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ABSTRACT  

Traumatic brain injury (TBI) is one of the most common injuries to soldiers in 

warfare today.  A TBI occurs when the human brain is damaged by a sudden force 

coming from the environment.  Blasts created by improvised explosive devices 

(IEDs) can cause damage to other human body parts including lungs, bowels, and 

any other air-containing organs.  In this study, a blast shock tube was constructed 

for use with a Hybrid III dummy head model for mimicking the blasting scenario to 

obtain mechanical behavior data from when the generated compressed air is 

released from the blast shock tube.  The acceleration based on the standoff 

distance of the Hybrid III head could be found.  A simple model was established for 

finite element (FE) analysis.  The results showed that the closer the dummy head 

was to the shock tube opening and the higher the pressure pulse being used and 

more. 
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CHAPTER 1. INTRODUCTION AND RESEARCH 

OBJECTIVES 

 In the field of combat, high pressure blasts created by improvised 

explosive devices (IEDs) are always a threat and are the major cause of 

traumatic brain injuries (TBIs).  Therefore traumatic brain injuries caused by IEDs 

are called ‘signature wounds’ of any wars today (Magnuson, 2010). 

 TBI is one of the most common injuries happening to soldiers today, and 

research on diagnosing TBIs is one of the major components for determining 

treatments for them, as well as means for preventing them.  TBI occurs when a 

human brain is hit by a sudden force, acceleration, or deceleration coming from 

the environment.  Acceleration is the most important engineering parameter that 

leads to brain injury, as it shows the change of velocity depending on time.  As a 

result, the severity of the brain injury is characterized based on the acceleration 

of the human head, while the acceleration is determined by the combination of 

three linear acceleration components and three angular acceleration components 

(Ziejewski et al., 2007). 

 According to the Department of Veterans Affairs in 2007, there were about 

1800 troops with TBIs. Neurologists have estimated that roughly 30 percent of 

the troops that are at risk to TBI may also be at high risk to get any type of 

neurological disorder after four months or longer of combat, due to the blast 

conditions coming from the explosives (Glasser, 2007). 
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 It is estimated that 19.5% of all U.S. troops have symptoms related to 

blast induced traumatic brain injury (bTBI), which is possibly the cause of the 

neurological disorders like migraine headaches, insomnia, or dizziness (Helmick 

et al., 2006, Tanielian & Jaycox, 2008, Anderson, 2008, Cifu et al., 2009) 

1.1. Explosive Materials 

 Explosives are one of the most common weapons used in warfare today.  

They are extremely dangerous due to their explosions and blast radius.  A 

description of the mechanism of the explosive is that it is simply the energy of 

motion.  For example, the explosive consisting of trinitrotoluene (TNT), with 

proper handlers, is an object that has chemical potential energy.  When the TNT 

is detonated, the potential energy is turned into kinetic energy and motion is 

created.  At the same time, blast is formed when the motion of air starts.  Other 

than the blast, thermal energy is created due to the blast, which involves a high 

velocity change of the air.  Such a process is considered to be exothermic, which 

is an energy releasing reaction from the system.  Most of the time, this process is 

in the form of heat, light, or sound (WebRef3, 2012). 

 The explosives are classified as low-order and high-order.  The low-order 

explosives create explosions that are supposedly slower than Mach 1, which is 

the speed of sound.  The low-order explosives produce a subsonic wave, and the 

high-order explosives produce a supersonic wave, which is an over-

pressurization wave that the low-order explosives would never have (WebRef3, 

2012).  
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 In the battle field, military purposed explosives are all high-order 

explosives, while the terrorists would use high-order explosives, low-order 

explosives, or the combination of both (WebRef3, 2012). 

1.2. Blast Injuries Classification 

 Blast injuries can be classified into the four major mechanisms of primary, 

secondary, tertiary, and quaternary.  The blast injuries classifications are based 

on the anatomical and physiological changes from the body being impacted by 

any external forces (WebRef2, 2012). 

 Primary blast injuries are caused by the impact of the shock wave to our 

human bodies.  In other words, the injuries are caused when human body is 

being hit by the blast that changes the atmospheric pressure of any medium 

(Ziejewski et al., 2007), and may occur without any visible external signs.  These 

Injuries mostly occur in specific organs that contain air, such as lungs and 

bowels. Other than those organs, it is believed that the shock wave can also 

damage the human brain (Brooks et al., 1997). 

 Secondary blast injuries are caused by the impact of fragments and any 

objects within the bombing device that are accelerated by the blast.  Injuries in 

this classification can be categorized as penetrating or non-penetrating, 

depending on the injuries (Brooks et al., 1997). 

 Tertiary blast injuries are caused by the sudden acceleration of the human 

body by the blast which then hits the ground or any rigid objects leading to any 

tearing of body parts or tissue (Brooks et al., 1997).  The fourth type of blast 

injuries mechanism is the quaternary, which are related to burns due to the 
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explosion, the combustion of the environment, or any dangerous gas that is not 

related to any of the other three classifications of blast injuries (Brooks et al., 

1997).  The following is a table of mechanisms for the blast injury.  

Category  Characteristics  Body Part 
Affected 

Types of Injuries  

Primary  Unique to HE, results 
from the impact of the 
over-pressurization 
wave with body 
surfaces. 

Gas filled 
structures are 
most 
susceptible – 
lungs, GI tract, 
and middle ear. 

Blast lung (pulmonary 
barotraumas) 
TM rupture and middle 
ear damage 
Abdominal hemorrhage 
and perforation – 
Globe (eye) rupture – 
Concussion (TBI 
without physical signs 
of head injury) 

Secondary  Results from flying 
debris and bomb 
fragments. 

Any body part 
may be 
affected. 

Penetrating ballistic 
(fragmentation) or blunt 
injuries 
Eye penetration (can 
be occult) 

Tertiary  Results from 
individuals being 
thrown by the blast 
wind. 

Any body part 
may be 
affected. 

Fracture and traumatic 
amputation 
Closed and open brain 
injury 

Quater nary  All explosion-related 
injuries, illnesses, or 
diseases not due to 
primary, secondary, or 
tertiary mechanisms. 
Includes exacerbation 
or complications of 
existing conditions. 

Any body part 
may be 
affected. 

Burns (flash, partial, 
and full thickness) 
Crush injuries 
Closed and open brain 
injury 
Asthma, COPD, or 
other breathing 
problems from dust, 
smoke, or toxic fumes 
Angina 
Hyperglycemia, 
hypertension 

 

Table 1-1:  Mechanisms of Blast Injury (WebRef2, 2012). 
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Based on the level of pressure of the blast, it causes different kinds 

damage to the human body.  The following is a brief table showing the damage 

caused by different levels of blast overpressure (Kinney and Graham, 1985). 

Type of damage Overpressure (psi) 

Personnel knocked down ~1-1.5 

Eardrum rupture ~5-15 

Lung damage ~29-75 

Lethality ~100-220 

Table 1-2:  Correlation between damage and overpressure (Kinney and Graham, 

1985). 

1.3.    Blast Conditions 

 A blast can be created by using several methods.  One method would be 

to create an explosive, and another common method would be to construct a 

shock tube, which involves the work of compressed gas. In the battlefield, 

blasts are found mostly by the detonation of the explosive materials.  The 

strength of the blast caused by the explosive materials depending on two major 

elements.  One of the two elements is the explosive charge weight, which is 

measured based on the identical amount of TNT.  The other element is the 

standoff distance between the explosive and the object that is receiving the blast 

that is created by the explosive (Ziejewski et al., 2007). 

 A shock tube would be a better or safer way to create shock waves versus 

making an explosive, which would be more dangerous. There are two main 

sections of a shock tube: 1) the driver section and 2) the driven section.  The 
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high pressure gas is usually stored in the driver section of the shock tube while 

the driven section usually contains low pressure gas, or ambient environment.  

The two sections are separated by a component, which can be a rupture disk or 

a butterfly valve that can be opened quickly, depending on the preference. 

 As the separating component is gone or opened quickly, the high pressure 

gas in the driver section flows into the driven section.  Such operation finally 

creates the blast condition as the gas in the driver section is going into the driven 

section with an extremely high velocity.  The high pressure gas ends up having 

the same pressure as the low pressure gas after a short period of time. 

 The driven section can sometimes be called the chamber section, 

because there is usually a test chamber in the section.  Testing devices can be 

placed in the chamber section so data can be obtained by performing the test.  

Some examples of these testing devices would be any load cells, 

accelerometers, air velocity transducers, pressure sensors or any other devices. 

 After the explosion occurs, a high pressure is formed in an extremely short 

period of time.  After that, the high pressure generated from the explosion travels 

outward as a wave with an extremely high velocity.  The high pressure was then 

lowered quickly due to the surrounding condition, and finally returned back to its 

normal condition.  This was the process of the shock wave, as shown as Figure 

1-1 (Brooks et al., 1997). 
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Figure 1-1:  A classic Pressure vs. Time curve at a point at the scene (Brooks et 

al., 1997). 

 The pressure distribution curve based on time can be determined by using 

the following equation. 

���� �  �� � �	
 �1 
 �
��� �

��
��                        (1-1) 

where �� is the atmospheric pressure, �	
 is the peak overpressure, t is the time 

when the pressure starts to shoot up, �
 is the time duration for the positive 

phase. 

 The peak overpressure drops gradually and slowly as the shock wave 

travels outward from the explosion point.  Figure 1-2 shows the relationship 

between the peak overpressure and the distance away from the explosion site 

with an assumption of 10 kg of trinitrotoluene being used as an explosion (Brooks 

et al., 1997). 
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 Described as a danger to the human body, a powerful explosive would 

generate blast waves of high pressure at a velocity of about 1600 ft/s from the 

explosive and with a radius of a few hundred yards.  The blast wave has two 

different parts that cause damage to the human body:  1) the wave that causes 

the positive phase overpressure, 2) after the first wave, as the air or any medium 

is being forced hard, the vacuum space is created.  The vacuum space is then 

filled up with air and this causes high pressure again, which represents the 

negative phase of overpressure.  These sudden changes of pressure are leading 

to the neurological injury, as traumatic brain injury would be part of (Glasser, 

2007). 

 

Figure 1-2:  The relationship between peak overpressure and standoff distance 

when 10 kg of TNT is being used (Brooks et al., 1997). 
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1.4. Traumatic Brain Injury  

 This study is related to TBIs caused by primary blasts.  Recently, there 

has been an increasing amount of research on TBIs as they are still a major 

concern for the U.S. Army branches.  A TBI occurs when a blast wave hits a 

human head, causing a sudden acceleration of the head, leading to the brain 

responding separately to the sudden environment as the skull and the brain have 

different material properties.  Brain tissues are first compressed then impacted 

against the skull and the brain tissues expand/compress over and over again 

inside the skull, and such movement causes void and destruction to the brain 

tissues (Ziejewski et al., 2007). 

 According to the National Institute of Neurological Disorders and Stroke 

(NINDS), a person with a mild Traumatic Brain Injury (mTBI) may remain 

conscious, or lose consciousness for a few seconds to minutes.  Besides losing 

consciousness, other symptoms of mTBI include confusion, dizziness, and 

blurred vision.  When a person has a moderate, or severe TBI, he/she may 

experience the same symptoms as a mTBI, but also seizures, loss of 

coordination, agitation and more (WebRef4, 2012). Besides injuring human 

heads, TBIs also have a negative impact on the economy.  In just the year 2000, 

TBIs cost the U.S. national economy about 60 billion dollars (Finkelstein and 

Corso et al., 2006), while the National Centers for Disease Control and 

Prevention (CDC) estimated a cost of about 76.5 billion dollars in 2000 which 

included the direct medical costs and the indirect costs such as lost of 

productivity in 2000. 
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1.5 Research Objectives  

The objective of this research was to determine the motion of the Hybrid III 

Dummy Head when it is hit by the pressure pulse generated by the blast shock 

tube.  This research is divided into three major parts. 

The first part of the research was the construction of a blast shock tube 

and the stands along with a rail system for the dummy head. The shock tube was 

used to simulate the blast similar to the blast condition created by the explosions 

of explosive materials.  The assembling of stands and rail system for the dummy 

head was for the purpose of allowing the dummy head to slide through in a uni-

direction when being hit by the pressure pulse generated by the blast shock tube. 

The second part of the work was to measure the linear velocity and 

acceleration of the Hybrid III Dummy Head when it was subjected to various 

pressure pulses generated by the shock tube.  The measurement of the velocity 

and acceleration of the dummy head was to determine the damage that the 

dummy head might experience, as a TBI is caused by the sudden acceleration of 

a human head. 

The third part of this research was to determine the relationships between 

the linear velocity, acceleration of the head model and the pressure pulse using 

finite element (FE) analysis, as well as the relationship between the pressure 

pulse and the standoff distance.  The FE analysis approach helped in 

understanding the mechanism of the blast on the head model that was similar to 

the experiments.  The use of FE analysis software could have also helped 

determine the reaction of the air flowing inside the chamber section of the shock 

tube.  
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CHAPTER 2. A REVIEW OF BLAST SIMULATION BY 

SHOCK TUBE AND NUMERICAL COMPUTATION 

 This chapter describes some past studies that are related to this research.  

Some of the studies are about the construction of the shock tube, while others 

involve the reactions that have occurred in rat brains under a blast, or how the 

pressure has changed in a specific area inside the shock tube over a period of 

time. Other than experimental research, numerical research has also been 

conducted by using head models for simulating the reactions to the human head.   

These studies had some reasonable results and are therefore useful references 

for other researchers. 

2.1.  Blast Simulation Experiments  

 The shock tube constructed by Ronald Segars and Marina Carboni at the 

U.S. Army Natick Soldier Research Development and Engineering Center 

(NSRDEC) showed important data on the differences when assorted test 

materials were used (Segars et al., 2008).  The testing materials for their 

research include three different types of foams, Kevlar ® fabric, and aluminum 

foil while all had different material properties. The shock tube was made of 

stainless steel pipe with an inner diameter of 6.72 cm and an outer diameter of 

7.28 cm, respectively.  The driver section of the tube was 30.5 cm long while the 

driven section was exactly 183 cm long.  For each section of both, there were 

two stainless steel flanges attached to each end.  The yield strength of the used 

tube was about 4000 psi, which was close to the pressure that the tube could 
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hold.  There was also a total of five sensor taps used on the shock tube, for 

finding the changes of the pressure at different spots inside the shock tube.  

Placing multiple pressure sensors at different sections in the shock tube give out 

different pressure distributions of the flow.  Figure 2-1 shows a set of plots with 

data obtained from the four pressure taps, P1 is for the flow in the tube wall by 

the diaphragm, P2 is in the tube wall by the endplate, P3 measures the reflected 

pressure at the endplate, and P4 measures the reflected pressure at the 

recessed sensor. 

 

Figure 2-1:  Pressure distributions at different locations in the shock tube (Segars 

et al., 2008). 
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 A shock tube made by Leonardi et al. (2011) was used at Wayne State 

University (WSU) to study the increases of intracranial pressure (ICP) due to 

shockwaves.  The shock waves were generated by using helium as the driven 

gas, the shock tube had a total length of 272 inches, which included the 30 

inches driver section and the 242 inches long driven section.  To verify the 

accuracy of the results in the case of using the in vivo method, 25 male Sprague-

Dawley rats were used in the experiment while guided cannula was placed inside 

the rats’ skulls.  The rats were then placed in a soft hold inside the shock tube so 

they would face the shockwaves once the test is run.  Unlike the other shock 

tubes, the one at WSU had a transparent pipe at one end of the metal pipe.  The 

purpose of the transparent pipe was to make the full process of the experiment 

visible, by human vision.  By using a high speed camera, the researchers did not 

have to stand by the opening of the shock tube.  Similar to the other shock tube 

experiments, this shock tube helped obtain the data of ICP over a short period of 

time.  There was a possibility that the ICP could change due to how the cannula 

was sealed, Leonardi et al. (2011) tried different scenarios when the cannula was 

unsealed, partially sealed, or fully sealed.  Figure 2-2 shows the difference 

between the different situations. 

The results show that the incident shockwave overpressure had the lowest 

peak overpressure while the totally sealed cannula had the highest peak 

overpressure.  Overall, the pressure was the highest when the cannula was 

partially sealed.  Negative pressure occurred for all the cases when the time got 

to roughly 18.5 ms. 
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Figure 2-2:  Results based on different situations (Leonardi et al., 2011). 

2.2.  Finite Element Analysis Simulations  

 FE analysis is a powerful tool for studying air blast and TBIs.  Yet the 

accuracy of the results from these simulations is highly dependent on the 

accuracy of the model (Chafi et al., 2010).  This includes material properties for 

different parts of the model, geometry of the model, and conditions related to the 

situation of the scene.  Finite element analysis (FEA) can be used to analyze the 

stress and displacement of the head model by using LS-DYNA.  It can also help 

in determining the reaction of the air flow, the air flow velocity, or the stagnation 

pressure by using computational fluid dynamics (CFD). 

 A simple blast model usually involves the use of Arbitrary Lagrangian 

Eulerian (ALE) elements for the explosive/TNT charger and the surrounding 

environment/air while the detonation of the TNT is defined by using the Jones-
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Wilkins-Lee (JWL) equation of state (EOS).  The parameters for that specific 

equation were estimated by Dobratz in 1985. 

� � � �1 
 �
���� ����� � � �1 
 �

���� ����� � ��
�                   (2) 

 �  !"
!                                                        (3) 

where p is the pressure, #� is the initial density of TNT, # is the density of the 

detonation gas, A, B, R1, R2, ω are the parameters for the JWL equation, and E 

represents the internal energy of the detonation. 

  A recent research on shockwave hitting on a sandwich panel by using the 

finite element method (FEM) was done by Tan et al. (2010).  The objective of 

their research was to determine the performances of sandwich circular panels 

when different materials are used under the condition of blasting. The 

performances of the sandwiches were compared to performances found by using 

the monolithic solid circular plates.  Finding that the results of the peak 

transmitted overpressure, deflection of the panels, and the acceleration of the 

sandwiches were less than the results for the monolithic solid plates. The 

research showed that the performance of the materials on the shock tube 

blasting condition was based on the material property, configuration, and mass 

distribution.  Figure 2-3 shows a cross-sectional sketch of a shock tube for the 

sandwich panel experiment (Tan et al., 2010). 
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Figure 2-3:  The 2D model of shock tube for the sandwich panel experiment (Tan 

et al., 2010). 

 By using such a model, with a boundary condition of 10 MPa applied to 

the driver section, the results generated by simulating the blast were obtained.  

Results could then be compared to the results obtained by using ConWep (Tan 

et al., 2010), which is a software developed by the US Army Corps of Engineers’ 

Engineer Research and Development Center, which is shown as Figure 2-4. 

 

Figure 2-4:  Comparison between FEA results and ConWeb (Tan et al., 2010). 
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 To increase the accuracy of the modeling results, there were some 

modifications done to the previous model.  Sandwich models were added to this 

model so the results could be compared to the results obtained from performing 

the chamber test.  In this research, sandwich panels were made up of a 

combination of aluminum, polyethylene, Kevlar or nylon with SSP-core A or 

MSP-core B.  Figure 2-5 shows the effect of the blast wave to the panel.  The 

results show that the sandwich panels were more efficient than the solid panels.   

 

Figure 2-5:  Different views on panel's deformation due to the blast as a) side 

view b) front view of the sandwich (Tan et al., 2010). 

 To determine any response of a human head and its relative motion by 

using FEA, high accuracies of dimensions and geometries of the human head 

and brain are not enough.  There should also be some realistic boundary 

conditions and interface (Chafi et al., 2010).  To simulate the blast-induced wave 

propagation by using LS-DYNA, a dynamic software, it was suggested to use two 

formulations, which were Arbitrary Lagrangian Eulerian (ALE) and Fluid-Structure 

Interaction (FSI) (Chafi et al., 2009).  In the paper, the air blast model was 



18 

 

simulated by using multi-material ALE formulation as the ALE formulation.  It was 

also determined the effects from an actual explosive, because each element of 

the model is to contain more than two different materials.  FSI was to be 

simulated for the interaction of some moving or fixed mesh using an ALE 

formulation while the Lagrangian formulation was used for a deformable 

structure.  The air blast simulations were conducted by using LS-DYNA with the 

usage of Eulerian Multi-Material, ALE formulations for the Navier-Stokes 

equations and the Jones-Wilkins-Lee equation for the results of the explosion.  In 

the paper, the explosives used for simulations were C-4 and TNT and were 

simulated in an open space so that it could simulate a battlefield scene.  The 

model is shown as Figure 2-6.  The results for the simulation when C-4 

explosives were used are plotted and compared to an experimental result 

obtained by Boyer (1960). The plot shows that the results were comparable and 

errors of the arrival time and peak pressure could be neglected. 

 

 

Figure 2-6:  Meshed model consists of explosive, air, and rolled homogeneous 

armor plate (Chafi et al., 2009). 
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Figure 2-7:  Comparison between the experiment result (Boyer, 1960) and the 

numerical result (Chafi et al., 2009). 

 After plotting the pressure distribution over time when C-4 was used, 

another chart was plotted for the result obtained when TNT was used.  The chart 

shows the relationship between pressure and the distance from the explosion as 

the experimental result is gathered from another experiment, which was done by 

Gibson in 1994 (Chafi et al., 2009). 
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Figure 2-8:  Pressure distribution based on distance from explosion while 

different amounts of TNT are being used (Chafi et al., 2009). 

 The results show that as the distance from the explosion became greater, 

the pressure got lower. The errors between the experimental results (Gibson, 

1994) and the numerical results (Chafi et al., 2009) less than 10% when 0.5, 1, 

1.5, 2 pounds of TNT explosives were being used.  This indicated that the cases 

were in good agreements. 

 One research study was to assess the brain dynamic response when 

being hit by blast pressure waves with the use of FEA. The 3-dimensional (3-D) 

FE model was based on a highly detailed structure of a human head, which 

included the human brain, falx and tentorium, dura mater, cerebrospinal fluid 
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(CSF), scalp, skull bone, and pia mater.  The following figure shows the particular 

3-D FE model for the human head. 

 

 

Figure 2-9:  Different views of the head model showing different parts of the 

human head (Chafi et al., 2010). 
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 In a paper by Chafi (2010), the CSF was normally clear fluid that acted as 

a cushion as it help protecting the brain and spine from injury and was modeled 

with solid elements along with fluid-like property.  The interface between the dura 

and tentorium and the falx was defined to have a contact of tied node-to-surface 

as these particular parts are physically attached to each other in human head.  In 

addition, the interface between the brain and membrane was modeled to have a 

tied contact algorithm as loads could be transferred in both compression and 

tension (Chafi et al., 2010).  After modeling of the head, it used in the air-blast 

simulation using the multi-material formulation used in the previous paper (Chafi 

et al., 2009).  In that case, the detonation was based on the explosion of high 

explosives (HEs). 

 From the simulation, ICPs, maximum shear strains, and maximum shear 

stresses were found through the time when the head human was hit by the blast 

and the shock waves.  The simulation was conducted several times which 

included different amounts of the same explosive material.  As expected, when 

the amount of explosive material used, the higher the pressure, shear stresses, 

and shear strain that occurred to the head model.  The results showed that the 

response happened to the head and lasted for about five miloseconds for such 

blast impact.  The following figure (Figure 2-10) shows the contour plot of 

pressure distribution of the air at different time since the detonation of an 

explosive, and a figure (Figure 2-11) showing the pressure reaction over time. 
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Figure 2-10:  Pressure distribution of the model at different time (Chafi et al., 

2010). 

 

Figure 2-11:  Average ICP over time when three different amounts of HEs are 

used (Chafi et al., 2010). 
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 In the work of Dirisala et al. (2011), an FE head model that cosisted of 

almost all the parts of a human head was used.  The geometry of the FE human 

head model was based on magnetic resonance imaging (MRI) data with a total of 

28,816 nodes and 19,589 8-node brick elements along with 5344 4-node shell 

elements.  The neck was created by using viscoelastic material by using discrete 

elements while different damping coefficients were used to determine the 

differences between each case.  One end of the neck was assumed to be 

connected to the head model while the other end was constrained.  The specific 

model is shown below. For the interfaces between the membranes in the head 

model, node-to-surface and surface-to-surface tied based contact was used for 

the simulations.  The CSF was once again modeled to have some fluid-like 

properties.  The CSF and membranes used tied contact (Dirisala et al., 2011). 

 

 

 

 

 

 

 

 

Figure 2-12:  The head and neck model for the simulation with the use of springs 

and dampers (Dirisala et al., 2011). 
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Figure 2-13:  Pressure distribution over time on the head model when different 

damping coefficients are used while a) is using an elastic neck and b) is using a 

viscoelastic neck.  The experimental results are from Nahum et al. in 1977 

(Dirisala et al., 2011). 
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 The results of the simulations show that the beginning stages of the 

movement of the head are not much different from each other, but at the later 

stages of the movement, the results showed that the intensity of the brain 

response would be based on the neck damping coefficients.  This meant that the 

intensity of the brain response was going down when the damping coefficient of 

the neck model was going up after the beginning stage of the movement of the 

head (Dirisala et al., 2011).  
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CHAPTER 3. DESIGN AND ELEMENTS OF THE SHOCK 

TUBE AND EXPERIMENTAL PROCEDURE 

 This chapter will describe the overall procedures for the experiment 

presented in this paper, descriptions of the instruments used and the methods 

used for acquiring the data. 

3.1.  Experimental Setup 

 The experimental setup consisted of five major sections:  1) the air 

compressor; 2) the driver section; 3) the assembling of butterfly valve, pneumatic 

actuator, and solenoid valve; 4) the testing section; and 5) the data acquisition 

section.  Figure 3-1 is a brief sketch of  the setup. 

 

Figure 3-1:  An overall look at the experimental setup. 

3.1.1.  Air Compressor 

 The air compressor provided compressed air needed at a preferred 

pressure.  The air compressor was able to provide a maximum pressure of 175 

psi while it had a volumetric flow of 14.7 cubic feet per minute at the maximum 

pressure.  The air pump had a speed of 1575 revolutions per minute.  Attached 

to the air compressor was a gas tank that has a capacity of 60 gallons.   

Testing Section Air Compressor Tee 

Solenoid Valve Pneumatic Actuator 

            Driver Section BF Valve 

DAS 
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3.1.2.  Driver Section 

 In this section, compressed air was being transferred from the air 

compressor.  The pipe has an inner diameter of 8” while the thickness of the pipe 

was 3/8”.  One end of the tube was closed by welding a slab made of steel while 

the other end was closed when the butterfly valve operated by the air 

compressor.  The air in this section supposedly compressed down to 170 psi, 

which is about 11.568 atm.  The steel pipe had minimum yield strength of 250 

MPa, meaning that the internal pressure created by running the compressed air 

into the steel pipe was safe.  The driver pipe is shown below as Figure 3-2. 

 

Figure 3-2:  The air storage section (driver section) and the two stands holding 

the shock tube. 
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 The total length of the steel pipe between the closed end and the butterfly 

valve was 289.5 inches.  When adding the weight of the flanges, the total weight 

of this section was then about 971 pounds.  To lift the weight of this pipe of the 

shock tube, there were two steel stands made and bolted to the flanges, which 

were welded to the outer surface of the pipe.  The frames were made by using 

two inches by two inches square tubing, with a thickness of a quarter inch, and 

angles that were welded to the frames so anchor bolts could go through the 

angles and be bolted to the concrete floor.  

3.1.3.  Solenoid-Controlled Pneumatic-Actuated Butt erfly Valve 

 As described in Section 3.1, the valve assembling involved the assembling 

of a butterfly valve, a pneumatic actuator, and a solenoid valve.   

 The high performance butterfly valve had the standard wafer pattern 

meaning that there were only two holes that could be used for bolting the valve to 

the flanges.  The butterfly valve and the steel flanges all had the same 300 lbs 

rating so they could handle a higher pressure and the valve size was 8 inches so 

it matched the size of the pipe and the flanges.  As the operating speed of the 

butterfly valve was the priority of this experiment, a pneumatic actuator is chosen 

instead of an electric actuator.  An electric actuator would be more convenient, 

but the fastest electric actuator for this size still needs about 10 seconds to 

operate.  A pneumatic actuator was the choice, therefore, as it could make the 

butterfly valve open within a second. The selected pneumatic actuator was a 

spring return type, meaning that when the actuator was filled with air, the butterfly 
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valve would begin to turn.  When the valve was turned 90 degrees and closed, 

the valve could spring back open by pressing a button.  

 Although a pneumatic actuator was a good choice and it did what it 

needed to do, it did have some limitations during operations.  The two major 

limitations were the pressure range and the other is the temperature range.  The 

pressure range was between 40 and 120 psi, meaning that the experiment would 

be fine when the operating pressure was not higher than 120 psi and not lower 

than 40 psi when the operating temperature was between -4 and 176 degrees F.   

 The solenoid valve is an electro-mechanical valve that is mostly used for 

experiments that involve air or fluids.  The main purpose of the valve is to control 

the air flow, which comes from the air compressor.  By using the solenoid valve, 

the compressed air used to operate the pneumatic actuator and the butterfly 

valve can be released and the butterfly valve can then spring back to its original 

position at high speed. The solenoid valve is designed to mount directly to the 

pneumatic actuator so they can operate together.  The solenoid valve has a flow 

coefficient of 1.4.  Similar to the pneumatic actuator, there are some limitations 

for operating the solenoid valve.  The operating temperature is between 20 and 

125 degrees F, while the operating pressure is between 5 and 115 psi.   

3.1.4.  Testing Sections  

 This section was previously designed to have a removable cross-sectional 

area chamber pipe larger than the driver pipe.  When the chamber pipe was 

used, the Hybrid III Dummy Head was constrained by four collars so that there 

would be no movement on the base of the dummy head.  The chamber pipe had 
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a length of 6 feet, an inner diameter of 15 inches and an outer diameter of 16 

inches. One end of the chamber pipe was welded to the flow widener, and the 

other end was open.  There was also a hole with a diameter of 8 inches midway 

through and at the bottom side of the pipe.  The purpose of the hole was to allow 

the dummy head to go through the hole and be placed inside the chamber. 

 When the testing chamber pipe was not attached to the stand, the 

movement/reaction of the dummy head could be determined when the dummy 

head was being hit by the pressure pulse and slides through the rail system. 

 The testing section had a length of 110 inches, and it had an estimated 

weight of 600 lbs, including the flanges used to bolt the pipes together.  To 

withstand the weight, another stand with similar design to the stands was made 

to hold the pressurized air storage pipe is made. 

3.1.5.  Data Acquisition  

 A data acquisition system was used to obtain useful data from any sensor 

so that the data could be transferred to a computer.  In this experiment, SCC-68 

made by the National Instruments was the input/output connector block used.  

Connected to the connector block by using wires, it helped connect the circuit 

board to the power supply, and to the load cell sensor.  The other side of the 

connector block was connected to the circuit and to a computer by using a 

specific cable and a card device.   

 To get the acceleration results, two accelerometers were used.  Both 

accelerometers were attached to a wood block, which was mounted to the load 

cell by using bolts and nuts.  The two accelerometers were used to measure the 
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accelerations of the dummy head in two different directions.  One was the 

direction of the head sliding through the rail, which was assumed to be x-

direction.  The other accelerometer measured the acceleration of the dummy 

head in its left/right direction, which assumed to be y-direction.   

3.2.  Dummy Head/Neck  

 The dummy head/neck used in the experiment was the Hybrid III 50th 

Percentile Male Crash Test Dummy Head/Neck, and it was made by 

Humanetics.  The dummy itself is model used popularly in many different types of 

crash tests and regulated by USA Code of Federal Regulations. 

 The skull and skull cap of the head model made of cast aluminum, while 

the removable skin of the head made of vinyl (type of plastic). The neck 

consisted of rubber and aluminum while there was a center cable inside the 

neck, so that the model was able to have an accurate reaction due to any sudden 

change of environment.  Figure 3-3 shows the side view of the dummy 

head/neck. 

 

Figure 3-3:  The actual Hybrid III 50th Percentile Male Crash Test Dummy 

Head/Neck. 
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3.3.  High Speed Camera/Computer/Motion Studio 

 Some of the experimental results were obtained by using the tracking 

function from a high speed camera and Motion Studio software, which installed 

into a computer.  When the test was performed, the frames were captured by the 

high speed camera and then transferred to the computer.  The Motion Studio 

software was able to analyze the work and useful data could then be obtained.  

The camera was set 140 inches away from the center point of the shock tube 

opening.  To use the tracking function of the high speed camera, a reference 

point was needed, and was selected to be the center of gravity point of the 

dummy head as shown in Figure 3-4. 

 

Figure 3-4:  The Hybrid III Dummy Head with the reference point from the 

camera view. 

Reference Point 
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 The Motion Studio software was to track the reference point while the 

dummy head was hit by the blast and sliding through the rails.  The test gave the 

values of displacement, velocity, and acceleration in both the x and y directions.   

3.4.  Experimental Procedure  

 With there being many subsections for this experiment, the entire 

procedure was somewhat complex.  Before turning on the air compressor, the 

hoses needed to be connected to the pipe, and the solenoid valve, and the air 

compressor needed to be tight.  The next step was to assure that the valve of the 

air tank and one of the valves at the tee (In this case, the solenoid valve) were 

open.  Finally, the air compressor needed to be turned on so it could start 

pumping air into the solenoid valve through the hose. 

 The maximum operating pressure was about 115 psi, and air was pumped 

into the solenoid valve until the air pressure reached a preferred pressure that 

was less than 115 psi.  As the air pressure was increased, the butterfly valve 

started turning, until it finally was at its closed position.   

 The next step was to close the opened valve and open the closed valve at 

the tee so that the air could start getting pumped into the compressed air storage 

section pipe.  The air pressure inside the storage pipe was increased to about 

100 psi, and could be checked by looking at the pressure gauge at the end of the 

pipe.  When the pressure got up to 100 psi, the air compressor could be turned 

off and all the preparations were complete.  The test was then ready to proceed. 

 With everything ready, the test began by pressing the red button on the 

solenoid valve.  Before running the test, the dummy head needed to be secured 
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correctly and ear plugs were needed as it was anticipated that the blast created 

by using the shock tube would be extremely loud.  By pressing the button, the air 

controlling the pneumatic actuator and the butterfly valve were released and the 

butterfly valve returned to its original opened position.  By the time the butterfly 

valve was opened, within less than a second, the compressed air inside the 

driver pipe flowed through the valve and the air flowed into the chamber pipe.  

Part of the air hit the dummy head, some air circulated inside the chamber pipe, 

and the rest exited at the open end of the chamber pipe. 
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CHAPTER 4. EXPERIMENTAL RESULTS AND 

DISCUSSIONS 

 There was a total of 27 tests performed and used for this research. The 

first parameter to be considered was the bending movement of the dummy 

head/neck that led to a change of the expected results.  When the head/neck 

bending backward, the change of the velocity was supposed to be slightly 

increased so that the slope of the velocity curve was a little steeper than when 

the head/neck was not bent.  After the bending of the head/neck, it then bounced 

back to the original position, which caused the dropping of the velocity or the 

dropping of the change of the velocity.  After the short period of time of bending 

of the head/neck, the velocity curve starts going back up once again until the 

friction of the rail is slowed down the movement of the head/neck.  Figure 4-1 

shows the difference of velocity between different pressure pulses over a period 

of time, while the reference point of the head/neck is set five inches away from 

the shock tube opening.  The velocity would be most affected when a higher 

pressure pulse is used for testing. The higher the pressure pulse, the larger the 

angle of the neck would be bent, plus the curve for lower pressure pulse would 

be smoother than the curves for higher pressure pulses. 
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Figure 4-1:  The velocity plot with different pressure pulses being used over time. 

  The second parameter was the rippling of the rubber face.  As the 

rubber face rippled when the blast hit, the results were affected when the tracking 

function of the high speed camera was used.  Such results would not be affected 

if accelerometers were used.  The third parameter was the friction caused 

between the rail and the sliding plate and how it varied the results. As the rail had 

a specific friction coefficient, the testing could not be assumed to be in a free 

space environment.  The friction coefficient is calculated to be about 0.03 after 

the use of a force gauge. 
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Figure 4-2:  Rippling of the rubber face during testing at different time. 

4.1.  Tracking Results 

 The following plots (Figure 4-3) show the difference on linear acceleration 

when different pressure pulses are used. The results are based on the data 

obtained by using the high speed camera, with a unit of g that represented the 

gravitational acceleration.   
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Figure 4-3:  Acceleration over time plot with three different pressure pulses when 

the reference point on the dummy head is 5 inches away from the shock tube 

opening. 

 Figure 4-3 shows that the acceleration with a 100 psi pressure pulse had a 

much higher magnitude than the other two curves, which were based on 50 psi 

and 75 psi pressure pulses being used for testing.  When the acceleration curve 

for the 100 psi pressure taken away, there was not much change in acceleration 

between the two cases as shown Figure 4-5. 
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Figure 4-4:  Acceleration over time plot with only 50 and 75 psi pressure pulses. 

 The time plot shows that even without the acceleration curve of the 100 

psi pressure pulse, the maximum acceleration based on the 75 psi pressure 

pulse was about three times larger than the maximum acceleration based on the 

50 psi pressure pulse tests. 

 Other than finding the difference in the velocity and the acceleration based 

on different pressure pulses, more testing was done as the head/neck’s 

placement varied.  Figure 4-5 shows the effect of the placement of the head/neck 

on the velocity. 
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Figure 4-5:  Velocity curves over time based on different placements of the head 

while 50 psi pressure pulse was used. 

 The plot above shows the difference between three placements of the 

head/neck away from the shock tube opening, and the results shown in the plot 

are based on 50 psi pressure blasts.  As expected, the closer the head/neck to 

the shock tube opening, the higher velocity values.  In addition, as the shock 

wave was not strong enough, the effect caused by the bending movement of the 

head/neck was not as much.  Figure 4-6 is the plot for the velocity curves over 

time when the pressure pulse was set to be 75 psi. 
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Figure 4-6:  Velocity curves based on different placements of the dummy head 

over time when pressure pulse was set to be 75 psi. 

 The curves show the instability of the velocity caused by the bending of 

the head/neck, the rippling of the rubber face, and the friction of the rail that was 

mentioned earlier. The plot also shows that no matter how the results were 

affected, the trend was showing that the closer the head/neck to the shock tube 

opening, the higher the overall velocity. 

 Figure 4-7 shows the velocity curves over time when the pressure pulse 

was set to be 100 psi.  In this case, the results also show the instability of the 

velocity caused by the same factors, but that there was no significant difference 

between the three scenarios.  Overall, the two curves representing the head/neck 

being placed 5 and 7.5 inches away from the shock tube opening were almost 

the same, while the result for the curve that was set at 10 inches was a little 

smaller than the other two curves. 
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 Note that the higher the pressure pulse, the shorter the time period.  This 

was due to the speed that the head/neck slid through the rail. The camera did not 

move horizontally, nor did it keep on tracking on the reference point on the 

rubber face. 

 

Figure 4-7:  Velocity curves based on different placements of the dummy head 

over time with 100 psi pressure pulse being used. 

 For the plot in Figure 4-7, the maximum velocity obtained might not be the 

real maximum velocity, because the data gathered was based on that one 

reference point.  This reference point was supposed to be the center of gravity 

point, in the frames captured by the high speed camera, while not all the motion 

of the head/neck was being captured.   

 If full motion of the head/neck was needed for the analysis, the high speed 
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through the rail could be taken with a new set of distance calibration.  The 

problem that the camera could not be moved any further as the tripod mounted to 

the camera was already placed against the wall. 

The plots in Figure 4.8 show the acceleration reaction over time with 

different placements of the head/neck.  The results shown are based on 50 psi 

pressure pulses. 

 

Figure 4-8:  Moving average trend lines with 4 periods for acceleration curves 

over time when 50 psi pressure pulse while the head is placed at 3 different 

locations (reference point is 5, 7.5, 10 inches away from the shock tube opening). 

 In the plot above, there are two periods of time that have larger 
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between velocity and time. The closer the head/neck was to the shock tube 

opening, the higher the maximum acceleration. 

 As the maximum acceleration should have occurred when the shock blast 

hit the dummy head/neck, the acceleration at the beginning of the testing should 

be taken into account for data analyzing, while the second half of the curves 

could be neglected as the results there were supposed to be minimal. The plot in 

Figure 4-9 is due to the unwanted vibrations and the second wave of blast hitting 

the head. 

 The following plots (Figures 4-9 & 4-10) show the difference between 

different placements of the head/neck after the second half of the curves got cut 

off, while 75 psi and 100 psi pressure pulses were used for testing. 

 

Figure 4-9:  Acceleration curves based on different placements of the dummy 

head with 75 psi pressure pulse being used. 
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 Looked smoother and neater than in Figure 4-8, although the curves were 

not based on the average of the three tests on each placement, the curves show 

that the further the head/neck to the shock tube opening, the lower the maximum 

acceleration. 

 

Figure 4-10:  Acceleration curves based on different placements of the dummy 

head when 100 psi pressure pulse is used. 
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this case the air and the friction between the rails and the ball bearings bolted to 

the sliding plate and the head stand. The maximum velocities for different 

pressure pulses and distances are listed in Table 4-1. 

 5 inches 7.5 inches 10 inches 

50 psi 2.839 ft/s 2.667 ft/s 2.397 ft/s 

75 psi 6.504 ft/s 5.834 ft/s 5.535 ft/s 

100 psi 12.744 ft/s 11.834 ft/s 10.890 ft/s 

Table 4-1:  Maximum velocities of the dummy head based on three tests on each 

scenario. 

It is shown here that the closer the head/neck to the shock tube opening, 

the higher the maximum velocity.  Although when the pressure pulse was set to 

be higher, even the placement of the head/neck was placed further, and the 

maximum velocity was still higher than the one with a lower pressure pulse and 

shorter distance between the head/neck and the shock tube opening.  Table 4-1 

shows that the higher the pressure pulse was set for the testing, the greater the 

difference on the maximum velocity between different placements of the 

head/neck and the difference between the 5 and 10 inches cases. 

 Other than finding the maximum velocities of the dummy head, the 

maximum accelerations on different cases could be found by using Excel.   Table 

4-2 shows the maximum accelerations obtained by using tracking. 
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 5 inches 7.5 inches 10 inches 

50 psi 3.296 g 2.668 g 2.529 g 

75 psi 23.240 g 18.083 g 16.356 g 

100 psi 72.820 g 58.852 g 42.324 g 

Table 4-2:  Maximum accelerations of the dummy head based on three tests on 

each scenario. 

The results are in the unit of g, which is supposed to be gravitational 

acceleration, while 1 g is the same as 9.80665
$
	�.  Similar to the results of the 

maximum velocities, the higher the pressure pulse, the higher maximum 

acceleration, plus the further the head was placed, the lower the maximum 

acceleration.   

Other than finding the relationship between the pressure pulse and the 

maximum velocity or maximum acceleration, the relationship between the 

standoff distance and the maximum velocity or maximum acceleration was also 

found.  This is shown in Figure 4-11 using the data from Table 4-1 and Table 4-2. 

Figure 4-11 shows that the maximum velocity in all cases dropped when 

the standoff distance increased as mentioned earlier.  When the pressure pulse 

was increased proportionally, the maximum velocity seemed to increase 

exponentially.  Figure 4-11 also shows that the higher the pressure pulse, the 

drop of the maximum velocity was faster when the standoff distance was further.  

A similar situation happened to the relationship between the maximum 

acceleration and the standoff distance, which is shown in Figure 4-12. 
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Figure 4-11:  Maximum velocity of the dummy head based on different standoff 

distance (placement). 

 

Figure 4-12:  Maximum acceleration of the dummy head based on different 

standoff distance. 
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4.2.  Accelerometers Results 

 To get the results from using the accelerometers, an additional person 

was needed for assistance.  One person operated the butterfly valve and the 

Motion Studio software on a computer while the other person communicated and 

cooperated so he/she would be able to receive data from the accelerometers by 

using LabVIEW on another computer.  The following plot in Figure 4-13 is the 

result obtained from one of 27 experiments performed. 

 

Figure 4-13:  Moving average trend lines with 200 periods for accelerations 

curves with 50 psi pressure pulse is used when the reference point on the 

dummy head is 5 inches away from the shock tube opening. 
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constant for about 0.2 seconds then began to increase again. The curves finally 

went back down to about 0 g within time duration of 1.5 seconds. The curves 

also showed a lot of ups and downs (instability) especially after reaching the 

maximum accelerations. That was due to the vibrations/movements of the 

dummy head, or the friction between the bearings and the rails.  The plot in 

Figure 4-14 shows that the acceleration in the x-direction was usually higher than 

the one in the y-direction, as the dummy head was hit in the x-direction.  Note 

that y1 is the acceleration curve representing an unfiltered result while y2 is the 

filtered result for the acceleration in the y-direction. 

 

Figure 4-14:  Acceleration curves with 50 psi pressure pulse used while the 

dummy head was set 10 inches away from the shock tube opening. 
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 Figure 4-14 shows the acceleration curves a bit different than the one 

shown earlier. Similar to the previous plot (Figure 4-13), the acceleration curves 

on this plot also jumped at the beginning of the test and a constant acceleration 

phase. Once again the curve started dropping down to about 0 g 0.6 seconds 

after the release of the compressed air.   As mentioned earlier, there was a total 

of 27 performances conducted for this paper and after receiving all of the data by 

using accelerometers and some modifications on the data, the maximum 

accelerations in x-direction and y-direction were found, and they are all listed in 

Table 4-3 and 4-4 with the results in the unit of g. 

 5 inches 7.5 inches 10 inches 

50 psi 48.39 32.06 38.28 

75 psi 50.89 25.72 19.07 

100 psi 59.14 32.34 37.34 

Table 4-3:  Average maximum acceleration of the dummy head in x-direction. 

 5 inches 7.5 inches 10 inches 

50 psi 58.46 21.67 30.44 

75 psi 48.22 17.26 14.49 

100 psi 145.88 48.69 21.42 

Table 4-4:  Average maximum acceleration of the dummy head in y-direction 

(filtered). 

 The tables show a trend that when the placement of the dummy head was 

set to be the same, the testing pressure pulse and the acceleration increased.  

When the testing pressure pulse was set to be the same, the further the dummy 
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head was placed away from the shock tube opening and the lower the 

acceleration. There were some exceptions in some cases, which were due to 

some errors in the setup or the instability/accuracy of the devices. 

 After getting all the maximum values of maximum acceleration, they were 

used to plot the maximum acceleration based on different standoff distances.  

Figures 4-15 and 4-16 show the relationship between standoff distance and 

maximum acceleration in both x-direction and y-direction by using 

accelerometers. 

 

Figure 4-15:  Maximum acceleration of the dummy head based on standoff 

distance in x-direction. 
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Figure 4-16:  Maximum acceleration of the dummy head based on standoff 

distance in y-direction. 

 The plot from Figure 4-15 shows that the three curves do not have much 

difference with the exception of the two curves representing the 50 and 100 psi 

cases.  Those two curves dropped down first, and then went back up a little, 

which was different than what was expected and what was found by using the 

tracking of the Motion Studio software and FEA simulation. 

 Figure 4-16 shows the acceleration results of maximum acceleration in y-

direction.  The curves show the dropping of maximum acceleration when the 

standoff distance increased, but there is an error in that the 75 psi curve was 

always lower than the 50 psi curve. This may be due to the inaccuracy of the 

device, the reading of the LabVIEW software or some other unknown factors.   
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CHAPTER 5. FINITE ELEMENT ANALYSIS OF THE 

SHOCK TUBE FLOW 

 This chapter is to describe the procedures for the FEA including the 

descriptions, assumptions, and boundary conditions of the model that is being 

used.  Then results from this specific analysis are also shown. 

5.1.  LS-DYNA FE Software  

 LS-DYNA is used to simulate the motion/reaction of the Hybrid III dummy 

head under shock wave of blast. LS-DYNA is mostly used for transient dynamic 

FEA on more complex or real life problems, especially in the automobile and the 

aerospace industries.  This software helps in finding a wide variety of results 

depending on what is wanted, such as the animation of the pressure, velocity 

distributions of the result, pressure, velocity, acceleration, displacement, or 

energy plots over a period of time on either a single node or a single element. 

5.1.1.  Preliminary Shock Tube Model  

 The model is made by using modeling software HyperMesh of the Atlair 

Engineering Company. In HyperMesh, the geometries and meshing of the model 

are done before being exported to LS-PrePost, where conditions would be done 

at.  Figure 5-1 shows what the model looks like. 

 



56 

 

 

Figure 5-1:  Preliminary shock tube model in LS-DYNA. 

 The model has a total of four parts, which include the air inside the driver 

section pipe, which has a color of light blue; the air with ambient condition, which 

has a red color; the butterfly valve, which has a green color, and the head model 

which is a yellow color. The center point of the head was set at 5, 7.5, and 10 

inches away from the shock tube opening. 

5.1.2.  Condition Setups  

 There were a few conditions applied to the model. First of all, different 

energies were applied to both air parts of the model, representing the 100 psi 

and 14.7 psi pressures for the two air domains.  A rigid body assumption was 

then applied to the valve while the valve was constrained in all directions except 

for the y-direction, so that the valve would turn along the y-axis, as shown as 

Figure 5-2.  The ‘Lagrange In Solid’ constrain was selected for the head model 

as the head was in the air domain. Finally, all the outer surfaces were 
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constrained as it was assumed that they were in the inner surfaces of the shock 

tube, meaning that there would be no placement, velocity, nor acceleration 

changes. 

 

Figure 5-2:  a) Initial stage of the model, b) valve is turned 90 degrees. 

5.1.3.  Numerical Results on the Preliminary Model  

 After the simulation was complete, the results from the simulation could be 

shown.  Figure 5-3 shows the velocity curves for the results obtained by the 

simulations. 

 

Figure 5-3:  Flow velocity with 100 psi pressure pulse. 

-5

0

5

10

15

20

25

0 20 40 60 80 100 120

V
e

lo
ci

ty
 (

ft
/s

)

Time (ms)

5 inches

7.5 inches

10 inches



58 

 

 The plot in Figure 5-3 shows that when the head model was placed 5 

inches away from the shock tube opening, the velocity of the head model began 

to increase at roughly 20 ms after the release of the compressed air. The 

maximum velocity of the head eventually increased to 19.2 ft/s. The other two 

curves, representing the cases when the head model was placed 7.5 and 10 

inches away from the shock tube opening, were relatively small compared to the 

5 inch curve.  Although the plot shows that when the head model was placed 

closer to the shock tube opening, the higher the maximum velocity that it would 

get. 

 Figure 5-4 is a plot showing the acceleration curves representing three 

different areas on the surface of the head model when it was placed 5 inches 

away from the shock tube opening and the three areas included the front, side, 

and back of the head model. 

 

Figure 5-4:  Acceleration of the head model when it was placed 5 inches away 

from the shock tube opening while 100 psi pressure pulse was used. 

-800

-600

-400

-200

0

200

400

600

800

1000

0 20 40 60 80 100 120

A
cc

e
le

ra
ti

o
n

 (
g

)

Time (ms)

Front

Side

Back



59 

 

 The plot shows that the frontal area of the head model had the highest 

magnitude of acceleration (higher than the side and back of the head), while the 

maximum acceleration on the frontal area topped at 818 g. The maximum values 

are listed in Table 5-1. 

 Front Side Back 

5 inches 818.08 g 137.71 g 180.56 g 

7.5 inches 1.80 g 2.43 g 1.61 g 

10 inches 5.78 g 1.44 g 0.89 g 

Table 5-1:  Maximum accelerations on different spots of the head model. 

 As shown, the values obtained from the 5 inches case were much larger 

than those from the 7.5 and 10 inches cases. Such big differences could be due 

to many factors, such as the energy loss due to the distance between the center 

point of the head model and the shock tube opening, and the use of the valve 

model while it took about 0.5 second to finish the 90 degree turn.  To verify the 

use of the valve, a research with experimental results by Varas et al was used. 

5.1.4.  Validation of existing model using FEM 

 In a research paper by Varas et al. published in 2011, a square tubing 

shock tube (Figure 5-5) was used. 

 

Figure 5-5:  Shock Tube by J. M. Varas et al. 



60 

 

 The two main differences between Varas’ shock tube and the shock tube 

used for this research were: 1) Varas’ shock tube had a square type cross-

sectional area instead of a circular type of cross-sectional area, and 2) instead of 

a butterfly valve operating with a pneumatic actuator, a membrane was being 

used. 

5.1.5.  Validation Results  

 Varas’ shock tube had a peak operating pressure of 70 kPa, which was 

used for the FEA simulation.  Figure 5-6 shows the results from Varas’ 

experiment and the numerical results obtained from LS-DYNA. 

 

Figure 5-6:  Experimental results from Varas' shock tube (2011). 

 As shown, most of the curves first had a jump on pressure.  The pressure 

then decreased to about zero shortly after the jump, and the jump reached a 
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maximum pressure of about 34000 Pa.  The plot in Figure 5-7 shows that the 

positive phase of pressure had a duration time of about 7 ms. 

 

Figure 5-7:  Pressure plot based on different areas of the head model. 

 As shown in Figure 5-7, all of the pressure curves jumped up at about 20 

ms, and had a positive phase duration of between 20 and 40 ms. For the curve of 

frontal area of the head model, the pressure jumped up and topped at about 38 

kPa.  The pressure on the side area of the head model topped at about 32 kPa.  

Both were very close to the experimental results obtained by Varas. The main 

difference was the positive phase time duration. Such a difference would be due 

to many factors, such as the accuracy of the FE model, the geometry of the 

whole shock tube, and the model (synbone and gelatin were used for the 

experimental work and steel was used for the FE model) of the ball. 
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5.1.6.  Modified Model for the Blast Shock Tube  

The new model was similar to the previous one used, but the valve was 

removed. The previous model involved the placement change (5, 7.5, and 10 

inches) with one pressure (100 psi), and the new model involved one placement 

(5 inches) with different pressure pulse sets (50, 75, and 100 psi).  Figure 5-8 

shows the meshed model with only three separate parts for the simulation. 

 

Figure 5-8:  Modified shock tube model for simulation. 

5.1.7.  Results on the New Model 

After some changes on boundary conditions, the problem could be solved. 

Figure 5-9 is the velocity plot for this new shock tube model. 
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Figure 5-9:  Velocity distribution of the head model based on different pressure 

pulses (50, 75, and 100 psi) when the middle point of the head was 5 inches 

away from the shock tube opening. 

 As expected, the 100 psi curve had the highest values among all three 

cases, then 75 psi had the next highest, and finally the 50 psi curve had the 

lowest values. This indicates that the higher the pressure pulse, the greater the 

movement of the head model, or any test object used for the blast. The maximum 

velocities are listed in Table 5-2. 

 Maximum Velocity 

50 psi 18.92 ft/s 

75 psi 26.51 ft/s 

100 psi 32.74 ft/s 

Table 5-2:  Maximum velocities from the modified shock tube model and head. 
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 Other than the velocity plot, the acceleration plot could also be found by 

using the software, and Figure 5-10 is an acceleration plot for a specific case. 

 

Figure 5-10:  Acceleration plot with 50 psi pressure pulse with 5 inches head 

placement. 

 The results were similar to the results from when the valve was involved 

as the frontal area of the head model had the highest magnitude of acceleration 

rather than the side and back of the head model.  The maximum accelerations 

for the three different cases are listed in Table 5-3. 

 Front Side Back 

50 psi 525.59 g 86.16 g 114.53 g 

75 psi 1181.13 g 115.11 g 196.43 g 

100 psi 2541.28 g 137.78 g 234.37 g 

Table 5-3:  Maximum velocities due to different pressure pulses on various spots 

of the head model. 
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 The acceleration on the frontal area of the head model had a significant 

increase from the case of 50 psi to the case of 100 psi, which had a difference of 

about 2000 g.  The differences on the side and back of the head model were 

relatively small compared to the result for the frontal area case, meaning that the 

acceleration on the frontal area of the head was affected the most when the 

pressure pulse was changed.  Such affect is plotted in Figure 5-11. 

 

Figure 5-11:  Acceleration based on pressure pulses on different spots of the 

head. 

 Other than the velocity and acceleration plots, pressure plots were also 
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Figure 5-12:  Pressure plot with 50 psi pressure pulse on different places of the 

head model. 

 

Figure 5-13:  Pressure on front area of the head with different pressure pulses. 
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curves were varied from the acceleration curves.  The pressure curves would 

jump up and then back down, forming the positive phase of pressure mentioned 

earlier. 

 Figure 5-13 shows that the higher the pressure pulse, the higher the 

maximum pressure value.  Due to the higher pressure pulse, the blast would get 

to the head model sooner than in the other cases.  The 100 psi curve started to 

react sooner than the 50 and 75 psi curves.  The following shows the maximum 

values on such cases. 

 

 Front Side Back 

50 psi 27.43 ksi 0.55 ksi 2.99 ksi 

75 psi 45.17 ksi 0.86 ksi 3.41 ksi 

100 psi 60.24 ksi 1.18 ksi 3.77 ksi 

Table 5-4:  Maximum pressure based on different pressure pulses on different 

spots of the head model. 

 Once again, the maximum values on the frontal area of the head model 

had some significant differences from the values from the side and back cases. 

This means that the front of the head experienced the most pressure (which was 

assumed to be coming from the direction of where the head model is facing) 

when hit by the blast. 

 The maximum pressure values were used to plot Figure 5-14, are almost 

identical to the one showing the maximum values of acceleration in Figure 5-14. 
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This means that the front surface of the head was affected the most by the 

change of the pressure pulse. 

 

Figure 5-14:  Maximum pressure on different spots of the dummy head based on 

different pressure pulses being used. 
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and problem solving were completed using this model.  Figure 5-15 shows what 

the model looks like. 

 

Figure 5-15:  Shock tube model used for CFX simulation. 

 The model was split into two domains which were representing the 

compressed air inside the driver section pipe and the ambient condition air inside 

the previously designed chamber pipe. This meant that the domains were 

separated by the butterfly valve. The head/neck was assumed to be rigid and 

midway through the chamber pipe. Due to the complication of modeling the 

Hybrid III dummy head, a simpler model with a combination of a sphere and a 

cylinder was used for the simulation.  That combination of a sphere and cylinder 

was to be taken out from the chamber domain as mentioned earlier, as the 

head/neck was assumed to be a rigid body part. The model was also cut in half 

because the reaction of the air flow at the center point through the pipe could be 

better shown visually. 
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5.2.2.  Boundary Conditions for the Air Flow Model  

 There were a few conditions applied to the model.  First would be the 

pressures applied to the two domains of the model. The domain representing the 

air inside the driver section pipe had an initial pressure of 100 psi, while the other 

domain representing the normal condition air was set to have an initial pressure 

of 14.7 psi (the air pressure based on ambient condition). Figure 5-16 shows the 

model along with the conditions applied. 

 

Figure 5-16:  Shock tube model along with conditions applied. 

 Other than the air pressures, the conditions on the outer surfaces were 

also needed. The most important condition would be the plane that went through 

the entire model. As the model was being cut in two halves; the symmetric 

boundary condition was applied to that surface. Next would be the wall conditions 

for those surfaces that were not supposed to have any movement.  Those walls 

included the closed-end surface (far left in Figure 5-16) and the side surface of 
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the driver section pipe, the side surface of the chamber pipe, and the surfaces 

involving the head/neck geometry. 

 The other end of the chamber air, the side away from the closed-end of 

the driver section air had an opening boundary condition (far right in Figure 5-16), 

as that would allow the pressure blast to leave when it got to the end of the air 

domain instead of bouncing back inside the chamber.  As the wall was supposed 

to be a steel surface, a sand grain roughness of 0.0018 inches was assumed into 

the simulation setup. Other than that, the interface between the two domains was 

set to have the default condition.  The termination time was to be 20 ms. Finally, 

the last condition that needed to be applied was the initial condition. In this case, 

the two air domains were to be set to have initial velocities of zeroes in all three 

directions because before the air started to move through the shock tube, the air 

inside the driver section pipe and the chamber pipe were supposed to be stable. 

5.2.3.  Pressure Distribution inside the Shock Tube  

 After all the geometry modeling, meshing and conditions applying were 

complete, the simulation could begin. The transient type simulation usually took a 

lot longer than running a regular static analysis simulation.  That may have been 

due to the calculation on every single element of the model over a period of time 

with a specific time step. The plots in Figure 5-17 show the pressure distribution 

of the air inside the chamber pipe. 
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Figure 5-17:  Pressure distributions at t = a) 0, b) 3, c) 6, d) 9, e) 12, f) 15, g) 18, 

h) 20 ms. 

 At the initial stage (Figure 5-17a), air inside the chamber pipe (dark blue in 

Figure 5-17a) was stable because an initial pressure of 14.7 psi was applied. 

When the time reached 3 ms (Figure 5-17b), the shock wave of blast got into the 

chamber pipe (yellow and lime in Figure 5-17b). There is a dark blue section right 

where the cross-sectional area is increased because when the air was pushed 

faster than the speed of sound, a space of vacuum occurred and that created the 

negative phase of the blast. 

 Figures 5-17c) and 5-17d) show that the blast got past the head/neck and 

the blast reached the open-end of the chamber pipe. At the other end, it is red 

because the high pressure was still coming out from the driver section pipe, but 

the maximum pressure at the red section dropped from the initial pressure of 100 

psi to 39.66 psi. 

 The next stage shows the negative pressure was still at the flow expander, 

with a pressure of 1.519 psi while the initial pressure was set to be 14.7 psi. One 

difference from the previous figures occurred in the front of the head where high 
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pressure was created with a pressure of 39.22 psi, as the high speed flow was 

being slowed down by the head. 

 The next three plots (Figures 5-17 e f g) are extremely similar in that the 

maximum pressure occurred where the compressed air was being released or in 

front of the head. The minimum pressure section was moved from the flow 

expander to somewhere behind the head, and it was getting lower over time. In 

Figure 5-17e, the minimum pressure dropped to -0.989 psi, and in Figure 5-17g, 

it kept going down to -2.294 psi.  Other than the pressure distribution animation, 

pressure or velocity at any point in the system can also be shown.  The following 

plots (Figure 5-18) show the velocity and pressure curves at a few specific points 

in the system so different reactions can be seen. 

 

Figure 5-18:  Pressure vs. Time plot at 5 different spots in the system. 

 The first point selected for the plot was one foot away from the butterfly 

valve at the center point of the circular flow.  As shown, the pressure increased to 
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roughly 47 psi from 14.7 psi in 1.1 ms, due to the rapid air flow going through the 

point.  Then the pressure decreased slowly as the compressed air coming out 

from the driver section pipe was getting less pressure, it decreased to 29.43 psi 

at t=20ms, but, in time, will likely return to ambient pressure. 

 The second point selected was 2.5 feet away from the butterfly valve. The 

curve shows that there was a pressure jump at about t=2.5 ms. The pressure 

then dropped below 14.7 psi, meaning that the negative pressure was created 

due to the high speed of air flow. 

 The other three points selected were at the front of the head, behind the 

head, and at the end of the flow expander.  In the case of in front of the head, the 

pressure simply increased when the blast reached the front of the head. The 

pressure then decreased some but increased again as the second wave of blast 

approached. 

Figure 5-19 shows the velocity plot at different points in the system over a 

time period of 20 ms, which is the same as the ones selected for the previous 

plot. The first one was one foot away from the butterfly valve and the curve 

shows a jump of velocity at about 1 ms and then it went up slowly. The curve 

went up slowly because the point was so close to the valve, keeping the air flow 

stable enough to have such distribution. The point that was 2.5 feet away from 

the valve had a velocity distribution that is shown as the red curve. It first went up 

due to the blast, and then the curve continued to go up rapidly until it got to about 

1200 ft/s and then the velocity remained at that range 5 ms after the blast began. 

The second increase of velocity on the second point was supposed to be due to 
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the Prandtl-Meyer expansion fan process, meaning that when the air flow was 

having a speed over the speed of sound and reaching to an increase of the 

cross-sectional area of the testing pipe, the velocity of the air flow would 

increase. 

 

Figure 5-19:  Velocity vs. time plot at five different spots in the system. 

  The velocity curves for the other three points were relatively small 

compared to the other two points mentioned earlier. This was due to the flow 

hitting on the head and the flow being limited by the oblique shock.  The air flow 

in the chamber pipe had a maximum velocity of roughly 1900 ft/s (about Mach 

1.7) at where the cross-sectional area started getting larger. This was also due to 

the Prandtl-Meyer expansion fan process. 
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CHAPTER 6. CONCLUSIONS 

 In this thesis, experimental and numerical approaches were used to 

determine the linear velocity, acceleration, and pressure of the Hybrid III dummy 

head when it is hit by shock waves from a blast. For the experimental approach, 

a blast shock tube was built for the laboratory settings. For the numerical 

approach, a simple elastic FE head/neck model was used for the dynamic 

simulation. The relationships between the pressure pulse and the linear 

acceleration/velocity and the standoff distance were found. 

The following are some conclusions made based on the results obtained 

from the experiments: 

1. When the operating pressure pulse is increased proportionally, the 

maximum velocity and acceleration of the head/neck increase 

exponentially when sliding through the rails. 

2. As the operating pressure pulse is set to be higher, the instability on the 

velocity curves increases. When 50 psi pressure pulse is used, the 

velocity curve is more linear than the ones for the 50 and100 psi pressure 

pulses; and that would be due to the bending movement of the head/neck, 

rippling of the rubber face, and the friction caused by the rails. 

3. When the dummy head is placed at a specific standoff distance, it shows 

that when the operating pressure pulse gets higher, the difference 

between the maximum velocity values gets larger.   
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4. Similar to the results for the maximum velocities, it shows that when the 

operating pressure pulse gets higher, the difference between the 

maximum acceleration values also gets larger. 

5. From the results obtained by using accelerometers, it is shown that the 

accelerations would go down when lowering the setup pressure pulse, or 

when placing the dummy head further away from the shock tube opening, 

but with some unexpected results at the same time. The unexpected 

results could be due to the inaccuracy of accelerometers setup, the 

inaccuracy of the accelerometers readings, the instability of the air flow, 

noise, or the vibrations of the dummy head caused by the blast. 

In another part of the research, a simple elastic model was used for FEA 

focusing on the air flow and the dummy head. This is mainly based on the 

reactions of the head/neck model. 

1. When the FE model has a valve involved, it shows that when the 

head/neck model is placed 5 inches away from the shock tube opening, 

the velocity of the head/neck is much higher than the ones when the head 

model is placed 7.5 and 10 inches away from the shock tube opening.  

That would be due to the instability of the flow caused by the turning valve. 

2. As the model including the valve had some unexpected results, a few 

more simulations were done with the same model, but with the valve part 

removed.  In this case, the results are showed two facts: 1) when the head 

is set to be at the same placement for all the simulations, the higher the 

pressure pulse is set, the higher the velocity, acceleration, and pressure is 
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on the head model, and 2) the frontal area of the head model is always 

having the highest pressure among the three different spots of the head 

model including the frontal, side, and back surfaces of the head model. 

The last part of the research is also involved the FEA, but it is 

concentrated on the air flow inside the pre-designed testing chamber instead of 

on the velocity and acceleration of the Hybrid III dummy head. 

The following are some conclusions made based on the results obtained from the 

analyses: 

1. Two different pressures were applied to the two air domains in the model. 

One had a pressure of 100 psi while the other has a pressure of 14.7 psi.  

Although there was only an interface separating the two domains, the 

maximum pressure of the air inside the chamber pipe increased instantly 

to roughly 56.5 psi. 

2. Within the 20 ms time period of simulation, the value of maximum 

pressure dropped slowly, and the place of the maximum pressure kept 

changing between the butterfly valve and the front of the head. 

3. The maximum velocity of the air flow occurred at the flow expander, as the 

direction of the air flow became more unidirectional before the air went to 

the flow expander section.  The air flow in the same section had a higher 

velocity than the other sections of the chamber pipe as well.  This was due 

to the Prandtl-Meyer expansion fan process.  Assuming the speed of 

sound is 1126 ft/s, the maximum velocity of the flow there was found to be 
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roughly 1622 ft/s, which turned out to have a Mach number of 1.44, 

meaning that the air flow reached the level of supersonic. 

4. Negative pressure (lower than 14.7 psi) happened at two spots when the 

compressed air flowed through the chamber. One was at the beginning of 

the flow expander and the other was at the backside of the head. The 

negative pressure happened because of the high speed of the air flow but 

it does not last for long. 
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CHAPTER 7. RECOMMENDATIONS FOR FUTURE 

STUDIES 

The following are some recommendations for the research in the future: 

1. The chamber pipe was extremely heavy and it would be more convenient 

if it had been lighter.  The unused chamber pipe, along with the flow 

expander weighed a few hundred pounds, and it was, therefore, very 

difficult to move; it was also connected to a stand had to be moved up and 

down.  It would be possible to find a six feet long acrylic chamber pipe with 

a thickness of half an inch. Once the transparent chamber pipe was used 

for the experimental setup, the reaction of the Hybrid III dummy head 

could be captured by a high speed camera which would be easier and 

safer. 

2. There was an extremely small leakage of pressure coming out from the 

butterfly valve. Results would be more accurate if the leakage problem 

was repaired. The shock tube designed for this research used a 

pneumatic actuator along with a solenoid and a butterfly valve. The minor 

loss of pressure from the butterfly valve may have affected the 

experimental results and the results could perhaps be improved if the 

butterfly valve was replaced by using a diaphragm. 

3. More components such as more pressure sensors or flow velocity 

transducers at different spots inside the chamber pipe could be added to 
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the laboratory settings. This would help with understanding the pressure 

and velocity distributions of the air flow for the specific shock tube. 

4. There may have been more errors due to the size and turning time (it took 

about 0.5 seconds when no compressed air was inside the driver section 

pipe) of the butterfly valve, as it may have caused a significant loss of 

pressure.  The design of the shock tube may need to be changed to use a 

membrane instead of the butterfly valve. 

5. For the FEA part of the research, a more accurate model is needed. The 

FE model of the Hybrid III dummy head includes the rubber and metal part 

of the head and neck, meaning that the head/neck model would have 

different mechanical properties. Having a ballistic helmet model would 

help in understanding the usage/effect of a ballistic helmet and could be 

beneficial in understanding the entire blast model. 
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