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ABSTRACT 

The increase in demand for corn ethanol has caused an increase in 

distiller’s dried grains with solubles (DDGS), which is a byproduct of 

ethanol production. DDGS is a cheap byproduct and is primarily used for 

livestock feed filler. DDGS contains oils and proteins from corn and in this 

research we showed that corn oil and proteins could be extracted with 

ethanol. Zein protein is the main protein in DDGS and has been shown to have 

good adhesive properties. This protein was used as a binder in biocomposites 

with the DDGS after extractions and soy protein isolate (SPI). Mechanical 

properties and water resistance of the composites were studied. A wood 

adhesive was also prepared using the zein and cellulose nano-fibrils (CNF) as 

the adhesive reinforcement. Rheological tests were performed to study the 

flow property of the adhesive. This research demonstrated the potential of 

DDGS to be used as a raw material for multiple value-added industrial uses.
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CHAPTER 1. INTRODUCTION 

With the emergence of ethanol as an alternative fuel, the amount of 

Distiller’s Dried Grains with Solubles (DDGS) has gone up from 26 million 

tons in 2007-08 to 39 million tons in the 2009-10 year and a total of 43 

million tons produced in 2010-11 as presented by Wisner.1 This increase has 

resulted in a surplus of a cheap byproduct with a price reported around 

$210/ton or $.11/lb by McFarland.2 DDGS is currently most often used as filler 

in livestock feed and contains protein (24-27%), carbohydrates (39-62%), oils 

(3.5-13%), and ash (2-10%) as reported by Li and Sun.3 Some of these 

constituents, if extracted, such as corn oil and zein protein, could add 

value to DDGS that would help make ethanol plants more profitable.  

1.1. DDGS Oil Extraction 

According to Shukla and Cheryan4 zein makes up 35 to 60 percent of the 

protein in corn and the majority of zein is found in the endosperm region of 

the kernel. Corn oil is typically extracted from corn byproducts, such as 

corn gluten meal (CGM) and corn gluten feed (CGF), which are made from the 

wet milling process which also produces starch and corn oil. 

Singh and Cheryan5 extracted oil from DDGS using absolute ethanol. They 

held time and temperature constant but varied the ethanol to DDGS ratio from 

2 to 10 ml/g. The results show that after a ratio of six, the amount of oil 

extracted becomes insignificant. During these extractions, some protein and 

glycerol was extracted but the amounts were less than 4 and 43 mg/g of DDGS, 

respectively. 

Kwiatkowski and Cheryan6 did a similar study with ground corn. They used 

previous work done by Kwiatkowski7 to set the optimal time and temperature of 

30 min and 50 °C. The solvents-to-solid (STS) ratio was increased from 2 to 8 
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ml/g. Finally, they determined whether it was viable to use old ethanol for 

extractions on new ground corn.  

When looking at the STS, they found that the optimal value was 4 ml/g. 

This was determined based on extracted oil and recovery of solvent from the 

process. The multiple extraction study showed that after three repeats with 

new ground corn the amount of oil was minimal but there was still a large 

amount of material being extracted. This was due to the increased water 

content in the ethanol, which will cause other solids to be extracted, such 

as protein. 

1.2. Zein Extraction 

The extraction of zein has been studied well and the following 

paragraphs discuss some work conducted to determine what process and solvents 

work. Typically zein is extracted in a process with aqueous alcohol in 

varying concentrations, but other solvents were studied to see the 

probability of or how well they could dissolve zein. 

Selling and Woods8 proposed using acetic acid as an improved solvent to 

dissolve zein from CGM and other sources. They investigated the effect time 

and temperature had on this process. The time study showed that after 120 

minutes the amount of zein plateaued, while the temperature study showed 

there was a significant increase between 45 and 55 °C. They also determined 

from sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), 

the zein that was extracted is similar to commercially available zein and the 

composition of the zein did not change over time.  

Xu et al9 also looked at extracting zein not only under acidic 

conditions, but also under alkali conditions. Instead of using a pure acid or 

a pure base, they adjusted the pH of the ethanol solution with hydrochloric 

acid (HCl) or sodium hydroxide. They also studied the effects of adding 



3 

 

 

sodium sulfite to the solutions while varying time, temperature, and solvent 

to solids ratio. The pH part of the study showed increased amounts of zein 

was attained at both high alkaline and acidic conditions but the highest 

amount was achieved at a pH of one and two. Severe hydrolysis occurred at a 

pH of one which resulted in a lower viscosity zein solution. The zein 

acquired at a pH of two would be the better result as it would be a higher 

molecular weight. They found that after 20 minutes, the amount of zein 

reached its maximum value of 10% and as temperature was increased up to the 

boiling point, ethanol zein extraction amounts increased steadily to 10%. The 

maximum solvent to solids ratio was determined to be around a ratio of 10:1 

or 12:1. Finally, the results from adding sodium sulfite showed that an 

addition of 0.25% increased the extracted zein amount, but anything over 

0.25% was decreased slightly. The increase was attributed to the ability of 

sodium sulfite to break disulfide bonds. 

Both of the previous papers discuss methods deemed successful at 

extracting zein from different source material and either not using an 

alcohol or changing the alcohol greatly. The main method of using aqueous 

alcohol is one that would prove most useful for extraction of zein from DDGS 

as it would be readily available at the ethanol plants.  

Parris and Dickey10 conducted research to study what the effects of 

changing the ratio between ethanol and water had on the extracted zein. They 

did this by using SDS-PAGE on solutions ranging from 50 to 95% ethanol. This 

showed that at higher ethanol percentages, the zein was primarily α-zein, 

which has a molecular weight around 22 and 24 kDa, but as you moved towards 

70 and 80 % ethanol, the zein started to contain β-zein, which has a 

molecular weight around 18 kDa. Finally, as the ethanol percentage approached 

50 and 60 % the zein that was extracted contained small amounts of α-zein and 
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β-zein, but also had some δ-zein, which has a molecular weight around 10 kDa. 

Meanwhile, they determined what affect the addition of sulfuric acid, lactic 

acid plus sulfur dioxide, sodium bisulfite, and sodium sulfite had on the 

extraction process. Lactic acid plus sulfur dioxide had the largest yield at 

2.7 % and formed a film that had the highest strength and elongation to 

break, but the lowest modulus. The sodium bisulfite had the lowest yield of 

zein at 1.3 %, while sodium sulfite produced a film with the lowest strength 

and elongation to break. 

Lawton11 also used ethanol but did not add water. Instead, he put the 

solution in a heated pressure vessel and increased the temperature of the 

solution to 130 °C. This was allowed to stir for 30 minutes, after this time 

the solution was cooled and extracted. They used commercially available and 

hand collected CGM, corn grits, and DDGS in this experiment. Similar amounts 

of zein were extracted from both types of CGM, while the grits and DDGS had 

less extracted, which was expected as both contain less zein to start with. 

Next, they determined if defatting the CGM would result in an increase of 

extracted zein. This process helped with the commercial type, but not the 

hand collected CGM. Next, multiple runs were conducted to determine if more 

zein could be extracted after the initial extraction. This study showed a 

small amount was extracted the second time but repeated runs resulted in an 

insignificant amount removed. Finally, the operating temperature was reduced 

to 90 °C because the zein extracted at 130 °C was brownish-yellow in color. 

This reduction in temperature resulted in less zein being extracted, but the 

decrease may have been due to a change in the process during removal of the 

zein solution that probably left some in the reactor. 

Kim and Xu12 studied aggregation of zein in solutions ranging from 70 to 

90% ethanol. Aggregation was determined by looking at the hydrodynamic radii 
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of zein. The data they acquired is shown in Figure 1.1. The decrease at 90% 

is attributed to a structural inversion of zein. Kim and Xu10 describe it 

best, “zein aggregates form a micelle-like structure in which the hydrophilic 

moiety is oriented toward the solvent medium at lower than 90% ethanol and 

oriented toward the center of each aggregate at greater than 90% ethanol.” 

 

Figure 1.1. Hydrodynamic radii of zein in various ethanol solutions.10 

They further showed this by putting glass spheres (hydrophilic) and 

toner (hydrophobic) into zein solutions. The zein was then precipitated out 

by either adding water to decrease ethanol, or by adding more ethanol. When 

water was added, the zein aggregated on the toner, but when ethanol was 

added, zein aggregated on the glass spheres. This experiment shows how zein 

aggregation changes by how much ethanol maybe present. 

1.3. Zein Structure 

Not only is it important to understand how to extract zein, but 

understanding the structure of the protein is also highly important. This 

structure can affect the characteristics of zein. 

Argos et al13 studied the structure of zein, specifically α-zein, which 

consists of two weights: Z19 and Z22. They used Circular Dichroism (CD) and 

other tests to determine zein’s physical characteristics. The CD data showed 
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that zein was 40 to 60% α-helix and 50 to 40% reverse turn in nature; this 

was also previously shown with optical rotary dispersion testing. The other 

tests included four tests: 1. the experimental hydration potential 2. the 

Chou-Fasman conformation preference parameters for α-helix 3. the Chou-Fasman 

conformational propensities values for reverse turn configurations 4. the 

normalized propensities for residue to be in a helical conformation within a 

membrane. When compared with experimental data, these parameters should show 

where the turns, which are glutamine rich, in the protein occur in the 

sequence of the residues. All the tests show good or decent agreement with 

the theoretical values, except for Chou-Fasman helical potential data but 

they do not elaborate on why it does not correlate. They then talk about how 

some residues in different helices join and form polar surfaces on the side 

of the helix. These faces are separated at 120° increments and lay at varying 

vertical positions. All these facts were considered and a model of the 

protein was formed. This model proposes that each helix forms a rod and then 

these rods are bonded by the polar faces in anti-parallel fashion which then 

form a non-circular cylinder. The turns would then make up the caps of the 

protein. The suggested model is seen in Figure 1.2.  

Garret et al14 expanded upon Argos et al.13 while considering the genetic 

evolution of zein-like α-prolamins from various plants. They used statistical 

analysis to evaluate relationships between different sequences and the 

alignment of the sequences. They also used a hydrophobicity test similar to 

what Argo et al.13 used to study the helices. The only weight that was 

considered was Z22 as the most of the other plants do not contain Z19. 
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Figure 1.2. Model put forth by Argos et al13 for the structure of zein. 

The statistical analysis helped align the sequences and showed where 

the turns occurred, thus defining each repeat of the protein. This also 

helped to establish the tenth repeat in the series. The analysis was also 

used to establish that repeats 3, 5, and 7 are related, while repeats 4, 6, 

and 8 are associated. The hydrophobicity profile shown in Figure 1.3 shows 

that repeats 3 through 8 occur in pairs (i.e. 3 and 4, 5 and 6, and finally 7 

and 8), and also shows that all the odd repeats show a greater propensity to 

form helices.  

When they propose their model, they agree that the helices form in 

antiparallel fashion and have polar and hydrophobic faces separated by 120°. 

Instead of them forming a non-circular cylinder though, they suggest the 

helices pack next to each other following a hexagonal net as seen in Figure 

1.4. 
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Figure 1.3. Mean hydrophobicity profile of zein against the residue numbers. 

SS represents the signal sequence, NTT is for the N-terminal tail, and 1-10 

represent each repeat section.14 

 

Figure 1.4. Two possible configurations of how the repeats look in zein. The 

white dots symbolize hydrophobic regions, while the asterisks are for polar 

regions, and the black dots show positions on the hexagonal network.14 

A 

B 
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More recently, Matsushima et al15 studied α-zeins with small-angle X-ray 

scattering (SAXS). This analysis can determine the overall radius of gyration 

(Rg) and also the cross-sectional radius of gyration (Rc) if one dimension is 

larger. They varied the protein concentration from 2 to 40 mg/ml and also 

added β-mercaptoethanol (.1 and 2%) to try and ensure that they had monomers 

and not dimers or oligomers. Rg varied for both concentrations of β-

mercaptoethanol from 4.1 to 3.6 nm in a decreasing linear fashion as zein 

concentration increased. Similarly, the pure zein solution started at 5 and 

decreased to 4.3 nm. Rc also varied for both β-mercaptoethanol concentrations 

from 1.4 to 1.2 nm in a decreasing fashion, while the pure zein solution 

decreased from 1.9 to 1.4 nm. They suggested that zein may take the form of a 

sphere, α-helix rod, random coil, or worm like chain, but when comparing 

theoretical values for these shapes, they did not match the experimental ones 

obtained. Finally, they proposed that zein took a rectangular prism form with 

dimensions a x b x c. They related a to Rg and Rc by the first equation  

         
 -  

     

and Rc is related to b and c by the following equation. 

   
  

 

  
         

After calculating using a = 13 nm, b = 1.2 nm, and c = 3 nm an Rg of 3.9 

nm and Rc of 1 nm were obtained. The Rg value fits with the experimental 

values obtained, but the Rc value is slightly smaller. This was attributed to 

oligomers and by adjusting the value of b to 4.2 nm to account for this, Rg = 

4.0 nm and Rc = 1.5 nm, which fits better with experimental results. 
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1.4. Zein Films 

Zein has been pursued as films for use in a variety of applications; 

the food industry has looked for green alternatives to current synthetic 

based films. Zein would fill this roll well since it is renewable and 

decomposes, but further research is necessary to improve its properties. 

Parris and Coffin16 used zein cast films with solutions prepared in 

ethanol or acetone. Both of these films were extremely brittle, thus they 

tried adding plasticizers and crosslinkers to improve the film’s mechanical 

properties. They also considered how these additives would affect the water 

vapor permeability (wvp). The plasticizers poly (propylene glycol) (PPG), 

poly (ethylene glycol) (PEG), and glycerol were each added separately and PPG 

and PEG were combined with glycerol in varying ratios. The addition of each 

plasticizer separately had little effect on mechanical properties, but did 

reduce their wvp properties. The combination of glycerol and PEG did little 

to improve mechanical properties for the film, but glycerol and PPG in a 1:3 

ratio increased the properties of the film. Elongation at break (ETB) 

increased almost 50 times when compared to films plasticized by glycerol. 

Crosslinkers that were added consisted of formaldehyde, glutaraldehyde 

(GA), epichlorohydrin, citric acid (CA), and butanetetracarboxylic acid 

(BTCA). Formaldehyde in ethanol films showed the highest tensile strength, 

while all the acetone prepared films had the lowest tensile strength values. 

These results are the reason the acetone films were left out when 

plasticizers were added to the crosslinked solutions. All crosslinked and 

plasticized films had lower tensile strength then the pure crosslinked films 

and the 1:3 mixture of glycerol to PPG consistently had the lowest tensile 

strength, but the highest ETB. Finally, polymeric dialdehyde starch (PDS) was 
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added as a crosslinker. These films showed higher tensile strengths than pure 

zein films. PDS was the only additive that improved the wvp of the films. 

Spence et al17 also conducted work with dialdehyde starch (DAS) and zein 

films. They looked at what effects on the films, changes of different 

oxidation levels of DAS, ratio of DAS to zein, and the addition of water and 

glycerol as plasticizers would have. The oxidation of the DAS was varied from 

0 to 90% and caused the tensile properties to increase as 90% was approached. 

The water absorption also decreased as the oxidation level increased. This is 

thought to be due to the increased amount of crosslinking happening between 

DAS and zein. As the ratio between DAS and zein was decreased to 1:1 from 

9:1, the water absorption increased and the tensile properties decreased. 

Water caused the tensile properties of the films to decrease as it was varied 

from 9.3 to 12%, but the water absorption decreased. Finally, they added 

butylated hydroxytoluene (BHT) and sodium bisulfite. BHT caused little effect 

on the DAS and zein films. Sodium bisulfite on the other hand caused the 

tensile properties to decrease as it was varied from 0 to 5%, and the water 

absorption increased over that span. This was thought to be due to the sodium 

bisulfite interacting more with the DAS and not allowing it to crosslink with 

zein. 

1.5. Zein Adhesive  

Zein’s ability at binding allows it to be used as an adhesive. An 

initial patent 18 proposed to use zein as an adhesive for non-fibrous 

material. In the end, zein lost out to synthetic adhesives with better 

properties. 

Recently though, Parris and Dickey19 studied zein for use as a water 

resistant adhesive. They put two different zein solutions, a zein-lipid (zein 

concentrate) and commercial zein, with zein varying from 1 to 20%, between 
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glass slides in a lap-shear orientation to determine the film’s mechanical 

properties. The pHs of the solutions were also adjusted to an acid and alkali 

level to see if this improved its adhesive abilities. The films were stored 

at 29 and 52 % relative humidity (RH) to simulate different conditions that 

it may have to perform under. Of the straight zein solutions, the commercial 

zein at 20% zein preformed the best at 29 % RH with a load around 800 N, 

while the zein concentrate at 20 % zein reached only about 700 N. At 52% RH, 

the zein concentrate, again at 20 % zein, increased to almost 800 N and the 

commercial zein at 20% zein decreased to about 400 N. They also introduced 

PEG into the adhesive and varied it from 0 to 30%. The maximum load was 

achieved with a PEG content of 10%. Finally, adjusting the pH to an acid or 

alkali did not improve the performance of the adhesive over that of the 

regular zein solutions. 

1.6. Rheology 

The concentration of zein in the solvent can have a large effect on the 

elastic and fluid behavior of the solution. Also, the introduction of 

nanoparticles and fibers can affect the flow behavior of the fluid. 

1.6.1. Zein Rheology 

Selling et al20 studied the effects that water and tri (ethylene) glycol 

(TEG) had on zein to see if they would improve the ease of processing. Water 

was varied from 5 to 30% and TEG 10 to 30%. As water content increased, the 

initial torque decreased, but as water content passed 10%, a rapid rise in 

torque was observed after mixing. When the water content passed 15%, another 

rise in torque was observed after the initial rise, at a later time in the 

mixing, as the amount of water approached 30% that seconded increase occurred 

after a shorter period of time. The TEG also decreased initial torque as its 

content increased. No increase in torque was observed over the mixing period 
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of 20 minutes. To induce the rapid rise in torque, temperature of the mixing 

pot was varied from 75 to 120 °C. The rapid rise in torque occurred for a 

temperature of 120 °C. In a combination containing 17% TEG and varying 

amounts of water, the initial torque is reduced and the rapid rise in torque 

is only seen after 3.9% water is added. 

Zhang et al21 studied how adjusting the pH of zein solutions to either 

acidic or basic levels affected the rheological properties. Zein in 70% 

ethanol solutions had their pH adjusted to 2.7, 3.3, 6.5 (neutral), 10.5, and 

12.5. After conducting rheological studies, it was shown that the neutral 

solution had the highest viscosity. This change was attributed to the 

treatments causing zein to unfold some, thus reducing polymerization and 

aggregation. The solutions showed a shear thinning behavior and this was 

verified by analyzing the data with the Ostwald-de Waele model. This model 

confirmed that they were shear thinning and the most acidic and basic 

solutions were closest to Newtonian behavior. Finally, dynamic testing showed 

the solutions were more elastic as G’ is normally larger than G’’ and that 

the pH adjustment had a drastic change on the viscoelastic properties. 

1.6.2. Rheology of Ionic Liquid Containing Fibers or Cellulose 

Gericke et al22 studied the rheological properties of cellulose in 1-

ethyl-3-methylimidazolium acetate (EMIMAc), which is an ionic liquid. They 

used microcrystalline cellulose (MC), spruce sulfite pulp (SSP), and 

bacterial cellulose (BC) for different types of cellulose. Steady state 

analysis showed that over most of the region chosen the fluid behaved in a 

Newtonian fashion and only showed slight non-Newtonian behavior at high shear 

rates and concentrations. It was also observed that as temperature increased 

the viscosities of the solutions decreased. Relative viscosity was studied as 

a function of cellulose concentration. This showed that as concentration 
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increased so did viscosity, but it also shows that as temperature increased 

there was less of a viscosity increase. Intrinsic viscosity also decreased 

with increasing temperature. All of these viscosity decreases were not due to 

decomposition of the cellulose but, was believed to be due a degradation of 

EMIMAc. 

Similarly, Wang et al23 studied the rheological properties of silk 

fibroin (SF) in 1-allyl-3-methylimidazolium chloride (AmimCl). Viscosity 

increased as SF content increased. Initially at small or no SF content and 

low shear rates the fluids would show shear thinning behavior. This behavior 

disappeared as SF content increased and then started to show up at high SF 

content and high shear rates. A graph showing the zero shear viscosity values 

for SF as a function of SF concentration is seen in Figure 5 below. Subset a 

of Figure 1.5 shows how the particles in the solution do not interact a lot 

with each other in the dilute region. The point where particles start to 

interact with each other is the critical concentration, which was determined 

to be 5% of SF, this increase in interaction results in an increase in 

viscosity. After that point the particles become more entangled, causing the 

viscosity to increase even more. 

 

Figure 1.5. The zero shear viscosity values of the SF solutions as a function 

of SF concentration.23 
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The initial shear thinning at low SF concentrations and shear rates, 

along with the shear thinning at high SF concentrations and shear rates were 

analyzed. The initial shear thinning was thought to be due to the solvent, as 

there is a possibility that hydrogen bonding may occur in it. On the other 

hand, this shear thinning happening at high concentrations and shear rates is 

probably more due to the alignment of SF.  

1.7. DDGS Composites 

DDGS as previously stated, is used mainly for use as filler in 

livestock feed, but DDGS has also been looked at for use in composite 

materials. Since it is currently a cheap product, its main purpose in 

composites would be as filler material. 

Tatara et al24 studied the effects of adding DDGS to phenolic resin. All 

samples were processed by compression molding and DDGS was added in varying 

concentrations up to 90%. Tensile testing was conducted to determine what 

effect the filler had on the mechanical properties of the resin. This showed 

that as the DDGS content was increased yield strength, modulus, and 

elongation to break (ETB) decreased. Yield strength was decreased by 76% with 

90% DDGS, while modulus was decreased by 60% and ETB was 42%. 

Li and Sun25 created a composite material out of poly (lactic acid) 

(PLA) and DDGS. They also used methylene diphenyl diisocyanate (MDI) as a 

coupling agent to try and improve the composites properties. PLA was mixed 

with 20 to 50% DDGS and then a PLA and 20% DDGS had 0.25 to 2% MDI added. 

They conducted tensile testing, Fourier-transform Infrared Spectra (FTIR), 

scanning electron microscopy (SEM), differential scanning calorimetry (DSC), 

Thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). 

Tensile testing for samples without MDI showed that any added DDGS decreased 

strength and modulus, but increased ETB with the maximum occurring at the 10% 
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DDGS loading. When MDI was added to the PLA and 20% DDGS, it increased the 

materials properties over that of not having any MDI and reached values 

similar to plain PLA with 1% MDI added. SEM imaging showed that MDI helped 

PLA adhere to the DDGS, which helps explain the improvements when MDI was 

added.  

DSC graphs showed that the addition of DDGS decreased Tg by 3 °C, when 

compared to just PLA, but when MDI was added it started to increase Tg back. 

TGA showed that the inclusion of DDGS increased remaining residual weight and 

increased decomposition temperatures slightly. While MDI addition brought the 

decomposition temperatures back down slightly. Finally DMA showed that 

samples without MDI had a lower storage modulus (E’). Also the loss factor 

(tan δ) showed a Tg of 69 °C and that the pure PLA was more amorphous than the 

composites containing DDGS. 

Zarrinbakhsh et al26 similarly used DDGS as a filler in a matrix of 

Polyhydroxy (butyrate-co-valerate) (PHBV) with 30% poly (butylenes succinate) 

(PBS) added to increase the toughness, as PHBV is a brittle material. DDGS 

was added at 30% and either washed or not washed with water. Polymeric 

methylene diphenyl diisocyanate (PMDI) was added as a compatibilizer. They 

conducted TGA, tensile testing, SEM, HDT, and DMS to determine how much of an 

effective filler DDGS could be. TGA showed that addition of washed DDGS 

increased initial decomposition temperature over that of non-washed DDGS. 

This is because the water soluble material is removed during washing. Tensile 

testing showed that inclusion of non-washed DDGS decreases mechanical 

properties substantially. Washing somewhat improves properties over non-

washed, but it is still not as high as the pure polymer matrix alone. The 

addition of PMDI returns properties to the same level, or a little higher 

than the polymer matrix. SEM shows that interfacial adhesion was improved 
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with washing and the addition of PMDI. DMA of the composite was improved with 

the addition of washed DDGS and PMDI, but was reduced with non-washed DDGS. 

Finally, HDT was again reduced by the addition of non-washed DDGS, but 

returned to original levels with the washed DDGS and was actually improved 

when compatibilizer was added. 

1.8. Zein Protein Composites 

Zein has shown capabilities of acting as an adhesive. This property has 

led some people to try using zein to modify fibers in composite material to 

achieve better adhesion between the fiber and matrix. People have also tried 

to use zein as the matrix itself. 

John and Anandjiwala27 looked at using zein to modify flax fibers in a 

poly (propylene) matrix. Weight fraction of flax fibers was varied from 0 to 

40%. Fibers were also treated in a solution of aqueous ethanol containing 2% 

zein. Both tensile and flexural tests result in maximum properties being 

achieved at 40% flax without the zein treatment. Impact studies for the same 

material show a maximum value being achieved at 30% flax and then a decrease 

at 40%. This is attributed to more fiber interaction as they are closer to 

each other at 40% than the rest of the loadings. When treated with zein, the 

strength of the composite both in tensile and flexural increased, while the 

impact strength decreased. This is due to the fact that the failure is 

switching to fiber fracture instead of fiber pullout of matrix fracture and 

that type of failure has lower energy dissipation. DMA showed that both the 

storage and loss modulus are increased with the addition of fibers and zein 

and Tg is slightly increased with the addition of zein.  

Kim28 on the other hand, tried to use zein protein as a binder. Gluten 

(wheat protein) was the main matrix used for this study, but they also used 

soy protein, milk powder, and amylase. Each material, excluding amylase, was 
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also mixed with corn starch. Zein content was varied from 4 to 32% and 

samples were compression molded. Compression testing was conducted to 

determine the materials mechanical properties.  This showed that stress 

increased to a maximum at a zein concentration of 22% and then steadily 

decreased after that. They also determined that the higher applied load 

during processing increased the maximum stress levels.  

1.9. Soy Protein Film Processing and Soy Protein Composites 

Another protein that is getting some discussion as a green alternative 

for use in the composites industry is soy protein. It has also been pursued 

as a standalone polymer replacement.  

Mo et al29 studied the curing process of soy protein isolate (SPI) to 

determine what process change gives the optimal material. SPI was compression 

molded with varying applied loads, temperatures, and time. 25% glycerol was 

also added to see what effect this had on the material. DSC was conducted to 

study thermal properties, along with tensile testing for mechanical 

properties. Finally, water absorption and SEM were conducted. An applied load 

of 20 MPa resulted in the maximum stress and Young’s modulus to occur during 

tensile testing and any load after that had a slight decrease in these 

values. Water absorption was decreased from 127 to 44% as the load increased 

to 20 MPa. Time was varied from 3 to 15 minutes and temperature was from 100 

to 160 °C. Both of these parameters were intertwined with each other, that is 

at lower temperatures more time was needed for SPI to achieve optimal 

mechanical properties and water uptake values. As the temperature was 

increased, the time required decreased, but as it approached 160 °C some 

decomposition started to occur. An ideal temperature and time of 150 °C and 3 

minutes, respectively, were ultimately chosen. The addition of the glycerol 

had similar results but maximum stress occurred at 140 °C instead 150 °C.  
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Paetau et al30 similarly determined what effect starting moisture and 

mold temperature had on the mechanical properties and water absorption of the 

material. They also determined what effect different acid treatments (i.e. 

HCl, propionic acid, sulfuric acid, and acetic acid) had on the soy. SPI and 

soy protein concentrate (SPC) were used in this study with moisture levels 

varying from 7.1 to 16.9% and 5 to 15%, respectively. Each material was also 

molded at temperatures of 80 to 160 °C for SPI and 100 to 160 °C for SPC. 

Tensile testing for SPI showed that as moisture increased, strength increased 

with a maximum value at 12.5% water, but the modulus decreased as water 

content increased. Water absorption decreased as starting moisture levels 

increased, which is thought to be due to a more porous material being 

obtained when moisture levels are low. Increasing temperature achieved a 

maximum strength at 140 °C and the modulus increased slightly over the whole 

range. The temperature increase also caused the water absorption to decrease 

drastically from 165 to 80%. The SPC achieved maximum strength at 7.4% water 

and again the modulus decreased over the whole range. The temperature study 

showed a maximum strength at 160 °C with little effect on the modulus. Water 

absorption for the concentrate was again decreased with increasing initial 

moisture content and increasing temperature. Acid treatments had little 

effect on the mechanical properties, but decreased the water absorption by 

over half for the SPI and just about half for the concentrate. 

Chabba and Netravali31 have looked at modifying soy protein concentrate 

(SPC) with flax fabric and glutaraldehyde (GA). SPC resin sheets were 

initially made with GA content ranging from 5 to 50% and also with glycerin 

ranging from 10 to 20% to determine the optimal amount of each. Tensile 

testing showed that 40% GA and 10% glycerin was optimal. TGA of the resin 

sheets showed that the introduction of GA improved the materials thermal 
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stability. DMA also showed an increase in Tg by 12 °C and an increase in 

storage modulus when compared to SPC alone and 10 % glycerin. Tensile testing 

showed that when the optimal resin was molded with flax fiber fabric, the 

material was better than a composite made with jute fabric and BiopolTM. Also, 

flexural testing showed that the new composite performed as well as a 

composite made of cotton/kapok-polyester.  

Wang et al32 used cellulose whiskers from cotton linter pulp to form a 

composite with soy protein isolate. Whisker content was varied from 0 to 30%. 

DSC showed that Tg decreased until 20% whisker content, but then decreased 

again after this. Tan delta curves from DMA also showed a similar trend as 

the DSC. Water absorption tests showed that uptake leveled off for all 

samples after 185 minutes and as the cellulose content increased, the rate of 

uptake decreased. Also the total amount of water absorbed was reduced with 

increasing whisker amount. Finally, tensile testing was conducted with the 

material at two different levels of relative humidity (RH) (0 and 43%). The 

higher RH reduced both strength and modulus, as water has a plasticizing 

effect on soy protein. Also, the strength reached a maximum value at 20% and 

decreased thereafter. The modulus continually increased, while the elongation 

to break constantly decreased over the whole cellulose range. 

1.10. Purpose for This Research 

Previous methods for extraction of corn oil and zein protein from 

different sources were discussed in this chapter. Rheology of zein solutions 

and cellulose solutions were also evaluated. Finally, literature on composite 

materials produced with DDGS and zein have been presented. All this previous 

work has provided a solid base of knowledge on the industrial uses of DDGS. 

However, current research on corn oil and zein extractions is primarily based 

on corn gluten meal (CGM) and corn gluten feed (CGF). Extraction of the oil 
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and zein from DDGS is rarely studied. On-site extraction of oil and zein from 

DDGS after the ethanol production process would not only lower the costs of 

the oil and zein but also create two additional products that help reduce 

running costs of an ethanol plant. As shown in Figure 1.6, three main 

products can be derived from DDGS and each of them can find important uses in 

different application areas. Widespread application of the DDGS-based 

products can add significant value to corn.   

 

Figure 1.6. Main products derived from DDGS and their potential uses. 

Nevertheless, much research has to be done before the potential of DDGS 

can be fully developed. Zein extracted from corn gluten meal was used as a 

binder material in making biobased composites. However, zein extracted from 

DDGS using ethanol has not been attempted as a composite material. Different 

extraction sources and conditions can cause large variations in zein 

molecular weight and properties. Studies need to be conducted to determine 
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the suitability of the DDGS-derived zein as a composite material and the 

properties of the resulting composites. 

Using zein protein as an adhesive has been studied only minimally 

during the initial fascination with zein as an alternative material. Zein as 

an adhesive shows inferior performance compared to other commodity adhesives 

such as epoxy and cyanoacrylate (super glue). The introduction of additives 

and reinforcements to zein is expected to improve its performance and make 

zein adhesive a commercially viable alternative to current retail adhesives. 

To achieve a better understanding of how to improve the adhesive the 

rheological and adhesion properties of zein adhesive samples with various 

formulations (chemical agents and reinforcement) needs to be determined.  

DDGS residual after oil and zein extraction comprise mainly cellulose 

and other carbohydrates. Cellulose is widely used as a filler or 

reinforcement material in composite manufacturing. Therefore the DDGS 

residual has high potential to be used as a composite material and research 

needs to be carried out to explore it.    

As such, the overall goal of this thesis is to maximize industrial 

utilization of DDGS via developing zein and the DDGS residual into adhesive 

and composite materials. Four specific objectives to achieve the overall goal 

include: 

1. Optimize extraction condition for corn oil and zein from DDGS 

2. Develop zein protein based adhesive 

a. Rheological studies 

b. Adhesion studies  

3. Develop and optimize soy/zein composites 

4. Develop DDGS/zein composites 
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The focus of this thesis will be on objectives 2, 3, and 4. Objective 1 

is a necessary preparation for the rest three objectives. In addition, 

successful completion of this objective will prove that on-site extraction of 

oil and zein from DDGS in a corn ethanol plant is feasible. The results from 

objective 1 are presented in Appendix 1 due to its relatively short length. 
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CHAPTER 2. RHEOLOGY OF ZEIN PROTEIN AND ZEIN/CELLULOSE NANOFIBRILS SOLUTIONS 

AND ITS USE AS A WOOD ADHESIVE 

2.1. Introduction 

Previous rheological studies have shown that additives 20 and varying pH 

values21 can change the characteristics of zein solutions. Zein has also 

previously been shown that it can function as an adhesive with satisfactory 

results.19 

To use a zein solution as an adhesive an understanding of its flow 

characteristics is needed. This can be achieved by conducting rheology 

measurements. Also the introduction of cellulose nanofibrils (CNF) into zein 

solutions could not only help improve mechanical properties but it could also 

help tailor the viscoelasticity of the adhesive which is important in 

practical applications. 

The overall objective of this part of the research was to determine the 

rheological properties of zein solutions and zein solution/CNF mixtures. 

Followed by taking some of these solutions and mixtures and use them as a 

wood adhesive. Performance of these adhesives will be determined by shear 

testing of a lap joint. 

2.2. Materials and Methods 

2.2.1. Materials 

CNF in a gel form (1.8% CNF/water dispersion) was obtained from USDA 

Forest Products Laboratory. Twisted/untwisted, curled/straight, and 

entangled/separated cellulose nano-fibrils ranging from 5 to 100 nm in 

diameter can be identified from Figure 2.1. Several large fibers were 

actually bundles of small fibrils. The highly entangled structure of CNF 

significantly increased its resistance to flow and was attributed to the gel-

like behavior of the as-received CNF gel sample. 



25 

 

 

 

Figure 2.1. A TEM image showing networks of CNF.  

Corn zein (F-4000) was obtained from Freeman Industries (Tuckahoe, NY). 

Glutaraldehyde (GA) was purchased from Fisher (Pittsburgh, PA). Titebond® 

original wood glue (aliphatic resin) (Columbus, OH). 

2.2.2. Processing 

2.2.2.1. Zein Solutions 

Solutions containing 1, 3, 5, 7, 9, 13, 15, 20, and 25% zein protein 

were prepared in an 80% aqueous ethanol solvent. These were then used for 

rheology testing and the three highest percentages were used for a wood 

adhesive. Those three were also combined with 3% GA, (based on dry weight of 

the zein), to evaluate the effects of the GA crosslinker on the adhesion 

properties. 

2.2.2.2. Zein/CNF Mixtures 

The CNF and zein mixtures were made by adding various amounts of CNF 

gel to the three highest zein solutions plus an additional 11% zein solution. 

CNF concentrations were held to 1, 0.8, and 0.6% based on total weight. When 

the top three pure zein concentrations and the 11% zein concentration were 
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added to the 1% CNF this resulted in zein concentrations of 11, 9, 7, and 5%, 

respectively. When they were added to the 0.8% CNF mixture this resulted in 

zein concentrations of 14, 11, and 8% zein for the top three and 6% zein for 

the 11% solution. Finally when the top three zein concentrations were added 

to the 0.6% CNF this resulted in 17, 13 and 10% zein and 7% zein for the 11% 

solution.  

To prepare samples for adhesive strength testing, the mixtures were 

applied to the surface of two wood bars, which are shown in Figure 2.2. A 

jig, as seen in Figure 2.3, was constructed to hold the two bars together as 

the adhesive was allowed to dry. It consisted of two steel plates with 

aligned holes for bolts to go through that would compress the bars. Four 

pairs of bars could be put in one jig, which provided repeats for 

consistency. An area of 12.7 x 25.4 mm was used for adhesive application on 

the wood bars. Samples were dried in a vacuum oven at 65 °C and 380 mmHg for 

at least 14 hours. After removal from the oven each sample was tested for 

tensile properties.  

 

Figure 2.2. Wood bars used for adhesive lap-shear testing. 
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Figure 2.3. The compressive jig used to make zein adhesive samples. 

2.2.3. Rheological Testing 

Rheological testing was conducted on a TA AR-G2. Steady shear tests 

were conducted over a shear rate range of 0.1 to 100 1/s at a temperature of 

25 °C. Dynamic shear testing first needs to have a shear strain determined 

that is in the linear elastic region. This was achieved by conducting strain 

sweeps with a range of 0.1 to 100% strain, a frequency of 1 Hz and a 

temperature of 25 °C. This was then followed by frequency sweeps with a range 

of 0.04 to 100 rad/s and 25 °C and at the corresponding shear strain 

determined previously. 

2.2.4. Mechanical Testing 

Lap shear testing was conducted on the adhesive samples following a 

modified ASTM D1002. Specimens consisted of two 25.7 x 108 mm wood blanks and 

an overlap area of 12.7 mm. An Instron tester (5567) equipped with a 30 KN 

load cell was used with a testing speed of 1.3 mm/min. Testing was repeated 

four times for consistency. The calculated strengths are determined using the 

maximum average load from tensile testing and the area of overlap. Modulus 

was calculated by determining the slope of the linear region of the stress-

strain curves. 



28 

 

 

2.2.1. Microscopy 

Images of the adhesive fracture surfaces were captured using a JOEL 

(JSM-6490LV) scanning electron microscope (SEM) operating at 10Kv. Sample 

surfaces were sputter coated with gold before the tests.   

2.3. Results and Discussion 

2.3.1. Rheology Results 

2.3.1.1. Steady Flow Results 

Representative curves of steady shear viscosities of the pure zein 

solutions with different zein concentrations were compared in Figure 2.4. As 

a general trend, the viscosity increased with zein concentration because 

larger contents of zein in the solutions caused higher resistance to the flow 

of the solutions. All the solutions showed shear thinning behavior, i.e. 

their viscosities decreased with increasing shear rate. This was due to the 

alignment of zein molecules in the direction of flow, which reduced their 

resistance to the flow. The trend of decreasing viscosity with increasing 

shear rate matches data collected by Zhang et al 21. Figure 2.4 also shows 

that the shear thinning behavior was more severe at higher zein 

concentrations, i.e., the slopes of the curves at low shear rates (< 1 S-1) 

increased with zein concentration. This was due to the increasing 

contribution from zein to the flow behavior of the solutions.  

The addition of CNF increased solution viscosities substantially. These 

values are seen in Figures 2.5 thru 2.7, which show the results for a pure 

zein solution and zein solutions containing CNF. By comparing the three 

charts, it is obvious that as CNF content increased so did the mixtures 

viscosity, while the zein concentration had little effect on viscosity. This 

observation indicates that CNF dominated the rheological behavior of the 

mixtures due to its entangled network structure, which imposes significant 
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resistance to the flow of the mixtures. These mixtures also showed a shear 

thinning behavior as the shear rate increased, a behavior similarly to pure 

zein solutions, which can be attributed to the alignment of not only the zein 

molecules but also the CNF fibers. The significantly increased viscosity of 

the mixtures is beneficial to adhesive applications of zein as it can prevent 

dripping of the adhesives from material surfaces. The viscosity of the 

adhesive can also be varied to suit different adhesive applications by a 

small adjustment on CNF concentration. 

 

Figure 2.4. Viscosity as a function of shear rate for pure zein solutions.  

 

Figure 2.5. Viscosity as a function of shear rate for .6% CNF and zein 

mixtures. 
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Figure 2.6. Viscosity as a function of shear rate for .8% CNF and zein 

mixtures. 

 

Figure 2.7. Viscosity as a function of shear rate for 1% CNF/zein mixtures. 
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viscosity at zero shear. 23 The viscosity of pure zein solutions fluctuated at 

zero shear, so the values from the six 1/s were used instead to give a rough 

estimation of the critical concentration. A graph showing the results for 

this analysis is presented in Figure 2.8. The critical concentration for the 

zein solutions is at approximately 10% zein concentration. 
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Figure 2.8. Viscosity as a function of zein concentration showing deflection 

at the critical concentration. 

2.3.1.2. Dynamic Rheology Results 

Frequency sweeps were also conducted for all solutions and mixtures to 

examine their viscoelasticity. Due to the low viscosity of the pure zein 

solutions, large fluctuations of values for storage (G’) and loss (G”) moduli 

were recorded and therefore the data is not shown. However, a general trend 

of increase in the modulus with zein concentration could still be discerned 

from the scattered data.  

The zein/CNF mixtures with increased viscosities showed significantly 

reduced statistical deviation. Their storage and loss moduli are shown in 

Figures 2.9 and 2.10, respectively. These two figures show increases in both 

G’ and G” as fiber content increases. These increases correspond to the 

increase in complex viscosity of the mixtures as shown, in Figure 2.11. It is 

also worth noting that in all the three figures, the properties (i.e. modulus 

and viscosity) increase with decreasing zein concentration, again indicating 

that CNF was the dominant factor in controlling the viscoelastic properties 

of the mixtures.  
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Figure 2.9. Storage modulus curves of the zein/CNF mixtures with different 

CNF concentrations. 

 

Figure 2.10. Loss modulus curves of zein/CNF mixtures with different CNF 

concentrations. 

G’ and G” of the three previous mixtures are compared in Figure 2.11. 

G’ of all the mixtures is higher than their corresponding G”, which implies 

that the mixtures are more elastic than viscous due to the CNF networks. By 

contrast, pure zein solutions are more viscous (G”>G’) because they lack the 

ability to store mechanical energy. 
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Figure 2.11. G’ and G” curve comparisons of zein/CNF mixtures with different 

CNF concentrations. 

The complex viscosity of zein/CNF mixtures are shown in Figure 2.12. 

The behavior of the complex viscosity is similar to that of the steady shear 

viscosity: decreases in viscosity with increasing frequency (rate) and 

increases in viscosity with increasing CNF concentration. 

 

Figure 2.12. Complex viscosity of various zein/CNF mixtures. 
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adhesive are shown in Figure 2.13 and a picture of the wood specimens after 

fracture can be seen in Figure 2.14. Figure 2.13 that as zein content 

1 

10 

100 

1000 

10000 

0.01 0.1 1 10 100 

G
'
 
&
 
G
"
 
(
P
a
)
 

Frequency (rad/s) 

1%CNF9%Zein G' 

1%CNF9%Zein G" 

.8%CNF11%Zein 

G' 

.8%CNF11%Zein 

G" 

.6%CNF13%Zein 

G' 

0.1 

1 

10 

100 

1000 

10000 

100000 

0.01 0.1 1 10 100 

|η
*|

 (
P

a*
s)

 

Frequency (rad/s) 

.6%CNF7%Zein 

.6%CNF10%Zei
n 
.6%CNF13%Zei
n 
.6%CNF17%Zei
n 
.8%CNF6%Zein 

.8%CNF8%Zein 

.8%CNF11%Zei
n 
.8%CNF14%Zei
n 



34 

 

 

increased so did the strength and modulus of the adhesive. The introduction 

of GA had a negative effect on the adhesion strength. GA should be able to 

react with amino acids of zein protein even at room temperature.34 The lowered 

strength may be due to insufficient reaction time or GA concentration. 

Further research is needed to identify the accurate reasons. Retail wood glue 

(aliphatic resin) was tested under the same conditions for comparison. The 

results show that zein as an adhesive is inferior to the commercial glue. 

 

Figure 2.13. Tensile testing results of zein and zein + GA adhesives. 

 

Figure 2.14. Picture of the fracture surface of a wood adhesive specimen. 
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CNF was added to pure zein solutions to improve the mechanical 

properties of the zein adhesives. Figure 2.15 compares the strength and 

modulus of adhesives comprised of different ratios of zein and CNF. It shows 

that the strength increases with both CNF and zein content but is affected 

more by the increase in CNF content. For instance, 1%CNF-9%Zein showed higher 

strength than did 0.6%CNF-17%Zein and 0.8%CNF-14%Zein. Finally for both the 

pure zein and zein/CNF mixture adhesives the modulus is largely unaffected by 

either zein or CNF content. 

 

Figure 2.15. Tensile testing results for various zein/CNF adhesives. 

2.3.3. Microscopy 

The fracture surfaces of pure zein adhesive and zein/CNF adhesive were 

studied using SEM. Figure 2.16a present a SEM image of the wood surfaces 

before applying the pure zein adhesive, while b and c are the fracture 

surfaces of the adhesive bond. When comparing between the wood and fracture 

surface pictures, it is seen that the wood surface was smoothened by the 

adhesive coating as the particles, edges, and fibers on the wood surface are 

less discernible. The adhesive showed minimal plastic deformation after bond 

fracture as no adhesive material was pulled up from the surfaces. The 

fracture surfaces also show minimal damage to the wood surface after 
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fracture, thus indicating that the failure was primarily a cohesive failure 

of the adhesive. 

 

Figure 2.16. SEM images showing the wood surfaces without pure zein adhesive 

(a) and the fracture surfaces of the 25% pure zein adhesive bond (b and c). 

Figures 2.17a-d below presents SEM images showing the fracture surfaces 

of the zein/CNF adhesive bonds. The pictures show a striking difference from 

the fracture surfaces of the pure zein bonds where wood damage is negligible. 

Here fibrils of the adhesive material were pulled out from the surfaces (a 

and b). The capability of undergoing this kind of large plastic deformation 

was imparted to the adhesive by the entangled network of CNF. Moreover, a 

better adhesion between the adhesive and wood surface was achieved after the 

addition of CNF to pure zein. This is evident from the wood fibers being 

pulled up from the surfaces (c and d), indicating a transition from adhesive 

c 

b a 
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failure to cohesive failure. This enhanced adhesion could be due to 

mechanical interlocking between the CNF network and the porous wood surface. 

 

Figure 2.17. SEM images of the fracture surfaces of zein/CNF adhesive bonds. 

Adhesive formulation: 1% CNF and 11% Zein. 

Figure 2.18 shows representative stress and strain curves for zein and 

zein/CNF adhesives. Here the more ductile nature for the zein and zein/CNF 

bond can be seen, as the two curves for the respective adhesives has a lower 

maximum stress but is able to achieve a higher maximum strain. This would 

correlate with the SEM images shown above. 
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Figure 2.18. Representative stress and strain curves for zein and zein/CNF 

adhesives. 

2.4. Summary of Results 

The rheological nature of zein protein solutions with varying 

concentrations and the addition of cellulose nano-fibers were attained. It 

showed that as the zein concentration increased so did the solutions 

viscosity. A critical concentration was determined to be around 10% zein 

protein. 

Rheological data for the zein/CNF mixtures showed a highly viscous 

material. The steady flow data showed that the viscosity of the mixtures 

increased with CNF concentration and the effects of CNF concentration 

outweighed the contribution provided by the zein concentration to the 

viscosity of the materials. The dynamic shear data showed that G’ and G” of 

the mixtures also increased with CNF concentration. G’ was found to be higher 

than G” over the whole experimental frequency range for all the mixtures. 

This indicates that the addition of CNF to the zein solutions transformed 

them from a viscous material into a more elastic material. 

Finally the zein and zein/CNF solutions were used as a wood adhesive. 

It was shown that the pure zein protein solution is able to adhere wood but 

0 

2 

4 

6 

8 

10 

12 

0 0.02 0.04 0.06 

St
re

ss
 (

M
P

a)
 

Strain (mm/mm) 

25%Zein 

1%CNF11%Zein 

Retail Glue 

237 kJ/m2 

250 kJ/m2 

140 kJ/m2 



39 

 

 

not on comparable levels with current retail wood glues. A maximum of 4 MPa 

was achieved with the 25% zein protein solution. The addition of GA to the 

solutions decreased the properties of the zein adhesive, which is worth 

further research. On the other hand the addition of CNF to the zein solutions 

caused a large increase in tensile strength and fracture toughness. The SEM 

images show that the CNF was able to attain a better mechanical interlock 

with the wood surface. This research on the rheological properties of the 

zein and zein/CNF solutions and the use of zein as an adhesive in conjunction 

with CNF have shown that zein adhesives with CNF can be a viable replacement 

for current wood glues. Further research on formulation and process is 

required to improve the performance of the zein adhesive. 
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CHAPTER 3. SOY PROTEIN AND ZEIN PROTEIN COMPOSITES 

3.1. Introduction 

Zein is capable of modifying fibers in composites to improve 

compatibility between the two materials27 and also as standalone binder to 

create a composite of just seen and another material.28 Also zein has been 

shown to combine with soy protein isolate to form a composite material.28  

The objective of this portion of the research was to understand the 

performance of DDGS-derived zein as a constituent material in composites. Soy 

and zein protein were combined to produce a composite material via 

compression molding. Plasticizers and crosslinkers were also added to 

investigate their effects on the composite characteristics. The samples were 

then tested for mechanical, thermal properties, and morphology using 

compression testing, thermogravimetric analysis (TGA) and microscopy. 

3.2. Materials and Methods 

3.2.1. Materials 

Poly(ethylene glycol) (PEG) MW 400 and Poly (propylene glycol) (PPG) MW 

400 were obtained from Alfa Aesar (Ward Hill, MA). Glycerol was obtained from 

Mallinckrodt Chemicals (Phillipsburg, NJ). Corn zein (F-4000) was obtained 

from Freeman Industries (Tuckahoe, NY). Soy protein isolate (SPI, Profam 974) 

powder was obtained from Archer Daniels Midland Company (Decatur, IL). 

Glutaraldehyde (GA) 50% was purchased from Fisher (Pittsburgh, PA). 

3.2.2. Processing 

A certain amount of zein was dissolved in 80% aqueous ethyl alcohol on 

a stirring plate. After the zein had completely dissolved predetermined 

contents of the SPI were added to achieve SPI/zein ratios of 90/10 and 85/15. 

The mixtures were mechanically stirred to allow uniform SPI dispersion. 

Enough absolute ethanol was subsequently added to the mixtures to increase 
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the ethanol concentration to over 95%. The dissolved zein precipitated out 

from the solution under this ethanol concentration and coated the SPI powder. 

With the excess ethanol decanted off any additives were then added to the 

damp material. All plasticizers (i.e. PEG, PPG, glycerol, and glycerol/PPG 

(1:3)) were added at 20% based on total dry weight of the proteins (i.e. zein 

plus soy protein) and the crosslinker glutaraldehyde (GA) was added at 3% of 

the total dry weight. The mixture was manually stirred for uniform dispersion 

and was then placed in a compression mold for processing. A hydraulic press 

was used to apply load and heat on the mold. After compression the sample was 

removed from the mold and conditioned at ambient temperature for 24 hours 

prior to tests. 

The compression molding was performed at both room and elevated 

temperatures. For the later, temperatures of 160 °C for the top platen and 

120°C for the bottom platen were adopted due to unbalanced heat conduction of 

the mold. The center of the mold was measured to have a temperature of 

approximately 130 °C. The mold was then placed in the hot press for 30 

minutes and allowed to heat up. A load of 9.5 tons was applied to the mold 

for 30 minutes. At room temperature a load of 2 tons was applied. 

3.2.3. Mechanical Testing 

Compression testing was used to study the mechanical properties of the 

samples. A modified ASTM standard D695 was followed for this testing. 

Specimens were 12.7 x 18.5 mm. The compression tests were conducted on an 

Instron tester (5567) equipped with a 2 and 30 KN load cell for room and 

elevated temperature testing, respectively. A test speed of 1.3 mm/min was 

chosen for the tests. Three repeats were conducted for consistency. Strength 

was calculated using the cross-sectional area and the largest load obtained. 
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Modulus was calculated using the stress-strain graphs and calculating the 

slope of the linear region. 

3.2.4. Thermal Testing 

Thermogravimetric analysis (TGA) was performed using a TA TGA-Q500 with 

provided TA software. The tests were started at room temperature and ramped 

to 700 °C at a heating rate of 20 °C/min. Nitrogen flow (60 ml/min) was 

provided during the testing. 

3.2.5. Microscopy 

Images of fracture surfaces were captured using a scanning electron 

microscope (SEM) from JOEL (JSM-6490LV). The operating voltage of the SEM was 

10 KV. Sample surfaces were sputter coated with gold before the tests.   

3.2.6. Water Absorption 

Rectangular pieces of the compression molded material (13.5x7 mm) were 

dried for at least 24 hours and then immersed in water over a 36 hour period. 

The samples were removed at 5, 10, 15, 30, 60, 120, 240, 480, 960, 1440, and 

finally at 1920 minutes to measure their mass. 

3.3. Results and Discussion 

3.3.1. Compression Test Results 

The material that was pressed at room temperature came out as a white, 

porous, and brittle material and was insufficient for tensile testing. 

Surface cracks were evident on some samples due to the lack of strong 

adhesion between the soy protein particles (Figure 3.1). Thus compression 

testing was used to compare mechanical properties of each sample.  
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Figure 3.1. SPI/zein composite obtained from compression molding at room 

temperature. 

The compressive strength and Young’s modulus of samples with different 

formulations are compared in Figures 3.2 and 3.3, respectively. The addition 

of the plasticizers or combinations of plasticizers, which were intended to 

improve the toughness and processablility of the SPI/zein composites, did 

reduce the modulus of the composites. However, the modulus reducing effects 

of the plasticizers were different on the 90/10 and 85/15 composites. For the 

90/10 composite, Figure 3.3 shows that PPG resulted in the largest modulus 

reduction followed by PEG, glycerol/PPG mixture and glycerol. For the 85/15 

composite, glycerol/GA led to the largest modulus reduction and the glycerol 

still caused the least reduction. It might be due to insufficient temperature 

and GA concentration. Further study is required to find the reason behind 

this observation. It could be due to preferential distribution of the 

plasticizers in the SPI or zein phases of the composites. For the compressive 

strength, the plasticizers either reduced the values moderately or showed 

only negligible effects (Figure 3.2). The largely maintained strength allows 
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the composites to be used in the applications that require relatively high 

material strength. 

 

Figure 3.2. Compressive strength for samples made at room temperature. 

SPI/zein ratio: 90/10 and 85/15. 

 

Figure 3.3. Modulus for samples made at room temperature SPI/zein ratio: 

90/10 and 85/15. 

When heat was applied to the materials during the compression molding, 

the proteins, with the assistance of plasticizers, heat, and pressure 

transitioned from solid powders into a plastic melt. The melt solidified 

inside the mold under pressure when it cooled down. A sample prepared by this 

process is shown in Figure 3.4. The sample was solid and smooth and had a 
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distinctive plastic like appearance. The compressive strength and modulus of 

the samples are shown in Figures 3.5 and 3.6, respectively. This process 

increased the mechanical properties of the material by almost doubling 

strength and modulus over the material produced at room temperature. This is 

mainly due to the better consolidation and fusion of the protein particles. 

PPG plasticizer significantly decreased the strength of the composites. PEG, 

glycerol/PPG and glycerol showed relatively small effects on the composites 

strength. The introduction of the crosslinker glutaraldehyde (GA) 

substantially improved the strength of the 85/15 composite but had little 

effect on the 90/10 composite, which could indicate that the crosslinking 

reaction mainly occurred in the zein phase. When using both GA and glycerol 

the strength increase caused by the crosslinker was largely offset by the 

plasticizing effect of the glycerol.  

 

Figure 3.4. Soy/zein protein composite compressed at 130 °C. 

As for the moduli of the composites, the plasticizers and the 

crosslinker showed a much weaker influence on them compared to the strength. 

The composite with the crosslinker showed the highest modulus. The high 
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standard deviation during compression testing of both the room temperature 

and elevated temperature samples may be due to the nature of how they are 

created. This method may introduce large amounts of error into these tests. 

 

Figure 3.5. Compressive strength of the composites compressed at 130 °C. 

 

Figure 3.6. Modulus of the composites compressed at 130 °C. 

Representative stress and strain curves are presented in Figure 3.7, 

along with estimated toughness values for each curve. Here it can be seen 

that the introduction of GA to the soy/zein material increases overall 

strength and toughness. When glycerol is added along with GA an improvement 

over straight plasticizer is still attained but maximum strength is reduced. 
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Even with a reduced strength the sample comprising of plasticizer and 

crosslinker achieved a larger toughness value.  

 

Figure 3.7. Stress-strain curves of selected composites with fracture 

toughness indicated on the curves. 

3.3.2. Thermogravimetric Analysis 

Thermal stability of the composites was investigated using TGA. The 

results are assembled in Table 4.1 with values for initial degradation 

temperature (IDT), percent weight loss over the largest loss region, and 

residual weight percents from the end of the tests. Figure 4.8 shows the TGA 

and dTGA curves for all samples. The TGA curves for all of the samples were 

pretty similar showing that the plasticizers had little effect on the thermal 

stability of the composites. The dTGA curves do show though that both samples 

containing PEG had a higher weight loss rate than the rest, except for the 

85/15 sample that had a higher rate than even the PEG sample. Table 1 also 

shows that the composites containing GA crosslinker have the highest residual 

weight, indicating that the thermal resistance of the proteins was improved 

after crosslinking. 
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Table 3.1: TGA Results for Initial Degradation Temperature (IDT), Percent 

Weight Loss, and Residual Weight of SPI/Zein Composites. 

Sample ID IDT(°C) Weight Loss (%) Residual Weight 

(%) 
90S/10Z 248 61.1 12.07 

90S/10Z PEG 240 67.1 12.17 

90S/10Z GLY 160 70.4 11.87 

90S/10Z GA 250 61.8 16.35 

85S/15Z 256 64.3 11.96 

85S/15Z PEG 230 68.3 12.05 

85S/15Z GLY 182 66 10.57 

85S/15Z GA 253 59 16.35 

 

a)  

b)  

Figure 3.8. TGA and dTGA curves for a) 90/10 b) 85/15 ratio samples. 
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The values for IDT are in line with values reported by Schmidt et al35 

on SPI and Sodium dodecyl sulfate (SDS), which were in the range from 260 °C 

to 290 °C. Otaigbe et al36 and Chen et al37 also had TGA curves that showed IDT 

for SPI materials from 200 °C to 260 °C. 

3.3.3. Microscopy 

 

Figure 3.9. SEM images showing morphological differences seen in 85/15 

sample. 

Some samples molded with heat showed non-uniform morphology. The color 

of some parts of the sample (mostly on the surface) appeared lighter compared 

to the rest of the sample. SEM micrographs show that in these areas a 

complete protein plasticization and consolidation is lacking and the sample 

contains many micro-sized void (Figures 3.9a and b). By contrast, the areas 

that appeared darker exhibit full consolidation without discernible voids ( 

d c 

b a 
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Figures 3.9c and d). The morphology of the lighter parts resembles that of 

the samples molded at room temperature. The voids embedded in these parts are 

detrimental to mechanical properties of the samples. Improvements in 

processing conditions including balanced heat transfer and optimized dwell 

time and compression pressure can be used to increase sample quality. 

3.4. Water Absorption Testing 

Curves showing the water absorption trends for the elevated heat 

compression molded SPI/zein composites are presented in Figure 3.10. All 

samples had high absorption rates during the first 2 hours of the testing. 

All 90/10 samples showed slightly lower overall water absorption compared to 

85/15 samples. The samples without any additives (i.e. 85S/15Z and 90S.10Z in 

the figure) showed the highest water uptakes. The addition of the 

plasticizers or crosslinkers decreased the absorption. A synergy was observed 

when the plasticizers and crosslinkers were used together. This synergy is 

attributed to the improved plasticization and consolidation of the proteins 

with the assistance of the plasticizers and the chemical reaction incurred by 

the crosslinker.  

 

Figure 3.10. The water absorption of compression molded soy/zein protein 

samples. 
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Apparent diffusion coefficients (DA) can be calculated following the 

equation provided by Anderson.38 

      
 

      

 
 

 
   

   
 
 

 

This equation takes into account the thickness of the sample (h), the 

moisture uptake at saturation (Msat), and the slope of the moisture uptake 

versus the square root of time (
   

   
). Values obtained from substituting the 

appropriate values into this equation are shown in Table 3.2. 

Table 3.2: Apparent Diffusion Coefficient (DA) Values for Soy/Zein Samples. 

Sample ID DA (mm
2/min) 

85S/15Z GLY/PPG 0.00241 

85S/15Z GA 0.00131 

85S/15Z GA/GLY/PPG 0.00218 

90S/10Z GLY/PPG 0.00224 

90S/10Z GA 0.00156 

90S/10Z GA/GLY/PPG 0.00244 

Here it can be seen that the material with GA present had the lowest 

coefficient, while the samples containing plasticizers had higher values. 

This shows that while the samples that contained crosslinker and plasticizer 

had a lower overall water uptake they still have a higher rate of diffusivity 

to water. Values for the samples without any additives could not be 

calculated as they did not reach a point of saturation during the tests. 

3.5. Summary of Results 

Compression molded samples consisting of soy and zein protein were 

produced and evaluated for mechanical properties, thermal stability, and 

water absorption. SEM images of fracture morphology were also obtained. 

Initial processing at room temperature resulted in material with low 

compressive strength and modulus but did give insight on how to process with 

soy and zein protein. When this material was compression molded at elevated 

temperatures a material with improved morphology and mechanical properties 
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was achieved. This improvement was attributed to the plasticization and 

consolidation of the soy protein. The addition of zein to the material helped 

to keep the materials properties high even when plasticizers were added to 

it. The introduction of glutaraldehyde to the composite increased the 

compressive strength of the material to the highest attained value. It also 

increased thermally stability of the composite when compared against the 

plain material or material with plasticizers only as seen from the TGA 

results. SEM images show that the plasticizers helped with the consolidation 

of the proteins during processing. They also show that the samples break in a 

very brittle nature during fracture. Finally water absorption tests show that 

this material is very hydrophilic as the minimum amount of water absorbed was 

100% of the starting mass. These tests also show that the water uptake rate 

and overall absorption was improved with the addition of plasticizers and 

crosslinkers. This is thought to be due to the improved consolidation of the 

proteins with addition of these materials. Additional studies into the 

processing and testing of this material may result in an improved material 

that would be suitable to replace currently used polymers in some application 

areas. 
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CHAPTER 4. DDGS AND ZEIN PROTEIN COMPOSITES 

4.1. Introduction 

The residual of DDGS after oil and zein extraction comprises mostly of 

cellulose fibers/particles, which is a commonly used filler or reinforcement 

material in polymer composites. This chapter discusses studies conducted to 

use zein as an adhesive material to bind the cellulose particles together to 

form a composite. Doing this would also provide another use for DDGS and may 

be able to increase its value again. This material could potentially replace 

low performance synthetic polymers, such as low density poly(ethylene) (LDPE) 

or poly(propylene) (PP), in non-structural indoor uses. The biodegradability 

of the material could make it useful in areas such as pots for plants. Once a 

consumer buys a plant in this pot they would be able to put everything in the 

ground as the composite would decompose. 

4.2. Materials and Methods 

4.2.1. Materials 

DDGS was obtained from Tharaldson Ethanol plant (Casselton, ND); the 

material was ground using a z-mill and .25 mm mesh screen. Poly (propylene 

glycol) (PPG) 400 MW was obtained from Alfa Aesar (Ward Hill, MA). Glycerol 

was obtained from Mallinckrodt Chemicals (Phillipsburg, NJ). Corn zein (F-

4000) was obtained from Freeman Industries (Tuckahoe, NY). Glutaraldehyde 

(GA) 50% was purchased from Fisher (Pittsburgh, PA).  

4.2.2. Processing 

Commercial zein was dissolved in 80% ethanol and 20% water solution. 

After allowing that to dissolve DDGS that had both oils and zein extracted 

from it was added and allowed to mix thoroughly. When enough time passed to 

ensure thorough mixing extra ethanol was added till the solution was above 95 

% ethanol, this would enable the zein to precipitate out and coat the DDGS 
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particles.  This was then followed by decanting off the excess ethanol and 

placing the material in the compression mold. Both platens of the hydraulic 

press were raised to a temperature of 130 °C. The mold was then placed in the 

press and a slight pressure was applied for 30 minutes. A load of 9.5 tons 

was applied to the mold for 30 minutes. After that the mold was removed and 

allowed to cool before the sample was removed. Two different ratio of DDGS to 

zein were used 85/15 and 90/10. Also PPG, glycerol, and a 1:3 ratio of 

glycerol and PPG were used all at 20% ratio (based on total sample dry 

weight). Glutaraldehyde was also added by itself and in combination with PPG 

and the 1:3 ratio at 3% ratio based on total sample dry weight also. 

Finally one centimeter long boiled flax fibers (150-200 µm diameter) 

were added to the best performing material in four different weight 

percentages; 2, 5, 10, and 15%. The fibers were added at the same time as the 

DDGS particles but these mixtures were hand mixed, as stirring with a stir 

bar caused all the fibers to clump in the middle. After the zein was 

precipitated out and the extra ethanol was decanted off the material was 

placed in the mold and compression mold in the same manner as material 

without fibers. 

4.2.3. Mecanical Testing 

Tensile testing was conducted on an Instron tester (5567) following a 

modified ASTM D638. Samples were dog bone in shape and had dimensions of 

overall length and width of 50 and 6 mm, respectively. The gauge area had a 

length and width of 10 and 1.7 mm, respectively. These samples were first cut 

to the overall width and then the gauge area was sanded down using a Dremel 

to the proper size using a metal jig as a guide. The tester was equipped with 

a 2 KN load cell and a test speed of 1 mm/min was used. Three samples were 

tested for consistency. 



55 

 

 

4.2.4. Thermal Testing 

Thermogravimetric analysis (TGA) was conducted to determine the 

materials thermal stability. A TA TGA-Q500 with matching software was used to 

for these tests. The temperature was ramped from room temperature to 700 °C 

at 20 °C/min. Nitrogen flow (60 ml/min) was provided during the testing. 

4.2.5. Water Absorption 

Rectangular pieces of the compression molded material (13.5x7 mm) were 

dried for at least 24 hours and then completely immersed in water over a 36 

hour period. The samples were removed at 5, 10, 15, 30, 60, 120, 240, 480, 

960, 1440, and finally at 1920 minutes and measured for mass change. 

4.2.6. Microscopy 

SEM imaging was conducted on fractured specimens to study its 

morphology. A JOEL SEM system (JSM-6490LV) operating at 10 KV was used. 

Sample surfaces were sputter coated with gold before the tests.   

4.3. Results and Discussion 

4.3.1. Tensile Testing Results 

 

Figure 4.1. Compression molded DDGS/zein material. 
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Figure 4.1 shows the results of compression molding the DDGS/zein 

material. Figure 4.2 shows the results of tensile testing on the different 

samples. The 85/15 DDGS/zein sample has a slightly higher strength before any 

additives were introduced when compared with the 90/10 DDGS/zein material, 

possibly due to better interfacial bonding at the higher zein concentration. 

The plasticizers had a varying effect with the glycerol decreasing the 

mechanical properties but the PPG increased them over that of the pure 

material. The 1:3 ratio had a median effect when compared to the glycerol and 

PPG. The GA caused a slight increase on the tensile properties when used by 

itself but with the introduction of PPG the properties jump dramatically. 

This significant increase was attributed to the combined effects of zein 

plasticization and crosslinking. The combination of the 1:3 ratio of 

plasticizers and the GA showed a negligible effect. All the 85/15 material 

with additives had improved properties over the 90/10 material, which is 

similar to how the soy/zein material performed. 

 

Figure 4.2. Strength and modulus values obtained from tensile testing of 

DDGS/zein composite materials. 

 

0 

100 

200 

300 

400 

500 

600 

700 

0 

1 

2 

3 

4 

5 

6 

7 

8 

•
 
Y
o
u
n
g
'
s
 
M
o
d
u
l
u
s
 

(
M
P
a
)
 

•
S
t
r
e
n
g
t
h
 
(
M
P
a
)
 



57 

 

 

Tensile testing results for DDGS/zein/Flax fiber composites are 

presented in Figure 4.3 The introduction of flax fibers to the DDGS/zein 

composites did not improve their mechanical properties. The 2 w% materials 

did not contain enough fibers to help improve the properties, but as the 

weight percentage was increased the fibers were not homogenously dispersed in 

the material thus causing material defects and stress concentration under 

load. Especially, when 15 wt% flax fibers were added, the defects and stress 

concentration led to a substantial decrease in the tensile strength. The non-

uniform dispersion of the fibers was discussed in detail in section 4.3.3. 

 

Figure 4.3. Strength and modulus values obtained from tensile testing of 

DDGS/zein/flax fiber composite materials. 

Figure 4.4 shows representative stress-strain curves for the DDGS/zein 

composite materials. The addition of PPG alone increases the toughness of the 

material over that of the pure DDGS/zein composite. When GA is added along 

with the PPG the toughness is further increased due to a rise in maximum 

strength and maintained strain at break. Finally the addition of the flax 

fibers to try and improve the strength and modulus of the composite material 

did not achieve its purpose and reduced the toughness of the material at the 

same time. 
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Figure 4.4. Representative stress and strain curves for DDGS/zein composite 

materials. 

4.3.2. Thermogravimetric Results 

TGA results are presented in Figure 4.5 and significant values are in 

Table 4.1. Here an increase in initial degradation temperature (IDT) can be 

observed for all samples with additives. Both the samples containing PPG and 

GA had the highest IDT. The introduction of PPG and the 1:3 ratio to GA 

decreased IDT some. The two other plasticizers decreased the IDT when 

compared to the highest value. Again all samples with additives had smaller 

weight losses and they all had higher residual weight. This was due to their 

plasticizing and crosslinking effects on the zein adhesive, which helped to 

consolidate the samples and thus hindered mass and volatile transfer during 

thermal degradation. 

Table 4.1: TGA Results for Initial Degradation Temperature (IDT), Percent 

Weight Loss, and Residual Weight of DDGS/Zein Composites. 

Sample ID IDT (°C) Weight Loss (%) Residual Weight (%) 

85/15 Plain 147 65 12 

85/15 PPG 226 58 20 

85/15 GLY 208 55 20 

85/15 1:3 209 58 21 

85/15 GA 229 54 19 

85/15 GA + PPG 212 55 19 

85/15 GA + 1:3 216 52 19 
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a)  

b)  

Figure 4.5. TGA and dTGA curves for DDGS/zein composite materials. 

4.3.3. Microscopy 

4.3.3.1. DDGS/Zein Microscopy 

Figure 4.6 shows the fracture surfaces for 85/15 DDGS/zein plain sample 

(a), with glycerol (b), with PPG (c), and with PPG and GA (d). The plain 

sample appears to have good bonding between zein and the DDGS particles. The 

sample with glycerol shows worsened bonding and consolidation, which explains 

its decreased mechanical properties. The sample with PPG improved 
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consolidation and the condition is further improved for the sample with 

PPG+GA, corresponding to the increase of their mechanical properties.  

 

Figure 4.6. SEM images showing fracture surfaces of an 85/15 DDGS/zein (a), 

85/15 + Glycerol (b), 85/15 + PPG (c), and 85/15 + PPG + GA (d). 

4.3.3.2. Flax Fiber DDGS/Zein Composite Microscopy 

A and c of Figure 4.7 show the SEM images of fracture surfaces for the 

15 w% flax fiber DDGS/zein composite, while b and d of Figure 4.7 show images 

for 2 w% flax fiber DDGS/zein composite. It can be seen that the fibers in 

the 15 w% material are not homogenously dispersed, but instead are 

concentrated to the left side of the sample. Also it appears the fibers are 

not being covered by the zein protein, which is supposed to bond the fibers 

and DDGS particles. A small amount of fibers are shown on the fracture 
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surface of the 2 w% material. For this material the fibers do show that zein 

has coated the flax fibers. 

 

Figure 4.7. SEM images of fracture surfaces from DDGS/Zein/Flax fiber 

composites. a) 15wt% flax fiber b) 2wt% flax fiber c) 15 wt% flax fiber d) 

2wt% flax fiber and samples were 85D/15Z+PPG+GA. 

4.3.4. Water Absorption Results 

4.3.4.1. DDGS/Zein Composite Water Absorption 

Figure 4.8 below shows data attained during water absorption testing of 

DDGS/zein composite materials. As most tests resulted in the material 

dissolving and falling apart during the first few minutes of the test these 

values only show that these composites are not a water resistant material. 

The dissolution of the material is due to the remaining solubles in the DDGS 

and the in-ability of zein to completely coat all the particles to protect 

them from water attack. Many samples contained notches or cracks on the 
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surfaces which allowed water to penetrate the material at an elevated rate 

and thus hasten the dissolution. Reducing the number of surface cracks was 

found to be able to effectively decrease water absorption rates. Excluding 

the contributions from the surface cracks, the plasticizers and crosslinker 

do show effects on reducing water absorption. 

 

Figure 4.8. Water absorption vs. time curves for DDGS/zein composite 

material. 

4.3.4.2. Flax Fiber DDGS/Zein Composite Water Absorption 

Water uptake data for flax fiber DDGS/zein composite materials is shown 

in Figure 4.9. Both the 2 and 10 w% composites had slower water absorption 

rates and lasted longer before deteriorating and becoming structurally 

unsound. While, both the 5 and 15 w% samples absorbed water at a faster rate 

and failed sooner. This is believed to be due to the sample defects caused by 

non-uniform dispersion of the fibers, which allowed water to infiltrate the 

sample and thus increased absorption and expansion of the samples. 

0 

10 

20 

30 

40 

50 

60 

70 

0 250 500 750 1000 

W
at

e
r 

A
b

so
rp

ti
o

n
 (

%
) 

Time (min) 

85/15 Plain 

90/10 Plain 

85/15 1:3 Glycerol:PPG 

90/10 1:3 Glycerol:PPG 

85/15 GA 

90/10 GA 

85/15 GA+1:3 

90/10 GA+1:3 



63 

 

 

 

Figure 4.9. Water absorption vs. time curves for DDGS/zein composite 

materials containing flax fibers. 

4.4. Summary of Results 

Compression molded composite samples consisting of DDGS and zein were 

created. Flax fibers were also added to try and improve the composites 

properties. These materials were then tested for mechanical properties, 

thermal stability and water absorption characteristics using tensile testing, 

TGA, and water emersion testing. Finally SEM imaging was conducted to study 

the morphology of fracture surfaces. 

Tensile testing conducted on samples without any flax fibers showed low 

strength and modulus values. The inclusion of PPG and GA helped increase 

these properties to their maximum values; this is attributed to the improved 

plasticization and consolidation provided by the additives. The addition of 

glycerol had the greatest reduction on strength and modulus; SEM images 

showed that when glycerol was added the samples were not bonded well. Samples 

with the increased amount of zein provided superior performance over samples 

with reduced zein content, which is due to the extra zein increasing the 

bonding between the particles. 
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The addition of flax fibers to the DDGS/zein composite material had 

negligible effects on the tensile properties of the samples. This is 

attributed to either not enough fibers to help improve the materials 

performance or to the non-homogenous dispersion of the fibers. This resulted 

in material defects and stress concentrations during loading. 

Introduction of additives to the material increased the composites 

thermal stability. GA increased the initial degradation temperature (IDT) to 

the largest degree. Residual material was consistent for all of the samples 

except for the pure DDGS/zein composite. The increase in IDT and residual 

material is credited to the increased consolidation and chemical bonding 

provided by the additives. 

SEM imaging shows that better cohesion was achieved with addition of 

both PPG and GA to the DDGS/zein composite. Also the addition of glycerol 

seemed to reduce fusion between particles, while PPG improved it. SEM images 

of DDGS/zein/flax fiber composites show either there was not enough fibers in 

the samples to improve mechanical performance or there is so much fiber that 

the sample becomes unbalanced. 

Water absorption testing of DDGS/zein composites show this material has 

too many remaining water soluble portions from the DDGS to even attain 

reliable tests. Introduction of the flax fibers does help to produce a 

composite that is more water resistant and allowed for increased testing 

times. Here again if the samples contained a crack or notch, they would allow 

water easier access to the interior and reduced the length of time before 

failure. 
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CHAPTER 5. CONCLUSION AND FUTURE WORK 

DDGS is the low value residual after corn ethanol fermentation which is 

mostly used as animal feed. Developing industrial uses of DDGS is expected to 

add value to corn products and reduce the cost of corn ethanol. DDGS 

comprises three major components including corn oil, zein protein, and 

cellulose and other carbohydrates. This research sought to maximize the 

industrial uses of DDGS via developing adhesive and composites using its zein 

and cellulose components.  

The three major components, i.e., corn oil, zein, and cellulose were 

first separated from DDGS through ethanol extraction. Corn oil was first 

extracted using absolute ethanol under different exaction temperatures and 

times. A maximum of 21.3% oils were obtained at 70 oC within thirty minutes. 

The DDGS after oil extraction was further extracted for zein using 80% 

ethanol. A maximum yield of 18.6% was obtained at 70 oC when sodium sulfite 

was used to facilitate zein solution. Since in both extractions ethanol was 

used as the solvent, the processes can be done on-site in a corn ethanol 

plant, thus creating two addition value-added products from the plant. The 

residual of DDGS after the oil and zein removals were relatively pure 

cellulose, which can be used as a composite material.  

Zein solution in ethanol was further studied as an adhesive material. 

CNF was added as a rheology modifier and a reinforcement agent for the 

adhesive. The addition of 1% CNF substantially increased the viscosity and 

dynamic moduli of the solution, thus making it an effective rheology 

modifier. CNF also markedly increased the strength and modulus of the zein 

adhesive. The increases were attributed to better mechanical interlocking of 

the adhesive with the surface of the wood and to the reinforcement the 

nanofibrils provided to the adhesive. 
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Zein was also studied as a constituent material in two composites: soy 

protein isolate (SPI)/zein and DDGS/zein. SPI/zein composites were 

compression molded at room and elevated temperatures.  A maximum strength 

around 26.5 MPa and a modulus 0.9 GPa were obtained for the composite molded 

at room temperature. The strength and modulus were doubled for the composite 

molded at elevated temperature (130 oC). The increases were due to improved 

soy protein plasticization and consolidation. The addition of plasticizers to 

the composites showed mixed results while adding glutaraldehyde (GA) as a 

crosslinker increased the strength of the material. GA was also shown to 

increase thermal stability and water resistance of the composite.  

The residual of DDGS after the oil and zein removals was blended with 

zein to make composites. DDGS/zein composites were prepared using a similar 

compression molding method. The addition of plasticizer PPG to the composite 

increased its tensile strength and modulus. This increase was attributed to 

the improve consolidation provided by the PPG. GA as a crosslinking agent 

also caused increases in both properties. When GA and PPG were added 

simultaneously, the composite achieved its maximum strength and modulus of 7 

MPa and 0.5 GPa, respectively. Strengthening the composite with flax fiber 

was attempted without achieving obvious property improvement. The reason was 

due to inhomogeneous dispersion of the fibers. DDGS/zein and DDGS/zein/flax 

composites showed reduced water resistance compared to SPI/zein, possibly due 

to the strong hydrophilicity of DDGS and the flax fiber. 

5.1. Future Work 

The work in this thesis was conducted to understand the extraction of 

corn oil and zein from DDGS under conditions that would be viable on site at 

an ethanol plant. This was then followed by determining how to process with 

the zein protein and residual DDGS to create other uses of adhesives and 
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composites. The removal of the oil and zein from DDGS was shown to be a 

viable option. Further research into scaling up this process to industry 

levels is needed to determine if it will remain a viable solution. Also 

determination of the exact composition of the extracts is needed, along with 

molecular weights the zein extract. Zein protein wood adhesives were created 

and provided decent properties but were still inferior to retail wood glues. 

There is a potential for this material to produce an adhesive that could 

compete with the retail wood glues. Additional studies that should be 

conducted to improve upon adhesion strength include increasing the CNF 

concentration in the adhesives and modifying plasticizer and crosslinker 

concentrations. Finally the DDGS/zein showed properties inferior to most 

plastics and currently only has the benefit of being biodegradable. Further 

work on this material to increase its performance includes changing current 

additive concentrations and using new additives. 
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APPENDIX. OIL AND ZEIN EXTRACTION FROM DDGS 

A.1. Introduction 

The removal of any oils or fats that exist in DDGS could help improve 

the properties of a composite material created from DDGS. This could also 

create an additional byproduct in the form of the corn oil that would be 

removed. Since DDGS has zein protein in it, the removal of zein from DDGS 

would help create its own source of binder for composite materials. A plant 

producing ethanol could potentially remove the oils and zein protein all on 

location. 

In this chapter the objective was to remove oils and fats from DDGS 

with the use of anhydrous ethanol. Also the extraction of zein protein from 

that de-fatted DDGS by the addition of aqueous ethanol. For all extractions 

were allowed to proceed for 120 minutes with varying shorter intervals.  Also 

temperature was varied between 25 and 70 °C. 

A.2. Materials and Methods 

A.2.1. Materials 

DDGS was obtained from Tharaldson Ethanol plant (Casselton, ND); the 

material was ground using a z-mill and .25 mm mesh screen. DI water and 

absolute ethanol were obtained from our own stock room. Sodium Sulfite (SS) 

was purchased from Sigma Aldrich (St. Louis, MO). 

A.2.2. Processing 

A.2.2.1. Oil Extraction 

The first attempt at removal of oils and fats from DDGS was conducted 

in a soxhlet extractor. This was chosen initially as the extraction method 

because it is an extremely efficient method but was later ruled out due to 

little control over parameters. Also trying to upscale this method to 

industry levels would be difficult. 
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Extraction of oils and fats were instead conducted in small batch 

extractions as a large mixer was not in our possession. Absolute ethanol was 

placed in a 60 ml sealable container, to help reduce evaporation losses, and 

placed on a hot plate. The ethanol was heated to 25, 50, or 70 °C before 

putting the DDGS in the container. DDGS was placed in an 80 °C oven over 

night before being added to the solvent. After the DDGS was added the mixture 

was stirred for 2, 5, 15, 30, or 120 minutes. The solvent to solid ratio was 

held to 6 ml of ethanol/ g of DDGS, this value was based of experiments 

conducted by Singh and Cheryan5. After being stirred for the designated 

periods of time the mixture was removed from the hot plate and the DDGS was 

filtered out and placed in an oven at 80 °C over night to dry. These 

remaining solids were weighed to determine total oil and fat removal. Each 

sample was repeated twice for consistency. 

A.2.2.2. Zein Extraction 

Extraction of zein was carried out in the same manner as the oils and 

fats. The ethanol solvent used for this extraction was 70% ethanol instead of 

absolute. This was placed in a sealable container and placed on a hot plate. 

This solution was then heated to 25, 50, and 70 °C before placing the de-

fatted DDGS (DDGS residual from oil extraction tests) in it. After adding the 

DDGS the mixture was stirred for 10, 20, 30, 60, and 120 minutes. Solvent to 

solid ratio this time was held to 8 ml of solvent/ g of DDGS. When the time 

was completed the DDGS was filtered off and dried in an oven at 80 °C. The 

residuals were then weighed after overnight drying. As in the oil extraction 

each test was repeated twice for consistency. Optimal extraction conditions 

were determined from the above tests. 0.25 g of sodium sulfite, which is 

supposed to sever di-sulfide bonds of the zein protein and increase the 



75 

 

 

solubility, was added during extractions to evaluate its effects on the 

extraction results. 

A.3. Results and Discussion 

A.3.1. Oil Extraction Results 

The oil extraction results are presented in Figure A1. Extractions 

conducted at 25 °C had little change over time and was probably due to low 

solubility of oil in the solvent at this temperature. The extractions 

performed at 50 °C also showed insignificant variation within 30 minutes but 

when approaching 120 minutes a gradual increase in zein extraction was 

observed. Finally at 70 °C extractions exhibited a rapid increase within the 

first 30 minutes. As the process time increased the extraction leveled off 

till the end of the tests. Oil extractions at the end of 30 minute extraction 

times were 13.4, 14, and 21.3% for 25, 50, and 70 °C, respectively. Based on 

Figure 6 the extractions conducted at 70 °C were the most efficient as the 

highest amount of oil was extracted in the shortest period of time.  

 

Figure A1. Oil extractions as functions of time and temperature. 
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A.3.2. Zein Extraction Results 

Zein extraction results are presented in Figure A2. The extractions 

conducted at 25 °C showed minimal increase in zein removal within the 120 

minute long tests. At 50 °C, the removal of zein was slightly higher but did 

not vary substantially over time. The 70 °C extractions increased with 

increasing process time and were the highest among the three temperatures 

used. 

 

Figure A2. Zein extractions as functions of time and temperature. 
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A.4. Summary of Results 

Corn oil was extracted from DDGS using absolute ethanol, under 

relatively easy operating conditions. A maximum of 21.3 oil yield was 

obtained during one extraction. Removing this oil from DDGS is expected to 

increase mechanical properties of DDGS based composites and the corn oil 

would be an additional byproduct. Zein protein was also extracted from DDGS 

using aqueous ethanol, with the maximum extraction of 18.6% of zein protein 

occurring at the highest temperature and longest time and with the addition 

of sodium sulfite. This removal of zein would create a new source of low-cost 

zein thus making it more viable for composites and adhesives. 

 


