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ABSTRACT 

The autonomous control of unmanned ground vehicles (UGVs) is a growing research 

area. Skid steered UGVs are desired because of their simple control inputs, however the control 

algorithm requires complex dynamic analysis. The dynamic model is required to properly 

implement the control algorithm and this paper presents a linearized model for use in optimal 

and robust linear control methods. For localization of the robot sensors are required and for many 

applications low cost sensors are desired. This study used low cost sensors which require proper 

handling because noise is often increased in lower cost sensors. This study investigated the use 

of Kalman filtering and fusion on low cost sensors along with a novel approach of satellite 

selection for improved GPS precision. The sensor information from the Kalman filter was then 

used in a robust control algorithm and the vehicle’s path tracking ability was tested.  
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CHAPTER 1.  INTRODUCTION 

Around the northern half of the United States many areas get large amounts of snow fall 

each year. On average, Fargo, North Dakota receives 40.0 inches a year [1]. This snow can be 

annoying and time consuming for the average person to move. Not only is the snow a nuisance 

for most people to remove, it can also extremely difficult or even impossible for the elderly or 

disabled people to remove without assistance. Removing snow can also cause injury when 

people over exert themselves trying to clear snow as quickly as possible. In the United States in 

2001, over 54,000 people were treated for injuries related to manual snow removal [2]. Snow 

removal services are available but they are often costly. Not only is private snow removal 

expensive, it also can be difficult to find a service that removes the snow in a timely manner. 

One solution to all these problems is to create an autonomous snowplow to remove snow without 

human assistance. An autonomous snowplow needs to be mobile and there are many problems 

associated with navigating a ground vehicle, especially on uncertain surfaces that may be 

covered in ice or may be dry pavement. Although ground vehicles can be tracked or wheeled, 

there are many applications where wheeled ground robotic vehicles are required, for example in 

certain mining operations and in agricultural operations. Wheeled ground robotic vehicles appear 

in many forms, differing on how they generate traction and how they maneuver to negotiate 

turns; for example there are skid steered four wheel vehicles, differentially steered three or four 

wheel vehicles, independently steered four wheel vehicles, and Ackerman steered four or three 

wheel vehicles, just to name a few. The performance of any wheeled ground robotic vehicle 

depends heavily on its navigation control system, however, most studies on control of such 

robotic vehicles have been limited on the vehicle kinematics only, which can be sufficient in 

applications involving low robot speeds, and in cases where the negative effects of friction can 
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be ignored. This research focused mainly on the modelling and control of a four wheeled skid 

steered ground robotic vehicle for which both kinematics and dynamics are considered to better 

model the vehicle on high friction surfaces.   

1.1. Background 

Wheeled ground robotic vehicles have appeared more frequently in recent applications, 

and easy controllability of these vehicles has become a key design factor. Development of 

control algorithms for these and any other automated systems requires the presence of a good 

dynamic model that predicts the system’s behavior. The control is implemented by using sensors 

that measure parameters representing the actual behavior of the system, which are then fed back 

to the system by the control algorithm. Since most natural systems are nonlinear in nature, 

developing a mathematical model that captures the behavior of any dynamic system has its own 

unique challenges because it requires the modeler to decide on what behaviors to capture and 

what behaviors to ignore. While ignoring certain dynamic behaviors may not affect the system 

performance, there are some behaviors that must not be ignored. Most existing models for skid 

steered vehicles assume that friction is not very high such that lateral skidding is possible so the 

vehicle is able to maneuver turns. Because of this assumption, many models are based entirely 

on the vehicle kinematics [3]–[7], or include dynamics that allow lateral skidding [8]–[10], 

which has so far been sufficient on low friction surfaces. However, when friction becomes high 

enough to prevent lateral skidding, such models fail to capture the dynamics and the vehicle fails 

to maneuver short radius turns. Inclusion of the effects of friction in these models has been 

difficult because the friction coefficients are unknown and are non-uniform as noted in [11], 

[12]. 
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Even when the available vehicle model is sufficient, implementation the control system 

on such vehicles requires good sensors to provide localization data, particularly, position, 

velocity, and direction. Although very good sensors exist that can measure and provide such data 

very accurately, they tend to be very expensive and overwhelm the overall cost of the vehicle 

itself. Most low cost sensors suitable for low cost robotic vehicles have inherent errors that must 

be properly handled for proper functioning of the system. Localization sensors for ground robotic 

vehicles tend to be a combination of Global Positioning System (GPS) receivers, wheel 

encoders, a distance detection laser scanner, and Inertial Measurement Units (IMU) which 

typically are made of 3-D accelerometers and 3-D gyroscopes. While errors in the distance 

detection laser scanners and wheel encoders are easy to manage, errors in the GPS and IMUs are 

very difficult to manage and quite often very expensive infrastructure is used to address the 

errors. Alternatively, several sensors can be deployed and their results can be filtered and fused 

together to reduce errors. Various sensor fusion algorithms exist, the popular ones are derivatives 

of the Kalman filter. Unfortunately, such fusion algorithms also require the dynamic model of 

the robotic vehicle to be known, which goes back to the modelling problem mentioned above. 

1.2. Goals and Objectives 

The goal of this research is to improve the control of autonomous four wheel skid steered 

vehicles, especially on high friction surfaces by disallowing lateral skidding in the dynamic 

model. As explained above, the central problem that must be addressed is that of developing a 

good model that captures the dynamics of the vehicle on such surfaces. That model is required 

by both the controller and the sensor fusion algorithms. Among factors that contribute to the 

difficulty in controlling four wheel skid steered vehicles when friction is very high include lack 

of knowledge about the friction level and invalidation of the kinematic assumptions on such 
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surfaces. As if those factors are not enough, the presence of noise and inaccuracies in sensor 

measurements required for localization and feedback control of the robot makes the problem 

even worse. This research addresses these problems systematically by first developing a vehicle 

model that combines both vehicle kinetics and kinematics so that friction forces are made part of 

the vehicle model. Using this model, the research proceeds by developing methods of reducing 

the effects of sensor noise especially those from the IMU and the GPS. To achieve the goals of 

the research there are four main objectives summarized in the following statements: 

1. To develop an accurate mathematical model for capturing the vehicle dynamics on 

high friction surfaces, which would also work on low friction surfaces 

2. To characterize reduce errors inherent in all low cost GPS and IMU sensors 

3. Develop a robust control algorithm that uses GPS, IMU and encoder data to 

navigate a robot in path tracking mission  

4. Experimentally validate the developed control on THUNDAR the autonomous 

snowplow 

Successful completion of this research will be indicated by successfully testing the final control 

algorithm on the test vehicle on high friction surfaces. 
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CHAPTER 2.  NAVIGATION SENSORS 

There are many methods used in locating a robot in relation to the intended course and 

the surrounding objects. All sensor measurements are characterized by the presence of noise and 

uncertainties that affect the accuracy and precision of the measured results. To better understand 

these uncertainties it is important to know the functional principles of these sensors. This chapter 

will present the navigation sensors for this study. These sensors can be split into two main 

categories: obstacle detection sensors and localization sensors. How the information from the 

sensors is fused and filtered together will be discussed in later sections of this report.  

2.1. Obstacle Detection Sensors 

Obstacle detection sensors will be defined here as sensors used to locate objects around 

the robot. The information about obstacles can then be used to determine if an object is an 

obstacle and then the path can be adjusted accordingly. There are two main types of obstacle 

detection sensors considered in this report: laser scanners and ultrasonic scanners. These sensors 

have two parts: the signal transmitter and the signal receiver. The unit uses the time of flight of 

the signal to determine the distance to the nearest obstacle where the transmitter emits a signal 

and the receiver monitors the reflection. The signal is generally a defined series of pulses that the 

receiver will recognize when it detects the reflected signal. This reflection covers twice the 

distance from the object to the robot so the distance from the object to the robot becomes half of 

the distance travelled by the reflected signal. The propagation speed of the signal is normally 

known therefore, by monitoring the time taken between the transmitter signal and the receiver 

signal, the distance to the object is determined. One distance measurement is usually insufficient 

because information about the entire environment is usually required. The sensors can measure a 
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wide area of distances by scanning back and forth to find what objects are in a large field around 

it.  

2.1.1. Ultrasonic Time of Flight 

 Ultrasonic time of flight measurements use ultrasonic signals to send a signal out for time 

of flight distance detection. They tend to be popular because they are lower cost than the laser 

scanners. As summarized in [13], ultrasonic sensors send a pulse or string of pulses at a specific 

frequency, normally above 40kHz, and wait for a response at that frequency. To obtain a range 

of measurements around the robot multiple sensors are typically required. This is because the 

time of flight is relatively slow and rotating the sensor back and forth is not very efficient or 

effective. In [13], they also point out that ultrasonic range finders are typically more susceptible 

to environmental changes such as changes in temperature or humidity because the wave 

propagation speed of sound is greatly affected by these parameters. Because of these drawbacks, 

these sensors were not used in this study despite their affordability. 

2.1.2. Laser Time of Flight 

 Laser time of flight measurements are more expensive than the ultrasonic sensors but can 

be more versatile and more robust. The time of flight works on the same principle as the 

ultrasonic scanner but instead of pulses being sent and received using ultrasonic signals, they are 

sent and monitored using a laser transmitter and receiver. Because of the increased speed in wave 

propagation, the time of flight is much shorter. This makes a 2D or 3D scanning measurement 

more practical. A typical scanning pattern can be seen below. 
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Figure 2.1: Typical scanning pattern [14] 

Although there are scanners that can scan 360 degrees, most laser scanners are designed 

for scanning only up to 180 degrees because often times robot navigation concentrates moving 

forward and information about what is in front of the robot is sufficient. When scanning, the 

sensor will measure the distance at predefined angular instances and create a map of 

measurements. This is very useful in obstacle avoidance in mobile robots. The obstacle 

avoidance sensor used in this study was a SICK laser scanner. 

2.2. Localization Sensors 

Localization sensors will be defined here as any sensor that locates the robot within a 

predefined reference frame. They are also used in tracking the actual path versus the intended 

path and this data is vital in the control algorithm used for path tracking. These sensors can be 

split into external localization sensors and internal localization sensors.  Typical external 

localization sensors include the global positioning system (GPS) which uses external satellites to 

calculate the receiver’s overall position in relation to the planned path. There are also options for 

local external localization systems that use beacons or markers to locate the robot such as the 

Stargazer robot localization sensor [15]. Internal localization sensors are entirely contained by 
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the robot. Typical internal localization sensors include angular displacement sensors that monitor 

wheel rotation, accelerometers and gyroscopes. Since these sensors appear in many forms the 

following subsection will discuss only those that were used in the research. 

2.2.1. Global Positioning System 

Global positioning systems have seen a large increase in use in recent years, largely due 

to recent improvements in precision and accuracy of the GPS receivers. Originally GPS use was 

restricted to the military. That changed in 1984 when a commercial airplane was shot down after 

it crossed into restricted airspace due to poor navigation. This prompted the president of the 

United States at the time, Ronald Reagan, to authorize the use of a segment of the GPS satellites 

for civilian use in the United States under a Selective Availability policy [16]. As technology 

increased, methods such as improved filtering and differential GPS techniques were developed, 

which led to increased accuracy in GPS units and eventually in the year 2000 the Selective 

Availability policy was abolished [17].  

2.2.1.1. Global Positioning System Architecture 

The three main parts to the GPS are the space segment, the control segment and the user 

segment [18] as seen in Figure 2.2 below. The space segment consists of the set of satellites, as 

seen in Figure 2.3, which orbit the earth along predetermined paths. There are many different 

sets of satellites from the different global navigation services available such as NAVSTAR 

(GPS), GLONASS, Galileo and Beidou.  
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Figure 2.2: Architecture of global navigation satellite system [18] 

 

Figure 2.3: Navigation satellites [18] 

  These satellites beam information that is used by the receiver to calculate the satellite 

position which is then used to trilaterate the receiver location. The second portion is the control 

segment. This segment consists of multiple control sensors and antennas which track the position 

of the satellites, try and predict future atmospheric conditions and to update the satellites with 

accurate information. Finally the user segment, which is the receiver, takes the information 
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beamed by the satellites and uses that information to calculate the receiver position.  There are 

four types of information packets beamed by the satellite: Almanac, ephemeris, ionospheric and 

Universal Coordinated Time (UTC). The uses of each packet are summarized in Table 2.1. 

Table 2.1: GPS data packets and their uses 

Packet Function 

Almanac  Satellite health  

 Reduced precision UTC and Ephemeris data 

Ephemeris  Calculate satellite positions  

Ionospheric  Used in calculating the delay from the ionosphere 

UTC  Converts satellite time to UTC time 

 

2.2.1.2. Basic GPS Trilateration Methodology  

The trilateration problem is solved on the basic level by finding the solution to a set of 

four equations based on information from four satellites. The earth centered earth fixed (ECEF) 

Cartesian coordinates of each satellite can be calculated from the data sent to the receiver. These 

calculation will be outlined in a later chapter. The time the satellite sent the information to the 

receiver is also known. With the coordinates and time information from four satellites known, 

the unknown coordinates and time for the receiver can be found. There are four unknown 

variables in the problem which are the X, Y, and Z coordinates of the receiver and the time delay, 

ΔT, of the receiver. The distance between each satellite and the receiver, RS, can be found in two 

different ways. The first is by using the Pythagorean Theorem to find the square distance 

between the two objects as  

𝑅𝑆
2 = (𝑋𝑆 − 𝑋)2 + (𝑌𝑆 − 𝑌)2 + (𝑍𝑆 − 𝑍)2    (2.1) 

The second is found by multiplying the time difference of when the satellite sends the 

information and when the receiver obtains the information by the speed of light, c, as 

𝑅𝑆 = 𝑐( 𝑡𝐺𝑃𝑆𝑆
− 𝑡𝑆 − 𝛥𝑇)     (2.2) 
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These two equations can now be formed into the main function as  

(𝑋𝑆 − 𝑋)2 + (𝑌𝑆 − 𝑌)2 + (𝑍𝑆 − 𝑍)2 − 𝑐2( 𝑡𝐺𝑃𝑆𝑆
− 𝑡𝑆 − 𝛥𝑇)

2
= 0  (2.3) 

By forming equation (2.3) four times from four satellites, a set of four equations is formed which 

can be used to solve for the receiver’s position. Further detail in specific calculations for the 

satellite coordinates and the time difference will be shown in Chapter 4.  

2.2.1.3. Inherent Trilateration Errors 

 Ideally, the set of equations described in the previous section have one unique solution 

and the receiver’s ECEF coordinates could be calculated exactly as depicted in Figure 2.4. 

However, this is not the case and is mainly due to the assumption that the receiver obtains the 

information from all the satellites at the same time. This is usually caused by delays in the 

satellite signals which originate from two main sources. The first is through multipath error. This 

occurs when the satellite signal bounces off objects, such as buildings, on its way to the receiver. 

Figure 2.4: Consistent intersection of equations with ideal signals 



 

12 

This causes a delay in the reception time and it causes an increase in the satellite’s perceived 

position in space. This will make the calculations shown above inaccurate. The multipath error 

has been studied and efforts to reduce the error can be seen in [19]–[21]. The other form of 

interference comes from the ionosphere where ionospheric particles slow down and reduce the 

intensity of the GPS signals. The strength of the interference is randomly effected by the sun’s 

radiation leading to random signal dilution. Researchers have sought to decrease this interference 

with improved filtering as seen in [22], [23]. 

 If these errors were consistent across all satellites the set of equations would still be 

consistent. The solution would be incorrect, as seen in Figure 2.5. 

This tracking error could be calibrated out in a control system. This, however, is not the 

case and each satellite receives different amounts of interference. This creates an inconsistent set 

of equations as illustrated below. 

Figure 2.5: Trilateration equations receiving equal interference 
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Figure 2.6: Inconsistent set of equations 

This means that the solution of the set of equations needs to be estimated by using 

estimation methods such as the least squares solution or a quasi-Newton estimation method such 

as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. The error estimation methods used in 

this study will be discussed in Chapter 4.     

Traditional methods for solving the estimation uses a set of the strongest satellites with a 

least squares estimation to calculate the position of the receiver. This method can lead to 

precision loss in two ways. This first way is by constantly switching the set of equations being 

used for the position estimation. This happens when the set of strong satellites deteriorates in 

signal strength because of changing atmospheric conditions. When the satellites become weaker, 

stronger satellites replace the original satellites which leads to a different position estimation.
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 This phenomenon is illustrated in Figure 2.7 below.

 

Figure 2.7: Overall position error (top) compared to satellites used in calculations 

For this figure, a preliminary study was conducted to see how the satellites used in 

calculations effected the position fix. For this figure, satellite data was taken over a course of a 

day and the overall position error was compared to the satellites being used in the position 

calculation. Spikes in the position error, such as those at times of approximately 9 hours, 12 

hours and 18 hours, correspond to new satellites being introduced to the calculation of the 

position as seen in the bottom half of the graph.  
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 The precision error can also come from a mix of signal strengths being used. The set of 

equations used for a position fix is closest to being consistent when the signals receive similar 

amounts of interference which is indicated by similar signal strengths. Choosing one strong 

signal and three weak signals for a position fix can throw off the position estimation because the 

signals are far from being consistent. In the preliminary study [24], signal strengths were also 

monitored on a scale of 0 to 10, 10 being the strongest signals. The results of that study can be 

seen in Figure 2.8. In the graph, it can be seen that the majority of the signals fall in the signal 

strength range of 2 to 4. This means that when the strongest signals are picked for the 

calculations, there is likely one strong signal making the set of equations inconsistent. The 

improvement of precision by improved satellite selection will be discussed in more detail in 

Chapter 4. 

 

Figure 2.8: Signal strength distribution 
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2.2.2. Relative Positioning Sensors 

 Relative positioning sensors find the robot’s position based upon an onboard transducer 

sensitive to the robot’s movement. The most common structure of relative positioning sensors 

combine some kind of  odometry and orientation measurement system, and, typically, they are 

made of tachometers and  gyroscopes as discussed in [25], [26], although some use electronic 

compasses instead of gyroscopes. Alternatively, gyroscopes are coupled with accelerometers in 

units known as inertial measurement units (IMU) that may be used in parallel with wheel 

encoders. There are many varieties of each sensor differing in price ranges and performance 

characteristics. 

2.2.2.1. Inertial Measurement Units 

 Inertial measurement units monitor the changes in momentum of a system and the 

information from these sensors can be integrated to find the positions and velocities of the robot. 

Their measurements are based on the movement of some sort of suspended mass, known as a 

proof mass, within a moving reference frame. Typically, inertial measurement units consist of an 

accelerometer and a gyroscope to measure the linear acceleration and rotational velocity along 

one, two or three axes. Both the gyroscope and the accelerometer started as mechanical devices 

that shifted to electromechanical devices as technology increased. The advent of micro-

electromechanical systems (MEMS), allowed for these devices to be miniaturized in solid state 

structures that are inexpensive, widely available, and suitable for robotic applications. The 

typical size and structure of MEMS sensors can be seen in Figure 2.9.  
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Figure 2.9: MEMS yaw rate sensor (left) and accelerometer (right) [27] 

 Accelerometers measure the linear acceleration along an axis. The traditional mechanical 

model that the MEMS equivalents are modeled after is shown below.  

 

Figure 2.10: Mechanical accelerometer model [28] 

Here the proof mass is suspended within the frame by a spring and dashpot. The force to 

move the mass can be calculated from the displacement of the spring and Hooke’s law. That 

force can then be used to find the acceleration using Newtonian physics. One method to extend 

the accelerometer to MEMS technology is by measuring the capacitance between plates like the 

system pictured in Figure 2.11. 
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Figure 2.11: MEMS accelerometer [29] 

  As the robot accelerates, the proof mass moves which changes the distance between the 

plates. This distance can be calculated because the cross sectional area of the plates are known 

and fixed. The distance between the plates can then be related to the acceleration like the 

mechanical accelerometer.  

 Traditionally gyroscopes were mechanical systems made of a set of rotating masses 

(flywheels) whose angular momentum was monitored; a diagram of a typical mechanical 

gyroscope is shown in Figure 2.12. Although the measurement is useful, the flywheel style 

gyroscope are impractical for robotic applications. Improvements were made to the mechanical 

gyroscope and instead of a spinning wheel the vibrating mass technique was developed.  
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Figure 2.12: Flywheel gyroscope [13] 

All vibrating mass gyroscopes are dependent on the Coriolis Effect which describes the 

forces experienced by a rotating mass. The Coriolis forces run perpendicular to the mass’s axis 

of rotation. This force can be found by monitoring the displacement of a vibrating mass. The 

suspension of the proof mass in a vibrating mass gyroscope, seen in Figure 2.13, is more 

complex than that of a MEMS accelerometer.  

 

Figure 2.13: Vibrating mass gyroscope [30] 
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In the gyroscope, a vibrating proof mass is suspended within a frame that is suspended on 

the body of the sensor. The movement of the middle frame in relation to the body in a direction 

perpendicular to the angular velocity is proportional to the Coriolis force which is proportional to 

the angular velocity of the sensor body. This movement can be monitored in a similar fashion to 

the MEMS accelerometer. This method of monitoring angular acceleration by using a vibrating 

mass is known as a tuning fork gyroscope and it is one of the more popular MEMS gyroscopes. 

 Many MEMS gyroscopes tend to be low cost but are also very noisy and very dependent 

on changes in temperature as shown in [31]. Many high precision applications tend to prefer 

using the higher precision, higher price optical gyroscopes. The first practical optical gyroscopes 

were developed in [32]. They are made of two beams of light traveling in opposite directions 

through a circular tube. As they interact with each other they cause interference waves, seen in 

Figure 2.14. 

 

Figure 2.14: Interference waves in an optical gyroscope [32] 
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The variance in the pattern, known as the Sagnac effect, was studied by Georges Sagnac. 

Sagnac noted that the interference pattern in a loop depends on the angle between the plane of 

the closed loop and the angular velocity of the loop itself [33]. This concept has been improved 

upon from the original four mirror design as described in [32], to fiber optic gyroscopes that 

were first developed in [34]. These gyroscopes are very accurate but are also very expensive.  

2.2.2.2. Optical Encoders 

 Odometry sensors are used to track how many times the wheels have turned around. This 

information is used to then determine the speed and distance covered by the robot through 

vehicle kinematics. In the case of differential steering, odometry sensors can also be used track 

the heading angle of the robot. As shown in [25], [26], odometry sensors accumulate errors over 

time because of calibration errors. Even a well calibrated system will accumulate errors from 

slight irregularities in the system such as wheels being slightly out of balance or slightly different 

sizes. Along with the irregularities that accumulate error, odometry sensors also lose accuracy at 

other times like when the wheels slip or when the robot operates on uneven surfaces.   

 There many odometry sensors but the most popular sensors are optical encoders. A 

typical optical encoder layout can be seen in Figure 2.15. The main components are the LED, the 

disc and the photo detector. The LED shoots a constant beam of light directly at the photo 

detector. The disc has a series of slots which, when rotated, cause the photo detector to read a 

sequence of high and low signals which are then decoded to how far the axis has revolved. 

Optical encoders tend to be very reliable, however they have some inherent errors caused by 

either skipping the count if the wheel spins too fast, or the optical disk being dirty and the light is 

blocked for a longer interval. 
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Figure 2.15: Optical encoder layout [13] 
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CHAPTER 3.  DEVELOPMENT OF A DYNAMIC MODEL 

This chapter starts with a background in different vehicle steering methods and provides 

the motivation for choosing four wheel skid steering. Included in that motivation is a description 

of the difficulties in controlling skid steering. The second half of this chapter is devoted to the 

development of the dynamic model for the vehicle. 

3.1. Methods for Steering Unmanned Ground Vehicles 

Although this study focuses on four wheel skid steering, there are many ways to steer a 

ground vehicle along a desired path. Below is a brief overview of some of the main steering 

techniques seen in the literature. This helps explain the motivation behind studying four wheeled 

skid steering and some of the difficulties associated with the study.  

3.1.1. Actuated Wheel Angle 

One of the more traditional steering methods is to use steering similar to what is seen on 

most cars where actuators direct the angle of the steered wheels. These steering systems have 

mixed structures; they can have front wheel linked steering, also known as Ackerman steering, 

rear wheel steering or all wheel steering. For instance, the structure illustrated on left in Figure 

3.1 steers either just the front or just the rear wheels and the drive wheels can be either in the 

front, rear or on all wheels. This steering has been studied in [35], [36]. The vehicle steering 

angles are configured such that at any time, the vehicle, as a rigid body, must have a unique 

instantaneous center of rotation (ICR). To meet the wheel speed requirements for the ICR, 

typically either an active or passive speed differential system is included in both the fixed and 

steered wheels to prevent wheel slipping during turning maneuvers.  
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Figure 3.1: Two wheel actuated steering (left) and four wheel actuated steering (right) 

Another structure of actuated steering has all four wheels steered each with its own 

actuated steering angle as illustrated on the right of Figure 3.1 and studied in [37]–[39]. These 

structures typically use independent steering angles and independent drive speeds for each wheel 

in order to meet the ICR requirement to prevent wheel slipping during cornering maneuvers. 

Both the two wheel and four wheel actuated steering structures are typically designed to allow 

wheels to run entirely on rolling friction without lateral skidding when cornering, therefore, they 

do not suffer significant uncertainties in their control systems. At high speeds, however, these 

systems can experience lateral skidding during turning maneuvers and control of high speed 

skidding in steered vehicles has been studied in [36], [40]. Despite the ability to control the 

vehicle within pure rolling, these steering systems are not popular among robotic vehicles 

because of the complexity of the required steering hardware as shown in [11]. The steering angle 

for the steered wheels must be controlled along with the speed of the vehicle which requires 

multiple actuators and steering linkages which add to the cost and potential sources of failure and 

error in the vehicle. 
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3.1.2. Differential Steering 

In a differential steering system, a set of coaxial wheels are independently driven which 

allows for a difference in the traction force on the left and right side of the vehicle as seen in 

Figure 3.2. This difference causes a turning moment about the robot and allows for steering of 

the vehicle. Typically, most of these structures have either a caster or set of caster wheels for 

maintaining the balance of the vehicle; the two driven wheels are responsible for both traction 

and steering. Since the structure allows the robot to be driven and steered with purely on rolling 

friction without skidding, it is credited for being the easiest control and different control methods 

have been studied in [41], [42]. Most light weight ground robotic vehicles are equipped with this 

steering system. While this approach works well in light weight applications, it is not used on 

heavier vehicles, which require more traction as noted in [11]. 

 

Figure 3.2: Differential steering 

3.1.3. Skid Steering 

More traction can be added to the differential steering design by adding a second set of 

coaxial wheels or a track system. Tracked systems as illustrated on the right in Figure 3.3  have 
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been studied extensively in [43]. These systems are well studied and mostly for low speed 

applications and the tracks can be damaging to some surfaces. On the other hand, a skid steered 

system with a second set of coaxial wheels is less damaging to surfaces and has been attracting 

more interest in robotic applications. A four wheeled system’s weight distribution consists of 

four point loads, which is different from the two distributed loads in the tracked system; as a 

result, the analysis of four wheeled skid steered vehicles is different from that of tracked 

vehicles. 

 

Figure 3.3: Four wheeled skid steering (left) and tracked skid steering (right) 

This study will focus on a four wheel skid steered system illustrated on the left in Figure 

3.3. The steering mechanisms works the same as differential steering except that it introduces 

skidding forces that come into play on the second set of coaxial wheels. When the wheels are 

purely rolling, the vehicle runs in a straight line with no turning motion; therefore there is no 

instantaneous center of rotation (ICR). To steer, there must be a speed differential between the 

left and right wheels and this causes skidding in the wheels. Researchers have approached the 

control of this skidding in different ways. Many studies take the kinematics of the skid steered 
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vehicle and seek to improve the controller as seen in [3]–[7]. Other researchers seek to improve 

the control through dynamic modeling improvements as seen and supported by either simulations 

as seen in [8]–[10] or experimentation as seen in [10], [44]. In addition to improved vehicle 

dynamics researchers also seek to find better models for the interaction between the tire and the 

operating surface as seen in [45], [46]. Many times the researchers will separate the dynamics 

from the kinematics by using the dynamics to define constraints on the kinematic controller as 

seen in [11], [12], [47]. Most of these dynamic models work well in low friction environments 

where moderate lateral sliding of the vehicle is allowed. In high friction environments, however, 

lateral sliding does not occur and therefore the models can be improved on by modeling the 

dynamics without lateral slipping. This modeling approach is seen in [11], however, the 

dynamics are not fully included in the control model. Part of the goal of this research is to use a 

dynamic model suitable for high friction environments for the control of a skid steer vehicle 

which was started in [48].  

3.2. Actuator Model 

Most robotic vehicles are driven by using some kind of an electric motor, which could be 

a stepper motor, brushless DC motor or permanent magnet DC motor. Because of their relatively 

high torque capacity, ease of use, and availability, permanent magnet DC motors are very 

popular in automation. These motors can easily be controlled by using a microprocessor through 

pulse width modulation (PWM) and thus easily used in a closed loop control system. There are 

other options available such as pneumatic actuators but these systems are more complex and can 

be more costly. Also because of the model complexity in pneumatic actuators, they are often 

more popular in open loop control systems. The actuators used on the robotic vehicle in this 

study for closed loop control were two brushed DC motors, one on each side wheels of the robot. 
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Since the robotic vehicle under study was meant for an autonomous snow plow operation, there 

are two more  DC electric motors in the plow blade system, one linear actuator to control the 

blade angle of the snow plow and a winch motor to raise and lower the blade. The two wheel 

drive motors are controlled in a closed loop structure while the plow blade system motors are 

driven in an open loop control system. The control details of this research are focused on the two 

wheel drive motors only; the plow blade motors are not considered. The wheel motors are 

Motenergy ME0708 brushed DC electric motors and like all DC motors are characterized by a 

torque curve. The specific curve for the Montenergy motors is seen in Figure 3.4. 

 

Figure 3.4: Montenergy performance curve at 24 volts [49] 

For control of the DC motors it is important to have a good model of the actuator and this 

study will use a model adapted from [50]. In this model the torque on the motor can be described 

as  

𝑇 =
𝑘𝑡

𝑅𝑎
(𝑉𝐷𝐶 − (

𝑅𝑎𝑣

𝑘𝑡
+ 𝑘𝑏)𝜃̇)     (3.1) 
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where kt is the torque constant, Ra is the motor resistance, kb is the back Emf constant and v 

viscous dampening of the motor. In this study the viscous dampening will be ignored because of 

the lack of information available which will add some uncertainties to the model. This gives us 

relation of  

𝑇 =
𝑘𝑡

𝑅𝑎
(𝑉𝐷𝐶 − 𝑘𝑏𝜃̇)     (3.2) 

to describe the torque of the motor in terms of voltage. It isn’t practical to find the torque 

constant and the motor resistance individually because that information is not always provided 

by the manufacturer. Rather the ratio of the two terms are found by using the stall torque shown 

in the performance curves as 

𝑇𝑠

𝑉
=

𝑘𝑡

𝑅𝑎
          (3.3) 

which can then be used to find the back Emf constant as  

𝜃̇𝑛 = 𝑇𝑠 (𝑘𝑏
𝑘𝑡

𝑅𝑎
)
−1

     (3.4) 

where 𝜃̇𝑛 is the no load angular velocity. This model will be used later in the dynamic model to 

relate the states of the robot to the control inputs. 

 One of the main assumptions in this model is that the motor can draw as much torque as 

it needs to perform the required maneuvers. This however is not the case and all real motors have 

current limitations as well. It is shown in [50] that current drawn becomes especially excessive 

when the motor reverses directions, which is a common maneuver in this study. The typical 

drastic effects of voltage reversal on current draw can be seen in Figure 3.5. The motor direction 

can quickly change in this robot if a tight turning radius is required and this may affect the 

performance of the control algorithm.  
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Figure 3.5: Current spike in angular velocity direction change [50] 

3.3. Kinematic and Dynamic Modeling of Skid Steering 

The kinematics of a skid steering vehicle can be very complex. Most of this complexity is 

introduced when the vehicle turns. This analysis will focus on curved motion because straight 

line motion is simple.  Turning requires the vehicle’s tires to skid which introduces complex non-

linear terms. The kinematics can be simplified by making certain basic assumptions that are true 

for most ground vehicles. The first assumption is that the traction of the robot is purely from the 

interaction between the ground and wheels under no slip conditions. This traction is assumed to 

run purely parallel to the vehicle. The second assumption is that the vehicle only turns based on 

the traction difference between the left and right side of the vehicle. The third main assumption 

is that lateral slip in the vehicle is ignored. Finally it is assumed the vehicle is non-deformable, 

operates on flat surface, and has an even weight distribution.  
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3.3.1. Kinematic Model 

With those assumptions the vehicle model can be started and a diagram of the vehicle in 

the global and local coordinate system can be seen below in Figure 3.6. 

 

Figure 3.6: Dynamic model of four wheel skid steered vehicle 

In the model, the axes (X, Y, Z) represent the global inertial frame and the local inertial 

frame is defined by the axes (x, y, z). On the vehicle all the wheels have an identical radius, rw. 

The wheels on the left side of the vehicle, wheels 3 and 4, provide the left side traction, Fl, and 

velocity Vl. Similarly the wheels on the right side of the robot, wheels 1 and 2, provide the right 

side traction, Fr, and velocity Vr. The velocities for the left and right side of the robot are found 

as  

𝑉𝑟 = 𝜔𝑟𝑟𝑤,  𝑉𝑙 = 𝜔𝑙𝑟𝑤     (3.5) 

ICR 



 

32 

where 𝜔𝑙 and 𝜔𝑟 are the left and right side wheel velocities respectively. The global heading 

angle, θz, can be derived from the path gradient, 
𝑑𝑌

𝑑𝑋
, which is related to the velocities in the 

global X and Y  coordinates as  

𝜃𝑍 = arctan (
𝑑𝑌

𝑑𝑋
) = 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑉𝑌

𝑉𝑋
)    (3.6) 

These global velocities, Vx and Vy, can also be further defined based on the velocities components in the 

local frame, 𝑣𝑥 and 𝑣𝑦, as  

 (
𝑉𝑋

𝑉𝑌
) = (

𝑣𝑥 cos(𝜃𝑍) − 𝑣𝑦 sin(𝜃𝑍)

𝑣𝑥 sin(𝜃𝑍) + 𝑣𝑦 cos(𝜃𝑍)
)    (3.7) 

Since lateral slip is ignored the local y-axis component can be set to zero and then the resultant vehicle 

velocity, 𝑉𝐺, becomes 

𝑉𝐺 = 𝑣𝑥 =
1

2
(𝑉𝑟 + 𝑉𝑙)     (3.8) 

The angular velocity about the ICR can also be defined by the velocity of the left and right side 

of the vehicle as  

Ω =
𝑑𝜃𝑍

𝑑𝑡
=

1

𝐵
(𝑉𝑟 − 𝑉𝑙)     (3.9) 

By using equations (3.6) through (3.9) the left and right vehicle velocities can be determined 

based on the desired velocity and path curvature. The selection of the exact heading angle and 

speed depend on the control algorithm used and that will be discussed in a later section of this 

paper. Once the left and right vehicle velocities are determined it is necessary to related them to 

the voltage that needs to be applied to the DC motors by the control system. 

To find the wheel torque the path geometry needs to be further defined. With angular 

vehicle velocity and linear vehicle velocity defined in equations (3.8) and (3.9), the radius of 

curvature can be defined as 
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𝜌𝐺 =
𝑉𝐺

Ω
        (3.10) 

This relation holds true because of the symmetry of the robot and the assumption that the ICR 

falls along the perpendicular bisector of the robot because of the even weight distribution. The 

curvature is also useful in deriving further equations and is defined as 

𝜅𝐺 =
1

𝜌𝐺
=

2

𝐵
(
𝑉𝑟−𝑉𝑙

𝑉𝑟+𝑉𝑙
)     (3.11) 

in terms of the left and right vehicle velocities. From the geometry of the vehicle the inner and 

outer radius of curvatures can be defined as 

𝜒𝑖 =
1

2𝜅𝐺
√(2 − 𝐵𝜅𝐺)2 + 𝐻2𝜅𝐺

2    (3.12) 

𝜒𝑜 =
1

2𝜅𝐺
√(2 + 𝐵𝜅𝐺)2 + 𝐻2𝜅𝐺

2    (3.13) 

respectively. Here B is the width of the vehicle and H is the length of the vehicle as shown in 

Figure 3.6. Since the vehicle is symmetric the analysis for the inner and outer curvatures are 

identical. A simplified model that represents the inner and outer radius of curvature can be seen 

below in Figure 3.7.   

 

Figure 3.7: Reduced dynamic model 

ICR 
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To find the moment about the center of rotation the traction forces, FT, need to be 

decomposed into their components that lie normal and tangent to the path curvature. This is done 

by finding the inner and outer slip angles αi and αo. These are found from the vehicle geometry 

and the path curvature as  

𝛼𝑖 = arctan (
𝐻𝜅𝐺

2−𝐵𝜅𝐺
)     (3.14) 

𝛼𝑜 = arctan (
𝐻𝜅𝐺

2+𝐵𝜅𝐺
)     (3.15) 

With those defined the tangential component, 𝐹𝑡, and the normal component, 𝐹𝑛, can be defined 

as 

𝐹𝑡 = 𝐹𝑇 cos(𝛼)            (3.16) 

𝐹𝑛 = 𝐹𝑇 sin(𝛼)           (3.17) 

Since the normal force is concurrent at the ICR only the tangential force contributes to the total 

moment about the ICR. Therefore the total moment about the ICR can be expressed in terms of 

the left and right tangential traction forces, 𝐹𝑙𝑡
 and 𝐹𝑟𝑡

, as  

𝑀Ω = 𝐼𝐼𝐶𝑅Ω̇ = 2(𝐹𝑙𝑡
𝜒𝑖 + 𝐹𝑟𝑡

𝜒𝑜) −
𝑚𝑔

2
(cos(𝛼𝑖) 𝜒𝑖𝜇𝑖 + cos(𝛼𝑜) 𝜒𝑜𝜇𝑜)     (3.18) 

Here, the mass moment of inertia about the ICR is represented as IICR. The terms 𝜇𝑖 and 𝜇𝑜 are 

the inner and outer coefficients of friction. These are defined by Pacejka’s formula [51] as 

𝜇(𝛼𝑘) = 𝐶1 sin(𝐶2 tan−1(𝐶3𝛼𝑘 − 𝐶4(𝐶3𝛼𝑘 − tan−1(𝐶3𝛼𝑘))))  (3.19) 

This equation is based on the slip angle defined earlier in this paper and road constants defined 

by the surface conditions, C1 through C4. Although the surface conditions can be characterized 

by this formula, it is often very hard to find constants for the operating surface, especially as the 

robot moves and the surface conditions change. Because of the lack of information on the 
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various operating surfaces, the derivations using equation (3.18) will often ignore the forces 

generated by friction and lump them into an uncertainty term. 

3.3.2. Dynamic Model 

Slip angle constraints are relaxed in this study and then equations (3.12) through (3.19) 

are used to form  

𝐼𝐼𝐶𝑅
𝑑Ω

𝑑𝑡
= (2𝐹𝑙 cos(𝛼𝑖) −

𝑚𝑔

2
𝜇(𝛼𝑖)) 𝜒𝑖 + (2𝐹𝑟 cos(𝛼𝑜) −

𝑚𝑔

2
𝜇(𝛼𝑜)) 𝜒𝑜       (3.20) 

In the previous equation the angular acceleration, 
𝑑Ω

𝑑𝑡
, is found as 

𝑑Ω

𝑑𝑡
=

1

𝐵
(
𝑑𝑉𝑟

𝑑𝑡
−

𝑑𝑉𝑙

𝑑𝑡
)            (3.21) 

The mass of the robot, m, and the acceleration due to gravity, g, are both given constants. The 

equations (3.12) through (3.15) can be written in terms of left and right wheel velocity as  

𝜒𝑖 =
𝐵

2
√(

𝑉𝑙+𝑉𝑟−sgn(Ω)(𝑉𝑙−𝑉𝑟)

sgn(Ω)(𝑉𝑙−𝑉𝑟)
)
2

+ (
𝐻

𝐵
)
2

   (3.22) 

𝜒𝑜 =
𝐵

2
√(

𝑉𝑙+𝑉𝑟+sgn(Ω)(𝑉𝑙−𝑉𝑟)

sgn(Ω)(𝑉𝑙−𝑉𝑟)
)
2

+ (
𝐻

𝐵
)
2

   (3.23) 

𝛼𝑖 = arctan ((
𝐻

𝐵
) (

sgn(Ω)(𝑉𝑙−𝑉𝑟)

𝑉𝑙+𝑉𝑟−sgn(Ω)(𝑉𝑙−𝑉𝑟)
))   (3.24) 

𝛼𝑜 = arctan ((
𝐻

𝐵
) (

sgn(Ω)(𝑉𝑙−𝑉𝑟)

𝑉𝑙+𝑉𝑟−sgn(Ω)(𝑉𝑙−𝑉𝑟)
))   (3.25) 

Now the radius of curvature is fully related to the traction force in terms of the left and right 

wheel velocities by using equations (3.20) through (3.25). It is still necessary to solve for the 

traction force and relate that to motor torque. For the traction force, it is assumed that the vehicle 

has an even weight distribution so the traction force, 𝐹𝑇(𝑖)
, of wheel i can be related to the 

angular acceleration of  wheel i, 𝜔̇(𝑖), the mass of the robot, m, the wheel radius, 𝑟𝑤, and the mass 

of inertia of the wheel about its axis,  𝐼𝑤 as 
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𝐹𝑇(𝑖)
𝑟𝑤 = (𝐼𝑤 +

1

4
𝑚𝑟𝑤

2) 𝜔̇(𝑖)    (3.26) 

The traction force for the left and right side of the robot can be derived from equations (3.5) and 

(3.26) as  

𝐹𝑙 = 𝐹𝑇(3)
+ 𝐹𝑇(4)

= 2(
𝐼𝑤

𝑟𝑤
2 +

𝑚

4
)

𝑑𝑉𝑙

𝑑𝑡
    (3.27) 

𝐹𝑟 = 𝐹𝑇(1)
+ 𝐹𝑇(2)

= 2(
𝐼𝑤

𝑟𝑤
2 +

𝑚

4
)

𝑑𝑉𝑟

𝑑𝑡
    (3.28) 

The left and right side traction forces can also be related to the wheel torques and ultimately the 

motor voltages. The individual wheel torque, 𝑇(𝑖), is subject to 

𝑇(𝑖) = 𝐹𝑇(𝑖)
𝑟𝑤 − 𝑇𝑙𝑜𝑠𝑠     (3.29) 

where 𝑇𝑙𝑜𝑠𝑠 accounts for torque losses that are otherwise ignored. The torque on each wheel can 

also be related to the motor torque, 𝑇𝑚 as  

𝑇(𝑖) = 𝑇𝑚 (
𝑛𝑟

2
)          (3.30) 

where 𝑛𝑟 is the transmission ratio of the drivetrain. The motor torque is related to the angular 

velocity of the motor shaft by a motor torque constant, 𝑘𝑡, and armature resistance 𝑅𝑎 and 

subject to losses from the back electromagnetic field constant 𝑘𝑏. These parameters are provided 

by the manufacture of the motor in the following relations and they combine with equations 

(3.2), (3.29) and (3.30) to form 

𝐹𝑇(𝑖)
= (

𝑘𝑡𝑛𝑟

2𝑅𝑎𝑟𝑤
) (𝑉𝐷𝐶 − 𝑘𝑏𝑛𝑟𝜔(𝑖)) + 𝑇𝑙𝑜𝑠𝑠    (3.31) 

𝐹𝑙 = 𝐹𝑇(3) + 𝐹𝑇(4) = (
𝑘𝑡𝑛𝑟

𝑅𝑎𝑟𝑤
) (𝑉𝐷𝐶𝐿

− 𝑘𝑏𝑛𝑟𝜔𝑙) + Δ𝐿   (3.32) 

𝐹𝑟 = 𝐹𝑇(1)
+ 𝐹𝑇(2)

= (
𝑘𝑡𝑛𝑟

𝑅𝑎𝑟𝑤
) (𝑉𝐷𝐶𝑅

− 𝑘𝑏𝑛𝑟𝜔𝑟) + Δ𝑅  (3.33) 
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where Δ𝐿 and Δ𝑅 lump all the motor and transmission losses on the left and right side 

respectively. Equations (3.32) and (3.33) can be combined with (3.27) and (3.28) to form the left 

and right side vehicle accelerations as 

𝑑𝑉𝑙

𝑑𝑡
= (

2𝑘𝑡𝑛𝑟𝑟𝑤

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

)𝑉𝐷𝐶𝐿
− (

2𝑘𝑏𝑘𝑡𝑛𝑟
2

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

)𝑉𝑙 + Δ𝐿    (3.34) 

𝑑𝑉𝑟

𝑑𝑡
= (

2𝑘𝑡𝑛𝑟𝑟𝑤

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

)𝑉𝐷𝐶𝑅
− (

2𝑘𝑏𝑘𝑡𝑛𝑟
2

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

)𝑉𝑟 + Δ𝑅    (3.35) 

𝑑v𝑥

𝑑𝑡
=

1

2
(
𝑑𝑉𝑟

𝑑𝑡
+

𝑑𝑉𝑙

𝑑𝑡
)     (3.36) 

which can be related to the overall vehicle acceleration in equation (3.36) to form 

𝑑𝑣𝑥

𝑑𝑡
= (

𝑘𝑡𝑛𝑟𝑟𝑤

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

) (𝑉𝐷𝐶𝑅
+ 𝑉𝐷𝐶𝐿

) − (
2𝑘𝑏𝑘𝑡𝑛𝑟

2

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

) 𝑣𝑥 + Δ𝐿𝑜𝑠𝑠  (3.37) 

where all the losses can be summed up as Δ𝐿𝑜𝑠𝑠. Along with the individual traction force, this 

result can be used in the control algorithm. 

The angular acceleration is found using equations (3.20) through (3.25). The fully 

expanded equation yields the following cumbersome nonlinear equation, 

𝐼𝐼𝐶𝑅

𝑑𝛺

𝑑𝑡
=

[
 
 
 
 
𝑘𝑡𝑛𝑟

𝑅𝑎𝑟𝑤
(𝑉𝐷𝐶𝐿

−
𝑘𝑏𝑛𝑟

𝑟𝑤
𝑉𝑙)√

1

1 + (
𝐻
𝐵)

2

(
sgn(Ω)(𝑉𝑙 − 𝑉𝑟)

𝑉𝑙 + 𝑉𝑟 − sgn(Ω)(𝑉𝑙 − 𝑉𝑟)
)
2 −

𝑚𝑔

2
𝜇𝑖

]
 
 
 
 

× … 

…[
𝐵

2
√(

𝑉𝑙 + 𝑉𝑟 − sgn(Ω)(𝑉𝑙 − 𝑉𝑟)

sgn(Ω)(𝑉𝑙 − 𝑉𝑟)
)

2

+ (
𝐻

𝐵
)
2

] + ⋯ 

…

[
 
 
 
 
𝑘𝑡𝑛𝑟

𝑅𝑎𝑟𝑤
(𝑉𝐷𝐶𝑅

−
𝑘𝑏𝑛𝑟

𝑟𝑤
𝑉𝑟)√

1

1 + (
𝐻
𝐵)

2

(
sgn(Ω)(𝑉𝑙 − 𝑉𝑟)

𝑉𝑙 + 𝑉𝑟 + sgn(Ω)(𝑉𝑙 − 𝑉𝑟)
)
2 −

𝑚𝑔

2
𝜇𝑖

]
 
 
 
 

× … 

[
𝐵

2
√(

𝑉𝑙+𝑉𝑟+sgn(Ω)(𝑉𝑙−𝑉𝑟)

sgn(Ω)(𝑉𝑙−𝑉𝑟)
)
2

+ (
𝐻

𝐵
)
2

]     (3.38) 
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This is linearized by noting that the ratio 
𝐻

𝐵
 is approximately 1. By assuming that the ratio and all 

of the radicals associated with the ratio are equal to one the following terms can be approximated  

as 

𝐵

2 √
1

1+(
𝐻

𝐵
)
2
(

sgn(Ω)(𝑉𝑙−𝑉𝑟)

𝑉𝑙+𝑉𝑟+sgn(Ω)(𝑉𝑙−𝑉𝑟)
)
2 (

𝑉𝑙+𝑉𝑟−sgn(Ω)(𝑉𝑙−𝑉𝑟)

sgn(Ω)(𝑉𝑙−𝑉𝑟)
)
2

+ (
𝐻

𝐵
)
2

≈
2

√2
(
𝑉0

Ω
)   (3.39) 

𝐵

2 √
1

1+(
𝐻

𝐵
)
2
(

sgn(Ω)(𝑉𝑙−𝑉𝑟)

𝑉𝑙+𝑉𝑟−sgn(Ω)(𝑉𝑙−𝑉𝑟)
)
2 (

𝑉𝑙+𝑉𝑟+sgn(Ω)(𝑉𝑙−𝑉𝑟)

sgn(Ω)(𝑉𝑙−𝑉𝑟)
)
2

+ (
𝐻

𝐵
)
2

≈
2

√2
(
𝑉0

Ω
)   (3.40) 

where Vo can be either Vl or Vr depending on sgn(𝛺). This reduces equation (3.38) to  

𝑑Ω

𝑑𝑡
=

𝐵𝑘𝑡𝑛𝑟

2𝐼𝑅𝑎𝑟𝑤
2 [(𝑉𝐷𝐶𝐿

−
𝑘𝑏𝑛𝑟

𝑟𝑤
𝑉𝑙) − (𝑉𝐷𝐶𝑅

−
𝑘𝑏𝑛𝑟

𝑟𝑤
𝑉𝑟)] − Δ𝑀Ω   (3.41) 

where Δ𝑀Ω represents the uncertainties introduced through linearization, Δ𝑒, and the unknown 

friction conditions shown in equation . 

Δ𝑀Ω = Δ𝑒 + [
𝑚𝑔

2
𝜇𝑖 +

𝑚𝑔

2
𝜇𝑜]     (3.42) 

Further simplification leads to  

𝑑Ω

𝑑𝑡
= (

𝐵2𝑘𝑏𝑘𝑡𝑛𝑟
2

2𝐼𝑅𝑎𝑟𝑤
2 )Ω − (

𝐵𝑘𝑡𝑛𝑟

2𝐼𝑅𝑎𝑟𝑤
2) (𝑉𝐷𝐶𝑅

− 𝑉𝐷𝐶𝐿
) + Δ𝑀Ω   (3.43) 

By using equations (3.34), (3.35), (3.37) and (3.43) the dynamics system is now linearized and 

can be used in combination with the kinematic equations (3.7) and (3.9) in standard robust and 

optimal linear control equations. This study will use this new dynamic model to implement some 

of those control algorithms in later chapters.  
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CHAPTER 4.  GPS TRILATERATION IMPROVEMENTS  

As noted earlier, standard GPS algorithms tend have precision errors that are influenced 

by the satellite selection algorithms used in calculation of the receiver’s position. This study 

aimed to improve the precision of the position fix by selecting satellite signals of similar 

strength. Along with this improvement, the study also compared the traditional solution 

technique of a least-squares algorithm to the BFGS algorithm and Newtonian algorithm. The 

BFGS and Newtonian algorithms make less approximations and it was hypothesized that this 

also can improve the precision of the position fix. It is important to note again that this study 

sought to improve the precision of the position fix, not necessarily the accuracy. The accuracy 

can be dealt with in a control application while imprecision causes navigation problems.  This 

chapter details the satellite position calculations, the time difference calculations, the estimation 

algorithms, and the satellite selection algorithm.  

4.1. Satellite Coordinate Calculation 

The calculations for satellite coordinates are based on the ephemeris data and raw time 

data. The ephemeris data is listed below in Table 4.1 which has been adapted from  [18], [52], [53] 

and [54]. The following derivation is adapted from standard positioning equations found in [18], 

[52], [53]. 
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Table 4.1: Ephemeris data received from each satellite. *Denotes that 

data was calculated by the GPS receiver from the standard ephemeris 

data. 

Parameter Scale Factor Units 

C_rs 2-5 Meters 

M_0 2-31 Semi-circles 

C_uc 2-29 Radians 

e 2-33 Dimensionless 

C_us 2-29 Radians 

sqrt_A 2-19 Meters1/2 

t_oe 24 Seconds 

C_ic 2-29 Radians 

OMEGA_0 2-31 Semi-circles 

C_is 2-29 Radians 

i_0 2-31 Semi-circles 

C_rc 2-5 Meters 

OMEGADOT 2-43 Semi-circles/sec 

IDOT 2-43 Semi-circles/sec 

n* - - 

r1me2* - - 

omega - - 

𝐚𝐟𝟎 - - 

𝐚𝐟𝟏 - - 

𝐚𝐟𝟐 - - 

 

To start the initial time difference, tk, is calculated as shown below in equation (4.1) where 

t is the GPS receiver time at the reception of the signal. This is taken from the ephemeris data 

given by the receiver.  

𝑡𝑘 = 𝑡 − 𝑡_𝑜𝑒      (4.1) 

The receiver time, t, is  

𝑡 = 𝑡𝐺𝑃𝑆𝑘
− (𝑎𝑓0 + 𝑎𝑓1

(t − 𝑡_𝑜𝑒) + 𝑎𝑓2
(t − 𝑡_𝑜𝑒)2 + Δ𝑡𝑟 + 𝑇𝐺𝐷)  (4.2) 

 and it is based on the atmospheric conditions received from the satellites. This a quadratic equation 

with a closed loop solution however it is solved numerically using Newton-Raphson’s method for 

root finding. The method applied to equation (4.2) can be seen below in equation (4.3). The final 

value is then used to find tk. 
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𝑡(𝑛+1) = 𝑡(𝑛) +
𝑡𝐺𝑃𝑆𝑘

−(𝑎𝑓0+𝑎𝑓1
(𝑡(𝑛)−𝑡_𝑜𝑒)+𝑎𝑓2

(𝑡(𝑛)−𝑡_𝑜𝑒)
2
+Δ𝑡𝑟+𝑇𝐺𝐷)−𝑡(𝑛)

𝑎𝑓1+2𝑎𝑓2(𝑡(𝑛)−𝑡_𝑜𝑒)+1
  (4.3) 

Next, the mean anomaly, 

𝑀 = 𝑀_0 + 𝑛𝑡𝑘     (4.4) 

is found by using the ephemeris data and equation (4.1). Then, Kepler’s Equation of Eccentric 

Anomaly,  

𝑀 = 𝐸𝑘 − 𝑒 𝑠𝑖𝑛(𝐸𝑘)     (4.5) 

is solved iteratively by using Newton’s method as 

𝐸𝑘 = 𝐸𝑘−1 −
𝐸𝑘−1−𝑒 𝑠𝑖𝑛(𝐸𝑘−1)−𝑀

1−𝑒 𝑐𝑜𝑠(𝐸𝑘−1)
    (4.6) 

until 

|𝐸𝑘 − 𝐸𝑘−1| ≤ 𝜀     (4.7) 

Next, the true anomaly is solved by taking the ephemeris data and combining the data with the 

eccentric anomaly as 

𝜐𝑘 = 𝑡𝑎𝑛−1 (
(𝑟1𝑚𝑒2)𝑠𝑖𝑛(𝐸𝑘)

𝑐𝑜𝑠(𝐸𝑘)−𝑒
)     (4.8) 

The true anomaly is then used to find the argument of latitude as 

𝛷𝑘 = 𝜐𝑘 + 𝑜𝑚𝑒𝑔𝑎     (4.9) 

The argument of latitude correction, radius correction and inclination corrections are 

𝛿𝑢𝑘 = (𝐶_𝑢𝑐) 𝑐𝑜𝑠(2𝛷𝑘) + (𝐶_𝑢𝑠) 𝑠𝑖𝑛(2𝛷𝑘)     (4.10) 

𝛿𝑟𝑘 = (𝐶_𝑟𝑐) 𝑐𝑜𝑠(2𝛷𝑘) + (𝐶_𝑟𝑠) 𝑠𝑖𝑛(2𝛷𝑘)      (4.11) 

and 

𝛿𝑖𝑘 = (𝐶_𝑖𝑐) 𝑐𝑜𝑠(2𝛷𝑘) + (𝐶_𝑖𝑠) 𝑠𝑖𝑛(2𝛷𝑘)    (4.12) 
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respectively. They use the ephemeris data and the result from equation (4.9). Those results are 

then combined with the ephemeris data and used to find the corrected argument of latitude, the 

corrected radius, and corrected inclination as 

𝑢𝑘 = 𝛷𝑘 + 𝛿𝑢𝑘      (4.13) 

𝑟𝑘 = (𝑠𝑞𝑟𝑡_𝐴)2(1 − 𝑒 𝑐𝑜𝑠(𝐸𝑘)) + 𝛿𝑟𝑘   (4.14) 

and 

𝑖𝑘 = 𝑖_0 + 𝛿𝑖𝑘 + (𝐼𝐷𝑂𝑇)(𝑡𝑘)    (4.15) 

respectively. The corrected longitude of ascending node is then calculated as  

𝛺𝐾 = 𝑂𝑀𝐸𝐺𝐴_0 + (𝑂𝑀𝐸𝐺𝐴𝐷𝑂𝑇 − 𝜔𝑒)𝑡𝑘 − 𝜔𝑒𝑡𝑜𝑒  (4.16) 

by combining the ephemeris data, time data and the constant rotation of the earth, ωe =

7.292115𝐸 − 5. Next, the orbital plane coordinates, 𝑋𝐾
′ and 𝑌𝐾

′  are found as  

𝑋𝐾
′ = 𝑟𝑘 𝑐𝑜𝑠(𝑢𝑘)     (4.17) 

𝑌𝐾
′ = 𝑟𝑘 𝑠𝑖𝑛(𝑢𝑘)     (4.18) 

by using the ephemeris data and the previously solved equations. Finally, this information is all 

combined as 

[
𝑋𝐾

𝑌𝐾

𝑍𝐾

] = [

𝑋𝐾
′ 𝑐𝑜𝑠(𝛺𝐾) − 𝑌𝐾

′ 𝑠𝑖𝑛(𝛺𝐾) 𝑐𝑜𝑠(𝑖𝑘)

𝑋𝐾
′ 𝑠𝑖𝑛(𝛺𝐾) + 𝑌𝐾

′ 𝑐𝑜𝑠(𝛺𝐾) 𝑐𝑜𝑠(𝑖𝑘)

𝑌𝐾
′ 𝑠𝑖𝑛(𝑖𝑘)

]   (4.19) 

 to find the Cartesian coordinates of the given satellite in an earth centered earth fixed (ECEF) 

coordinate system. For the purpose of the precision study the coordinates were left in the ECEF 

coordinates for simplicity. For use in most autonomous vehicle navigations however, the 

coordinates should be converted into Universal Transverse Mercator (UTM) coordinates for 

simplicity. 
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4.2. Time Difference Estimation 

One of the unknowns in the trilateration algorithm is the time difference between the 

satellite and the receiver. This time difference can be estimated from the raw measurement data 

given by the satellite, shown in Table 4.2 [54].    

Table 4.2: Raw measurement data received from each satellite 

Parameter Units 

Pseudo Range Integer Number (PRIN) Milliseconds 

Code phase (CP) 1/16th chip 

Pseudo Range (PR) centimeters 

 

The time difference is on a scale of milliseconds. Simply subtracting the calculated times 

of GPS reception, 𝑡𝐺𝑃𝑆𝐾
, and the satellite transmission time, 𝑡𝐾, will not work because these 

values are typically calculated in seconds and do not have a high enough precision to find a 

reliable difference on the order of milliseconds. Instead, this value is found in a variety of ways 

and on the Copernicus II receiver that is used in this study the time is found from the code phase. 

The estimation of the time difference is  

𝑡𝑒𝑠𝑡 = 𝑐 ∗ (
𝑃𝑅

1000
+

𝐶𝑃

16∗1.023∗106) +
𝑃𝑅

100
     (4.20) 

The code phase is 1/16th of the course acquisition code, or C/A code, of the chip, which is 1.23 

Mbps for this receiver. This means the code phase unit is 61.0948ns. It should be noted that this 

is the time resolution of the receiver, when converted to a distance resolution by multiplying by 

the speed of light the resolution is 18.3158 meters and this error is too large for many 

applications. This is adjusted for by the time delay, 𝛥𝑇. The time delay is also composed of 

unknown factors such as Einstein curvature and unknown ionospheric conditions.  

4.3. Receiver Position Estimation 

As noted in Chapter 3, the set of equations made from using the satellite data is not 

consistent and the solution needs to be estimated. The set of equations can be represented as  
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𝐹(𝑞) = [

𝐹(𝑞1)
𝐹(𝑞2)
𝐹(𝑞3)
𝐹(𝑞4)

] =

[
 
 
 
 
(X1 − 𝑞1)

2 + (Y1 − 𝑞2)
2 + (Z1 − 𝑞3)

2 − 𝑐2( 𝑡𝑒𝑠𝑡1 − 𝑞4)
2

(X2 − 𝑞1)
2 + (Y2 − 𝑞2)

2 + (Z2 − 𝑞3)
2 − 𝑐2( 𝑡𝑒𝑠𝑡2 − 𝑞4)

2

(X3 − 𝑞1)
2 + (Y3 − 𝑞2)

2 + (Z3 − 𝑞3)
2 − 𝑐2( 𝑡𝑒𝑠𝑡3 − 𝑞4)

2

(X4 − 𝑞1)
2 + (Y4 − 𝑞2)

2 + (Z4 − 𝑞3)
2 − 𝑐2( 𝑡𝑒𝑠𝑡4 − 𝑞4)

2]
 
 
 
 

  (4.21) 

where 

𝑞 = [

𝑥
𝑦
𝑧

𝛥𝑇

]      (4.22) 

and q is sought so 

𝐹(𝑞) = 0      (4.23) 

This problem can be approached in different ways with varying degrees of accuracy. 

4.3.1. Least-Squares Method 

The least-squares is a very common numerical method [55]–[58] for performing linear 

regressions on a set of data and, in the case of this study, finding a state estimation by 

minimizing a set of equations. As is typical for numerical solutions the least squares method 

starts with an initial guess, 𝑞0, and then uses the Taylor series expansion, 

𝐹(𝑞) = 𝐹(𝑞0) + ∇𝐹𝑞(𝑞0)∆𝑞 + 𝜈    (4.24) 

to find the root of F(q). In the expansion 𝜈 represents the higher order terms that are neglected. 

In formulating the problem it is convenient to form the notation of  

∇𝐹𝑞(𝑞0) = A(𝑞0)     (4.25) 

∆𝑞 = (q − 𝑞0)     (4.26) 

𝑏(𝑞0) = 𝐹(𝑞) − 𝐹(𝑞0)    (4.27) 

Then a set of linear equations can be formed as 

𝑏(𝑞0) = A(𝑞0)∆𝑞 + 𝜈     (4.28) 

and q is sought for which  

A(𝑞0)∆𝑞 = 0      (4.29) 
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This usually cannot be found because of the approximations so the minimization of the square 

difference is sought as 

𝐽(𝑞0) = [b(𝑞0) − A(𝑞0)∆𝑞]𝑇[b(𝑞0) − A(𝑞0)∆𝑞]   (4.30) 

The derivative of (4.30) becomes 

𝛿𝐽(𝑞0) = δ[b(𝑞0) − A(𝑞0)∆𝑞]𝑇[b(𝑞0) − A(𝑞0)∆𝑞] + ⋯ 

… [b(𝑞0) − A(𝑞0)∆𝑞]𝑇𝛿[b(𝑞0) − A(𝑞0)∆𝑞]  (4.31) 

where  

𝛿𝐽(𝑞0) = 0      (4.32) 

is the minimization of (4.30). Equation (4.32) can be simplified to  

[A(𝑞0)
𝑇b(𝑞0) − A(𝑞0)

𝑇A(𝑞0)∆𝑞] = 0   (4.33) 

Then through algebraic manipulation ∆𝑞 can be solved directly as  

∆𝑞 = [A(𝑞0)
𝑇A(𝑞0)]

−1A(𝑞0)
𝑇b(𝑞0)    (4.34) 

With ∆𝑞 found q is solved for by  

𝑞𝑘+1 = 𝑞𝑘 + ∆𝑞𝑘     (4.35) 

This process is repeated until 

𝜀 > ‖∆𝑞𝑘‖2      (4.36) 

This forms the typical least square solution formed in most GPS trilateration algorithms. There 

are errors that come with this solution which can be attributed to the ignored higher terms in the 

Taylor’s series expansion and the numerical approximation of the inverse of a matrix in solving 

for ∆𝑞. 

4.3.2. Newtonian Method 

One method that seeks to avoid ignoring the higher order terms in the Taylor series 

expansion [55]–[58] is by finding the unconstrained minimum of 



 

46 

𝑞 = arg min
𝑞

 𝐺(𝑞)     (4.37) 

where G(q) is defined as 

∇𝐺(𝑞) = 𝐹(𝑞)     (4.38) 

So G(q) can be defined directly as  

𝐺(𝑞) = ∑ [∫𝐹𝑘(𝑞) 𝑑𝑞𝑘 − 𝜑𝑘(𝑞)]4
𝑘=1     (4.39) 

The terms 𝜑𝑆(𝑞) uphold the continuity of 𝐺(𝑞) such that 

𝛿2𝐺(𝑞)

𝛿𝑞𝑖𝛿𝑞𝑗
=

𝛿2𝐺(𝑞)

𝛿𝑞𝑗𝛿𝑞𝑖
     (4.40) 

The terms 𝜑𝑆(𝑞) that make equation (4.40) true are   

𝜑(𝑞) = [

𝜑1(𝑞)
𝜑2(𝑞)
𝜑3(𝑞)
𝜑4(𝑞)

] =

[
 
 
 
 

(X2 − 𝑞2)
2𝑞2 + (X3 − 𝑞3)

2𝑞3 + (X4 − 𝑞4)
2𝑞4

(Y1 − 𝑞1)
2𝑞1 + (Y3 − 𝑞3)

2𝑞3 + (Y4 − 𝑞4)
2𝑞4

(Z1 − 𝑞1)
2𝑞1 + (Z2 − 𝑞2)

2𝑞2 + (Z4 − 𝑞4)
2𝑞4

𝜅(𝑡𝑒𝑠𝑡1 − 𝑞1)
2𝑞1 + 𝜅(𝑡𝑒𝑠𝑡2 − 𝑞2)

2𝑞2 + 𝜅(𝑡𝑒𝑠𝑡3 − 𝑞3)
2𝑞3]

 
 
 
 

  (4.41) 

where –c2 is represented as κ. By defining the function η(q) as  

𝜂(𝑞) = [

𝜂1(𝑞)
𝜂2(𝑞)
𝜂3(𝑞)
𝜂4(𝑞)

] =
1

3

[
 
 
 
 

(X1 − 𝑞1)
2(X1 − 2𝑞1)

(Y2 − 𝑞2)
2(Y2 − 2𝑞2)

(Z3 − 𝑞3)
2(Z3 − 2𝑞3)

𝜅(𝑡𝑒𝑠𝑡4 − 𝑞4)
2(𝑡𝑒𝑠𝑡4 − 2𝑞4)]

 
 
 
 

    (4.42) 

equation (4.39) can be simplified as  

𝐺(𝑞) = ∑ {[(𝑋𝑘 − 𝑞1)
2 + (𝑌𝑘 − 𝑞2)

2 + (𝑍𝑘 − 𝑞3)
2 − 𝑐2( 𝑡𝑒𝑠𝑡𝑘 − 𝑞4)

2]𝑞𝑘 …4
𝑘=1    

…− 𝜑𝑘(𝑞) + 𝜂𝑘(𝑞)     (4.43) 

which can be solved numerically.  

 The most straight forward way to solve the minimization of G is to find the root of the 

gradient, F, using Newton’s method for root finding. The equation in the case of the functions 

defined above becomes 

𝑞𝑘+1 = 𝑞𝑘 +
𝐽

𝐻
      (4.44) 
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where J is the Jacobian and H is the Hessian of G. The Jacobian and Hessian of G are defined as  

𝐽 = ∇𝐺(𝑞) =

[
 
 
 
𝑑𝐺1

𝑑𝑥1
⋯

𝑑𝐺1

𝑑𝑥𝑚

⋮ ⋱ ⋮
𝑑𝐺𝑛

𝑑𝑥1
⋯

𝑑𝐺𝑛

𝑑𝑥𝑚]
 
 
 
=  𝐹(𝑞)   (4.45) 

In equation (4.21) the gradient of (4.45) is required so the Hessian needs to be formed as  

𝐻 = ∇2𝐺(𝑞) =

[
 
 
 
 
𝑑2𝐺1

𝑑𝑥1
2 ⋯

𝑑2𝐺1

𝑑𝑥𝑚
2

⋮ ⋱ ⋮
𝑑2𝐺𝑛

𝑑𝑥1
2 ⋯

𝑑2𝐺𝑛

𝑑𝑥𝑚
2]
 
 
 
 

= ∇𝐹(𝑞) =

[
 
 
 

2(X1 − 𝑞1)

2(Y2 − 𝑞2)

2(Z3 − 𝑞3)

2𝜅(𝑡𝑒𝑠𝑡4 − 𝑞4)]
 
 
 

  (4.46) 

Substituting equations (4.45) and (4.46) into (4.44) the following solution to the GPS trilateration 

becomes  

𝑞𝑘+1 = 𝑞𝑘 + ⋯ 

…2

[
 
 
 

(X1 − 𝑞1) (X1 − 𝑞2) (X1 − 𝑞3) (X1 − 𝑞4)

(Y2 − 𝑞1) (Y2 − 𝑞2) (Y2 − 𝑞3) (Y2 − 𝑞4)

(Z3 − 𝑞1) (Z3 − 𝑞2) (Z3 − 𝑞3) (Z3 − 𝑞4)

𝜅(𝑡𝑒𝑠𝑡4 − 𝑞1) 𝜅(𝑡𝑒𝑠𝑡4 − 𝑞2) 𝜅(𝑡𝑒𝑠𝑡4 − 𝑞3) 𝜅(𝑡𝑒𝑠𝑡4 − 𝑞4)]
 
 
 
−1

× … 

…

[
 
 
 
 
(X1 − 𝑞1)

2 + (Y1 − 𝑞2)
2 + (Z1 − 𝑞3)

2 − 𝑐2( 𝑡𝑒𝑠𝑡1 − 𝑞4)
2

(X2 − 𝑞1)
2 + (Y2 − 𝑞2)

2 + (Z2 − 𝑞3)
2 − 𝑐2( 𝑡𝑒𝑠𝑡2 − 𝑞4)

2

(X3 − 𝑞1)
2 + (Y3 − 𝑞2)

2 + (Z3 − 𝑞3)
2 − 𝑐2( 𝑡𝑒𝑠𝑡3 − 𝑞4)

2

(X4 − 𝑞1)
2 + (Y4 − 𝑞2)

2 + (Z4 − 𝑞3)
2 − 𝑐2( 𝑡𝑒𝑠𝑡4 − 𝑞4)

2]
 
 
 
 

  (4.47) 

For this study there are only four equations used in the set of equations used and because of the 

position of the satellites in relation to the receiver the Hessian of G should always be invertible.   

4.3.3. Broyden-Fletcher-Goldfarb-Shanno Method 

In trilateration algorithms that use more than four satellites and in other applications of 

numerical methods the inverse of the Hessian is not always able to be found directly. Because of 

this fact and the fact that finding the Hessian can be computationally intense there are a set of 

algorithms known as quasi-Newtonian methods. These methods seek to estimate the Hessian 

through iterations. The first quasi-Newtonian approximation was formulated by Davidson, 
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Fletcher and Powell and is known as the DFP [59], [60] method which formed three properties 

about the Hessian that allowed for a numerical approximation based on those properties. That 

method was expanded on by Broyden [61], Fletcher [62], Goldfarb [63] and Shanno [64], each of 

whom expanded the DFP method independently. Their method, the BFGS method, seeks to 

approximate the inverse of the Hessian to avoid problems with inverting the Hessian should 

singularities form in the approximation of the Hessian in the DPF method. Formulation of the 

BFGS has become standard and can be found in many numerical method books [55]–[57]. 

In this method, the inverse of the Hessian, 𝐻̃𝑘, is subject to the same set of constraints 

that help form a method for a numerical approximation. The first is that 𝐻̃𝑘 must be symmetric 

and the second is that the gradient of the approximation must be equal to the gradient of the 

function the current and the previous time step, which is represented as  

∇𝑓𝑘 + 𝐻̃𝑘(𝑞𝑘−1 − 𝑞𝑘) = ∇𝑓𝑘−1    (4.48) 

and rearranged to form the constraint 

𝐻̃𝑘𝑠𝑘−1 = 𝑦𝑘−1     (4.49) 

where  

𝑠𝑘−1 = (𝑞𝑘−1 − 𝑞𝑘)     (4.50) 

and  

𝑦𝑘−1 = ∇𝑓𝑘 − ∇𝑓𝑘−1     (4.51) 

The final constraint is that the change in H at each time step should be minimized forming  

‖𝐻̃𝑘 − 𝐻̃𝑘−1‖𝑤
     (4.52) 

subject to the first to constraints. This minimization is solved by 

𝐻̃𝑘 = (𝐼 − y𝑘−1𝜌𝑘−1𝑠𝑘−1
𝑇 )𝐻̃𝑘−1(𝐼 − y𝑘−1𝜌𝑘−1y𝑘−1

𝑇 ) + 𝑦𝑘−1𝜌𝑘−1𝑦𝑘−1
𝑇   (4.53) 

where 
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𝜌𝑘−1 = (𝑦𝑘−1
𝑇 𝑠𝑘−1)

−1     (4.54) 

This can be simplified and rewritten as 

𝐻̃𝑘+1 = 𝐻̃𝑘 +
[(𝑠𝑘

𝑇𝑦𝑘+y𝑘
𝑇𝐻̃𝑘𝑦𝑘)(𝑠𝑘𝑠𝑘

𝑇)]

(𝑠𝑘
𝑇𝑦𝑘)

2 −
𝐻̃𝑘𝑦𝑘𝑠𝑘

𝑇+𝑠𝑘y𝑘
𝑇𝐻̃𝑘

𝑠𝑘
𝑇𝑦𝑘

   (4.55) 

Once the inverse of the Hessian is formed it can be used in place of the actual Hessian of G in 

equation (4.47). 

4.4. Satellite Selection Algorithm 

For the satellite selection the signal strengths were monitored and a selection of the most 

similar signal strengths were selected. The data from the preliminary study showed the signal 

strengths between 2 and 4 were most common. This gives a good selection criterion for 

Copernicus II GPS receivers in Fargo, ND. It is important to note that the strength criterion for 

selection may change based on the region and the capabilities of the receiver. Should this method 

prove to improve the trilateration precision more studies should be conducted on how to adjust 

the selection criterion for different regions and receivers.  
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CHAPTER 5.  ROBUST PATH TRACKING CONTROL 

This chapter discusses the background and application of path tracking of the robot. Path 

tracking requires the combination of the kinematics, dynamics, sensor theory and sensor fusion 

discussed in the previous chapters to successfully guide the robot along the desired path.  

5.1. Robot Path Tracking and Localization 

For path tracking control it is necessary to define where the robot is in relation to the 

desired path. In this study the path will be a fixed, predetermined route that is preprogrammed 

into the robot although it is often desired to update the path with respects to the surroundings 

using methods such as simultaneous localization and mapping (SLAM). The control theory 

outlined here can be applied to either a SLAM technique or a preplanned path. Regardless of 

how the path is defined the path tracking seeks to find where the robot is, where it is supposed to 

be, and how to return the robot back to the correct path.   

5.1.1. General Path Tracking and Localization 

The general path tracking problem assumes that the robot moves through space with a 

body frame of (x,y,z) and the inertial frame (XF,YF,ZF). The body frame is attached to the center 

of gravity of the robot and it rotates and moves as the robot rotates and moves. The x, y and z 

axis lie on the back and forth, left and right, and up and down motions of the robot respectively 

with the positive x, y and z directions in the forward, right and up axis respectively. The inertial 

frame is fixed at some point O(0,0,0) and the axis are oriented parallel to the ECEF coordinate 

system. In general the location and velocity in the inertial frame at time, t, is (X,Y,Z) and 

(VX,VY,VZ) respectively. Theses sets of data are related to each other as   

[
𝑋
𝑌
𝑍
] = [

∫𝑉𝑋𝑑𝑡

∫𝑉𝑌𝑑𝑡

∫𝑉𝑍 𝑑𝑡

]      (5.1) 
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Since the body frame is attached the robot, the (x,y,z) coordinates will always be equal to zero. 

The usefulness in the body frame comes in defining the local velocities (vx,vy,vz) to the inertial 

frame velocities as [65] 

[
𝑉𝑋

𝑉𝑌

𝑉𝑍

] = [

𝑐𝜃𝑦𝑐𝜃𝑧 𝑐𝜃𝑥𝑠𝜃𝑧 − 𝑐𝜃𝑧𝑠𝜃𝑥𝑠𝜃𝑦 −𝑠𝜃𝑥𝑠𝜃𝑧 − 𝑐𝜃𝑥𝑐𝜃𝑧𝑠𝜃𝑦

−𝑐𝜃𝑦𝑠𝜃𝑧 𝑐𝜃𝑥𝑐𝜃𝑧 + 𝑠𝜃𝑥𝑠𝜃𝑦𝑠𝜃𝑧 𝑐𝜃𝑥𝑠𝜃𝑦𝑠𝜃𝑧 − 𝑐𝜃𝑧𝑠𝜃𝑥

𝑠𝜃𝑦 𝑐𝜃𝑦𝑠𝜃𝑥 𝑐𝜃𝑥𝑐𝜃𝑦

] [

𝑣𝑥

𝑣𝑦

𝑣𝑧

]  (5.2)  

where the roll-pitch-yaw (RPY) angles (𝜃𝑥, 𝜃𝑦, 𝜃𝑧) relative to the inertial coordinate frame. In 

this equation and the following equations in this chapter 𝑐𝜃𝑖 = cos(𝜃𝑖) and 𝑠𝜃𝑖 = sin(𝜃𝑖).  

The inverse of this formulation is often times more useful. In this case the current 

position, (XG,YG,ZG), is known along the known trajectory and the local velocities, (vx,vy,vz), need 

to be found. So to find the inverse of (5.2) the derivative of the inertial frame position, 

        [
𝑉𝑋

𝑉𝑌

𝑉𝑍

] =

[
 
 
 
 
𝑑𝑋

𝑑𝑡
𝑑𝑌

𝑑𝑡
𝑑𝑍

𝑑𝑡 ]
 
 
 
 

      (5.3) 

is used to find 

[

𝑣𝑥

𝑣𝑦

𝑣𝑧

] = [

𝑐𝜃𝑦𝑐𝜃𝑧 𝑐𝜃𝑥𝑠𝜃𝑧 − 𝑐𝜃𝑧𝑠𝜃𝑥𝑠𝜃𝑦 −𝑠𝜃𝑥𝑠𝜃𝑧 − 𝑐𝜃𝑥𝑐𝜃𝑧𝑠𝜃𝑦

−𝑐𝜃𝑦𝑠𝜃𝑧 𝑐𝜃𝑥𝑐𝜃𝑧 + 𝑠𝜃𝑥𝑠𝜃𝑦𝑠𝜃𝑧 𝑐𝜃𝑥𝑠𝜃𝑦𝑠𝜃𝑧 − 𝑐𝜃𝑧𝑠𝜃𝑥

𝑠𝜃𝑦 𝑐𝜃𝑦𝑠𝜃𝑥 𝑐𝜃𝑥𝑐𝜃𝑦

]

𝑇

[
 
 
 
 
𝑑𝑋

𝑑𝑡
𝑑𝑌

𝑑𝑡
𝑑𝑍

𝑑𝑡 ]
 
 
 
 

   (5.4) 

With this formulation the body speed can now be related to the desired trajectory rate of change. 

If the RYP angles are fixed then the body speed is related using just the trajectory rate of change, 

however it is more common for curvilinear motion to be desired. In this case the body velocity is 

related to the rate of change of the trajectory and the RYP rates of change as 

        𝑑𝜃𝑥 = 𝑌𝑣𝑧𝑑𝑡 − 𝑍𝑣𝑦𝑑𝑡             (5.5) 

𝑑𝜃𝑦 = 𝑍𝑣𝑥𝑑𝑡 − 𝑋𝑣𝑧𝑑𝑡     (5.6) 
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𝑑𝜃𝑧 = 𝑋𝑣𝑦𝑑𝑡 − 𝑌𝑣𝑥𝑑𝑡    (5.7) 

which is a more complex set of differential equations [66], [67]. The information that needs to be 

known about the robot at all times is the current position along the known trajectory. 

 There are two main sensors to find the inertial frame position: 3-D IMU and GPS sensors. 

These are often times used in tandem to create a more accurate position reading of the robot. The 

3-D IMU can sense acceleration along three mutually perpendicular axis, ax, ay and az. The IMU 

can also sense the angular acceleration about each axis ωx, ωy and 𝜔z. When the IMU is fixed to 

the center of gravity of the robot the information it provides can be related to the RYP angles and 

the body velocities as 

[

𝜃𝑥

𝜃𝑦

𝜃𝑧

] = [

∫𝜔𝑥𝑑𝑡

∫𝜔𝑦𝑑𝑡

∫𝜔𝑧 𝑑𝑡

] + [

𝜈𝑥

𝜈𝑦

𝜈𝑧

]     (5.8) 

and 

[

𝑣𝑥

𝑣𝑦

𝑣𝑧

] = [

∫𝑎𝑥𝑑𝑡

∫𝑎𝑦𝑑𝑡

∫𝑎𝑧 𝑑𝑡

] + [

𝜇𝑥

𝜇𝑦

𝜇𝑧

]     (5.9) 

where (νx,νy,νz) and (μx,μy,μz) are the noise components for the RYP angles and body velocities 

(5.8) and (5.9) can now be used in equation (5.2) to find the inertial frame velocities and then 

equation (5.1) to find the inertial frame position.    

The GPS receiver calculates the inertial frame position to by taking information from at 

least four satellites. The details of this calculation are introduced in Chapter 2 and then continued 

in Chapter 4. Chapter 4 also details the noise associated with these calculations and suggested 

improvements to the algorithm. 
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5.1.2. Skid Steered Path Tracking on High Friction, Flat Surfaces 

The previous section discussed general path tracking in a large 3-D space which makes 

the equations large and cumbersome. It can be simplified by applying the kinematic and dynamic 

assumptions outlined in Chapter 3. The first major point in reducing the equations is instead of 

assuming the inertial frame is translated from the ECEF coordinate system it is assumed that the 

robot moves on a 2-D surface over a small localized area of earth that can be assumed to be flat 

such as Universal Transverse Mercator (UTM) zones. Path is then defined in the X and Y 

coordinates where 

        [

𝑑𝑋𝑟

𝑑𝑡
𝑑𝑌𝑟

𝑑𝑡

] = [
𝑉𝑋

𝑉𝑌
]                (5.10) 

and the body velocities are  

[
𝑣𝑥

𝑣𝑦
] = [

𝑐𝜃𝑧 −𝑠𝜃𝑧

𝑠𝜃𝑧 𝑐𝜃𝑧
]
T

[

𝑑𝑋

𝑑𝑡
𝑑𝑌

𝑑𝑡

]     (5.11) 

These are then used to define a curvilinear path in relation to the body velocities as 

𝑑𝜃𝑧 = 𝑋𝑣𝑦𝑑𝑡 − 𝑌𝑣𝑥𝑑𝑡    (5.12) 

The control parameters in this study are based on the linear velocities of the left and right wheels 

as Vl and Vr respectively. These can be related to the applied voltage for the left and right motor 

as shown in Chapter 3. The body velocities in the y axis is assumed to be zero because on high 

friction surfaces lateral sliding is not possible. So the body velocities and the heading angle 

become 

𝑣𝑥 =
1

2
(𝑉𝑟 + 𝑉𝑙)     (5.13) 

𝑣𝑦 = 0       (5.14) 

𝜃𝑍 = ∫
1

𝐵
(𝑉𝑟 − 𝑉𝑙)𝑑𝑡     (5.15) 
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where B is the axle width of the vehicle.  

 Like the general formulation, this study used IMU and GPS localization sensors. This 

study also used wheel encoders to add redundancy to the desired information. In this reduced 

system the only information required from the IMU are the values of ax and 𝜔z. This is then used 

to find the body velocity in along the x axis and the heading angle as 

𝑣𝑥 = ∫𝑎𝑥𝑑𝑡 + 𝜇𝑥      (5.16) 

𝜃𝑧 = ∫𝜔𝑧 𝑑𝑡 + 𝜈𝑧      (5.17) 

subject their respective noise components. The GPS sensor provides X and Y coordinates which 

are translated from the ECEF coordinates found in the position fix to UTM corrdinates.  

 The encoders are able to find the left and right wheel velocities which can be used to 

locate the robot using equations (5.13) through (5.15). The data from the encoder is read as left, 

Nl, and right, Nr, wheel counts which is translated to left and right linear velocities as 

𝑉𝑙 =
2𝜋𝑟𝑤

𝛥𝑡𝑒𝑁𝑐
𝑁𝑙 + 𝑛𝑙     (5.18) 

𝑉𝑟 =
2𝜋𝑟𝑤

𝛥𝑡𝑒𝑁𝑐
𝑁𝑟 + 𝑛𝑟     (5.19) 

where Nc is the number of counts in one revolution of the wheel and nl and nr are the errors 

associated with wheel slip on the left and right encoders respectively. It is unexpected that the 

wheels will slip because of the high friction but this still may happen, especially during turning 

maneuvers.  

As discussed in detail in previous chapters, these sensors all have noise associated with 

them that make any single reading unreliable. This specific selection of sensors are commonly 

used for the way they can be used together. The errors in the encoders and the IMU will tend to 

drift without bound although over a short period of time, they are very reliable. The GPS on the 

other had is imprecise but maintains accuracy over time. The GPS can then be used to keep the 
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overall fusion of the measurement from drifting and the IMU and the encoders can be used to 

keep the states precise. 

5.2. Formulating Linear State Space Equations  

Many standard control algorithms that can be used to solve for the optimal and robust 

control of a dynamic systems first require that the system be put into standard state space form. 

As indicated in Chapter 3, the dynamic model for the vehicle can be represented by  

𝑑𝑉𝑙

𝑑𝑡
= (

2𝑘𝑡𝑛𝑟𝑟𝑤

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

)𝑉𝐷𝐶𝐿
− (

2𝑘𝑏𝑘𝑡𝑛𝑟
2

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

)𝑉𝑙 + Δ𝐿   (5.20) 

𝑑𝑉𝑟

𝑑𝑡
= (

2𝑘𝑡𝑛𝑟𝑟𝑤

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

)𝑉𝐷𝐶𝑅
− (

2𝑘𝑏𝑘𝑡𝑛𝑟
2

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

)𝑉𝑟 + Δ𝑅   (5.21) 

𝑑𝑣𝑥

𝑑𝑡
= (

𝑘𝑡𝑛𝑟𝑟𝑤

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

) (𝑉𝐷𝐶𝑅
+ 𝑉𝐷𝐶𝐿

) − (
2𝑘𝑏𝑘𝑡𝑛𝑟

2

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

) 𝑣𝑥 + Δ𝐿𝑜𝑠𝑠  (5.22) 

𝑑Ω

𝑑𝑡
= (

𝐵2𝑘𝑏𝑘𝑡𝑛𝑟
2

2𝐼𝐼𝐶𝑅𝑅𝑎𝑟𝑤
2)Ω − (

𝐵𝑘𝑡𝑛𝑟

2𝐼𝐼𝐶𝑅𝑅𝑎𝑟𝑤
2) (𝑉𝐷𝐶𝑅

− 𝑉𝐷𝐶𝐿
) + Δ𝑀Ω  (5.23) 

and the final kinematic equations are  

𝑑𝜃𝑧

𝑑𝑡
= 𝛺     (5.24) 

        
𝑑𝑋𝑟

𝑑𝑡
= 𝑣𝑥 𝑐𝑜𝑠(𝜃𝑧)     (5.25) 

        
𝑑𝑌𝑟

𝑑𝑡
= 𝑣𝑥 𝑠𝑖𝑛(𝜃𝑧)     (5.26) 

If the state vector, xk, is defined as  

𝑥𝑘 =

[
 
 
 
 
 
 
𝑉𝑙

𝑉𝑟

𝑣𝑥

𝛺
𝜃𝑧

𝑋
𝑌 ]

 
 
 
 
 
 

     (5.27) 

and the measurement vector obtained from all sensors on the vehicle is 
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𝑦𝑘 =

[
 
 
 
 
 
 
 

𝑁𝑙

𝑁𝑟

𝑎𝑥1

𝑎𝑥2

𝜔𝑧1

𝜔𝑧2

𝑋𝐺𝑃𝑆

𝑌𝐺𝑃𝑆 ]
 
 
 
 
 
 
 

     (5.28) 

Then these equations were transformed in discrete time form using Euler approximation as [24]  

𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 + Δ    (5.29) 

𝑦𝑘 = 𝐶𝑘𝑥𝑘 + Δ    (5.30) 

where Δ accounts for all the uncertainties and error terms discussed earlier, The control input 

vector, uk, becomes  

    𝑢𝑘 = [
𝑉𝐷𝐶𝑙

𝑉𝐷𝐶𝑟
]                 (5.31) 

Using equations (5.20) through (5.26) the state space matrices can be formed through algebraic 

manipulation. Therefore the system matrix is 

𝐴𝑘 =

[
 
 
 
 
 
 
 
 
 
 1 − (

2𝑘𝑏𝑘𝑡𝑛𝑟
2

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

)𝛥𝑇 0 0 0 0 0 0

0 1 − (
2𝑘𝑏𝑘𝑡𝑛𝑟

2

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

)𝛥𝑇 0 0 0 0 0

0 0 1 − (
2𝑘𝑏𝑘𝑡𝑛𝑟

2

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

)𝛥𝑇 0 0 0 0

0 0 0 1 + (
𝐵2𝑘𝑏𝑘𝑡𝑛𝑟

2

2𝐼𝐼𝐶𝑅𝑅𝑎𝑟𝑤
2)𝛥𝑇 0 0 0

0 0 0 𝛥𝑇 1 0 0
0 0 𝛥𝑇 𝑐𝑜𝑠(𝜃𝑧) 0 0 1 0

0 0 𝛥𝑇 𝑠𝑖𝑛(𝜃𝑧) 0 0 0 1]
 
 
 
 
 
 
 
 
 
 

  (5.32) 

and the input matrix is  

𝐵𝑘 =

[
 
 
 
 
 
 
 
 
 

−2𝑘𝑡𝑛𝑟𝑟𝑤

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

0

0
−2𝑘𝑡𝑛𝑟𝑟𝑤

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

−𝑘𝑡𝑛𝑟𝑟𝑤

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

−𝑘𝑡𝑛𝑟𝑟𝑤

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

𝐵𝑘𝑡𝑛𝑟

2𝐼𝐼𝐶𝑅𝑅𝑎𝑟𝑤
2

−𝐵𝑘𝑡𝑛𝑟

2𝐼𝐼𝐶𝑅𝑅𝑎𝑟𝑤
2

0 0
0 0
0 0 ]

 
 
 
 
 
 
 
 
 

    (5.33) 
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The measurement process matrix is 

𝐶𝑘 =

[
 
 
 
 
 
 
 
 
 
 
 
𝑁𝑐𝛥𝑡𝑒

2𝜋𝑟𝑤
0 0 0 0 0 0

0
𝑁𝑐𝛥𝑡𝑒

2𝜋𝑟𝑤
0 0 0 0 0

0 0
−2𝑘𝑏𝑘𝑡𝑛𝑟

2

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

0 0 0 0

0 0
−2𝑘𝑏𝑘𝑡𝑛𝑟

2

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

0 0 0 0

0 0 0 1 0 0 0

0 0 0 0
1

∆𝑡
0 0

0 0 0 0 0 1 0
0 0 0 0 0 0 1]

 
 
 
 
 
 
 
 
 
 
 

    (5.34) 

and the feedforward matrix is zero. The actual properties of the robot are summarized below in 

Table 5.1. 

Table 5.1: Parameter values 

Parameter Value Parameter Value 

kb 0.154 
V

rad/s
 B 0.86 m, .81 

kt 0.13 
Nm

amp
 𝐼𝐼𝐶𝑅 26.75 kgm2 

nr 20 ΔT 0.785 

Ra 0.21 Ω ΔTe 0.785 

Iw .764 kgm2 Nc 1024 

m 230 kg rw 0.2667 m 

Nc 4096   

These values can be placed in equations (5.32) through (5.34) to find the numerical 

values. It is important to note that the system matrix needs to be update with every time step 

because the heading angle will constantly be changing. With this system in place the control 

objective is to minimize the tracking error between the robot coordinates and the path 

coordinates using something similar to a p-norm,  

𝜀 = ‖[
𝑋
𝑌
] − [𝑋̂

𝑌̂
]‖

𝑝

       (5.35) 

which will be the focus of the following sections. 
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5.3. Background on Linear Quadratic Control Design 

When controlling an autonomous application often times there is some parameter that the 

designer attempts to optimize based on the control input. This could be anything from the energy 

exerted by the actuators to the efficiency with which the system operates. In path tracking 

applications such as the one in this study a popular optimization is the find the minimum tracking 

error. The continuous time state space system is defined as  

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)    (5.36) 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)    (5.37) 

where the state vector is x, and the input, u,. The system matrices A represents the system dynamics, 

B the control input matrix, C represents the sensor fusion matrix and D represents the feed forward 

control. Correspondingly, the discrete time state space system is defined as 

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘     (5.38) 

𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘     (5.39) 

 For a system to have an optimal control it is required first that the system be controllable, 

observable and stable. The controllability of the system is the idea that the system should 

respond to an input by changing all elements of its state vector; practically, controllability is 

achieved by proper selection and placement of system actuators. An observable system is one 

where all the states are able to be measured directly or indirectly by one or multiple sensors and 

is achieved by proper placement and selection of sensors. Normally systems are required to be 

stable during their operations, i.e. maintains a certain equilibrium state and would return to that 

state when disturbed. This concept can be seen visually in Figure 5.1 where the ball on the left 

will return to the bottom of the “cup” if disturbed and the ball on the right will roll off the “hill” 

when disturbed. Here the left side represents an unstable system and the right side represents a 
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table system. There are many ways to categorize stability but some of more useful conditions are 

known as the Lyapunov Criterion [68]. 

 

 

Figure 5.1: System stability 

5.3.1. Lyapunov Criterion and the Bounded Real Lemma on Continuous Time Systems 

Stability of dynamic systems is governed by the popular Lyapunov Criterion, which is a 

set of equations that describe a stable system based on some scalar function of the state vector 

V(x(t)) known as the Lyapunov function, which is always positive. The Lyapunov criteria for a 

stable system require the Lyapunov function to be decreasing with time and reaching a zero 

value at the equilibrium state 𝑥∗, i.e.,  

𝑉(𝑥∗) = 0      (5.40) 

𝑉(𝑥(𝑡)) ≥ 0, ∀𝑡 ≥ 0     (5.41) 

𝑑𝑉(𝑥(𝑡))

𝑑𝑡
≥ 0, ∀𝑡 ≥ 0     (5.42) 
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There are many possible ways of defining the Lyapunov function for any given system, however, 

the most popular for linear systems is the quadratic function, also known as the kinetic energy 

function 

𝑉(𝑥) = 𝑥𝑇𝑄𝑥      (5.43) 

where Q = QT. The first two criterion can be shown relatively easily and the last criterion 

requires the derivative of the quadratic function to be taken and is shown as 

𝑉̇(𝑥) = 𝑥̇𝑇𝑄𝑥 + 𝑥𝑇[𝑄𝑥̇ + 𝑄̇𝑥]    (5.44) 

For a homogeneous linear system  

𝑥̇(𝑡) = 𝐴𝑥(𝑡)      (5.45) 

𝑦(𝑡) = 𝐶𝑥(𝑡)      (5.46) 

the decreasing condition of the Lyapunov function (5.42) becomes 

𝑉̇(𝑥) = [𝐴𝑥]𝑇𝑄𝑥 + 𝑥𝑇[𝑄𝐴𝑥 + 𝑄̇𝑥]    (5.47) 

which implies that 

𝐴𝑇𝑄 + 𝑄𝐴 + 𝑄̇ ≤ 0            (5.48) 

If Q is time invariant, which is almost always the case for linear systems, then this condition 

becomes 

𝐴𝑇𝑄 + 𝑄𝐴 = −𝑃          (5.49) 

or 

𝐴𝑇𝑄 + 𝑄𝐴 + 𝑃 = 0           (5.50) 

for some matrix P=PT. The equation, known as the Lyapunov equation can be solved for Q to 

find a function that fits the Lyapunov Criterion.  

Associated with the Lyapunov equations is the algebraic Riccati equation which appears 

in many applications of linear optimal control. One application of Riccati is in defining 
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conditions for which the output of the system is bounded. The governing principle for this 

condition is the bounded real lemma, which states that if for the system in (5.36) and (5.37) 

||𝑦||∞ < 𝛾      (5.51) 

then there  exists a nonnegative matrix P = PT such that 

𝐴𝑇𝑃 + 𝑃𝐴 + 𝐶𝑇𝐶 + 𝑃𝐵(𝛾2𝐼 − 𝐷𝐷𝑇)−1𝐵𝑇𝑃 ≤ 0   (5.52) 

5.3.2. Linear Quadratic Regulator for Continuous Time Systems 

The Linear Quadratic Regulator (LQR) forms an optimal control algorithm that seeks to 

minimize a quadratic cost function based on methods first developed by Kalman in [69], [70] and 

some of the first applications of these methods were developed in [71], [72]. Quite often the 

quadratic cost happens to be a Lyapunov functions for the system under study, therefore 

minimization of such quadratic function would bring the system to its equilibrium and stabilize 

it. The common quadratic cost function for linear systems is the Hamiltonian  

𝐻(𝑥, 𝑢, 𝜆) =
1

2
(𝑥𝑇𝑄𝑥 + 2𝑥𝑇𝑁𝑢 + 𝑢𝑇𝑅𝑢) + 𝜆𝑇(𝐴𝑥 + 𝐵𝑢 − 𝑥̇)  (5.53) 

where 𝜆  is another variable known as the Lagrange multiplier.  Minimization of this function is 

met by satisfying three sets of equations known as the state equation,
𝑑𝐻

𝑑𝜆
= 0, costate equation  

𝑑𝐻

𝑑𝑥
= 0, and stationarity equation 

𝑑𝐻

𝑑𝑢
= 0. The stationarity equation leads to  

𝑁𝑇𝑥 + 𝑅𝑢 + 𝐵𝑇𝜆 = 0             (5.54) 

which when solved for the optimal input uopt results in  

𝑢𝑜𝑝𝑡 = −𝑅−1(𝑁𝑇𝑥 + 𝐵𝑇𝜆)     (5.55) 

The LQR solution is completed by using the method of [73] where the Lagrange multiplier is 

treated as  a linear combination of the state vector as  

𝜆 = 𝑃𝑥             (5.56) 

such that 
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𝑢𝑜𝑝𝑡 = −𝑅−1(𝑁𝑇 + 𝐵𝑇𝑃)𝑥                 (5.57) 

or 

𝑢𝑜𝑝𝑡 = 𝐾𝑜𝑝𝑡𝑥      (5.58) 

where the optimal feedback gain is 

𝐾𝑜𝑝𝑡 = −𝑅−1(𝑁𝑇 + 𝐵𝑇𝑃)     (5.59) 

The symmetric term P used in defining the Lagrange multiplier is determined and from the state 

and costate equations which together define 

−𝑃̇ = (𝐴 − 𝐵𝑅−1𝑁𝑇)𝑇𝑃 + (𝐴 − 𝐵𝑅−1𝑁𝑇) − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + (𝑄 − 𝑁𝑅−1𝑁𝑇) (5.60) 

which is the differential Riccati equation. In linear systems, the value of P is determined from the 

steady state solution of the corresponding Algebraic Riccati equation 

(𝐴 − 𝐵𝑅−1𝑁𝑇)𝑇𝑃 + (𝐴 − 𝐵𝑅−1𝑁𝑇) − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + (𝑄 − 𝑁𝑅−1𝑁𝑇) = 0 (5.61) 

5.3.3. Lyapunov Criterion and Bounded Real Lemma on Discrete Time Systems 

The Lyapunov criterion equation (5.42) for continuous time systems transform into 

discrete time from as 

𝑉(𝑥𝑘−1) − 𝑉(𝑥𝑘) ≥ 0, ∀𝑘     (5.62) 

If the Lyapunov function is defined as in (5.42) then for the homogeneous system (5.44) the 

condition (5.62) leads to 

𝑉(𝑥𝑘−1) − 𝑉(𝑥𝑘) = 𝑥𝑘−1
𝑇𝑄𝑥𝑘−1 − [𝐴𝑥𝑘−1]

𝑇𝑄[𝐴𝑥𝑘−1] ≥ 0  (5.63) 

which requires the presence of Q = QT such that 

𝑄 − 𝐴𝑇𝑄𝐴 ≥ 0     (5.64) 

or 

𝐴𝑇𝑄𝐴 − 𝑄 ≤ 0     (5.65) 
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The Bounded real lemma for discrete time systems can also be shown to require a matrix P such 

that  

𝐴𝑇𝑃𝐴 − 𝑃 + 𝐶𝑇𝐶 + (𝐴𝑇𝑃𝐵 + 𝐶𝑇𝐷)(𝛾2𝐼 − 𝐷𝐷𝑇−𝐵𝑇𝑃𝐵)−1(𝐵𝑇𝑃𝐴 + 𝐷𝑇𝐶) ≤ 0  (5.66) 

5.3.4. Linear Quadratic Regulator for Discrete Time Systems 

Quadratic regulators for discrete time systems strive to minimize that the corresponding 

Hamilton-Jacobian cost function which is defined as 

𝐻𝑘 = 𝑥𝑘−1
𝑇𝑄𝑥𝑘−1     (5.67) 

where also 

𝐻𝑘 = 𝑥𝑘−1
𝑇𝑃𝑥𝑘−1 + 𝑢𝑘

𝑇𝑅𝑢𝑘 + 𝑥𝑘
𝑇𝑄𝑥𝑘   (5.68) 

such that the control problem is to find u that satisfies 

𝑥𝑘−1
𝑇𝑄𝑥𝑘−1 = 𝑥𝑘−1

𝑇𝑃𝑥𝑘−1 + 𝑢𝑘
𝑇𝑅𝑢𝑘 + 𝑥𝑘

𝑇𝑄𝑥𝑘   (5.69) 

By using equation (5.38) we find that 

𝑥𝑘−1
𝑇𝑄𝑥𝑘−1 = 𝑥𝑘−1

𝑇𝑃𝑥𝑘−1 + 𝑢𝑘
𝑇𝑅𝑢𝑘 + [𝐴𝑥𝑘−1 + 𝐵𝑢𝑘]

𝑇𝑄[𝐴𝑥𝑘−1 + 𝐵𝑢𝑘] (5.70) 

which results in an optimal control of  

𝑢𝑜𝑝𝑡 = −(𝑅 + 𝐵𝑇𝑃𝐵)−1𝐵𝑇𝑄𝐴𝑥𝑘−1 

Where Q = QT is determined by using this optimal controller in equation (5.70) to result in the 

discrete time Ricatti equation 

𝑄 = 𝑃 + 𝐴𝑇𝑄A − A𝑇𝑄B(𝑅 + 𝐵𝑇𝑃𝐵)−1𝐵𝑇𝑄𝐴 

5.4. Control Formulation the Skid Steered Vehicle 

The control algorithm used in this study is a form of the Linear Quadratic Gaussian 

(LQG) controller. As stated earlier this controller assumes the validity of the separation principle 

between the measurement and dynamic uncertainties. The two main parts to this controller is the 

formulation of a Kalman filter to estimate the state of the robot and then a formulation of Linear 
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Quadratic Regulator (LQR) controller which uses the estimated state to find an optimal input 

vector based on the overall position error.  

For both the Kalman filter design and the control design it is useful to further define the 

uncertainty terms present in the system. The Euler approximations of the standard state space can 

be written to include the dynamic and measurement uncertainties as  

𝑥𝑘 = [𝐴𝑘 + ∆𝐴]𝑥𝑘 + [𝐵𝑘 + ∆𝐵]𝑢𝑘 + 𝑤𝑘         (5.71) 

𝑦𝑘 = [𝐶𝑘 + ∆𝐶]𝑥𝑘 + 𝑣𝑘    (5.72) 

The terms ∆𝐴, ∆𝐵, and ∆𝐶 represent the uncertainties caused by the linearization and 

simplification of the dynamic and kinematic equations. The state vector can then be expressed in 

terms of the nominal value, 𝑥𝑛𝑘
 , from the modeled dynamics and the uncertain value, ∆𝑥𝑘, from 

the ignored dynamics as 

𝑥𝑘 =  𝑥𝑛𝑘
+ ∆𝑥𝑘     (5.73) 

which satisfy 

∆𝑥𝑘+1 = ∆𝐴∆𝑥𝑘 + ∆𝐵𝑢𝑘        (5.74) 

∆𝑦𝑘 = ∆𝐶∆𝑥𝑘      (5.75) 

or simply  

[
∆𝑥𝑘+1

∆𝑦𝑘
] = [

∆𝐴 ∆𝐵

∆𝐶 0
] [

∆𝑥𝑘

𝑢𝑘
]                          (5.76) 

The continual effects of the uncertainties will be kept in bound as long as  

𝜀 = ‖[
∆𝐴 ∆𝐵

∆𝐶 0
]‖

∞

< 1            (5.77) 

The uncertainty matrix above can also be represented as  

[
∆𝐴 ∆𝐵

∆𝐶 0
] = [

𝐴𝑥

𝐴𝑌
]𝑊[𝐵1 𝐵2]    (5.78) 

where 𝐴𝑥 , 𝐴𝑌, 𝐵1 and 𝐵2 are constant structural matrices and  
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𝑊𝑇𝑊 ≤ 1                                (5.79) 

5.4.1. Control Function 

As described earlier the control parameters being sought are the voltages that need to be 

applied to the left and the right motor. The required voltage is determined through the control 

algorithm that seeks to keep vehicle’s center of gravity (X, Y) follow the desired path (𝑋̂, 𝑌̂) at a set 

speed VG. If the vehicle’s current center of gravity is at (X, Y) and its current orientation is at θ , 

the control problem is solved by the constrained minimization of the tracking error, 𝜀 [24]. The 

tracking error is defined by the Euclidean distance 

𝜀2 = (𝑋̂ − 𝑋)
2
+ (𝑌̂ − 𝑌)

2
+ (𝑡𝑎𝑛−1 (

𝑑𝑌

𝑑𝑋
) − 𝜃)

2

      (5.80) 

subject to the requirements 

(
𝑑𝑋

𝑑𝑡
)
2

+ (
𝑑𝑌

𝑑𝑡
)
2

= 𝑉2     (5.81) 

This constrained minimization is a nonlinear problem with no closed loop solution. However, there 

is a numerical solution to the problem. The navigation data will be sampled at regular time 

intervals, ΔT and the motion will be determined through straight line segments ΔL defined as  

Δ𝐿 = √Δ𝑋2 + Δ𝑌2     (5.82) 

At any given time interval, k, the next position is determined by   

𝑋𝑘+1 = 𝑋𝑘 + Δ𝑋𝑘     (5.83) 

𝑌𝑘+1 = 𝑌𝑘 + Δ𝑌𝑘     (5.84) 

As ΔLmax decreases the motion of the vehicle along the desired path will become smoother. To 

account for boundary cases equation (5.82) can be turned into an inequality which can be used to 

find ΔX and ΔY. 

√Δ𝑋𝑘
2 + Δ𝑌𝑘

2 ≤ Δ𝐿max    (5.85) 
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The fixed velocity V determines the ΔLmax and ΔT by  

𝑉𝑘 =
Δ𝐿max

Δ𝑇
      (5.86) 

With a fixed ΔT, the desired Δ𝑋𝑘 and Δ𝑌𝑘 can be established from the kinematic relations as 

Δ𝑋𝑘 = 𝑉𝑘 cos(𝜃𝑘)Δ𝑇     (5.87) 

Δ𝑌𝑘 = 𝑉𝑘 sin(𝜃𝑘)Δ𝑇     (5.88) 

Both 𝑉̂𝑘 and 𝜃̂𝑘 depend on the current values of Vr and Vl. 

𝜃𝑘 = tan−1 (
𝑌̂𝑘−𝑌𝑘

𝑋̂𝑘−𝑋𝑘
) = tan−1 (

Δ𝑌𝑘

Δ𝑋𝑘
)    (5.89) 

Equation (5.89) simplifies the problem by showing that 𝜃𝑘 can be defined in just terms of the 

current position (Δ𝑋𝑘, Δ𝑌𝑘) and the next desired position (𝑋̂𝑘, 𝑌̂𝑘).  

In Figure 5.2 the desired path is shown with respect to the vehicle’s current position (Xk, 

Yk), previous position (Xk-1,Yk-1) and intended position (𝑋̂𝑘, 𝑌̂𝑘). The circle represents the radius of 

ΔLmax and the points where the circle intersects the desired path are (X, Y) and (X”, Y”). To decide 

which point of intersection should be chosen for time k+1 the distance between each point of 

intersection and the position at time k-1 should be determined. Whichever point is further from the 

previous position should be chosen as the next point.  

 

Figure 5.2: Path tracking 
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 The current desired orientation 𝜃𝑘 is known and the old orientation 𝜃𝑘−1 is known. With 

those values the change in orientation Δθk can be found and related to the velocities Vr and Vl by 

Δ𝜃𝑘 = 𝜃𝑘 − 𝜃𝑘−1 = (𝑉𝑟 − 𝑉𝑙)
Δ𝑇

𝐵
    (5.90) 

The coordinate changes can also be found using the left and right wheel velocities as 

Δ𝑋𝑘 = (𝑉𝑟 + 𝑉𝑙)
Δ𝑇

2
cos(𝜃𝑘)     (5.91) 

Δ𝑌𝑘 = (𝑉𝑟 + 𝑉𝑙)
Δ𝑇

2
sin(𝜃𝑘)     (5.92) 

By combining equations (5.90) through (5.92) the left and right velocities at time k can be found 

as  

𝑉𝑟𝑘
=

Δ𝑋𝑘

Δ𝑇
cos(𝜃𝑘) +

Δ𝑌𝑘

Δ𝑇
sin(𝜃𝑘) +

B

2Δ𝑇
Δ𝜃𝑘      (5.93) 

𝑉𝑙𝑘
=

Δ𝑋𝑘

Δ𝑇
cos(𝜃𝑘) +

Δ𝑌𝑘

Δ𝑇
sin(𝜃𝑘) −

B

2Δ𝑇
Δ𝜃𝑘    (5.94) 

Now that the left and right wheel velocities have been determined, the required wheel torques can 

be calculated. 

5.4.2. Control Solution 

With the state estimation from the Kalman filter and the control constraints established 

the control solution can be formulated based on waypoint selection. If the path at time interval k 

is known as 

𝑝𝑘 = [

𝜃𝑘

𝑋̂𝑘

𝑌̂𝑘

]            (5.95) 

then the robot movement can be defined as 

[
Δ𝜃𝑘

Δ𝑋𝑘

Δ𝑌𝑘

] = 𝑝𝑘 − 𝐸1𝑥𝑘     (5.96) 

where  
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𝐸1 = [
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

]        (5.97) 

where the change along the X and Y axis is subject to 

Δ𝜃𝑘 = tan−1 (
Δ𝑌𝑘

Δ𝑋𝑘
) − 𝜃𝑘        (5.98) 

It is desired to find the controller gain matrix Λ𝑘 such that the controller 

𝑢𝑘 = Λ𝑘𝑥𝑘     (5.99) 

minimizes the 2-norm tracking error 

𝜀 = ‖[

𝜃𝑘+1

𝑋̂𝑘+1

𝑌̂𝑘+1

] − [
𝜃𝑘+1

𝑋𝑘+1

𝑌𝑘+1

]‖

2

, ∀𝑘    (5.100) 

If the dynamic system without disturbances is represented as  

𝑥𝑘+1 = [𝐴𝑘 + ∆𝐴]𝑥𝑘 + [𝐵𝑘 + ∆𝐵]𝑢𝑘            (5.101) 

then objective function becomes 

𝜀 = ‖𝑝𝑘 − 𝐸1([𝐴𝑘 + ∆𝐴]𝑥𝑘 + [𝐵𝑘 + ∆𝐵]𝑢𝑘‖2   (5.102) 

The constraints (5.90) through (5.92) can be defined as 

Δ𝜃𝑘 = 2(𝑉𝑟 − 𝑉𝑙)
Δ𝑇

𝐵
− ΩΔ𝑇      (5.103) 

Δ𝑋𝑘 = (𝑉𝑟 + 𝑉𝑙)
Δ𝑇

2
cos(𝜃̃𝑘) − 𝑣𝑥Δ𝑇 cos(𝜃̃𝑘)   (5.104) 

Δ𝑌𝑘 = (𝑉𝑟 + 𝑉𝑙)
Δ𝑇

2
sin(𝜃̃𝑘) − 𝑣𝑥Δ𝑇 sin(𝜃̃𝑘)    (5.105) 

where 

𝜃̃𝑘 = tan−1 (
Δ𝑌𝑘

Δ𝑋𝑘
)        (5.106) 

Therefore, the robot motion can now be expressed as 

[
Δ𝜃𝑘

Δ𝑋𝑘

Δ𝑌𝑘

] = 𝐸2𝑥𝑘     (5.107) 
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where  

𝐸2 =

[
 
 
 
 −2

Δ𝑇

𝐵
−2

Δ𝑇

𝐵
0 −Δ𝑇

Δ𝜃𝑘

𝜃𝑘
0 0

Δ𝑇 cos(𝜃̃𝑘) Δ𝑇 cos(𝜃̃𝑘) −Δ𝑇 cos(𝜃̃𝑘) 0 0
Δ𝑋𝑘

𝑋𝑘
0

Δ𝑇 sin(𝜃̃𝑘) Δ𝑇 sin(𝜃̃𝑘) −Δ𝑇 sin(𝜃̃𝑘) 0 0 0
Δ𝑌𝑘

𝑌𝑘 ]
 
 
 
 

       (5.108) 

By combing the robot motion defined in equation (5.96) with the constraint defined in (5.85) the 

path vector can be expressed in terms of the state vectors as 

𝑝𝑘 = (𝐸1 + 𝐸2)𝑥𝑘     (5.109) 

which can be used in to reformulate the cost function as 

𝜀 = ‖(𝐸2 + 𝐸1[𝐼 − 𝐴𝑘 − 𝐴𝑥𝑊𝐵1])𝑥𝑘 − (𝐸1[𝐵𝑘 + 𝐴𝑥𝑊𝐵2])𝑢𝑘‖2  (5.110) 

The cost function can now be formed as a quadratic Lyapunov function. To find the optimal 

control input based on the cost function a dynamic optimization is performed as described in 

Section 6.3. The discrete form of the quadratic function can be shown as  

𝜀 = ∑ 𝑥𝑘
𝑇Θξξ𝑥𝑘 +𝑘 𝑢𝑘

𝑇Θuu𝑢𝑘 − 2𝑥𝑘
𝑇Θξu𝑢𝑘   (5.111) 

where  

Θξξ = (𝐸2 + 𝐸1[𝐼 − 𝐴𝑘 − 𝐴𝑥𝑊𝐵1])
𝑇(𝐸2 + 𝐸1[𝐼 − 𝐹(𝑘) − 𝐴𝑥𝑊𝐵1]) (5.112) 

Θuu = (𝐸1[𝐵𝑘 + 𝐴𝑥𝑊𝐵2])
𝑇(𝐸1[𝐵𝑘 + 𝐴𝑥𝑊𝐵2])    (5.113) 

Θξu = (𝐸2 + 𝐸1[𝐼 − 𝐴𝑘 − 𝐴𝑥𝑊𝐵1])
𝑇(𝐸1[𝐵𝑘 + 𝐴𝑥𝑊𝐵2])   (5.114) 

The solution is well known and can be found in [74], [75] as 

𝑢𝑘 = −Λ𝑘𝑥𝑘      (5.115) 

where  

Λ𝑘 = −(𝐵𝑘
𝑇S𝑘𝐵𝑘 + Θuu)

−1
(𝐴𝑘

𝑇S𝑘𝐵𝑘 + Θξu)
𝑇
   (5.116) 

and Sk is the recursive solution the Riccati equation  

S𝑘 = 𝐴𝑘
𝑇S𝑘−1𝐴𝑘 + Θξξ −…      



 

70 

…(𝐴𝑘
𝑇S𝑘−1𝐵𝑘 + Θξu)(𝐵𝑘

𝑇S𝑘−1𝐵𝑘 + Θuu)
−1

(𝐴𝑘
𝑇S𝑘−1𝐵𝑘 + Θξu)  (5.117) 

This control assumes that the state vector is known. The state estimation through filtering and 

fusion is described in the next chapter.  
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CHAPTER 6.  SENSOR PROCESSING: FILTERING AND FUSION 

It is widely known that sensor measurement data can never be completely trusted because 

of their inherent noise. Autonomous applications need to be especially aware of these 

imperfections in the sensor data because errors in this data can be detrimental to the control 

algorithm. These errors come in two main forms, accuracy error and precision errors and there 

are different solutions to reduce each of them. Filtering can help increase the precision of the 

sensors, while the accuracy may be improved by using multiple sensors that are fused together. 

Often times the filtering and fusion of sensor can be done at the same time where noise from 

each single sensor is filtered out and the results from multiple sensors are fused together all in 

one large algorithm. The methods of filtering noise from a single sensor and fusing multiple 

sensors are often related as it will become apparent in later sections of this chapter. A widely 

accepted definition of sensor fusion as given by Joint Directors of Laboratories is [76]: 

“A multi-level process dealing with the association, correlation, combination of data and 

information from single and multiple sources to achieve refined position, identify estimates and 

complete and timely assessments of situations, threats and their significance.”  

A good categorization of what is obtained by sensor fusion is also in [77], which 

categorizes the goals of sensor fusion as either creating more information making it more robust 

or just introducing complimentary information.  There are many more ways to break down 

different levels and categories of sensor fusion such as in [78] but the focus of this chapter is to 

outline techniques used for state estimation and fusion of sensor based on the probability of 

information being accurate.  
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6.1. Fusion Methods 

Sensor fusion can be categorized by how they deal with noise. Traditionally sensor fusion 

methods were based on the probability that a sensor reading was true. Newer studies found other 

methods to deal with problems that arose in the probabilistic methods such as what happens 

when two sets of information contradict each other.  

6.1.1. Non-Probabilistic Fusion Methods 

One of the main non-probabilistic methods for sensor fusion is fuzzy logic which is based 

on fuzzy sets of information. The basic theory behind fuzzy logic is that instead of information 

being part of a set or excluded from a set, it can have a degree of membership to a set of 

information [65]. Fuzzy logic is especially practical in instances where competing information 

sets contradict each other. Another popular non-probabilistic fusion technique is based on the 

Dempster-Shafer theory developed by Dempster in 1930 [79], [80]. This theory which provides a 

framework for reasoning using imprecise data, has found more applications in robotics when 

decisions need to be made upon a robot’s state [65]. Since the state cannot always be determined 

with complete certainty the Dempster-Shafer theory allows for ambiguity in the state of the robot 

to be trusted (belief theory.)  Essentially, this approach is similar to fuzzy logic approach and it 

requires the designer to develop a set of rules that define the level of ambiguity in the data and 

how different pieces of partial information are combined. 

6.1.2. Probabilistic Fusion Methods 

Many methods of sensor fusion assume some knowledge in the probability of a sensor’s 

information being accurate, and use that information to estimate the state of the object. This 

process of state estimation based on probability is usually founded on Bayes law, which states 

the probability of receiving the set of information from a given sensor based on the noise 
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distribution of that sensor. This process is described well in [81] where sensors are combined 

into a “Bayesian team.” This Bayesian team can be described as sensors with competing 

information which can be rectified by using the bargaining problem described by [82] for 

economic information and extended to sensors by [9] and [10]. 

One of the most fundamental state estimation models was developed by Kalman in in the 

sixties [85]. In this model the assumption is made that the noise of the sensors are known to be 

Gaussian and have a zero mean. It is also assumed that dynamics of the model are completely 

linear. With this information the Bayesian equations have an optimal analytical solution which is 

known as the Kalman filter; these filters are widely used in control applications because of their 

ability to filter and fuse information together effectively.  

The Kalman Filter makes many assumptions about the system however, one of the main 

ones being that the system is linear. However, non-linear systems can be linearized by using a 

first order Taylor series expansion resulting in the so called Extended Kalman Filter (EKF) [86]. 

Linearization of a non-linear model can be computationally expensive, and also introduces 

inherent errors, or “scents,” that are carried throughout the state estimation. This linearization 

can be eliminated by sampling data and finding the true mean and covariance of a sensor, which 

can then be used directly through the non-linear system to find the analytical solution to the 

Bayesian state estimation. This filter is known as an unscented Kalman filter and was first 

developed in [87]. 

All of the extensions of the Kalman filter assume the noise is known to have a Gaussian 

distribution but this is not always the case. In the particle filter shown in [88], the noise is not 

known. However, the noise distribution is calculated by taking a sufficiently large sample size. 

This distribution is then used in the Bayesian equations to solve for the state estimation. This 
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method is useful for unknown noise in sensors or non-Gaussian distributions. It can also handle 

the non-linearities that the extensions to the Kalman filter seek to address.     

6.2. The Kalman Filter Algorithm 

As shown in Chapter 3 this research developed a linear model of the skid steered vehicle, 

therefore, the Kalman filter is ideal for this application if all sensor noises are assumed to be 

Gaussian. This section will discuss the process of state estimation and sensor fusion using a 

Kalman filtering. 

Linear dynamical systems are normally defined as 

𝑥̇ = 𝐴𝑥 + 𝐵(𝑢 + 𝑤)      (6.1) 

𝑦 = 𝐶𝑥 + 𝐷(𝑢 + 𝑤) + 𝑣     (6.2) 

where x, is the state vector; the input signal applied to the actuators, u, is subject to disturbances 

in the actuators, w, and the sensor measurements, y, are subject noise corruptions v. Control 

applications require knowledge of the state vector from the measurements, y, therefore the state 

is estimated using the measurement y, in a way that reduces the effects of noise and disturbances. 

The process noise and the measurement noise both are assumed to have normal distributions 

whose probability is subject to the process noise covariance and the measurement noise 

covariance respectively seen in the equations below. 

𝑝(𝑤)~𝒩(0, 𝑄)     (6.3) 

𝑝(𝑣)~𝒩(0, 𝑅)     (6.4) 

By using the Certainty Equivalence Principle [89] it can be shown that the optimal control law 

for a noise-free deterministic problem is the same as the optimal control law for a noisy 

stochastic control problem. Then the exact linear system represented above can be represented as 

the estimated noise-free linear system  
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𝑥̇̃ = 𝐴𝑥̃ + 𝐵𝑢      (6.5) 

𝑦 = 𝐶𝑥̃ + 𝐷𝑢      (6.6) 

where 𝑥̃ is the estimation of the state such that the estimation error, 𝑥𝑒. Where  

𝑥𝑒 = 𝑥 − 𝑥̃      (6.7) 

is optimally minimized. The estimated system shown in equations (6.5) and (6.6)  is then used to 

determine the control input that yields optimal performance.  

Practical microprocessor based applications use the discrete form of the system as 

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘−1 + 𝑤𝑘−1    (6.8) 

𝑦𝑘 = 𝐶𝑥𝑘 + 𝑣𝑘     (6.9) 

where at the current time instant k, the state vector is  𝑥𝑘, and the measurement is 𝑦𝑘.  The 

measurement and process noises are 𝑣𝑘 and 𝑤𝑘 respectively. The Kalaman filter can be 

developed to estimate the state vector 𝑥̂𝑘 iteratively as where the initial time step state estimation 

is  

𝑥̂𝑘
− = 𝐴𝑥̂𝑘−1 + 𝐵𝑢𝑘−1     (6.10) 

and the current state estimation is the linear combination  

𝑥̂𝑘 = 𝑥̂𝑘
− + 𝐾(𝑦𝑘 − 𝐶𝑥̂𝑘

−)    (6.11) 

Where K, is known as a Kalman gain. The initial and updated errors are calculated as  

𝑒𝑘
− = 𝑥𝑘 − 𝑥̂𝑘

−       (6.12) 

and 

𝑒𝑘 = 𝑥𝑘 − 𝑥̂𝑘      (6.13) 

respectively with the initial and updated error covariances become  

𝑃𝑘
− = ℰ[𝑒𝑘

−𝑒𝑘
−𝑇] = 𝐴𝑃𝑘−1𝐴

𝑇 + 𝑄    (6.14) 

and 

𝑃𝑘 = ℰ[𝑒𝑘𝑒𝑘
𝑇] = (𝐼 − 𝐾𝐶)𝑃𝑘

−     (6.15) 
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where ℰ is the normal expectation. It is seen that 𝑃𝑘
−, the initial error, is a a solution of Lyapunov 

stability equations, and the Kalman gain, K, is computed from these two equations as, 

𝐾 = 𝑃𝑘
−𝐶𝑇(𝐶𝑃𝑘

−𝐶𝑇 + 𝑅)−1     (6.16) 

This set of equations forms the centralized discretized Kalman filter. The initial state 

estimation and covariance are found using equations (6.10) and (6.14) respectively. These initial 

estimates are then used to find the Kalman gain in equation (6.16), which determines the updated 

the state and covariances in equations (6.14) and (6.15) respectively. The filter then runs onto the 

next time step and is able to complete real time filtering and fusion. 

6.3. Decentralized Kalman Fusion 

Some complex sensor systems are decentralized to prevent failure as seen in [90]–[92]. In 

decentralized Kalman fusion i separate sensor systems are fused together independently where 

𝑥𝑘
(𝑖)

= 𝐴(𝑖)𝑥𝑘−1
(𝑖)

+ 𝐵(𝑖)𝑢𝑘−1
(𝑖)

+ 𝑤𝑘−1
(𝑖)

    (6.17) 

𝑦𝑘 = 𝐶(𝑖)𝑥𝑘
(𝑖)

+ 𝑣𝑘
(𝑖)

     (6.18) 

In a set of four sensor systems the previous equations become 

[
 
 
 
 
 𝑥𝑘

(1)

𝑥𝑘
(2)

𝑥𝑘
(3)

𝑥𝑘
(4)

]
 
 
 
 
 

= [

𝐴(1) 0 0 0
0 𝐴(2) 0 0
0 0 𝐴(3) 0
0 0 0 𝐴(4)

]

[
 
 
 
 
 𝑥𝑘−1

(1)

𝑥𝑘−1
(2)

𝑥𝑘−1
(3)

𝑥𝑘−1
(4)

]
 
 
 
 
 

+ ⋯ 

…[

𝐵(1) 0 0 0
0 𝐵(2) 0 0
0 0 𝐵(3) 0
0 0 0 𝐵(4)

]

[
 
 
 
 
 𝑢𝑘−1

(1)

𝑢𝑘−1
(2)

𝑢𝑘−1
(3)

𝑢𝑘−1
(4)

]
 
 
 
 
 

+

[
 
 
 
 
 𝑤𝑘−1

(1)
0 0 0

0 𝑤𝑘−1
(2)

0 0

0 0 𝑤𝑘−1
(3)

0

0 0 0 𝑤𝑘−1
(4)

]
 
 
 
 
 

  (6.19) 

and 
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[
 
 
 
 
 𝑦𝑘

(1)

𝑦𝑘
(2)

𝑦𝑘
(3)

𝑦𝑘
(4)

]
 
 
 
 
 

= [

𝐶(1) 0 0 0
0 𝐶(2) 0 0
0 0 𝐶(3) 0
0 0 0 𝐶(4)

]

[
 
 
 
 
 𝑥𝑘

(1)

𝑥𝑘
(2)

𝑥𝑘
(3)

𝑥𝑘
(4)

]
 
 
 
 
 

+

[
 
 
 
 
 𝑣𝑘

(1)

𝑣𝑘
(2)

𝑣𝑘
(3)

𝑣𝑘
(4)

]
 
 
 
 
 

   (6.20) 

The initial state estimate time equations then become 

[
 
 
 
 
 𝑥̂𝑘

−(1)

𝑥̂𝑘
−(2)

𝑥̂𝑘
−(3)

𝑥̂𝑘
−(4)

]
 
 
 
 
 

= [

𝐴(1) 0 0 0
0 𝐴(2) 0 0
0 0 𝐴(3) 0
0 0 0 𝐴(4)

]

[
 
 
 
 
 𝑥̂𝑘−1

(1)

𝑥̂𝑘−1
(2)

𝑥̂𝑘−1
(3)

𝑥̂𝑘−1
(4)

]
 
 
 
 
 

+ [

𝐵(1) 0 0 0
0 𝐵(2) 0 0
0 0 𝐵(3) 0
0 0 0 𝐵(4)

]

[
 
 
 
 
 𝑢𝑘−1

(1)

𝑢𝑘−1
(2)

𝑢𝑘−1
(3)

𝑢𝑘−1
(4)

]
 
 
 
 
 

 (6.21) 

[
 
 
 
 
 𝑃𝑘

−(1)
0 0 0

0 𝑃𝑘
−(2)

0 0

0 0 𝑃𝑘
−(3)

0

0 0 0 𝑃𝑘
−(4)

]
 
 
 
 
 

= [

𝐴(1) 0 0 0
0 𝐴(2) 0 0
0 0 𝐴(3) 0
0 0 0 𝐴(4)

] × … 

… .

[
 
 
 
 
 𝑃𝑘−1

(1)
0 0 0

0 𝑃𝑘−1
(2)

0 0

0 0 𝑃𝑘−1
(3)

0

0 0 0 𝑃𝑘−1
(4)

]
 
 
 
 
 

[

𝐴(1) 0 0 0
0 𝐴(2) 0 0
0 0 𝐴(3) 0
0 0 0 𝐴(4)

]

𝑇

+

[
 
 
 
 
𝑄(1)

𝑄(2)

𝑄(3)

𝑄(4)]
 
 
 
 

 (6.22) 

The Kalman gain is then found where  

[

𝐾(1)

𝐾(2)

𝐾(3)

𝐾(4)

] =

[
 
 
 
 
 𝑃𝑘

−(1)
0 0 0

0 𝑃𝑘
−(2)

0 0

0 0 𝑃𝑘
−(3)

0

0 0 0 𝑃𝑘
−(4)

]
 
 
 
 
 

[

𝐶(1) 0 0 0
0 𝐶(2) 0 0
0 0 𝐶(3) 0
0 0 0 𝐶(4)

]

𝑇

× … 

…

(

  
 

[

𝐶(1) 0 0 0
0 𝐶(2) 0 0
0 0 𝐶(3) 0
0 0 0 𝐶(4)

]

[
 
 
 
 
 𝑃𝑘

−(1)
0 0 0

0 𝑃𝑘
−(2)

0 0

0 0 𝑃𝑘
−(3)

0

0 0 0 𝑃𝑘
−(4)

]
 
 
 
 
 

… 
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…× [

𝐶(1) 0 0 0
0 𝐶(2) 0 0
0 0 𝐶(3) 0
0 0 0 𝐶(4)

]

𝑇

+ [

𝑅(1)

𝑅(2)

𝑅(3)

𝑅(4)

]

)

 
 

−1

  (6.23) 

which then used to update the state equations as 

.

[
 
 
 
 
 𝑃𝑘

(1)
0 0 0

0 𝑃𝑘
(2)

0 0

0 0 𝑃𝑘
(3)

0

0 0 0 𝑃𝑘
(4)

]
 
 
 
 
 

= ([

𝐼(1) 0 0 0
0 𝐼(2) 0 0
0 0 𝐼(3) 0
0 0 0 𝐼(4)

] − [

𝐾(1) 0 0 0
0 𝐾(2) 0 0
0 0 𝐾(3) 0
0 0 0 𝐾(4)

]… 

…× [

𝐶(1) 0 0 0
0 𝐶(2) 0 0
0 0 𝐶(3) 0
0 0 0 𝐶(4)

])

[
 
 
 
 
 𝑃𝑘

−(1)
0 0 0

0 𝑃𝑘
−(2)

0 0

0 0 𝑃𝑘
−(3)

0

0 0 0 𝑃𝑘
−(4)

]
 
 
 
 
 

  (6.24) 

[
 
 
 
 
 𝑥̂𝑘

(1)

𝑥̂𝑘
(2)

𝑥̂𝑘
(3)

𝑥̂𝑘
(4)

]
 
 
 
 
 

=

[
 
 
 
 
 𝑥̂𝑘

−(1)

𝑥̂𝑘
−(2)

𝑥̂𝑘
−(3)

𝑥̂𝑘
−(4)

]
 
 
 
 
 

+ [

𝐾(1)

𝐾(2)

𝐾(3)

𝐾(4)

]

(

  
 

[
 
 
 
 
 𝑦𝑘

(1)

𝑦𝑘
(2)

𝑦𝑘
(3)

𝑦𝑘
(4)

]
 
 
 
 
 

− [

𝐶(1) 0 0 0
0 𝐶(2) 0 0
0 0 𝐶(3) 0
0 0 0 𝐶(4)

]

[
 
 
 
 
 𝑥̂𝑘

−(1)

𝑥̂𝑘
−(2)

𝑥̂𝑘
−(3)

𝑥̂𝑘
−(4)

]
 
 
 
 
 

)

  
 

 (6.25) 

Decentralized Kalman fusion has the advantage that if one sensor system fails the other systems 

can be effective. The main drawback is the computational cost in making such large matrices.  

6.3.1. Robust Kalman Filtering 

The standard Kalman filter solutions discussed above require the model of the system to 

be known and be as accurate as possible. The problem in modelling most dynamic systems is 

that certain assumptions must be made to simplify the modelling process, but such assumptions 

also introduce certain amounts of inaccuracies that can affect the performance of the filter. In the 

presence of model uncertainties, a robust Kalman filter is required to perform all the filtering and 

fusion operations subject to some limits on the uncertainty size. Robust Kalman filtering has 

been studied extensively and many solutions with many different unique applications have been 
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well studied in [93]–[96]. At base of all the filters they seek to find a state estimate, 𝑥̃, based on 

the measurement vector, 𝑦𝑘. Many solution seen in the literature can be computationally 

expensive and due to the limited computational power of the microcontrollers used in this study 

the solutions with lower computational costs were considered. Specifically this study considers 

an uncertain system  

𝑥𝑘 = [𝐴𝑘 + ∆𝐴]𝑥𝑘 + [𝐵𝑘 + ∆𝐵]𝑢𝑘 + 𝑤𝑘      (6.26) 

𝑦𝑘 = [𝐶𝑘 + ∆𝐶]𝑥𝑘 + 𝑣𝑘    (6.27) 

The terms ∆𝐴, ∆𝐵, and ∆𝐶 represent the uncertainties caused by the linearization and 

simplification of the dynamic and kinematic equations. The state vector can then be expressed in 

terms of the nominal value, 𝑥𝑛𝑘
 , from the modeled dynamics and the uncertain value, ∆𝑥𝑘, from 

the ignored dynamics as 

𝑥𝑘 =  𝑥𝑛𝑘
+ ∆𝑥𝑘     (6.28) 

which satisfy 

∆𝑥𝑘+1 = ∆𝐴∆𝑥𝑘 + ∆𝐵𝑢𝑘       (6.29) 

∆𝑦𝑘 = ∆𝐶∆𝑥𝑘      (6.30) 

or simply  

[
∆𝑥𝑘+1

∆𝑦𝑘
] = [

∆𝐴 ∆𝐵

∆𝐶 0
] [

∆𝑥𝑘

𝑢𝑘
]          (6.31) 

The continual effects of the uncertainties will be kept in bound as long as  

𝜀 = ‖[
∆𝐴 ∆𝐵

∆𝐶 0
]‖

∞

< 1    (6.32) 

The uncertainty matrix above can also be represented as  

[
∆𝐴 ∆𝐵

∆𝐶 0
] = [

𝐴𝑥

𝐴𝑌
]𝑊[𝐵1 𝐵2]        (6.33) 

where 𝐴𝑥 , 𝐴𝑌, 𝐵1 and 𝐵2 are constant structural matrices and  
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𝑊𝑇𝑊 ≤ 1                                (6.34) 

which are sought to make a robust filter of the form 

𝑥̂𝑘+1 = Φ𝑘𝑥̂𝑘 + Γ𝑘𝑦𝑘                      (6.35) 

which is related to the solutions seen in [95], [96]. This solution finds the next state, 𝑥̂𝑘+1 

estimation by combing the current state estimation, 𝑥̂𝑘, and current measurements, 𝑦𝑘. The 

estimator matrix Φ𝑘 is used to manipulate the current state and, Γ𝑘, is used to optimally fuse the 

measurements to the state vector. Both these matrices are computed from the solution to the 

filter. 

 The objective of the filter is to bind the covariance of the estimator error such that  

ℰ[𝑒𝑘
𝑇𝑒𝑘] ≤ 𝛾          (6.36) 

where 𝛾 is some real constant and  

𝑒𝑘 = 𝑥𝑘 − 𝑥̂𝑘          (6.37) 

The estimator error can be expressed as  

𝑒𝑘+1 = 𝑥𝑘+1 − 𝑥̂𝑘+1            (6.38)  

= {[𝐴𝑘 + ∆𝐴]𝑥𝑘 + [𝐵𝑘 + ∆𝐵]𝑢𝑘 + 𝑤𝑘} − {Φ𝑘𝑥̂𝑘 + Γ𝑘([𝐶𝑘 + ∆𝐻]𝑥𝑘 + 𝑣𝑘)}       (6.39) 

= {[𝐴𝑘 + ∆𝐴] − Γ𝑘[𝐶𝑘 + ∆𝐶] − Φ𝑘}𝑥𝑘 − [𝐵𝑘 + ∆𝐵]𝑢𝑘 + Φ𝑘𝑒𝑘 + 𝑤𝑘 − Γ𝑘𝑣𝑘       (6.40) 

= Φ𝑘𝑒𝑘 + [𝐴̃𝑘 + 𝐸̃𝑘𝑊𝐵1]𝑥𝑘 + [𝐵𝑘 + 𝐸̃𝑘𝑊𝐵2]𝑢𝑘 + 𝑤𝑘 − Γ𝑘𝑣𝑘         (6.41) 

where 

𝐴̃𝑘 = 𝐴𝑘 − Γ𝑘𝐶𝑘 − Φ𝑘    (6.42) 

𝐸̃𝑘 = 𝐴𝑥 − Γ𝑘𝐴Y     (6.43) 

For the filter to work the estimator needs to be stable. If the state estimation and error evolution 

from time interval k to k+1 is represented in the absence of a control input as 

[
𝑥𝑘+1

𝑒𝑘+1
] = [

𝐴𝑘 + 𝐴𝑥𝑊𝐵1 0

𝐴̃𝑘 + 𝐸̃𝑘𝑊𝐵1 Φ𝑘
] [

𝑥𝑘

𝑒𝑘
] + [

1 0
1 −Γ𝑘

] [
𝑤𝑘

𝑣𝑘
]   (6.44) 
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𝑒𝑘 = [0 1] [
𝑥𝑘

𝑒𝑘
]              (6.45) 

Then the estimator is only stable when the solution 𝑋 = 𝑋𝑇 ≤ 0 to the discrete Lyapunov 

equation 

[
𝐴𝑘 + 𝐴𝑥𝑊𝐵1 0

𝐴̃𝑘 + 𝐸̃𝑘𝑊𝐵1 Φ𝑘
]
𝑇

𝑋 [
𝐴𝑘 + 𝐴𝑥𝑊𝐵1 0

𝐴̃𝑘 + 𝐸̃𝑘𝑊𝐵1 Φ𝑘
] − 𝑋 ≤ 0  (6.46) 

exists for all allowable uncertainties [74], [97]. Details of the Lyapunov equations are introduced 

in Chapter 6. From the bounded real lemma it can be shown that the evolution of estimator errors 

can be bounded by 𝛾>0 such that 

𝜀 = ‖𝑒𝑘‖∞ < 𝛾     (6.47) 

if the discrete algebraic Riccati equation  

[
𝐴𝑘 0

𝐴̃𝑘 Φ𝑘
]
𝑇

𝑍 [
𝐴𝑘 0

𝐴̃𝑘 Φ𝑘
] − 𝑍 + ([

𝐴𝑘 0

𝐴̃𝑘 Φ𝑘
]
𝑇

𝑍 [
𝐴𝑥𝑊𝐵1

𝐸̃𝑘𝑊𝐵1
])…      

…× (𝛾2𝐼 − [
𝐴𝑥𝑊𝐵1

𝐸̃𝑘𝑊𝐵1
]
𝑇

𝑍 [
𝐴𝑥𝑊𝐵1

𝐸̃𝑘𝑊𝐵1
])

−1

([
𝐴𝑘 0

𝐴̃𝑘 Φ𝑘
]
𝑇

[
𝐴𝑥𝑊𝐵1

𝐸̃𝑘𝑊𝐵1
]) ≤ 0 (6.48) 

has a solution 𝑍 = 𝑍𝑇 for any 𝛾>0 where 

(𝛾2𝐼 − [
𝐴𝑥𝑊𝐵1

𝐴̃𝑘𝑊𝐵1
]
𝑇

𝑍 [
𝐴𝑥𝑊𝐵1

𝐴̃𝑘𝑊𝐵1
]) ≤ 0    (6.49) 

6.3.1.1. Specific Formulation 

Initially the solution to the Kalman filter presented above was solved by partitioning the 

solutions to the Lyapunov and Riccati equations, X and Z as 

𝑋 = [
𝑋11 𝑋12

𝑋12
𝑇 𝑋22

] , 𝑍 = [
𝑍11 𝑍12

𝑍12
𝑇 𝑍22

]                  (6.50) 

The fully expanded equation based on the partition could be simplified by using the positive 

definite covariances Q and R and would result in two decoupled discrete Riccati equations that 

can be formed recursively as similar to the ones in [97]–[99] as  
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Σ𝑘+1 = 𝐴𝑘Σ𝑘𝐴𝑘
𝑇 + 𝐴𝑘Σ𝑘𝐵1

𝑇(𝛾2𝐼 − 𝐵1Σ𝑘𝐵1
𝑇)−1𝐵1Σ𝑘𝐴𝑘

𝑇 +
1

𝛾
𝐴𝑥𝐴𝑥

𝑇 + 𝑄    (6.51) 

Υ𝑘+1 = 𝐴𝑘Ξ𝑘𝐴𝑘
𝑇 + 𝑀𝑘N𝑘

−1𝑀𝑘
𝑇 + +

1

𝛾
𝐴𝑥𝐴𝑥

𝑇 + 𝑄      (6.52) 

where  

Ξ𝑘 = (Υ𝑘
−1 − 𝛾𝐵1

𝑇B1)
−1               (6.53) 

M𝑘 = 𝑅 +
1

𝛾
𝐴Y𝐴Y

𝑇 + 𝐴𝑘Ξ𝑘𝐴𝑘
𝑇       (6.54) 

N𝑘 = 𝐴𝑘Ξ𝑘𝐶𝑘
𝑇 +

1

𝛾
𝐴𝑥𝐴Y

𝑇        (6.55) 

The Kalman matrices only depend on the solution to the second Riccatti equation and are defined 

as  

𝛤𝑘 = 𝑀𝑘𝑁𝑘
−1                 (6.56) 

𝛷𝑘 = [𝐴𝑘 − 𝛤𝑘𝐶𝑘] [𝐼 +
1

𝛾
𝛶𝑘𝐵1

𝑇(𝐼 − 𝛾𝐵1𝛶𝑘𝐵1
𝑇)]       (6.57) 

The designer is left to find covariances Q and R as well as the uncertainty bounds 𝐴𝑥 , 𝐴Y, 𝐵1 and 

𝛾. If there is no uncertainty in the linearization of the system, or 𝐴𝑥 = 𝐴𝑦 = 𝐵1 = 0, this reduces 

to standard Kalman filter.  

6.4. Combined Robust State Estimation and Robust Path Tracking Control 

In implementation, as shown in the appended code, the robust estimator outlined above and 

the controller, shown in Chapter 5, are combined in seven steps: 
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Figure 6.1: Control flow chart  
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CHAPTER 7.  EXPERIMENTAL AND SIMULATION RESULTS 

This chapter presents the results from the improved GPS algorithm, simulations of the 

dynamic model and experimentation of the combined control algorithm and filter. 

7.1. GPS Algorithm 

Chapter 3 explained the errors in the GPS systems that are amplified by the satellite 

selection used to find a position fix. Chapter 4 then goes into detail on the calculations used in 

the Copernicus II receiver for a satellite’s ECEF coordinates. Chapter 4 then gave a background 

on the least-squares algorithm commonly used to estimate the system of equations used in GPS 

trilaterations and explains other numerical methods that may improve the solution for the 

estimation to the set of equations. This chapter details the selection method and used and the 

results for that selection method in the least squares, Newton’s, and the BFGS methods for 

estimation of the solution. These are all compared to the coordinates given by the Copernicus II 

receiver.  

7.1.1. GPS Improvement Methods 

As noted in Chapter 3 most of the signals for the satellites have a strength that in the 

range of 2 to 4. In this experiment the satellite selection will be limited to the signal strengths 

between 2 and 4 in the least squares, Newton’s, and BFGS methods for estimating a solution to a 

set of equations. It is hypothesized that by limiting the selection of satellites to a strength of 2 to 

4 the signal strength will become more precise even if the solution becomes less accurate. It is 

also hypothesized that Newton’s and the BFGS methods will improve the precision of the 

trilateration because they ignore less terms leading to less approximation. The program 

developed to test the GPS algorithm is in APPENDIX A. 
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7.1.2. GPS Results 

While attempting to achieve a position fix from a custom selection of satellite signals it 

was noted that the calculated satellite positions were incorrect. The satellite positions were 

calculated as seen in Chapter 4 from the data sent from the Copernicus II receiver and compared 

to the expected position based on the two line element (TLE) files downloaded by [100] and then 

converted to satellite positions by [101]. A sample of the expected position versus the actual 

position can be seen in Table 7.1. 

Table 7.1: Satellite ECEF coordinates 

  Calculated from Receiver Calculated from TLE   

  X Y Z X Y Z Error Uk 

PRN 

4 

8:44 AM -15459101 1969198 21176367 -15436979 2120922 21179065 7.71 1.504 

8:48 AM -15483504 1265138 21217767 -15467267 1455204 21218911 15.02 1.541 

8:53 AM -15532920 217814 21226803 -15523218 534195 21229892 145.25 1.595 

PRN 

14 

8:44 AM -10158587 11132505 -21640717 -11427077 -19492172 14315491 321.62 -1.491 

8:48 AM -9522484 11613871 -21674408 -11040759 -19290712 14885974 315.46 -1.515 

8:53 AM -7698498 12837871 -21702095 -10478473 -19006647 15645628 304.05 -1.581 

 

The position calculations from the TLE files should not be considered entirely accurate 

because time used to calculate the TLE position will always be slightly different than the actual 

time the GPS receiver actually received the satellite information for the satellite calculation. The 

TLE positions can however provide an estimate of the general vicinity the satellite should be 

located. As can be seen in Table 7.1, sometimes the two calculated positions for a given satellite 

are within 5% even, many times the satellite positions are extremely different.  

7.2. Control and Robust Filter Performance Results Obtained on the Developed Model 

These results will be broken into two sections: results based on model and control 

simulation only, without using the developed robust filter, and experimental results on the 

vehicle combining all components 
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7.2.1. Simulation Results 

A MATLAB code used in simulating the developed model using the developed controller 

and the robust filter is shown in APPENIX B. Since there were no sensors to read, the robust 

filter essentially runs without producing anything. So these results will only show the 

performance of the vehicle and of the controller only. Three types of paths were evaluated as 

shown in Table 7.2 and the performance was evaluated based on the average root-mean-squared 

(rms) tracking error per step, 

𝑒𝑟𝑚𝑠 =
√∑[(𝑋𝑟−𝑥𝑝)2+(𝑌𝑟−𝑦𝑝)2]

𝑁𝑆𝑇𝐸𝑃𝑆
     (7.1) 

Where (𝑋𝑟, 𝑌𝑟)  are the simulated coordinates tracked by the robot and  (𝑥𝑝, 𝑦𝑝) are the desired 

path coordinates 

Table 7.2: Simulation performance 

Path RMS tracking error per step (m) 

Semicircle 0.8512 

Zigzag 0.4824 

Sinusoid 1.4228 
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Figure 7.1: Semicircle path 

 

Figure 7.2: Zigzag path 



 

88 

Although the numerical simulation results for the sinusoid path shows failure to turn from 

decreasing Northing to increasing Northing as shown in Figure 7.4, the simulation was still able 

to fairly capture the behavior within three quarters of the cycle before that failure happened. For 

the part where the path was tracked sufficiently tracked as shown in Figure 7.4, the average rms 

tracking error was within the robot size. Failure to change the northing direction from negative to 

positive is not attributed to the model or the control itself but rather the way trigonometric 

functions were handled in the numerical simulator. 

 

Figure 7.3: Full sinusoid path 
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Figure 7.4: Partial sinusoid path 

7.2.2. Control and Filter Experimentation 

The control experiments were conducted on THUNDAR the autonomous snowplow 

which was designed in [102] and is pictured below. 

 

Figure 7.5: THUNDAR the autonomous snow plow 
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7.2.3. Experimental Vehicle  

The vehicle was designed to operate with the left side wheels and the right side wheels to 

be controlled independently as seen in Figure 7.6. Each side is driven by a Motenergy ME0708 

DC motor which is capable of supplying 4.5 KW at 24V.  

 

 

Figure 7.6: Vehicle drivetrain [102] 

Each motor has a total of a 20:1 speed reduction to each wheel through a Baldor 

GCF5X02BB 5:1 gear reduction and then an additional 4:1 speed reduction through chains and 

gears as shown in Figure 7.7. 

 

Figure 7.7: Motor reduction [102] 
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The circuitry is split into two main sections, one part which drives the high voltage DC 

motors and one low voltage circuit which contains the sensors and the microcontrollers 

necessary to conduct the control algorithm. 

On the high voltage side a RoboteQ VDC2450 motor driver takes PWM signals from the 

low voltage circuit and converts it to the high voltage PWM necessary to drive the 24V wheel 

DC motors. A RoboteQ LDC2203C motor driver is drive the 12V winch and linear actuator used 

on the snowplow blade based on signals from the low voltage circuit. The high voltage circuit 

contains two safety kill switches shown in Figure 7.8. 

 

Figure 7.8: High voltage circuit [102] 
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There is one manual safety switch and one remote safety switch. The high voltage side also 

contains the remote switch which sends a 12V signal to the low voltage board to switch between 

autonomous and remote control modes.  

 The low voltage side consists of a circuit board which was developed for this study and is 

shown in Figure 7.9 and pictured in Figure 7.10. Further detail of the circuit is shown in the 

APPENDIX C.  

 

Figure 7.9: Circuit board diagram 
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Figure 7.10: Picture of circuit board 

The sensors used on the board and which measurements they correspond to are shown 

below in Table 7.3.  

Table 7.3: Measurement vector and corresponding sensors 

Measurement Vector Sensor 

Nl Yumo E6B2-CWZ3E Encoder 

Nr Yumo E6B2-CWZ3E Encoder 

ax1 STEVAL-MKI123V1 IMU 

ax2 STEVAL-MKI123V1 IMU 

ωz1 STEVAL-MKI123V1 IMU 

ωz2 STEVAL-MKI123V1 IMU 

X Copernicus II GPS 

Y Copernicus II GPS 
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The sensors used correspond the sensor measurements required for the filtering in 

Chapter 5 and the control algorithm in Chapter 6. It is important to note that the encoders are 

only connect to the circuit board, the encoders themselves are mounted directly to one wheel on 

each side of the robot. There are two Coretex M4 microcontrollers on board. One is used to 

compute the custom GPS algorithm and the other is used to process the other sensors and carry 

out the control program. The code used for the control program is shown in APPENDIX D.   

7.2.4. Experimental Results 

In experimentation the control algorithm was not able to reliably track the desired path of 

the robot because most of the time the controller would saturate and fail to respond to the desired 

path waypoints. The robot was experimented with several times with different definitions of 

waypoints, but all the time the system would fail. The research took time to reexamine the whole 

control system and found that while the controller part (equations (5.112) through (5.117)) had 

no problems, i.e. if it got the proper state vector, then it would respond well as desired. The 

problem was found in the filter that was formulated in Chapter 5. This filter exhibited weak 

convergence in calculating the Ricatti equation (equations (6.35) and (6.53) through (6.57) 

 and often would result in singular matrices that would force the estimated state vector to be 

infinity. A sample of the state vector, raw sensor measurements and control vector can be seen in 

Table 7.4, Table 7.5, and Table 7.6 respectively. 
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Table 7.4: Raw measurement vector 

Time(ms) Ax1 Gz1 Ax2 Gz2 X Y L Enc R Enc 

28092.29 0.00000 0.0000 -83.3 0.0000 -2.6 3 0 0 

30173.63 0.00000 0.0000 -83.3 0.0000 -2.9 4 0 0 

31688.04 0.00000 0.0000 -83.3 0.0000 -3.8 5 0 0 

32734.11 0.00000 0.0000 -83.3 0.0000 -3.8 5 0 0 

33772.35 0.00000 0.0000 -83.3 0.0000 -3.8 5 0 0 

34810.46 -0.00508 0.0000 -9160.0 0.0000 -3.8 5 0 0 

36360.1 0.00000 0.0000 -83.3 0.0000 -3.8 5 0 0 

37399.13 -0.00762 0.0012 -9160.0 0.0000 -3.8 5 0 0 

38438.26 -0.01271 0.0000 -8910.2 0.0000 -6.5 5 0 0 

40034.88 0.00000 0.0000 0.0 0.0000 -6.5 5 0 0 

41651.49 -0.01017 0.0000 -8660.4 0.0000 -6.5 5 0 0 

42699.6 0.00000 0.0000 -83.3 0.0000 -6.5 5 0 0 

43745.71 84.22366 0.0300 -5354.0 0.0312 -4.8 6.5 358 511 

45022.32 0.00000 0.0000 83.3 0.0000 -4.8 6.5 859 828 

46272.16 -75.5806 -75.446 721.0 -75.142 -4.8 6.5 -255 198 

47380.48 -0.65565 0.0012 -13.7 0.0012 -4.8 6.5 -189 153 

48916.06 0.00000 0.0000 -82.6 0.0000 -4.8 6.5 1188 1158 

49957.26 -0.00508 0.0336 -4714.0 0.0240 -4.8 6.5 1896 2084 

51279.8 0.00000 0.0000 0.7 0.0000 -4.8 6.5 905 850 

52552.92 0.65311 0.0012 -83.3 0.0012 2.0 2.5 -217 157 

53810.78 0.00000 0.0012 5.9 0.0012 2.0 2.5 -233 155 

55151.99 21.47649 0.0504 -1869.8 0.0492 2.0 2.5 5 0 

56197.21 0.00000 0.0000 -83.3 0.0000 2.0 2.5 0 0 

57242.67 0.00000 0.0000 -83.3 0.0000 -18.1 -8 0 0 

58828.03 0.00000 0.0036 -9409.9 0.0000 -17.9 -6.5 0 0 

60451.8 0.00000 0.0000 -83.3 0.0000 -17.9 -6.5 0 0 

62078.71 0.00000 0.0000 -83.3 0.0000 -17.9 -6.5 0 0 

63123.75 0.00000 0.0000 -83.3 0.0000 -19.2 -7.5 0 0 
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Table 7.5: Estimated state vector 

Time(ms) vl vr vx Ω θ XE YE 

28092.29 0.0000 0.0000 -0.000077 0 0 2.6249 -2.9999 

30173.63 0.0000 0.0000 -0.000006 697.134 349.3932 -57.5 -168.958 

31688.04 0.0000 0.0000 -0.000062 0 0 3.8125 -5.0001 

32734.11 0.0000 0.0000 -0.000027 0 -8E-06 3.8125 -4.99996 

33772.35 0.0000 0.0000 -0.000078 0 0 3.8124 -4.9999 

34810.46 0.0000 0.0000 0.059323 251.026 -9885.08 -3443 50277.79 

36360.1 0.0000 0.0000 -0.004451 0 -6.4E-05 3.812 -4.99259 

37399.13 0.0000 0.0000 -0.000046 -8E-06 -3E-06 3.8124 -4.99995 

38438.26 0.0000 0.0000 -3.64E+08 1.8E+09 5.31E+08 -4E+08 8.43E+08 

40034.88 0.0000 0.0000 53851340 110.501 786488.6 4E+07 -8E+07 

41651.49 0.0000 0.0000 -7244002 -3E+15 -3.2E+14 -7E+14 -5.6E+14 

42699.6 0.0000 0.0000 -77852240 4.9E+09 -2.2E+09 -1E+09 3.38E+08 

43745.71 0.0172 0.0196 2.462E+12 -1E+18 -5.2E+17 -5E+16 3.74E+17 

45022.32 0.0687 0.0709 -1.16E+15 -2E+19 -5.1E+18 2E+18 -2.4E+17 

46272.16 0.0503 0.0646 1.428E+09 -1E+12 2.24E+12 1E+12 8.3E+11 

47380.48 -0.027 0.0219 23049.697 -593.75 682.9127 26099 15915.79 

48916.06 0.0180 0.0348 -47165.89 1.4E+13 6.98E+12 4E+12 -1E+13 

49957.26 0.0912 0.1003 -7.98E+11 1.1E+18 7.41E+17 3E+17 2.41E+17 

51279.8 0.0633 0.0675 -3.43E+11 -8E+17 -5.4E+17 6E+12 3E+17 

52552.92 0.0526 0.0626 -1.4E+18 -1E+18 1.05E+18 2E+19 -1.1E+18 

53810.78 -0.023 0.0168 -1.06E+17 -5E+21 -6.7E+21 1E+21 -2.8E+21 

55151.99 -0.010 0.0068 -1.03E+16 -4E+10 -1.5E+14 -6E+15 1.59E+16 

56197.21 0.0003 0.0000 4.615E+12 -2E+19 -4E+19 2E+18 -2E+18 

57242.67 0.0000 0.0000 6.872E+09 -608999 2.96E+08 9E+09 -7.7E+09 

58828.03 0.0000 0.0000 -2.5E+08 -33395 -3655715 -3E+08 2.68E+08 

60451.8 0.0000 0.0000 47632308 -576843 548882.4 6E+07 -5.1E+07 

62078.71 0.0000 0.0000 29255236 3.7E+14 -1.4E+14 9E+13 1.88E+13 

63123.75 0.0000 0.0000 -11687678 -2149.1 -167909 -2E+07 -4359124 
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Table 7.6: Control output and algorithm convergence 

  Control Output Conrol Conv Filter Conv 

Time(ms) U1 U2 Itt_c Er_c Itt_f Er_f 

28092.29 0.43593 0.36253 3 1.844721 75 16587706368 

30173.63 211.486 -213.32 3 1.816249 75 1.58049E+11 

31688.04 1.#QNAN0 1.#QNAN0 563 1.#QNAN0 75 18879340544 

32734.11 0.68747 0.57421 3 1.82911 75 3.385E+11 

33772.35 0.68747 0.57419 3 1.829115 75 5.94185E+11 

34810.46 -7311.7 -316.52 3 1.829116 75 2.32962E+13 

36360.1 1.#QNAN0 1.#QNAN0 600 1.#QNAN0 75 1703359616 

37399.13 0.6878 0.57374 3 8.250623 75 4.37957E+13 

38438.26 3.9E+08 -5E+08 3 1.829115 75 7.54349E+11 

40034.88 1.#QNAN0 1.#QNAN0 654 1.#QNAN0 75 54068789248 

41651.49 1.#QNAN0 1.#QNAN0 682 1.#QNAN0 75 3.33201E+12 

42699.6 1.#QNAN0 1.#QNAN0 8 1.#QNAN0 75 12194299904 

43745.71 1.#QNAN0 1.#QNAN0 12 1.#QNAN0 75 4420327424 

45022.32 -1.#INF00 1.#INF00 304 1.#QNAN0 75 15596531712 

46272.16 -1.#INF00 1.#INF00 276 1.#QNAN0 75 2.07642E+12 

47380.48 1.#QNAN0 1.#QNAN0 80 1.#QNAN0 75 38445314048 

48916.06 1.#QNAN0 1.#QNAN0 585 1.#QNAN0 75 1927557760 

49957.26 1.#QNAN0 1.#QNAN0 8 1.#QNAN0 75 21354545152 

51279.8 -1.#INF00 1.#INF00 366 1.#QNAN0 75 25197451264 

52552.92 -1.#INF00 1.#INF00 303 1.#QNAN0 75 2.13941E+12 

53810.78 -1.#INF00 1.#INF00 283 1.#QNAN0 75 4845914112 

55151.99 -1.#INF00 1.#INF00 392 1.#QNAN0 75 29447045120 

56197.21 1.#QNAN0 1.#QNAN0 7 1.#QNAN0 75 1.2458E+18 

57242.67 1.#QNAN0 1.#QNAN0 8 1.#QNAN0 75 1.43464E+11 

58828.03 1.#QNAN0 1.#QNAN0 647 1.#QNAN0 75 12911873024 

60451.8 1.#QNAN0 1.#QNAN0 684 1.#QNAN0 75 205733248 

62078.71 1.#QNAN0 1.#QNAN0 693 1.#QNAN0 75 26019204 

63123.75 1.#QNAN0 1.#QNAN0 8 1.#QNAN0 75 33034330112 

 

It is important to note that the raw sensor measurements seen here are not directly used in 

the as the measurement vector. In the control program a real time operating system was used and 

the control function was called every 0.785 seconds. This time period was too large for reliable 

IMU to be taken so the IMU was sampled at a higher rate and then the average of all the readings 
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were used as the acceleration and the angular velocity readings. The IMU was sampled 

approximately 112 times for every cycle of the control function. It should also be noted that the 

second accelerometer was ignored because of bad readings. The measurement vector then simply 

read the first accelerometer twice. Also, the raw UTM coordinates were very large so the 

coordinate system was adjusted to the starting point of the control path. Reasons for the weak 

convergence of the filter are discussed in the conclusions chapter.  
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CHAPTER 8.  CONCLUSIONS AND RECOMMENDATIONS 

This chapter outlines the conclusions based on the results in the previous chapter and 

make recommendations for future studies. 

8.1. GPS Algorithm 

The results for the GPS algorithm show that certain angles used to calculate the satellite 

position change over time and overtime can change which quadrant the angle lies in. When 

switching past multiples of 
𝜋

2
 either the cosine or sine function will change in positivity which 

can change the validity of the equations in used. This behavior is highlighted by satellite 4 in the 

GPS results which starts with a good satellite position. When the corrected argument of latitude, 

uk, switches from less than to greater than 
𝜋

2
 between time steps 2 and 3. While it is conceivable 

to wait for four satellite positions to be calculated correctly this research aims to study the 

accuracy of the position fix over a long period of time and this would not be practical.  

Because the changing angles can change the validity of the equations it was concluded 

that the information sent from the Copernicus II receiver either needs to be bounded within a 

range or a correct reference position needs to be used. This was seen for sure in the corrected 

argument of latitude but it is likely true for other angles used in calculation as well. The 

information in the Copernicus II manuals did not indicate any special references in the 

information the receivers calculated but they may still be there. Attempts to gather information 

from Copernicus II proved difficult and time was not sufficient to find the correct ranges and 

references to always find an accurate satellite position so this portion of the research was tabled 

for now. In future research it is suggest a receiver with better documentation on gathered 

information be used. 
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8.2. Dynamic Model Simulations 

 The model simulations performed very well and showed that the dynamic model was 

sufficiently able to capture the dynamics of the vehicle. Through the path tracking algorithm the 

robot was able to maintain the course within 3/4th of the overall length which means part of the 

vehicle should have intersected the course at all times. There was however a problem with the 

numerics of the control algorithm where the robot lost its way while completing the sinusoidal 

path. This is likely due to the change in the direction of the robot and does not show a problem 

with the dynamic model which was created.  

8.3. Control and Filter Experimentation 

In controlling the robot experimentally the filter was unable to converge strongly and this 

created errors in the state which the robot was not able to overcome during experimentation. This 

could be due to the system matrix terms, which are dependent on the heading angle, turning to 

zero during the system update which could cause the system to become unobservable and 

possibly uncontrollable. Specifically these terms relate to the X and Y coordinates of the robot. In 

practice the uncontrollability would be overcome because the robot would be running initially 

and it wouldn’t be able control the X and Y coordinates and it would still be controlling the 

velocities. The robot would then move past the point where it is uncontrollable and keep on 

going. The observability, however, makes it so the state estimation has an error and this could 

cause the system to crash. There are other factors as well such as not having accurate knowledge 

of the robot’s physical parameters and not having accurate representations of the noise 

characteristics of the sensors. It is recommended that in future studies the system matrix is 

monitored and if it becomes unobservable a small value is used instead of zero to maintain 
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observability. It is also recommended that the robot and sensor parameters are accurately 

measured.  

8.4. Concluding Remarks 

In conclusion this study had four main goals. The first goal of creating a model well 

suited for high friction surfaces was completed and verified through simulation results. The 

second goal was to characterize and reduce errors in low cost GPS and IMU units. This was 

partially completed by being able to characterize the errors inherent in low cost GPS units. The 

work for reducing the error has yet to be completed because the satellite positions were only 

sometimes able to be found. This goal was also partially completed by the formulation of the 

robust Kalman filter. The filter had issues with observability but initial formulations were tested 

and recommendations for improvements were made. The third goal was also partially completed 

because the control algorithm was formulated and was able to converge if the state was known, 

however it was not able to be tested full because the state vector was not able to be found 

through the Kalman filter. The final goal of experimentation was started and it was found that the 

initial formulation of the Kalman filter was preventing the experiments from succeeding. In 

future studies the model and control algorithm should work if the model is made to work in the 

Kalman filter.  
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APPENDIX A. IMPROVED GPS TRILATERATION CODE 

#include <math.h> 

#include <unistd.h> 

#include "stm32f4xx.h" 

#include "stm32f4xx_gpio.h" 

#include "stm32f4xx_pwr.h" 

#include "stm32f4xx_rcc.h" 

#include "stm32f4xx_usart.h" 

typedef struct ret_t 

{ 

    uint8_t Data[500]; 

    uint8_t Check; 

} ret_t; 

 

typedef struct inv 

{ 

    double binv[4][4]; 

} inv; 

 

typedef struct orbit_t 

{ 

 double M[12]; 

 double Ek[12]; 

 double Thk[12]; 

 double ik[12]; 

 double uk[12]; 

} orbit_t; 

 

orbit_t orbital; 

typedef struct sat_dat_t 

{ 

 

 

 //GPS Fix Data 

 float X; 

 float Y; 

 float Z; 

 float X_ECEF; 

 float Y_ECEF; 

 float Z_ECEF; 

 float Time; 

 //Sat strength data 

 uint8_t NoSat; 

 uint8_t Sat[12]; 

 float Level[12]; 

 //Sat health data 

 uint8_t nSVs; 

 uint8_t PRN[12]; 

 //Ephemeris Data 

 float t_ephem[12]; 

 int IODC[12]; 

 float T_GD[12]; 

 float t_oc[12]; 

 float a_f2[12]; 

 float a_f1[12]; 
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 float a_f0[12]; 

 uint8_t IODE[12]; 

 float C_rs[12]; 

 float delta_n[12]; 

 float C_uc[12]; 

 float C_us[12]; 

 float t_oe[12]; 

 float C_ic[12]; 

 float C_is[12]; 

 float C_rc[12]; 

 float OMEGADOT[12]; 

 float IDOT[12]; 

 

 double e[12]; 

 double sqrt_A[12]; 

 double M_0[12]; 

 double OMEGA_0[12]; 

 double i_0[12]; 

 double omega[12]; 

 double nn[12]; 

 double r1me2[12]; 

 

 

 //Raw Data 

 double TOM[12];  

 uint8_t TDiff[12]; 

 float codephase[12]; 

 float SigLev[12]; 

 float Doppler[12]; 

 float delta_tr[12]; 

 float TOW; 

 

 //GC1 

 uint16_t GC1weekn; 

 uint GC1TOWms; 

 int GC1Fractional; 

 int GC1Altitude; 

 uint8_t GC1SatID[12]; 

 uint8_t GC1Sig[12]; 

 uint16_t GC1Aqu[12]; 

 uint GC1Psuedo[12]; 

 int GC1RangeRate[12]; 

} sat_dat_t; 

 

sat_dat_t Sat_Dat; 

void myUSART_Init(void); 

uint8_t myUSART_GetByte(void); 

ret_t myUSART_TrapByte(uint8_t Trap1,uint8_t Trap2);//If normal packet 

Trap2==0; 

void myUSART_SendByte(uint8_t data ); 

void Configure_CopernicusGPS(void); 

void THUNDAR_GPS(void); 

void Satellite_Fix_A(void); 

inv invmatrix(double a[4][4]); 

void Position_Fix_A(void); 

void Position_Fix_B(void); 

void Position_Fix_C(void); 
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//Calculated Variables 

double X_PA[4]; 

double Y_PA[4]; 

double Z_PA[4]; 

double T_PA[4]; 

double RR[4]; 

double PR[4]; 

double tk[4]; 

double R[4]; 

double X_r_BFGS; 

double Y_r_BFGS; 

double Z_r_BFGS; 

double X_r_LS; 

double Y_r_LS; 

double Z_r_LS; 

double X_r_NR; 

double Y_r_NR; 

double Z_r_NR; 

 

//Temporary data 

uint8_t ct; 

float test[40]; 

double testd[15]; 

float qq[10]={1,1,1,1,1,1,1,1,1,1}; 

 

 

 

//===========================================================================

void myUSART_Init(void) 

{    GPIO_InitTypeDef  GPIO_InitStructure; 

  USART_InitTypeDef USART_InitStructure; 

 

  RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE); 

     RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3, ENABLE); 

 

        GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8|GPIO_Pin_9; 

        GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; 

        GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; 

        GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; 

        GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; 

        GPIO_Init(GPIOD, &GPIO_InitStructure); 

 

        // Connect UART pins to GPIO 

        GPIO_PinAFConfig(GPIOD, GPIO_PinSource8, GPIO_AF_USART3);   // TX 

        GPIO_PinAFConfig(GPIOD, GPIO_PinSource9, GPIO_AF_USART3);   // RX 

 

 

 

        // Initialize USART 

        USART_InitStructure.USART_BaudRate = 38400;  //Default baud rate  

        USART_InitStructure.USART_WordLength = USART_WordLength_8b;  // 8 

bits 

        USART_InitStructure.USART_StopBits = USART_StopBits_1; // 1 stop bit 

        USART_InitStructure.USART_Parity = USART_Parity_No; //no parity 
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        USART_InitStructure.USART_HardwareFlowControl = 

USART_HardwareFlowControl_None; //No hardware flow control 

        USART_InitStructure.USART_Mode =  USART_Mode_Rx | USART_Mode_Tx; 

        /* Configure USART */ 

        USART_Init(USART3, &USART_InitStructure); 

        /* Enable the USART */ 

        USART_Cmd(USART3, ENABLE); 

} 

 

 

//===========================================================================

uint8_t myUSART_GetByte(void) 

{ uint8_t x; 

  while (USART_GetFlagStatus(USART3, USART_FLAG_RXNE) == RESET) 

  { 

  x++; 

  if(x>500) 

  {break;} 

  } 

  return (uint8_t) USART_ReceiveData(USART3); 

} 

//=========================================================================== 

ret_t myUSART_TrapByte(uint8_t Trap1,uint8_t Trap2) 

{ 

uint8_t i; 

uint8_t k; 

uint8_t n; 

uint8_t t; 

uint8_t TrapByte; 

uint8_t nmax; 

i=0; 

ct=0; 

t=0; 

ret_t DataArray={0}; 

//Initial 

Bits================================================================= 

LOOPX: 

 if(ct>200){DataArray.Check=1; goto END;} 

 else {DataArray.Check=0;} 

 ct++; 

    n=0; 

    TrapByte=myUSART_GetByte(); 

    if(TrapByte!=0x10) goto LOOPX; 

    DataArray.Data[n]=TrapByte; 

    n++; 

    TrapByte=myUSART_GetByte(); 

    if(TrapByte!=Trap1) goto LOOPX; //Check for intended packet 

    DataArray.Data[n]=TrapByte; 

    //n++; 

    if(Trap2!=0)                   //Check if normal or super packet 

    { 

        //Super Packet Data Header=== 

        TrapByte=myUSART_GetByte(); 

        if(TrapByte!=Trap2) goto LOOPX; 

        n++; 

        DataArray.Data[n]=TrapByte; 

    } 
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LOOPX2: 

    n++; 

    DataArray.Data[n]=myUSART_GetByte(); 

    if (DataArray.Data[n]==0x10) 

        { 

            i++;                    //Count intermediate 0x10 bytes 

        } 

    if ((DataArray.Data[n]==0x03) && (DataArray.Data[n-1]==0x10) && 

((i&1)==1)) //Check for legal end of data transmission 

        { 

            goto LOOPY; 

        } 

        else 

        { 

         if (n>=179) 

         {DataArray.Check=1; goto END;} 

         else 

         {goto LOOPX2;} 

        } 

    //Check for Byte Stuffing  

    LOOPY: 

    nmax=n; 

    n=0; 

    for (n=1;n<nmax;n++) 

    { 

        if ((DataArray.Data[n-

1]==DataArray.Data[n])&&(DataArray.Data[n]==0x10)&&(i>1)) 

        { 

            nmax--; 

            i=i-2;//subtract 2 on the counter for both 10s 

            for(k=n;k<nmax;k++) DataArray.Data[k-1]=DataArray.Data[k]; 

        } 

    } 

    if (i!=1) 

    { 

     DataArray.Check=1; 

    } 

    END: 

    return(DataArray); 

} 

 

//=========================================================================== 

void myUSART_SendByte(uint8_t data ) 

{  uint8_t x; 

x=0; 

 while (USART_GetFlagStatus(USART3, USART_FLAG_TXE) == RESET) 

 { 

  x++; 

  if(x>500) 

  {break;} 

 } 

 USART_SendData(USART3, data); 

} 

 

//=========================================================================== 

 

void Configure_CopernicusGPS(void) 



 

115 

{ 

 uint8_t m; 

 uint8_t n; 

 uint8_t 

NavigConfig[]={0x10,0xBB,0x00,0x00,0x01,0x02,0x00,0x3E,0x33,0x33,0x33,0x00,0x

00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00

,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x10,0

x03}; //Navigation dynamics 

 uint8_t 

TurnOFFPortB[]={0x10,0xBC,0x01,0x06,0x06,0x03,0x00,0x00,0x00,0x00,0x00,0x00,0

x10,0x03}; //Port B 

 uint8_t SetIOOptions[]={0x10,0x35,0x25,0x02,0x41,0x01,0x10,0x03}; //IO 

Options OK 

 uint8_t SetDatum[]={0x10,0x8E,0x15,0x00,0x00,0x10,0x03}; //Datum WGS-84 

 uint8_t NoAuto[]={0x10,0x8E,0x20,0x00,0x10,0x03}; //No Auto outputing 

ECEF and LLA 

 uint8_t NoUTM1[]= {0x10,0x8E,0x17,0x00,0x10,0x03}; //No Auto outputing 

UTM Single 

 uint8_t NoUTM2[]= {0x10,0x8E,0x18,0x00,0x10,0x03}; //No Auto outputing 

UTM Double 

 uint8_t NoAuto2[]={0x10,0x8E,0x21,0x00,0x10,0x03}; //No Auto Extra Info 

 uint8_t NoAuto3[]={0x10,0x8E,0x23,0x00,0x10,0x03}; //No Auto Extra Info 

 uint8_t NoAuto4[]={0x10,0x8E,0x2A,0x00,0x10,0x03}; //No Auto Extra Info 

 uint8_t NoAuto5[]={0x10,0x8E,0x2B,0x00,0x10,0x03}; //No Auto Extra Info 

  myUSART_Init();    //Set GPS to USART Channel 2, 3,and 4 

 

  m=sizeof(NavigConfig)/sizeof(uint8_t); 

  for(n=0;n<m;n++) 

  { 

   myUSART_SendByte(NavigConfig[n]); 

//Configure navigation to Sea Dynamics at 10 degrees level mask 

  } 

 

 

  m=sizeof(TurnOFFPortB)/sizeof(uint8_t); 

  for(n=0;n<m;n++) 

  { 

    myUSART_SendByte(TurnOFFPortB[n]);//Turn Off the unused Port B 

  } 

 

  m=sizeof(SetIOOptions)/sizeof(uint8_t); 

  for(n=0;n<m;n++) 

  { 

   myUSART_SendByte(SetIOOptions[n]);     

//Configure I/O Options XYZ-ECEF, pps OFF, Superpackets ON 

  } 

 

 

  m=sizeof(SetDatum)/sizeof(uint8_t); 

  for(n=0;n<m;n++) 

  { 

   myUSART_SendByte(SetDatum[n]);       

//Set Datum to NAR-C (i.e., NAD 83 CONUS) 

  } 

 

 

  m=sizeof(NoAuto)/sizeof(uint8_t); 
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  for(n=0;n<m;n++) 

  { 

   myUSART_SendByte(NoAuto[n]);          

//No automatic ECEF and LLA outputting 

  } 

 

 

  m=sizeof(NoUTM1)/sizeof(uint8_t); 

  for(n=0;n<m;n++) 

  { 

   myUSART_SendByte(NoUTM1[n]);          

//No automatic UTM-Single outputting 

  } 

 

 

  m=sizeof(NoUTM2)/sizeof(uint8_t); 

  for(n=0;n<m;n++) 

  { 

   myUSART_SendByte(NoUTM2[n]);          

//No automatic UTM-Double outputting 

  } 

 

 

  m=sizeof(NoAuto2)/sizeof(uint8_t); 

  for(n=0;n<m;n++) 

  { 

   myUSART_SendByte(NoAuto2[n]);          

//No automatic UTM-Double outputting 

  } 

 

 

  m=sizeof(NoAuto3)/sizeof(uint8_t); 

  for(n=0;n<m;n++) 

  { 

   myUSART_SendByte(NoAuto3[n]);          

//No automatic UTM-Double outputting 

  } 

 

 

  m=sizeof(NoAuto4)/sizeof(uint8_t); 

  for(n=0;n<m;n++) 

  { 

   myUSART_SendByte(NoAuto4[n]);          

//No automatic UTM-Double outputting 

  } 

 

 

  m=sizeof(NoAuto5)/sizeof(uint8_t); 

  for(n=0;n<m;n++) 

  { 

   myUSART_SendByte(NoAuto5[n]);          

//No automatic UTM-Double outputting 

  } 

 

} 
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//=========================================================================== 

void THUNDAR_GPS(void) 

 { 

//Declare Variables 

 uint32_t i1; 

 uint32_t i2; 

     union 

       { 

     uint64_t HexValue; 

     float FloatValue; 

        }TempData; 

     union 

      { 

         uint8_t byte[8]; 

      double DoubleValue; 

       }TempDouble; 

     ret_t DataArray; 

    uint8_t res; 

     uint32_t i; 

  uint8_t j; 

  uint8_t k; 

  uint8_t m; 

  uint8_t n; 

  uint8_t GetSatDat[]={0x10,0x27,0x10,0x03}; //Satellites used 

  uint8_t GetTOW[]={0x10,0x21,0x10,0x03}; //Satellites used 

  uint8_t GetUsedSat[]={0x10,0x24,0x10,0x03};//Data on Satellites 

  uint8_t GetGPSData[]={0x10,0x8E,0x17,0x10,0x03};//Get Coordinates 

  uint8_t GetIon[]={0x10,0x38,0x01,0x06,0x1A,0x10,0x03};//Get Ion 

  uint8_t 

GetIon10[]={0x10,0x38,0x01,0x06,0x10,0x10,0x10,0x03};//Get Ephemiris 0x10 

  uint8_t GetRaw[]={0x10,0x3A,0x00,0x10,0x03};//Get Raw Data 

  uint8_t GetRaw10[]={0x10,0x3A,0x10,0x10,0x10,0x03};//Get Raw Data  

  uint8_t GetChannel1[]={0x8E,0x2A,0x10,0x03}; 

  uint8_t GetAl[]={0x10,0x38,0x01,0x02,0x1A,0x10,0x03}; 

//Get Ephemiris 

  uint8_t GetAl10[]={0x10,0x38,0x01,0x02,0x10,0x10,0x10,0x03}; 

//Get Ephemiris 0x10 

 //===================================================================== 

  //Read Data 

  ct=0; 

  res=0; 

  res=0; 

  Retry0: 

  res++; 

  for(i=0;i<180;i++) 

  { 

   DataArray.Data[i]=0; 

  } 

  DataArray=myUSART_TrapByte(0x42,0); 

  if(DataArray.Check==1 && res<50){goto Retry0;} 

  ct=0; 

  res=0; 

 

 TempData.HexValue=(DataArray.Data[2]<<24)+(DataArray.Data[3]<<16)+(Data

Array.Data[4]<<8)+(DataArray.Data[5]); //GPSData[8] was GPSData[9] 

  Sat_Dat.X_ECEF=TempData.FloatValue; 
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 TempData.HexValue=(DataArray.Data[6]<<24)+(DataArray.Data[7]<<16)+(Data

Array.Data[8]<<8)+(DataArray.Data[9]); 

  Sat_Dat.Y_ECEF=TempData.FloatValue; 

 

 TempData.HexValue=(DataArray.Data[10]<<24)+(DataArray.Data[11]<<16)+(Da

taArray.Data[12]<<8)+(DataArray.Data[13]); 

  Sat_Dat.Z_ECEF=TempData.FloatValue; 

 

 

  ct=0; 

  res=0; 

  res=0; 

  Retry1: 

  res++; 

  for(i=0;i<180;i++) 

  { 

   DataArray.Data[i]=0; 

  } 

  m=sizeof(GetGPSData)/sizeof(uint8_t); 

   for(n=0;n<=m;n++) 

   { 

    myUSART_SendByte(GetGPSData[n]); 

   } 

  DataArray=myUSART_TrapByte(0x8F,0x17); 

  if(DataArray.Check==1 && res<50){goto Retry1;} 

  ct=0; 

  res=0; 

 

 TempData.HexValue=(DataArray.Data[6]<<24)+(DataArray.Data[7]<<16)+(Data

Array.Data[8]<<8)+(DataArray.Data[9]); //GPSData[8] was GPSData[9] 

  Sat_Dat.Y=TempData.FloatValue; 

 

 TempData.HexValue=(DataArray.Data[10]<<24)+(DataArray.Data[11]<<16)+(Da

taArray.Data[12]<<8)+(DataArray.Data[13]); 

  Sat_Dat.X=TempData.FloatValue; 

 

 TempData.HexValue=(DataArray.Data[14]<<24)+(DataArray.Data[15]<<16)+(Da

taArray.Data[16]<<8)+(DataArray.Data[17]); 

  Sat_Dat.Z=TempData.FloatValue; 

 

 TempData.HexValue=(DataArray.Data[22]<<24)+(DataArray.Data[23]<<16)+(Da

taArray.Data[24]<<8)+(DataArray.Data[25]); 

  Sat_Dat.Time=TempData.FloatValue; 

 

  //Get Satellite Data 

  Retry2: 

  res++; 

  for(i=0;i<50;i++) 

  { 

   DataArray.Data[i]=0; 

  } 

  m=sizeof(GetSatDat)/sizeof(uint8_t); 

  for(n=0;n<=m;n++) 

  { 

   myUSART_SendByte(GetSatDat[n]); 

  } 
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  DataArray=myUSART_TrapByte(0x47,0); 

  if(DataArray.Check==1 && res<50){goto Retry2;} 

  Sat_Dat.NoSat=DataArray.Data[2]; 

  ct=0; 

  res=0; 

  for(i=0;i<Sat_Dat.NoSat;i++) 

  { 

   Sat_Dat.Sat[i]=DataArray.Data[3+i*5]; 

  

 TempData.HexValue=(DataArray.Data[4+i*5]<<24)+(DataArray.Data[5+i*5]<<1

6)+(DataArray.Data[6+i*5]<<8)+(DataArray.Data[7+i*5]); 

   Sat_Dat.Level[i]=TempData.FloatValue; 

  } 

  for(i=Sat_Dat.NoSat;i<12;i++) 

  { 

   Sat_Dat.Sat[i]=0; 

   Sat_Dat.Level[i]=0; 

  } 

 

  //Get Used Satellites 

  Retry3: 

  res++; 

  for(i=0;i<180;i++) 

  { 

   DataArray.Data[i]=0; 

  } 

  m=sizeof(GetUsedSat)/sizeof(uint8_t); 

  for(n=0;n<=m;n++) 

  { 

   myUSART_SendByte(GetUsedSat[n]); 

  } 

  DataArray=myUSART_TrapByte(0x6D,0); 

  if(DataArray.Check==1 && res<50){goto Retry3;} 

  ct=0; 

  res=0; 

  Sat_Dat.nSVs=(DataArray.Data[2]&0xF); 

   

  for(i=0;i<12;i++) 

  { 

   Sat_Dat.PRN[i]=0; 

  } 

  for(i=0;i<Sat_Dat.nSVs;i++) 

  { 

   Sat_Dat.PRN[i]=DataArray.Data[19+i]; 

  } 

 

  //Get Ephemeris Data and Raw Data 

  k=Sat_Dat.NoSat; 

  for(i=0;i<k;i++) 

  { 

   Retry4: 

   res++; 

   for(j=0;j<180;j++) 

   { 

    DataArray.Data[j]=0; 

   } 

   if(Sat_Dat.Sat[i]==0x10) 
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   { 

    m=sizeof(GetIon10)/sizeof(uint8_t); 

    for(n=0;n<=m;n++) 

    { 

     myUSART_SendByte(GetIon10[n]); 

    } 

   } 

   else 

   { 

    GetIon[4]=Sat_Dat.Sat[i]; 

    m=sizeof(GetIon)/sizeof(uint8_t); 

    for(n=0;n<=m;n++) 

    { 

     myUSART_SendByte(GetIon[n]); 

    } 

   } 

   DataArray=myUSART_TrapByte(0x58,0); 

   if(DataArray.Check==1 && res<50){goto Retry4;} 

 

   res=0; 

   ct=0; 

  

 TempData.HexValue=(DataArray.Data[7]<<24)+(DataArray.Data[8]<<16)+(Data

Array.Data[9]<<8)+(DataArray.Data[10]); 

   Sat_Dat.t_ephem[i]=TempData.FloatValue; 

  

 Sat_Dat.IODC[i]=(DataArray.Data[17]<<8)+(DataArray.Data[18]); 

  

 TempData.HexValue=(DataArray.Data[19]<<24)+(DataArray.Data[20]<<16)+(Da

taArray.Data[21]<<8)+(DataArray.Data[22]); 

   Sat_Dat.T_GD[i]=TempData.FloatValue; 

  

 TempData.HexValue=(DataArray.Data[23]<<24)+(DataArray.Data[24]<<16)+(Da

taArray.Data[25]<<8)+(DataArray.Data[26]); 

   Sat_Dat.t_oc[i]=TempData.FloatValue; 

  

 TempData.HexValue=(DataArray.Data[27]<<24)+(DataArray.Data[28]<<16)+(Da

taArray.Data[29]<<8)+(DataArray.Data[30]); 

   Sat_Dat.a_f2[i]=TempData.FloatValue; 

  

 TempData.HexValue=(DataArray.Data[31]<<24)+(DataArray.Data[32]<<16)+(Da

taArray.Data[33]<<8)+(DataArray.Data[34]); 

   Sat_Dat.a_f1[i]=TempData.FloatValue; 

  

 TempData.HexValue=(DataArray.Data[35]<<24)+(DataArray.Data[36]<<16)+(Da

taArray.Data[37]<<8)+(DataArray.Data[38]); 

   Sat_Dat.a_f0[i]=TempData.FloatValue; 

   Sat_Dat.IODE[i]=DataArray.Data[43]; 

  

 TempData.HexValue=(DataArray.Data[45]<<24)+(DataArray.Data[46]<<16)+(Da

taArray.Data[47]<<8)+(DataArray.Data[48]); 

   Sat_Dat.C_rs[i]=TempData.FloatValue; 

  

 TempData.HexValue=(DataArray.Data[49]<<24)+(DataArray.Data[50]<<16)+(Da

taArray.Data[51]<<8)+(DataArray.Data[52]); 

   Sat_Dat.delta_n[i]=TempData.FloatValue; 

   for(j=0;j<8;j++) 
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   { 

    TempDouble.byte[7-j]= DataArray.Data[53+j]; 

   } 

   Sat_Dat.M_0[i]=TempDouble.DoubleValue; 

   orbital.M[i]=TempDouble.DoubleValue; 

 TempData.HexValue=(DataArray.Data[61]<<24)+(DataArray.Data[62]<<16)+(Da

taArray.Data[63]<<8)+(DataArray.Data[64]); 

   Sat_Dat.C_uc[i]=TempData.FloatValue; 

   for(j=0;j<8;j++) 

   { 

    TempDouble.byte[7-j]= DataArray.Data[65+j]; 

   } 

   Sat_Dat.e[i]=TempDouble.DoubleValue; 

  

 TempData.HexValue=(DataArray.Data[73]<<24)+(DataArray.Data[74]<<16)+(Da

taArray.Data[75]<<8)+(DataArray.Data[76]); 

   Sat_Dat.C_us[i]=TempData.FloatValue; 

   for(j=0;j<8;j++) 

   { 

    TempDouble.byte[7-j]= DataArray.Data[77+j]; 

   } 

   Sat_Dat.sqrt_A[i]=TempDouble.DoubleValue; 

  

 TempData.HexValue=(DataArray.Data[85]<<24)+(DataArray.Data[86]<<16)+(Da

taArray.Data[87]<<8)+(DataArray.Data[88]); 

   Sat_Dat.t_oe[i]=TempData.FloatValue; 

  

 TempData.HexValue=(DataArray.Data[89]<<24)+(DataArray.Data[90]<<16)+(Da

taArray.Data[91]<<8)+(DataArray.Data[92]); 

   Sat_Dat.C_ic[i]=TempData.FloatValue; 

   for(j=0;j<8;j++) 

   { 

    TempDouble.byte[7-j]= DataArray.Data[93+j]; 

   } 

   Sat_Dat.OMEGA_0[i]=TempDouble.DoubleValue; 

   if(Sat_Dat.OMEGA_0[i]<0) 

   { 

    Sat_Dat.OMEGA_0[i]=Sat_Dat.OMEGA_0[i]+M_PI; 

   } 

   orbital.Thk[i]=TempDouble.DoubleValue; 

  

 TempData.HexValue=(DataArray.Data[101]<<24)+(DataArray.Data[102]<<16)+(

DataArray.Data[103]<<8)+(DataArray.Data[104]); 

   Sat_Dat.C_is[i]=TempData.FloatValue; 

   for(j=0;j<8;j++) 

   { 

    TempDouble.byte[7-j]= DataArray.Data[105+j]; 

   } 

   Sat_Dat.i_0[i]=TempDouble.DoubleValue; 

  

 TempData.HexValue=(DataArray.Data[113]<<24)+(DataArray.Data[114]<<16)+(

DataArray.Data[115]<<8)+(DataArray.Data[116]); 

   Sat_Dat.C_rc[i]=TempData.FloatValue; 

   for(j=0;j<8;j++) 

   { 

    TempDouble.byte[7-j]= DataArray.Data[117+j]; 

   } 
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   Sat_Dat.omega[i]=TempDouble.DoubleValue; 

   orbital.uk[i]=TempDouble.DoubleValue; 

  

 TempData.HexValue=(DataArray.Data[125]<<24)+(DataArray.Data[126]<<16)+(

DataArray.Data[127]<<8)+(DataArray.Data[128]); 

   Sat_Dat.OMEGADOT[i]=TempData.FloatValue; 

  

 TempData.HexValue=(DataArray.Data[129]<<24)+(DataArray.Data[130]<<16)+(

DataArray.Data[131]<<8)+(DataArray.Data[132]); 

   Sat_Dat.IDOT[i]=TempData.FloatValue; 

   for(j=0;j<8;j++) 

   { 

    TempDouble.byte[7-j]= DataArray.Data[141+j]; 

   } 

   Sat_Dat.nn[i]=TempDouble.DoubleValue; 

   for(j=0;j<8;j++) 

   { 

    TempDouble.byte[7-j]= DataArray.Data[149+j]; 

   } 

   Sat_Dat.r1me2[i]=TempDouble.DoubleValue; 

 

 

 

   Retry5: 

   res++; 

   for(j=0;j<180;j++) 

   { 

    DataArray.Data[j]=0; 

   } 

   if(Sat_Dat.Sat[i]==0x10) 

   { 

    m=sizeof(GetRaw10)/sizeof(uint8_t); 

    for(n=0;n<=m;n++) 

    { 

     myUSART_SendByte(GetRaw10[n]); 

    } 

   } 

   else 

   { 

    GetRaw[2]=Sat_Dat.Sat[i]; 

    m=sizeof(GetRaw)/sizeof(uint8_t); 

    for(n=0;n<=m;n++) 

    { 

     myUSART_SendByte(GetRaw[n]); 

    } 

   } 

   DataArray=myUSART_TrapByte(0x5A,0); 

   if(DataArray.Check==1 && res<50){goto Retry5;} 

   ct=0; 

   res=0; 

   for(j=0;j<8;j++) 

   { 

    TempDouble.byte[7-j]= DataArray.Data[19+j]; 

   } 

   Sat_Dat.TOM[i]=TempDouble.DoubleValue; 

   Sat_Dat.TDiff[i]=DataArray.Data[6]; 
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 TempData.HexValue=(DataArray.Data[11]<<24)+(DataArray.Data[12]<<16)+(Da

taArray.Data[13]<<8)+(DataArray.Data[14]); 

   Sat_Dat.codephase[i]=TempData.FloatValue; 

  

 TempData.HexValue=(DataArray.Data[7]<<24)+(DataArray.Data[8]<<16)+(Data

Array.Data[9]<<8)+(DataArray.Data[10]); 

   Sat_Dat.SigLev[i]=TempData.FloatValue; 

  

 TempData.HexValue=(DataArray.Data[15]<<24)+(DataArray.Data[16]<<16)+(Da

taArray.Data[17]<<8)+(DataArray.Data[18]); 

   Sat_Dat.Doppler[i]=TempData.FloatValue; 

  } 

 

 

  for(i=k;i<12;i++) 

  { 

   Sat_Dat.t_ephem[i]=0; 

   Sat_Dat.IODC[i]=0; 

   Sat_Dat.t_oc[i]=0; 

   Sat_Dat.a_f2[i]=0; 

   Sat_Dat.a_f1[i]=0; 

   Sat_Dat.a_f0[i]=0; 

   Sat_Dat.IODE[i]=0; 

   Sat_Dat.C_rs[i]=0; 

   Sat_Dat.delta_n[i]=0; 

   Sat_Dat.M_0[i]=0; 

   Sat_Dat.C_uc[i]=0; 

   Sat_Dat.e[i]=0; 

   Sat_Dat.C_us[i]=0; 

   Sat_Dat.sqrt_A[i]=0; 

   Sat_Dat.t_oe[i]=0; 

   Sat_Dat.C_ic[i]=0; 

   Sat_Dat.OMEGA_0[i]=0; 

   Sat_Dat.C_is[i]=0; 

   Sat_Dat.i_0[i]=0; 

   Sat_Dat.C_rc[i]=0; 

   Sat_Dat.omega[i]=0; 

   Sat_Dat.OMEGADOT[i]=0; 

   Sat_Dat.IDOT[i]=0; 

   Sat_Dat.nn[i]=0; 

   Sat_Dat.T_GD[i]=0; 

   Sat_Dat.TOM[i]=0; 

  } 

 

  //Get Time of Week 

  Retry7: 

  res++; 

  for(i=0;i<180;i++) 

  { 

   DataArray.Data[i]=0; 

  } 

  m=sizeof(GetTOW)/sizeof(uint8_t); 

  for(n=0;n<=m;n++) 

  { 

   myUSART_SendByte(GetTOW[n]); 

  } 
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  DataArray=myUSART_TrapByte(0x41,0); 

  if(DataArray.Check==1 && res<50){goto Retry7;} 

  ct=0; 

  res=0; 

 

 TempData.HexValue=(DataArray.Data[2]<<24)+(DataArray.Data[3]<<16)+(Data

Array.Data[4]<<8)+(DataArray.Data[5]); 

  Sat_Dat.TOW=TempData.FloatValue; 

  //Get Time of Week 

  Retry8: 

  res++; 

  for(i=0;i<500;i++) 

  { 

   DataArray.Data[i]=0; 

  } 

  m=sizeof(GetChannel1)/sizeof(uint8_t); 

  for(n=0;n<=m;n++) 

  { 

   myUSART_SendByte(GetChannel1[n]); 

  } 

  DataArray=myUSART_TrapByte(0x8F,0x2A); 

  if(DataArray.Check==1 && res<50){goto Retry8;} 

  ct=0; 

  res=0; 

  TempData.HexValue=(DataArray.Data[5]<<8)+(DataArray.Data[6]); 

  Sat_Dat.GC1weekn=TempData.FloatValue; 

 

 TempData.HexValue=(DataArray.Data[7]<<24)+(DataArray.Data[8]<<16)+(Data

Array.Data[9]<<8)+(DataArray.Data[10]); 

  Sat_Dat.GC1TOWms=TempData.FloatValue; 

 

 TempData.HexValue=(DataArray.Data[11]<<24)+(DataArray.Data[12]<<16)+(Da

taArray.Data[13]<<8)+(DataArray.Data[14]); 

  Sat_Dat.GC1Fractional=TempData.FloatValue; 

 

 TempData.HexValue=(DataArray.Data[15]<<24)+(DataArray.Data[16]<<16)+(Da

taArray.Data[17]<<8)+(DataArray.Data[18]); 

  Sat_Dat.GC1Altitude=TempData.FloatValue; 

  for(i=0;i<12;i++) 

  { 

   Sat_Dat.GC1SatID[i]=DataArray.Data[22+i*12]; 

   Sat_Dat.GC1Sig[i]=(DataArray.Data[23+i*12]); 

  

 Sat_Dat.GC1Aqu[i]=(DataArray.Data[24+i*12]<<8)+(DataArray.Data[25+i*12]

); 

  

 Sat_Dat.GC1Psuedo[i]=(DataArray.Data[26+i*12]<<24)+(DataArray.Data[27+i

*12]<<16)+(DataArray.Data[28+i*12]<<8)+(DataArray.Data[29+i*12]); 

  

 Sat_Dat.GC1RangeRate[i]=(DataArray.Data[30+i*12]<<24)+(DataArray.Data[3

1+i*12]<<16)+(DataArray.Data[32+i*12]<<8)+(DataArray.Data[33+i*12]); 

  } 

 } 

//=========================================================================== 

 

void Satellite_Fix_A(void) 

{ 
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 uint8_t i; 

 int8_t lvlchk; 

 uint8_t k; 

 uint8_t ss[4]; 

 uint8_t ss2[4]; 

 float eps; 

 double ET; 

 double ET_old; 

    double Tmpt[5]; 

 double we; double M; double Ek; double vk; double thk; double drk; 

 double duk;  double dik; double rk; double uk; double ik; double 

OMk; double Xpr; double Ypr; 

 double F=-4.442807633E-10; double fc=1575.42E6; 

 eps=1E-5; 

 we=7.2921151467E-5; 

 

 float terror=1; 

 double told; 

 k=0; 

 Restart: 

 //Level Check 

 for (i=0;i<4;i++) 

 { 

  lvlchk=-50; 

  while(lvlchk<0) 

  { 

   ss2[i]=k; 

   if ((Sat_Dat.GC1Sig[ss2[i]]>0) && 

(Sat_Dat.GC1Psuedo[ss2[i]]>0)) 

   { 

    lvlchk=1; 

   } 

   k++; 

  } 

 } 

 

 //Satellite Alignment 

 k=0; 

 for (i=0;i<12;i++) 

 { 

  if (Sat_Dat.Sat[i]==Sat_Dat.GC1SatID[ss2[k]]) 

  { 

   ss[k]=i; 

   k++; 

  } 

 } 

 for (k=0;k<4;k++) 

 { 

  test[10+k]=Sat_Dat.Sat[ss[k]]; 

  test[14+k]=Sat_Dat.GC1SatID[ss2[k]]; 

 } 

 float c =299792458; 

//TIME 

 

 for (i=0;i<4;i++) 

 { 
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  terror=1; 

 

  //Reset Variables 

 

 M=0;Ek=0;vk=0;thk=0;drk=0;duk=0;dik=0;rk=0;uk=0;ik=0;OMk=0;Xpr=0;Ypr=0; 

  Tmpt[i]=Sat_Dat.TOM[ss[i]]; //Check initializing 

  Tmpt[i]=Sat_Dat.TOM[ss[i]]; 

  RR[i]=Sat_Dat.GC1Psuedo[ss2[i]]/100; 

  tk[i]=Sat_Dat.TOM[ss[i]]-Sat_Dat.t_oe[ss[i]]; 

  if (tk[i]<-302400) 

  { 

   tk[i]=tk[i]+604800; 

  } 

  else if (tk[i]>302400) 

  { 

   tk[i]=tk[i]-604800; 

  } 

  M=((Sat_Dat.M_0[ss[i]])+(Sat_Dat.nn[ss[i]])*tk[i]); 

  testd[i+4]=Sat_Dat.nn[ss[i]]; 

  ET=M; ET_old=.1; 

  while(fabsf(ET-ET_old)>eps) 

  { 

   ET_old=ET; 

   ET=ET_old-(ET_old-(Sat_Dat.e[ss[i]])*sin(ET_old)-M)/(1-

(Sat_Dat.e[ss[i]])*cos(ET_old)); 

  } 

  Ek=ET; 

  testd[i]=-F*Sat_Dat.e[ss[i]]*sin(Ek)*Sat_Dat.sqrt_A[ss[i]]; 

 

  vk=atan((sqrt(1-

Sat_Dat.e[ss[i]]*Sat_Dat.e[ss[i]])*sin(Ek)))/(cos(Ek)-Sat_Dat.e[ss[i]]); 

  thk=vk+((Sat_Dat.omega[ss[i]])); 

 

 drk=Sat_Dat.C_rc[ss[i]]*cos(2*thk)+Sat_Dat.C_rs[ss[i]]*sin(2*thk); 

 

 duk=Sat_Dat.C_uc[ss[i]]*cos(2*thk)+Sat_Dat.C_us[ss[i]]*sin(2*thk); 

 

 dik=Sat_Dat.C_ic[ss[i]]*cos(2*thk)+Sat_Dat.C_is[ss[i]]*sin(2*thk); 

  rk=((Sat_Dat.sqrt_A[ss[i]]*Sat_Dat.sqrt_A[ss[i]]))*(1-

(Sat_Dat.e[ss[i]])*cos(Ek))+drk; 

  uk=thk+duk; 

  ik=(Sat_Dat.i_0[ss[i]])+dik+Sat_Dat.IDOT[ss[i]]*tk[i]; 

  OMk=(Sat_Dat.OMEGA_0[ss[i]])+(Sat_Dat.OMEGADOT[ss[i]]-we)*tk[i]-

we*Sat_Dat.t_oe[ss[i]]; 

  Xpr=rk*cos(uk); 

  Ypr=rk*sin(uk); 

 

  //Final Calculation 

  X_PA[i]=(Xpr*cos(OMk)-Ypr*sin(OMk)*cos(ik)); 

  Y_PA[i]=(Xpr*sin(OMk)+Ypr*cos(OMk)*cos(ik)); 

  Z_PA[i]=(Ypr*sin(ik)); 

  T_PA[i]=Sat_Dat.codephase[ss[i]]/(16*1.023E6); 

  if(X_PA[i]==0||Y_PA[i]==0||Z_PA[i]==0) 

  { 

   goto Restart; 

  } 

 } 
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} 

inv invmatrix(double a[4][4]) 

{ 

 uint8_t i;uint8_t j;uint8_t k;double s;uint8_t L; 

 inv inv; 

 double binv[4][4]; 

 double t; 

 for (i=0;i<4;i++) 

 { 

  for (j=0;j<4;j++) 

  { 

   if (i==j) 

   { 

    binv[i][j]=1; 

   } 

   else 

   { 

    binv[i][j]=0; 

   } 

  } 

 } 

 

 for (j=0;j<4;j++) 

 { 

  for (i=j;i<4;i++) 

  { 

   if (a[i][j]!=0) 

   { 

    for (k=0;k<4;k++) 

    { 

     s=a[j][k]; 

     a[j][k]=a[i][k]; 

     a[i][k]=s; 

     s=binv[j][k]; 

     binv[j][k]=binv[i][k]; 

     binv[i][k]=s; 

    } 

    t=1/a[j][j]; 

    for (k=0;k<4;k++) 

    { 

     a[j][k]=t*a[j][k]; 

     binv[j][k]=t*binv[j][k]; 

    } 

    for (L=0;L<4;L++) 

    { 

     if(L!=j) 

     { 

      t=-a[L][j]; 

      for (k=0;k<4;k++) 

      { 

       a[L][k]=a[L][k]+t*a[j][k]; 

       binv[L][k]=binv[L][k]+t*binv[j][k]; 

      } 

     } 

    } 

   } 
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  } 

 } 

 for (i=0;i<4;i++) 

 { 

  for (j=0;j<4;j++) 

  { 

   inv.binv[i][j]=binv[i][j]; 

  } 

 } 

 return(inv); 

} 

 

 

 ///////////////////////////////////////////////////////////////////////

 //==============BFGS Algorithm======================================// 

 /////////////////////////////////////////////////////////////////////// 

 

void Position_Fix_A(void) 

{ 

 float c =299792458; 

 uint8_t j; 

 uint8_t i; 

 uint8_t k; 

 uint8_t m; 

 double h [8][8]; 

 double hh [8][8]; 

 double h_old [8][8]; 

 double F_old [8]={0,0,0,0,0,0,0,0,0,0}; 

 

 double Ff [8]; 

 double Fd[8]; 

 double Lagrangian; 

 double Lagrangian_d; 

 double Eta[8]; 

 double Etad[8]; 

 double q[8]; 

 

 double d [8]; 

 double s [8]={1,1,1,1,1,1,1,1,1,1}; 

 double g [8]={1,1,1,1,1,1,1,1,1,1}; 

 double gam; 

 

 double sTg; double gTH[8]; double gTHg; double SST[8][8]; double gST 

[8][8]; double SgT [8][8]; 

 

 double Q; 

 double Accuracy; 

 double CC; 

 double XS[4]; 

 double YS[4]; 

 double ZS[4]; 

 double GG=1; 

 double kap; 

 double Gkf=100; 

 //======================initialize Inverse Hessian============= 

 for (i=0;i<8;i++) 

 { 
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  for (j=0;j<8;j++) 

  { 

   if (i==j) 

   { 

    h[i][j]=0.1;//Free to change the initial value  

   } 

   else 

   { 

    h[i][j]=0; 

   } 

  } 

 } 

 for (k=0;k<4;k++) 

 { 

  XS[k]=X_PA[k]/GG; 

  YS[k]=Y_PA[k]/GG; 

  ZS[k]=Z_PA[k]/GG; 

  R[k]=RR[k]/GG; 

 } 

 //========================Functional Initialization========= 

 q[0]=-(2000+517036)/GG; 

 q[1]=-(2000+4335706)/GG; 

 q[2]=(-2000+4633982)/GG; 

 q[3]=10/GG; 

 q[4]=1; 

 q[5]=1; 

 q[6]=1; 

 q[7]=1; 

 Eta[0]=-(XS[0]-q[0])*(XS[0]-q[0])*(XS[0]+2*q[0])/3; 

 Eta[1]=-(YS[1]-q[1])*(YS[1]-q[1])*(YS[1]+2*q[1])/3; 

 Eta[2]=-(ZS[2]-q[2])*(ZS[2]-q[2])*(ZS[2]+2*q[2])/3; 

 Eta[3]=(R[3]-q[3])*(R[3]-q[3])*(R[3]+2*q[3])/3; 

 Eta[4]=0; 

 Eta[5]=0; 

 Eta[6]=0; 

 Eta[7]=0; 

 

 for(k=0;k<4;k++) 

 { 

     Ff[k]=(XS[k]-q[0])*(XS[k]-q[0])+(YS[k]-q[1])*(YS[k]-q[1])+(ZS[k]-

q[2])*(ZS[k]-q[2])-(R[k]+q[3])*(R[k]+q[3]); 

 } 

 Ff[4]=(XS[1]-q[0])*q[1]+(XS[2]-q[0])*q[2]+(XS[3]-q[0])*q[3]; 

 Ff[5]=(YS[0]-q[1])*q[0]+(YS[2]-q[1])*q[2]+(YS[3]-q[1])*q[3]; 

 Ff[6]=(ZS[0]-q[2])*q[0]+(ZS[1]-q[2])*q[1]+(ZS[3]-q[2])*q[3]; 

 Ff[7]=-(R[0]+q[3])*q[0]-(R[1]+q[3])*q[1]-(R[2]+q[3])*q[2]; 

 

 //==================Minimization===================================== 

 Accuracy=1e-15; 

 float st; 

 uint iter=1; 

 for(st=0;st<iter;st++) 

 { 

      //======== Cost functional G(q) ============================ 

     Lagrangian=0; 

     for (i=0;i<8;i++) 

     { 
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         Lagrangian=Lagrangian+(Ff[i]*q[i]+Eta[i]); 

     } 

     //========== d(n) =========================================== 

     for(i=0;i<8;i++) 

     { 

         d[i]=0; 

         for(j=0;j<8;j++) 

         { 

             d[i]=d[i]-h[i][j]*Ff[j]; 

         } 

     } 

     //========================== gamma =========================== 

     Gkf=0; 

     for (i=0;i<8;i++) 

     { 

        Gkf= Gkf+Ff[i]*Ff[i]; 

     } 

     gam=1; 

 

     //======================= s(n), q(n) ============================ 

     for(k=0;k<8;k++) 

     { 

         s[k]=gam*d[k]; 

         q[k]=q[k]+gam*d[k]; 

     } 

 

     //=========================== f(n) and g(n) =================== 

     for(k=0;k<8;k++) 

     { 

         F_old[k]=Ff[k]; 

     } 

     Eta[0]=-(XS[0]-q[0])*(XS[0]-q[0])*(XS[0]+2*q[0])/3; 

     Eta[1]=-(YS[1]-q[1])*(YS[1]-q[1])*(YS[1]+2*q[1])/3; 

     Eta[2]=-(ZS[2]-q[2])*(ZS[2]-q[2])*(ZS[2]+2*q[2])/3; 

     Eta[3]=(R[3]-q[3])*(R[3]-q[3])*(R[3]+2*q[3])/3; 

     Eta[4]=0; 

     Eta[5]=0; 

     Eta[6]=0; 

     Eta[7]=0; 

     for(k=0;k<4;k++) 

     { 

         Ff[k]=(XS[k]-q[0])*(XS[k]-q[0])+(YS[k]-q[1])*(YS[k]-

q[1])+(ZS[k]-q[2])*(ZS[k]-q[2])-(R[k]+q[3])*(R[k]+q[3]); 

     } 

     Ff[4]=(XS[1]-q[0])*q[1]+(XS[2]-q[0])*q[2]+(XS[3]-q[0])*q[3]; 

     Ff[5]=(YS[0]-q[1])*q[0]+(YS[2]-q[1])*q[2]+(YS[3]-q[1])*q[3]; 

     Ff[6]=(ZS[0]-q[2])*q[0]+(ZS[1]-q[2])*q[1]+(ZS[3]-q[2])*q[3]; 

     Ff[7]=-(R[0]+q[3])*q[0]-(R[1]+q[3])*q[1]-(R[2]+q[3])*q[2]; 

 

 

     for(i=0;i<8;i++) 

     { 

         g[i]=Ff[i]-F_old[i]; 

     } 

 

     //========================= h(n+1) ========================= 
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     for (i=0;i<8;i++) 

     { 

         for (j=0;j<8;j++) 

         { 

             h_old[i][j]=h[i][j]; 

         } 

     } 

     //==================== Compute scalar sTg  ================= 

 

     sTg=0; 

     for (i=0;i<8;i++) 

     { 

         sTg=sTg+s[i]*g[i]; 

     } 

 

     //========== Compute scalar gTHg  ================ 

     for (i=0;i<8;i++) 

     { 

         gTH[i]=0; 

         for (j=0;j<8;j++) 

         { 

             gTH[i]=gTH[i]+g[j]*h_old[j][i]; 

         } 

     } 

 

     gTHg=0; 

     for (i=0;i<8;i++) 

     { 

         gTHg=gTHg+gTH[i]*g[i]; 

     } 

     //==== Compute rank one matrices ssT, gsT and sgT === 

 

     for (i=0;i<8;i++) 

     { 

         for (j=0;j<8;j++) 

         { 

             SST[i][j]=s[i]*s[j]/sTg; 

             gST[i][j]=g[i]*s[j]/sTg; 

             SgT[i][j]=s[i]*g[j]/sTg; 

         } 

     } 

     //================== h(n+1) ============= ================= 

     for (i=0;i<8;i++) //  %This part had an error 

     { 

         for (j=0;j<8;j++) 

         { 

             hh[i][j]=0; 

             for (k=0;k<8;k++) 

             { 

                 

hh[i][j]=hh[i][j]+h_old[i][k]*gST[k][j]+SgT[i][k]*h_old[k][j]; 

             } 

             hh[i][j]=hh[i][j]+(1+gTHg/sTg)*SST[i][j]; 

         } 

     } 
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     //======== Make sure h(n,n) does not explode because of low sTg     

if(sTg>Accuracy) 

     { 

         for (i=0;i<8;i++) 

         { 

             for (j=0;j<8;j++) 

             { 

                 h[i][j]=h_old[i][j]+hh[i][j]; 

             } 

         } 

     } 

} 

 

 X_r_BFGS=q[0]*GG; 

 Y_r_BFGS=q[1]*GG; 

 Z_r_BFGS=q[2]*GG; 

 

} 

 

void Position_Fix_B(void) 

{ 

 uint8_t j; 

 uint8_t i; 

 uint8_t k; 

 uint8_t L; 

 float xx; 

 double q[4]; 

 double dq[4]; 

 double XS[4];//={12295772,-17793958,-8059098,-133015}; 

 double YS[4];//={-14225410,-5630114,-23261044,-26297132}; 

 double ZS[4];//={18708165,18908477,9944606,252052}; 

 double ATA[4][4]; 

 double InvA[4][4]; 

 double GG=1; 

 double A[4][4]; 

 double Er; 

 double IATA[4][4]; 

 double F[4]; 

 double Fd[4]; 

 double qn[4]; 

 double dqold[4]; 

 inv binv; 

 float Lambda=10; 

 double Cd; 

 double Cf; 

 float c =299792458; 

//FIX 

 for (k=0;k<4;k++) 

 { 

  XS[k]=X_PA[k]/GG; 

  YS[k]=Y_PA[k]/GG; 

  ZS[k]=Z_PA[k]/GG; 

  R[k]=RR[k]/GG; 

 } 

 

 q[0]=-(10+517042)/GG; 

 q[1]=-(10+4335720)/GG; 
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 q[2]=(-10+4633945)/GG; 

 q[3]=100/GG; 

 dq[0]=1; 

 dq[1]=1; 

 dq[2]=1; 

 dq[3]=1; 

 

 Cf=0; 

 for (i=0;i<4;i++) 

 { 

     F[i]=(XS[i]-q[0])*(XS[i]-q[0])+(YS[i]-q[1])*(YS[i]-q[1])+(ZS[i]-

q[2])*(ZS[i]-q[2])-(R[i]+q[3])*(R[i]+q[3]); 

     Cf=Cf+F[i]*F[i]; 

 } 

 

 Er=10000; 

 while(Er>0.5) 

 { 

     A[0][0]=-2*(XS[0]-q[0]); 

     A[0][1]=-2*(YS[0]-q[1]); 

     A[0][2]=-2*(ZS[0]-q[2]); 

     A[0][3]=-2*(R[0]+q[3]); 

 

     A[1][0]=-2*(XS[1]-q[0]); 

     A[1][1]=-2*(YS[1]-q[1]); 

     A[1][2]=-2*(ZS[1]-q[2]); 

     A[1][3]=-2*(R[1]+q[3]); 

 

     A[2][0]=-2*(XS[2]-q[0]); 

     A[2][1]=-2*(YS[2]-q[1]); 

     A[2][2]=-2*(ZS[2]-q[2]); 

     A[2][3]=-2*(R[2]+q[3]); 

 

     A[3][0]=-2*(XS[3]-q[0]); 

     A[3][1]=-2*(YS[3]-q[1]); 

     A[3][2]=-2*(ZS[3]-q[2]); 

     A[3][3]=-2*(R[3]+q[3]); 

 

     for (i=0;i<4;i++) 

     { 

         for (j=0;j<4;j++) 

         { 

             if (j==i) 

             { 

                 ATA[i][j]=Lambda; 

             } 

             else 

             { 

                 ATA[i][j]=0; 

             } 

             for (k=0;k<4;k++) 

             { 

                 ATA[i][j]=ATA[i][j]+A[k][i]*A[k][j]; //% Check A'*A 

             } 

         } 

     } 
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     binv=invmatrix(ATA); 

     for (i=0;i<4;i++) 

     { 

         for (j=0;j<4;j++) 

         { 

             InvA[i][j]=binv.binv[i][j]; 

         } 

     } 

 

     for (i=0;i<4;i++) 

     { 

         for (j=0;j<4;j++) 

         { 

             IATA[i][j]=0; 

             for (k=0;k<4;k++) 

             { 

                 IATA[i][j]=IATA[i][j]+InvA[i][k]*A[j][k]; 

             } 

         } 

     } 

 

 

     for(i=0;i<4;i++) 

     { 

      dqold[i]=dq[i]; 

         dq[i]=0; 

         for (j=0;j<4;j++) 

         { 

             dq[i]=dq[i]-IATA[i][j]*F[j]; 

         }  

     } 

 

     for (k=0;k<4;k++) 

     { 

         qn[k]=q[k]; 

         q[k]=qn[k]+dq[k]; 

     } 

     Cd=0; 

     for (k=0;k<4;k++) 

     { 

         Fd[k]=(XS[k]-q[0])*(XS[k]-q[0])+(YS[k]-q[1])*(YS[k]-

q[1])+(ZS[k]-q[2])*(ZS[k]-q[2])-(R[k]+q[3])*(R[k]+q[3]); 

         Cd=Cd+Fd[k]*Fd[k]; 

     } 

     if (Cd>Cf) 

     { 

 

         for (k=0;k<4;k++) 

         { 

             q[k]=qn[k]; 

         } 

         Lambda=Lambda*10; 

     } 

     else 

     { 

         Cf=Cd; 

         for (i=0;i<4;i++) 
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         { 

             F[i]=Fd[i]; 

         } 

         Lambda=Lambda/2; 

         Er=sqrt(Cf); 

     } 

   X_r_LS=q[0]*GG; 

   Y_r_LS=q[1]*GG; 

   Z_r_LS=q[2]*GG; 

   test[6]=(float) Er; 

 } 

} 

void Position_Fix_C(void) 

{ 

 uint8_t j; 

 uint8_t i; 

 uint8_t k; 

 uint8_t m; 

 float F_old [4]={0,0,0,0}; 

 float A[4][4]; 

 float Ainv[4][4]; 

 float Ff[4]; 

 float Eta[4]; 

 float Etad[4]; 

 float q[4]; 

 

 float d [4]; 

 float gam; 

 inv binv; 

 float Accuracy; 

 float XS[4]; 

 float YS[4]; 

 float ZS[4]; 

 float GG=1E8; 

 float Gkf=100; 

 for (k=0;k<4;k++) 

 { 

  XS[k]=X_PA[k]/GG; 

  YS[k]=Y_PA[k]/GG; 

  ZS[k]=Z_PA[k]/GG; 

  R[k]=RR[k]/GG; 

 } 

 //====Functional Initialization= 

 q[0]=-(10+517036)/GG; 

 q[1]=-(10+4335706)/GG; 

 q[2]=(-10+4633982)/GG; 

 q[3]=10; 

 for(k=0;k<4;k++) 

 { 

     Ff[k]=(XS[k]-q[0])*(XS[k]-q[0])+(YS[k]-q[1])*(YS[k]-q[1])+(ZS[k]-

q[2])*(ZS[k]-q[2])-(R[k]+q[3])*(R[k]+q[3]); 

 } 

 //==========Minimization================================== 

 Accuracy=1e-15; 

 uint st; 

 uint iter=1000; 

 for(st=0;st<iter;st++) 
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 { 

  for (i=0;i<4;i++) 

  { 

   A[i][0]=2*(XS[i]-q[0]); 

   A[i][1]=2*(YS[i]-q[1]); 

   A[i][2]=2*(ZS[i]-q[2]); 

   A[i][3]=-2*(R[i]-q[3]); 

  } 

  binv=invmatrix(A); 

  for (i=0;i<4;i++) 

  { 

   for (j=0;j<4;j++) 

   { 

    Ainv[i][j]=binv.binv[i][j]; 

   } 

  } 

  //=========================== d(n) ========================== 

 

     for(i=0;i<4;i++) 

     { 

         d[i]=0; 

         for(j=0;j<4;j++) 

         { 

             d[i]=d[i]-Ainv[i][j]*Ff[j]; 

         } 

     } 

     //========================== gamma =========================== 

     Gkf=0; 

     for (i=0;i<4;i++) 

     { 

        Gkf= Gkf+Ff[i]*Ff[i]; 

     } 

     gam=(1E-13)*sqrtf(Gkf); 

     //==================== s(n), q(n) ================================= 

     for(k=0;k<4;k++) 

     { 

         q[k]=q[k]+gam*d[k]; 

     } 

 

     //======================== f(n) and g(n) ==================== 

     for(k=0;k<4;k++) 

     { 

         F_old[k]=Ff[k]; 

     } 

     for(k=0;k<4;k++) 

     { 

         Ff[k]=(XS[k]-q[0])*(XS[k]-q[0])+(YS[k]-q[1])*(YS[k]-

q[1])+(ZS[k]-q[2])*(ZS[k]-q[2])-(R[k]+q[3])*(R[k]+q[3]); 

     } 

} 

 

 X_r_NR=q[0]*GG; 

 Y_r_NR=q[1]*GG; 

 Z_r_NR=q[2]*GG; 

 

} 
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//===========================================================================

int main(void) 

{ 

 Configure_CopernicusGPS(); 

 test[5]=0; 

    while(1) 

    { 

     THUNDAR_GPS(); 

     Satellite_Fix_A(); 

     Position_Fix_A(); 

     Position_Fix_B(); 

     Position_Fix_C(); 

    } 

} 
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APPENDIX B. DYNAMIC MODEL SIMULATION CODE 

clear 

clc 

IT=0; %counter i9terations 

Dt=.785; 

Dte=.785; 

gam=0.1; 

kb=0.154; 

kt=0.13; 

nr=20; 

Iw=0.764; 

m=230; 

Nc=2014; 

B=0.88; 

Icr=127.7; 

rw=0.2794; 

Ra=0.32; 

%Heading Angles and delta variables 

THk=0; 

thi=0; 

Dx=0; 

Dy=0; 

DTHk=0; 

 

 

%Path definition 

        

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% %PATH 1: Zigzag 

% %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%  

%  Lmax=4.5; 

%    f=1.4; 

%  

%  path(2,1)=0;        path(2,2)=1;        path(2,3)=2;        

path(2,4)=3;        path(2,5)=4;        path(2,6)=5;        path(2,7)=6; 

%  path(3,1)=0;        path(3,2)=1;        path(3,3)=2;        

path(3,4)=3;        path(3,5)=4;        path(3,6)=5;        path(3,7)=6; 

%   

%  path(2,8)=7;        path(2,9)=8;        path(2,10)=9; 

%  path(3,8)=6;        path(3,9)=6;        path(3,10)=6; 

%   

%  path(2,11)=10;        path(2,12)=11;        path(2,13)=12; 

%  path(3,11)=6;        path(3,12)=6;        path(3,13)=6; 

%   

%   

%  path(2,14)=13;        path(2,15)=14;        path(2,16)=15; 

%  path(3,14)=7;        path(3,15)=8;        path(3,16)=9; 

%   

%  path(2,17)=16;        path(2,18)=17;        path(2,19)=18; 

%  path(3,17)=10;        path(3,18)=11;        path(3,19)=12; 

%  
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%PATH 2: Semicircle- 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Lmax=3.58; 

%   f=1.5; 

%   NPP=11; 

%   radius=20; 

%   path(:,1)=0; 

%   for k=2:2*NPP 

%       path(2,k)=radius*(1-cos(k*0.5*pi/NPP)); 

%       path(3,k)=radius*sin(k*0.5*pi/NPP); 

%   end 

%   

%  %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%PATH 3 :Sinusoid 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

   Lmax=3; 

   f=1.2 

   NPP=45 

   path(2,:)=[0:NPP]; 

   path(3,:)=10*sin([0:NPP]*4*pi/(2*NPP)); 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

Traj=[]; 

X=0; 

Y=0; 

Pid=2; 

xold=[4;4;4;0;0;0;0]; 

State=[]; 

Cont=[]; 

LPATH=length(path); 

while (Pid<LPATH+1) 

    Traj=[Traj;X,Y]; 

    DX=path(2,Pid)-X; 

    DY=path(3,Pid)-Y; 

    L=sqrt(DX^2+DY^2); 

     

     if(L>Lmax) 

        L=Lmax; 

     end 

    Umax=f*L; 

    if((abs(DX)<1e-28)&&(DY>0)) 

        THk=pi/2; 

        disp('Zero DX POS DY') 

    elseif((abs(DY)<1e-28)&&(DX>0)) 

        THk=0; 

        disp('Zero DY POS DX') 

    elseif((abs(DX)<1e-28)&&(DY<0)) 

        THk=3*pi/2; 

        disp('Zero DX NEG DY') 

    elseif((abs(DY)<1e-28)&&(DX<0)) 
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        THk=pi; 

        disp('Zero DY NEG DX') 

    elseif((DX>0)&&(DY<0)) 

       % THk=-atan(abs(DY)/(DX)); 

       THk=2*pi-atan(abs(DY)/DX); 

        disp('DY') 

    elseif((DX<0)&&(DY<0)) 

        THk=pi+atan((abs(DY))/(abs(DX))); 

        disp('DX and DY') 

    elseif((DX<0)&&(DY>0)) 

        THk=pi-atan(DY/(abs(DX))); 

        disp('DX') 

    elseif ((DX>0)&&(DY>0)) 

        THk=atan(DY/DX); 

        disp('Normal') 

    else 

        disp('Undetermined') 

         

    end 

    DTH=THk-xold(5); 

    thi=THk; 

    xold(5)=thi; 

    State=[State,xold]; 

    

%========================================================================= 

%%%% Define System Matrices 

%================================= Matrix F(k)====================  

    Fk(1,1)=1-(2*kt*kb*nr*nr*Dt)/(Ra*(4*Iw+m*rw*rw)); Fk(1,2)=0;  

  Fk(1,3)=0;    Fk(1,4)=0;   

 Fk(1,5)=0;  Fk(1,6)=0;  Fk(1,7)=0; 

    Fk(2,1)=0;    Fk(2,2)=1-

(2*kt*kb*nr*nr*Dt)/(Ra*(4*Iw+m*rw*rw)); Fk(2,3)=0;   

 Fk(2,4)=0;    Fk(2,5)=0;  Fk(2,6)=0; 

 Fk(2,7)=0; 

    Fk(3,1)=0;    Fk(3,2)=0;    Fk(3,3)=1-

(2*kt*kb*nr*nr*Dt)/(Ra*(4*Iw+m*rw*rw)); Fk(3,4)=0;   

 Fk(3,5)=0;  Fk(3,6)=0;  Fk(3,7)=0; 

    Fk(4,1)=0;    Fk(4,2)=0;    Fk(4,3)=0; 

   Fk(4,4)=1+(B*B*kt*kb*nr*nr*Dt)/(4*Icr*Ra*rw*rw);

 Fk(4,5)=0;  Fk(4,6)=0;  Fk(4,7)=0; 

    Fk(5,1)=0;    Fk(5,2)=0;    Fk(5,3)=0; 

   Fk(5,4)=(B*B*kt*kb*nr*nr*Dt)/(4*Icr*Ra*rw*rw)*Dt;  

 Fk(5,5)=1;  Fk(5,6)=0;  Fk(5,7)=0; 

    Fk(6,1)=0;    Fk(6,2)=0;    Fk(6,3)=-

(2*kt*kb*nr*nr*Dt)*Dt*cos(thi)/(Ra*(4*Iw+m*rw*rw)); Fk(6,4)=0;   

 Fk(6,5)=0;  Fk(6,6)=1;  Fk(6,7)=0; 

    Fk(7,1)=0;    Fk(7,2)=0;    Fk(7,3)=-

(2*kt*kb*nr*nr*Dt)*Dt*sin(thi)/(Ra*(4*Iw+m*rw*rw)); Fk(7,4)=0;   

 Fk(7,5)=0;  Fk(7,6)=0;  Fk(7,7)=1; 

    Hk(3,3)=-76.23; 

    Hk(4,3)=-76.23; 

    %========================= Matrix G(k)========================== 

    Gk(1,1)=(2*kt*nr*Dt)/(Ra*(4*Iw+m*rw*rw));                   Gk(1,2)=0; 
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    Gk(2,1)=0;                      

Gk(2,2)=(2*kt*nr*Dt)/(Ra*(4*Iw+m*rw*rw)); 

    Gk(3,1)=(kt*nr*Dt)/(Ra*(4*Iw+m*rw*rw));                   

Gk(3,2)=(kt*nr*Dt)/(Ra*(4*Iw+m*rw*rw)); 

    Gk(4,1)=(B*kt*nr*Dt)/(2*Icr*Ra*rw*rw);                  Gk(4,2)=-

(B*kt*nr*Dt)/(2*Icr*Ra*rw*rw); 

    Gk(5,1)=(B*kt*nr*Dt)/(2*Icr*Ra*rw*rw)*Dt;               Gk(5,2)=-

(B*kt*nr*Dt)/(2*Icr*Ra*rw*rw)*Dt; 

   

    Gk(6,1)=(2*kt*nr*Dt)/(Ra*(4*Iw+m*rw*rw))*Dt*cos(thi);

 Gk(6,2)=(2*kt*nr*Dt)/(Ra*(4*Iw+m*rw*rw))*Dt*cos(thi); 

    Gk(7,1)=(2*kt*nr*Dt)/(Ra*(4*Iw+m*rw*rw))*Dt*sin(thi);

 Gk(7,2)=(2*kt*nr*Dt)/(Ra*(4*Iw+m*rw*rw))*Dt*sin(thi); 

   

    %================= Matrix H(k)==================== ================== 

    Hk(1,1)=Nc*Dte/(2*pi*rw);     Hk(1,2)=0;    Hk(1,3)=0; 

   Hk(1,4)=0;    Hk(1,5)=0;  Hk(1,6)=0; 

 Hk(1,7)=0; 

    Hk(2,1)=0;    Hk(2,2)=Nc*Dte/(2*pi*rw);     

Hk(2,3)=0;    Hk(2,4)=0;    Hk(2,5)=0; 

 Hk(2,6)=0;  Hk(2,7)=0; 

    Hk(3,1)=0;    Hk(3,2)=0;   

 Hk(3,3)=1/Dt;           Hk(3,4)=0;    Hk(3,5)=0; 

 Hk(3,6)=0;  Hk(3,7)=0; 

    Hk(4,1)=0;    Hk(4,2)=0;   

 Hk(4,3)=1/Dt;           Hk(4,4)=0;    Hk(4,5)=0; 

 Hk(4,6)=0;  Hk(4,7)=0; 

    Hk(5,1)=0;    Hk(5,2)=0;    Hk(5,3)=0; 

   Hk(5,4)=1;    Hk(5,5)=0;  Hk(5,6)=0; 

 Hk(5,7)=0; 

    Hk(6,1)=0;    Hk(6,2)=0;    Hk(6,3)=0; 

   Hk(6,4)=0;    Hk(6,5)=1/Dt; 

 Hk(6,6)=0;  Hk(6,7)=0; 

    Hk(7,1)=0;    Hk(7,2)=0;    Hk(7,3)=0; 

   Hk(7,4)=0;    Hk(7,5)=0;  Hk(7,6)=1; 

 Hk(7,7)=0; 

    Hk(8,1)=0;    Hk(8,2)=0;    Hk(8,3)=0; 

   Hk(8,4)=0;    Hk(8,5)=0;  Hk(8,6)=0; 

 Hk(8,7)=1; 

    %================== Matrix J(k)=================== 

    Jk(1,1)=0;    Jk(1,2)=0; 

    Jk(2,1)=0;    Jk(2,2)=0; 

    Jk(3,1)=0*3.46;   Jk(3,2)=0*3.46; 

    Jk(4,1)=0*3.46;   Jk(4,2)=0*3.46; 

    Jk(5,1)=0;    Jk(5,2)=0; 

    Jk(6,1)=0;    Jk(6,2)=0; 

    Jk(7,1)=0;    Jk(7,2)=0; 

    Jk(8,1)=0;    Jk(8,2)=0; 

        

    %=========== Matrix E1======================== 

    E1(1,1)=0;    E1(1,2)=0;    E1(1,3)=0; 

   E1(1,4)=0;    E1(1,5)=1;  E1(1,6)=0; 

 E1(1,7)=0; 
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    E1(2,1)=0;    E1(2,2)=0;    E1(2,3)=0; 

   E1(2,4)=0;    E1(2,5)=0;  E1(2,6)=1; 

 E1(2,7)=0; 

    E1(3,1)=0;    E1(3,2)=0;    E1(3,3)=0; 

   E1(3,4)=0;    E1(3,5)=0;  E1(3,6)=0; 

 E1(3,7)=1; 

    %=========================== Matrix E2================ 

    E2(1,1)=-0;  E2(1,2)=-2*Dt/B;         E2(1,3)=2*Dt/B;  

  E2(1,4)=-Dt/B;   E2(1,5)=DTH/(xold(5)); 

 E2(1,6)=0;  E2(1,7)=0; 

    

    E2(2,1)=Dt*cos(THk); E2(2,2)=Dt*cos(THk); E2(2,3)=-Dt*cos(THk);

 E2(2,4)=0;    E2(2,5)=0;  E2(2,6)=DX/(xold(6)); 

 E2(2,7)=0; 

    E2(3,1)=Dt*sin(THk); E2(3,2)=Dt*sin(THk); E2(3,3)=-Dt*sin(THk);

 E2(3,4)=0;    E2(3,5)=0;  E2(3,6)=0; 

 E2(3,7)=DY/(xold(7)); 

    

  

    for (i=1:3), 

        for (j=1:7), 

            E2(i,j)=E2(i,j);%0; 

        end 

    end 

    %============================ Matrix W========================= 

    for (i=1:7) 

        for (j=1:7) 

            if (i==j) 

                W(i,j)=1; 

            else 

                W(i,j)=0; 

            end; 

        end; 

    end; 

    %======================== Covariance P=========================== 

    for (i=1:7) 

        for (j=1:7) 

            if (i==j) 

                P(i,j)=0.001; 

            else 

                P(i,j)=0; 

            end; 

        end; 

    end; 

    %========================= Covariance Q=============================== 

    for (i=1:8) 

        for (j=1:8) 

            if (i==j) 

                Q(i,j)=0.001; 

            else 

                Q(i,j)=0; 

            end; 

        end; 

    end; 
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    %======================== Uncertainty matrix A_\xi===== 

    Ax(7,7)=0; 

    for (i=1:7), 

        for (j=1:4), 

            if (i==j) 

                Ax(i,j)=.5; 

            else 

                Ax(i,j)=0; 

            end; 

        end; 

        for (j=4:7), 

            Ax(i,j)=0; 

        end; 

    end; 

    Ax(4,3)=0.05; 

    Ax(5,2)=0.025; 

    Ax(6,2)=0.025; 

    %===================== Uncertainty matrix A_Y===================== 

    Ay(8,7)=0; 

    Ay(2,2)=.01; 

    Ay(3,2)=.05; 

    Ay(4,4)=.068;%.679999977354; 

    Ay(5,4)=.068;%.679999977354; 

    Ay(7,6)=0; 

    %================ Uncertainty matrix B1================= 

    for (i=1:7) 

         

        for (j=1:7) 

             

            if (i==j) 

                 

                B1(i,j)=0.01;%.25; 

            else 

                 

                B1(i,j)=0; 

            end; 

        end; 

    end; 

    %================== Uncertainty matrix B2============ 

    for (i=1:7) 

         

        for (j=1:2) 

             

            if (i==j) 

                 

                B2(i,j)=0.5;%.5; 

            elseif(i==3*j) 

                 

                B2(i,j)=0.5;%.5; 

            else 

                B2(i,j)=0.1;%.5; 

            end; 

        end; 

    end; 
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%========================================================================= 

    %%%% 

    %%%% START With The Robust Kalman Filter 

    %%%% 

    %============ Initial Ups ================ 

    for (i=1:7), 

        for (j=1:7), 

            if (i==j), 

                UpsNew(i,j)=100;%0.5;  %%%%%%%Changed the variable name 

            else 

                 

                UpsNew(i,j)=0;   %%%%%%%Changed the variable name 

            end; 

        end; 

    end; 

    Converg=10e8; %%%%%%%Convergence value 

    while(Converg>0.00001) %%%%%%%Run in a loop 

         

        for i=1:7 

            for j=1:7 

                Ups(i,j)=UpsNew(i,j); 

            end 

        end 

        %=============== Calculate inverse Ups ============= 

        binv7=inv(Ups); 

        for (i=1:7) 

             

            for (j=1:7) 

                 

                InvUps(i,j)=binv7(i,j); 

            end 

        end 

        %============= Calculate invXi =============================== 

        for (i=1:7) 

             

            for (j=1:7) 

                 

                invXi(i,j)=0; 

                for (k=1:7) 

                     

                    invXi(i,j)=invXi(i,j)+B1(k,i)*B1(k,j); 

                end 

                %%%invXi(i,j)=invXi(i,j)-

gam*invXi(i,j);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

                invXi(i,j)=InvUps(i,j)-invXi(i,j)*gam*gam; 

                 

            end 

        end 

        %========================= Calculate Xi ================== 

        binv7=inv(invXi); 

        for (i=1:7) 

             

            for (j=1:7) 
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                Xi(i,j)=binv7(i,j); 

            end 

        end 

        %=========== Calculate Nk ================ 

        for (i=1:7)           

            for (j=1:8)                 

                XiH(i,j)=0; 

                for (k=1:7)                  

                    XiH(i,j)=XiH(i,j)+Xi(i,k)*Hk(j,k); 

                end 

            end 

        end 

        for (i=1:8)          

            for(j=1:8)                 

                HXiH(i,j)=0; 

                for (k=1:7)                   

                    HXiH(i,j)= HXiH(i,j)+Hk(i,k)*XiH(k,j); 

                end 

            end 

        end 

        for (i=1:8)             

            for (j=1:8)                

                AYAT(i,j)=0; 

                for (k=1:7)                    

                    AYAT(i,j)=AYAT(i,j)+Ay(i,k)*Ay(j,k); 

                end 

                Nk(i,j)=Q(i,j)+AYAT(i,j)*gam*gam+HXiH(i,j); 

            end 

        end 

         

        %======================== Calculate Mk ========================= 

        for (i=1:7) 

             

            for (j=1:8) 

                 

                FXiH(i,j)=0; 

                for (k=1:7) 

                     

                    FXiH(i,j)=FXiH(i,j)+Fk(i,k)*XiH(k,j); 

                end 

            end 

        end 

        for (i=1:7) 

            for (j=1:8) 

                AxAT(i,j)=0; 

                for (k=1:7) 

                    AxAT(i,j)=AxAT(i,j)+Ax(i,k)*Ay(j,k); 

                end 

                Mk(i,j)=FXiH(i,j)+AxAT(i,j)*gam*gam; 

            end 

        end 

        

%========================================================================= 
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        % Update covariances and return Ups 

        

%========================================================================= 

        %Solve Riccati Equation 

        % 

        %             

        for (i=1:7) 

            for (j=1:7) 

                AxAxT(i,j)=0; 

                for (k=1:7) 

                    AxAxT(i,j)= AxAxT(i,j)+Ax(i,k)*Ax(j,k); 

                end 

            end 

        end 

        

%========================================================================= 

        %%compute inverse of Nk 

        binv8=inv(Nk); 

        for (i=1:8) 

            for (j=1:8) 

                NkInv(i,j)=binv8(i,j); 

            end 

        end 

        

%========================================================================= 

        % %compute InvNkMkT 

        for (i=1:8) 

            for (j=1:7) 

                InvNkMkT(i,j)=0; 

                for (k=1:8) 

                    InvNkMkT(i,j)=InvNkMkT(i,j)+NkInv(i,k)*Mk(j,k); 

                end 

            end 

        end 

        

%========================================================================= 

        % %Now compute MkInvNkMkT 

        for (i=1:7) 

            for (j=1:7) 

                MkInvNkMkT(i,j)=0; 

                for (k=1:8) 

                    MkInvNkMkT(i,j)=MkInvNkMkT(i,j)+Mk(i,k)*InvNkMkT(k,j); 

                end 

            end 

        end 

        

%========================================================================= 

        %%Compute XiFT 

        for (i=1:7) 

            for (j=1:7) 

                XiFT(i,j)=0; 

                for (k=1:7) 

                    XiFT(i,j)= XiFT(i,j)+Xi(i,k)*Fk(j,k); 

                end 
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            end 

        end 

        

%========================================================================= 

        %%Now compute FXiFT 

        for (i=1:7), 

            for (j=1:7), 

                FXiFT(i,j)=0; 

                for (k=1:7), 

                    FXiFT(i,j)=FXiFT(i,j)+Fk(i,k)*XiFT(k,j); 

                end 

            end 

        end 

        %============================== Calculate New Ups =============== 

        for (i=1:7) 

             

            for (j=1:7) 

                 

                UpsNew(i,j)=FXiFT(i,j)- MkInvNkMkT(i,j)+ 

AxAxT(i,j)*gam*gam+P(i,j); 

            end 

        end 

        

%========================================================================= 

%%= Check if Ups has converged =============================== 

        Converg=0; 

        for i=1:7 

            for j=1:7 

                CVG(i,j)=UpsNew(i,j)-Ups(i,j); 

                Converg=Converg+(UpsNew(i,j)-Ups(i,j))*(UpsNew(i,j)-

Ups(i,j)); 

            end 

        end 

        Converg=sqrt(Converg); 

        IT=IT+1; 

        %Ups 

        UpsNew; 

         

    end 

    %pause 

    %IT=0; 

     

    %================== Calculate Gammak ======================= 

    binv8=inv(Nk); 

     

    for (i=1:8) 

         

        for (j=1:8) 

             

            InvNk(i,j)=binv8(i,j); 

        end 

    end 
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    %============================ Finish Gammak ========= 

    for (i=1:7) 

         

        for (j=1:8) 

             

            GAMMAk(i,j)=0; 

            for (k=1:8) 

                 

                GAMMAk(i,j)=GAMMAk(i,j)+Mk(i,k)*InvNk(k,j); 

            end 

        end 

    end 

    %======================= Calculate Phik =================== 

    %===================== Calculate UpsBT =========== 

    for (i=1:7) 

         

        for (j=1:7) 

             

            UpsBT(i,j)=0; 

            for (k=1:7) 

                 

                UpsBT(i,j)=UpsBT(i,j)+Ups(i,k)*B1(j,k); 

            end 

        end 

    end 

    %============ Calculate 1-gamma*BUpsBT ========= 

    for (i=1:7) 

         

        for (j=1:7) 

            BUpsBT(i,j)=0; 

            for (k=1:7) 

                BUpsBT(i,j)=BUpsBT(i,j)+B1(i,k)*UpsBT(k,j); 

            end 

            if (i==j) 

                RInv(i,j)=1-BUpsBT(i,j)*gam*gam; 

            else 

                RInv(i,j)=-BUpsBT(i,j)*gam*gam; 

            end 

        end 

    end 

    %=================== Calculate Inverse ========== 

    binv7=inv(RInv); 

    for (i=1:7) 

        for (j=1:7) 

            InvR(i,j)=binv7(i,j); 

        end 

    end 

    %============= Calculate inv(1-gam*B1UpsB1^T)*B1 =========== 

    for (i=1:7) 

        for (j=1:7) 

            Prod1(i,j)=0; 

            for (k=1:7) 

                Prod1(i,j)=Prod1(i,j)+InvR(i,k)*B1(k,j); 
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            end 

        end 

    end 

    %========== Calculate Ups*B1^T*inv(1-gam*B1UpsB1^T)*B1 =========== 

    for (i=1:7) 

        for (j=1:7) 

            Prod2(i,j)=0; 

            for (k=1:7) 

                Prod2(i,j)=Prod2(i,j)+UpsBT(k,i)*Prod1(k,j); 

            end 

        end 

    end 

    for (i=1:7) 

        for (j=1:7) 

            Prod3(i,j)=0; 

            if (i==j) 

                Prod3(i,j)=1+gam*gam*Prod2(i,j); %Multiply with Gama not 

division. 

            else 

                Prod3(i,j)=gam*gam*Prod2(i,j); 

            end 

        end 

    end 

    for (i=1:7) 

        for (j=1:7) 

            GkH(i,j)=0; 

            for (k=1:8) 

                GkH(i,j)=GkH(i,j)+GAMMAk(i,k)*Hk(k,j); 

            end 

            Prod4(i,j)=Fk(i,j)-GkH(i,j); 

        end 

    end 

    for (i=1:7) 

        for (j=1:7) 

            PHIk(i,j)=0; 

            for (k=1:7) 

                PHIk(i,j)=PHIk(i,j)+Prod4(i,k)*Prod3(k,j); 

            end 

        end 

    end 

    %===== The Robust Linear Quadratic Regulator ======== 

    % 

    % Now Determine the Controller:  

    %========== THxx ======================================== 

    %============================================ 

    %========================== Calculate AxW ================= 

    for (i=1:7) 

        for (j=1:7) 

            AxW(i,j)=0; 

            for (k=1:7) 

                AxW(i,j)=AxW(i,j)+Ax(i,k)*W(k,j); 

            end 

        end 

    end 
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    %============ Calculate AxWB1 =================== 

    for (i=1:7) 

        for (j=1:7) 

            AxWB1(i,j)=0; 

            for (k=1:7) 

                AxWB1(i,j)=AxWB1(i,j)+AxW(i,k)*B1(k,j); 

            end 

        end 

    end 

    %====================== Calculate IFA ========== 

    for (i=1:7) 

        for (j=1:7) 

            if (i==j) 

                IFA(i,j)=1-Fk(i,j)-AxWB1(i,j); 

            else 

                IFA(i,j)=-Fk(i,j)-AxWB1(i,j); 

            end 

        end 

    end 

     

    %=================== Calculate E1IFA ================= 

    for (i=1:3) 

        for (j=1:7) 

            E1IFA(i,j)=0; 

            for (k=1:7) 

                E1IFA(i,j)=E1IFA(i,j)+E1(i,k)*IFA(k,j); 

            end 

        end 

    end 

    %================ Calculate EEIFA ================== 

    for (i=1:3) 

        for (j=1:7) 

            EEIFA(i,j)=E2(i,j)+E1IFA(i,j); 

        end 

    end 

    %============================= Calculate Thxx =================== 

    %Xweights=[0.001;0.002;0.005;0.01;0.01;0.01;0.02]; 

    for (i=1:7)  

        for (j=1:7) 

            Thxx(i,j)=0; 

            for (k=1:3) 

                Thxx(i,j)=Thxx(i,j)+EEIFA(k,i)*EEIFA(k,j); 

            end 

            if (i==j) 

                Thxx(i,j)=Thxx(i,j)+1; 

            end 

        end 

    end 

    %================= Calculate Thuu ==================== 

    %==================== 

    %========================= Calculate AxWB2 ================== 

    for (i=1:7) 

        for (j=1:2) 

            AxWB2(i,j)=0; 
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            for (k=1:7) 

                AxWB2(i,j)=AxWB2(i,j)+AxW(i,k)*B2(k,j); 

            end 

        end 

    end 

     

    %============== Calculate GAW ================== 

    for (i=1:7) 

        for (j=1:2) 

            GAW(i,j)=Gk(i,j)+AxWB2(i,j); 

        end 

    end 

    %=============== Calculate E1GAW ========================= 

    for (i=1:3) 

        for (j=1:2) 

            E1GAW(i,j)=0; 

            for (k=1:7) 

                E1GAW(i,j)=E1GAW(i,j)+E1(i,k)*GAW(k,j); 

            end 

            E1GAW(i,j)=-E1GAW(i,j); 

        end 

    end 

    %============= Calculate Thuu ===================== 

    for (i=1:2) 

        for (j=1:2) 

            Thuu(i,j)=0; 

            for (k=1:3) 

                Thuu(i,j)=Thuu(i,j)+E1GAW(k,i)*E1GAW(k,j); 

            end 

            if i==j 

                Thuu(i,j)=Thuu(i,j)+1; 

            end 

                 

        end 

    end 

    %================ Calculate Thux ============================= 

    for (i=1:7) 

        for (j=1:2) 

            Thux(i,j)=0; 

            for (k=1:3) 

                Thux(i,j)=Thux(i,j)+EEIFA(k,i)*E1GAW(k,j); 

            end 

        end 

    end 

    % 

    %Solve The Ricatti Equation 

    %================== Initial Sk ====================== 

    for (i=1:7), 

        for (j=1:7), 

            if (i==j), 

                SkNew(i,j)=10;%1E-6; 

            else 

                SkNew(i,j)=0; 

            end; 
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        end; 

    end; 

    Converg=100; %%%%%%%Convregence value 

    while(Converg>10) %%%%%%%Run in a loop 

        for i=1:7 

            for j=1:7 

                Sk(i,j)=SkNew(i,j); 

            end 

        end 

    %================= Calculate FTS ============== 

    for (i=1:7) 

        for (j=1:7) 

            FTS(i,j)=0; 

            for (k=1:7) 

                FTS(i,j)=FTS(i,j)+Fk(k,i)*Sk(k,j); 

            end 

        end 

    end 

   %==================== Calculate FTSF ====================== 

   for (i=1:7) 

        for (j=1:7) 

            FTSF(i,j)=0; 

            for (k=1:7) 

                FTSF(i,j)=FTSF(i,j)+FTS(i,k)*Fk(k,j); 

            end 

        end 

    end 

     

    %================= Calculate FTSG ============================= 

    for (i=1:7) 

         

        for (j=1:2) 

             

            FTSG(i,j)=0; 

            for (k=1:7) 

                 

                FTSG(i,j)=FTSG(i,j)+FTS(i,k)*Gk(k,j); 

            end 

        end 

    end 

    %==================== Calculate GTS ======================= 

    for (i=1:2) 

        for (j=1:7) 

            GTS(i,j)=0; 

            for (k=1:7) 

                GTS(i,j)=GTS(i,j)+Gk(k,i)*Sk(k,j); 

            end 

        end 

    end 

    %============== Calculate GTSG ===================== 

    for (i=1:2) 

        for (j=1:2) 

            GTSG(i,j)=0; 

            for (k=1:7) 
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                GTSG(i,j)=GTSG(i,j)+GTS(i,k)*Gk(k,j); 

            end 

        end 

    end 

    %================== Calculate FGTHxx ============ 

    for (i=1:7) 

        for (j=1:7) 

            FGTHxx(i,j)=FTSF(i,j)+Thxx(i,j);  %+ 

        end 

    end 

        %========================= Calculate GGTHuu ======== 

    for (i=1:2) 

        for (j=1:2) 

            GGTHuu(i,j)=GTSG(i,j)+Thuu(i,j); 

        end 

    end 

    %============= Calculate FGTHxu ========= 

    for (i=1:7) 

        for (j=1:2) 

            FGTHxu(i,j)=FTSG(i,j)+Thux(i,j); 

        end 

    end 

 

    %======== Calculate invGSG ================ 

    binv2=inv(GGTHuu); 

    for (i=1:2) 

        for (j=1:2) 

            invGSG(i,j)=binv2(i,j); 

        end 

    end 

    %================= Calculate FGTHGSG ========================== 

    for (i=1:7) 

        for (j=1:2) 

            FGTHGSG(i,j)=0; 

            for(k=1:2) 

                FGTHGSG(i,j)=FGTHGSG(i,j)+FGTHxu(i,k)*invGSG(k,j); 

            end 

        end 

    end 

    %============ Calculate TH_G_TH ======================== 

    for (i=1:7) 

        for (j=1:7) 

            TH_G_TH(i,j)=0; 

            for (k=1:2) 

                TH_G_TH(i,j)=TH_G_TH(i,j)+FGTHGSG(i,k)*FGTHxu(j,k); 

            end 

        end 

    end 

    %========================= Calculate Snew ============== 

    for (i=1:7) 

        for (j=1:7) 

            SkNew(i,j)=FGTHxx(i,j)-TH_G_TH(i,j); 

        end 

    end 
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     %%%======= Check if Ups has converged ======================== 

        Converg=0; 

        for i=1:7 

            for j=1:7 

                CVG(i,j)=SkNew(i,j)-Sk(i,j); 

                Converg=Converg+(SkNew(i,j)-Sk(i,j))*(SkNew(i,j)-Sk(i,j)); 

            end 

        end 

        Converg=sqrt(Converg); 

    end 

     

    SkNew; 

   

    %============== Calculate Lam ============ 

    %================================================= 

    %============= Calculate New GTS ======================== 

    for (i=1:2) 

         

        for (j=1:7) 

             

            GTS(i,j)=0; 

            for (k=1:7) 

                GTS(i,j)=GTS(i,j)+Gk(k,i)*Sk(k,j); 

            end 

        end 

    end 

    %================ Calculate New GTSG =============================== 

    for (i=1:2) 

         

        for (j=1:2) 

             

            GTSG(i,j)=0; 

            for (k=1:7) 

               GTSG(i,j)=GTSG(i,j)+GTS(i,k)*Gk(k,j); 

            end 

        end 

    end 

    %=========== Calculate New GGTHuu ======= 

    for (i=1:2) 

        for (j=1:2) 

            GGTHuu(i,j)=GTSG(i,j)+Thuu(i,j); 

        end 

    end 

    %============= Calculate New invGSG ============= 

    binv2=inv(GGTHuu); 

    for (i=1:2) 

        for (j=1:2) 

            invGSG(i,j)=binv2(i,j); 

        end 

    end 

    %========= Calculate New FTS ================ 

    for (i=1:7) 

        for (j=1:7) 

            FTS(i,j)=0; 
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            for (k=1:7) 

                FTS(i,j)=FTS(i,j)+Fk(k,i)*Sk(k,j); 

            end 

        end 

    end 

     

    %============= Calculate New FTSG ============ 

    for (i=1:7) 

        for (j=1:2) 

            FTSG(i,j)=0; 

            for (k=1:7) 

                FTSG(i,j)=FTSG(i,j)+FTS(i,k)*Gk(k,j); 

            end 

        end 

    end 

    % ======================= Calculate New FGTHxu ====================== 

    for (i=1:7) 

        for (j=1:2) 

            FGTHxu(i,j)=FTSG(i,j)-Thux(i,j); 

        end 

    end 

    %==================== Calculate Lamk ========= 

    for (i=1:2) 

        for (j=1:7) 

            LAMk(i,j)=0; 

            for (k=1:2) 

                LAMk(i,j)=LAMk(i,j)-GGTHuu(i,k)*FGTHxu(j,k); 

            end 

        end 

    end 

    %Y=measure data 

     

    xi=xold; 

    Yx=Hk*xi; 

    xi=PHIk*xi+GAMMAk*Yx; 

    U=-LAMk*xi; 

    if(U(1)>Umax) 

        U(1)=Umax; 

    elseif (U(1)<-Umax) 

        U(1)=-Umax; 

    end 

    if(U(2)>Umax) 

        U(2)=Umax; 

    elseif (U(2)<-Umax) 

        U(2)=-Umax; 

    end 

    Cont=[Cont,U]; 

    xnew=(Fk*xi+Gk*U); 

    dx=xnew(6)-xi(6); 

    dy=xnew(7)-xi(7); 

    if (((dx>0) &&(DX<0))||((dx<0) &&(DX>0))) 

        disp('X Error') 

    end 

    X=xnew(6); 
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    Y=xnew(7); 

    Pid=Pid+1; 

    xold=xnew; 

end 

    Traj=[Traj;X,Y]; 

    figure(1) 

    plot(Traj(:,1),Traj(:,2),'-r+',path(2,:),path(3,:),'-.bX'); 

    legend('Simulated Trajectory','Intended Path') 

    grid 

    xlabel('Easting [m]') 

    ylabel('Northing [m]') 

    TTx=interp(Traj(:,1),100); 

    TTy=interp(Traj(:,2),100); 

    PPx=interp(path(2,:),100); 

    PPx=PPx'; 

    PPy=interp(path(3,:),100); 

    %for sinusoid only 

    PPy=PPy'; 

    TTX=TTx; 

    TTY=TTy; 

    PPX=PPx; 

    PPY=PPy; 

    TTx=0; 

    PPx=0; 

    TTy=0; 

    PPy=0; 

    TTx=TTX(1:3510); 

    TTy=TTY(1:3510); 

    PPx=PPX(1:3510); 

    PPy=PPY(1:3510); 

    LP=0; 

    for k=2:length(PPx) 

        LP=LP+sqrt((PPx(k)-PPx(k-1))^2+(PPy(k)-PPy(k-1))^2); 

    end; 

    ER=sqrt((PPx-TTx).^2+(PPy-TTy).^2); 

  mean(ER) 

  figure(2) 

   plot(TTx,TTy,'-r',PPx,PPy,'-.b'); 

    legend('Simulated Trajectory','Intended Path') 

    grid 

    xlabel('Easting [m]') 

    ylabel('Northing [m]') 

    %Cont=[Cont(:,1:38),Cont(:,38),Cont(:,38)]; 

    %plot(Traj(:,1),Traj(:,2),'-.r+',path(2,:),path(3,:),'-

bX',Traj(:,1),[State(5,1:NPP-1),State(5,NPP-1)],'-

kd',Traj(:,1),Cont(1,:),'-g+',Traj(:,1),Cont(2,:),'-c+'); 
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APPENDIX C. CIRCUIT BOARD DESIGN 

 

C1: GPS Layer 
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C2: Power Layer 
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C3: Sensor Layer  
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APPENDIX D. CONTROL AND FILTERING CODE 

 

 

/** 

  ****************** 

  * @attention NDSU - Autonomous Snow Plow Control Firmware, V1.0 

  * @author  MF Selekwa 

  * @version V1.0.0 

  * @date    2-January-2014 

  * @brief   Main program body 

**/ 

/* Includes ----------------------------------------------*/ 

#include "thundarconfig.h" 

#include "FreeRTOS.h" 

#include "task.h" 

#include "semphr.h" 

#include "timers.h" 

#include "queue.h" 

#include <math.h> 

 

typedef struct inv8 

{ 

    double binv[8][8]; 

} inv8; 

 

 

// Way point format: HOME POSITION, BP1,BP2, BP3,BP4, HOME POSITION 

struct Robot 

{ 

uint8_t WP;   //Way point Index 

uint16_t VR; 

uint16_t VL; 

}; 

 

float probe[50]; 

struct SensorData 

{ 

float AX1;  // IMU data 

float GZ1; //End of IMU data 

float AX2;  // IMU data 

float GZ2; //End of IMU data 

uint32_t NIMU; 

float X;    //GPS coordinates data 

float Y;  //end of GPS coordinates data 

 

float X0;    //Initial GPS X-coordinate 

float Y0;  //Initial GPS Y-coordinate 

uint LEnc;  //Cummulative Left Encoder data 

uint REnc;  //Cummulative Right Encoder data 

int LEInc;  //Incremental Left Encoder data 

int REInc;  //Incremental Right Encoder data 

}; 

 

 

double PHIk[7][7]={{0}}; 
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double GAMMAk[7][8]={{0}}; 

double Ups[7][7]={{0}}; 

double UpsNew[7][7]={{0}}; 

 

double invmatrix88[8][8]={{0}}; 

 

double LAMk[2][7]={{0}}; 

double Sk[7][7]={{0}}; 

double SkNew[7][7]={{0}}; 

 

uint8_t Temp2[180]; 

 

uint16_t MaxNegSpeed = 94; 

uint16_t ZeroSpeed  = 86; 

uint16_t MaxPosSpeed = 78; 

uint8_t WayPoint=0; 

 

uint64_t u64IdleTicksCnt=0; // Counts when the OS has no task to execute. 

uint64_t tickTime=0;        // Counts OS ticks (default = 1000Hz). 

 

struct SensorData GEDISensor={0}; 

struct Robot Controls={0}; 

 

double path[3][11]; 

double Xr; double Yr; 

uint32_t Pid; 

void GetInitCoordinates(void); 

void GPS(void *pvparameters); 

void ENCODERS(void *pvparameters); 

void IMU(void *pvparameters); 

void DriveRobot(void *pvparameters); 

void MissionController1(void *pvparameters); 

 

/*=========================================================================== 

  Inverse Functions 

*=========================================================================*/ 

inv8 invmatrix8(double a[8][8],uint8_t sz) 

{ 

 uint8_t i;uint8_t j;uint8_t k;double s;uint8_t L; 

 inv8 invv8; 

 double binv[8][8]; 

 double t; 

 for (i=0;i<sz;i++) 

 { 

  for (j=0;j<sz;j++) 

  { 

   if (i==j) 

   { 

    binv[i][j]=1; 

   } 

   else 

   { 

    binv[i][j]=0; 

   } 

  } 

 } 
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 for (j=0;j<sz;j++) 

 { 

  for (i=j;i<sz;i++) 

  { 

   if (a[i][j]!=0) 

   { 

    for (k=0;k<sz;k++) 

    { 

     s=a[j][k]; 

     a[j][k]=a[i][k]; 

     a[i][k]=s; 

     s=binv[j][k]; 

     binv[j][k]=binv[i][k]; 

     binv[i][k]=s; 

    } 

    t=1/a[j][j]; 

    for (k=0;k<sz;k++) 

    { 

     a[j][k]=t*a[j][k]; 

     binv[j][k]=t*binv[j][k]; 

    } 

    for (L=0;L<sz;L++) 

    { 

     if(L!=j) 

     { 

      t=-a[L][j]; 

      for (k=0;k<sz;k++) 

      { 

       a[L][k]=a[L][k]+t*a[j][k]; 

       binv[L][k]=binv[L][k]+t*binv[j][k]; 

      } 

     } 

    } 

   } 

  } 

 } 

 for (i=0;i<sz;i++) 

 { 

  for (j=0;j<sz;j++) 

  { 

   invv8.binv[i][j]=binv[i][j]; 

  } 

 } 

 return(invv8); 

} 

/*=========================================================================== 

 Filter Functions 

*==========================================================================*/ 

 

void KalmanFilter(double Ax[7][7],double Ay[8][7],double B1[7][7], double Hk 

[8][7], double Fk [7][7],double P[7][7],double Q[8][8],double gam) 

{ 

 uint8_t i;uint8_t j;uint8_t k; 

 uint32_t w; 

 inv8 binv8; 

 

 //Referenced intermediate terms 
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 double Xi[7][7]; 

 double Nk[8][8]; 

 double Mk[7][8]; 

 //Intermediate Terms 

 //Xi 

 double InvUps[7][7]; 

 double invXi[7][7]; 

 

 //Nk 

 double AYAT[8][8]; 

 

 //Mk 

 double AxAT[7][8]; 

 double XiH[7][8]; 

 double FXiH[7][8]; 

 

 //Gamma 

 double HXiH[8][8]; 

 double InvNk[8][8]; 

 double GkH[7][7]; 

 

 //Ups 

 double XiFT[7][7]; 

 double FXiFT[7][7]; 

 double InvNkMkT[8][7]; 

 double MkInvNkMkT[7][7]; 

 double AxAxT[7][7]; 

 

 //Phi 

 double UpsBT[7][7]; 

 double BUpsBT[7][7]; 

 double RInv[7][7]; 

 double InvR[7][7]; 

 double Prod1[7][7]; 

 double Prod2[7][7]; 

 double Prod3[7][7]; 

 double Prod4[7][7]; 

 

 //Convergence Variables 

 double Converg; 

 uint16_t IT; 

 //===================================================================== 

  Calculate Phik and Gammak 

 //===================================================================== 

 //======================== Calculate inverse Ups ===================== 

 

 Converg=10E8; 

 IT=0; 

 //while(Converg>1E5) 

 while(IT<75) 

 { 

 for (i=0;i<7;i++) 

 { 

  for (j=0;j<7;j++) 

  { 

   Ups[i][j]=UpsNew[i][j]; 

  } 
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 } 

 for (i=0;i<7;i++) 

 { 

  for (j=0;j<7;j++) 

  { 

   invmatrix88[i][j]=Ups[i][j]; 

   if(i==j) 

   { 

    probe[7+i]=Ups[i][j]; 

   } 

  } 

 } 

 binv8=invmatrix8(invmatrix88,7); 

 for (i=0;i<7;i++) 

 { 

  for (j=0;j<7;j++) 

  { 

   InvUps[i][j]=binv8.binv[i][j]; 

  } 

 } 

 //================= Calculate invXi =========================== 

 for (i=0;i<7;i++) 

 { 

  for (j=0;j<7;j++) 

  { 

   invXi[i][j]=0; 

   for (k=0;k<7;k++) 

   { 

    invXi[i][j]=invXi[i][j]+B1[k][i]*B1[k][j]; 

   } 

   invXi[i][j]=InvUps[i][j]-invXi[i][j]*(gam*gam); 

  } 

 } 

 //================= Calculate Xi ======== 

 for (i=0;i<7;i++) 

 { 

  for (j=0;j<7;j++) 

  { 

   invmatrix88[i][j]=invXi[i][j]; 

  } 

 } 

 binv8=invmatrix8(invmatrix88,7); 

 for (i=0;i<7;i++) 

 { 

  for (j=0;j<7;j++) 

  { 

   Xi[i][j]=binv8.binv[i][j]; 

  } 

 } 

 //=============== Calculate Nk ================================ 

 for (i=0;i<7;i++) 

 { 

  for (j=0;j<8;j++) 

  { 

   XiH[i][j]=0; 

   for (k=0;k<7;k++) 

   { 
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    XiH[i][j]=(XiH[i][j]+Xi[i][k]*Hk[j][k]); 

   } 

  } 

 } 

 for (i=0;i<8;i++) 

 { 

  for(j=0;j<8;j++) 

  { 

    HXiH[i][j]=0; 

   for (k=0;k<7;k++) 

   { 

     HXiH[i][j]=(HXiH[i][j]+Hk[i][k]*XiH[k][j]); 

   } 

  } 

 } 

 //================= Calculate InvNkHXiH ============ 

 for (i=0;i<8;i++) 

 { 

  for (j=0;j<8;j++) 

  { 

   AYAT[i][j]=0; 

   for (k=0;k<7;k++) 

   { 

    AYAT[i][j]=AYAT[i][j]+Ay[i][k]*Ay[j][k]; 

   } 

   Nk[i][j]=(Q[i][j]+AYAT[i][j]*(gam*gam)+HXiH[i][j]); 

  } 

 } 

 

 //================= Calculate Mk ==================== 

 for (i=0;i<7;i++) 

 { 

  for (j=0;j<8;j++) 

  { 

   FXiH[i][j]=0; 

   for (k=0;k<7;k++) 

   { 

    FXiH[i][j]=(FXiH[i][j]+Fk[i][k]*XiH[k][j]); 

   } 

  } 

 } 

 for (i=0;i<7;i++) 

 { 

  for (j=0;j<8;j++) 

  { 

   AxAT[i][j]=0; 

   for (k=0;k<7;k++) 

   { 

    AxAT[i][j]=AxAT[i][j]+Ax[i][k]*Ay[j][k]; 

   } 

   Mk[i][j]=(FXiH[i][j]+AxAT[i][j]*(gam*gam)); 

  } 

 } 

 //===================================================================== 

  Update covariances and return Ups 

 //===================================================================== 

    for (i=0;i<7;i++) 
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     { 

         for (j=0;j<7;j++) 

         { 

           AxAxT[i][j]=0; 

             for (k=0;k<7;k++) 

             { 

               AxAxT[i][j]= AxAxT[i][j]+Ax[i][k]*Ax[j][k]; 

             } 

         } 

     } 

     //%compute inverse of Nk 

  for (i=0;i<8;i++) 

  { 

   for (j=0;j<8;j++) 

   { 

    invmatrix88[i][j]=Nk[i][j]; 

   } 

  } 

  binv8=invmatrix8(invmatrix88,8); 

     for (i=0;i<8;i++) 

     { 

         for (j=0;j<8;j++) 

         { 

          InvNk[i][j]=binv8.binv[i][j]; 

         } 

     } 

    // %compute InvNkMkT 

     for (i=0;i<8;i++) 

     { 

         for (j=0;j<7;j++) 

         { 

          InvNkMkT[i][j]=0; 

             for (k=0;k<8;k++) 

             { 

              InvNkMkT[i][j]=(InvNkMkT[i][j]+InvNk[i][k]*Mk[j][k]); 

             } 

         } 

     } 

    // %Now compute MkInvNkMkT 

     for (i=0;i<7;i++) 

     { 

         for (j=0;j<7;j++) 

         { 

          MkInvNkMkT[i][j]=0; 

             for (k=0;k<8;k++) 

             { 

             

 MkInvNkMkT[i][j]=(MkInvNkMkT[i][j]+Mk[i][k]*InvNkMkT[k][j]); 

             } 

         } 

     } 

     //%compute XiFT 

     for (i=0;i<7;i++) 

     { 

         for (j=0;j<7;j++) 

         { 

           XiFT[i][j]=0; 
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             for (k=0;k<7;k++) 

             { 

               XiFT[i][j]=(XiFT[i][j]+Xi[i][k]*Fk[j][k]); 

             } 

         } 

     } 

 

     //%Now compute FXiFT 

     for (i=0;i<7;i++) 

     { 

         for (j=0;j<7;j++) 

         { 

          FXiFT[i][j]=0; 

             for (k=0;k<7;k++) 

             { 

              FXiFT[i][j]=(FXiFT[i][j]+Fk[i][k]*XiFT[k][j]); 

             } 

         } 

     } 

  //======== Calculate Ups ============= 

     for (i=0;i<7;i++) 

     { 

         for (j=0;j<7;j++) 

         { 

          UpsNew[i][j]=0.5*(FXiFT[i][j]-

MkInvNkMkT[i][j])+AxAxT[i][j]*(gam*gam)+P[i][j]; 

         } 

     } 

 

        //===== Check if Ups has converged ========================== 

        Converg=0; 

  for (i=0;i<7;i++) 

  { 

   for (j=0;j<7;j++) 

   { 

                Converg=Converg+(UpsNew[i][j]-Ups[i][j])*(UpsNew[i][j]-

Ups[i][j]); 

   } 

  } 

    Converg=sqrt(Converg)/49; 

    probe[49]=Converg; 

       IT=IT+1; 

       probe[48]= IT; 

 } 

 //=============== Calculate Gammak ================ 

 for (i=0;i<7;i++) 

 { 

     for (j=0;j<7;j++) 

     { 

             Ups[i][j]=UpsNew[i][j];//1E10; 

     } 

 } 

 for (i=0;i<8;i++) 

 { 

  for (j=0;j<8;j++) 

  { 

   invmatrix88[i][j]=Nk[i][j]; 
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  } 

 } 

 binv8=invmatrix8(invmatrix88,8); 

 for (i=0;i<8;i++) 

 { 

  for (j=0;j<8;j++) 

  { 

   InvNk[i][j]=binv8.binv[i][j]; 

  } 

 } 

 //========== Finish Gammak ========================== 

 for (i=0;i<7;i++) 

 { 

  for (j=0;j<8;j++) 

  { 

   GAMMAk[i][j]=0; 

   for (k=0;k<8;k++) 

   { 

    GAMMAk[i][j]=GAMMAk[i][j]-Mk[i][k]*InvNk[k][j]; 

   } 

  } 

 } 

 //==================== Calculate Phik ================== 

 //==================== Calculate UpsBT ================= 

 for (i=0;i<7;i++) 

 { 

  for (j=0;j<7;j++) 

  { 

   UpsBT[i][j]=0; 

   for (k=0;k<7;k++) 

   { 

    UpsBT[i][j]=UpsBT[i][j]+Ups[i][k]*B1[j][k]; 

   } 

  } 

 } 

 //======Calculate BUpsBT ============================== 

 for (i=0;i<7;i++) 

 { 

  for (j=0;j<7;j++) 

  { 

   BUpsBT[i][j]=0; 

   for (k=0;k<7;k++) 

   { 

    BUpsBT[i][j]=BUpsBT[i][j]+B1[i][k]*UpsBT[k][j]; 

   } 

   if (i==j) 

   { 

    RInv[i][j]=1-BUpsBT[i][j]*(gam*gam); 

   } 

   else 

   { 

    RInv[i][j]=-BUpsBT[i][j]*(gam*gam); 

   } 

  } 

 } 

 //=============== Calculate Inverse ============= 

 for (i=0;i<7;i++) 
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 { 

  for (j=0;j<7;j++) 

  { 

   invmatrix88[i][j]=RInv[i][j]; 

  } 

 } 

 binv8=invmatrix8(invmatrix88,7); 

 for (i=0;i<7;i++) 

 { 

  for (j=0;j<7;j++) 

  { 

   InvR[i][j]=binv8.binv[i][j]; 

  } 

 } 

 for (i=0;i<7;i++) 

 { 

  for (j=0;j<7;j++) 

  { 

   Prod1[i][j]=0; 

   for (k=0;k<7;k++) 

   { 

    Prod1[i][j]=Prod1[i][j]+InvR[i][k]*B1[k][j]; 

   } 

  } 

 } 

 for (i=0;i<7;i++) 

 { 

  for (j=0;j<7;j++) 

  { 

   Prod2[i][j]=0; 

   for (k=0;k<7;k++) 

   { 

   

 Prod2[i][j]=Prod2[i][j]+UpsBT[i][k]*Prod1[k][j]*(gam*gam); 

   } 

  } 

 } 

 for (i=0;i<7;i++) 

 { 

  for (j=0;j<7;j++) 

  { 

   Prod3[i][j]=0; 

   if (i==j) 

   { 

    Prod3[i][j]=1+Prod2[i][j]; 

   } 

   else 

   { 

    Prod3[i][j]=Prod2[i][j]; 

   } 

  } 

 } 

 

 for (i=0;i<7;i++) 

 { 

  for (j=0;j<7;j++) 

  { 
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   GkH[i][j]=0; 

   for (k=0;k<8;k++) 

   { 

    GkH[i][j]=GkH[i][j]-GAMMAk[i][k]*Hk[k][j]; 

   } 

   Prod4[i][j]=Fk[i][j]-GkH[i][j]; 

  } 

 } 

 for (i=0;i<7;i++) 

 { 

  for (j=0;j<7;j++) 

  { 

   PHIk[i][j]=0; 

   for (k=0;k<7;k++) 

   { 

    PHIk[i][j]=PHIk[i][j]+Prod4[i][k]*Prod3[k][j]; 

   } 

  } 

 } 

} 

 

/*=========================================================================== 

 Control Function 

============================================================================= 

 */ 

 

void H2Control(double Ax[7][7],double B1[7][7],double B2[7][2],double W 

[7][7],double Fk [7][7],double Gk [7][2],double E1[3][7],double E2[3][7]) 

{ 

 uint8_t i;uint8_t j;uint8_t k; 

 inv8 binv8; 

 //Control Matrices 

 double Thuu[2][2]={{0}}; 

 double Thxx[7][7]={{0}}; 

 double Thux[7][2]={{0}}; 

 

 double AxW[7][7]={{0}}; 

 double AxWB1[7][7]={{0}}; 

 double IFA[7][7]={{0}}; 

 double E1IFA[3][7]={{0}}; 

 double EEIFA[3][7]={{0}}; 

 

 double AxWB2[7][2]={{0}}; 

 double GAW[7][2]={{0}}; 

 double E1GAW[3][2]={{0}}; 

 

 double FTS[7][7]={{0}}; 

 double FTSF[7][7]={{0}}; 

 double FGTHxx[7][7]={{0}}; 

 double FTSG[7][2]={{0}}; 

 double FGTHxu[7][2]={{0}}; 

 double GTS[2][7]={{0}}; 

 double GTSG[2][2]={{0}}; 

 double GGTHuu[2][2]={{0}}; 

 double invGSG[2][2]={{0}}; 

 double FGTHGSG[7][2]={{0}}; 

 double TH_G_TH[7][7]={{0}}; 
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 //Convergence Variables 

 double Converg; 

 double CVG[7][7]; 

 uint16_t IT; 

 

  //======================== THxx ======== 

  //=========================================== 

  //============== Calculate AxW =============== 

     for (i=0;i<7;i++) 

     { 

         for (j=0;j<7;j++) 

         { 

          AxW[i][j]=0; 

             for (k=0;k<7;k++) 

             { 

              AxW[i][j]=AxW[i][j]+Ax[i][k]*W[k][j]; 

             } 

         } 

     } 

  //=========== Calculate AxWB1 ===== 

     for (i=0;i<7;i++) 

     { 

         for (j=0;j<7;j++) 

         { 

          AxWB1[i][j]=0; 

             for (k=0;k<7;k++) 

             { 

              AxWB1[i][j]=AxWB1[i][j]+AxW[i][k]*B1[k][j]; 

             } 

         } 

     } 

  //============ Calculate IFA ========== 

     for (i=0;i<7;i++) 

     { 

         for (j=0;j<7;j++) 

         { 

             if (i==j) 

             { 

              IFA[i][j]=1-Fk[i][j]-AxWB1[i][j]; 

             } 

             else 

             { 

              IFA[i][j]=-Fk[i][j]-AxWB1[i][j]; 

             } 

         } 

     } 

  //============= Calculate E1IFA ========= 

     for (i=0;i<3;i++) 

     { 

         for (j=0;j<7;j++) 

         { 

          E1IFA[i][j]=0; 

             for (k=0;k<7;k++) 

             { 

              E1IFA[i][j]=E1IFA[i][j]+E1[i][k]*IFA[k][j]; 

             } 
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         } 

     } 

  //========= Calculate EEIFA ==================================== 

     for (i=0;i<3;i++) 

     { 

         for (j=0;j<7;j++) 

         { 

          EEIFA[i][j]=E2[i][j]+E1IFA[i][j]; 

         } 

     } 

     //===== Calculate Thxx =================================== 

     for (i=0;i<7;i++) 

     { 

         for (j=0;j<7;j++) 

         { 

             Thxx[i][j]=0; 

             for (k=0;k<3;k++) 

             { 

                 Thxx[i][j]=Thxx[i][j]+EEIFA[k][i]*EEIFA[k][j]; 

             } 

             if (i==j) 

             { 

              Thxx[i][j]=Thxx[i][j]+1; 

             } 

             Thxx[i][j]=Thxx[i][j]*0.1; 

         } 

     } 

     //============ Calculate Thuu ======== 

     //========= Calculate AxWB2 

     for (i=0;i<7;i++) 

     { 

         for (j=0;j<2;j++) 

         { 

          AxWB2[i][j]=0; 

             for (k=0;k<7;k++) 

             { 

              AxWB2[i][j]=AxWB2[i][j]+AxW[i][k]*B2[k][j]; 

             } 

         } 

     } 

 

     //=============== Calculate GAW ================ 

     for (i=0;i<7;i++) 

     { 

         for (j=0;j<2;j++) 

         { 

          GAW[i][j]=Gk[i][j]+AxWB2[i][j]; 

         } 

     } 

     //============= Calculate E1GAW ============== 

     for (i=0;i<3;i++) 

     { 

         for (j=0;j<2;j++) 

         { 

          E1GAW[i][j]=0; 

             for (k=0;k<7;k++) 

             { 
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              E1GAW[i][j]=E1GAW[i][j]+E1[i][k]*GAW[k][j]; 

             } 

             E1GAW[i][j]=-E1GAW[i][j]; 

         } 

     } 

     //=================== Calculate Thuu =================== 

     for (i=0;i<2;i++) 

     { 

         for (j=0;j<2;j++) 

         { 

             Thuu[i][j]=0; 

             for (k=0;k<3;k++) 

             { 

              Thuu[i][j]=Thuu[i][j]+E1GAW[k][i]*E1GAW[k][j]; 

             } 

             if (i==j) 

             { 

              Thuu[i][j]=Thuu[i][j]+1; 

             } 

             Thuu[i][j]=Thuu[i][j]*0.1; 

         } 

     } 

      //======================= Calculate Thux ================      

  //================ Calculate Thux ==================== 

  for (i=0;i<7;i++) 

  { 

   for (j=0;j<2;j++) 

   { 

    Thux[i][j]=0; 

    for (k=0;k<3;k++) 

    { 

     Thux[i][j]=Thux[i][j]+EEIFA[k][i]*E1GAW[k][j]; 

    } 

     Thux[i][j]=Thux[i][j]*0.1; 

   } 

  } 

  //================= Calculate Sk =================== 

  //============ Calculate FTS ================================ 

  for (i=0;i<7;i++) 

  { 

   for (j=0;j<7;j++) 

   { 

             if (i==j) 

             { 

                 SkNew[i][j]=10; 

             } 

             else 

             { 

              SkNew[i][j]=0; 

             } 

   } 

  } 

  Converg=100; 

  while(Converg>10) 

  { 

   for (i=0;i<7;i++) 

   { 
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    for (j=0;j<7;j++) 

    { 

                  Sk[i][j]=SkNew[i][j]; 

         if(i==j) 

         { 

          probe[14+i]=Sk[i][j]; 

         } 

          } 

   } 

  for (i=0;i<7;i++) 

  { 

   for (j=0;j<7;j++) 

   { 

    FTS[i][j]=0; 

    for (k=0;k<7;k++) 

    { 

     FTS[i][j]=FTS[i][j]+Fk[k][i]*Sk[k][j]; 

    } 

   } 

  } 

 

  //============== Calculate FTSF =========================== 

  for (i=0;i<7;i++) 

  { 

   for (j=0;j<7;j++) 

   { 

    FTSF[i][j]=0; 

    for (k=0;k<7;k++) 

    { 

     FTSF[i][j]=FTSF[i][j]+FTS[i][k]*Fk[k][j]; 

    } 

   } 

  } 

 

  //=========== Calculate FTSG ================================== 

  for (i=0;i<7;i++) 

  { 

   for (j=0;j<2;j++) 

   { 

    FTSG[i][j]=0; 

    for (k=0;k<7;k++) 

    { 

     FTSG[i][j]=FTSG[i][j]+FTS[i][k]*Gk[k][j]; 

    } 

   } 

  } 

  //=============== Calculate GTS =================== 

  for (i=0;i<2;i++) 

  { 

   for (j=0;j<7;j++) 

   { 

    GTS[i][j]=0; 

    for (k=0;k<7;k++) 

    { 

     GTS[i][j]=GTS[i][j]+Gk[k][i]*Sk[k][j]; 

    } 

   } 
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  } 

  //================ Calculate GTSG ============== 

  for (i=0;i<2;i++) 

  { 

   for (j=0;j<2;j++) 

   { 

    GTSG[i][j]=0; 

    for (k=0;k<7;k++) 

    { 

     GTSG[i][j]=GTSG[i][j]+GTS[i][k]*Gk[k][j]; 

    } 

   } 

  } 

  //=============== Calculate FGTHxx ================== 

     for (i=0;i<7;i++) 

     { 

         for (j=0;j<7;j++) 

         { 

          FGTHxx[i][j]=FTSF[i][j]+Thxx[i][j]; 

         } 

     } 

     //================= Calculate FGTHxu ============================ 

     for (i=0;i<7;i++) 

     { 

         for (j=0;j<2;j++) 

         { 

          FGTHxu[i][j]=FTSG[i][j]+Thux[i][j]; 

         } 

     } 

     //=============== Calculate GGTHuu ================== 

     for (i=0;i<2;i++) 

     { 

         for (j=0;j<2;j++) 

         { 

          GGTHuu[i][j]=GTSG[i][j]+Thuu[i][j]; 

         } 

     } 

     //=========== Calculate invGSG ======================= 

  for (i=0;i<2;i++) 

  { 

   for (j=0;j<2;j++) 

   { 

    invmatrix88[i][j]=GGTHuu[i][j]; 

   } 

  } 

     binv8=invmatrix8(invmatrix88,2); 

     for (i=0;i<2;i++) 

     { 

         for (j=0;j<2;j++) 

         { 

          invGSG[i][j]=binv8.binv[i][j]; 

         } 

     } 

  //============= Calculate FGTHGSG ====================== 

  for (i=0;i<7;i++) 

  { 

   for (j=0;j<2;j++) 
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   { 

    FGTHGSG[i][j]=0; 

    for (k=0;k<2;k++) 

    { 

    

 FGTHGSG[i][j]=FGTHGSG[i][j]+FGTHxu[i][k]*invGSG[k][j]; 

    } 

   } 

  } 

  //===================== Calculate TH_G_TH ==================== 

  for (i=0;i<7;i++) 

  { 

   for (j=0;j<7;j++) 

   { 

    TH_G_TH[i][j]=0; 

    for (k=0;k<2;k++) 

    { 

    

 TH_G_TH[i][j]=TH_G_TH[i][j]+FGTHGSG[i][k]*FGTHxu[j][k]; 

    } 

   } 

  } 

     //============= Calculate Snew ============================== 

     for (i=0;i<7;i++) 

     { 

         for (j=0;j<7;j++) 

         { 

          SkNew[i][j]=FGTHxx[i][j]-TH_G_TH[i][j]; 

         } 

     } 

      //================ Check if Ups has converged ================== 

        Converg=0; 

  for (i=0;i<7;i++) 

  { 

   for (j=0;j<7;j++) 

   { 

                Converg=Converg+(SkNew[i][j]-Sk[i][j])*(SkNew[i][j]-

Sk[i][j]); 

   } 

  } 

        Converg=sqrt(Converg); 

        probe[47]=Converg; 

        IT=IT+1; 

        probe[46]=IT; 

 } 

  //============== Calculate Lam ================= 

  //============== Calculate New GTS ============= 

  for (i=0;i<2;i++) 

  { 

   for (j=0;j<7;j++) 

   { 

    GTS[i][j]=0; 

    for (k=0;k<7;k++) 

    { 

     GTS[i][j]=GTS[i][j]+Gk[k][i]*Sk[k][j]; 

    } 

   } 



 

177 

  } 

  //============= Calculate New GTSG ========================== 

  for (i=0;i<2;i++) 

  { 

   for (j=0;j<2;j++) 

   { 

    GTSG[i][j]=0; 

    for (k=0;k<7;k++) 

    { 

     GTSG[i][j]=GTSG[i][j]+GTS[i][k]*Gk[k][j]; 

    } 

   } 

  } 

     //============ Calculate New GGTHuu ========================== 

     for (i=0;i<2;i++) 

     { 

         for (j=0;j<2;j++) 

         { 

          GGTHuu[i][j]=GTSG[i][j]+Thuu[i][j]; 

         } 

     } 

     //================ Calculate New invGSG ==================== 

  for (i=0;i<2;i++) 

  { 

   for (j=0;j<2;j++) 

   { 

    invmatrix88[i][j]=GGTHuu[i][j]; 

   } 

  } 

     binv8=invmatrix8(invmatrix88,2); 

     for (i=0;i<2;i++) 

     { 

         for (j=0;j<2;j++) 

         { 

          invGSG[i][j]=binv8.binv[i][j]; 

         } 

     } 

  //=============== Calculate New FTS =========================== 

  for (i=0;i<7;i++) 

  { 

   for (j=0;j<7;j++) 

   { 

    FTS[i][j]=0; 

    for (k=0;k<7;k++) 

    { 

     FTS[i][j]=FTS[i][j]+Fk[k][i]*Sk[k][j]; 

    } 

   } 

  } 

 

  //=============== Calculate New FTSG ========================= 

  for (i=0;i<7;i++) 

  { 

   for (j=0;j<2;j++) 

   { 

    FTSG[i][j]=0; 

    for (k=0;k<7;k++) 
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    { 

     FTSG[i][j]=FTSG[i][j]+FTS[i][k]*Gk[k][j]; 

    } 

   } 

  } 

    // ============= Calculate New FGTHxu ======================= 

     for (i=0;i<7;i++) 

     { 

         for (j=0;j<2;j++) 

         { 

          FGTHxu[i][j]=FTSG[i][j]+Thux[i][j]; 

         } 

     } 

     //=============== Calculate Lamk ========== 

  for (i=0;i<2;i++) 

  { 

   for (j=0;j<7;j++) 

   { 

    LAMk[i][j]=0; 

    for (k=0;k<2;k++) 

    { 

     LAMk[i][j]=LAMk[i][j]-

GGTHuu[i][k]*FGTHxu[j][k]; 

    } 

   } 

  } 

} 

/*==================================================================== 

  Initial RTOS Code 

==========================================================================*/ 

//static void prvSetupHardware( void ); 

 

/* The semaphore (in this case binary) that is used by the FreeRTOS tick hook 

 * function and the event semaphore task.*/ 

xSemaphoreHandle xEventSemaphore = NULL; 

 

/* The counters used by the various examples.  The usage is described in the 

 * comments at the top of this file.*/ 

static volatile uint32_t ulCountOfReceivedSemaphores; 

 

/* 

 * When FreeRTOS crashes, you often end up in a hard fault. 

 */ 

 

/*-----------------------------------------------------------*/ 

static void prvEventSemaphoreTask( void *pvParameters ) 

{ 

    while(1) 

    { 

        /* Block until the semaphore is 'given'. */ 

        xSemaphoreTake( xEventSemaphore, portMAX_DELAY ); 

 

        /* Count the number of times the semaphore is received. */ 

        ulCountOfReceivedSemaphores++; 

        STM_EVAL_LEDToggle(LED5); 

    } 

} 
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/*-----------------------------------------------------------*/ 

 

void HardFault_Handler (void){ 

 STM_EVAL_LEDOn(LED5); 

 STM_EVAL_LEDOn(LED6); 

} 

 

// This FreeRTOS callback function gets called once per tick (default = 

1000Hz). 

// --------- 

void vApplicationTickHook( void ) 

{ 

 static signed portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE; 

 static uint32_t ulCount = 0; 

    ++tickTime; 

    ulCount++; 

    if(ulCount >= 250UL) 

    { 

        xSemaphoreGiveFromISR(xEventSemaphore, &xHigherPriorityTaskWoken ); 

        ulCount = 0UL; 

    } 

} 

 

/*-----------------------------------------------------------*/ 

 

// This FreeRTOS call-back function gets when no other task is ready to 

execute. 

// On a completely unloaded system this is getting called at over 2.5MHz! 

// --------------------------------------------------------------------------

-- 

void vApplicationIdleHook( void ) { 

    ++u64IdleTicksCnt; 

} 

 

// A required FreeRTOS function. 

void vApplicationMallocFailedHook( void ) { 

    configASSERT( 0 );  // Latch on any failure / error. 

} 

 

/*=========================================================================== 

   Real Time Tasks 

===========================================================================*/ 

void GetInitCoordinates(void) 

{ 

 USART_TypeDef* chan; 

 

 chan=UART4; 

 union 

   { 

   uint32_t HexValue; 

   float FloatValue; 

    }TempData; 

 uint8_t res; 

 uint8_t i; 

 uint8_t m; 

 uint8_t n; 

 ret_t Data; 
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 uint8_t GetGPSData[]={0x10,0x8E,0x17,0x10,0x03}; 

 res=0; 

 

 

 

  Retry1: 

  for(i=0;i<180;i++) 

  { 

   Data.Data[i]=0; 

  } 

  m=sizeof(GetGPSData)/sizeof(uint8_t); 

   for(n=0;n<=m;n++) 

   { 

    myUSART_SendByte(chan,GetGPSData[n]); 

   } 

  Data=TrapByte(0x8F,0x17,chan); 

  if(Data.Check==1 && res<3){goto Retry1;} 

  res=0; 

 

 TempData.HexValue=(Data.Data[6]<<24)+(Data.Data[7]<<16)+(Data.Data[8]<<

8)+(Data.Data[9]); // 

  GEDISensor.Y0=TempData.FloatValue; 

  probe[38]=GEDISensor.Y0; 

 

 TempData.HexValue=(Data.Data[10]<<24)+(Data.Data[11]<<16)+(Data.Data[12

]<<8)+(Data.Data[13]); 

  GEDISensor.X0=TempData.FloatValue; 

  probe[39]=GEDISensor.X0; 

  STM_EVAL_LEDToggle(LED3); 

 

} 

 

 

void GPS(void *pvparameters) 

{ 

 USART_TypeDef* chan; 

 

 chan=UART4; 

 union 

   { 

   uint32_t HexValue; 

   float FloatValue; 

    }TempData; 

 uint8_t res; 

 uint8_t i; 

 uint8_t m; 

 uint8_t n; 

 ret_t Data; 

 uint8_t GetGPSData[]={0x10,0x8E,0x17,0x10,0x03}; 

 res=0; 

 

 while(1) 

 { 

 

  Retry1: 

  for(i=0;i<180;i++) 

  { 
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   Data.Data[i]=0; 

  } 

  m=sizeof(GetGPSData)/sizeof(uint8_t); 

   for(n=0;n<=m;n++) 

   { 

    myUSART_SendByte(chan,GetGPSData[n]); 

   } 

  Data=TrapByte(0x8F,0x17,chan); 

  if(Data.Check==1 && res<3){goto Retry1;} 

  res=0; 

 

 TempData.HexValue=(Data.Data[6]<<24)+(Data.Data[7]<<16)+(Data.Data[8]<<

8)+(Data.Data[9]); // 

  GEDISensor.Y=TempData.FloatValue-GEDISensor.Y0; 

 

 TempData.HexValue=(Data.Data[10]<<24)+(Data.Data[11]<<16)+(Data.Data[12

]<<8)+(Data.Data[13]); 

  GEDISensor.X=TempData.FloatValue-GEDISensor.X0; 

  STM_EVAL_LEDToggle(LED3); 

  vTaskDelay(500); 

 } 

} 

 

void ENCODERS(void *pvparameters) 

{ 

 uint16_t temp=0; 

 int of; 

 while(1) 

 { 

  temp=(uint16_t) TIM_GetCounter(TIM3); 

  of=-temp+GEDISensor.LEnc; 

  if((of)>60000) 

  { 

   GEDISensor.LEInc=65535-of+GEDISensor.LEInc; 

  } 

  else if((of)<-60000) 

  { 

   GEDISensor.LEInc=65535+of+GEDISensor.LEInc; 

  } 

  else 

  { 

   GEDISensor.LEInc=of+GEDISensor.LEInc; 

  } 

  GEDISensor.LEnc=temp; 

 

  temp=(uint16_t) TIM_GetCounter(TIM5); 

  of=temp-GEDISensor.REnc; 

  if((of)>60000) 

  { 

   GEDISensor.REInc=65535-of+GEDISensor.REInc; 

  } 

  else if((of)<-60000) 

  { 

   GEDISensor.REInc=65535+of+GEDISensor.REInc; 

  } 

  else 

  { 



 

182 

   GEDISensor.REInc=of+GEDISensor.REInc; 

  } 

  GEDISensor.REnc=temp; 

 STM_EVAL_LEDToggle(LED6); 

 vTaskDelay(23); 

 } 

} 

 

void MissionController1(void *pvparameters) 

{ 

 uint8_t i; 

 uint8_t j; 

 uint16_t Track; 

 //State Matrices 

 double Hk[8][7]; 

 double Fk[7][7]; 

 double Gk[7][2]; 

 double Jk[8][2]; 

 double xnext[7]={0}; 

 double xold[7]={0}; 

 

 //Uncertainty and Structural Matrices 

 double Ax[7][7]={{0}}; 

 double Ay[8][7]={{0}}; 

 double B1[7][7]={{0}}; 

 double B2[7][2]={{0}}; 

 double W[7][7]; 

 

 //Measurement and Input Matrices 

 double Yk[8]; 

 double U[2]; 

 

 //Noise Matrices 

 double P[7][7]={{0}}; 

 double Q[8][8]={{0}}; 

 

 //Path Tracking Matrices 

 double E1[3][7]; 

 double E2[3][7]; 

 

 ///Adjustable Scalars 

 double Dt=.785; 

 double Dte=.785; 

 double gam=0.1; 

 double kb=0.154; 

 double kt=0.13; 

 double nr=20; 

 double Iw=0.764; 

 double m=230; 

 double Nc=4096; 

 double B=0.88; 

 double Icr=127.7; 

 double rw=0.2794; 

 double Ra=0.32; 

 

 //Heading Angles and delta variables 

 double THk=0; 
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 double thi=0;//M_PI_4; 

 double Dx=0; 

 double Dy=0; 

 double DTHk=0; 

 //================== Path Matrix======================== 

 path[0][0]=0;   path[0][1]=0;   path[0][2]=0;  

 path[0][3]=0;   path[0][4]=0;   path[0][5]=0;  

 path[0][6]=0;   path[0][7]=0; 

 path[1][0]=0;   path[1][1]=1;   path[1][2]=2;   

 path[1][3]=3;    path[1][4]=4;   path[1][5]=5;  

 path[1][6]=6;    path[1][7]=7; 

 path[2][0]=0;   path[2][1]=0;  path[2][2]=0; 

 path[2][3]=0;   path[2][4]=0;   path[2][5]=0; 

 path[2][6]=0;  path[2][7]=0; 

 

 Xr=0; 

 Yr=0; 

 Pid=0; 

 Track=0; 

 xold[0]=0.1; xold[1]=0.1; xold[2]=0.1; xold[3]=0; xold[4]=0; xold[5]=0; 

xold[6]=0; 

 while(1) 

 { 

    Dx=path[1][Pid]-Xr; 

    Dy=path[2][Pid]-Yr; 

 probe[25]=Dx; 

 probe[26]=Dy; 

    DTHk=THk-xold[4]; 

    probe[27]=DTHk; 

    if(fabs(Dx)<1E-1) 

    { 

     THk=M_PI_4; 

    } 

    else 

    { 

     THk=atan((Dy)/(Dx)); 

 } 

    probe[28]=THk; 

    DTHk=THk-xold[4]; 

    probe[29]=DTHk; 

    thi=THk; 

    xold[4]=thi; 

 //================== Matrix F(k)===================================== 

 Fk[0][0]=(double)(1-(2*kt*kb*nr*nr*Dt)/(Ra*(4*Iw+m*rw*rw))); 

Fk[0][1]=0;          

 Fk[0][2]=0; 

 Fk[1][0]=0;          

 Fk[1][1]=(double)(1-(2*kt*kb*nr*nr*Dt)/(Ra*(4*Iw+m*rw*rw)));

 Fk[1][2]=0; 

 Fk[2][0]=0;          

 Fk[2][1]=0;           

   Fk[2][2]=(double)(1-

(2*kt*kb*nr*nr*Dt)/(Ra*(4*Iw+m*rw*rw))); 

 Fk[3][0]=0;          

 Fk[3][1]=0;           

   Fk[3][2]=0; 
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 Fk[4][0]=0;          

 Fk[4][1]=0;           

   Fk[4][2]=0; 

 Fk[5][0]=0;          

 Fk[5][1]=0;           

   Fk[5][2]=(double)(-

(2*kt*kb*nr*nr*Dt)*Dt*cos(thi)/(Ra*(4*Iw+m*rw*rw))); 

 Fk[6][0]=0;          

 Fk[6][1]=0;           

   Fk[6][2]=(double)(-

(2*kt*kb*nr*nr*Dt)*Dt*sin(thi)/(Ra*(4*Iw+m*rw*rw))); 

 

 Fk[0][3]=0;           

  Fk[0][4]=0;  Fk[0][5]=0;  Fk[0][6]=0; 

 Fk[1][3]=0;           

  Fk[1][4]=0;  Fk[1][5]=0;  Fk[1][6]=0; 

 Fk[2][3]=0;           

  Fk[2][4]=0;  Fk[2][5]=0;  Fk[2][6]=0; 

 Fk[3][3]=(double)(1+(B*B*kt*kb*nr*nr*Dt)/(4*Icr*Ra*rw*rw)); Fk[3][4]=0; 

 Fk[3][5]=0;  Fk[3][6]=0; 

 Fk[4][3]=(double)((B*B*kt*kb*nr*nr*Dt)/(4*Icr*Ra*rw*rw)*Dt);Fk[4][4]=1; 

 Fk[4][5]=0;  Fk[4][6]=0; 

 Fk[5][3]=0;           

  Fk[5][4]=0;  Fk[5][5]=1;  Fk[5][6]=0; 

 Fk[6][3]=0;           

  Fk[6][4]=0;  Fk[6][5]=0;  Fk[6][6]=1; 

 //======================== Matrix H(k)============================= 

 Hk[0][0]=(double)(Nc*Dte/(M_2_PI*rw)); Hk[0][1]=0;  Hk[0][2]=0; 

   Hk[0][3]=0;    Hk[0][4]=0;   

 Hk[0][5]=0;  Hk[0][6]=0; 

 Hk[1][0]=0;    

 Hk[1][1]=(double)(Nc*Dte/(M_2_PI*rw));Hk[1][2]=0; Hk[1][3]=0;  

  Hk[1][4]=0;    Hk[1][5]=0;  Hk[1][6]=0; 

 Hk[2][0]=0;     Hk[2][1]=0;    

 Hk[2][2]=(double)(1/Dt);Hk[2][3]=0;    Hk[2][4]=0;  

  Hk[2][5]=0;  Hk[2][6]=0; 

 Hk[3][0]=0;     Hk[3][1]=0;    

 Hk[3][2]=(double)(1/Dt);Hk[3][3]=0;    Hk[3][4]=0;  

  Hk[3][5]=0;  Hk[3][6]=0; 

 Hk[4][0]=0;     Hk[4][1]=0;    

 Hk[4][2]=0;    Hk[4][3]=1;    Hk[4][4]=0; 

   Hk[4][5]=0;  Hk[4][6]=0; 

 Hk[5][0]=0;     Hk[5][1]=0;    

 Hk[5][2]=0;    Hk[5][3]=0;   

 Hk[5][4]=(double)(1/Dt);Hk[5][5]=0;  Hk[5][6]=0; 

 Hk[6][0]=0;     Hk[6][1]=0;    

 Hk[6][2]=0;    Hk[6][3]=0;    Hk[6][4]=0; 

   Hk[6][5]=1;  Hk[6][6]=0; 

 Hk[7][0]=0;     Hk[7][1]=0;    

 Hk[7][2]=0;    Hk[7][3]=0;    Hk[7][4]=0; 

   Hk[7][5]=0;  Hk[7][6]=1; 

 //===================== Matrix G(k)============================= 

 Gk[0][0]=(double)(2*kt*nr*Dt)/(Ra*(4*Iw+m*rw*rw));        

 Gk[0][1]=(double)(0); 

 Gk[1][0]=(double)0;         

    Gk[1][1]=(double)((2*kt*nr*Dt)/(Ra*(4*Iw+m*rw*rw))); 
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 Gk[2][0]=(double)(kt*nr*Dt)/(Ra*(4*Iw+m*rw*rw));    

 Gk[2][1]=(double)((kt*nr*Dt)/(Ra*(4*Iw+m*rw*rw))); 

 Gk[3][0]=(double)(B*kt*nr*Dt)/(2*Icr*Ra*rw*rw);     

 Gk[3][1]=(double)(-(B*kt*nr*Dt)/(2*Icr*Ra*rw*rw)); 

 Gk[4][0]=(double)((B*kt*nr*Dt)/(2*Icr*Ra*rw*rw)*Dt);    

 Gk[4][1]=(double)(-(B*kt*nr*Dt)/(2*Icr*Ra*rw*rw)*Dt); 

 Gk[5][0]=(double)((2*kt*nr*Dt)/(Ra*(4*Iw+m*rw*rw))*cos(thi)); 

 Gk[5][1]=(double)((2*kt*nr*Dt)/(Ra*(4*Iw+m*rw*rw))*Dt*cos(thi)); 

 Gk[6][0]=(double)((2*kt*nr*Dt)/(Ra*(4*Iw+m*rw*rw))*Dt*sin(thi));

 Gk[6][1]=(double)((2*kt*nr*Dt)/(Ra*(4*Iw+m*rw*rw))*Dt*sin(thi)); 

 //======== Matrix E1================================ 

 E1[0][0]=0;    E1[0][1]=0;    E1[0][2]=0; 

   E1[0][3]=0;    E1[0][4]=1;  E1[0][5]=0; 

 E1[0][6]=0; 

 E1[1][0]=0;    E1[1][1]=0;    E1[1][2]=0; 

   E1[1][3]=0;    E1[1][4]=0;  E1[1][5]=1; 

 E1[1][6]=0; 

 E1[2][0]=0;    E1[2][1]=0;    E1[2][2]=0; 

   E1[2][3]=0;    E1[2][4]=0;  E1[2][5]=0; 

 E1[2][6]=1; 

 //==================== Matrix E2============================= 

 E2[0][0]=-.43*Dt;  E2[0][1]=.43*Dt;  E2[0][2]=0;   

 E2[0][3]=-Dt;  E2[0][4]=DTHk/(xold[4]); E2[0][5]=0;  

  E2[0][6]=0; 

 E2[1][0]=Dt*cos(THk); E2[1][1]=Dt*cos(THk); E2[1][2]=-Dt*cos(THk);

 E2[1][3]=0;   E2[1][4]=0;    

 E2[1][5]=Dx/(xold[5]); E2[1][6]=0; 

 E2[2][0]=Dt*sin(THk); E2[2][1]=Dt*sin(THk); E2[2][2]=-Dt*sin(THk);

 E2[2][3]=0;   E2[2][4]=0;     E2[2][5]=0; 

   E2[2][6]=Dy/(xold[6]); 

 for (i=0;i<3;i++) 

 { 

     for (j=0;j<7;j++) 

     { 

      E2[i][j]=E2[i][j];//0; 

     } 

  } 

 //============================ Matrix W======================== 

 for (i=0;i<7;i++) 

 { 

     for (j=0;j<7;j++) 

     { 

         if (i==j) 

         { 

             W[i][j]=1; 

         } 

         else 

         { 

             W[i][j]=0; 

         } 

     } 

 } 

 //================= Covariance P=========================== 

 for (i=0;i<7;i++) 

 { 

     for (j=0;j<7;j++) 

     { 
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         if (i==j) 

         { 

             P[i][j]=1E-6; 

         } 

         else 

         { 

             P[i][j]=0; 

         } 

     } 

 } 

 //=========================== Covariance Q============================ 

 for (i=0;i<8;i++) 

 { 

     for (j=0;j<8;j++) 

     { 

         if (i==j) 

         { 

             Q[i][j]=1E-6; 

         } 

         else 

         { 

             Q[i][j]=0; 

         } 

     } 

 } 

 //=================== Uncertainty matrix A_\xi======================= 

 for (i=0;i<7;i++) 

 { 

     for (j=0;j<4;j++) 

     { 

         if (i==j) 

         { 

             Ax[i][j]=.001;//.5; 

         } 

         else 

         { 

             Ax[i][j]=0; 

         } 

     } 

     for (j=4;j<7;j++) 

     { 

         Ax[i][j]=0; 

     } 

 }  

 Ax[4][3]=0.005;//   

 Ax[4][2]=0.005;//   

 Ax[6][2]=0.005;//   

// //================ Uncertainty matrix A_Y========================== 

 Ay[0][0]=0; 

 Ay[1][1]=0; 

 Ay[2][2]=.0001; 

 Ay[3][2]=.0001; 

 Ay[4][3]=.0001; 

 Ay[5][4]=.0001; 

 Ay[6][5]=0; 

 Ay[7][6]=0; 
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// //=============== Uncertainty matrix B1========================= 

 for (i=0;i<7;i++) 

 { 

     for (j=0;j<7;j++) 

     { 

         if (i==j) 

         { 

            B1[i][j]=1E-5;//.25; 

         } 

         else 

         { 

            B1[i][j]=0; 

         } 

     } 

 } 

// //================ Uncertainty matrix B2======================= 

 for (i=0;i<7;i++) 

 { 

     for (j=0;j<2;j++) 

     { 

         if (i==j) 

         { 

             B2[i][j]=1E-5;//.5; 

         } 

         else if(i==j*3) 

         { 

             B2[i][j]=1E-5;//.5; 

         } 

         else 

         { 

          B2[i][j]=0; 

         } 

     } 

 } 

 //============================= Initial Ups =============== 

 //======================= Get Filter Matrices ====== 

  KalmanFilter(Ax,Ay,B1,Hk,Fk,P,Q,gam); 

     //=============== Control Algorithm ======================== 

  H2Control(Ax,B1,B2,W,Fk,Gk,E1,E2); 

  //============== Measure sensors for vector Yk ============== 

             

   Yk[0]=(double)(GEDISensor.LEInc); 

             

   Yk[1]=(double)(GEDISensor.REInc); 

             

   Yk[2]=(double)(GEDISensor.AX1/GEDISensor.NIMU)*Dt; 

             

   Yk[3]=(double)(GEDISensor.AX1/GEDISensor.NIMU)*Dt; 

             

   Yk[4]=(double)(GEDISensor.GZ1/GEDISensor.NIMU)*Dt; 

             

   Yk[5]=(double)(GEDISensor.GZ2/GEDISensor.NIMU); 

             

   Yk[6]=(double)(GEDISensor.X); 

             

   Yk[7]=(double)(GEDISensor.Y); 
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   double Umax; 

 

 

 

  //=========== Get Filter Matrices ======= 

     for (i=0;i<7;i++) 

     { 

         xnext[i]= 0; 

         for (j=0;j<7;j++) 

         { 

             xnext[i]=xnext[i]+PHIk[i][j]*xold[j]; 

         } 

         for (j=0;j<8;j++) 

         { 

             xnext[i]=xnext[i]+GAMMAk[i][j]*Yk[j]; 

         } 

     } 

     //================= Update State Estimate ========================= 

     for (i=0;i<7;i++) 

     { 

         xold[i]=xnext[i]; 

         probe[i]=xnext[i]; 

     } 

 

    //================== Calculate U from Lamdak ===================== 

     for (i=0;i<2;i++) 

     { 

      U[i]=0; 

      Umax=U[i]; 

         for (j=0;j<7;j++) 

         { 

          U[i]=U[i]+LAMk[i][j]*xold[j]; 

         } 

         if (fabs(U[i])>Umax) { 

 

         Umax=U[i]; 

         } 

         U[i]=-U[i]; 

         probe[35+i]=U[i]; 

     } 

 

     if (Umax>8) 

     { 

       for (i=0;i<2;i++) 

       { 

         U[i]=U[i]*8/Umax; 

       } 

     } 

 

 

     Xr=xold[5]; 

     Yr=xold[6]; 

     //================== Reset Measurements ====================== 

  GEDISensor.LEInc=0; 

  GEDISensor.REInc=0; 

  GEDISensor.AX1=0; 
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  GEDISensor.AX2=0; 

  GEDISensor.GZ1=0; 

  GEDISensor.GZ2=0; 

  GEDISensor.NIMU=0; 

     //============= Voltage To PWM =============================== 

 if(Track<40) 

 { 

  Track++; 

 } 

 

 else 

 { 

  if(Pid>8) 

     { 

      Controls.VL=ZeroSpeed; 

      Controls.VR=ZeroSpeed; 

     } 

     else { 

 

    Pid++; 

 

    Controls.VR=U[0]+ZeroSpeed; 

      if (Controls.VR>MaxNegSpeed) 

      { 

    Controls.VR=MaxNegSpeed; 

      } 

      else if(Controls.VR<MaxPosSpeed) 

      { 

    Controls.VR=MaxPosSpeed; 

      } 

    Controls.VL=U[1]+ZeroSpeed; 

      if (Controls.VL>MaxNegSpeed) 

      { 

    Controls.VL=MaxNegSpeed; 

      } 

      else if(Controls.VL<MaxPosSpeed) 

      { 

    Controls.VL=MaxPosSpeed; 

      } 

     } 

 } 

 

     vTaskDelay(785); 

     STM_EVAL_LEDToggle(LED5); 

     STM_EVAL_LEDToggle(LED4); 

 } 

} 

 

void IMU(void *pvparameters) 

{ 

 while(1) 

 { 

  int16_t Temp; 

 

  GPIO_ResetBits(GPIOE,GPIO_Pin_1); //Set CS Low//3 

  Temp=0; 

  Temp=(mySPI_GetData(0x29));    //Get High byte 
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  Temp=((Temp<<8)|(mySPI_GetData(0x28))); //Get Low byte, combine  

  GEDISensor.AX1=((Temp)*(1/393.5)+GEDISensor.AX1);//Convert to acc 

  GPIO_SetBits(GPIOE,GPIO_Pin_1);  //Set CS High//3 

 

 

  GPIO_ResetBits(GPIOE,GPIO_Pin_2); //Set CS Low//4 

  Temp=0; 

  Temp=mySPI_GetData(0x2D);    //Get High byte 

  Temp=((Temp<<8)|(mySPI_GetData(0x2C))); //Get Low byte, combine  

  GEDISensor.GZ1=(((Temp+1)*(2/29.1))*(M_PI/180)+GEDISensor.GZ1); 

  GPIO_SetBits(GPIOE,GPIO_Pin_2);  //Set CS high//4 

 

  GPIO_ResetBits(GPIOE,GPIO_Pin_3); //Set CS Low//3 

  Temp=0; 

  Temp=(mySPI_GetData(0x29));    //Get High byte 

  Temp=((Temp<<8)|(mySPI_GetData(0x28))); //Get Low byte, combine  

 

  GEDISensor.AX2=((Temp)*(1/393.5)+GEDISensor.AX2); 

  GPIO_SetBits(GPIOE,GPIO_Pin_3);  //Set CS High//3 

 

 

  GPIO_ResetBits(GPIOE,GPIO_Pin_4); //Set CS Low//4 

  Temp=0; 

  Temp=mySPI_GetData(0x2D);    //Get High byte 

  Temp=((Temp<<8)|(mySPI_GetData(0x2C))); //Get Low byte, combine  

  GEDISensor.GZ2=(((Temp+1)*(2/29.1))*(M_PI/180)+GEDISensor.GZ2); 

  GPIO_SetBits(GPIOE,GPIO_Pin_4);  //Set CS high//4 

 

 

  STM_EVAL_LEDToggle(LED6); 

  GEDISensor.NIMU++; 

  vTaskDelay(7); 

 } 

} 

 

 

void DriveRobot(void *pvparameters) 

{ 

 while(1) 

 { 

 TIM4->CCR1=Controls.VL; 

 TIM4->CCR2=Controls.VR; 

 STM_EVAL_LEDToggle(LED6); 

  vTaskDelay(53); 

 } 

} 

 

/*=========================================================================== 

   Main Program 

==========================================================================*/ 

 

int main(void) 

{ 

 uint8_t i; 

 uint8_t j; 

 /*================================= 

  *    Initialize Code 
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  * =================================*/ 

 STM_EVAL_LEDInit(LED3); 

 STM_EVAL_LEDInit(LED4); 

 STM_EVAL_LEDInit(LED5); 

 STM_EVAL_LEDInit(LED6); 

 Configure_DCMotors(); 

 GPS_Configure(); 

 Encoder_Configure(); 

 IMU_Configure(); 

 GEDISensor.NIMU=1; 

 GetInitCoordinates(); 

 for (i=0;i<7;i++) 

 { 

     for (j=0;j<7;j++) 

     { 

         if (i==j) 

         { 

             UpsNew[i][j]=100;//1E10; 

         } 

         else 

         { 

             UpsNew[i][j]=0; 

         } 

     } 

 } 

 

 /*================================= 

  *    Create Tasks 

  * =================================*/ 

 xTaskCreate( GPS, ( signed char * ) "Read GPS", 100, NULL, 1, NULL ); 

 xTaskCreate( ENCODERS, ( signed char * ) "Read Encoders", 50, NULL, 2, 

NULL ); 

 xTaskCreate( IMU, ( signed char * ) "Read IMU", 50, NULL, 2, NULL ); 

    xTaskCreate( DriveRobot, (signed char*) "Motors",50,NULL,1,NULL); 

    xTaskCreate( MissionController1, (signed char*) 

"Motion",5000,NULL,3,NULL); 

 /*================================= 

  *    Run Tasks 

  * =================================*/ 

 

    vTaskStartScheduler(); // This should never return. 

 

 

    while(1) 

    { 

    } 

 

    return 1; 

} 

 

 

 

 


