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ABSTRACT 

 Accurate and reliable turbulence and transition models are needed for prediction heating 

loads in the hot section of the turbine, and predicting aerodynamic losses when designing new 

blade profiles.  Two dimensional compressible flow simulations were conducted at North Dakota 

State University on a first stage turbine vane design.  Surface pressure results were compared 

with experimental data collected at the University of North Dakota.  Results showed an under 

prediction of the surface pressure on the suction surface of the vane.  Two and three dimensional 

compressible flow simulations were also conducted at NDSU on an incident tolerant blade 

design to look at the effect of incidence angle, Reynolds number, and turbulence intensity on 

transition.  Results from these simulations were compared with experimental data collected at 

UND. The results show good agreement at higher Reynolds numbers with discrepancies being 

seen on the suction surface of the blade at lower Reynolds numbers. 
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NOMENCLATURE 

c =  chord length, m 

Cf =  skin friction, 
𝜏𝑤

1

2
𝜌∞𝑈∞

2
 

Cp =  pressure coefficient, 
(𝑝𝑡𝑜𝑡𝑎𝑙−𝑝)
1

2
𝜌∞𝑈∞

2
 

FSTI =  free stream turbulence intensity 

h =  heat transfer coefficient, W/m2-K 

Kt =  flow acceleration parameter, (
𝜈

𝑈2
) (

𝑑𝑈

𝑑𝑠
) 

Lref =  reference length 

Ps =  static pressure, Pa 

Pt =  total pressure, Pa 

q’’ =  heat flux from blade surface, W/m2 

Re =  Reynolds number, 
𝜌∞𝑈∞𝐿𝑟𝑒𝑓

𝜇∞
 

s =  surface arc length, m 

Tke =  turbulent kinetic energy, m2/s2 

u’ =  streamwise fluctuation velocity, m/s 

U =  streamwise velocity, m/s 

Uin =  inlet velocity, m/s 

Uexit =  exit velocity, m/s 

U∞ =  freestream velocity, m/s 

γ =  intermittency factor 

ε =  turbulent dissipation rate, −
𝑑𝑘

𝑑𝑡
 ,m2/s3  
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θ =  momentum thickness 

ρ∞ =  freestream density, kg/m3 

μ∞ =  freestream molecular viscosity, Pa-s 

μt =  eddy viscosity 

ν =  kinematic viscosity, 
𝜇

𝜌
, m2/s 

ω =  turbulent eddy frequency, s-1 

ωloss =  loss coefficient,  
𝑃𝑖𝑛−𝑃𝑡𝑜𝑡𝑎𝑙

𝑃𝑖𝑛
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1. INTRODUCTION AND RESEARCH OBJECTIVES 

 With the rising oil prices in recent years and the “green” movement, research efforts in 

lowering emissions and increasing efficiency of gas turbines has increased, which has led to new 

combustor technology and designs.  Many of these new designs increase the turbulent mixing of 

the flow to improve the combustion process. This increase in the turbulence intensity directly 

leads to a higher turbulence level and a substantial increase in heat transfer distributions in the 

hot section of the gas turbine, primarily the first stage vanes of the high pressure turbines 

(Anderson, 2011) (Ames, Wang, & Barbot, 2003) (Ames F. , 1997).  At higher altitudes and 

cruising speeds (when the turbines are not under high load), drops in efficiency has been 

observed and can be partially attributed to flow separation on the suction side of the blades.  

Accurately modeling turbulence to predict heat transfer and losses is one of the more important 

and difficult aspects of turbine design.  In order to calculate heat transfer and losses, a designer 

must have tools that are able to predict boundary layer development, through the transition 

region, and into the turbulent regime (Glassman, Whitney, & Steward, 1994) (Mayle, 1991).   

The γ-Reθ transition model has been show to give good results in a wide area of 

transitional flows.  However, the model has shown deficiency in high turbulence high Reynolds 

number flows, like the flows found in the hot section of a gas turbine.  This is where this 

research on the γ-Reθ hopes to improve the accuracy in these high turbulence high Reynolds 

number flows. 

 The goal of this research is the following: 

1. Testing and validation of turbulence and transition models for compressible turbine 

vane flows 
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2. Testing and validation of turbulence and transition models for compressible flows of 

an incident tolerant blade design 

The testing and validation of these cases can help identify areas of improvement of the transition 

model.  These cases can also provide a base for future model refinement and improvement. 
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2. TURBULENCE AND TRANSITION REVIEW 

2.1. Turbulent Flow 

 Most flows of interest for engineering applications are by their nature considered to be 

turbulent.  Turbulence consists of random velocity fluctuations and contains an almost infinite 

range of eddy sizes and length scales. Because of the complex nature of turbulence, it remains to 

be an unsolved problem to researchers and engineers.  

2.1.1. Turbulence Background 

 Turbulence is considered to be a highly complex, three-dimensional, non-linear, and time 

dependent phenomenon.  Many different definitions of turbulence can be found in literature, but 

it has shown to be a rather difficult task to come up with a definition that encompasses all of the 

different aspects of turbulence.  One of the more common informal definitions was given by 

Richardson in 1922 and states “Big whorls have little whorls which feed on their velocity; and 

little whorls have lesser whorls and so on to viscosity” (Richardson, 1922).  This definition gives 

a good overview in describing how turbulence is a continuum phenomenon and contains 

essentially infinite number of scales.  A formal definition given by Hinze gives a good summary 

of how turbulence consists of random fluctuations both in time and space and can be statistically 

averaged (Hinze, 1959).  The definition by Hinze is says “Turbulent fluid motion is an irregular 

condition of the flow in which the various quantities show a random variation with time and 

space coordinates, so that statically distinct average values can be discerned” (Hinze, 1959). 

The two previous definitions give a good overall definition of the main concept of turbulence. 

 As Richardson’s definition above stated that an almost infinite range of scales exist, they 

also coexist in turbulent flow, with the smaller scales inside of the larger scales.  This wide range 

of sizes of turbulent eddies leads to an increase in vigorous mixing, which can be extremely large 
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when compared to laminar values.  The term “eddies” can be defined of a local swirling motion 

whose characteristic dimension is the local turbulence scale.  Figure 2.1 below shows a 

schematic of large eddies in a turbulent boundary layer. 

 

Figure 2.1: Schematic of Large Eddies In Turbulent Boundary Layer (Wilcox, 2000) 

 It can be seen that turbulence is a cascading process where as the turbulence decays, its 

kinetic energy transfers from the larger eddies to the smaller eddies.  From this energy transfer it 

can be concluded that like any viscous flow turbulent flows are always dissipative. 

2.1.2. Small Scales of Turbulence 

 From the above section, we can regard turbulence as a continuum phenomenon because 

even the smallest scales of turbulence are much larger than any molecular length scale.  Since we 

know that turbulent flow is a cascading process where turbulent kinetic energy is transferred 

from larger eddies to smaller eddies, it can be determined that the dissipation of kinetic energy to 

heat thru molecular viscosity happens only at the smallest eddy scale, and that the rate at which 

the smaller eddies receive energy from the larger eddies is equal to the rate at which the smallest 

eddies dissipate the energy to heat.  This is one of the main premises of Kolmogorov’s universal 

equilibrium theory (Kolmogorov, 1941).  From this theory the motion at the smallest scales 

should only depends on the rate at which the larger eddies supply energy (ε), and the kinematic 

viscosity (υ). 
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 Knowing that ε and υ are the appropriate dimensional quantities, the length (η), time (τ), 

and velocity (ν) scales can be developed and are as follows: 

 𝜂 ≡ (
𝜐3

𝜀
)

1
4

,          𝜏 ≡ (
𝜐

𝜀
)

1
2
,          𝜈 ≡ (𝜐𝜀)

1
4   (2.1) 

These are the known as the Kolmogorov scales of length, time, and velocity (Wilcox, 2000). 

2.1.3. Governing Equations of Motion 

 The basic equations for motion are the conservation of mass, conservation of momentum, 

and the conservation of energy equations.  The momentum equations are referred to the Navier-

Stokes equations, and are named after the two scientists who derived them independently.  

Equation (2.2) below is the complete mass conservation equation, and equations (2.3), (2.4), and 

(2.5) are the x, y, and z momentum conservation equations. 

 
𝜕𝜌

𝜕𝑡
+ [

𝜕(𝜌𝑢)

𝜕𝑥
+ 
𝜕(𝜌𝑣)

𝜕𝑦
+ 
𝜕(𝜌𝑤)

𝜕𝑧
] =  0 (2.2) 

 
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
=  
1

𝜌
[−
𝜕𝑝

𝜕𝑥
+ 
𝜕𝜏𝑥𝑥
𝜕𝑥

+ 
𝜕𝜏𝑦𝑥

𝜕𝑦
+ 
𝜕𝜏𝑧𝑥
𝜕𝑧

] (2.3) 

 
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
=  
1

𝜌
[−
𝜕𝑝

𝜕𝑦
+ 
𝜕𝜏𝑥𝑦

𝜕𝑥
+ 
𝜕𝜏𝑦𝑦

𝜕𝑦
+ 
𝜕𝜏𝑧𝑦

𝜕𝑧
] (2.4) 

 
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
=  
1

𝜌
[−
𝜕𝑝

𝜕𝑧
+ 
𝜕𝜏𝑥𝑧
𝜕𝑥

+ 
𝜕𝜏𝑦𝑧

𝜕𝑦
+ 
𝜕𝜏𝑧𝑧
𝜕𝑧

] (2.5) 

If these equations are rearranged and rewritten into vector form, they then take the form of 

 
𝐷𝜌

𝐷𝑡
+  𝜌 div 𝑽 = 0 

(2.6) 
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 𝜌
𝐷𝑽

𝐷𝑡
=  𝜌𝑔 − ∇𝑝 + 

𝜕

𝜕𝑥𝑗
[𝜇 (

𝜕𝑣𝑖
𝜕𝑥𝑗

+
𝜕𝑣𝑗

𝜕𝑥𝑖
) + 𝛿𝑖𝑗𝜆 𝑑𝑖𝑣 𝐕] (2.7) 

 If the flow is assumed to be incompressible, constant density (ρ), and have constant 

viscosity (μ), the continuity equation (mass) and the Navier-Stokes equations (momentum) 

reduce and become much simpler (White, 2006).  The incompressible flow forms of the 

continuity equation and the Navier-Stokes equations are as follows: 

 div 𝐕 = 0 (2.8) 

 𝜌
𝐷𝑽

𝐷𝑡
=  𝜌𝑔 − ∇𝑝 +  𝜇∇2𝐕 

(2.9) 

The conservation of energy equation is shown below in equation (2.10). 

 𝜌
𝐷

𝐷𝑡
(𝑒 + 

𝑝

𝜌
) =

𝐷𝑝

𝐷𝑡
+ div(𝑘∇𝑇) + 𝜏𝑖𝑗

′
𝜕𝑢𝑖
𝜕𝑥𝑗

 (2.10) 

If the concept of enthalpy is used, and the dissipation function Φ is introduced, which is defined 

as 

 Φ = 𝜏𝑖𝑗
′
𝜕𝑢𝑖
𝜕𝑥𝑗

 
(2.11) 

Equation (2.11) can be rewritten as the following: 

 𝜌
𝐷ℎ

𝐷𝑡
=
𝐷𝑝

𝐷𝑡
+ div(𝑘∇𝑇) +  Φ (2.12) 

Once again, if the flow is assumed to be incompressible, equation (2.12) can be simplified and 

written in terms of thermodynamic properties and is as follows: 
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 𝜌𝑐𝑝
𝐷𝑇

𝐷𝑡
≈ div(𝑘∇𝑇) 

(2.13) 

Simplifying further, if constant thermal conductivity is assumed, equation (2.13) can be reduced 

to obtain the familiar incompressible heat-convection equation (White, 2006): 

 𝜌𝑐𝑝
𝐷𝑇

𝐷𝑡
≈ 𝑘∇2𝑇 

(2.14) 

The derived equations above represent the basic laws of fluid motion for linear (Newtonian) 

fluids. 

2.1.4. Reynolds-Averaged Equations 

 From the previously given definition of turbulence it is know that turbulence consists of 

random fluctuations of various flow properties.  Because of these fluctuating values, a statistical 

approach can be used.  One of the most widely used statistical approaches was introduced by 

Reynolds in 1895, in which all quantities are expressed as the sum of mean and fluctuating parts. 

In other words 

 𝑢(𝑥) = 𝑢̅(𝑥) + 𝑢′(𝑥) (2.15) 

where u is a random turbulent variable. The nonlinearity of the Navier-Stokes equations lead to 

the appearance of momentum fluxes that act as stresses throughout the flow.  These stresses are 

unknown beforehand, therefore equations must be derived.  These derived equations include 

additional unknown quantities.  This problem of creating enough equations for all of the 

unknowns introduces what is known as the “Turbulent Closure Problem”.   

To analyze the complex behavior of turbulence, classical statistical methods are used.  

The averaging concept introduced by Reynolds in 1895 is the main statistical method used.  

Figure 2.2 below shows multiple velocity profiles taken at different times (left) and the averaged 
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velocity profile (right). This shows how averaging the fluctuations to a mean value can be of 

great benefit when looking at turbulent values. 

 

Figure 2.2: Instantaneous and Averaged Velocity Profiles (Wilcox, 2000) 

The three most widely used forms of Reynolds averaging are the time average, spatial 

average, and the ensemble average (Wilcox, 2000).  Time averaging, which in engineering is the 

most common form of Reynolds averaging, is used for stationary turbulence.  Time averaging is 

the most common since most of the turbulent flows in engineering are stationary.  Figure 2.2 

above was obtained using time averaging. Let f(x,t) be an instantaneous flow variable, then its 

time average, FT(x), is defined by 

 𝐹𝑇(𝑥) =  lim
𝑇→∞

1

𝑉
∫ 𝑓(𝑥, 𝑡)𝑑𝑡
𝑡+𝑇

𝑡

 
(2.16) 

Spatial averaging is used for homogenous turbulence, which is turbulent flow that on 

average is uniform in all directions.  This type of averaging is done by calculating a volume 

integral over all of the spatial coordinates.  Let f(x,t) be an instantaneous flow variable, then its 

average, FV, is defined by 

 𝐹𝑉(𝑡) =  lim
𝑉→∞

1

𝑉
∭ 𝑓(𝑥, 𝑡)𝑑𝑉

𝑉

 (2.17) 
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Ensemble averaging is the most general type of Reynolds averaging and is used for flows 

that decay in time (Wilcox, 2000).  If N identical experiments are performed where 𝑓(𝑥, 𝑡) =

𝑓𝑛(𝑥, 𝑡) in the nth experiment, the average, FE, is given by 

 𝐹𝐸(𝑥, 𝑡) =  lim
𝑁→∞

1

𝑁
∑𝑓𝑛(𝑥, 𝑡)

𝑁

𝑛=1

 
(2.18) 

For turbulence that is both stationary and homogeneous, it can be assumed that all three 

of these averaging methods are all equal.  Because they can be assumed equal, and time 

averaging is the most used in engineering, it will be used throughout the rest of this thesis.  We 

will start with the incompressible and constant property flow form of the equations for the 

conservation of mass and momentum 

 
𝜕𝑢𝑖
𝜕𝑥𝑖

= 0 
(2.19) 

 
𝜌
𝜕𝑢𝑖
𝜕𝑡

+  𝜌𝑢𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

= −
𝜕𝑝

𝜕𝑥𝑖
+ 
𝜕𝑡𝑗𝑖

𝜕𝑥𝑗
 

(2.20) 

where ui  is velocity,  xi is position, t is time, p is pressure, ρ is density, and tij is the viscous stress 

tensor defined by  

 𝑡𝑖𝑗 = 2𝜇𝑠𝑖𝑗 (2.21) 

where μ is molecular viscosity and sij is the strain rate tensor, 

 𝑠𝑖𝑗 =
1

2
 (
𝜕𝑢𝑖
𝜕𝑥𝑗

+ 
𝜕𝑢𝑗

𝜕𝑥𝑖
) 

(2.22) 

Combining the previous equations and putting the convective term in conservation form, the 

Navier-Stokes equation becomes 
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 𝜌
𝜕𝑢𝑖
𝜕𝑡

+  𝜌
𝜕

𝜕𝑥𝑗
(𝑢𝑗𝑢𝑖) =  −

𝜕𝑝

𝜕𝑥𝑖
+ 

𝜕

𝜕𝑥𝑗
(2𝜇𝑠𝑗𝑖) (2.23) 

Time averaging equations (2.19) and (2.23) gives the Reynolds averaged equations of motion 

and they appear as the following: 

 𝜕𝑈𝑖
𝜕𝑥𝑖

= 0 
(2.24) 

 𝜌
𝜕𝑈𝑖
𝜕𝑡

+  𝜌
𝜕

𝜕𝑥𝑗
(𝑈𝑗𝑈𝑖 − 𝑢𝑗′𝑢𝑖′̅̅ ̅̅ ̅̅ ) =  −

𝜕𝑃

𝜕𝑥𝑖
+ 

𝜕

𝜕𝑥𝑗
(2𝜇𝑆𝑗𝑖) (2.25) 

The only difference between these time averaged equations and the instantaneous equations 

above is the correlation𝑢𝑗′𝑢𝑖′̅̅ ̅̅ ̅̅ .  In order to find all of the mean flow properties of the turbulent 

flow we need a method for calculating𝑢𝑗′𝑢𝑖′̅̅ ̅̅ ̅̅ . 

 Equation (2.25) can be rewritten into its more popular form and is shown below. 

 𝜌
𝜕𝑈𝑖
𝜕𝑡

+  𝜌𝑈𝑗
𝜕𝑈𝑖
𝜕𝑥𝑗

= −
𝜕𝑃

𝜕𝑥𝑖
+ 

𝜕

𝜕𝑥𝑗
(2𝜇𝑆𝑗𝑖 − 𝜌𝑢𝑗′𝑢𝑖′̅̅ ̅̅ ̅̅ ) 

(2.26) 

The resulting above equation is known as the “Reynolds-Averaged Navier-Stokes”, or RANS, 

equation.  The quantity −𝜌𝑢𝑗′𝑢𝑖′̅̅ ̅̅ ̅̅  is called the “Reynolds-stress tensor” and can be denoted by ρτij, 

where τij is the “specific Reynolds stress tensor” and is given by (Wilcox, 2000). 

 𝜏𝑖𝑗 = −𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅  (2.27) 

If the number of unknowns (10) is compared with the number of equations (4) we see that we 

have more unknowns than equations, which means our system is not closed.  This is once again 

known as the “turbulence closure problem” and brings up the main function of turbulence 
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modeling, which is to devise approximations for the unknown correlations so enough equations 

exist to solve for all of the unknowns and close the system (Wilcox, 2000). 

2.2. Laminar to Turbulent Flow Transition 

 Generally there are considered three important modes of wall bounded transition.  The 

first and most commonly thought of mode of transition is called “natural” transition.  This mode 

of transition is initiated by a weak instability in the laminar boundary layer.  This instability 

grows and progresses through numerous stages until it develops into fully turbulent flow 

(Schlichting, 1979).  The second mode of transition, called “bypass” transition, is the most 

common mode in gas turbines and is caused by disturbances in the external flow. These 

disturbances include the free stream turbulence and pressure gradient (Morkovin, 1969). The 

third general type of transition is known as “separated-flow” transition.  Transition in this mode 

occurs in the separated laminar boundary layer and may or may not include T-S (Tollmien-

Schlichting) waves.  This mode is most prevalent in the low pressure turbine section in gas 

turbines.  Different modes of transition can occur at the same time at different locations on the 

same surface. 

2.2.1. Modes of Transition 

 The three general modes of transition are natural transition, bypass transition, and 

separated-flow transition.  Bypass transition, separated-flow transition, and “periodic unsteady” 

transition flows make up the majority of the observed transitional flows in turbomachinery. 

2.2.1.1. Natural Transition 

 Natural transition begins when the momentum thickness Reynolds number reaches a 

critical value and the laminar boundary layer becomes susceptible to small disturbances.  These 

small disturbances then develop into two dimensional instabilities called Tollmien-Schlichting 
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(T-S) waves.  These T-S waves then are amplified to a point where three dimensional 

instabilities progress into large fluctuations, then further develop into turbulent spots.  These 

turbulent spots grow and coalesce into a fully developed turbulent boundary layer (Schlichting, 

1979) (Mayle, 1991).  Figure 2.3 below shows the stages of natural transition. 

 

Figure 2.3: Natural Stages of Transition (White, 2006) 

2.2.1.2. Bypass Transition 

 Due to the high free stream turbulence intensity levels, pressure gradients, and other large 

free stream disturbances, the initial stages of natural transition are completely skipped, or 

“bypassed”, and turbulent spots are directly produced (Mayle, 1991). Kachanov mentions that 

this type of transition is connected with direct nonlinear laminar-flow breakdown under the 

influence of large external disturbances, such as free stream disturbances and surface roughness 

(Kachanov, 1994).  Bypass transition is a very common mode of transition in gas turbines 

(Mayle & Schulz, 1996). 

2.2.1.3. Separated-Flow Transition 

 Separated-flow transition occurs when the laminar boundary layer separates from the 

surface.  When this happens, transition occurs in the separated shear layer near the surface.  The 
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flow may reattach as turbulent flow.  This separation and reattachment creates a “bubble” of re-

circulating flow on the surface.  This transition usually occurs in over speed regions near the 

leading edge and near the minimum pressure point on the suction surface.  The bubble size or 

“length” depends mainly on the transition process in the shear layer.  The transition over the 

separation bubble can include all of the stages of natural transition. Figure 2.4 below shows the 

stages of this transition and a separation bubble.  Being able to control the size of the separation 

bubble (keeping it smaller) can be an effective way of forcing the flow to become turbulent 

(Mayle, 1991).  Separated-flow transition is common in the lower Reynolds number sections of 

the gas turbine, mainly the low pressure turbine (LPT). 

 

Figure 2.4: Separated-flow Transition Stages (De Palma, 2006) 

2.2.1.4. Periodic-Unsteady Transition 

 Periodic-unsteady transition occurs in gas turbines because the flow is by nature 

periodically unsteady.  The main source of unsteadiness is caused by the periodic passing of 

wakes from upstream blades.  This type of periodic unsteady transition is called “wake-induced” 

transition.  Figure 2.5 below shows the unsteady wake propagation through a blade row. 
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Figure 2.5: Unsteady Wake Propagation Through Blade Row (Mayle, 1991) 

 Shocks from upstream blades can also cause periodic unsteadiness and cause transition. 

Periodic-unsteady transition tends to bypass the initial stages of natural transition and instead 

turbulent spots form and immediately coalesce into a turbulent strip that propagates downstream 

(Mayle, 1991).  When this bypass transition occurs flow separation can often be suppressed.  At 

a single instance, the flow on the blade surface can include laminar flow, turbulent spots, 

separated flow transition, bypass transition of an attached boundary layer, and reattachment 

(Kaszeta, Simon, & Asphis, 2001). 

2.2.1.5. Reverse Transition 

 Reverse transition, or “relaminarization”, occurs when the flow transitions from turbulent 

flow to laminar flow.  This type of transition usually occurs in flow through nozzles with strong 

accelerations.  This is because near the trailing edge of the suction surface and near the leading 

edge of the pressure surface the acceleration values are usually higher than the values where 

relaminarization occurs.  Relaminarization consists of a balance between convection, production, 

and dissipation of turbulent kinetic energy in the boundary layer (Mayle, 1991). 
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2.2.2. Factors Affecting Flow Transition 

 Transition is affected by many factors, which include the pressure gradient, free stream 

turbulence intensity (FSTI), compressibility, surface roughness, and surface curvature.  Many 

other factors can affect transition, but the previously mentioned play the largest role in affecting 

the different parameters of transition, which include the onset of transition, transition length, 

separation, and reattachment.  Details of the major factors affecting transition will be detailed in 

the following sections. 

2.2.2.1. Pressure Gradient 

 When transition occurs in the bypass mode, the acceleration parameter at transition is 

more appropriate for flows with a favorable pressure gradient. The transition Reynolds number 

(Reθt) increases with increasing acceleration or a decrease in the FSTI.  At lower turbulence 

levels, the acceleration parameter has a significant effect, however for higher turbulence levels 

(as in levels found in gas turbines), the acceleration parameter is negligible and the onset of 

transition is controlled by the free-stream turbulence (Mayle, 1991).  Under strong adverse 

pressure gradients transition occurs rapidly.  As the pressure gradient changes from a zero 

gradient to an adverse level, or even a moderate level, the transition length is substantially 

shortened.  Measurements have shown an exponential decrease in transition length with 

increasing adverse pressure gradients. 

2.2.2.2. Free Stream Turbulence 

 When assessing the influence of turbulence on transition, it is important to consider the 

turbulence length scale and the turbulence level. At least three mechanisms have been found that 

show how free stream turbulence affects transition.  These mechanisms include the modification 

of natural transition processes through two dimensional perturbations in free-stream velocity or 
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pressure gradient; bypass mechanisms resulting in the generation of streamwise vorticity within 

the boundary layer through three dimensional disturbances; and the diffusion of turbulent kinetic 

energy from the free-stream into the boundary layer (Walker, 1993).  A less severe exponential 

decrease (when compared to an increasing pressure gradient) in transition length is found with an 

increasing turbulence level (Gostelow, Blunded, & Walker, 1994). 

2.2.2.3. Compressibility 

 The majority of flows found in the bulk of the components in gas turbines are 

compressible.  Two distinct effects are recognized when looking at compressibility effect.  The 

first is the effect of the Mach number on the onset of transition and the length of transition.  The 

second is the effect of a shockwave from an upstream blade forcing transition through boundary 

layer separation.  As the Mach number increases the turbulent spot production rate is decreased, 

the onset of transition is delayed, and the transition length is increased by ~8-30%.  When a 

shockwave is passed from an upstream blade it causes a small, concentrated vortex on the 

pressure surface of the blade near the leading edge.  This vortex induces transition as it moves 

along the blade surface (Mayle, 1991). 

2.2.2.4. Surface Roughness 

 Surface roughness alters transition by altering the transition Reynolds number.  

Increasing the surface roughness decreases the transition Reynolds number which leads to 

transition occurring earlier.  For high free stream turbulence levels, up to a 60% reduction in 

transition length is seen.  A smaller surface roughness corresponds to a smaller transition 

alteration (Mayle, 1991). 
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2.2.2.5. Surface Curvature 

 Depending on the strength of the curvature and the turbulence intensity, curvature can 

play an important role in transition.  At lower turbulence intensities transition on a convex 

surface is only slightly delayed, however, transition on a concave surface can occur significantly 

earlier. At higher turbulence intensities, concave curvature can either decrease or increase the 

transition Reynolds number depending on the strength of curvature and turbulence intensity.  

Transition length on a convex surface can increase by up to ~10% (Mayle, 1991). 
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3. TURBULENCE AND TRANSITION MODELING 

3.1. Turbulence Modeling 

 Advancements in computer technology and processing power have led arise to 

advancement in turbulence modeling.  This section discusses and describes common turbulence 

modeling approaches and types. 

3.1.1. Model Levels 

The three main approaches for turbulence modeling are Reynolds-Averaged Navier Stokes 

(RANS) equations, Direct Numerical Simulation (DNS), and Large Eddy Simulation (LES).  

Many industrial applications using computational fluid dynamics are based on RANS, which 

makes it the most commonly used computational technique.  RANS models solve for the mean 

velocity flow field by modeling all of the scales in the turbulent flow.  The DNS method solves 

the Navier-Stokes equations by resolving all of the length and time scales that appear in the 

turbulent flow.  The LES method directly solves the large scale motions and models the small 

scale motions. 

3.1.1.1. RANS Zero-Equation Models 

The RANS zero equation models, also known as algebraic models, are the simplest of the 

turbulence models.  These models are based on Prandtl’s mixing-length hypothesis and use the 

Boussinesq approximation for eddy-viscosity.  In his mixing-length hypothesis, Prandtl 

visualized a simplified model for turbulent flow in which fluid particles coalesce into lumps that 

cling together and move as a single unit.  In this hypothesis the lumps retain their x-directed 

momentum for a distance in the y direction, lmix. This length, lmix, Prandtl called the mixing 

length.  The Boussinesq approximation is an analogy where the turbulent shear stress is related to 

the gradient of the mean flow velocity, or 
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 𝜏𝑡 = 𝜇𝑡
𝜕𝑢̅

𝜕𝑦
= 𝜌𝜈𝑡

𝜕𝑢̅

𝜕𝑦
 

(3.1) 

where μt, or νt, is the eddy viscosity (Hoffman & Chiang, 1998).  Algebraic models are the 

simplest turbulence models, and work well only for flows for which they have been fine-tuned 

(Wilcox, 2000). 

3.1.1.2. RANS One-Equation Models 

RANS one-equation models retain the Boussinesq approximation, but are also based on 

the turbulent kinetic energy equation or an equation for the eddy viscosity.  The one-equation 

models based on the equation for turbulent kinetic energy are rarely used since they are 

incomplete and only relate the turbulence length scale to some typical flow dimension.  One-

equation models based on an equation for eddy viscosity automatically provide the turbulence 

length and therefore are complete and are more commonly used.  The Spalart-Allmaras model is 

one of the most common and most used one-equation eddy viscosity based models.  This model 

includes eight closure coefficients and three closure functions (Wilcox, 2000). 

3.1.1.3. RANS Two-Equation Models 

RANS two-equation models have been the base for much of the turbulence model 

research that has been done during the last several decades.  The two-equation models solve an 

equation for the turbulent kinetic energy, k, but also solve an additional equation for the 

turbulence length scale or equivalent variable (Wilcox, 2000).  This makes the two-equation 

models complete.  The turbulent kinetic energy equation is defined as: 

 𝑘 =
1

2
𝑢′𝑖𝑢′𝑖̅̅ ̅̅ ̅̅ ̅ =

1

2
(𝑢′2̅̅ ̅̅ + 𝑣′2̅̅ ̅̅ + 𝑤′2̅̅ ̅̅̅) 

(3.2) 

The transport equation for the turbulent kinetic energy is as follows: 
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𝜕𝑘

𝜕𝑡
+ 𝑈𝑗

𝜕𝑘

𝜕𝑥𝑗
= 𝜏𝑖𝑗

𝜕𝑈𝑖
𝜕𝑥𝑗

− 𝜖 +
𝜕

𝜕𝑥𝑗
[𝜈
𝜕𝑘

𝜕𝑥𝑗
−
1

2
𝑢′𝑖𝑢′𝑖𝑢′𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ −

1

𝜌
𝑝′𝑢′𝑗̅̅ ̅̅ ̅̅ ] 

(3.3) 

where the dissipation per unit mass, ε, is defined as: 

 𝜖 = 𝜈
𝜕𝑢′𝑖
𝜕𝑥𝑘

𝜕𝑢′𝑖
𝜕𝑥𝑘

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 (3.4) 

The following three two-equation models all solve the above turbulent kinetic energy equation, 

but differ in the second equation that is solved.  The following sections briefly discuss three 

popular two-equation models. 

3.1.1.3.1. k-ε Models 

Many different variations of the k-ε model exist, but the standard k-ε model is based on 

the eddy viscosity concept, like some of the zero-equation models. The model assumes that the 

turbulent kinetic eddy viscosity is linked to the turbulent kinetic energy and dissipation by the 

following relation (Wilcox, 2000): 

 𝜈𝑡 = 𝐶𝜇
𝑘2

𝜖
 (3.5) 

where Cμ is a constant.  The transport equation for the turbulence dissipation rate is as follows: 

 
𝜕𝜀

𝜕𝑡
+ 𝑈𝑗

𝜕𝜀

𝜕𝑥𝑗
= 𝐶𝜀1

𝜀

𝑘
𝜏𝑖𝑗
𝜕𝑈𝑖
𝜕𝑥𝑗

− 𝐶𝜀2
𝜀2

𝑘
+

𝜕

𝜕𝑥𝑗
[(𝜈 +

𝜈𝑡
𝜎𝜀
)
𝜕𝜀

𝜕𝑥𝑗
] 

(3.6) 

where 

 𝐶𝜀1 = 1.44; 𝐶𝜀2 = 1.92; 𝐶𝜇 = 0.09 𝜎𝜀 = 1.3 (3.7) 

3.1.1.3.2. k-ω Models 

As with the k-ε models, many different versions of the k-ω models exist.  In the standard 

k-ω model, the second parameter, ω, is the dissipation per unit turbulent kinetic energy.  Since 
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the first k-ω model by Kolmogorov was derived, the ω equation has evolved.  A production term 

has been added to most models after the model by Kolmogorov.  The turbulent kinematic eddy 

viscosity is linked with the turbulent kinetic energy by the following equation: 

 𝜈𝑡 = 
𝑘

𝜔
 (3.8) 

The transport equation for the specific dissipation rate is as follows: 

 
𝜕𝜔

𝜕𝑡
+ 𝑈𝑗

𝜕𝜔

𝜕𝑥𝑗
= 𝐶𝜔1

𝜔

𝑘
𝜏𝑖𝑗
𝜕𝑈𝑖
𝜕𝑥𝑗

− 𝐶𝜔2𝜔
2 +

𝜕

𝜕𝑥𝑗
[(𝜈 + 𝜎𝜈𝑡)

𝜕𝜔

𝜕𝑥𝑗
] 

(3.9) 

where 

 𝐶𝜔1 =
13

25
; 𝐶𝜔2 =

9

125
𝑓𝛽; 𝜎 =

1

2
 

(3.10) 

3.1.1.3.3. Shear Stress Transport Model 

The Shear Stress Transport (SST) model is a k-ω based model that accounts for the 

transport of the turbulent shear stresses.  This has been shown to give highly accurate results for 

the onset and amount of flow separation for adverse pressure gradients.  The model tends to 

over-predict the eddy viscosity, but the correct transfer behavior can be found by using a limiting 

function in the formulation of the eddy viscosity.  This formulation is as follows: 

 𝜈𝑡 = 
𝑎1𝑘

𝑚𝑎𝑥(𝑎1𝜔, 𝑆𝐹2)
 

(3.11) 
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where a1 is a constant, S is an invariant measure of the strain rate, and F2 is a blending function 

that restricts the limiting function to the wall boundary layer (Wilcox, 2000). 

3.1.1.4. Large Eddy Simulations 

Large eddy simulations (LES) are a combination of RANS and DNS.  The large eddies in 

the flow are directly computed, like in DNS, and the small eddies are modeled.  However, 

instead of time-averaging, like in RANS, LES uses a spatial filtering operation to distinguish 

between the larger and smaller eddies, and to filter out the scales smaller than the mesh size.  

There are many different types of filters that are used, but some of the more common filters are 

the volume-average box filter, the Fourier cutoff filter, and the Gaussian filter.  The filter 

introduces a scale that represents the smallest turbulence scale that is allowed by the filter.  

Scales larger than this scale are called the resolvable scales, while scales smaller are call the 

subgrid scales (SGS).  Modeling the subgrid scales, which make up a significant portion of the 

turbulence spectrum, is the fundamental problem of LES (Wilcox, 2000).  With many of the 

latest SGS models showing great promise, and with the rise in computing power, the interest in 

LES is going to continue to grow. 

3.1.1.5. Hybrid Models 

3.1.1.5.1. Detached Eddy Simulation 

 Detached eddy simulation (DES) combines a RANS model in the boundary layer with a 

coarse-mesh LES after large scale separation (Wilcox, 2000).  With the RANS model being used 

in the boundary layer, the mesh density is not as large as it would be when compared to only 

LES, which reduces the amount and cost of computations.  Initially DES only used the Spalart-

Allmaras one equation model, but can now be used with other RANS models. 
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3.1.1.5.2. Scale Adaptive Simulation 

 Scale adaptive simulation (SAS) allows unsteady turbulent flow predictions by 

transitioning from an LES model through various steps of eddy-resolution back to a steady 

RANS model.  SAS models commonly behave similar to DES models, but are not dependent on 

the grid spacing like DES models (Menter & Egorov, The Scale-Adaptive Simulation Method for 

Unsteady Turbulent Flow Predictions. Part 1: Theory and Model Description, 2010). 

3.1.1.6. Direct Numerical Simulations 

Direct numerical simulations (DNS) completely solve the three dimensional and time 

dependent Navier-Stokes and continuity equations.  This means that DNS can give numerically 

accurate solutions of the exact equations of motion, and can be called the “proper solution to the 

turbulence problem” (Wilcox, 2000).  DNS of turbulent flow starts at a certain time and point, 

and develops a transient solution. The major downside of DNS is the large grid size that comes 

from the fine grid spacing required and small enough time steps to resolve the smallest eddies 

and fluctuations (Versteeg & Malalasekera, 2007).  Throughout the 1980’s and 1990’s DNS 

greatly matured, and with the exponential growth of computing power and storage, the interest in 

and number of DNS is likely to continue to rapidly grow. 

3.2. Transition Modeling using Intermittency 

 There are mainly four general methods that transition models use and can be classified 

by.  The first method is to use stability theory.  In stability theory, stability equations are solved 

at streamwise locations to predict the onset of transition.  This method calculates only the onset 

of transition and does not give any information about the turbulent part of the flow.  This method 

also requires a prior solution of the mean flow field.  The second method is using an empirical 

correlation of the form en.  This method, like stability theory, requires a previous solution to the 
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flow field and neither of these two methods are compatible with current large scale unstructured 

grid CFD solving methods (Suzen, Huang, Hultgren, & Ashpis, 2001). 

 The third method, which is compatible with current unstructured grid CFD solvers, is the 

use of low-Reynolds number turbulence models.  Experiments done by Westing and Henkes in 

1997 and Savill in 1993 indicate that none of the low-Reynolds number turbulence models could 

predict both the onset of transition and transition length for a range of flow conditions.  This 

outcome is not unexpected since most of the current turbulence models are not designed to 

predict flow transition.  The fourth method, which is an alternative to the use of low-Reynolds 

number turbulence models, is to use the concept of intermittency (γ) to blend the flow from the 

laminar to the turbulent regions.  This concept of intermittency is the method of predicting 

transition that this thesis will be based on.  

3.2.1. Model Development 

In 1996 Steelant and Dick (Steelant & Dick, 1996) proposed a transport equation for 

intermittency, in which the source term of the equation was developed so as to reproduce the 

intermittency distribution of Dhawan and Narasimha (Dhawan & Narasimha, 1958).  However, 

this method is not compatible with existing CFD codes.  Also, this model was designed to 

produce accurate streamwise intermittency behavior, but does not account for the variation of 

intermittency in the cross-stream direction.   

Cho and Chung (Cho & Chung, 1992) developed a k - ε – γ turbulence model for free 

shear flows.  Their turbulence model explicitly incorporates the intermittency effect into the 

conventional k-ε equations by introducing an extra transport equation for γ.  Even though this 

model was not designed to reproduce flow transition, it did provide a realistic γ profile in the 

cross-stream direction.   
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Suzen and Huang (Suzen & Huang, 1999) improved upon the γ transport equation by 

combining the streamwise prediction properties of Steelant and Dick’s model and the cross-

stream prediction of Cho and Chung’s model.  This combined model can reproduce the 

streamwise intermittency distribution of Dhawan and Narasimha and can also produce a realistic 

intermittency variation in the cross-stream direction.  The intermittency given by this transport 

equation is incorporated into the computations by multiplying the eddy viscosity from a 

turbulence model with the intermittency factor γ.  The prediction capabilities of this model have 

been successfully validated against the T3- series experiments of Savill (Savill, 1993) and the 

low-pressure turbine experiments of Simon et al. (Simon, Qiu, & Yuan, 2000). 

The model developed by Suzen and Huang showed that the concept of intermittency and 

the transport equation for intermittency could be used to reliably predict transition.  The major 

drawback of the model was the integral that had to be solved for the momentum thickness 

Reynolds number.  The γ-Reθ transition model uses a transport equation for intermittency, like 

the above model, but it also uses a transport equation for the transition onset momentum 

thickness Reynolds number.  This second transport equation is essential as it ties the empirical 

correlation to the onset criteria in the intermittency equation.  The intermittency function is 

coupled with the SST turbulence model and is used to turn on the production term of the 

turbulent kinetic energy downstream of the transition point (Menter & Langtry, 2012).  Since this 

model is based only on local variables, it can be used in unstructured parallel Navier-Stokes 

solvers. 

The γ-Reθ model is based on combining experimental correlations with locally 

formulated transport equations.  The main quantity used to trigger the transition process is the 

vorticity Reynolds number, which is defined as 
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 𝑅𝑒𝜈 = 
𝜌𝑦2

𝜇
|
𝜕𝑢

𝜕𝑦
| =

𝜌𝑦2

𝜇
𝑆  

(3.12) 

where y is the distance to the nearest wall and S is the shear strain rate.  This vorticity Reynolds 

number is a local property so it can easily calculated at each grid point.  A scaled profile of the 

vorticity Reynolds number for a Blasius boundary layer is shown below in Figure 3.1.   

 

Figure 3.1: Reν Profile for Blasius Boundary Layer (Menter & Langtry, 2012) 

The scaling was chosen so that a maximum value of one is achieved inside the boundary layer.  

A maximum value of one was achieved by dividing the Blasius velocity profile by the 

corresponding momentum thickness Reynolds number and a constant of 2.193.  This can then be 

related to transition correlations as follows: 

 𝑅𝑒𝜃 = 
max (𝑅𝑒𝜈)

2.193
 

(3.13) 

This definition will serve as a local environment for correlation based transition models.  It 

should be noted that there is a slight difference between the actual momentum thickness 

Reynolds number and the maximum vorticity Reynolds number, but difference is less than 10% 

and is usually not of great concern (Menter & Langtry, 2012). 
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3.2.2. γ-Reθ Model Equations  

 This section will discuss the transport equations for γ and Reθ, the correlations for each 

transport equation, and how the model is coupled to the SST turbulence model (Menter & 

Langtry, 2012).  

 The transport equation for the intermittency, γ, is as follows: 

 
𝜕(𝜌𝛾)

𝜕𝑡
+
𝜕(𝜌𝑈𝑗𝛾)

𝜕𝑥𝑗
= 𝑃𝛾 − 𝐸𝛾 +

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡
𝜎𝑓
)
𝜕𝛾

𝜕𝑥𝑗
] 

(3.14) 

where the transition source, Pγ, is defined as: 

 𝑃𝛾 = 𝐹𝑙𝑒𝑛𝑔𝑡ℎ𝑐𝑎1𝜌𝑆[𝛾𝐹𝑜𝑛𝑠𝑒𝑡]
0.5(1 − 𝑐𝑒1𝛾) (3.15) 

where S is the strain rate magnitude and Flength is an empirical correlation that controls the length 

of the transition region.  The destruction/relaminarization source, Eγ, is defined as: 

 𝐸𝛾 = 𝑐𝑎2𝜌𝛺𝛾𝐹𝑡𝑢𝑟𝑏(𝑐𝑒2𝛾 − 1) (3.16) 

where Ω is the vorticity magnitude.  The onset of transition is controlled by the following 

functions: 

 𝑅𝑒𝑉 =
𝜌𝑦2𝑆

𝜇
 (3.17) 

 
𝐹𝑜𝑛𝑠𝑒𝑡 1 = 

𝑅𝑒𝜈
2.193 𝑅𝑒𝜃𝑐

 (3.18) 

 𝐹𝑜𝑛𝑠𝑒𝑡 2 = 𝑚𝑖𝑛(𝑚𝑎𝑥(𝐹𝑜𝑛𝑠𝑒𝑡 1 , 𝐹𝑜𝑛𝑠𝑒𝑡 1
4 ) ,2.0) (3.19) 

 
𝑅𝑇 = 

𝜌𝑘

𝜇𝜔
 (3.20) 
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𝐹𝑜𝑛𝑠𝑒𝑡 3 = 𝑚𝑎𝑥 (1 − (

𝑅𝑇
2.5
)
3

, 0) (3.21) 

 𝐹𝑜𝑛𝑠𝑒𝑡 = max(𝐹𝑜𝑛𝑠𝑒𝑡 2 − 𝐹𝑜𝑛𝑠𝑒𝑡 3, 0) (3.22) 

where Reθc is the critical Reynolds number where the intermittency first starts to increase in the 

laminar boundary layer (Menter & Langtry, 2012).  Both the Flength and Reθc correlations are 

functions of the transition Reynolds number, 𝑅𝑒̃𝜃𝑡.  Based on the Schubauer and Klebanof and 

T3- series test cases, a correlation for Flength based on 𝑅𝑒̃𝜃𝑡 and is as follows: 

𝑭𝒍𝒆𝒏𝒈𝒕𝒉

=  

{
 
 

 
 [𝟑𝟗𝟖. 𝟏𝟗𝟖 ∗ 𝟏𝟎−𝟏 + (−𝟏𝟏𝟗. 𝟐𝟕𝟎 ∗ 𝟏𝟎−𝟒)𝑹𝒆̃𝜽𝒕 + (−𝟏𝟑𝟐. 𝟓𝟔𝟕 ∗ 𝟏𝟎−𝟔)𝑹𝒆̃𝜽𝒕

𝟐
] ,  𝑹𝒆̃𝜽𝒕 < 𝟒𝟎𝟎

[𝟐𝟔𝟑. 𝟒𝟎𝟒 + (−𝟏𝟐𝟑. 𝟗𝟑𝟗 ∗ 𝟏𝟎−𝟐)𝑹𝒆̃𝜽𝒕 + (𝟏𝟏𝟗. 𝟓𝟒𝟖 ∗ 𝟏𝟎−𝟓)𝑹𝒆̃𝜽𝒕
𝟐
+ (−𝟏𝟎𝟏. 𝟔𝟗𝟓 ∗ 𝟏𝟎−𝟖)𝑹𝒆̃𝜽𝒕

𝟑
] , 𝟒𝟎𝟎 ≤ 𝑹𝒆̃𝜽𝒕 < 𝟓𝟗𝟔

[𝟎. 𝟓 − (𝑹𝒆̃𝜽𝒕 − 𝟓𝟗𝟔. 𝟎) ∗ (𝟑. 𝟎 ∗ 𝟏𝟎−𝟒)], 𝟓𝟗𝟔 ≤ 𝑹𝒆̃𝜽𝒕 < 𝟏𝟐𝟎𝟎

[𝟎. 𝟑𝟏𝟖𝟖], 𝟏𝟐𝟎𝟎 ≤ 𝑹𝒆̃𝜽𝒕  

 

(3.23) 

 

The correlation between Reθc and 𝑅𝑒̃𝜃𝑡 is defined as: 

𝑭𝒍𝒆𝒏𝒈𝒕𝒉 = {
[𝑹𝒆̃𝜽𝒕 − (

𝟑𝟗𝟔. 𝟎𝟑𝟓 ∗ 𝟏𝟎−𝟐 + (−𝟏𝟐𝟎. 𝟔𝟓𝟔 ∗ 𝟏𝟎−𝟒)𝑹𝒆̃𝜽𝒕 + (𝟖𝟔𝟖. 𝟐𝟑𝟎 ∗ 𝟏𝟎−𝟔)𝑹𝒆̃𝜽𝒕
𝟐

+(−𝟔𝟗𝟔. 𝟓𝟎𝟔 ∗ 𝟏𝟎−𝟗)𝑹𝒆̃𝜽𝒕
𝟑
+ (𝟏𝟕𝟒. 𝟏𝟎𝟓 ∗ 𝟏𝟎−𝟏𝟐)𝑹𝒆̃𝜽𝒕

𝟒 )] ,  𝑹𝒆̃𝜽𝒕 ≤ 𝟏𝟖𝟕𝟎

[𝑹𝒆̃𝜽𝒕 − (𝟓𝟗𝟑. 𝟏𝟏 + (𝑹𝒆̃𝜽𝒕 − 𝟏𝟖𝟕𝟎. 𝟎) ∗ 𝟎. 𝟒𝟖𝟐)], 𝑹𝒆̃𝜽𝒕 > 𝟏𝟖𝟕𝟎

 
(3.24) 

The constants for the intermittency equation are: 

 𝑐𝑎1 = 2.0; 𝑐𝑒1 = 1.0; 𝑐𝑎2 = 0.06; 𝑐𝑒2 = 50.0; 𝜎𝑓 = 1.0; (3.25) 

For separation-induced transition, the following modification is made: 

 𝛾𝑠𝑒𝑝 = 𝑚𝑖𝑛 (𝑠1𝑚𝑎𝑥 [0, (
𝑅𝑒𝜈

3.235𝑅𝑒𝜃𝑐
) − 1] 𝐹𝑟𝑒𝑎𝑡𝑡𝑎𝑐ℎ, 2) 𝐹𝜃𝑡 (3.26) 

 
𝐹𝑟𝑒𝑎𝑡𝑡𝑎𝑐ℎ = 𝑒

−(
𝑅𝑇
20
)
4

 (3.27) 
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 𝛾𝑒𝑓𝑓 = max(𝛾, 𝛾𝑠𝑒𝑝) (3.28) 

 𝑠1 = 2 (3.29) 

The transport equation for the transition momentum thickness Reynolds number, 𝑅𝑒̃𝜃𝑡, is as 

follows: 

 
𝜕(𝜌𝑅̃𝑒𝜃𝑡)

𝜕𝑡
+
𝜕(𝜌𝑈𝑗𝑅̃𝑒𝜃𝑡)

𝜕𝑥𝑗
= 𝑃𝜃𝑡 +

𝜕

𝜕𝑥𝑗
[𝜎𝜃𝑡(𝜇 − 𝜇𝑡)

𝜕𝑅̃𝑒𝜃𝑡
𝜕𝑥𝑗

] 
(3.30) 

where the source term, 𝑃𝜃𝑡, is defined as: 

 𝑃𝜃𝑡 = 𝑐𝜃𝑡
𝜌

𝑡
(𝑅𝑒𝜃𝑡 − 𝑅̃𝑒𝜃𝑡)(1.0 − 𝐹𝜃𝑡) (3.31) 

 
𝑡 =

500𝜇

𝜌𝑈2
 (3.32) 

where t is a time scale necessary for dimensional reasons.  The blending function, 𝐹𝜃𝑡, which is 

zero in the freestream and one in the boundary layer, is used to turn the source term on and off in 

the boundary layer and allow 𝑅̃𝑒𝜃𝑡 to diffuse in from the freestream.  The blending function is 

shown below: 

 𝐹𝜃𝑡 = 𝑚𝑖𝑛 (𝑚𝑎𝑥 (𝐹𝑤𝑎𝑘𝑒𝑒
−(
𝑦
𝛿
)
4

, 1.0 − (
𝛾 − 1/𝑐𝑒2
1.0 − 1/𝑐𝑒2

)
2

) , 1.0) (3.33) 

where 

 𝛿 =
50𝛺𝑦

𝑈
∗ 𝛿𝐵𝐿; 𝛿𝐵𝐿 =

15

2
𝜃𝐵𝐿; 𝜃𝐵𝐿 =

𝑅̃𝑒𝜃𝑡𝜇

𝜌𝑈
 (3.34) 

 
𝐹𝑤𝑎𝑘𝑒 = 𝑒−(

𝑅𝑒𝜔
1𝐸+5

)
2

; 𝑅𝑒𝜔 =
𝜌𝜔𝑦2

𝜇
 (3.35) 
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The constants for the 𝑅̃𝑒𝜃𝑡equation are: 

 𝑐𝜃𝑡 = 0.03; 𝜎𝜃𝑡 = 2.0; (3.36) 

The empirical correlation for the transition onset is based on the following two parameters: 

 𝜆𝜃 = 
𝜌𝜃2

𝜇

𝑑𝑈

𝑑𝑠
 (3.37) 

 
𝑇𝑢 = 100

√2𝑘/3

𝑈
 (3.38) 

As previously stated, the transition model interacts with the SST turbulence model.  It does this 

in the following way: 

 
𝜕

𝜕𝑡
(𝜌𝑘) +

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑗𝑘) = 𝑃̃𝑘 − 𝐷̃𝑘 +

𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜎𝑘𝜇𝑡)

𝜕𝑘

𝜕𝑥𝑗
] (3.39) 

 𝑃̃𝑘 = 𝛾𝑒𝑓𝑓𝑃𝑘 (3.40) 

 𝐷̃𝑘 = 𝑚𝑖𝑛[𝑚𝑎𝑥(𝛾𝑒𝑓𝑓 , 0.1), 1.0]𝐷𝑘 (3.41) 

The Pk and Dk terms are the original production and destruction terms in the SST turbulence 

model. 

For numerical robustness and stability, the acceleration parameters, turbulence intensity, 

and empirical correlations should be limited as shown below: 

 −0.1 ≤ 𝜆𝜃 ≤ 0.1; 𝑇𝑢 ≥ 0.027; 𝑅𝑒𝜃𝑡 ≥ 20; (3.42) 

Also, in order to accurately capture the boundary layers, the grid must have a y+ value of 

approximately one at the first grid point off the wall.  If the y+ spacing is too large, say greater 

than 5, the location of the onset of transition moves upstream. 
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3.2.3. γ-Reθ Model Validation 

The γ-Reθ transition model has been validated for multiple different test cases, including 

flat plate cases, turbomachinery cases, and unsteady cases.  The following are some of the 

validation case. 

 Flat plate experiments (Schubauer & Klebanoff, 1955) 

 ERCOFTAC benchmarks (Savill, 1993) 

 Low-pressure turbine experiments (Simon, Qiu, & Yuan, 2000) 

 PAK-B blade experiments (Lake, King, & Rivir, 1999), (Huang, Corke, & 

Thomas, 2003),(Volino, 2002) 

 Unsteady wake-blade interactions (Kaszeta, Simon, & Asphis, 2001), (Stieger, 

2002) 

The cases represent a wide variety of turbulence levels, Reynolds numbers, boundary conditions, 

and flow fields.  These cases show good agreement between the experimental data and 

computational results, and validate the γ-Reθ models’ validity. 
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4. UND EXPERIMENTAL INVESTIGATION OF THE 

INFLUENCE OF TURBULENCE INTENSITY AND 

REYNOLDS NUMBER ON TURBINE FLOWS 

 The following section details the incompressible and compressible flow experiments that 

look at the effect of Reynolds number and turbulence intensity on flow transition.  These 

experiments collected heat transfer and aerodynamic loss data.   

4.1. UND Incompressible Flow Experiments 

One important study investigating the effects of large scale turbulence in turbines due to 

advanced combustor design was conducted by (Ames, Wang, & Barbot, 2003) at University of 

North Dakota’s large-scale low-speed cascade facility.  The goal of these experiments was to 

investigate the turbulence characteristics of several new combustion configurations and how they 

affect vane heat transfer and aerodynamics.  The vane and cascade details are shown below in 

Figure 4.1 & Figure 4.2.  The cascade consists of 4 vanes, one of which is instrumented (vane 3). 
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Figure 4.1: Incompressible Flow Vane Cascade 

Details (Ames, Argenziano, & Wang, 2004) 

 

Figure 4.2: Layout of Cascade Test Section 

(Ames, Argenziano, & Wang, 2004) 

 These experiments used six different mock combustors that represent different 

combustion systems and their turbulence characteristics.  Each mock combustor was run at three 

different exit Reynolds numbers, 500,000, 1,000,000, and 2,000,000 (based on true chord).  The 

different mock combustors created different turbulence intensities that ranged from 0.6% to 

14.33% (Ames, Argenziano, & Wang, 2004). Table 6.1 below shows the flow characteristics and 

turbulence parameters for each of the cases. 
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Table 4.1: Experiment Details and Turbulence Parameters (Ames, Argenziano, & Wang, 2004) 

 Re FSTI U (m/s) Lx (cm) Lu (cm) Tke(m
2/s2) ε (m2/s3) Ω (1/s) q'’ (W/m2) 

Low Turbulence 

(LT) 
500,000 0.0069 4.96 8.12 127.0 1.757E-03 0.00005 0.316 226.8 

1,000,000 0.0076 10.43 5.02 154.5 9.425E-03 0.00035 0.413 289.2 

2,000,000 0.006 18.71 3.58 15.5 1.890E-02 0.0144 8.464 407.03 

Catalytic 

Combustor (CC) 
500,000 0.0103 4.95 5.26 3.83 3.899E-03 0.0052 14.818 243.37 

1,000,000 0.0153 9.46 0.62 5.15 3.142E-02 0.093 32.884 314.7 

2,000,000 0.0102 19.63 0.89 1.75 6.014E-02 0.68 125.642 440.87 

Grid 
500,000 0.0821 4.77 2.00 3.27 2.300E-01 2.7 130.409 304.75 

1,000,000 0.0861 10.19 2.04 3.35 1.155E+00 29.8 286.766 460.1 

2,000,000 0.0884 19.27 2.35 3.53 4.353E+00 206.8 527.897 743.3 

Combustor with 

Spool (ACS) 
500,000 0.0915 5.11 5.08 9.03 3.279E-01 1.67 56.585 291.99 

1,000,000 0.095 9.74 4.61 8.81 1.284E+00 13.23 114.462 409.95 

2,000,000 0.0928 18.19 4.44 9.49 4.274E+00 75.17 195.411 694.86 

Aeroderivative 

Combustor (AC) 
500,000 0.1313 5.24 3.68 7.24 7.100E-01 6.67 104.376 258.35 

1,000,000 0.1402 9.32 3.52 6.36 2.561E+00 51.5 223.432 440.17 

2,000,000 0.1339 18.39 3.58 7.35 9.095E+00 302 368.934 799.4 

Dry Low NOx 

(DLN) 
500,000 0.1342 5.17 4.57 8.78 7.221E-01 5.6 86.172 279.77 

1,000,000 0.1433 9.65 4.34 8.95 2.868E+00 43.73 169.394 420.2 

2,000,000 0.1417 19.11 4.47 10.77 1.100E+01 274.5 277.298 771.2 

 

4.2. UND Compressible Flow Experiments 

 The compressible flow investigation conducted at UND was designed to look at the 

aerodynamics losses and heat transfer of a first vane design for high altitude UAVs.  This vane 

profile is a scaled downed version of the profile in the incompressible flow experiments. The 

vane was scaled down to a true chord length of 12.1 cm.  Data was taken at Reynolds numbers of 

90K, 180K, 360K, and 720K, exit Mach numbers of 0.7, 0.8, 0.9, and low (0.8%) and high (9%) 

inlet turbulence levels . The cascade details are shown below in Figure 4.3.  The results of these 

experiments will provide both upstream and downstream data, blade surface pressure data, and 

heat transfer data, which will be used to specify boundary conditions and for comparison with 

the numerical results. 

 



 

35 

 

 

Figure 4.3: Compressible Flow Vane Cascade Details 

(Mihelish & Ames, 2013) 
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5. SIMULATIONS OF THE INFLUENCE OF TURBULENCE 

INTENSITY AND REYNOLDS NUMBER ON TURBINE 

FLOWS 

5.1. Incompressible Flow Simulations of (Kingery, Suzen, & Ames, 2010) 

 These simulations were performed using the software package ANSYS-CFX.  ANSYS-

CFX is a three-dimensional, conservative, finite-element based control volume Navier-Stokes 

solver that uses an implicit pressure-based algorithm.  All simulations were done using the SST 

turbulence model coupled with the γ-Reθ transition model. 

 The mesh used for these simulations is shown below in Figure 5.1.  This mesh contains 

~400,000 nodes and has a thickness of one cell in the third direction.  This one cell spacing is 

used to obtain the two dimensional solution.  The spacing on the blade surface has a fine enough 

spacing to ensure a y+ value of less than one for all of the cases (Kingery, Suzen, & Ames, 

2010). 
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Figure 5.1: Incompressible Mesh with Detail  

(Kingery, Suzen, & Ames, 2010) 

 The inlet boundary, located at the left boundary, condition was set with inlet velocities 

and turbulence parameters (k and ω) specified by the experiments, which were given above in 

Table 4.1.  The outlet boundary, located at the right boundary, condition used an average static 

pressure condition specified from the experiments.  A constant heat flux, from above table, was 

specified on the blade surface, as well as a no slip wall condition.  The upper and lower faces 

were set as periodic boundaries in order to simulate a cascade.  Symmetry boundary conditions 

were applied to the front and back of the domain.  This was done to simulate the flowfield as a 

two dimensional flowfield (Kingery, Suzen, & Ames, 2010). 

 As stated above, all 18 simulations (6 turbulence intensities with 3 Reynolds numbers 

each) were run using the SST turbulence model and the γ-Reθ transition model.  The pressure 
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distribution over the blade surface is only compared to experimental data for the low turbulence 

(LT) case at Re=2,000,000, and can be seen below in Figure 5.2.  The “zero” point for surface 

arc corresponds to the calculated stagnation point.  The positive surface arc corresponds to the 

suction surface and the negative surface arc corresponds to the pressure surface. 

 

Figure 5.2: Computed vs Experimental Pressure Distribution  

(Kingery, Suzen, & Ames, 2010) 

The computational pressure distribution and the experimental pressure distribution match very 

well, except for a slight overprediction near the trailing edge.  This overprediction is thought to 

be due to a known issue with ANSYS-CFX when modeling two dimensional flows with a grid 

using one cell in the third direction (Kingery, Suzen, & Ames, 2010). 

 The wall heat transfer coefficient distributions for the LT and Catalytic Combustor (CC) 

cases are shown below in Figure 5.3 and Figure 5.4.  Turbulence levels in these six simulations 

range from 0.6% to 1.53%, and represent the lower turbulence level cases. 
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Figure 5.3: Low Turbulence (LC) Case Heat 

Transfer Coefficient (Kingery, Suzen, & Ames, 

2010) 

 

Figure 5.4: Catalytic Combustor (CC) Case Heat 

Transfer Coefficient (Kingery, Suzen, & Ames, 

2010) 

 As can be seen from the above figures, the computations and experiments agree very well 

for the Re=500,000 and Re=1,000,000 cases.  The Re=2,000,000 cases show an overprediction 

on the suction side near the leading edge.  For the CC Re=2,000,000 case, the experimental data 

shows an increase in the heat transfer, which indicates onset of transition.  This happens at 

around s≈0.35.   

 Figure 5.5 and Figure 5.6 below show the computational and experimental comparison of 

the heat transfer distributions for the Grid and the Aeroderivative Combustor with Spool (ACS) 

cases.  These cases have FSTI levels that range from 8.21% to 9.5% and represent the medium 

turbulence level cases. 



 

40 

 

 

Figure 5.5: Grid Case Heat Transfer Coefficient 

(Kingery, Suzen, & Ames, 2010) 

 

Figure 5.6: Aeroderivative Combustor with 

Spool (ACS) Case Heat Transfer Coefficient 

(Kingery, Suzen, & Ames, 2010) 

 For the Grid case, the computational and experimental results agree well for the 

Re=500,000 and Re=1,000,000 cases.  The heat transfer is overpredicted in the Re=2,000,000 

case.  For all three Grid cases, the onset of transition is predicted early and the length of 

transition is shorter than the experimental measurements.  The same types of results are found for 

the ACS case.  The heat transfer agreed well in the laminar section on the pressure surface, but as 

the Reynolds number increased, the overprediction on the suction side increased.  Once again, 

the onset of transition was predicted earlier than the experiments and the transition length was 

shorter than measure in the experiments. 

 Figures show the computational and experimental comparison of the heat transfer 

distributions for the Aeroderivative Combustor (AC) and the Dry Low NOx (DLN) cases.  These 

cases have FSTI levels that range from 13.13% to 14.33% and are the highest turbulence level 

cases. 
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Figure 5.7: Aeroderivative Combustor (AC) Case 

Heat Transfer Coefficient (Kingery, Suzen, & 

Ames, 2010) 

 

Figure 5.8: Dry Low NOx (DLN) Case Heat 

Transfer Coefficient (Kingery, Suzen, & Ames, 

2010) 

 Both the AC and DLN cases showed the same trend in results as the medium intensity 

cases.  They showed good agreement in the laminar section of the suction surface and 

overprediction on the suction surface, with a gross overprediction in the Re=2,000,000 cases.  

Once again, transition was predicted earlier and the transition length was shorter when compared 

to the experimental data 

5.2. Compressible Flow Simulations 

 Simulations using a scaled down version of the vane profile of Kingery et al. (Kingery, 

Suzen, & Ames, 2010) were conducted incorporating compressible flow.  The following sections 

will cover the meshing details, simulation setup, simulation convergence, and results for the 

compressible flow over a turbine vane. 

5.2.1. Compressible Flow Vane Geometry 

 The geometry that was created for these simulations was a scaled down version of the 

profile Kingery et al (Kingery, Suzen, & Ames, 2010) used.  This scaled down version had a true 
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chord length of 12.1 cm.   A side view of the geometry can be seen below in Figure 5.9 and an 

isometric view can be seen below in Figure 5.10.  

 

Figure 5.9: 2D Compressible Vane 

Geometry - Side View 

 

Figure 5.10: 2D Compressible Vane 

Geometry - Isometric View 

 

 

5.2.2. Compressible Flow Vane Mesh 

 The mesh employed for these simulations was created using the ICEM meshing software 

package.  The meshing strategy employs inflation layers around the vane to capture the boundary 

layer and viscous effects. First layer spacing was refined small enough to ensure a maximum 

value of y+ < 1 around the vane.  This meshing strategy resulted in a mesh with 280,372 nodes 

and 176,100 elements.  This mesh can be seen below in Figure 5.11. 
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Figure 5.11: 2D Compressible Vane Mesh with Detail 

 

5.2.3. Compressible Flow Vane Simulation Setup 

 This section will detail the procedure for the simulation setup and the parameters that 

were used in the setup.  The boundary conditions for the simulations were taken from the 

experiments conducted at the University of North Dakota.  The inlet boundary condition was 

specified using total pressure and total temperature conditions that correlated to the total pressure 

and total temperature conditions in the experiments.  Turbulence parameters from the 

experimental data were also specified at the inlet.  At the outlet, a static pressure condition and a 

static temperature condition were specified.  The geometry was created with periodic top and 

bottom surfaces, so periodic boundary conditions were enforced at the top and bottom.  The front 

and back faces were set as symmetrical boundaries as to avoid influences from a wall condition. 

Due to lack of heat transfer data at this time, these simulations were setup to look at the 

aerodynamic characteristics, and not the heat transfer. 
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5.2.4. Compressible Flow Vane Simulation Convergence 

 As with the incompressible flow vane cases, these cases were also run in ANSYS-CFX.  

The simulations were using a high resolution advection scheme with double precision.  Multiple 

time scale factors were tested within the solver to find the optimum scale that resulted in the best 

convergence.  This time scale factor was found to be a 0.1.  All simulations reached a RMS 

convergence of 1e-6 for the momentum terms.  The mass term reached a convergence level of 

~1e-5 for all of the cases.  The reason for the mass term not fully converging is due to the 

compressibility of the fluid in the simulations. 

5.2.5. Compressible Flow Vane Results 

 This section will detail the computational results of the two-dimensional compressible 

vane simulations.  The figures below show the pressure distributions along the blade surface.  

The negative “S” distance represents the surface distance from the leading edge to the trailing 

edge on the pressure surface.  The positive “S” represents the suction surface.  This is shown in 

Figure 5.12.    

 

 
Figure 5.12: Surface Distance Diagram 
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 The plots below show good agreement between the experiments and computations for the 

Ma=0.7 case at every Reynolds number.  As the Mach number increases (Ma=0.8 and 0.9) there 

is still good agreement on the pressure side of the vane, but there becomes a large under-

predictions of the surface pressure on the suction side of the vane.  This under-prediction on the 

suction surface does change slightly with Reynolds number, which means that they under-

prediction is somewhat dependent on Reynolds number.  It is believed that the simulations being 

conducted with heat transfer will have a higher dependence on Reynolds number, like the results 

from Kingery, Suzen and Ames (Kingery, Suzen, & Ames, 2010).  This under-prediction on the 

suction surface appears mostly independent of the Reynolds number since the lower Reynolds 

number cases show essentially the same under-prediction as the higher Reynolds number cases. 

 

 

Figure 5.13: Re=90K, Low Turbulence 

Pressure Plot 

 

Figure 5.14: Re=90K, High Turbulence 

Pressure Plot 
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Figure 5.15: Re=180K, Low Turbulence 

Pressure Plot 

 

Figure 5.16: Re=180K, High Turbulence 

Pressure Plot 

 

 

Figure 5.17: Re=360K, Low Turbulence 

Pressure Plot 

 

Figure 5.18: Re=360K, High Turbulence 

Pressure Plot 
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Figure 5.19: Re=720K, Low Turbulence 

Pressure Plot 

 

Figure 5.20: Re=720K, High Turbulence 

Pressure Plot 

 

  



 

48 

 

6. UND EXPERIMENTAL INVESTIGATION OF AN INCIDENT 

TOLERANT BLADE DESIGN  

The following section details the experiments that are being conducted to look at the 

aerodynamics of an incident tolerant blade design.  This blade geometry will be used in the 

NASA Large Civil Tilt-Rotor (LCTR) vehicle, which shown below in Figure 6.1.  

 

Figure 6.1: NASA LCTR Vehicle (Snyder, 2012) 

The NASA LCTR uses an incident tolerant blade design in its’ turbines due to the large 

incident angle changes that occur in the variable-speed power-turbine (VSPT).  These large 

incident angle swings, ranging from 40° to 60°, occur due to the large changes in the work 

factor, (∆ℎ0 𝑈2⁄ ), and turbine speed between cruise and take off conditions.  The work factor at 

cruise, where the turbine speed is approximately 54% of the maximum turbine speed, is about 

3.5 times larger than the work factor at take-off, where the turbine is at its maximum speed 

(100%) (Welch, 2011). 

 The experimental work on this blade geometry is being conducted at the University of 

North Dakota in their large-scale low-speed cascade facility.  Eight different incidence angles, or 

angles of attack, are being used in the experiments.  These incidence angles range between +40° 
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to -17°. The different incidence angles are achieved by changing the inlet ducting and bleed 

geometries on the test cascade.  Experiments with multiple Reynolds numbers, ranging from 

50,000 to 568,000 (based on true chord) were also run at each incidence angle.  The SolidWorks 

models of the experimental cascade and nozzles are shown below in Figure 6.2.  

 

Figure 6.2: Experimental SolidWorks Models 

 The following figure shows the experimental surface pressures for blade 2 of the cascade.   

Table 4.1 below shows a tabulated list of the experimental data sets that will be run.  Pressure 

data from 25% chord upstream and downstream, surface pressure data from blade 2, and heat 

transfer data will be collected in these experiments.  The collected data will be used for applying 

boundary conditions and comparison with numerical results.  The 34° incidence angle 

experimental data is shown below in Figure 6.3. 
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Table 6.1: Tabulated List of Simulations to be Conducted 

Incidence Angle Turb. Level Reynolds Numbers 
40° LT 50K, 66K, 228K, 568K 

HT 50K, 66K, 228K, 568K 

34° LT 50K, 66K, 228K, 568K 

HT 50K, 66K, 228K, 568K 

28° LT 50K, 66K, 228K, 568K 

HT 50K, 66K, 228K, 568K 

18° LT 50K, 66K, 228K, 568K 

HT 50K, 66K, 228K, 568K 

8° LT 50K, 66K, 228K, 568K 

HT 50K, 66K, 228K, 568K 

-2° LT 50K, 66K, 228K, 568K 

HT 50K, 66K, 228K, 568K 

-12° LT 50K, 66K, 228K, 568K 

HT 50K, 66K, 228K, 568K 

-17° LT 50K, 66K, 228K, 568K 

HT 50K, 66K, 228K, 568K 

 

 

Figure 6.3: 34° Experimental Surface Pressure Data for Blade 2  
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7. SIMULATIONS OF AN INCIDENT TOLERANT BLADE 

DESIGN 

 Two and three dimensional simulations of an incident tolerant blade design will be 

presented below.  Due to the lack of experimental data, initial cases were run with conditions set 

in the expected range of the experimental data.  Once experimental data was available, cases 

were run with boundary conditions defined by the experimental data.  Currently, only data for 

the 34° low turbulence case is available.  The preliminary and final 34° cases are presented 

below. 

7.1. Two Dimensional Simulations 

 Two dimensional simulations were conducted to find the “optimal” blade pressure 

distributions for each individual angle of attack, Reynolds number, and Mach number.  The 

results from these two dimensional cases will also serve as a starting point for the three 

dimensional cases for providing several tuned boundary conditions.   

7.1.1. Two Dimensional Flowfield Generation 

 A two dimensional flowfield was created by creating an upper streamline from the 

suction side of the blade, and then copying the streamline downwards by the pitch of the cascade.  

This created a two dimensional geometry that was periodic on the upper and lower boundaries.  

The MATLAB script that was created can be found in Appendix 6.  Figure 7.1 below shows a 

picture of the geometry. 
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Figure 7.1: Side and Isometric View of the Two Dimensional Geometry 

 

7.1.2. Two Dimensional Mesh Generation  

 The mesh used for these two dimensional simulations was created in ICEM and can be 

seen below in Figure 7.2 and Figure 7.3.  A first layer spacing that corresponds to a y+ <1 was 

used to assure acceptable resolution in the boundary layer.  A total of ~1,190,000 elements and 

~790,000 nodes were in this mesh. 
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Figure 7.2: Two Dimensional Blocking Layout 

 

Figure 7.3: Two Dimensional Mesh with Detail 

 

7.1.3. Preliminary Two Dimensional Simulation Parameters 

 These preliminary simulations were run before experimental data was available.  They 

were used to perform mesh testing and make sure the simulations were ready when the 

experimental data was available.  These preliminary simulation parameters were set to be in the 

range of the experimental parameters with a Reynolds number based on true chord of ~420,000.  

The boundary condition at the inlet was specified using a total pressure condition with a flow 

direction that corresponded to the specified angle of attack.  The outlet was set using a static 

pressure condition.  Using the periodicity of the top and bottom surfaces, these boundaries were 

set as periodic boundaries.  The front and back surfaces were set as symmetrical boundaries as to 

make it a two dimensional case and eliminate any wall effects. The applied boundary conditions 

can be seen in the figure below. 
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7.1.4. Preliminary Two Dimensional Simulation Convergence 

 Simulations were run to either an error level of 1𝑒−6 (machine zero) or until the lowest 

possible convergence was achieved.  The lowest error level (1𝑒−6) was not achieved in all 

simulations due to fluid compressibility, and the large amount of separation and unsteadiness that 

occurred in the lower and negative angles of attack.  Most of the cases converged smoothly, with 

the cases that employed the transition model have to run a higher number of iterations until 

convergence (~1500 iterations with transition model enabled, ~275 iterations with fully turbulent 

flow (transition model not enabled)).  The only cases to not fully converge to an error level of 

1𝑒−6 were the -12° and -17° cases with the transition model active. The two simulations not 

fully reaching complete convergence can be attributed to the highly chaotic flow and large 

separation regions on the blade surface. 

7.1.5. Preliminary Two Dimensional Simulation Results 

 Multiple aspects of the flow were looked at, some of the most important ones being the 

pressure distribution over the blade surface.  As can be seen from the figures below, the higher 

Figure 7.4: Two Dimensional Simulation Boundary Conditions 
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incidence angles show larger separation occurring on the suction surface of the blade, usually 

occurring approximately 0.075 meters of surface arc, while no separation occurs on the pressure 

surface.  The positive “S” value corresponds to the surface distance along the suction surface.  

The “S=0” location corresponds to the location of the foremost pressure tap location in the 

experimental setup.  This location and a diagram showing the “S” direction is shown in the 

figure below. 

 

 The lower incidence angles show separation on the suction surface, and start to show 

separation on the suction surface.  The -17° cases show large separation on the pressure surface 

and highly chaotic flow on the suction surface. Figure 7.14 and Figure 7.15 show the pressure 

distributions for all incidence angles with and without the transition model active.  The figures 

show the extreme changes in the surface pressures across the blade and the different areas of 

flow transition and separation. 

Figure 7.5: Surface Distance Diagram and 

Front Pressure Tap Location 
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Figure 7.6: Preliminary 40° Two Dimensional 

Pressure Distribution 

 

Figure 7.7: Preliminary 34° Two Dimensional 

Pressure Distribution 

 

 

Figure 7.8: Preliminary 28° Two Dimensional 

Pressure Distribution 

 

Figure 7.9: Preliminary 18° Two Dimensional 

Pressure Distribution 
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Figure 7.10: Preliminary 8° Two Dimensional 

Pressure Distribution 

 

Figure 7.11: Preliminary -2° Two 

Dimensional Pressure Distribution 

 

 

Figure 7.12: Preliminary -12° Two 

Dimensional Pressure Distribution 

 

Figure 7.13: Preliminary -17° Two 

Dimensional Pressure Distribution 
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Figure 7.14: Pressure Distribution for All 

Incidence Angles with Transition Model 

Active 

 

Figure 7.15: Pressure Distribution for All 

Incidence Angles without Transition Model 

Active 

7.1.6.  Two Dimensional Simulation of Incident Tolerant Blade Parameters  

 The input parameters for the final two dimensional simulations come from the 

experimental data collected at UND.  This data was used to calculate boundary conditions for the 

inlet and outlet.  The inlet boundary was specified using a total pressure and total temperature 

condition.  The turbulence condition was defined at the inlet by the turbulent kinetic energy and 

dissipation rate.  The outlet pressure was initially set to the domain pressure, then incrementally 

increased or decreased to match the experimental Mach number at a location 25% chord 

downstream.  The top and bottom surfaces were set to be periodic with one another and the front 

and back faces were set to symmetrical boundaries as to negate wall effects. Figure 7.16 below 

shows the boundary conditions applied to the geometry. 
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Figure 7.16: Final Two Dimensional Boundary Conditions 

 

7.1.7. Two Dimensional Simulation of Incident Tolerant Blade Convergence 

 As with the incompressible and compressible flow vane simulation above, these 

simulations employed the ANSYS-CFX solver.  All of the cases fully converged to a 1e-6 level 

for all variables, except for the Re=50K case.  The Re=50K case achieved a final convergence 

level of at least 1e-5 for all variables. 

7.1.8. Two Dimensional Simulation of Incident Tolerant Blade Results 

 This section will detail the final two dimensional results for the incident tolerant blade 

simulations with the γ-Reθ transition model active.  Figure 7.17 - Figure 7.20 shows the surface 

pressure distributions for the center plane of the blade.  Overall, the pressures on the pressure 

surface agree very well with the experimental data, with just a slight overprediction of the 

pressure in the Re=50K case.  In the Re=50K case no separation is seen in the experimental data, 

however, a large amount of transition and separation are seen on the suction surface.  In the 

Re=66K case the pressure is under predicted and showed separation on the blade from S=0.6 to 



 

60 

 

S=0.8.  The experimental data showed a small amount of separation; much smaller than was seen 

in the computations.  In the Re=228K case experimental and computational data agreed very 

well on the suction surface with the simulations showing a slightly larger length of separation.  

The Re=568K case showed no separation in the experimental data, but had slight separation near 

the trailing edge.  The simulations show the separation moving further towards the trailing edge 

of the blade which is to be expected.  The disagreement with the experimental data not showing 

separation is possibly due to a larger amount of free stream turbulence in the experiment than 

what was calculated. 

 Since the boundaries were periodic, the results could be duplicated and stacked to form a 

cascade so the results could be better visualized.  Figure 7.21 - Figure 7.28 below show Mach 

contours of the stacked cascade and a zoomed in view around the blade.  From these contours the 

large separation region in the lower Reynolds number cases and the small separation in the 

higher Reynolds number cases can be seen. Also note the much smaller wake region of the 

higher Reynolds number cases; this leads to a smaller loss coefficient downstream and lower 

aerodynamic losses. 
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Figure 7.17: Re = 50K, Final Two 

Dimensional Surface Pressure Plot 

 

Figure 7.18: Re = 66K, Final Two 

Dimensional Surface Pressure Plot 

 

 

Figure 7.19: Re = 228K, Final Two 

Dimensional Surface Pressure Plot 

 

Figure 7.20: Re = 568K, Final Two 

Dimensional Surface Pressure Plot 
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Figure 7.21: 34° Two Dimensional Re=50K 

Mach Contour for Simulated Cascade 

 

Figure 7.22: 34° Two Dimensional Re=50K 

Mach Contour Blade Zoom-in 

 

 

Figure 7.23: 34° Two Dimensional Re=66K 

Mach Contour for Simulated Cascade 

 

Figure 7.24: 34° Two Dimensional Re=66K 

Mach Contour Blade Zoom-in 
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Figure 7.25: 34° Two Dimensional Re=228K 

Mach Contour for Simulated Cascade 

 

Figure 7.26: 34° Two Dimensional Re=228K 

Mach Contour Blade Zoom-in 

 

 

Figure 7.27: 34° Two Dimensional Re=568K 

Mach Contour for Simulated Cascade 

 

Figure 7.28: 34° Two Dimensional Re=568K 

Mach Contour Blade Zoom-in 
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7.2. Three Dimensional Simulations 

 The following sections will discuss the different aspects of the three dimensional 

compressible flow simulations, including the flowfield generation, mesh development, boundary 

conditions, convergence, and results. 

7.2.1. Flowfield Generation 

 Eight different flowfields, corresponding to the eight different angles of attack, were 

generated for the three dimensional simulations.  The flowfields were created from the original 

SolidWorks models of the experimental setup, and were shown previously in Figure 6.2.  The 

flowfields consist of the inlet nozzle, the cascade, the pressure and suction bleeds, and the outlet 

ducting.  The inlet nozzles and bleeds were different for each different incidence angle.  The 

nozzle, cascade, and bleeds for the 40° case are shown below in Figure 7.29.  A schematic of the 

entire 40° flowfield is shown below in Figure 7.30. 

 

Figure 7.29: Geometry Components 
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Figure 7.30: Flowfield Schematic 

7.2.2. Mesh Generation 

 A mesh refinement study was first performed to find a mesh that resulted in a balance of 

reasonable computation time and accurate results.  The following section details the mesh 

refinement study. 

7.2.2.1. Mesh Refinement Study 

 The mesh refinement study was conducted on the 34° geometry.  This angle of attack was 

chosen since it is the designed angle of attack for this particular blade.  The final mesh to be used 

had to balance accurate results with a reasonable computation time.  Three meshes were created 

using ANSYS CFX-Mesh.  Different parts of the results, including convergence, blade pressure 

distributions, loss coefficients, and overall flowfield appearance, were used to compare the 

meshes and determine the best suitable mesh.  Each mesh will now be discussed in detail. 

 

Blade 1 
Blade 2 
Blade 3 
Blade 4 
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7.2.2.1.1. Coarse Mesh 

 Coarse mesh was the coarsest of the three meshes used in the mesh refinement study.  

The mesh created a consistent mesh throughout the whole domain, with finer sections near the 

outer domain walls.  The blades in the cascade had the highest area of mesh density in the 

domain.  This was accomplished by a combination of small wall spacing and inflation layers.  

All four blades in the cascade had the same meshing parameters, which included a y+~1.  The 

mesh consisted of ~4,839,000 nodes and can be seen below in Figure 7.31. 

 

Figure 7.31: Coarse Mesh Used in Mesh Refinement Study 

 

7.2.2.1.2. Intermediate Mesh 

 Intermediate mesh similar sizing parameters as coarse mesh in the freestream, but 

differed in the area around the blades.  The mesh around blade two was refined to a higher mesh 

density on the blade surface, while the mesh around the other three blades was similar to that in 
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coarse mesh. This was done to create a higher resolution area around the second blade, since this 

blade will be the instrumented blade in the experiments.  This created a mesh with ~5,586,000 

nodes.  Intermediate mesh can be seen below in Figure 7.32. 

 

Figure 7.32: Intermediate Mesh Used in Mesh Refinement Study 

7.2.2.1.3. Fine Mesh 

 The fine mesh had the highest node count of all three meshes.  Similar sizing parameters 

to those in the previous meshes were used in the free stream since high resolution in the 

freestream flow upstream of the cascade was not needed.  A body of influence was used to 

increase the mesh density in the areas between and around the blades in the cascade.  A small 

wall spacing near the blades coupled with small inflation layers led to a very high mesh density 

throughout the cascade section of the domain.  The high mesh density would have a higher 

resolution in the blade passages, which is crucial when looking at the losses and flow structure in 
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the passages.  Figure 7.33 below shows the body of influence and the areas that it affects in the 

flowfield.  The fine mesh contained ~11,971,000 nodes and can be seen below in Figure 7.34. 

 

Figure 7.33: Fine Mesh Flowfield with Body of Influence 
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Figure 7.34: Fine Mesh Used in Mesh Refinement Study 

7.2.2.1.4. Mesh Refinement Simulation Parameters 

 A total of six different simulations were conducted with the three meshes shown above.  

Cases with and without the γ-Reθ transition model activated were run for each mesh.  The cases 

were setup using the SST model as the turbulence model.  The boundary conditions applied 

resulted in a Reynolds number based on true chord of ~420,000.  This Reynolds number proved 

satisfactory since it was within the range of the experiments at UND. 

7.2.2.1.5. Mesh Refinement Simulation Convergence 

 These simulations also employed the ANSYS-CFX solver with a target RMS 

convergence level for all variables of 1e-6.  The coarse mesh converged fully and smoothly with 

and without the transition model enabled, with the fully turbulent simulation converging in ~245 

iterations, while the simulation with the transition model active converged in ~1500 iterations.  

Neither of the simulations using the intermediate mesh fully converged.  This is due to the higher 
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mesh density on blade 2 and the separation that is found on the blade surface.  With the fine 

mesh, the fully turbulent simulation fully converged after ~210 iterations while the simulation 

with the transition model active showed converged to a level below 1e-4.  This convergence can 

be improved by adjusting the time scale factor and other parameters in the solver. 

7.2.2.1.6. Mesh Refinement Results 

 Figure 7.36, Figure 7.37, and Figure 7.38 below show the pressure distributions on the 

blade surfaces for the fully turbulent simulations.  Figure 7.39, Figure 7.40, and Figure 7.41 

show the surface pressure distributions for all three meshes with the transition model active.  

Simulations were run with and without the transition model to eliminate the possibility that the 

transition model was changing the results between the meshes.  Looking at the surface pressure 

distributions it can be seen that the meshes gave similar results on the pressure surface of the 

blades.  Where the differences can start be noticed is right after the stagnation point on the 

suction surface, and toward the trailing edge on the suction surface.  As noted in the previous 

section, the coarse mesh had the smoothest convergence.  The coarse mesh also produced results 

which had good agreement between the blades for the separation region near the trailing edge, 

while the intermediate mesh had discrepancies between the blades.  The fine mesh also produced 

results which had good agreement between the blades, even though the convergence was not 

optimal. 

 The last three figures show the loss contours 25% chord upstream and downstream, mid-

chord, and at the trailing edge.  Figure 7.35 below shows the locations of the loss coefficient 

planes.  Meshes 1 and 2 produced good results, but as can be seen in the loss contours (especially 

at 25% chord downstream), there is some discrepancy from passage to passage.  The fine mesh 
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produced a more uniform flowfield.  This uniformity is due the higher refinement level and mesh 

density in the passages of the fine mesh. 

 

 This mesh refinement study has shown minimal changes in the flowfield and pressure 

seen on the blade surfaces; meaning that an optimal mesh with high resolution in the passage 

areas has been generated and a grid independent solution has been found. 

 

Figure 7.35: Loss Coefficient Plane Locations 
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Figure 7.36: Fully Turbulent Surface 

Pressures Using Coarse Mesh 

 

Figure 7.37: Fully Turbulent Surface 

Pressures Using Intermediate Mesh 

 

 

Figure 7.38: Fully Turbulent Surface Pressures 

Using Fine Mesh  
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Figure 7.39: Surface Pressures Using Coarse 

Mesh with Transition Model Active 

 

Figure 7.40: Surface Pressures Using 

Intermediate Mesh with Transition Model 

Active 

 

 

Figure 7.41: Surface Pressures Using Fine 

Mesh with Transition Model Active 
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Figure 7.42: Loss Coefficient Contours Using 

Coarse Mesh 

 

Figure 7.43: Loss Coefficient Contours Using 

Intermediate Mesh 

 

 

Figure 7.44: Loss Coefficient Contours Using Fine Mesh 

 

7.2.3. Preliminary Three Dimensional Simulation Parameters 

 These preliminary simulations were run before experimental data was available.  They 

were used check the setups and make sure the simulations were ready when the experimental 

data was available.  The cases were setup using the SST turbulence model with the γ-Reθ 

transition model.  Total pressure and turbulence parameters were specified at the inlet.  The 

outlet had a static pressure condition applied to it.  The boundary conditions applied resulted in a 

Reynolds number based on true chord of ~420,000.  This Reynolds number proved satisfactory 

since it was within the range of the experiments at UND. 
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7.2.4. Preliminary Three Dimensional Simulation Convergence 

 As with the two dimensional cases, these cases used the ANSYS-CFX solver set to an 

RMS convergence target of 1e-6.  Convergence for all cases ranged between 1e-4 - 1e-5 for the 

momentum variables and between 1e-5 - 1e-6 for the mass variable. 

7.2.5. Preliminary Three Dimensional Simulation Results 

 Figure 7.45 - Figure 7.52 show the pressure contours for each of the blade surfaces.  For 

the positive incidence angles all of the blades have very similar loading, which means the flow is 

periodic from one passage to the next. The negative incidence angles show a slightly different 

loading on the suction surface of blade number three when compared to the other blades.  The 

higher incidence angles all showed a separation region on the suction surface, with the highest 

angles of attack having the larger separation region.  The lower angles of attack see a smaller 

amount of separation on the suction surface due to the smaller amount of curvature encountered 

by the flow.  This results in a smaller over-speed region and a smaller separation zone. 

 

 

Figure 7.45: 40° Surface Blade Pressures 

 

Figure 7.46: 34° Surface Blade Pressures 
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Figure 7.47: 28° Surface Blade Pressures 

 

Figure 7.48: 18° Surface Blade Pressures 

 

 

Figure 7.49: 8° Surface Blade Pressures 

 

Figure 7.50: -2° Surface Blade Pressures 
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Figure 7.51: -12° Surface Blade Pressures 

 

Figure 7.52: -17° Surface Blade Pressures 

 

7.2.6. Three Dimensional Simulation of Incident Tolerant Blade Parameters 

 The simulation parameters were once again chosen to mimic the experimental work being 

done at UND.   The cases were setup using the SST model as the turbulence model and the γ-Reθ 

models as the transition model.  The inlet conditions and turbulence parameters are identical to 

the conditions and parameters specified for the two dimensional cases.  Pressure data was taken 

from the two dimensional cases at a location that corresponded to the exit location of the three 

dimensional geometry.  This pressure value was set as the initial outlet pressure.  The outlet 

pressure was then adjusted by incrementally decreasing the back pressure to speed up the flow as 

to match the experimental Mach number distribution 25% chord downstream of the blade 

cascade.   

7.2.7. Three Dimensional Simulation of Incident Tolerant Blade Convergence 

 As with the preliminary cases, ANSYS-CFX was chosen as the solver with a target RMS 

convergence level of 1e-6.  The Re=50K, 66K, and 228K simulations achieved a final 

convergence level of 1e-5 for all variables.  The Re=568K achieved a full convergence. 
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7.2.8. Three Dimensional Simulation of Incident Tolerant Blade Results 

 Figure 7.54 - Figure 7.57 below show the downstream Mach number calculated at 25% 

chord downstream.  The zero reference in the plot refers to the lower section of the 

computational domain.  This labeling convention is illustrated in Figure 7.53 

 

 In all of the cases, the initial back pressure that was specified resulted in a lower 

downstream Mach number, as shown below in Figure 7.54 - Figure 7.57. The back pressure was 

adjusted resulting in a downstream Mach number distribution that matches the experimental data 

very well.  The higher Reynolds number cases have some discrepancies in the downstream Mach 

number, however, the adjusted back pressure created the correct Mach distribution around blade 

2; which was the goal of the back pressure correction. 

 The next set of figures (Figure 7.58 - Figure 7.65) show the surface pressure distributions 

for all four blades.  The pressure surface pressures in each of the cases agree well with the 

experimental data and with the two dimensional results.  However, on the suction surface there is 

a large spread between each blade in the cascade, especially in the lower Reynolds number cases.  

This blade to blade variation can be explained by the blockage the flow sees in the blade 

Figure 7.53: Downstream Mach Number Diagram 
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passages.  This variation decreases with an increase in Reynolds number.  For a given Reynolds 

number, each blade follows the same separation trend but differs in the loading in the lower 

Reynolds number cases.  In all cases, the surface pressures on blade 2 (the instrumented blade) 

show good agreement on the pressure and suction surface with the experimental data. 

 Figure 7.66 - Figure 7.73 show Mach contours on the center plane of the domain and a 

contour of the wall shear in the “x” direction on blade 2.  These plots show the over speed 

regions and the separation regions on the suction surface.  The low wall shear values (blue color) 

on the wall shear contours show the separated region on the suction surface of the blade.  The 

surface pressure plots (mentioned previously) and the wall shear contours make it easy to 

visualize the shrinking separation region with an increase in Reynolds number.  The higher 

Reynolds number cases show the impact of the endwall on the flowfield around the blade. 

 The last set of contours (Figure 7.74 - Figure 7.77) show the loss coefficients calculated 

at 25% chord upstream, mid chord, trailing edge, and 25% chord downstream.  The loss 

coefficient contours show a larger amount of loss in the lower Reynolds number cases when 

compared to the higher Reynolds number cases.  This can be attributed to the larger separation 

seen in the lower Reynolds number cases.  A more periodic trend from passage to passage is seen 

it the higher Reynolds number cases. 
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Figure 7.54: 34° Re=50K Initial and Adjusted 

Downstream Mach Number Comparison 

 

Figure 7.55: Re=66K Initial and Adjusted 

Downstream Mach Number Comparison 

 

 

Figure 7.56: 34° Re=228K Initial and 

Adjusted Downstream Mach Number 

Comparison 

 

Figure 7.57: Re=568K Initial and Adjusted 

Downstream Mach Number Comparison 
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Figure 7.58: Re=50K Blade Surface Pressure 

Distributions 

 

Figure 7.59: Re=50K Blade Surface Pressure 

Distributions with Two Dimensional Results 

 

 

Figure 7.60: Re=66K Blade Surface Pressure 

Distributions 

 

Figure 7.61: Re=66K Blade Surface Pressure 

Distributions with Two Dimensional Results 
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Figure 7.62: Re=228K Blade Surface Pressure 

Distributions 

 

Figure 7.63: Re=228K Blade Surface Pressure 

Distributions with Two Dimensional Results 

 

 

Figure 7.64: Re=568K Blade Surface Pressure 

Distributions 

 

Figure 7.65: Re=568K Blade Surface Pressure 

Distributions with Two Dimensional Results 
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Figure 7.66: Re=50K Center Plane Mach 

Number Contour 

 

Figure 7.67: Re=50K Center Plane Mach 

Contour with Wall Shear Contour on Blade 2 

 

 

Figure 7.68: Re=66K Center Plane Mach 

Number Contour 

 

Figure 7.69: Re=66K Center Plane Mach 

Contour with Wall Shear Contour on Blade 2 
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Figure 7.70: Re=228K Center Plane Mach 

Number Contour 

 

Figure 7.71: Re=228K Center Plane Mach 

Contour with Wall Shear Contour on Blade 2 

 

 

Figure 7.72: Re=568K Center Plane Mach 

Number Contour 

 

Figure 7.73: Re=568K Center Plane Mach 

Contour with Wall Shear Contour on Blade 2 
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Figure 7.74: Re=50K  Loss Coefficients 

 

Figure 7.75: Re=66K Loss Coefficients 

 

 

Figure 7.76: Re=228K  Loss Coefficients 

 

Figure 7.77: Re=568K Loss Coefficients 
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8. CONCLUSIONS AND FUTURE WORK 

 This section includes the conclusions of the completed work and details the future work 

to be completed. 

8.1. Conclusions 

 Turbulence and transition modeling refinement is crucial in being able to accurately 

predict flowfields and heat transfer in many different fields of study, including the area of gas 

turbines.  New technologies in aircraft are pushing the need for incident tolerant blade designs.  

The large incidence angles faced by these designs, and the large separation zones that are being 

seen, have proven challenging for current turbulence and transition models.  New combustor 

designs are increasing efficiency by increasing the turbulent mixing in the combustors, which is 

leading to an increase in downstream turbulence levels.  This increase in downstream turbulence 

levels is creating difficulties in predicting the laminar-to-turbulent flow transition that is 

occurring on turbine vane and blade surfaces.  Improving the capabilities of turbulence and 

transition models will lead to more accurate prediction of aerodynamics and heat transfer values 

for different vane and blade designs and varying flowfield conditions. 

The γ-Reθ transition model, which has been validated for several incompressible flows, 

has been shown to produce good results in compressible flows.  However, further refinement of 

this transition model is still needed.  In order to refine this model further, initial simulations were 

conducted to provide a baseline which to compare future results.   

 The first set of initial computations that were performed looked at flow around a turbine 

vane.  Incompressible flow simulations were run to look at the heat transfer coefficients on the 

vane surface. These results were then compared to experimental data collected at UND and 

showed mixed success.  The model produced good results at lower Reynolds numbers and lower 
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turbulence intensities, but over predicted heat transfer values at higher Reynolds numbers and 

higher turbulence intensities (Kingery, Suzen, & Ames, 2010).  Compressible flow simulations 

were then conducted.  The first step in these simulations was to match the blade loadings with 

the experimental loadings.  Once the blade loadings are matched, simulations incorporating heat 

transfer will be conducted, and the results will then be compared to the experimental data.  

Current aerodynamic results show good agreement on the pressure surface of the blade, while the 

suction surface shows discrepancies which increase with Reynolds number. 

 The second set of initial computations being performed are looking at the flow over an 

incident tolerant blade design.  This blade design is meant to operate well over a large range of 

incident angles.  Two and three dimensional simulations were conducted using this blade design.  

The simulations varied the incidence angle from +40° to -17° with multiple Reynolds numbers 

and turbulence intensities at each angle.  The two dimensional simulations have so far shown 

good agreement with the experimental data, with moderate discrepancies on the suction surface 

at the lower Reynolds numbers.  The results from the three dimensional cases show the same 

discrepancies found in the two dimensional cases as well as variations in the loadings from blade 

to blade.  These variations are found to be larger in the lower Reynolds number cases, where 

blockage in the blade passages due to separation on the blade surface is seen. 

 The discrepancies seen in the vane and blade simulations show the need of turbulence 

and transition refinement in high turbulence and high Reynolds numbers flows.  They also show 

incorporating compressibility effects into the models is warranted. 

 This thesis provides the mesh, simulation parameters, preliminary results, and processing 

scripts needed for further simulations and the first steps in the improvement of the turbulence 

and transition models. 
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8.2. Future Work 

 To date, experimental data for the 40°, 34°, 8°, -12°, and -17° low turbulence cases has 

been received.  The two dimensional simulations have only been conducted for the 34° and 40° 

cases, and the three dimensional simulations have only been completed for the 34° low 

turbulence cases.  The rest of the cases will be run and processed continually as new 

experimental data is received. 

 Model refinement on the γ-Reθ transition model will also be conducted.  This will consist 

of employing compressibility factors and other correlations into the model.  The new model will 

then be run and compared with the preliminary cases completed in this thesis. 
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APPENDIX 

A.1. MATLAB Script for Creating Two Dimensional Geometry 

%Jamison Huber 
%Reads in Blade Points and Creates Outer Boundaries 
  
clear all; 
clc; 
close all; 
  
%Reads in Blade Points, Finds Pitch, and  
%separates blade data into top and bottom 
%Specifies Inlet AOA 
blade2=dlmread('Blade2_XY.txt'); 
blade3=dlmread('Blade3_XY.txt'); 
pitch=blade2(1,2)-blade3(1,2); 
axialchord=max(blade3)-min(blade3); 
axialchord=axialchord(1,1); 
[C,I]=min(blade2); 
blade2lower=blade2(1:I(1),:); 
blade2upper=blade2((I(1)+1):length(blade2),:); 
blade2lower(24,:)=[]; 
  
inletAOA=40; 
  
%Removes end of curves for upper blade surface 
i=1; 
blade2upper=sortrows(blade2upper,1); 
while blade2upper(i+1,2)-blade2upper(i,2)>=0 
    i=i+1; 
end 
blade2uppermod=blade2upper; 
blade2uppermod(1:i,:)=[]; 
  
i=1; 
blade2uppermod=sortrows(blade2uppermod,-1); 
while blade2uppermod(i+1,2)-blade2uppermod(i,2)>=0 
    i=i+1; 
end 
blade2uppermod(1:i+30,:)=[]; 
  
%Adds outlet line 
outletlength=2*axialchord; 
outletslope=(blade2uppermod(1,2)-blade2uppermod(2,2))... 
    /(blade2uppermod(1,1)-blade2uppermod(2,1)); 
outletline=[blade2uppermod(1,1)+outletlength,... 
    (blade2uppermod(1,2)+(outletlength*outletslope))]; 
blade2uppermod=[outletline;blade2uppermod]; 
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%Adds inlet line 
blade2uppermod=sortrows(blade2uppermod,1); 
num=400; 
inletlength=axialchord; 
points=linspace((inletlength/num),inletlength,num); 
inletslope=(blade2uppermod(1,2)-blade2uppermod(2,2))... 
    /(blade2uppermod(1,1)-blade2uppermod(2,1)); 
for i=1:length(points) 
    point=points(i); 
    inletline(i,:)=[blade2uppermod(1,1)-(point*(cosd(inletAOA)+inletslope)),... 
        blade2uppermod(1,2)+(point*(sind(inletAOA)+inletslope))]; 
end 
inletline=sortrows(inletline,1); 
blade2uppermod=[inletline;blade2uppermod]; 
  
%Smoothes inlet/blade connection 
i=num+1; 
for j=0:305 
    for m=0:j 
        blade2uppermod(i-m,:)=(blade2uppermod(i-(m+1),:)+blade2uppermod(i-(m-1),:))/2; 
        blade2uppermod(i+m,:)=(blade2uppermod(i+(m+1),:)+blade2uppermod(i+(m-1),:))/2; 
    end 
end 
  
%Creates upper and lower boundaries and trims upper boundary inlet 
tempx=blade2uppermod(:,1); 
tempy=blade2uppermod(:,2); 
tempyupper=tempy+(pitch/4); 
tempylower=tempyupper-pitch; 
tempz=zeros(length(tempx),1); 
upperboundary=[tempx,tempyupper,tempz]; 
lowerboundary=[tempx,tempylower,tempz]; 
blade2=[blade2upper;blade2lower;blade2upper(1,:)]; 
tempz=zeros(length(blade2),1); 
blade2=[blade2,tempz]; 
  
%Adds on to inlet length 
% sum=0; 
% i=1; 
% while sum<pitch*cosd(90-inletAOA) 
%     sum=sum+sqrt(((upperboundary(i+1,1)-upperboundary(i,1))^2+... 
%         (upperboundary(i+1,2)-upperboundary(i,2))^2)); 
%     i=i+1; 
% end 
% upperboundary(1:i,:)=[]; 
  
hold on 
plot(upperboundary(:,1),upperboundary(:,2)); 
plot(lowerboundary(:,1),lowerboundary(:,2)); 
plot(blade2(:,1),blade2(:,2)); 
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fid=fopen('Blade2Points.txt','w'); 
fprintf(fid, '%f\t%f\t%f\r\n',blade2'); 
fclose(fid); 
fid=fopen('40_UpperBoundaryPoints.txt','w'); 
fprintf(fid, '%f\t%f\t%f\r\n',upperboundary'); 
fclose(fid); 
fid=fopen('40_LowerBoundaryPoints.txt','w'); 
fprintf(fid, '%f\t%f\t%f\r\n',lowerboundary'); 
fclose(fid); 
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A.2.  MATLAB Script for Creating Three Dimensional Case Plots 

%Jamison Huber 
%Reads in data from all blades and outputs pressure distribution .txt files 
%%Also outputs Cp distributions 
  
clear all; 
clc; 
  
%Number of blades in cascade 
numblades=4; 
  
%Domain & Total Pressures 
domain_pressure=5425.04886; 
total_pressure=7691.12; 
  
%Manuall enter downstream pressures for Blades 1-4 
static_pressure=[-124.864, -38.34, 57.49, 177.128]; 
  
%Reads in Data from .txt files 
for i=1:numblades 
    filename1=sprintf('Blade_%d_X_vs_Pressure.txt',i); 
    filename2=sprintf('Blade_%d_Y_vs_WallShear.txt',i); 
    X_vs_Pressure_Temp=dlmread(filename1,',',5,0); 
    Y_vs_WallShear_Temp=dlmread(filename2,',',5,0); 
    eval(['Blade' num2str(i) '_X_Pressure=X_vs_Pressure_Temp;']); 
    eval(['Blade' num2str(i) '_Y_WallShear=Y_vs_WallShear_Temp;']); 
end 
  
%Splits data up by blade number 
%Format is   X  Y  Pressure  WallShear 
for i=1:numblades 
eval(['Blade' num2str(i) '_Data(:,1)=Blade' num2str(i) '_X_Pressure(:,1);']); 
eval(['Blade' num2str(i) '_Data(:,3)=Blade' num2str(i) '_X_Pressure(:,2);']); 
eval(['Blade' num2str(i) '_Data(:,2)=Blade' num2str(i) '_Y_WallShear(:,1);']); 
eval(['Blade' num2str(i) '_Data(:,4)=Blade' num2str(i) '_Y_WallShear(:,2);']); 
eval(['[C,I]=max(Blade' num2str(i) '_Data,[],1);']); 
maxX(i)=C(1); 
maxXLocation(i)=I(1); 
end 
  
%Rearranges data 
for i=1:numblades 
    eval(['tempup=Blade' num2str(i) '_Data(1:maxXLocation(' num2str(i)... 
        ')-1,:);']); 
    eval(['templow=Blade' num2str(i) '_Data(maxXLocation(' num2str(i)... 
        '):length(Blade' num2str(i) '_Data),:);']); 
    eval(['Blade' num2str(i) '_Data_Sorted=[templow;tempup];']); 
end 
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%Calculates S 
for i=1:numblades 
    eval(['[C,I]=min(Blade' num2str(i) '_Data_Sorted,[],1);']); 
    eval(['Blade_Sorted_Slope=(Blade' num2str(i) '_Data_Sorted(:,1:2));']); 
    for n=1:length(Blade_Sorted_Slope) 
        
        if i == 1 
            xlow=-0.0197; 
            xhigh=-0.0193; 
            ylow=-0.0543; 
            yhigh=-0.0537; 
            if Blade1_Data_Sorted(n,1)>xlow && Blade1_Data_Sorted(n,1)<xhigh 
                if Blade1_Data_Sorted(n,2)>ylow && Blade1_Data_Sorted(n,2)<yhigh 
                    tap_index=n; 
                    break 
                end 
            end 
        end 
         
        if i == 2 
            xlow=-0.0197; 
            xhigh=-0.0193; 
            ylow=-0.1032; 
            yhigh=-0.1027; 
            if Blade2_Data_Sorted(n,1)>xlow && Blade2_Data_Sorted(n,1)<xhigh 
                if Blade2_Data_Sorted(n,2)>ylow && Blade2_Data_Sorted(n,2)<yhigh 
                    tap_index=n; 
                    break 
                end 
            end 
        end 
         
        if i == 3 
            xlow=-0.0197; 
            xhigh=-0.0193; 
            ylow=-0.1519; 
            yhigh=-0.1514; 
            if Blade3_Data_Sorted(n,1)>xlow && Blade3_Data_Sorted(n,1)<xhigh 
                if Blade3_Data_Sorted(n,2)>ylow && Blade3_Data_Sorted(n,2)<yhigh 
                    tap_index=n; 
                    break 
                end 
            end 
        end 
         
        if i == 4 
            xlow=-0.0197; 
            xhigh=-0.0193; 
            ylow=-0.2008; 
            yhigh=-0.2005; 
            if Blade4_Data_Sorted(n,1)>xlow && Blade4_Data_Sorted(n,1)<xhigh 
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                if Blade4_Data_Sorted(n,2)>ylow && Blade4_Data_Sorted(n,2)<yhigh 
                    tap_index=n; 
                    break 
                end 
            end 
        end         
         
    end 
         
    tap_location(i)=tap_index; 
    eval(['utemp=sum(Blade' num2str(i) '_Data_Sorted(1:tap_location('... 
        num2str(i) '),3));']); 
    eval(['ltemp=sum(Blade' num2str(i) '_Data_Sorted(tap_location('... 
        num2str(i) '):length(Blade' num2str(i) '_Data_Sorted),3));']); 
    eval(['Blade' num2str(i) '_Data_Sorted(tap_location(' ... 
        num2str(i) '),5)=0;']); 
              
    if utemp>ltemp 
        fprintf('Upper - \n') 
        for j=tap_location(i):-1:2 
            eval(['Blade' num2str(i) '_Data_Sorted(j-1,5)=-((((abs(Blade' ... 
                num2str(i) '_Data_Sorted(j,1)-Blade' num2str(i) ... 
                '_Data_Sorted(j-1,1))^2)+(abs(Blade' num2str(i) ... 
                '_Data_Sorted(j,2)-Blade' num2str(i) ... 
                '_Data_Sorted(j-1,2))^2))^0.5)+abs(Blade' num2str(i)... 
                '_Data_Sorted(j,5)));']); 
        end 
        eval(['datalength=length(Blade' num2str(i) '_Data_Sorted);']); 
         for j=tap_location(i):datalength-1 
            eval(['Blade' num2str(i) '_Data_Sorted(j+1,5)=(((abs(Blade'... 
                num2str(i) '_Data_Sorted(j+1,1)-Blade' num2str(i) ... 
                '_Data_Sorted(j,1))^2)+(abs(Blade' num2str(i) ... 
                '_Data_Sorted(j+1,2)-Blade' num2str(i) ... 
                '_Data_Sorted(j,2))^2))^0.5)+abs(Blade' num2str(i)... 
                '_Data_Sorted(j,5));']); 
        end 
    else 
        fprintf('Lower - \n') 
        for j=tap_location(i):-1:2 
            eval(['Blade' num2str(i) '_Data_Sorted(j-1,5)=(((abs(Blade' ... 
                num2str(i) '_Data_Sorted(j,1)-Blade' num2str(i)... 
                '_Data_Sorted(j-1,1))^2)+(abs(Blade' num2str(i)... 
                '_Data_Sorted(j,2)-Blade' num2str(i) ... 
                '_Data_Sorted(j-1,2))^2))^0.5)+abs(Blade' num2str(i) ... 
                '_Data_Sorted(j,5));']); 
        end 
        eval(['datalength=length(Blade' num2str(i) '_Data_Sorted);']); 
        for j=tap_location(i):datalength-1 
            eval(['Blade' num2str(i) '_Data_Sorted(j+1,5)=-((((abs(Blade'... 
                num2str(i) '_Data_Sorted(j+1,1)-Blade' num2str(i) ... 
                '_Data_Sorted(j,1))^2)+(abs(Blade' num2str(i)... 
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                '_Data_Sorted(j+1,2)-Blade' num2str(i)... 
                '_Data_Sorted(j,2))^2))^0.5)+abs(Blade' num2str(i)... 
                '_Data_Sorted(j,5)));']); 
        end         
    end   
end 
  
%Calculates Ps/Pt 
for i=1:numblades 
    eval(['Blade' num2str(i) '_Data_Sorted(:,6)=(Blade' num2str(i) ... 
        '_Data_Sorted(:,3)+' num2str(domain_pressure) ')/' ...  
        num2str(total_pressure) ';']); 
end 
  
%Calculates Cp 
%Cp=(P - Pt)/(Pt-Pexit_static) 
for i=1:numblades 
    eval(['Blade' num2str(i) '_Data_Sorted(:,7)=((Blade' num2str(i) ... 
        '_Data_Sorted(:,3)+' num2str(domain_pressure) ')-(' ...  
        num2str(total_pressure) '))/((' num2str(total_pressure) ')-(' ... 
        num2str(static_pressure(i)) '+' num2str(domain_pressure) '));']); 
end  
  
%Output Plotting Files (.txt) 
for i=1:numblades 
    %Outputting Ps/Pt Files 
    eval(['Blade' num2str(i) '_Data_Sorted_Plot=Blade' num2str(i) ... 
        '_Data_Sorted(:,5:6);']); 
    filename1=sprintf('S vs PsPt Blade%d.txt',i); 
    filename2=eval(['Blade' num2str(i) '_Data_Sorted_Plot']); 
    fid=fopen(filename1 ,'w'); 
    fprintf(fid,'%f\t%f\n', filename2'); 
    fclose(fid); 
    %Outputting Cp Files 
    eval(['Blade' num2str(i) '_Data_Sorted_Plot_Cp=Blade' num2str(i) ... 
        '_Data_Sorted(:,[5,7]);']); 
    filename1=sprintf('S vs Cp Blade%d.txt',i); 
    filename2=eval(['Blade' num2str(i) '_Data_Sorted_Plot_Cp']); 
    fid=fopen(filename1 ,'w'); 
    fprintf(fid,'%f\t%f\n', filename2'); 
    fclose(fid); 
end 
  
%Plotting 
hold on 
axis equal 
plot(Blade1_Data_Sorted(:,1),Blade1_Data_Sorted(:,2),'-go'); 
[C,I]=min(Blade1_Data_Sorted,[],1); 
minx=Blade1_Data_Sorted(I(1),1); 
miny=Blade1_Data_Sorted(I(1),2); 
plot(minx,miny,'--rs') 
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tapx=Blade1_Data_Sorted(tap_location(1),1); 
tapy=Blade1_Data_Sorted(tap_location(1),2); 
plot(tapx,tapy,'--ko') 
  
hold on 
axis equal 
plot(Blade2_Data_Sorted(:,1),Blade2_Data_Sorted(:,2),'-go'); 
[C,I]=min(Blade2_Data_Sorted,[],1); 
minx=Blade2_Data_Sorted(I(1),1); 
miny=Blade2_Data_Sorted(I(1),2); 
plot(minx,miny,'--rs') 
tapx=Blade2_Data_Sorted(tap_location(2),1); 
tapy=Blade2_Data_Sorted(tap_location(2),2); 
plot(tapx,tapy,'--ko') 
  
hold on 
axis equal 
plot(Blade3_Data_Sorted(:,1),Blade3_Data_Sorted(:,2),'-go'); 
[C,I]=min(Blade3_Data_Sorted,[],1); 
minx=Blade3_Data_Sorted(I(1),1); 
miny=Blade3_Data_Sorted(I(1),2); 
plot(minx,miny,'--rs') 
tapx=Blade3_Data_Sorted(tap_location(3),1); 
tapy=Blade3_Data_Sorted(tap_location(3),2); 
plot(tapx,tapy,'--ko') 
  
hold on 
axis equal 
plot(Blade4_Data_Sorted(:,1),Blade4_Data_Sorted(:,2),'-go'); 
[C,I]=min(Blade4_Data_Sorted,[],1); 
minx=Blade4_Data_Sorted(I(1),1); 
miny=Blade4_Data_Sorted(I(1),2); 
plot(minx,miny,'--rs') 
tapx=Blade4_Data_Sorted(tap_location(4),1); 
tapy=Blade4_Data_Sorted(tap_location(4),2); 
plot(tapx,tapy,'--ko') 
 


