variant of what the SYSTEM has in its knowledge base

(i.e., label library [64]), i.e., the user supplied labels can be some ontological variation of the

SYSTEM’s label: e.g., isA, synonym and part-of relationship. Our assumption for the above

is also supported by schema dictionary that defines the mapping relationship between each

column in instance lib with the labels in schema dictionary [50]. However in the absence

of IIS and AMT, there will be no label in the search interface that can be assigned to the

discovered data units of this Rating attribute, then the only hints to label the attribute is to

extract label from the user SQL query variable. The set of labels that can be extracted from

user SQL query variable for the above example is {Title, Rating}.

31

Table 3.5: Manually computed set of labels, source: BAMM datasets

Domain Manually computed labels

Book Title, (Author, First Name, Last Name), Subject, Price, (Publish,
Publisher), Category, (Format, Binding), Publication Date, ISBN,
Keyword

Automobile Make, Model, Price, Year, Mileage, Color, (Class, Type, Style, Cate-
gory), (Zip Code, Area, State)

Movie Title, (Actor, Artist), Director, Format, (Type, Genre, Category),
(Star, Rating), (Cast/Crew, People), Price, Studio, Keyword

Music Artist, Album, (Song, Title), Style, Soundtrack, Band, Genre, Label,
Catalog number, Category, Keyword, Format

Our label selection function σ will prepare the final candidate set of labels L by taking the

union of all the sources: Web form label tag F and user query variable Q. Thus L ⊆ F ∪Qs.

Sub index s refer to user SQL query variable in select clause.

3.3.4 Probabilistic Labeling of Anonymous Datasets

An anonymous datasets are a structured collection of data in which descriptive labels for

similar objects are missing, e.g., table 3.6 shows anonymous datasets about music, collected

from www.allmusic.com. These datasets are a prototypical example of the output produced

by most of the state-of-the-art wrappers for Web data extraction. Note that the data has

a well defined although semantically poor schema R(A1, A2, A3, A4), also all the anonymous

attributes Aj have well-defined domains (e.g., A1 contains artist names, A2 contains album

names, A3 contains year and A4 contains user rating). We assume that the domains Dj , i.e.,

semantic type of the data value instances of Aj are pairwise disjoint i.e ∀i,j Di ∩ Dj = φ.

Based on the above ideas, we provide the following definitions of Unannotated Table (UT)

and Disjoint Set Column (DSC).

Definition 3.3.5 (UT) Unannotated Table (UT) is a relation R(A1, A2, . . . , An) where the

descriptive labels for similar objects in a column are missing. ♦

Table 3.6 is an example of an Unannotated Table.

Definition 3.3.6 (DSC) Disjoint Set Column (DSC) in an Unannotated TableR(A1, A2, . . . , An),

each anonymous attribute Aj is of domain (i.e., semantic type) Dj such that ∀i,j Di∩Dj = φ.

♦

32

Example in table 3.6, A1 contains artist names, A2 contains album names, they are Disjoint

Set Column (DSC). We categorize columns into three types: Disjoint Set Column (DSC),

Repeated Prefix/Suffix Column (RPS) and Numeric Column (NUM). Below we formally define

the RPS and NUM.

Definition 3.3.7 (RPS) Repeated Prefix/Suffix Column (RPS) in an Unannotated Table,

R(A1, A2, . . . , An), if all the instance data values in an anonymous attribute Aj contains the

same prefix or same suffix, then the column is said to be Repeated Prefix/Suffix Column

(RPS). ♦

Example in table 3.6, A4 contains stars, it is Repeated Prefix/Suffix Column (RPS)

Definition 3.3.8 (NUM) Numeric Column (NUM) in an Unannotated Table, R(A1, A2, . . . , An),

if all the instance data values in an anonymous attribute Aj contains more digits 0, 1, . . . , 9

than characters i.e., a, b, . . . , z, then the column is said to be a Numeric Column (NUM). ♦

Example in table 3.6, A3 contains 1959, it is Numeric Column (NUM).

To reduce the computational complexity, we employ a random sampling function ψ, which

given an UT T , returns a subset of it T ′, ψ : T 7→ T ′, where T ′ ⊂ T . In our experiment, the

function ψ returns random records. We choose to do our experiment with 1, 3, 5, 7, 9 number

of random records T ′ from T . In order to label anonymous datasets R(A1, A2, . . . , An), we

are in need of a candidate set of labels L. Then we apply our label assignment function µ,

which takes as parameter T ′ and a candidate set of labels L and the function will assign label

for A1, A2, . . . , An, i.e µ : (T ′,L) 7→ A1, A2, . . . , An, where ∀1≤i ≤ n Ai ∈ L.

The labeling problem which we deal in this research is that of assigning descriptive labels

for anonymous datasets. In doing so, we employ our ω, σ, ψ and µ functions. The function µ

uses Web search engines hit counts to measure the probabilities which we will discuss more in

detail in the section Affinity Based Speculative Labeling. Labeling problem can be solved in

two steps: finding a good candidate set of labels, i.e., σ function and finding the best matching

between labels and the anonymous attributes, i.e., µ function.

33

Table 3.6: An anonymous datasets about music, containing a single relation R

R A1 A2 A3 A4

Miles Davis Kind of Blue 1959 5 stars
John Coltrane A Love Supreme 1964 5 stars
John Coltrane My Favourite Things 1960 4.5 stars

3.3.5 Affinity Based Speculative Labeling

Let R(A1, A2, . . . , An) be a relation on n anonymous attributes A1, . . . , An, where each Aj is

of domain (i.e., semantic type) Dj and domains are pairwise disjoint. Assume we are given an

instance of R with t tuples and a set L = {l1, . . . , lm} with m candidate set of labels (m > n).

Our goal is to assign to each Aj a label li ∈ L which is the best descriptor for attribute Aj .

There are two challenges in finding good labels for anonymous datasets. First, we need a

way of measuring how well a labeling R → Ln describes the domains of the attributes in R.

Second, the cost of the labeling algorithm must not be too high. We note here in passing that

the labeling problem can be rephrased to finding a maximum-weight matching in a complete

bipartite graph G(V,E) where the vertex sets are the columns in R and L respectively and

the weight of each edge (Aj , li) indicates how well li describes Aj .

Computing Label Attribute Affinities According to Baysian probability P (li|Aj) =
P (Aj |li)P (li)

P (Aj)
Thus, we need to estimate P (Aj |li) and P (li) in order to compute the affinity

between li and Aj . P (Aj) is a normalizing factor and can be ignored for all practical pur-

poses. Intuitively, the prior probability P (li) captures the users’ preference for the label li

regardless of its affinity with any of the attributes. We assume P (li) to be 1 in this research.

More formally, we have established in line with the probabilistic foundations [57], [26] that

P (li|Aj) ∝ P (Aj |li). We estimate the true affinity between labels and values by submitting

speculative queries to popular Web search engines. A speculative query is a statement saying

that a given label li is a good descriptor for attribute Aj . We use the number of documents

that the Web search engines classify as relevant answers for that query to estimate the prob-

abilities above. We have used Web search engine’s hit counts based on first time success,

meaning if the search engine returns some hit counts value we use it, otherwise sometimes a

Web search engine asks questions that the query did not produce any results, whether the user

34

wants to formulate query without quote etc. For those cases, we assume the hit counts to be

zero.

The intuition behind speculative queries is as follows. If label li is a better match for

attribute Aj than label lk, a Web document D containing high quality information about an

instance of Aj is more likely to refer to li than to lk. The following two definitions will be

helpful to clarify the use of speculative queries to find Label Attribute Affinity.

Definition 3.3.9 (Document Count (DC)) The Document Count of a query expression

e, denoted DC(e), is the number of documents relevant to e according to a given Web search

engine. ♦

Definition 3.3.10 (LAA) Given an unannotated table R(A1, . . . , An) and a candidate set

of labels L = {l1, . . . , lm}, the Label Attribute Affinity betweenAj and li, denoted LAA(Aj , li),

is defined as

LAA(Aj , li) = P (Aj |li) =
1
|Aj |

|Aj |∑
x=1

DC(li ∧ vx)∑m
y=1DC(ly ∧ vx)

♦

where [Aj] is the active domain of Aj , and vx ∈ Aj . The active domain of an attribute is the

set of distinct values for the attribute that are used in the actual database instance. We write

li ∧ vx to denote the speculative query asserting that label li and value vx ∈ Aj are likely to

appear together in a Web document.

This section describes our implementation of the labeling method and our strategy to

formulate speculative queries. We illustrate the discussion using the anonymous datasets in

table 3.6 and a candidate set of labels L = {artist, title, album}. Speculative query li ∧ vx

formulates the hypothesis that li is a class of objects of which vx is a member. The first

question that arises is how to formulate such a hypothesis using the keyword-based search

paradigm currently in use in all major popular Web search engines. Our answer is that we

use speculative query to Web search engines. Table 3.7 compares the number of results

of speculative queries using the phrase approach, which uses speculative queries asking for

documents containing a phrase formed by label and value (e.g., “artist John Coltrane”). Table

3.8 shows the affinity between the labels and anonymous attributes, computed as in definition

35

Table 3.7: No. of answers to speculative queries among different search engines

Label Value Google Yahoo MSN

artist Miles Davis 53700 78900 27500
title Miles Davis 1930 3550 704
album Miles Davis 15800 15600 4560
artist John Coltrane 28700 44200 10100
title John Coltrane 3400 1150 1410
album John Coltrane 553 6180 1220
artist Kind of Blue 102 104 73
title Kind of Blue 715 697 323
album Kind of Blue 15400 36000 7660
artist A Love Supreme 7 0 44
title A Love Supreme 814 465 274
album A Love Supreme 10500 1150 3160

Table 3.8: LAA Based on Different Search Engine Result

Probability Google Yahoo MSN

P(A1| artist) 0.8153 0.8311 0.8163
P(A1| title) 0.0655 0.029 0.0658
P(A1| album) 0.0194 0.1395 0.1174
P(A2| artist) 0.003 0.001 0.0108
P(A2| title) 0.0579 0.1534 0.0593
P(A2| album) 0.9358 0.8451 0.9296

LAA, using the DC values in table 3.7. From table 3.8, we label anonymous attribute A1

to be artist (with 81% probabillity) and A2 to be album (with 93% probability) (probabilities

computed by Google hit counts).

From table 3.8, we see that there is an ordered rank list of probabilities associated with

each label li to an anonymous attribute Aj . Therefore we need to prune the results by what

we so called Statistical Fingerprints. The details of mathematical and logical foundation of

Statistical Fingerprints are discussed in the following section.

3.4 Statistical Fingerprints

In the previous section, we have employed Hearst’s pattern to formulate speculative queries

to Web search engines. In our approach, rather than actually downloading Web pages for

further processing, we just take the number of Web pages in which a certain pattern appears

as an indicator for the strength of the pattern. Given a candidate entity we want to classify

with regard to an existing ontology, we instantiate the above patterns with each concept from

the given ontology. For each pattern instance, we have queried Google, Yahoo and MSN to

36

get the number of documents that contain it. The function ‘count’ models this query.

count : L× P × V → N

Thereby, V, L and P stand for the set of all entities to be classified, for the labels from a

given ontology and for a set of pattern schema, respectively. Thus, count(l, p, v) returns the

number of hits of pattern of the pattern schema p instantiated with the entity v and the label

l. Further we define the sum over all the patterns conveying a certain relation r:

countr(v, l) =
∑
p∈Pr

count(l, p, v)

where Pr is the set of pattern schemas denoting a certain relation r. Now we formally define

the statistical fingerprint of an entity v with respect to a relation r and a set of labels L:

SF (v, r, L) := {(l, n)|l ∈ L ∧ n = countr(v, l)}

Further, instead of considering the complete statistical fingerprints, we consider views of these

such as defined by the following formula. The first formula defines a view of the statistical

fingerprint which only contains the concept with maximal number of hits.

SFmax(v, r, L) := {(l, n)|l := argmaxl′∈Lcountr(v, l′) ∧ n = countr(v, l)}

Further, we extend this to consider the top m concepts with maximal count:

SFm(v, r, L) := {(l, n)L =
{
l1, l2, . . . , l|L|

}
∧

countr(v, l1) ≤ . . . ≤ countr(v, l|L|)∧

l ∈ {l1, . . . , lm} ∧ n = countr(v, l)}

(if m ≤ |L|) Finally, we also consider a view only taking into account those concepts having

hits over a certain threshold θ, a value of 100 seems reasonable as per the experimental result

reported in the literature.

SFθ(v, r, L) := {(l, n)|countr(v, l) ≥ θ ∧ n = countr(v, l)}

37

Table 3.9: Sample anonymous datasets from Watch domain, source wristwatch.com

A1 A2 A3 A4 A5

Armani AR5447 Ladies Stainless steel bracelet $195.00
Seiko SDWG32 Men Stainless steel Butterfly clasp $400.00
Longines L51580966 Petite Stainless steel bracelet $1,700.00
Casio DW5600E1V Men Plastic, black $70.00

We can now combine these views by set operations. For example, we yield the set of the m

top concepts having hits over a threshold θ as follows:

SFm,θ(v, r, L) = SFm(v, r, L) ∩ SFθ(v, r, L)

We report here some typical Statistical Fingerprint (SF) computed for some attributes from

Watch domain anonymous datasets as shown in table 3.9 (source: www.wristwatch.com).

The corresponding Statistical Fingerprints (SF) are shown in figure 3.4 and 3.5. From

Figure 3.4: Statistical Fingerprints for Armani and Longines

38

Table 3.10: Hits count to annotate A1 Label

Label Value Google Yahoo MSN

band Armani 520 391 155
brand Armani 32200 490000 32000
category Armani 1140 24800 15700
condition Armani 221 181 63
description Armani 2510 1650 720
display Armani 560 170 192
gender Armani 22 33 25
features Armani 642 642 259
material Armani 208 245 121
movement Armani 769 753 86
model Armani 7920 27200 1710
price Armani 8340 17500 2170
price range Armani 7 11 4
savings amount Armani 0 0 0
size Armani 559 664 414
style Armani 7820 34900 3050
title Armani 3720 8250 478
type Armani 1450 1850 363
band Longines 1090 937 455
brand Longines 15200 77900 5620
category Longines 220 258 132
condition Longines 116 94 74
description Longines 500 458 178
display Longines 78 53 63
gender Longines 5 6 1
features Longines 246 143 109
material Longines 51 18 25
movement Longines 866 1140 242
model Longines 2400 1350 184
price Longines 1700 1290 501
price range Longines 1 0 0
savings amount Longines 0 0 0
size Longines 202 132 132
style Longines 442 819 195
title Longines 349 974 132
type Longines 55 59 27

39

Figure 3.5: Statistical Fingerprints for Longines and L51580966

the table 3.10 data and statistical fingerprint, it is clear that Armani and Longines are

instances of brand. Confusion arises when to annotate a less popular attribute value such as

L51580966. L51580966 is a member of the anonymous attribute A2 to which AR5447 is also

a member. We could not obtain any hits for AR5447 from any of the Web search engine

using the phrase approach. Therefore we resort to word approach to Web search engine (e.g.,

“band”, “L51580966”) for this less popular attribute values. We get the following results,

shown in table 3.11. As can be seen from the statistical fingerprints, there are as many as 4

potential candidates to be the label for L51580966. So only the highest 1st and 2nd count is

not enough.

3.5 Minimal Set of Patterns Required to Disambiguate Column Labeling

In this section, we will show that P1 pattern i.e., “L V” label followed by value pattern

alone is enough to disambiguate column labeling. We notice that 10 patterns can be used

40

Table 3.11: Hits count to annotate A2 Label, using word approach

Label Value Google Yahoo MSN

band L51580966 163 289 12
brand L51580966 179 430 48
category L51580966 31 155 40
display L51580966 224 242 29
gender L51580966 69 107 10
features L51580966 89 197 32
material L51580966 116 171 32
movement L51580966 351 515 36
model L51580966 138 415 27
size L51580966 241 474 23
style L51580966 89 205 9
type L51580966 43 109 10

to formulate speculative queries to Web search engines. Our experimental observation is

that only one pattern, viz. “L V” P1 pattern is enough for column assignment. We call it

Discriminative power of Phrase Pattern (P1). We are benefited by the law of diminishing

utility of pattern. We will prove the observation by experimental results. Before going in

detail, out of 10 possible patterns, we choose only 5 of them as follows:

L V (P1)

L such as V (H1)

such L as V (H2)

L including V (H3)

L specially V (H3’)

We have applied the above 5 patterns in Music domain datasets as shown in table 3.6 with

a candidate set of labels { artist, title, album }. We have used array of patterns consistently

as follows:

P1 (1)

P1 +H1 (2)

P1 +H1 +H2 (3)

P1 +H1 +H2 +H3 (4)

P1 +H1 +H2 +H3 +H3′ (5)

Table 3.12 shows the hit counts that we have got from Google. From the table 3.12 data,

we compute the probabilities, defined as LAA, the values are shown in tables 3.13 and 3.14.

From the probabilities as shown in table 3.13 and 3.14, we plot the curve as shown in

41

Table 3.12: Experimental results for different patterns

Label Value 5 4 3 2 1

artist Miles Davis 13777 13777 13777 13656 13500
title Miles Davis 3031 3031 3031 3031 3030
album Miles Davis 7523 7523 7523 7523 7520
artist John Coltrane 13310 13310 13308 13307 13300
title John Coltrane 1680 1680 1680 1680 1680
album John Coltrane 6750 6750 6750 6750 6750
artist Kind of Blue 1060 1060 1060 1060 1060
title Kind of Blue 523 523 523 523 523
album Kind of Blue 14306 14306 14306 14306 14300
artist A Love Supreme 6790 6790 6790 6790 6790
title A Love Supreme 615 615 615 615 615
album A Love Supreme 5680 5680 5680 5680 5680

Table 3.13: Probabilities for Anonymous Attribute A1

No. of Pattern P(A1| artist) P(A1| title) P(A1| album)

1 0.5866 0.101 0.3116
2 0.588 0.1 0.3106
3 0.59 0.1 0.309
4 0.59 0.1 0.31
5 0.59 0.1 0.31

Table 3.14: Probabilities for Anonymous Attribute A2

No. of Pattern P(A2| artist) P(A2| title) P(A2| album)

1 0.2928 0.0399 0.667
2 0.2928 0.0399 0.667
3 0.2928 0.0399 0.667
4 0.2928 0.0399 0.667
5 0.2928 0.0399 0.667

42

Figure 3.6 and 3.7 respectively. From the plot as shown in Figure 3.6 and 3.7, it is clear

Figure 3.6: Probability of A1 for different pattern

that only P1 pattern “L V” is enough to disambiguate column labeling. Mathematically, we

formulate minimal pattern finding problem as follows: we have a set of patterns P, a set of

anonymous attributes A and a candidate set of labels L. We write P L→ A to denote that

P can determine A from a candidate set of labels L. Then in each iteration, as we remove

one pi ∈ P and want to show that ∀p ∈ {P − pi}
L→ A should iteratively hold as long as pi

is redundant. The remaining last set of pi is the minimal set of patterns. Surprisingly, the

solution seems to be as finding key in RDBMS: reduce left hand side, reduce right hand side

and reduce redundancy of Functional Dependency (FD) [60]. In our case, we only need to

reduce left hand side (i.e., patterns).

The above graph (Figure 3.6 and 3.7) also demonstrates that Hearst’s pattern actually

does NOT appear much in Web document exactly. We have noticed a huge hits difference for

queries with or without quote. It is our observation that Hearst’s pattern may appear in Web

documents when we pose queries without quote. But for our labeling context, we need to pose

43

Figure 3.7: Probability of A2 for different pattern

queries with quote for exact phrase matching, consider the following two queries: “artist

Miles Davis” vs “LA is 200 Miles away from California Davis”. If we query without

quote, both the queries will produce hits for Miles Davis. Initially we thought to extend

the Hearst pattern to take care of the other ontological relationship such as synonym, part-of

etc. We were proposing the following lexico-syntactic pattern to complement Hearst pattern:

Synonymous to; Part of; Belongs to; Also known as; A kind of. But as our experimental

results do NOT yield sufficient hits, we give up the idea that the other ontological patterns

will appear much in Web documents.

3.6 Proof by PMI

In the previous section, we have shown the feasibility that “L V” alone is enough to disam-

biguate column labeling. Now we give alternative proof for the same by the solid statistical

method, PMI. Pointwise Mutual Information (PMI) is a measure of association based on

information theory that compares the probability of observing two items together with the

44

probability of observing two items independently. PMI-IR was defined by Turney (2001) [65].

We have found that Web-based PMI statistics can be effective for disambiguating column la-

beling. We re-define PMI(L,V) into our labeling context as follows.

Definition 3.6.1 (PMI(L,V)) Pointwise Mutual Information between a label L and in-

stance data value V denoted as PMI(L,V) is the number of hits for a query that combines the

label L and instance data value V divided by the hits for the instance data value V alone.

PMI(L, V) =
Hits(′′L+ V ′′)
Hits(′′V ′′)

♦

The ‘+’ in the numerator denotes string concatenation, conform to URL encoded string in

the Web search engine. The above definition can be viewed as the probability that “L+V”

will be found on the Web page that contains V. We have applied PMI(L,V) in our labeling

context to estimate which label L has the highest affinity with instance data value V. The

experiment was done with the anonymous datasets from music domain (with candidate set

of labels: artist, title and album) as shown in Table 3.6 on the search engine bing (formerly

MSN and live Search). The results are shown as follows:

Hits(“Miles Davies”) = 7450000

Hits(“artist Miles Davis”) = 2950000

Hits(“title Miles Davis”) = 274000

Hits(“album Miles Davis”) = 1220000

PMI(“artist”, “Miles Davis”) = 0.3959

PMI(“title”, “Miles Davis”) = 0.0367

PMI(“album”, “Miles Davis”) = 0.163

Conclusion: Highest PMI observed for “Miles Davis” is with “artist”, therefore we label

“Miles Davis” to be artist.

Hits(“Kind of Blue”) = 1110000

Hits(“artist Kind of Blue”) = 12300

Hits(“title Kind of Blue”) = 9030

45

Hits(“album Kind of Blue”) = 152000

PMI(“artist”, “Kind of Blue”) = 0.011

PMI(“title”, “Kind of Blue”) = 0.0081

PMI(“album”, “Kind of Blue”) = 0.1369

Conclusion: Highest PMI observed for “Kind of Blue” is with “album”, therefore we label

“Kind of Blue” to be album. Clearly PMI(L, V) 6= PMI(V, L).

3.7 Proof from Probabilistic Model of Weakly Annotated Data

The previous two sections were dedicated for proving that “L V” pattern is sufficient to

disambiguate column labeling. We make use of probability measure defined as Label Attribute

Affinity (LAA) as well as proved by PMI(L,V). In this section, we will be discussing theoretical

proof outline for the same, thanks to [33]. Hasan Davulcu et al. in their system of Baysian

model for improving Weakly Annotated Data (WAD), defined annotations correspond to

ontological role assignments such as Concept, Attribute, Value or Noise. Our labeling problem

correspond to role assignment as Attribute only, i.e., relate label L with instance data value

V.

In this section, we will first present the notations used for the formal description of the

model. We will formally define the problem of re-annotating the labels of a Web page and

present the probabilistic algorithm. Next we will define the missing attribute inference prob-

lem and propose a solution. The notation used for formalization is given as follows:

• The set of all labels in the domain is denoted as L.

• The ontological roles R is the set of Concept, Attribute, Value or Noise. Formally

R = {C,A, V,N}.

• A term is a pair 〈l, r〉 composed of a label l and a role r ∈ R. In other words, terms

are tagged labels in the Web pages. Each label in a web page is assumed to be tagged

with only one of the given ontological roles above.

46

• In this setting, we consider all the labels in each Web page are tagged with roles, hence

we define Web page to be vector of its terms. Formally, assuming m labels in the Web

page W; W = {〈l1, r1〉 , 〈l2, r2〉 , . . . , 〈lm, rm〉}.

• The relational graph G is a weighted undirected graph where the nodes are the terms

in the domain, and the weights on the edges represent the association strength between

the terms.

• In our framework, the context of a label l ∈ L in a Web page W is the web page W

itself.

The nodes G denote the labels with their ontological roles and the edges denote the asso-

ciation strengths between the annotated labels. Node weights are initialized as the counts

of the corresponding terms and the edge weights are the counts of the corresponding edges

in the document collection. Formally, wij which is the weight between the terms i and j is

initialized as the number of times the edge (i, j) appeared in the entire domain. Similarly,

wi represents the weight of the node i and initialized as the occurrence of the corresponding

term in the domain, i.e., term count. Note that the edges are undirected since association

strength between labels is a bi-directional measure.

3.7.1 Label Role Inference

The role of a label depends on its context. This context of a label is intuitively defined to be

its own Web page. The problem of role assignment for each label can now be formally defined

as follows.

Definition 3.7.1 (Role Assignment) Given a Web page W, the probability of a term

〈l, r〉 where l ∈ L and r ∈ R is P (〈l, r〉 |W). ♦

This corresponds to the probability of the classification of l as r to be correct. Then, the role

with the maximum probability will be the role assignment for the particular label l that is,

argmaxrP (〈l, r〉 |W)

47

For simplicity we use the naive assumption which states that,

Assumption 1. All the terms in G are independent from each other but the given term 〈l, r〉

During the role assignment probability calculation of a term, since we would like to utilize

only the label’s context we also assume,

Assumption 2. The prior probabilities of all the roles of a label l are uniform.

Now with the above assumptions, we can state the following theorem.

Theorem 3.7.2 Let W = {t1, t2, . . . , tm}. Then,

argmaxrP (〈l, r〉 |W) = argmaxr

m∏
i=1

P (〈l, r〉 |ti)

Proof: Let t = 〈l, r〉. By Bayes’s rule,

P (t|W) = P (t|t1, t2, . . . , tm) =
P (t1, t2, . . . , tm|t)P (t)
P (t1, t2, . . . , tm)

Using the independence assumption,

=
∏m

i=1 P (ti|t)P (t)∏m
i=1 P (ti)

Again using Bayes’s rule,

∏m
i=1 P (t|ti)P (ti)

P (t)m
.

P (t)∏m
i=1 P (ti)

=
∏m

i=1 P (t|ti)
P (t)m−1

By assumption 2, P (t)m−1 will be constant. That is,

argmaxrP (t|W) = argmaxr

m∏
i=1

P (t|ti).

2

48

3.7.2 Missing Attribute Inference

In WAD, most of the attribute labels are missing, especially in the non-technical domains

and non-template driven Web sites. Discovering missing relations is one of the crucial tasks

during automated meta-data extraction. Our probabilistic model can also be tailored to infer

some of the missing attributes.

Suppose two related entities have a missing attribute in a Web page. The first entity may

be either a concept or an instance of a concept whereas the second one may be a value or a

set of values.

Definition 3.7.3 (Missing Attribute Inference) Given two related entities e1 and e2 in

a Web page, the probability of a label l ∈ L to be the attribute between them is P (〈l,A〉 |S)

where S = e1 ∪ e2. ♦

Thus, the missing attribute can be inferred by the following formula,

argmaxl∈LP (〈l,A〉 |S)

And, with the same assumptions described above,

Theorem 3.7.4 Let e1 and e2 be two entities and S = e1 ∪ e2.Then,

argmaxl∈LP (〈l,A〉 |S) = argmaxl∈L
∏
t∈S

P (〈l,A〉 |t)

Proof: Follows from the same methodology in the proof of the previous Theorem. 2

3.8 Complexity Analysis of LADS

m = Candidate set of labels, L1 . . . Lm

n = Number of anonymous attributes, A1 . . . An

k = Number of patterns, p1 . . . pk

r = Number of random tuples t1 . . . tr

The complexity of Lads is θ(mnkr), which can be reduced to linear time in the order of

49

supplied candidate set of labels, m. The details are as follows: the number of pattern k

can be at most 10. We have proved that “L V” i.e., label followed by value pattern alone

is sufficient to disambiguate column labeling. So k is small constant, then the complexity

reduces to θ(mnr). Our experiment shows that the number of random tuples required for

Lads to correctly assign label is only 3, . . . , 9. So r can be replaced with a small constant.

Then the complexity becomes O(mn). Again, according to literature review (ref BAMM

dataset at UIUC, http://metaquerier.cs.uiuc.edu/repository/datasets/bamm), the number of

anonymous attributes in a Web table is in the range of 6, . . . , 10. So n can be thought of

as small constant, then the complexity of Lads reduces to O(m), i.e., the complexity of

our algorithm Lads is linear in the number of supplied candidate set of labels, m. Our

experimental results show that it takes only a couple of minutes to holistically label all the

DSC columns of a reasonable size of real life Web table. The cost is actually the number

of queries submitted to Web search engine. The cost represents the network latency for all

the queries. From the above analysis, maximum number of queries submitted to Web search

engines is 10 ∗ 9 ∗m ∗ 10 = 900m. This figure even reduces to 90m when only “L V” pattern

is used. This complexity measure is a quantitative proof which shows why our work is better.

We also note that there are two variants of Lads: Naive Lads (NLADS) and Greedy Lads

(GLADS) (for which once a label is assigned, it is no more considered as a candidate for

subsequent anonymous attributes). The complexity of NLADS is O(mn), whereas the cost

of operation of GLADS is mn − n(n−1)
2 , yields a performance improvement of n(n−1)

2 , this is

possible because of our disjoint set column (DSC) assumption.

3.9 Proof of Lemma

In this section, we present two lemma pertinent to our column labeling strategy.

Lemma 3.9.1 Given a candidate set of labels {l1, l2, . . . , lm} and a disjoint set of anonymous

attributes {A1, A2, . . . , An} where m > n, the label assignment algorithm Lads has the Greedy

Choice Property [23].

Lemma 3.9.2 Algorithm Lads is not only greedy but also optimal such that the order of

choosing anonymous attributes to be labeled in each iteration does not matter.

50

Table 3.15: Greedy Labeling

Domain Candidate set of la-
bels

No. of at-
tribute

Matches Mismatches

Movie Actor, Director, Genre,
Rating, Title, Film

4 3 1

Music Artist, Title, Album 2 2 0

Political President, Governor,
Senator, Vice President

3 2 1

Synthetic Toy, Furniture, Electron-
ics, Clothing

3 3 0

Watch Band, Brand, Gender,
Display, Model, Cate-
gory

4 3 1

Automobile Model, Color, Make,
State, Type, Class ,
Style, Category

4 3 1

In the following we will prove the above two lemma by experimental observation on anony-

mous datasets from a number of domains. Before proving the above two lemma, we wish to

digress a little bit about the operational modalities. In order to prove the above two lemma

by experimental observation, we will have a candidate set of labels, m, {l1, l2, . . . , lm} and

anonymous datasets n, {A1, A2, . . . , An} and we need that m > n, i.e., we have more labels

than to assign to anonymous attributes. Greedy label assignment can take place in two dif-

ferent ways: (i) choose a label li, 1 ≤ i ≤ m, then assign the label li to one of the anonymous

attribute Aj , 1 ≤ j ≤ n (ii) choose an anonymous attribute Aj , 1 ≤ j ≤ n and label the

attribute with one li, 1 ≤ i ≤ m. Method (i) should NOT be followed because we may be

exhausted with assigning labels for all the anonymous attributes, whereas more appropriate

labels can be there to assign (as m > n). Method (ii) is appropriate and we choose to follow

this method, in each iteration we want to label an anonymous attribute Aj with a label li

which best describes the semantic meaning of the instance data values correspond to Aj . But

once we assign label li for some anonymous attribute Aj , we no longer consider the label li

for the subsequent anonymous attributes Aj any more. Our two lemma will guarantee that

by doing so, we are only speeding up the processing without losing any information.

Now we present table 3.15, showing a number of domains by which we have done our

experiment to prove the above two lemma. The probabilistic labeling results for these domains

are shown in the next chapter.

51

Our greedy labeling algorithm has produced the correct labels for all the above domains.

Thus we prove lemma 1. We define the correct labels to be those which matches between

human assigned labels to that of machine generated labels. Now we prove the second lemma.

Note that given n anonymous attributes, there are n! possible permutations of the anonymous

attributes. Therefore the worst case complexity to prove lemma 2 is O(n!). However it is

sufficient to prove the second lemma by considering two orders only: forward and backward.

Therefore we choose to run our algorithm, Lads, using forward and backward orders only.

Forward order corresponds to choosing the anonymous attributes starting from 1, 2, . . . , n,

whereas backward order corresponds to do the reverse, n, n− 1, . . . , 2, 1. For both the cases,

we have found that our algorithm, Lads, has produced the same set of labels for the anony-

mous attributes. Thus we prove lemma 2. Now we present the following Theorem.

Theorem 3.9.3 Algorithm Lads is guaranteed to work for DSC column.

Proof First we show that our algorithm, Lads, is able to assign labels for all the anonymous

datasets. This step of the proof is trivial. Given a candidate set of m labels l1, l2, . . . , lm and

an anonymous datasets n, A1, A2, . . . , An, where m > n the algorithm, Lads, terminates in

time complexity of 900m with assigning label for all the anonymous attributes A1, A2, . . . , An.

Now we make use of our disjoint set column assumption and using Lemma 1 and 2, we prove

the above Theorem. (proved)

Note that we have proved phrase pattern “L V” i.e., label followed by value pattern alone

provides very good result to disambiguate column labeling. However, there are failure cases as

well, “L V” pattern alone sometimes can’t disambiguate column labeling when labels themselves

are confusing. For those cases, we may augment “L V” pattern with additional Hearst pattern

in a bid to disambiguate column labeling. In this section we present one such case as follows.

For a candidate set of labels {title, director, actor, genre} and anonymous datasets

{′′V ertigo′′,′′A.Hitchcock′′,′′ J.Stewart′′,′′ Thriller′′},

“Thriller” was assigned title to be the label, whereas its correct label is genre. Mathematically,

let {l1, l2} be two confusing labels for an instance data value V . Let l1 V → N1 and l2 V → N2

and N1 ≈ N2 (similar count, so can’t decide which label l1 or l2 is more appropriate for V).

52

Then let p1, p2, . . . , pk be a set of Hearst patterns. Then we have
∑k

i=1 l1piV → N ′
1 and∑k

i=1 l2piV → N ′
2. Then there will be three possible outcomes: N ′

1 > N ′
2, N

′
1 < N ′

2 and

N ′
1 ≈ N ′

2. For the first two cases, introduction of additional Hearst pattern yields positive

result to disambiguate column labeling. For the third case, after introducing Hearst pattern,

we still can’t disambiguate which label l1 or l2 is more appropriate for V . Then we can

disambiguate label for V based on majority of the Hearst patterns that yield hits for V .

Example: already mentioned, for a candidate set of confusing labels {title, genre} and instance

data value {Thriller}, we could disambiguate {Thriller} by utilizing third case to be genre.

We have another example for the above from Political Domain. For instance values such as

{Republican,Democrat} and a candidate set of labels {V icePresident, Party}, the instance

data values were incorrectly labeled as “Vice President” when we only used “L V” pattern

alone. Then we introduced additional Hearst pattern and could disambiguate (by using the

first two cases of our argument) the data value instances of {Republican,Democrat} to be

“Party”.

We also note that our algorithm, Lads, can only label numeric data as NUM. Finding

exhaustive type of numeric pattern itself is a fundamental research problem of its own. For

example it is easy for regular expression based wrapper to label a value like 123-456-7890 as

phone number, but it is extremely difficult to know whether the number is home-phone or

office-phone. We did NOT find much work which aims at labeling numeric data.

3.10 Error Estimation Due to Model Violation

So far we have assumed that the columns are pairwise disjoint, there will be no repeating value

instances in multiple columns. We have shown in our subjective evaluation that under such

assumptions, the performance of Lads is very good. However, in many real life scenarios, it

is possible to have multiple columns where some value instances will repeat. In this section,

we formally define such a problem and at the end we will argue that the performance of our

algorithm, Lads, in general, and our probability measure in particular, are able to handle the

unexpected situations as well.

The question we are trying to answer in this section can be formulated as follows: what

is the effect of a single value instance v which appears in multiple columns? Mathematically,

53

∃v|v ∈ Ai and v ∈ Aj for some(i, j) where Ai is of domain Di and Aj is of domain Dj and

Di ∩Dj 6= φ. Example: suppose we have a set of values {Hotmail, Gmail, Eudora, P ine}

and another set of values {Oak, Apple, Blueberry, P ine} and we have to label the datasets

with two candidate set of labels {Email Software, Tree}. Note that Pine appears in both

the columns. In the first datasets, Pine is Email Software, whereas in the second datasets, Pine

represent Tree. We have got more hits for “Tree Pine” (55,800) than “Email Software Pine”

(13,100). But this result has a negligible effect on labeling {Hotmail, Gmail, Eudora, P ine},

the datasets will be labeled as “Email Software.” General intuition for solution for this case:

the other homogeneous set of values in the respective column will compensate for the violating

values’ effect.

Our naive assumption for the algorithm, Lads, was that “L V” will co-occur in Web

documents as one-to-one mapping, that is one label produces hits with one data value instance.

One label produces hits with multiple homogeneous data value instances as well. In real life

application, we find the relationship between label and value to be M : N , many-to-many.

We decompose M : N relationship into two relationship M : 1 and 1 : N . For the M : 1

relationship, we have multiple labels that can produce almost equal hits for a single data value

instance. Those multiple labels happen to be synonymous. In the Figure 3.5 of statistical

fingerprint from watch domain, we have shown that there can be as many as 4 potential

labels for some anonymous attributes. We have also shown another example earlier, two labels

{title, genre} produce almost equal hits for the same instance data value {Thriller}. Errors

are introduced because of the confusing labels, {title, genre}. In the earlier section, we have

shown how to handle that type of error. In this section, we will present one more unusual

labeling use case where a single value instance produces almost equal hits with multiple

labels. Example from Political Domain, v = George H. W. Bush, Di is “President” and Dj

is “Vice President”. The labels “President” and “Vice President” are NOT synonymous (VP

is subclass of President), whereas a single data value instance such as George H. W. Bush

is very confusing to be either “President” or “Vice President.” We treat a single data value

instance as violating if the value instance may appear in multiple columns. We will estimate

the labeling error produced under such event and will show that as the number of violating

54

value instance increases, the labeling accuracy decreases still the performance of our labeling

method is acceptable.

In this section we wish to quantify the error introduced by labeling algorithm in general

and our probabilistic measure in particular. We will demonstrate how the error behaves, what

is the effect of degree of repeat violation in column labeling. For n anonymous attributes,

maximum possible repeats will be in n − 1 columns, and there are n(n−1)
2 possible permuta-

tions of pairs of columns. So some value instance repeat in a pair of columns can have an

adverse effect on the labeling performance. Here we present our experimental observation

from Political Domain. The experiment was performed during January 2010 using the search

engine, Google. We have performed our experiment with random number of tuples 1, 3, 5, 7,

9, 11 and 13 on the anonymous datasets from Political Domain with a candidate set of labels

{President, V icePresident, Party, Governor, Senator}

We choose to vary the violating tuples to be 0, 1, . . . , 6. Where 0 means there is no repeating

value instance in multiple columns, an ideal case and for that case our algorithm Lads pro-

duces the best possible result. We ran the algorithm seven times, then a total of 14 labels

were assigned. The best result was when all the 14 labels were correctly assigned by Lads

as well as by our probability measure. Due to violating tuples, errors are introduced and

the number of correctly labeled attributes will be less than 14. We plot the performance as

number of violating tuples 0, 1, . . . , 6 vs number of correctly assigned labels 5, . . . , 8. To prove

our intuition, we provide the following Figure 3.8. As can be seen from the plot Figure 3.8,

the number of violating tuples have negligible effect on the labeling performance. Thus we

prove our intuition that the other homogeneous set of values in the respective column will

compensate for the violating values’ effect. The plot also reveals that our decision based on hit

counts measure is almost comparable to probabilistic measure, whereas probabilistic measure

always outperform hit counts measure.

55

Figure 3.8: Degree of Violation vs No. of correct label

56

CHAPTER 4

RESULTS, DISCUSSIONS AND IMPLEMENTATION

4.1 Sample Result of Labeling

Here we provide some results of our experiment from a number of domains. The correct

results are highlighted in the tables. The figures show that there are sufficient gaps between

1st and 2nd highest probabilities for each of the anonymous attributes. Therefore it will make

it easier for the knowledge engineer to take final decision.

4.2 Correction Factor for Annotation using Algorithm LADS

Suppose we have two competing labels li and lk for the anonymous attribute Aj . Assume

that li is more appropriate for Aj than lk. Then labeling error will be produced only if

the following situation happens: ∃k |1 ≤ k ≤ m, k 6= i, LAA(Aj , li) < LAA(Aj , lk). For

violating tuples, the fix will be to remove the tuples from the datasets and re-run Lads for

the final annotation. Note that we are NOT permanently removing the tuples from datasets,

only removing temporarily for the sake of annotation. Mathematically, for an anonymous

attribute Aj , there exist two labels li and lk and both the labels are equally likely for Aj ,

i.e., LAA(Aj , li) ∼= LAA(Aj , lk). The same condition holds for another anonymous attribute

Ah, i.e., LAA(Ah, li) ∼= LAA(Ah, lk), where Aj is of domain Dj and Ah is of domain Dh and

Dj∩Dh 6= φ. We consider two labels li and lk are equally likely for some anonymous attribute

Aj only if |LAA(Aj , li)− LAA(Aj , lk)| < τ , where τ is some threshold set by the user.

Table 4.1: Anonymous Datasets from Synthetic Domain

Candidate Set of Labels: Toy, Furniture, Electronics, Clothing, Footwear

A1 A2 A3 A4

chair baseball pants Boots
desk doll coat Running shoes
bed teddy bear hat Sandals
couch skipping rope dress Dress shoes
table jigsaw puzzle scarf Slippers

57

Table 4.2: Probabilistic Labeling on Synthetic Domain

Probability Value

P(A1|Toy) 0.18680023277160368
P(A1|Furniture) 0.7145956260276547
P(A1|Electronics) 0.029082023998840772
P(A1|Clothing) 0.05282508377170027
P(A1|Footwear) 0.016697033430200604
P(A2|Toy) 0.7856416057854673
P(A2|Furniture) 0.0495453859701936
P(A2|Electronics) 0.007439431509867136
P(A2|Clothing) 0.11982097602779276
P(A2|Footwear) 0.03755260070667921
P(A3|Toy) 0.06915115539539118
P(A3|Furniture) 0.14361584940104846
P(A3|Electronics) 0.06365242335290656
P(A3|Clothing) 0.6541838859981988
P(A3|Footwear) 0.06939668585245508
P(A4|Toy) 0.058395838744636976
P(A4|Furniture) 0.16843331931519773
P(A4|Electronics) 0.012452289314594783
P(A4|Clothing) 0.21077426646678044
P(A4|Footwear) 0.5499442861587901

Table 4.3: Anonymous Datasets from Movie Domain

Candidate Set of Labels: actor, director, genre, rating, title, film

A1 A2 A3 A4

Romance 5 stars Doctor Zhivago David Lean
Comedy 5 stars Modern Times Charles Chaplin
Epic 4 stars Spartacus Stanley Kubrick

Table 4.4: Probabilistic Labeling on Movie Domain

Probability Value

P(A1|actor) 0.01050362098284492
P(A1|director) 0.024025618639729986
P(A1|genre) 0.4160762807492963
P(A1|rating) 0.009746013437688435
P(A1|title) 0.47537845109174676
P(A1|film) 0.06427001509869361
P(A2|actor) 1.6276724951379707E-5
P(A2|director) 1.1554376278477301E-4
P(A2|genre) 1.0010384920768609E-4
P(A2|rating) 0.9860672999798817
P(A2|title) 8.338102771607169E-4
P(A2|film) 0.012866965406013666
P(A3|actor) 0.05386384761704929
P(A3|director) 0.02432337090485912
P(A3|genre) 0.0014365165801628781
P(A3|rating) 0.005617358860632456
P(A3|title) 0.1660278023266915
P(A3|film) 0.7487311037106048
P(A4|actor) 0.1184600671962024
P(A4|director) 0.37285591165363713
P(A4|genre) 0.014373627723665558
P(A4|rating) 6.056309142375138E-5
P(A4|title) 0.020598287011500845
P(A4|film) 0.47365154332357035

58

Table 4.5: Anonymous Datasets from Watch Domain

Candidate Set of Labels: band, brand, gender, display, model, category

A1 A2 A3 A4

Armani AR5447 Ladies Stainless steel bracelet
Seiko SDWG32 Men Stainless steel Butterfly clasp
Longines L51580966 Petite Stainless steel bracelet
Casio DW5600E1V Men Plastic, black

Table 4.6: Probabilistic Labeling on Watch Domain

Probability Value

P(A1|band) 0.17364618052554065
P(A1|brand) 0.4186672639444297
P(A1|gender) 0.0017503056861785285
P(A1|display) 0.05852546045227429
P(A1|model) 0.23341411772341383
P(A1|category) 0.11399667166816302
P(A2|band) 0.2784638422436793
P(A2|brand) 0.23767171000712742
P(A2|gender) 0.09145032406886205
P(A2|display) 0.17757755008800985
P(A2|model) 0.12151625632163594
P(A2|category) 0.0933203172706854
P(A3|band) 0.18116412291464817
P(A3|brand) 0.21697937098025694
P(A3|gender) 0.21602793724269945
P(A3|display) 0.06032548775942292
P(A3|model) 0.20017775509127134
P(A3|category) 0.12532532601170118
P(A4|band) 0.4303055531054701
P(A4|brand) 0.042720662092972865
P(A4|gender) 0.042549810484077896
P(A4|display) 0.10156887357786115
P(A4|model) 0.12163063682956912
P(A4|category) 0.26122446391004894

Table 4.7: Anonymous Datasets from Automobile Domain

Candidate Set of Labels: Model, Color, Make, State, Type, Class, Style, Category

A1 A2 A3 A4

Acura Sedan 2001 TL by Acura
Acura Coupe 2001 CL by Acura
Audi Sedan 2001 A4 by Audi
Audi Coupe 2001 TT by Audi
Audi Convertible 2001 TT by Audi
Audi Wagon 2001 A4 by Audi
Ford Sedan 2001 focus by Ford
Cadillac Sedan 2001 De Ville by Cadillac
Audi Coupe 2001 Eldorado by Cadillac
Chrysler Sedan 2001 300M by Chrysler
Volvo Sedan 2001 S40 by Volvo
Volvo Coupe 2001 C70 by Volvo
Volvo Convertible 2001 C70 by Volvo
Volvo Wagon 2001 V70 by Volvo
Mercedes Sedan 2001 E-class by Mercedes
Mercedes Coupe 2001 CLK-Class by Mercedes
Mercedes Convertible 2001 CLK-Class by Mercedes
Mercedes Wagon 2001 E-Class by Mercedes
Saab Sedan 2001 9-5 by Saab
Saab Convertible 2001 9-3 by Saab
Jeep Sport Utility Vehicle 2001 Grand Cherokee by Jeep

59

Table 4.8: Probabilistic Labeling on Automobile Domain

Probability Value

P(A1|Model) 0.17856458732839947
P(A1|Color) 0.06229903512610037
P(A1|Make) 0.17301966183079753
P(A1|State) 0.03220097993005406
P(A1|Type) 0.13558027868873046
P(A1|Class) 0.1342228534908299
P(A1|Style) 0.0664358156905886
P(A1|Category) 0.21767678791449954
P(A2|Model) 0.1169118291655958
P(A2|Color) 0.012067562953282398
P(A2|Make) 0.03859657887688751
P(A2|State) 0.008962084802220398
P(A2|Type) 0.24473705125524475
P(A2|Class) 0.19361598493627272
P(A2|Style) 0.15404105370251026
P(A2|Category) 0.23106785430798615
P(A3|Model) 0.06432092125807717
P(A3|Color) 0.07894651770461009
P(A3|Make) 0.2040282821846578
P(A3|State) 0.18950651079518155
P(A3|Type) 0.2679302527044949
P(A3|Class) 0.10559359949792047
P(A3|Style) 0.06864669955773
P(A3|Category) 0.021027216297328163
P(A4|Model) 0.5152461106473416
P(A4|Color) 2.0031245885784426E-4
P(A4|Make) 0.003095548756520256
P(A4|State) 0.11679784125409677
P(A4|Type) 0.0468075074606059
P(A4|Class) 0.0742606665372805
P(A4|Style) 0.006033999264181826
P(A4|Category) 0.23755801362111534

60

Table 4.9: Anonymous Datasets from Political Domain

Candidate Set of Labels: President, Governor, Senator, Vice President

A1 A2

Barack Obama Joseph Biden
George W. Bush Richard Cheney
Bill Clinton Al Gore
Jimmy Carter Walter Mondale
Herbert C. Hoover Charles Curtis
Woodrow Wilson Thomas Marshall
William Taft James Sherman
Grover Cleveland Adlai Stevenson
Benjamin Harrison Levi Morton
Grover Cleveland Thomas Hendriks
James Garfield Chester Arthur
Rutherford Hayes William Wheeler
Ulysses S. Grant Schuyler Colfax
James Buchanan John Breckinridge
Franklin Pierce William King
James K. Polk George Dallas
Martin van Buren Richard Johnson
Franklin Delano Roosevelt Henry Wallace
William McKinley Garret Hobart
George H. W. Bush James Danforth Quayle
Ronald Wilson Reagan George H. W. Bush
Gerald R. Ford Nelson Rockefeller
Richard Milhous Nixon Gerald R. Ford
Lyndon Johnson Hubert Humphrey
John Fitzgerald Kennedy Lyndon Johnson
Dwight David Eisenhower Richard Milhous Nixon
Harry S. Truman Alben Barkley
Franklin Delano Roosevelt Harry S. Truman
Calvin Coolidge Charles Dawes
Warren Harding Calvin Coolidge

Table 4.10: Probabilistic Labeling on Political Domain

Probability Value

P(A1|President) 0.5873377317403179
P(A1|Governor) 0.11672661319199679
P(A1|Senator) 0.10532475574409776
P(A1|Vice President) 0.19061089932358743
P(A2|President) 0.45374480230286524
P(A2|Governor) 0.17627956967075098
P(A2|Senator) 0.07667668205290089
P(A2|Vice President) 0.2932989459734829

61

4.3 The Overall Algorithm

Figure 3.8 shows that probabilistic measure will result in higher labeling accuracy than that of

hit counts measure. Therefore we accommodate the probabilistic measure as well as additional

Hearst pattern to compensate for the violating tuples effect. Here we briefly outline the overall

labeling algorithm.

1. Accumulate hit counts for all L and a random subset of V

2. Compute LAA based on the hit counts

3. Annotate columns Aj with label li for which LAA(Aj , li) is the highest and there is some

label lk for which LAA(Aj , lk) is the second highest and |LAA(Aj , li)−LAA(Aj , lk)| > τ

4. If some column Aj results in being labeled with a set of equally likely labels, introduce

additional Hearst pattern to gather hit counts and choose the final label for the column

Aj based on the criteria mentioned above

5. If a pair of columns result in being labeled with the same label due to violating tu-

ples, remove those violating tuples from both the columns, then re-run Lads for final

annotation

Here we present the complete algorithm LadsComplete which not only take care of DSC

column, but also do a good job for RPS and NUM columns.

4.4 Experiment with Large Datasets

We have shown our approach based on small scale datasets and found the results to be

favorable. Our data size wasn’t that large in evaluation. In order to do experiments in

large scale, one need special permission from search engine like Google. Otherwise Google

may block the automated user query. That is one of the reasons why our results are based

on small scale datasets. Information Extraction (IE) benchmarks in this area are not well

developed. We have used the BAMM datasets from UIUC Web data integration repositories

as well as from RoadRunner Datasets. BAMM datasets contains “query schemas” each of

62

Table 4.11: Anonymous Datasets from Music Domain

Artist, Title, Album, Band, Genre, Styles, Keyboard, Strings, Winds, Moods, Composer, Vocal, Percussion, Brass, Author, Rating, Label, Verse, Chorus

A1 A2 A3 A4 A5 A6 A7 A8

Miles Jaye Aint That Good News Kind of in Love ABBA Jazz Euro Pop Celeste Bass
Miles B. Davis Balm in Gilead A Kind of Magic AC-DC Classical Contemporary Clavich Cello
Myles C. Davis By and By A Kind of Bliss Aerosmith R&B Pop/Rock Harmonium Vina
Dave Miles Couldnt Hear Nobody Pray Kind of Ballad The Beatles Pop/Rock Rock Harpsichord Dulcimer
Jimmie Davis De Gospel Train Kind of Beast Black Eyed Peas Folk Am Pop Organ Erhu
Xavier Rudd Deep River Kind of Better Backstreet Boys Latin Piano Guitar
Giles Davies Jacobs Ladder Kind of Miles Bon Jovi Blues Keyboards Sitar
Miles Davis Down By the River Kind of Smile Bond New Age Electric Piano Sarod
Lady Gaga Down By the Riverside The Kind of Place Coldplay Country Accordion Harp
David Myles Every time I feel the Spirit A Kind of Courage Culture Club Rap Koto
David Keenan Free at Last Kind of Brother Cypress Hill Lute
David Myles Git On Board Little Children Kind of Silence The Cranberries Lyre
David Mills Its Me Kind of Girl The Cheetah Girls Banjo
David Myles Great Day A Kind of Solution Dire Straits Violin
Jesse Davis I Couldnt Hear Nobody Pray Kind of Like One Def Leppard Viola
Miles Baster Ill Be There In The Morning Kind of Like You Destinys Child Viol
Cile Davis Kind of Lonesome The Doors
Danny Davis The Kind of Love Dixie Chicks
Larry Davis A Love Supreme Disturbed
Miles Visman Supreme Love Gods Deep Purple
John Coates Jr. Alif: Love Supreme Evanescence
Johnny Coles Love Serenade Escape the Fate
John Conlee Love Survives Eagles
John Coltrane Love Snuck Up Guns N Roses
Johnny Costa Love Scenes Gorillaz
John Constable Kind of Blues Hi 5
Johnny Clarke A Kind of Clue Hollywood Undead
Johnny Adams A Kind of Cry Blues II Divo
Quantic Kind of a Blur Iron Maiden
John Dowland A Kind of Love In Incubus
John Cale Kind of Summer Inna
Johnny Clegg Kind of Gentle Jonas Brothers
John Lanchbery A Kind of Suckle Jagged Edge
Johnnie Allan A Kind of Closure KoRn
John Hollander Kind of Rude Limp Bizkit
Jack Dangers Kind of Like Lynyrd Skynyrd
Will Downing Kind of Like a Bee Metallica
Johnny Carver Kind of Brew MC Magic
Johnny Doran Kind of Bill Marilyn Manson
John Fogerty A Kind of Life Mudvayne
John Hartford The Kindom of Love Modern Talking
Inna Kind of Trouble *NSYNC
Jack Jones Kind of Brittle Oasis
MC Magic Kind of a Lie OutKast

which is a set of query attributes, extracted from Web query interfaces in 4 domains: Books,

Automobiles, Movies, Music Records. Each domain consists of about 50 sources. We have

shown an approach, Web Search Engine Based Annotator, to holistically assign column labels

based on small scale datasets. In this section, we present results from music domain consist of

19 candidate set of labels and anonymous datasets of about 100 tuples. Note that the datasets

are simulated, meaning that a particular row of data do NOT represent a relation, although

we assure that the data in a particular column is homogeneous. Now we present more results

of our experiment with large datasets collected from FIFA 2010 world cup tournament. There

were 32 teams comprises of 32 coaches and 737 players. Note that player and coach represents

possibility of DSC violation as those who are coaches, they were also player sometimes. As

expected, the datasets of 32 coaches were labeled by our algorithm as 50% of chance being

coach and 50% of chance being player. For the player datasets of 737 records, we randmonly

63

Table 4.12: Probabilistic Labeling on Music Domain

Label P (A1) P (A2) P (A3) P (A4) P (A5) P (A6) P (A7) P (A8)

Artist 0.1335 0.0284 0.0569 0.2233 0.0502 0.0096 0.0515 0.0515
Title 0.0160 0.0947 0.0239 0.0486 0.0500 0.0115 0.0547 0.0543
Album 0.1089 0.1581 0.0430 0.1291 0.0517 0.0468 0.0576 0.0576
Band 0.0353 0.0436 0.0483 0.2171 0.0593 0.0435 0.0647 0.0509
Genre 0.0380 0.0232 0.0271 0.0051 0.4465 0.4927 0.0286 0.0348
Styles 0.1009 0.1458 0.1350 0.0017 0.0385 0.0290 0.004 0.0047
Keyboard 0.0124 0.0570 0.0248 0.0182 0.0160 0.0013 0.1513 0.0742
Strings 0.0380 0.0152 0.0647 0.0500 0.0090 0.0055 0.1584 0.0896
Winds 0.1097 0.0389 0.1073 0.0616 0.0172 0.0695 0.0205 0.0427
Moods 0.0991 0.0717 0.0588 0.0650 0.0217 0.0110 0.0211 0.2199
Composer 0.0552 0.0394 0.0432 0.0132 0.0045 0.0069 0.0190 0.0124
Vocal 0.0208 0.0129 0.0254 0.0086 0.0860 0.0288 0.0837 0.0614
Percussion 0.0204 0.0419 0.0188 0.0373 0.0203 0.0067 0.0857 0.1554
Brass 0.0570 0.0236 0.0220 0.0086 0.0148 0.0434 0.0290 0.0181
Author 0.0128 0.0780 0.1318 0.0090 0.0362 0.0655 0.1142 0.0145
Rating 0.0215 0.0238 0.0567 0.0013 0.0126 0.0534 9.66E-4 0.0017
Label 0.0212 0.0630 0.0405 0.0186 0.0542 0.0682 0.0127 0.0234
Verse 0.0716 0.0168 0.0475 0.0587 0.0033 0.0032 7.40E-4 0.0236
Chorus 0.0268 0.0232 0.0231 0.0240 0.0069 0.0026 0.0401 0.0084

choose 1%, 2%, 5%,10%,15%, 20% and 25% records and run our algorithm with a candidate

set of labels Player, Coach. The results are shown in the following Figure 4.1. It shows that

randomly choosing 1% of records is good enough to correctly label anonymous datasets.

Figure 4.1: Probabilisitc Labeling on FIFA Datasets

4.5 Non-ideal Datasets and Impact of DSC Violation

Suppose we have table with 4 attributes (A1, A2, A3, A4), and 20 rows as shown in the

following table. Lets choose the columns to be disjoint. The datasets are simulated, meaning

a particular row do NOT represent a relation. We annotate them using Lads, results are as

64

Table 4.13: Anonymous Datasets from Movie Domain

Candidate Set of Labels: Actor, Director, Film, Movie, Genres, Types

A1 A2 A3 A4

Kevin Costner Roland Emmerich All Quiet on the Western Front Romance
Mel Gibson Steven Spielberg The Battle of Midway Reality Show
Tom Cruise Alfred Hitchcock Back to the Future Part III Spy Film
Omar Sharif Stanley Kubrick Terminator 2 Action
James Stewart Roman Polanski Casino Royale Animation
Sean Connery David Lean The Longest Hundred Miles Comedy
Robert De Niro James Cameron Shaft in Africa Documentary
Leonardo DiCaprio Tim Burton Robin Hood Drama
Tom Hanks M. Night Shyamalan The Patriot Family
Eddie Murphy Hayao Miyazaki Jurassic Park Science Fiction
Jim Carrey Kevin Smith The Sixth Sense Horror
Arnold Schwarzenegger John Ford Chasing Amy Suspense
John Travolta Frank Capra The Gold Rush Western
Bruce Willis Howard Hawks The Godfather Mystery
Brad Pitt Cecil B. DeMille Star Wars Historical
Sylvester Stallone William Wyler Die Hard War
Michael Douglas George Cukor Ben-Hur Adventure
Pierce Brosnan Woody Allen Titanic Culture and Society
Michael J. Fox D.W. Griffith Saving Private Ryan Fantasy
Will Smith Charles Chaplin Vertigo Sports Drama

Table 4.14: Probabilistic Labeling on Movie Domain

Label P (A1) P (A2) P (A3) P (A4)

Actor 0.5454 0.0366 0.0466 0.0499
Director 0.1499 0.7274 0.0281 0.0680
Film 0.1030 0.1156 0.2468 0.3947
Movie 0.1940 0.0547 0.3940 0.2075
Genres 2.27E-4 1.36E-4 0.1048 0.1572
Types 0.0073 0.0654 0.1794 0.1223

follows: Then let us copy 10% of column A1 values into A2. Annotate the table again. Then

do it for 20%, 50%, 75% and 100%. The question is what should the annotator do? Obviously,

as the overlap approaches 100% the annotation of A1 and A2 will approach identity, results

as shown in the following table. Should the annotator catch this discrepancy and reduce the

weights of the annotations for both A1 and A2 in some sound quantitative way to reflect that

it cannot assign full faith in the annotation? How? Or should we just leave it to the user

to figure it out. As can be seen from the table, when there is no repeat, the difference of

Table 4.15: Probabilistic Labeling of A2 with Different % of Repeat from A1

Probability 0% 10% 20% 50% 75% 100%

P(A2|Actor) 0.0366 0.0930 0.1191 0.2179 0.2463 0.2973
P(A2|Director) 0.7274 0.7001 0.6574 0.5585 0.4985 0.4548
P(A2|Film) 0.1156 0.1059 0.1044 0.1066 0.1072 0.1081
P(A2|Movie) 0.0547 0.0564 0.0722 0.0796 0.1157 0.1116
P(A2|Genres) 1.36E-4 1.43E-4 1.36E-4 1.10E-4 1.19E-4 1.00E-4
P(A2|Types) 0.0654 0.0442 0.0464 0.0371 0.0319 0.0279

65

probability between Director and Actor is 0.6908, for 10% repeat it is 0.6071, the difference

monotonically decreases for 100% repeat as 0.1575. This implies that for this case a threshold

value τ of 0.16 is good enough to take the final decision. If we assume that all the given m

candidate set of labels are equally likely, then the threshold τ will be 1
m . Our result supports

this as well, for the above case we have 6 candidate set of labels and 1
6 ≈ 0.1575.

Our approach seem to suggests latter, and basically saying Lads does NOT do it, but

one can ignore it for small violations as has been shown in the previous chapter. What

about the case when overlaps are present in all the columns? Then the problem becomes

NP-hard problem. We only could figure out a model in this regard as a pair-wise column

name annotation problem in section Correction Factor for Annotation using Algorithm Lads.

Our future work will investigate more in this regard.

4.6 Implementation

We have used Google, Yahoo and MSN wrapper. We also make use of Google AJAX Search

API. There are search engines which offer limited queries permitted per day, in that case

we can make use of Yahoo! Search BOSS (Build your Own Search Service) API (it offers

unlimited query per day). Here we show the screen shot of sample labeling on synthetic

datasets:

66

Figure 4.2: Screen shot of sample labeling on Synthetic Datasets

67

Algorithm 4 LADSComplete: Labeling Anonymous Datasets Complete
1: INPUT
2: L(1 . . .m) : A set of labels
3: A(1 . . . n) : A set of anonymous attributes
4: Precondition m > n
5: P(1 . . . k) : A set of patterns
6: NP(1 . . . l) : A set of generic numeric patterns
7: (e.g $, year, dd−mm− yyyy)
8: V(1 . . . t, 1 . . . n) : Tabular Data V alue
9: s : Odd Number of Seach Engine i.e 1, 3, 5 etc

10: Search Engine Name : e.g Google, Y ahoo, MSN
11: VARIABLE
12: N(1 . . . s) : Search Engine hit counts
13: H(1 . . . n, 1 . . .m, 1 . . . s) : 3D array to store hit counts
14: R→ 1 . . . t Random indexes between 1 . . . t generate one time
15: Formulate Speculative query : L× P × V → N
16: for i = 1 to n do
17: Data Preprocessing
18: determine column type to be DSC, RPS, NUM
19: if column Ai is of type NUM then
20: Label Ai to be one from NP
21: else if column Ai is of type RPS then
22: Remove RPS from Ai and Label it with RPS
23: else
24: H[i][1..m][1..s] = 0
25: for each r ∈ R do
26: iV alue = Vri

27: for j = 1 to m do
28: lV alue = L[j]
29: for p = 1 to k do
30: qV ar = lV alue+ P [p] + iV alue
31: for q = 1 to s do
32: N [q]← ExecQuery(qV ar, SearchEngineq)
33: H[i][j][q]+ = N [q]
34: end for
35: end for
36: end for
37: end for
38: Let z be the majority index (1..m)(1..s) of highest
39: count in H[i][1..m][1..s]
40: A[i] = L[z]
41: end if
42: end for

68

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In order to build a large scale information integration system for the hidden Web, the

cost of manually locating information sources and manually obtaining source descriptions will

not be acceptable. Therefore the following research problem is worth studying: automatically

obtaining descriptions about a given Webbase’s content, such as schema or semantics of the

contained data. Without a good solution to the problem, the cost of discovering sources and

obtaining source descriptions will become the “bottleneck” in building large-scale information

integration systems. Annotator based on Web Search Engine utilizes the information (hit

counts) provided by popular web search engines such as Google, Yahoo and MSN. Search

engine hit counts depend on the popularity of the label as well as the value. Most recent

events have more hits than historic past events. We have got more hits for “President George

W. Bush” (8,600,000) than for “President George Washington” (297,000). Query with or

without quotes produces a different number of hit counts, but the decision of the algorithm

never changes. Here in this research, we have reported our experimental results from about

10-15 domains which show that our approach is effective and efficient.

In this research we have studied the problem of automatic data annotation and described a

low-cost approach for holistically labeling anonymous datasets. We have tested our approach

on small scale datasets and found that the results are favorable. This method is meant to

provide an incremental step toward the larger goals of Web Data Integration. Our approach,

viz. Web Search Engine Based Annotator is complementary to the other work in relation to

labeling anonymous datasets.

In this dissertation, we have researched the problem of labeling anonymous datasets. Our

main focus was on a generic, correct and efficient solution to the problem of labeling anony-

mous datasets. First of all, we have formalized the problem as part of deep Web database

69

abstraction model. Finally, we have designed efficient labeling algorithm, Lads, LadsCom-

plete. In summary, our main contributions are:

• We review the existing work on label assignment and propose to make it fully automatic

• We propose and define a novel label assignment problem

• We propose specific method, Web search engine based annotator, to solve the problem

• We run experiments to test the proposed methods and show that the proposed methods

are effective and efficient

• We have shown that “L V”, i.e., phrase pattern is enough to disambiguate column

labeling. We have shown the feasibility of the pattern by experimental results as well

as by solid statistical method PMI

• We make a procedural implementation of our approach in a Java framework

For future work, we plan to extensively evaluate the quality of the label assignment algorithm.

In the following, we list some interesting research directions for future work:

• Label column name based on search engine snippets only, which are short excerpts from

the Web page that show a bit of the context of the query term. An example is as follows:

suppose we want to label Camry, which is a car made by Toyota. We just need to issue

a query to search engine “Camry is a.” Extract the search engine snippets to mine label

for Camry.

• Label column name based on combination of search engine hits and dictionary extrac-

tion.

• Label Column Name based on combination of general knowledge source and domain

specific knowledge Source (e.g., CooksRecipe.com, bookfinder.com etc.).

• We have tested our hypothesis on 10-15 different domains. We wish to test these on

broader aspects like 50-100 different domains.

70

• Labeling anonymous datasets needs to be thought of as part of a general framework

for the understanding of the hidden Web that would include service discovery, semantic

analysis of the relations between input and output concepts of a service and indexing

and high-level querying of semantically analyzed services.

• When DSC assumption does not hold, we may need to consider multiple columns at a

time. Unfortunately, multiple column label assignment seems to be NP-hard problem.

Future work can investigate more in this regard.

Our main contributions include:

• Developed algorithm Lads and LadsComplete for Labeling Anonymous Datasets

• The proposed algorithm works fairly well for wrapper generated tables for Labeling

Anonymous Datasets

We have shown a new paradigm, Web Search Engine Based Annotator, to overcome the

labeling/annotation problem. Labeling /Semantic Annotation still has a long way to go, but

it will go a long way as the demand is immense.

71

BIBLIOGRAPHY

[1] Emdad Ahmed. Use of ontologies in software engineering. In 17th International Confer-

ence on Software Engineering and Data Engineering (SEDE), pages 145–150. ISCA, Los

Angeles, USA, June 30 - July 2 2008.

[2] Emdad Ahmed. Achieving classification and clustering in one shot - lesson learned from

labeling anonymous datasets. In 4th International Conference on Semantic Computing

(ICSC), pages 228–231. IEEE, Carnegie Mellon University, USA, September 22-24 2010.

[3] Emdad Ahmed, K. M. Ibrahim Asif, and Miftahur Rahman. Performance analysis of

data intensive web application (diwa) - a case study. In 7th International Conference

on Computer and Information Technology (ICCIT), pages 226–231. BRAC University,

December 26-28 2004.

[4] Emdad Ahmed and Hasan M. Jamil. A survey on bioinformatics data and service in-

tegration using ontology and declarative workflow query language. In PhD Qualifying

Survey Report, pages 1–67. Department of Computer Science, Wayne State University,

USA, March 2007.

[5] Emdad Ahmed and Hasan M. Jamil. Post processing wrapper generated tables for label-

ing anonymous datasets. In 11th International Workshop on Web Information and Data

Management, co-located with CIKM 2009, pages 63–66. ACM, WIDM09, Hong Kong,

China, November 2 2009.

[6] Emdad Ahmed and Hasan M. Jamil. Resource capability discovery and description

management system - labeling anonymous dataset for web data integration. In PhD

Prospectus Technical Report, pages 1–54. Department of Computer Science, Wayne State

University, USA, February 2009.

72

[7] Mohammad Shafkat Amin and Hasan M. Jamil. Fastwrap: An efficient wrapper for

tabular data extraction from the web. In International Conference on Information Reuse

and Integration, pages 1–8. IEEE, Las Vegas, August 2009.

[8] Luigi Arlotta, Valter Crescenzi, Giansalvatore Mecca, and Paolo Merialdo. Automatic

annotation of data extracted from large web sites. In International Workshop on the Web

and Databases, pages 1–6. WebDB, June 12-13 2003.

[9] Anupam Bhattacharjee, Aminul Islam, Mohammad Shafkat Amin, Shahriyar Hossain,

Shazzad Hosain, and Hasan M. Jamil. Lifedb: An autonomous system for semantic

integration of life science data on hidden web. In Semantic Web Applications and Tools

for Life Sciences, pages 1–1. SWAT4LS, Scotland, UK, November 2008.

[10] Anupam Bhattacharjee, Aminul Islam, Mohammad Shafkat Amin, Shahriyar Hossain,

Shazzad Hosain, Hasan M. Jamil, and Leonard Lipovich. On-the-fly integration and ad

hoc querying of life sciences databases using lifedb. In 20th International Conference

on Database and Expert Systems Applications, pages 1–8. DEXA, Linz, Austria, August

2009.

[11] Michael J. Cafarella, Alon Halevy, and Zhe Daisy Wang. Uncovering the relational web.

In 11th International Workshop on Web and Databases (WebDB), pages 1–6. ACM, June

13 2008.

[12] Michael J. Cafarella, Alon Halevy, and Zhe Daisy Wang. Webtables: Exploring the power

of tables on the web. In VLDB, pages 1–12. ACM, August 2008.

[13] Michael J. Cafarella, Jayant Madhavan, and Alon Halevy. Web-scale extraction of struc-

tured data. SIGMOD Record, 37(4):55–61, December 2008.

[14] Michael John Cafarella. Extracting and Managing Structured Web Data. PhD thesis,

University of Washington, 2009.

[15] Andrew Carlson and Charles Schafer. Bootstrapping information extraction from semi

structured web pages. In ECML, pages 1–16. ACM, December 2008.

73

[16] Liangyou Chen and Hasan M. Jamil. Supporting remote user defined functions in het-

erogeneous biological databases. In International Symposium on Bio-Informatics and

Biomedical Engineering (BIBE), pages 144–152. IEEE, November 2001.

[17] Liangyou Chen and Hasan M. Jamil. On using remote user defined functions as wrappers

for biological database interoperability. International Journal of Coopeartive Information

Systems (CoopIS), 12(2):161–195, June 2003.

[18] Liangyou Chen and Hasan M. Jamil. AD HOC INTEGRATION AND QUERYING OF

HETEROGENEOUS ONLINE DISTRIBUTED DATABASES. PhD thesis, Mississipi

State University, 2004.

[19] Liangyou Chen, Hasan M. Jamil, and Wang N. Automatic wrapper generation for semi

structured biological data based on table structure identification. In DEXA International

Workshop on Biological Data Management, pages 1–10. IEEE, September 2003.

[20] Liangyou Chen, Hasan M. Jamil, and Wang N. Automatic composite wrapper gener-

ation for semi structured biological data based on table structure identification. ACM

SIGMOD, 33(2):58–64, June 2004.

[21] Philipp Cimiano, Gunter Ladwig, and Steffen Staab. Gimme the context: Context driven

automatic semantic annotation with c-pankow. In Proceedings of WWW, pages 332–341.

ACM, May 10-14 2005.

[22] Philipp Cimiano and Steffen Staab. Learning by googling. In SIGKDD Explorations

6(2), pages 24–34. ACM, December 2004.

[23] Thomas H. Cormen, Charles E. Leiserson, Ronald Rivest, and C. Stein. Introduction to

Algorithms, 2nd edition. MIT Press, USA, 2001.

[24] Valter Crescenzi and Giansalvatore Mecca. Automatic information extraction from large

websites. ACM, 51(5):731–779, September 2004.

[25] Valter Crescenzi, Giansalvatore Mecca, and Paolo Merialdo. Roadrunner: Towards au-

tomatic data extraction from large web sites. In 27th VLDB Conference, pages 109–118.

ACM, September 2001.

74

[26] Altigran S. da Silva, Denilson Barbosa, Joao M. B. Cavalcanti, and Marco A. S. Sevalho.

Labeling data extracted from the web. In LNCS 4803, pages 1099–1116. Springer-Verlag,

December 2007.

[27] Yihong Ding, David W. Embley, and Stephen W. Liddle. Automatic creation and sim-

plified querying of semantic web content: An approach based on information-extraction

ontologies. In LNCS, pages 400–414. Springer, June 2006.

[28] Bilal El-Hajj-Diab and Hasan M. Jamil. Bioflow: A web-based declarative workflow

language for life sciences. In 2nd International Workshop on Scientific Workflow, pages

453–460. IEEE, Hawaii, USA, July 8 2008.

[29] David W. Embley, D. M. Campbell, Y. Jiang, Stephen W. Liddle, Y. K. Ng, D. Quass,

and R. Smith. Conceptual model based data extraction from multiple record web pages.

Data and Knowledge Engineering, 31(3):227–251, November 1999.

[30] David W. Embley, Y. Jiang, and Y. K. Ng. Record boundary discovery in web documents.

In SIGMOD, pages 467–478. ACM, June 1999.

[31] David W. Embley, Cui Tao, and Stephen W. Liddle. Automating the extraction of data

from html tables with unknown structure. Data and Knowledge Engineering, 54(1):3–28,

November 2005.

[32] Avigdor Gal, Giovanni Modica, and Hasan M. Jamil. Ontobulider: Fully automatic

extraction and consolidation of ontologies from web sources. In 20th International Con-

ference on Data Engineering (ICDE), pages 1–10. IEEE, November 2004.

[33] Fatih Gelgi, Srinivas Vadrevu, and Hasan Davulcu. Fixing weakly annotated web data

using relational models. In LNCS 4607, pages 1–15. ICWE, July 2007.

[34] Marti A. Hearst. Automatic acquisition of hyponyms from large text corpora. In COL-

ING, pages 539–545. ACM, August 23-28 1992.

[35] Le Quang Hieu. Integration of web data sources: A survey of existing problems. In

Institute of Computer Science Heinrich-Heine-University Dusseldorf, pages 1–5, 2005.

75

[36] Mingcai Hong, Jie Tang, and Juanzi Li. Semantic annotation using horizonal and vertical

contexts. In ASWC 2006, LNCS 4185, pages 58–64. Springer-Verlag Berlin Heidelberg,

September 2006.

[37] Thomas Hornung, Kai Simon, and Georg Lausen. Mashups over the deep web. In

WEBIST, pages 228–241. Springer-Verlag Berlin Heidelberg, May 2008.

[38] Md. Shazzad Hosain. An Algebraic Language for Semantic Data Integration on the Hid-

den Web. PhD thesis, Wayne State University, 2010.

[39] Shazzad Hosain and Hasan M. Jamil. An algebraic language for semantic data inte-

gration on the hidden web. In 3rd International International Conference on Semantic

Computing, pages 1–8. IEEE, Berkley, California, September 2009.

[40] Shazzad Hosain and Hasan M. Jamil. Algebraic operator support for semantic data fusion

in extended sql. In 8th IEEE International Conference on Cybernetic Intelligent Systems

(UK and Ireland Chapter), pages 1–8. IEEE, University of Birmingham, Birmingham,

UK, September 2009.

[41] http://base.google.com. Post it on base. find it on google.

[42] http://metaquerier.cs.uiuc.edu/repository. Bamm datasets.

[43] http://www.dia.uniroma3.it/db/roadRunner/experiments.html. Roadrunner datasets.

[44] Aminul Islam and Hasan M. Jamil. The power of declarative languages: A comparative

exposition of scientific workflow design using bioflow and taverna. In 3rd International

Workshop on Scientific Workflows, pages 1–8. IEEE, Los Angeles, CA, July 2009.

[45] CUI Xiao Jun, PENG Zhi Yong, and Wang Hui. Multi-source automatic annotation for

deep web. In International Conference on Computer Science and Software Engineering,

pages 659–662. IEEE, December 2008.

[46] Thomas Kabisch, Ronald Padur, and Dirk Rother. Using web knowledge to improve

the wrapping of web sources. In 22nd International Conference on Data Engineering

Workshops (ICDEW 06), pages 1–10. IEEE Computer Society, September 2006.

76

[47] Zoe Lacroix. Web data retrieval and extraction. Elsevier Journal of Data and Knowledge

Engineering, 44(1):347–367, November 2003.

[48] A. H. F. Laender, B. R. Neto, A. S. da Silva, and J. S Teixeria. A brief survey of web

data extraction tools. In SIGMOD Record, pages 84–93. ACM, June 2002.

[49] Kristina Lerman, Cenk Gazen, Steven Minton, and Craig Knoblock. Populating the

semantic web. In Workshop on Adaptive Text Extraction and Mining (ATEM), pages

1–6. AAAI, July 24 2004.

[50] Wei Liu, Derong Shen, and Tiezheng Nie. An effective method supporting data extraction

and schema recognition on deep web. In LNCS 4976, pages 419–431. Springer-Verlag

Berlin Heidelberg, April 2008.

[51] Jiann Jyh Lu and Chun Nan Hsu. Query answering using ontologies in agent-based

resource sharing environment for biological web information integration. In IIWeb, pages

197–202. IIWeb, March 2003.

[52] Yiyao Lu, Hai He, Hongkun Zhao, Weiyi Meng, and Clement Yu. Annotating structured

data of the deep web. In 23rd International Conference on Data Engineering (ICDE),

pages 376–385. IEEE, April 15-20 2007.

[53] Hoa Nguyen, Eun Yong Kang, and Juliana Freire. Labelex: A scalable approach for

extracting form labels. In 24th International Conference on Data Engineering, pages

1–10. IEEE, April 7-12 2008.

[54] Aleksander Pivk, Philipp Cimiano, and York Sure. From tables to frames. Web Seman-

tics, 3(1):132–146, June 2005.

[55] Aleksander Pivk, Philipp Cimiano, York Sure, Matjaz Gams, Vladislav Rajkovic, and

Rudi Studer. Transforming arbitrary tables into logical form with tartar. Data and

Knowledge Engineering, 60(1):567–595, June 2007.

[56] Sriram Raghavan and Hector Garcia Molina. Crawling the hidden web. In 27th VLDB

Conference, pages 1–10. ACM, September 2001.

77

[57] Nikos Sarkas, Gautam Das, and Nick Koudas. Improved search for socially annotated

data. In PVLDB 2(1), pages 778–789. VLDB Endowment, August 2009.

[58] Pierre Senellart, Avin Mittal, Daniel Muschick, Remi Gilleron, and Marc Tommasi. Au-

tomatic wrapper induction froom hidden web sources with domain knowledge. In WIDM,

pages 1–8. ACM, October 30 2008.

[59] Liangcai shu, Weiyi Meng, Hai He, and Clement Yu. Querying capability modeling and

construction of deep web sources. In WISE 2007 LNCS 4831, pages 13–25. Springer-

Verlag, December 3-7 2007.

[60] Avi Silberschatz, Henry F. Korth, and S. Sudarshan. Database System Concepts. McGraw

Hill, USA, 2005.

[61] Kai Simon and Georg Lausen. Viper: Augmenting automatic information extraction with

visual perceptions. In Conference on Information and Knowledge Management (CIKM),

pages 1–8. ACM, October 31 - November 5 2005.

[62] Youngju Son, Hasan M. Jamil, and Farshad Fotouhi. Advanced Type-Based Schema

Mapping: A New Approach in Data Integration. PhD thesis, Wayne State University,

2006.

[63] Weifeng Su, Jiying Wang, and Frederick H. Lochovsky. Ode: Ontology-assisted data

extraction. ACM Transaction on Database Systems, 34(2):12:1–12:35, June 2009.

[64] Shoubiao Tan, Jin Fan, and Yuan Jiang. Web data extraction based on label library.

In World Congress on Computer Science and Information Engineering, pages 134–138.

IEEE Computer Society, August 2009.

[65] Peter D. Turney. Mining the web for synonyms: Pmi-ir versus lsa on toefl. In ECML,

pages 491–502. ACM, September 3-7 2001.

[66] Jiying Wang and Fred H. Lochovsky. Data extraction and label assignment for web

databases. In WWW, pages 1–13. ACM, 2003.

78

[67] Tak-Lam Wong and Wai Lam. Adapting web information extraction knowledge via min-

ing site-invariant and site-dependent features. ACM Transaction on Internet Technology,

7(1):1–40, February 2007.

[68] Hui Xu, Juanzi Li, and Peng Xu. List data extraction in semi structured document. In

WISE 2005, LNCS 3806, pages 584–585. Springer-Verlag Berlin Heidelberg, November

2005.

[69] Guan Z and Hasan M. Jamil. Streamling biological data analysis using bioflow. In

International Symposium on Bio-Informatics and Biomedical Engineering (BIBE), pages

258–262. IEEE, March 2003.

[70] Patrick Ziegler. Data integration projects world-wide. In

http://www.ifi.unizh.ch/ pziegler/IntegrationProjects.html, pages 1–8. Department

of Informatics, University of Zurich, April 2007.

79

ABSTRACT

POST PROCESSING WRAPPER GENERATED TABLES
FOR LABELING ANONYMOUS DATASETS

by

EMDAD AHMED

May 2011

Advisor: Dr. Hasan M. Jamil

Major: Computer Science

Degree: Doctor of Philosophy

A large number of wrappers generate tables without column names for human consumption

because the meaning of the columns are apparent from the context and easy for humans to

understand, but in emerging applications, labels are needed for autonomous assignment and

schema mapping where machine tries to understand the tables. Autonomous label assignment

is critical in volume data processing where ad hoc mediation, extraction and querying is

involved.

We propose an algorithm Lads for Labeling Anonymous Datasets, which can holistically

label/annotate tabular Web document. The algorithm has been tested on anonymous datasets

from a number of sites, yielding very promising results. We report here our experimental re-

sults on anonymous datasets from a number of sites e.g., music, movie, watch, political,

automobile, synthetic obtained through different search engine such as Google, Yahoo and

MSN. The comparative probabilities of attributes being candidate labels are presented which

seem to be very promising, achieved as high as 98% probability of assigning good label to

anonymous attribute. To the best of our knowledge, this is the first of its kind for label assign-

ment based on multiple search engines’ recommendation. We have introduced a new paradigm,

Web search engine based annotator which can holistically label tabular Web document. We

categorize column into three types: disjoint set column (DSC), repeated prefix/suffix column

(RPS) and numeric column (NUM). For labeling DSC column, our method rely on hit counts

80

from Web search engine (e.g., Google, Yahoo and MSN). We formulate speculative queries to

Web search engine and use the principle of disambiguation by maximal evidence to come up

with our solution. Our algorithm Lads is guaranteed to work for the disjoint set column.

Experimental results from large number of sites in different domains and subjective eval-

uation of our approach show that the proposed algorithm Lads works fairly well. In this

line we claim that our algorithm Lads is robust. In order to assign label for the Disjoint Set

Column, we need a candidate set of labels (e.g., label library) which can be collected on-the-

fly from user SQL query variable as well as from Web Form label tag. We classify a set of

homogeneous anonymous datasets into meaningful label and at the same time cluster those

labels into a label library by learning user expectation and materialization of her expectation

from a site. Previous work in this field rely on extraction ontologies, we eliminate the need

for domain specific ontologies as we could extract label from the Web form. Our system is

novel in the sense that we accommodate label from the user query variable. We hypothesize

that our proposed algorithm Lads will do a good job for autonomous label assignment. We

bridge the gap between two orthogonal research directions: wrapper generation and ontology

generation from Web site (i.e., label extraction). We are NOT aware of any such prior work

that address to connect these two orthogonal research for value added services such as online

comparison shopping.

81

AUTOBIOGRAPHICAL STATEMENT

EMDAD AHMED

Emdad Ahmed received his Ph.D. degree in Computer Science from Wayne State Uni-

versity (USA) in May 2011. He obtained Australian Govt scholarship (AusAID) to pursue

Master of Engineering Science (MEngSc) from University of New South Wales, Australia in

2001. He has received Master of Business Administration (MBA) from Institute of Business

Administration, Dhaka University in 1998 and BSc.Engg (Computer Science and Engineering)

from Bangladesh University of Engineering and Technology (BUET) in 1994 respectively.

While his general research interest is in the field of databases, Bioinformatics, his current

focus is in the areas of Web data Integration. His research has resulted in several referred

international conference papers, including articles that appeared in ACM WIDM, SEDE and

IEEE ICSC international conferences.

As a Ph.D. student in Wayne State University, Emdad Ahmed was a recipient of several

competitive awards that include Graduate Teaching Assistant, Part Time Faculty during

Spring/Summer, Graduate Teaching Assistant Professional Travel award etc.

He has been lecturer, Department of Computer Science and Engineering, Khulna Univer-

sity during 1994. He has worked as Computer Programmer (Local Consultant) in a World

Bank Project, Female Secondary School Assistant Project under Directorate of Secondary and

Higher Education of Ministry of Education, Bangladesh from 1994 to 1997. He has served as

lecturer, Department of Electrical Engineering and Computer Science, North South Univer-

sity from 2001 to 2005. He has started faculty job at Montana State University Billings from

Fall 2010.

	Wayne State University
	DigitalCommons@WayneState
	1-1-2011

	Post Processing Wrapper Generated Tables For Labeling Anonymous Datasets
	Emdad Ahmed
	Recommended Citation

