
ROBUST CONTROL OF SKID STEERED ROBOTIC VEHICLES ON HIGH FRICTION

SURFACES

A Thesis

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Andrew Kristian Narvesen

In Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Major Department:

Mechanical Engineering

April 2015

Fargo, North Dakota

North Dakota State University

Graduate School

Title

Robust Control of Robotic Skid Steered Vehicles on High Friction Surfaces

 By

Andrew Kristian Narvesen

 The Supervisory Committee certifies that this disquisition complies with North Dakota

State University’s regulations and meets the accepted standards for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

 Dr. Majura Selekwa

 Chair

Dr. Yechun Wang

Dr. Mariusz Ziejewski

 Dr. Jacob Glower

 Approved:

 5/11/2015 Dr. Alan R. Kallmeyer

 Date Department Chair

iii

ABSTRACT

The autonomous control of unmanned ground vehicles (UGVs) is a growing research

area. Skid steered UGVs are desired because of their simple control inputs, however the control

algorithm requires complex dynamic analysis. The dynamic model is required to properly

implement the control algorithm and this paper presents a linearized model for use in optimal

and robust linear control methods. For localization of the robot sensors are required and for many

applications low cost sensors are desired. This study used low cost sensors which require proper

handling because noise is often increased in lower cost sensors. This study investigated the use

of Kalman filtering and fusion on low cost sensors along with a novel approach of satellite

selection for improved GPS precision. The sensor information from the Kalman filter was then

used in a robust control algorithm and the vehicle’s path tracking ability was tested.

iv

ACKNOWLEDGMENTS

 I would like to thank Dr. Majura Selekwa for all the time and effort you spent teaching

and guiding me through my studies. I would also like to thank my committee members, Dr.

Jacob Glower, Dr. Yechun Wang, and Dr. Mariusz Ziejewski for the time you spent guiding me

in this project as well and the time you spent reviewing my work.

 I would also like to thank the Bison Robotics Team for helping me with last minute

repairs on the robot and being available to support my project. I would like to thank David

Sundquist as well for beautifying my robot and Karl Klindworth for being willing to bravely act

as a target.

 Finally I would like to thank all my friends and family for being a part of making me

what I am today.

v

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGMENTS ... iv

LIST OF TABLES ... ix

LIST OF FIGURES ...x

LIST OF APPENDIX FIGURES.. xii

CHAPTER 1. INTRODUCTION ..1

1.1. Background .. 2

1.2. Goals and Objectives .. 3

CHAPTER 2. NAVIGATION SENSORS ..5

2.1. Obstacle Detection Sensors .. 5

2.1.1. Ultrasonic Time of Flight .. 6

2.1.2. Laser Time of Flight .. 6

2.2. Localization Sensors .. 7

2.2.1. Global Positioning System .. 8

2.2.1.1. Global Positioning System Architecture .. 8

2.2.1.2. Basic GPS Trilateration Methodology ... 10

2.2.1.3. Inherent Trilateration Errors .. 11

2.2.2. Relative Positioning Sensors ... 16

2.2.2.1. Inertial Measurement Units.. 16

2.2.2.2. Optical Encoders .. 21

vi

CHAPTER 3. DEVELOPMENT OF A DYNAMIC MODEL ...23

3.1. Methods for Steering Unmanned Ground Vehicles ... 23

3.1.1. Actuated Wheel Angle ... 23

3.1.2. Differential Steering .. 25

3.1.3. Skid Steering.. 25

3.2. Actuator Model .. 27

3.3. Kinematic and Dynamic Modeling of Skid Steering ... 30

3.3.1. Kinematic Model ... 31

3.3.2. Dynamic Model ... 35

CHAPTER 4. GPS TRILATERATION IMPROVEMENTS ..39

4.1. Satellite Coordinate Calculation ... 39

4.2. Time Difference Estimation ... 43

4.3. Receiver Position Estimation ... 43

4.3.1. Least-Squares Method ... 44

4.3.2. Newtonian Method .. 45

4.3.3. Broyden-Fletcher-Goldfarb-Shanno Method .. 47

4.4. Satellite Selection Algorithm ... 49

CHAPTER 5. ROBUST PATH TRACKING CONTROL..50

5.1. Robot Path Tracking and Localization ... 50

5.1.1. General Path Tracking and Localization ... 50

vii

5.1.2. Skid Steered Path Tracking on High Friction, Flat Surfaces 53

5.2. Formulating Linear State Space Equations .. 55

5.3. Background on Linear Quadratic Control Design .. 58

5.3.1. Lyapunov Criterion and the Bounded Real Lemma on Continuous Time Systems 59

5.3.2. Linear Quadratic Regulator for Continuous Time Systems .. 61

5.3.3. Lyapunov Criterion and Bounded Real Lemma on Discrete Time Systems 62

5.3.4. Linear Quadratic Regulator for Discrete Time Systems ... 63

5.4. Control Formulation the Skid Steered Vehicle .. 63

5.4.1. Control Function .. 65

5.4.2. Control Solution .. 67

CHAPTER 6. SENSOR PROCESSING: FILTERING AND FUSION ..71

6.1. Fusion Methods .. 72

6.1.1. Non-Probabilistic Fusion Methods .. 72

6.1.2. Probabilistic Fusion Methods .. 72

6.2. The Kalman Filter Algorithm ... 74

6.3. Decentralized Kalman Fusion .. 76

6.3.1. Robust Kalman Filtering ... 78

6.3.1.1. Specific Formulation .. 81

6.4. Combined Robust State Estimation and Robust Path Tracking Control 82

CHAPTER 7. EXPERIMENTAL AND SIMULATION RESULTS ..84

viii

7.1. GPS Algorithm ... 84

7.1.1. GPS Improvement Methods .. 84

7.1.2. GPS Results ... 85

7.2. Control and Robust Filter Performance Results Obtained on the Developed Model 85

7.2.1. Simulation Results ... 86

7.2.2. Control and Filter Experimentation ... 89

7.2.3. Experimental Vehicle .. 90

7.2.4. Experimental Results ... 94

CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS ...99

8.1. GPS Algorithm ... 99

8.2. Dynamic Model Simulations .. 100

8.3. Control and Filter Experimentation .. 100

8.4. Concluding Remarks .. 101

REFERENCES ..102

APPENDIX A. IMPROVED GPS TRILATERATION CODE ..110

APPENDIX B. DYNAMIC MODEL SIMULATION CODE ..138

APPENDIX C. CIRCUIT BOARD DESIGN ...157

APPENDIX D. CONTROL AND FILTERING CODE ..160

ix

LIST OF TABLES

Table Page

2.1: GPS data packets and their uses .. 10

4.1: Ephemeris data received from each satellite .. 40

4.2: Raw measurement data received from each satellite ... 43

5.1: Parameter values .. 57

7.1: Satellite ECEF coordinates .. 85

7.2: Simulation performance ... 86

7.3: Measurement vector and corresponding sensors ... 93

7.4: Raw measurement vector ... 95

7.5: Estimated state vector .. 96

7.6: Control output and algorithm convergence ... 97

x

LIST OF FIGURES

Figure Page

2.1: Typical scanning pattern .. 7

2.2: Architecture of global navigation satellite system ... 9

2.3: Navigation satellites ... 9

2.4: Consistent intersection of equations with ideal signals ... 11

2.5: Trilateration equations receiving equal interference ... 12

2.6: Inconsistent set of equations .. 13

2.7: Overall position error (top) compared to satellites used in calculations.......................... 14

2.8: Signal strength distribution .. 15

2.9: MEMS yaw rate sensor (left) and accelerometer (right) ... 17

2.10: Mechanical accelerometer model .. 17

2.11: MEMS accelerometer .. 18

2.12: Flywheel gyroscope ... 19

2.13: Vibrating mass gyroscope .. 19

2.14: Interference waves in an optical gyroscope ... 20

2.15: Optical encoder layout ... 22

3.1: Two wheel actuated steering (left) and four wheel actuated steering (right) 24

3.2: Differential steering ... 25

3.3: Four wheeled skid steering (left) and tracked skid steering (right) 26

3.4: Montenergy performance curve at 24 volts ... 28

3.5: Current spike in angular velocity direction change ... 30

3.6: Dynamic model of four wheel skid steered vehicle ... 31

xi

3.7: Reduced dynamic model .. 33

5.1: System stability .. 59

5.2: Path tracking .. 66

6.1: Control flow chart .. 83

7.1: Semicircle path .. 87

7.2: Zigzag path .. 87

7.3: Full sinusoid path ... 88

7.4: Partial sinusoid path ... 89

7.5: THUNDAR the autonomous snow plow ... 89

7.6: Vehicle drivetrain .. 90

7.7: Motor reduction ... 90

7.8: High voltage circuit ... 91

7.9: Circuit board diagram .. 92

7.10: Picture of circuit board .. 93

xii

LIST OF APPENDIX FIGURES

Figure Page

C1: GPS Layer ...157

C2: Power Layer ..158

C3: Sensor Layer..159

1

CHAPTER 1. INTRODUCTION

Around the northern half of the United States many areas get large amounts of snow fall

each year. On average, Fargo, North Dakota receives 40.0 inches a year [1]. This snow can be

annoying and time consuming for the average person to move. Not only is the snow a nuisance

for most people to remove, it can also extremely difficult or even impossible for the elderly or

disabled people to remove without assistance. Removing snow can also cause injury when

people over exert themselves trying to clear snow as quickly as possible. In the United States in

2001, over 54,000 people were treated for injuries related to manual snow removal [2]. Snow

removal services are available but they are often costly. Not only is private snow removal

expensive, it also can be difficult to find a service that removes the snow in a timely manner.

One solution to all these problems is to create an autonomous snowplow to remove snow without

human assistance. An autonomous snowplow needs to be mobile and there are many problems

associated with navigating a ground vehicle, especially on uncertain surfaces that may be

covered in ice or may be dry pavement. Although ground vehicles can be tracked or wheeled,

there are many applications where wheeled ground robotic vehicles are required, for example in

certain mining operations and in agricultural operations. Wheeled ground robotic vehicles appear

in many forms, differing on how they generate traction and how they maneuver to negotiate

turns; for example there are skid steered four wheel vehicles, differentially steered three or four

wheel vehicles, independently steered four wheel vehicles, and Ackerman steered four or three

wheel vehicles, just to name a few. The performance of any wheeled ground robotic vehicle

depends heavily on its navigation control system, however, most studies on control of such

robotic vehicles have been limited on the vehicle kinematics only, which can be sufficient in

applications involving low robot speeds, and in cases where the negative effects of friction can

2

be ignored. This research focused mainly on the modelling and control of a four wheeled skid

steered ground robotic vehicle for which both kinematics and dynamics are considered to better

model the vehicle on high friction surfaces.

1.1. Background

Wheeled ground robotic vehicles have appeared more frequently in recent applications,

and easy controllability of these vehicles has become a key design factor. Development of

control algorithms for these and any other automated systems requires the presence of a good

dynamic model that predicts the system’s behavior. The control is implemented by using sensors

that measure parameters representing the actual behavior of the system, which are then fed back

to the system by the control algorithm. Since most natural systems are nonlinear in nature,

developing a mathematical model that captures the behavior of any dynamic system has its own

unique challenges because it requires the modeler to decide on what behaviors to capture and

what behaviors to ignore. While ignoring certain dynamic behaviors may not affect the system

performance, there are some behaviors that must not be ignored. Most existing models for skid

steered vehicles assume that friction is not very high such that lateral skidding is possible so the

vehicle is able to maneuver turns. Because of this assumption, many models are based entirely

on the vehicle kinematics [3]–[7], or include dynamics that allow lateral skidding [8]–[10],

which has so far been sufficient on low friction surfaces. However, when friction becomes high

enough to prevent lateral skidding, such models fail to capture the dynamics and the vehicle fails

to maneuver short radius turns. Inclusion of the effects of friction in these models has been

difficult because the friction coefficients are unknown and are non-uniform as noted in [11],

[12].

3

Even when the available vehicle model is sufficient, implementation the control system

on such vehicles requires good sensors to provide localization data, particularly, position,

velocity, and direction. Although very good sensors exist that can measure and provide such data

very accurately, they tend to be very expensive and overwhelm the overall cost of the vehicle

itself. Most low cost sensors suitable for low cost robotic vehicles have inherent errors that must

be properly handled for proper functioning of the system. Localization sensors for ground robotic

vehicles tend to be a combination of Global Positioning System (GPS) receivers, wheel

encoders, a distance detection laser scanner, and Inertial Measurement Units (IMU) which

typically are made of 3-D accelerometers and 3-D gyroscopes. While errors in the distance

detection laser scanners and wheel encoders are easy to manage, errors in the GPS and IMUs are

very difficult to manage and quite often very expensive infrastructure is used to address the

errors. Alternatively, several sensors can be deployed and their results can be filtered and fused

together to reduce errors. Various sensor fusion algorithms exist, the popular ones are derivatives

of the Kalman filter. Unfortunately, such fusion algorithms also require the dynamic model of

the robotic vehicle to be known, which goes back to the modelling problem mentioned above.

1.2. Goals and Objectives

The goal of this research is to improve the control of autonomous four wheel skid steered

vehicles, especially on high friction surfaces by disallowing lateral skidding in the dynamic

model. As explained above, the central problem that must be addressed is that of developing a

good model that captures the dynamics of the vehicle on such surfaces. That model is required

by both the controller and the sensor fusion algorithms. Among factors that contribute to the

difficulty in controlling four wheel skid steered vehicles when friction is very high include lack

of knowledge about the friction level and invalidation of the kinematic assumptions on such

4

surfaces. As if those factors are not enough, the presence of noise and inaccuracies in sensor

measurements required for localization and feedback control of the robot makes the problem

even worse. This research addresses these problems systematically by first developing a vehicle

model that combines both vehicle kinetics and kinematics so that friction forces are made part of

the vehicle model. Using this model, the research proceeds by developing methods of reducing

the effects of sensor noise especially those from the IMU and the GPS. To achieve the goals of

the research there are four main objectives summarized in the following statements:

1. To develop an accurate mathematical model for capturing the vehicle dynamics on

high friction surfaces, which would also work on low friction surfaces

2. To characterize reduce errors inherent in all low cost GPS and IMU sensors

3. Develop a robust control algorithm that uses GPS, IMU and encoder data to

navigate a robot in path tracking mission

4. Experimentally validate the developed control on THUNDAR the autonomous

snowplow

Successful completion of this research will be indicated by successfully testing the final control

algorithm on the test vehicle on high friction surfaces.

5

CHAPTER 2. NAVIGATION SENSORS

There are many methods used in locating a robot in relation to the intended course and

the surrounding objects. All sensor measurements are characterized by the presence of noise and

uncertainties that affect the accuracy and precision of the measured results. To better understand

these uncertainties it is important to know the functional principles of these sensors. This chapter

will present the navigation sensors for this study. These sensors can be split into two main

categories: obstacle detection sensors and localization sensors. How the information from the

sensors is fused and filtered together will be discussed in later sections of this report.

2.1. Obstacle Detection Sensors

Obstacle detection sensors will be defined here as sensors used to locate objects around

the robot. The information about obstacles can then be used to determine if an object is an

obstacle and then the path can be adjusted accordingly. There are two main types of obstacle

detection sensors considered in this report: laser scanners and ultrasonic scanners. These sensors

have two parts: the signal transmitter and the signal receiver. The unit uses the time of flight of

the signal to determine the distance to the nearest obstacle where the transmitter emits a signal

and the receiver monitors the reflection. The signal is generally a defined series of pulses that the

receiver will recognize when it detects the reflected signal. This reflection covers twice the

distance from the object to the robot so the distance from the object to the robot becomes half of

the distance travelled by the reflected signal. The propagation speed of the signal is normally

known therefore, by monitoring the time taken between the transmitter signal and the receiver

signal, the distance to the object is determined. One distance measurement is usually insufficient

because information about the entire environment is usually required. The sensors can measure a

6

wide area of distances by scanning back and forth to find what objects are in a large field around

it.

2.1.1. Ultrasonic Time of Flight

 Ultrasonic time of flight measurements use ultrasonic signals to send a signal out for time

of flight distance detection. They tend to be popular because they are lower cost than the laser

scanners. As summarized in [13], ultrasonic sensors send a pulse or string of pulses at a specific

frequency, normally above 40kHz, and wait for a response at that frequency. To obtain a range

of measurements around the robot multiple sensors are typically required. This is because the

time of flight is relatively slow and rotating the sensor back and forth is not very efficient or

effective. In [13], they also point out that ultrasonic range finders are typically more susceptible

to environmental changes such as changes in temperature or humidity because the wave

propagation speed of sound is greatly affected by these parameters. Because of these drawbacks,

these sensors were not used in this study despite their affordability.

2.1.2. Laser Time of Flight

 Laser time of flight measurements are more expensive than the ultrasonic sensors but can

be more versatile and more robust. The time of flight works on the same principle as the

ultrasonic scanner but instead of pulses being sent and received using ultrasonic signals, they are

sent and monitored using a laser transmitter and receiver. Because of the increased speed in wave

propagation, the time of flight is much shorter. This makes a 2D or 3D scanning measurement

more practical. A typical scanning pattern can be seen below.

7

Figure 2.1: Typical scanning pattern [14]

Although there are scanners that can scan 360 degrees, most laser scanners are designed

for scanning only up to 180 degrees because often times robot navigation concentrates moving

forward and information about what is in front of the robot is sufficient. When scanning, the

sensor will measure the distance at predefined angular instances and create a map of

measurements. This is very useful in obstacle avoidance in mobile robots. The obstacle

avoidance sensor used in this study was a SICK laser scanner.

2.2. Localization Sensors

Localization sensors will be defined here as any sensor that locates the robot within a

predefined reference frame. They are also used in tracking the actual path versus the intended

path and this data is vital in the control algorithm used for path tracking. These sensors can be

split into external localization sensors and internal localization sensors. Typical external

localization sensors include the global positioning system (GPS) which uses external satellites to

calculate the receiver’s overall position in relation to the planned path. There are also options for

local external localization systems that use beacons or markers to locate the robot such as the

Stargazer robot localization sensor [15]. Internal localization sensors are entirely contained by

8

the robot. Typical internal localization sensors include angular displacement sensors that monitor

wheel rotation, accelerometers and gyroscopes. Since these sensors appear in many forms the

following subsection will discuss only those that were used in the research.

2.2.1. Global Positioning System

Global positioning systems have seen a large increase in use in recent years, largely due

to recent improvements in precision and accuracy of the GPS receivers. Originally GPS use was

restricted to the military. That changed in 1984 when a commercial airplane was shot down after

it crossed into restricted airspace due to poor navigation. This prompted the president of the

United States at the time, Ronald Reagan, to authorize the use of a segment of the GPS satellites

for civilian use in the United States under a Selective Availability policy [16]. As technology

increased, methods such as improved filtering and differential GPS techniques were developed,

which led to increased accuracy in GPS units and eventually in the year 2000 the Selective

Availability policy was abolished [17].

2.2.1.1. Global Positioning System Architecture

The three main parts to the GPS are the space segment, the control segment and the user

segment [18] as seen in Figure 2.2 below. The space segment consists of the set of satellites, as

seen in Figure 2.3, which orbit the earth along predetermined paths. There are many different

sets of satellites from the different global navigation services available such as NAVSTAR

(GPS), GLONASS, Galileo and Beidou.

9

Figure 2.2: Architecture of global navigation satellite system [18]

Figure 2.3: Navigation satellites [18]

 These satellites beam information that is used by the receiver to calculate the satellite

position which is then used to trilaterate the receiver location. The second portion is the control

segment. This segment consists of multiple control sensors and antennas which track the position

of the satellites, try and predict future atmospheric conditions and to update the satellites with

accurate information. Finally the user segment, which is the receiver, takes the information

10

beamed by the satellites and uses that information to calculate the receiver position. There are

four types of information packets beamed by the satellite: Almanac, ephemeris, ionospheric and

Universal Coordinated Time (UTC). The uses of each packet are summarized in Table 2.1.

Table 2.1: GPS data packets and their uses

Packet Function

Almanac  Satellite health

 Reduced precision UTC and Ephemeris data

Ephemeris  Calculate satellite positions

Ionospheric  Used in calculating the delay from the ionosphere

UTC  Converts satellite time to UTC time

2.2.1.2. Basic GPS Trilateration Methodology

The trilateration problem is solved on the basic level by finding the solution to a set of

four equations based on information from four satellites. The earth centered earth fixed (ECEF)

Cartesian coordinates of each satellite can be calculated from the data sent to the receiver. These

calculation will be outlined in a later chapter. The time the satellite sent the information to the

receiver is also known. With the coordinates and time information from four satellites known,

the unknown coordinates and time for the receiver can be found. There are four unknown

variables in the problem which are the X, Y, and Z coordinates of the receiver and the time delay,

ΔT, of the receiver. The distance between each satellite and the receiver, RS, can be found in two

different ways. The first is by using the Pythagorean Theorem to find the square distance

between the two objects as

𝑅𝑆
2 = (𝑋𝑆 − 𝑋)2 + (𝑌𝑆 − 𝑌)2 + (𝑍𝑆 − 𝑍)2 (2.1)

The second is found by multiplying the time difference of when the satellite sends the

information and when the receiver obtains the information by the speed of light, c, as

𝑅𝑆 = 𝑐(𝑡𝐺𝑃𝑆𝑆
− 𝑡𝑆 − 𝛥𝑇) (2.2)

11

These two equations can now be formed into the main function as

(𝑋𝑆 − 𝑋)2 + (𝑌𝑆 − 𝑌)2 + (𝑍𝑆 − 𝑍)2 − 𝑐2(𝑡𝐺𝑃𝑆𝑆
− 𝑡𝑆 − 𝛥𝑇)

2
= 0 (2.3)

By forming equation (2.3) four times from four satellites, a set of four equations is formed which

can be used to solve for the receiver’s position. Further detail in specific calculations for the

satellite coordinates and the time difference will be shown in Chapter 4.

2.2.1.3. Inherent Trilateration Errors

 Ideally, the set of equations described in the previous section have one unique solution

and the receiver’s ECEF coordinates could be calculated exactly as depicted in Figure 2.4.

However, this is not the case and is mainly due to the assumption that the receiver obtains the

information from all the satellites at the same time. This is usually caused by delays in the

satellite signals which originate from two main sources. The first is through multipath error. This

occurs when the satellite signal bounces off objects, such as buildings, on its way to the receiver.

Figure 2.4: Consistent intersection of equations with ideal signals

12

This causes a delay in the reception time and it causes an increase in the satellite’s perceived

position in space. This will make the calculations shown above inaccurate. The multipath error

has been studied and efforts to reduce the error can be seen in [19]–[21]. The other form of

interference comes from the ionosphere where ionospheric particles slow down and reduce the

intensity of the GPS signals. The strength of the interference is randomly effected by the sun’s

radiation leading to random signal dilution. Researchers have sought to decrease this interference

with improved filtering as seen in [22], [23].

 If these errors were consistent across all satellites the set of equations would still be

consistent. The solution would be incorrect, as seen in Figure 2.5.

This tracking error could be calibrated out in a control system. This, however, is not the

case and each satellite receives different amounts of interference. This creates an inconsistent set

of equations as illustrated below.

Figure 2.5: Trilateration equations receiving equal interference

13

Figure 2.6: Inconsistent set of equations

This means that the solution of the set of equations needs to be estimated by using

estimation methods such as the least squares solution or a quasi-Newton estimation method such

as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. The error estimation methods used in

this study will be discussed in Chapter 4.

Traditional methods for solving the estimation uses a set of the strongest satellites with a

least squares estimation to calculate the position of the receiver. This method can lead to

precision loss in two ways. This first way is by constantly switching the set of equations being

used for the position estimation. This happens when the set of strong satellites deteriorates in

signal strength because of changing atmospheric conditions. When the satellites become weaker,

stronger satellites replace the original satellites which leads to a different position estimation.

14

 This phenomenon is illustrated in Figure 2.7 below.

Figure 2.7: Overall position error (top) compared to satellites used in calculations

For this figure, a preliminary study was conducted to see how the satellites used in

calculations effected the position fix. For this figure, satellite data was taken over a course of a

day and the overall position error was compared to the satellites being used in the position

calculation. Spikes in the position error, such as those at times of approximately 9 hours, 12

hours and 18 hours, correspond to new satellites being introduced to the calculation of the

position as seen in the bottom half of the graph.

15

 The precision error can also come from a mix of signal strengths being used. The set of

equations used for a position fix is closest to being consistent when the signals receive similar

amounts of interference which is indicated by similar signal strengths. Choosing one strong

signal and three weak signals for a position fix can throw off the position estimation because the

signals are far from being consistent. In the preliminary study [24], signal strengths were also

monitored on a scale of 0 to 10, 10 being the strongest signals. The results of that study can be

seen in Figure 2.8. In the graph, it can be seen that the majority of the signals fall in the signal

strength range of 2 to 4. This means that when the strongest signals are picked for the

calculations, there is likely one strong signal making the set of equations inconsistent. The

improvement of precision by improved satellite selection will be discussed in more detail in

Chapter 4.

Figure 2.8: Signal strength distribution

16

2.2.2. Relative Positioning Sensors

 Relative positioning sensors find the robot’s position based upon an onboard transducer

sensitive to the robot’s movement. The most common structure of relative positioning sensors

combine some kind of odometry and orientation measurement system, and, typically, they are

made of tachometers and gyroscopes as discussed in [25], [26], although some use electronic

compasses instead of gyroscopes. Alternatively, gyroscopes are coupled with accelerometers in

units known as inertial measurement units (IMU) that may be used in parallel with wheel

encoders. There are many varieties of each sensor differing in price ranges and performance

characteristics.

2.2.2.1. Inertial Measurement Units

 Inertial measurement units monitor the changes in momentum of a system and the

information from these sensors can be integrated to find the positions and velocities of the robot.

Their measurements are based on the movement of some sort of suspended mass, known as a

proof mass, within a moving reference frame. Typically, inertial measurement units consist of an

accelerometer and a gyroscope to measure the linear acceleration and rotational velocity along

one, two or three axes. Both the gyroscope and the accelerometer started as mechanical devices

that shifted to electromechanical devices as technology increased. The advent of micro-

electromechanical systems (MEMS), allowed for these devices to be miniaturized in solid state

structures that are inexpensive, widely available, and suitable for robotic applications. The

typical size and structure of MEMS sensors can be seen in Figure 2.9.

17

Figure 2.9: MEMS yaw rate sensor (left) and accelerometer (right) [27]

 Accelerometers measure the linear acceleration along an axis. The traditional mechanical

model that the MEMS equivalents are modeled after is shown below.

Figure 2.10: Mechanical accelerometer model [28]

Here the proof mass is suspended within the frame by a spring and dashpot. The force to

move the mass can be calculated from the displacement of the spring and Hooke’s law. That

force can then be used to find the acceleration using Newtonian physics. One method to extend

the accelerometer to MEMS technology is by measuring the capacitance between plates like the

system pictured in Figure 2.11.

18

Figure 2.11: MEMS accelerometer [29]

 As the robot accelerates, the proof mass moves which changes the distance between the

plates. This distance can be calculated because the cross sectional area of the plates are known

and fixed. The distance between the plates can then be related to the acceleration like the

mechanical accelerometer.

 Traditionally gyroscopes were mechanical systems made of a set of rotating masses

(flywheels) whose angular momentum was monitored; a diagram of a typical mechanical

gyroscope is shown in Figure 2.12. Although the measurement is useful, the flywheel style

gyroscope are impractical for robotic applications. Improvements were made to the mechanical

gyroscope and instead of a spinning wheel the vibrating mass technique was developed.

19

Figure 2.12: Flywheel gyroscope [13]

All vibrating mass gyroscopes are dependent on the Coriolis Effect which describes the

forces experienced by a rotating mass. The Coriolis forces run perpendicular to the mass’s axis

of rotation. This force can be found by monitoring the displacement of a vibrating mass. The

suspension of the proof mass in a vibrating mass gyroscope, seen in Figure 2.13, is more

complex than that of a MEMS accelerometer.

Figure 2.13: Vibrating mass gyroscope [30]

20

In the gyroscope, a vibrating proof mass is suspended within a frame that is suspended on

the body of the sensor. The movement of the middle frame in relation to the body in a direction

perpendicular to the angular velocity is proportional to the Coriolis force which is proportional to

the angular velocity of the sensor body. This movement can be monitored in a similar fashion to

the MEMS accelerometer. This method of monitoring angular acceleration by using a vibrating

mass is known as a tuning fork gyroscope and it is one of the more popular MEMS gyroscopes.

 Many MEMS gyroscopes tend to be low cost but are also very noisy and very dependent

on changes in temperature as shown in [31]. Many high precision applications tend to prefer

using the higher precision, higher price optical gyroscopes. The first practical optical gyroscopes

were developed in [32]. They are made of two beams of light traveling in opposite directions

through a circular tube. As they interact with each other they cause interference waves, seen in

Figure 2.14.

Figure 2.14: Interference waves in an optical gyroscope [32]

21

The variance in the pattern, known as the Sagnac effect, was studied by Georges Sagnac.

Sagnac noted that the interference pattern in a loop depends on the angle between the plane of

the closed loop and the angular velocity of the loop itself [33]. This concept has been improved

upon from the original four mirror design as described in [32], to fiber optic gyroscopes that

were first developed in [34]. These gyroscopes are very accurate but are also very expensive.

2.2.2.2. Optical Encoders

 Odometry sensors are used to track how many times the wheels have turned around. This

information is used to then determine the speed and distance covered by the robot through

vehicle kinematics. In the case of differential steering, odometry sensors can also be used track

the heading angle of the robot. As shown in [25], [26], odometry sensors accumulate errors over

time because of calibration errors. Even a well calibrated system will accumulate errors from

slight irregularities in the system such as wheels being slightly out of balance or slightly different

sizes. Along with the irregularities that accumulate error, odometry sensors also lose accuracy at

other times like when the wheels slip or when the robot operates on uneven surfaces.

 There many odometry sensors but the most popular sensors are optical encoders. A

typical optical encoder layout can be seen in Figure 2.15. The main components are the LED, the

disc and the photo detector. The LED shoots a constant beam of light directly at the photo

detector. The disc has a series of slots which, when rotated, cause the photo detector to read a

sequence of high and low signals which are then decoded to how far the axis has revolved.

Optical encoders tend to be very reliable, however they have some inherent errors caused by

either skipping the count if the wheel spins too fast, or the optical disk being dirty and the light is

blocked for a longer interval.

22

Figure 2.15: Optical encoder layout [13]

23

CHAPTER 3. DEVELOPMENT OF A DYNAMIC MODEL

This chapter starts with a background in different vehicle steering methods and provides

the motivation for choosing four wheel skid steering. Included in that motivation is a description

of the difficulties in controlling skid steering. The second half of this chapter is devoted to the

development of the dynamic model for the vehicle.

3.1. Methods for Steering Unmanned Ground Vehicles

Although this study focuses on four wheel skid steering, there are many ways to steer a

ground vehicle along a desired path. Below is a brief overview of some of the main steering

techniques seen in the literature. This helps explain the motivation behind studying four wheeled

skid steering and some of the difficulties associated with the study.

3.1.1. Actuated Wheel Angle

One of the more traditional steering methods is to use steering similar to what is seen on

most cars where actuators direct the angle of the steered wheels. These steering systems have

mixed structures; they can have front wheel linked steering, also known as Ackerman steering,

rear wheel steering or all wheel steering. For instance, the structure illustrated on left in Figure

3.1 steers either just the front or just the rear wheels and the drive wheels can be either in the

front, rear or on all wheels. This steering has been studied in [35], [36]. The vehicle steering

angles are configured such that at any time, the vehicle, as a rigid body, must have a unique

instantaneous center of rotation (ICR). To meet the wheel speed requirements for the ICR,

typically either an active or passive speed differential system is included in both the fixed and

steered wheels to prevent wheel slipping during turning maneuvers.

24

Figure 3.1: Two wheel actuated steering (left) and four wheel actuated steering (right)

Another structure of actuated steering has all four wheels steered each with its own

actuated steering angle as illustrated on the right of Figure 3.1 and studied in [37]–[39]. These

structures typically use independent steering angles and independent drive speeds for each wheel

in order to meet the ICR requirement to prevent wheel slipping during cornering maneuvers.

Both the two wheel and four wheel actuated steering structures are typically designed to allow

wheels to run entirely on rolling friction without lateral skidding when cornering, therefore, they

do not suffer significant uncertainties in their control systems. At high speeds, however, these

systems can experience lateral skidding during turning maneuvers and control of high speed

skidding in steered vehicles has been studied in [36], [40]. Despite the ability to control the

vehicle within pure rolling, these steering systems are not popular among robotic vehicles

because of the complexity of the required steering hardware as shown in [11]. The steering angle

for the steered wheels must be controlled along with the speed of the vehicle which requires

multiple actuators and steering linkages which add to the cost and potential sources of failure and

error in the vehicle.

25

3.1.2. Differential Steering

In a differential steering system, a set of coaxial wheels are independently driven which

allows for a difference in the traction force on the left and right side of the vehicle as seen in

Figure 3.2. This difference causes a turning moment about the robot and allows for steering of

the vehicle. Typically, most of these structures have either a caster or set of caster wheels for

maintaining the balance of the vehicle; the two driven wheels are responsible for both traction

and steering. Since the structure allows the robot to be driven and steered with purely on rolling

friction without skidding, it is credited for being the easiest control and different control methods

have been studied in [41], [42]. Most light weight ground robotic vehicles are equipped with this

steering system. While this approach works well in light weight applications, it is not used on

heavier vehicles, which require more traction as noted in [11].

Figure 3.2: Differential steering

3.1.3. Skid Steering

More traction can be added to the differential steering design by adding a second set of

coaxial wheels or a track system. Tracked systems as illustrated on the right in Figure 3.3 have

26

been studied extensively in [43]. These systems are well studied and mostly for low speed

applications and the tracks can be damaging to some surfaces. On the other hand, a skid steered

system with a second set of coaxial wheels is less damaging to surfaces and has been attracting

more interest in robotic applications. A four wheeled system’s weight distribution consists of

four point loads, which is different from the two distributed loads in the tracked system; as a

result, the analysis of four wheeled skid steered vehicles is different from that of tracked

vehicles.

Figure 3.3: Four wheeled skid steering (left) and tracked skid steering (right)

This study will focus on a four wheel skid steered system illustrated on the left in Figure

3.3. The steering mechanisms works the same as differential steering except that it introduces

skidding forces that come into play on the second set of coaxial wheels. When the wheels are

purely rolling, the vehicle runs in a straight line with no turning motion; therefore there is no

instantaneous center of rotation (ICR). To steer, there must be a speed differential between the

left and right wheels and this causes skidding in the wheels. Researchers have approached the

control of this skidding in different ways. Many studies take the kinematics of the skid steered

27

vehicle and seek to improve the controller as seen in [3]–[7]. Other researchers seek to improve

the control through dynamic modeling improvements as seen and supported by either simulations

as seen in [8]–[10] or experimentation as seen in [10], [44]. In addition to improved vehicle

dynamics researchers also seek to find better models for the interaction between the tire and the

operating surface as seen in [45], [46]. Many times the researchers will separate the dynamics

from the kinematics by using the dynamics to define constraints on the kinematic controller as

seen in [11], [12], [47]. Most of these dynamic models work well in low friction environments

where moderate lateral sliding of the vehicle is allowed. In high friction environments, however,

lateral sliding does not occur and therefore the models can be improved on by modeling the

dynamics without lateral slipping. This modeling approach is seen in [11], however, the

dynamics are not fully included in the control model. Part of the goal of this research is to use a

dynamic model suitable for high friction environments for the control of a skid steer vehicle

which was started in [48].

3.2. Actuator Model

Most robotic vehicles are driven by using some kind of an electric motor, which could be

a stepper motor, brushless DC motor or permanent magnet DC motor. Because of their relatively

high torque capacity, ease of use, and availability, permanent magnet DC motors are very

popular in automation. These motors can easily be controlled by using a microprocessor through

pulse width modulation (PWM) and thus easily used in a closed loop control system. There are

other options available such as pneumatic actuators but these systems are more complex and can

be more costly. Also because of the model complexity in pneumatic actuators, they are often

more popular in open loop control systems. The actuators used on the robotic vehicle in this

study for closed loop control were two brushed DC motors, one on each side wheels of the robot.

28

Since the robotic vehicle under study was meant for an autonomous snow plow operation, there

are two more DC electric motors in the plow blade system, one linear actuator to control the

blade angle of the snow plow and a winch motor to raise and lower the blade. The two wheel

drive motors are controlled in a closed loop structure while the plow blade system motors are

driven in an open loop control system. The control details of this research are focused on the two

wheel drive motors only; the plow blade motors are not considered. The wheel motors are

Motenergy ME0708 brushed DC electric motors and like all DC motors are characterized by a

torque curve. The specific curve for the Montenergy motors is seen in Figure 3.4.

Figure 3.4: Montenergy performance curve at 24 volts [49]

For control of the DC motors it is important to have a good model of the actuator and this

study will use a model adapted from [50]. In this model the torque on the motor can be described

as

𝑇 =
𝑘𝑡

𝑅𝑎
(𝑉𝐷𝐶 − (

𝑅𝑎𝑣

𝑘𝑡
+ 𝑘𝑏)𝜃̇) (3.1)

29

where kt is the torque constant, Ra is the motor resistance, kb is the back Emf constant and v

viscous dampening of the motor. In this study the viscous dampening will be ignored because of

the lack of information available which will add some uncertainties to the model. This gives us

relation of

𝑇 =
𝑘𝑡

𝑅𝑎
(𝑉𝐷𝐶 − 𝑘𝑏𝜃̇) (3.2)

to describe the torque of the motor in terms of voltage. It isn’t practical to find the torque

constant and the motor resistance individually because that information is not always provided

by the manufacturer. Rather the ratio of the two terms are found by using the stall torque shown

in the performance curves as

𝑇𝑠

𝑉
=

𝑘𝑡

𝑅𝑎
 (3.3)

which can then be used to find the back Emf constant as

𝜃̇𝑛 = 𝑇𝑠 (𝑘𝑏
𝑘𝑡

𝑅𝑎
)
−1

 (3.4)

where 𝜃̇𝑛 is the no load angular velocity. This model will be used later in the dynamic model to

relate the states of the robot to the control inputs.

 One of the main assumptions in this model is that the motor can draw as much torque as

it needs to perform the required maneuvers. This however is not the case and all real motors have

current limitations as well. It is shown in [50] that current drawn becomes especially excessive

when the motor reverses directions, which is a common maneuver in this study. The typical

drastic effects of voltage reversal on current draw can be seen in Figure 3.5. The motor direction

can quickly change in this robot if a tight turning radius is required and this may affect the

performance of the control algorithm.

30

Figure 3.5: Current spike in angular velocity direction change [50]

3.3. Kinematic and Dynamic Modeling of Skid Steering

The kinematics of a skid steering vehicle can be very complex. Most of this complexity is

introduced when the vehicle turns. This analysis will focus on curved motion because straight

line motion is simple. Turning requires the vehicle’s tires to skid which introduces complex non-

linear terms. The kinematics can be simplified by making certain basic assumptions that are true

for most ground vehicles. The first assumption is that the traction of the robot is purely from the

interaction between the ground and wheels under no slip conditions. This traction is assumed to

run purely parallel to the vehicle. The second assumption is that the vehicle only turns based on

the traction difference between the left and right side of the vehicle. The third main assumption

is that lateral slip in the vehicle is ignored. Finally it is assumed the vehicle is non-deformable,

operates on flat surface, and has an even weight distribution.

31

3.3.1. Kinematic Model

With those assumptions the vehicle model can be started and a diagram of the vehicle in

the global and local coordinate system can be seen below in Figure 3.6.

Figure 3.6: Dynamic model of four wheel skid steered vehicle

In the model, the axes (X, Y, Z) represent the global inertial frame and the local inertial

frame is defined by the axes (x, y, z). On the vehicle all the wheels have an identical radius, rw.

The wheels on the left side of the vehicle, wheels 3 and 4, provide the left side traction, Fl, and

velocity Vl. Similarly the wheels on the right side of the robot, wheels 1 and 2, provide the right

side traction, Fr, and velocity Vr. The velocities for the left and right side of the robot are found

as

𝑉𝑟 = 𝜔𝑟𝑟𝑤, 𝑉𝑙 = 𝜔𝑙𝑟𝑤 (3.5)

ICR

32

where 𝜔𝑙 and 𝜔𝑟 are the left and right side wheel velocities respectively. The global heading

angle, θz, can be derived from the path gradient,
𝑑𝑌

𝑑𝑋
, which is related to the velocities in the

global X and Y coordinates as

𝜃𝑍 = arctan (
𝑑𝑌

𝑑𝑋
) = 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑉𝑌

𝑉𝑋
) (3.6)

These global velocities, Vx and Vy, can also be further defined based on the velocities components in the

local frame, 𝑣𝑥 and 𝑣𝑦, as

 (
𝑉𝑋

𝑉𝑌
) = (

𝑣𝑥 cos(𝜃𝑍) − 𝑣𝑦 sin(𝜃𝑍)

𝑣𝑥 sin(𝜃𝑍) + 𝑣𝑦 cos(𝜃𝑍)
) (3.7)

Since lateral slip is ignored the local y-axis component can be set to zero and then the resultant vehicle

velocity, 𝑉𝐺, becomes

𝑉𝐺 = 𝑣𝑥 =
1

2
(𝑉𝑟 + 𝑉𝑙) (3.8)

The angular velocity about the ICR can also be defined by the velocity of the left and right side

of the vehicle as

Ω =
𝑑𝜃𝑍

𝑑𝑡
=

1

𝐵
(𝑉𝑟 − 𝑉𝑙) (3.9)

By using equations (3.6) through (3.9) the left and right vehicle velocities can be determined

based on the desired velocity and path curvature. The selection of the exact heading angle and

speed depend on the control algorithm used and that will be discussed in a later section of this

paper. Once the left and right vehicle velocities are determined it is necessary to related them to

the voltage that needs to be applied to the DC motors by the control system.

To find the wheel torque the path geometry needs to be further defined. With angular

vehicle velocity and linear vehicle velocity defined in equations (3.8) and (3.9), the radius of

curvature can be defined as

33

𝜌𝐺 =
𝑉𝐺

Ω
 (3.10)

This relation holds true because of the symmetry of the robot and the assumption that the ICR

falls along the perpendicular bisector of the robot because of the even weight distribution. The

curvature is also useful in deriving further equations and is defined as

𝜅𝐺 =
1

𝜌𝐺
=

2

𝐵
(
𝑉𝑟−𝑉𝑙

𝑉𝑟+𝑉𝑙
) (3.11)

in terms of the left and right vehicle velocities. From the geometry of the vehicle the inner and

outer radius of curvatures can be defined as

𝜒𝑖 =
1

2𝜅𝐺
√(2 − 𝐵𝜅𝐺)2 + 𝐻2𝜅𝐺

2 (3.12)

𝜒𝑜 =
1

2𝜅𝐺
√(2 + 𝐵𝜅𝐺)2 + 𝐻2𝜅𝐺

2 (3.13)

respectively. Here B is the width of the vehicle and H is the length of the vehicle as shown in

Figure 3.6. Since the vehicle is symmetric the analysis for the inner and outer curvatures are

identical. A simplified model that represents the inner and outer radius of curvature can be seen

below in Figure 3.7.

Figure 3.7: Reduced dynamic model

ICR

34

To find the moment about the center of rotation the traction forces, FT, need to be

decomposed into their components that lie normal and tangent to the path curvature. This is done

by finding the inner and outer slip angles αi and αo. These are found from the vehicle geometry

and the path curvature as

𝛼𝑖 = arctan (
𝐻𝜅𝐺

2−𝐵𝜅𝐺
) (3.14)

𝛼𝑜 = arctan (
𝐻𝜅𝐺

2+𝐵𝜅𝐺
) (3.15)

With those defined the tangential component, 𝐹𝑡, and the normal component, 𝐹𝑛, can be defined

as

𝐹𝑡 = 𝐹𝑇 cos(𝛼) (3.16)

𝐹𝑛 = 𝐹𝑇 sin(𝛼) (3.17)

Since the normal force is concurrent at the ICR only the tangential force contributes to the total

moment about the ICR. Therefore the total moment about the ICR can be expressed in terms of

the left and right tangential traction forces, 𝐹𝑙𝑡
 and 𝐹𝑟𝑡

, as

𝑀Ω = 𝐼𝐼𝐶𝑅Ω̇ = 2(𝐹𝑙𝑡
𝜒𝑖 + 𝐹𝑟𝑡

𝜒𝑜) −
𝑚𝑔

2
(cos(𝛼𝑖) 𝜒𝑖𝜇𝑖 + cos(𝛼𝑜) 𝜒𝑜𝜇𝑜) (3.18)

Here, the mass moment of inertia about the ICR is represented as IICR. The terms 𝜇𝑖 and 𝜇𝑜 are

the inner and outer coefficients of friction. These are defined by Pacejka’s formula [51] as

𝜇(𝛼𝑘) = 𝐶1 sin(𝐶2 tan−1(𝐶3𝛼𝑘 − 𝐶4(𝐶3𝛼𝑘 − tan−1(𝐶3𝛼𝑘)))) (3.19)

This equation is based on the slip angle defined earlier in this paper and road constants defined

by the surface conditions, C1 through C4. Although the surface conditions can be characterized

by this formula, it is often very hard to find constants for the operating surface, especially as the

robot moves and the surface conditions change. Because of the lack of information on the

35

various operating surfaces, the derivations using equation (3.18) will often ignore the forces

generated by friction and lump them into an uncertainty term.

3.3.2. Dynamic Model

Slip angle constraints are relaxed in this study and then equations (3.12) through (3.19)

are used to form

𝐼𝐼𝐶𝑅
𝑑Ω

𝑑𝑡
= (2𝐹𝑙 cos(𝛼𝑖) −

𝑚𝑔

2
𝜇(𝛼𝑖)) 𝜒𝑖 + (2𝐹𝑟 cos(𝛼𝑜) −

𝑚𝑔

2
𝜇(𝛼𝑜)) 𝜒𝑜 (3.20)

In the previous equation the angular acceleration,
𝑑Ω

𝑑𝑡
, is found as

𝑑Ω

𝑑𝑡
=

1

𝐵
(
𝑑𝑉𝑟

𝑑𝑡
−

𝑑𝑉𝑙

𝑑𝑡
) (3.21)

The mass of the robot, m, and the acceleration due to gravity, g, are both given constants. The

equations (3.12) through (3.15) can be written in terms of left and right wheel velocity as

𝜒𝑖 =
𝐵

2
√(

𝑉𝑙+𝑉𝑟−sgn(Ω)(𝑉𝑙−𝑉𝑟)

sgn(Ω)(𝑉𝑙−𝑉𝑟)
)
2

+ (
𝐻

𝐵
)
2

 (3.22)

𝜒𝑜 =
𝐵

2
√(

𝑉𝑙+𝑉𝑟+sgn(Ω)(𝑉𝑙−𝑉𝑟)

sgn(Ω)(𝑉𝑙−𝑉𝑟)
)
2

+ (
𝐻

𝐵
)
2

 (3.23)

𝛼𝑖 = arctan ((
𝐻

𝐵
) (

sgn(Ω)(𝑉𝑙−𝑉𝑟)

𝑉𝑙+𝑉𝑟−sgn(Ω)(𝑉𝑙−𝑉𝑟)
)) (3.24)

𝛼𝑜 = arctan ((
𝐻

𝐵
) (

sgn(Ω)(𝑉𝑙−𝑉𝑟)

𝑉𝑙+𝑉𝑟−sgn(Ω)(𝑉𝑙−𝑉𝑟)
)) (3.25)

Now the radius of curvature is fully related to the traction force in terms of the left and right

wheel velocities by using equations (3.20) through (3.25). It is still necessary to solve for the

traction force and relate that to motor torque. For the traction force, it is assumed that the vehicle

has an even weight distribution so the traction force, 𝐹𝑇(𝑖)
, of wheel i can be related to the

angular acceleration of wheel i, 𝜔̇(𝑖), the mass of the robot, m, the wheel radius, 𝑟𝑤, and the mass

of inertia of the wheel about its axis, 𝐼𝑤 as

36

𝐹𝑇(𝑖)
𝑟𝑤 = (𝐼𝑤 +

1

4
𝑚𝑟𝑤

2) 𝜔̇(𝑖) (3.26)

The traction force for the left and right side of the robot can be derived from equations (3.5) and

(3.26) as

𝐹𝑙 = 𝐹𝑇(3)
+ 𝐹𝑇(4)

= 2(
𝐼𝑤

𝑟𝑤
2 +

𝑚

4
)

𝑑𝑉𝑙

𝑑𝑡
 (3.27)

𝐹𝑟 = 𝐹𝑇(1)
+ 𝐹𝑇(2)

= 2(
𝐼𝑤

𝑟𝑤
2 +

𝑚

4
)

𝑑𝑉𝑟

𝑑𝑡
 (3.28)

The left and right side traction forces can also be related to the wheel torques and ultimately the

motor voltages. The individual wheel torque, 𝑇(𝑖), is subject to

𝑇(𝑖) = 𝐹𝑇(𝑖)
𝑟𝑤 − 𝑇𝑙𝑜𝑠𝑠 (3.29)

where 𝑇𝑙𝑜𝑠𝑠 accounts for torque losses that are otherwise ignored. The torque on each wheel can

also be related to the motor torque, 𝑇𝑚 as

𝑇(𝑖) = 𝑇𝑚 (
𝑛𝑟

2
) (3.30)

where 𝑛𝑟 is the transmission ratio of the drivetrain. The motor torque is related to the angular

velocity of the motor shaft by a motor torque constant, 𝑘𝑡, and armature resistance 𝑅𝑎 and

subject to losses from the back electromagnetic field constant 𝑘𝑏. These parameters are provided

by the manufacture of the motor in the following relations and they combine with equations

(3.2), (3.29) and (3.30) to form

𝐹𝑇(𝑖)
= (

𝑘𝑡𝑛𝑟

2𝑅𝑎𝑟𝑤
) (𝑉𝐷𝐶 − 𝑘𝑏𝑛𝑟𝜔(𝑖)) + 𝑇𝑙𝑜𝑠𝑠 (3.31)

𝐹𝑙 = 𝐹𝑇(3) + 𝐹𝑇(4) = (
𝑘𝑡𝑛𝑟

𝑅𝑎𝑟𝑤
) (𝑉𝐷𝐶𝐿

− 𝑘𝑏𝑛𝑟𝜔𝑙) + Δ𝐿 (3.32)

𝐹𝑟 = 𝐹𝑇(1)
+ 𝐹𝑇(2)

= (
𝑘𝑡𝑛𝑟

𝑅𝑎𝑟𝑤
) (𝑉𝐷𝐶𝑅

− 𝑘𝑏𝑛𝑟𝜔𝑟) + Δ𝑅 (3.33)

37

where Δ𝐿 and Δ𝑅 lump all the motor and transmission losses on the left and right side

respectively. Equations (3.32) and (3.33) can be combined with (3.27) and (3.28) to form the left

and right side vehicle accelerations as

𝑑𝑉𝑙

𝑑𝑡
= (

2𝑘𝑡𝑛𝑟𝑟𝑤

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

)𝑉𝐷𝐶𝐿
− (

2𝑘𝑏𝑘𝑡𝑛𝑟
2

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

)𝑉𝑙 + Δ𝐿 (3.34)

𝑑𝑉𝑟

𝑑𝑡
= (

2𝑘𝑡𝑛𝑟𝑟𝑤

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

)𝑉𝐷𝐶𝑅
− (

2𝑘𝑏𝑘𝑡𝑛𝑟
2

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

)𝑉𝑟 + Δ𝑅 (3.35)

𝑑v𝑥

𝑑𝑡
=

1

2
(
𝑑𝑉𝑟

𝑑𝑡
+

𝑑𝑉𝑙

𝑑𝑡
) (3.36)

which can be related to the overall vehicle acceleration in equation (3.36) to form

𝑑𝑣𝑥

𝑑𝑡
= (

𝑘𝑡𝑛𝑟𝑟𝑤

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

) (𝑉𝐷𝐶𝑅
+ 𝑉𝐷𝐶𝐿

) − (
2𝑘𝑏𝑘𝑡𝑛𝑟

2

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

) 𝑣𝑥 + Δ𝐿𝑜𝑠𝑠 (3.37)

where all the losses can be summed up as Δ𝐿𝑜𝑠𝑠. Along with the individual traction force, this

result can be used in the control algorithm.

The angular acceleration is found using equations (3.20) through (3.25). The fully

expanded equation yields the following cumbersome nonlinear equation,

𝐼𝐼𝐶𝑅

𝑑𝛺

𝑑𝑡
=

[

𝑘𝑡𝑛𝑟

𝑅𝑎𝑟𝑤
(𝑉𝐷𝐶𝐿

−
𝑘𝑏𝑛𝑟

𝑟𝑤
𝑉𝑙)√

1

1 + (
𝐻
𝐵)

2

(
sgn(Ω)(𝑉𝑙 − 𝑉𝑟)

𝑉𝑙 + 𝑉𝑟 − sgn(Ω)(𝑉𝑙 − 𝑉𝑟)
)
2 −

𝑚𝑔

2
𝜇𝑖

]

× …

…[
𝐵

2
√(

𝑉𝑙 + 𝑉𝑟 − sgn(Ω)(𝑉𝑙 − 𝑉𝑟)

sgn(Ω)(𝑉𝑙 − 𝑉𝑟)
)

2

+ (
𝐻

𝐵
)
2

] + ⋯

…

[

𝑘𝑡𝑛𝑟

𝑅𝑎𝑟𝑤
(𝑉𝐷𝐶𝑅

−
𝑘𝑏𝑛𝑟

𝑟𝑤
𝑉𝑟)√

1

1 + (
𝐻
𝐵)

2

(
sgn(Ω)(𝑉𝑙 − 𝑉𝑟)

𝑉𝑙 + 𝑉𝑟 + sgn(Ω)(𝑉𝑙 − 𝑉𝑟)
)
2 −

𝑚𝑔

2
𝜇𝑖

]

× …

[
𝐵

2
√(

𝑉𝑙+𝑉𝑟+sgn(Ω)(𝑉𝑙−𝑉𝑟)

sgn(Ω)(𝑉𝑙−𝑉𝑟)
)
2

+ (
𝐻

𝐵
)
2

] (3.38)

38

This is linearized by noting that the ratio
𝐻

𝐵
 is approximately 1. By assuming that the ratio and all

of the radicals associated with the ratio are equal to one the following terms can be approximated

as

𝐵

2 √
1

1+(
𝐻

𝐵
)
2
(

sgn(Ω)(𝑉𝑙−𝑉𝑟)

𝑉𝑙+𝑉𝑟+sgn(Ω)(𝑉𝑙−𝑉𝑟)
)
2 (

𝑉𝑙+𝑉𝑟−sgn(Ω)(𝑉𝑙−𝑉𝑟)

sgn(Ω)(𝑉𝑙−𝑉𝑟)
)
2

+ (
𝐻

𝐵
)
2

≈
2

√2
(
𝑉0

Ω
) (3.39)

𝐵

2 √
1

1+(
𝐻

𝐵
)
2
(

sgn(Ω)(𝑉𝑙−𝑉𝑟)

𝑉𝑙+𝑉𝑟−sgn(Ω)(𝑉𝑙−𝑉𝑟)
)
2 (

𝑉𝑙+𝑉𝑟+sgn(Ω)(𝑉𝑙−𝑉𝑟)

sgn(Ω)(𝑉𝑙−𝑉𝑟)
)
2

+ (
𝐻

𝐵
)
2

≈
2

√2
(
𝑉0

Ω
) (3.40)

where Vo can be either Vl or Vr depending on sgn(𝛺). This reduces equation (3.38) to

𝑑Ω

𝑑𝑡
=

𝐵𝑘𝑡𝑛𝑟

2𝐼𝑅𝑎𝑟𝑤
2 [(𝑉𝐷𝐶𝐿

−
𝑘𝑏𝑛𝑟

𝑟𝑤
𝑉𝑙) − (𝑉𝐷𝐶𝑅

−
𝑘𝑏𝑛𝑟

𝑟𝑤
𝑉𝑟)] − Δ𝑀Ω (3.41)

where Δ𝑀Ω represents the uncertainties introduced through linearization, Δ𝑒, and the unknown

friction conditions shown in equation .

Δ𝑀Ω = Δ𝑒 + [
𝑚𝑔

2
𝜇𝑖 +

𝑚𝑔

2
𝜇𝑜] (3.42)

Further simplification leads to

𝑑Ω

𝑑𝑡
= (

𝐵2𝑘𝑏𝑘𝑡𝑛𝑟
2

2𝐼𝑅𝑎𝑟𝑤
2)Ω − (

𝐵𝑘𝑡𝑛𝑟

2𝐼𝑅𝑎𝑟𝑤
2) (𝑉𝐷𝐶𝑅

− 𝑉𝐷𝐶𝐿
) + Δ𝑀Ω (3.43)

By using equations (3.34), (3.35), (3.37) and (3.43) the dynamics system is now linearized and

can be used in combination with the kinematic equations (3.7) and (3.9) in standard robust and

optimal linear control equations. This study will use this new dynamic model to implement some

of those control algorithms in later chapters.

39

CHAPTER 4. GPS TRILATERATION IMPROVEMENTS

As noted earlier, standard GPS algorithms tend have precision errors that are influenced

by the satellite selection algorithms used in calculation of the receiver’s position. This study

aimed to improve the precision of the position fix by selecting satellite signals of similar

strength. Along with this improvement, the study also compared the traditional solution

technique of a least-squares algorithm to the BFGS algorithm and Newtonian algorithm. The

BFGS and Newtonian algorithms make less approximations and it was hypothesized that this

also can improve the precision of the position fix. It is important to note again that this study

sought to improve the precision of the position fix, not necessarily the accuracy. The accuracy

can be dealt with in a control application while imprecision causes navigation problems. This

chapter details the satellite position calculations, the time difference calculations, the estimation

algorithms, and the satellite selection algorithm.

4.1. Satellite Coordinate Calculation

The calculations for satellite coordinates are based on the ephemeris data and raw time

data. The ephemeris data is listed below in Table 4.1 which has been adapted from [18], [52], [53]

and [54]. The following derivation is adapted from standard positioning equations found in [18],

[52], [53].

40

Table 4.1: Ephemeris data received from each satellite. *Denotes that

data was calculated by the GPS receiver from the standard ephemeris

data.

Parameter Scale Factor Units

C_rs 2-5 Meters

M_0 2-31 Semi-circles

C_uc 2-29 Radians

e 2-33 Dimensionless

C_us 2-29 Radians

sqrt_A 2-19 Meters1/2

t_oe 24 Seconds

C_ic 2-29 Radians

OMEGA_0 2-31 Semi-circles

C_is 2-29 Radians

i_0 2-31 Semi-circles

C_rc 2-5 Meters

OMEGADOT 2-43 Semi-circles/sec

IDOT 2-43 Semi-circles/sec

n* - -

r1me2* - -

omega - -

𝐚𝐟𝟎 - -

𝐚𝐟𝟏 - -

𝐚𝐟𝟐 - -

To start the initial time difference, tk, is calculated as shown below in equation (4.1) where

t is the GPS receiver time at the reception of the signal. This is taken from the ephemeris data

given by the receiver.

𝑡𝑘 = 𝑡 − 𝑡_𝑜𝑒 (4.1)

The receiver time, t, is

𝑡 = 𝑡𝐺𝑃𝑆𝑘
− (𝑎𝑓0 + 𝑎𝑓1

(t − 𝑡_𝑜𝑒) + 𝑎𝑓2
(t − 𝑡_𝑜𝑒)2 + Δ𝑡𝑟 + 𝑇𝐺𝐷) (4.2)

 and it is based on the atmospheric conditions received from the satellites. This a quadratic equation

with a closed loop solution however it is solved numerically using Newton-Raphson’s method for

root finding. The method applied to equation (4.2) can be seen below in equation (4.3). The final

value is then used to find tk.

41

𝑡(𝑛+1) = 𝑡(𝑛) +
𝑡𝐺𝑃𝑆𝑘

−(𝑎𝑓0+𝑎𝑓1
(𝑡(𝑛)−𝑡_𝑜𝑒)+𝑎𝑓2

(𝑡(𝑛)−𝑡_𝑜𝑒)
2
+Δ𝑡𝑟+𝑇𝐺𝐷)−𝑡(𝑛)

𝑎𝑓1+2𝑎𝑓2(𝑡(𝑛)−𝑡_𝑜𝑒)+1
 (4.3)

Next, the mean anomaly,

𝑀 = 𝑀_0 + 𝑛𝑡𝑘 (4.4)

is found by using the ephemeris data and equation (4.1). Then, Kepler’s Equation of Eccentric

Anomaly,

𝑀 = 𝐸𝑘 − 𝑒 𝑠𝑖𝑛(𝐸𝑘) (4.5)

is solved iteratively by using Newton’s method as

𝐸𝑘 = 𝐸𝑘−1 −
𝐸𝑘−1−𝑒 𝑠𝑖𝑛(𝐸𝑘−1)−𝑀

1−𝑒 𝑐𝑜𝑠(𝐸𝑘−1)
 (4.6)

until

|𝐸𝑘 − 𝐸𝑘−1| ≤ 𝜀 (4.7)

Next, the true anomaly is solved by taking the ephemeris data and combining the data with the

eccentric anomaly as

𝜐𝑘 = 𝑡𝑎𝑛−1 (
(𝑟1𝑚𝑒2)𝑠𝑖𝑛(𝐸𝑘)

𝑐𝑜𝑠(𝐸𝑘)−𝑒
) (4.8)

The true anomaly is then used to find the argument of latitude as

𝛷𝑘 = 𝜐𝑘 + 𝑜𝑚𝑒𝑔𝑎 (4.9)

The argument of latitude correction, radius correction and inclination corrections are

𝛿𝑢𝑘 = (𝐶_𝑢𝑐) 𝑐𝑜𝑠(2𝛷𝑘) + (𝐶_𝑢𝑠) 𝑠𝑖𝑛(2𝛷𝑘) (4.10)

𝛿𝑟𝑘 = (𝐶_𝑟𝑐) 𝑐𝑜𝑠(2𝛷𝑘) + (𝐶_𝑟𝑠) 𝑠𝑖𝑛(2𝛷𝑘) (4.11)

and

𝛿𝑖𝑘 = (𝐶_𝑖𝑐) 𝑐𝑜𝑠(2𝛷𝑘) + (𝐶_𝑖𝑠) 𝑠𝑖𝑛(2𝛷𝑘) (4.12)

42

respectively. They use the ephemeris data and the result from equation (4.9). Those results are

then combined with the ephemeris data and used to find the corrected argument of latitude, the

corrected radius, and corrected inclination as

𝑢𝑘 = 𝛷𝑘 + 𝛿𝑢𝑘 (4.13)

𝑟𝑘 = (𝑠𝑞𝑟𝑡_𝐴)2(1 − 𝑒 𝑐𝑜𝑠(𝐸𝑘)) + 𝛿𝑟𝑘 (4.14)

and

𝑖𝑘 = 𝑖_0 + 𝛿𝑖𝑘 + (𝐼𝐷𝑂𝑇)(𝑡𝑘) (4.15)

respectively. The corrected longitude of ascending node is then calculated as

𝛺𝐾 = 𝑂𝑀𝐸𝐺𝐴_0 + (𝑂𝑀𝐸𝐺𝐴𝐷𝑂𝑇 − 𝜔𝑒)𝑡𝑘 − 𝜔𝑒𝑡𝑜𝑒 (4.16)

by combining the ephemeris data, time data and the constant rotation of the earth, ωe =

7.292115𝐸 − 5. Next, the orbital plane coordinates, 𝑋𝐾
′ and 𝑌𝐾

′ are found as

𝑋𝐾
′ = 𝑟𝑘 𝑐𝑜𝑠(𝑢𝑘) (4.17)

𝑌𝐾
′ = 𝑟𝑘 𝑠𝑖𝑛(𝑢𝑘) (4.18)

by using the ephemeris data and the previously solved equations. Finally, this information is all

combined as

[
𝑋𝐾

𝑌𝐾

𝑍𝐾

] = [

𝑋𝐾
′ 𝑐𝑜𝑠(𝛺𝐾) − 𝑌𝐾

′ 𝑠𝑖𝑛(𝛺𝐾) 𝑐𝑜𝑠(𝑖𝑘)

𝑋𝐾
′ 𝑠𝑖𝑛(𝛺𝐾) + 𝑌𝐾

′ 𝑐𝑜𝑠(𝛺𝐾) 𝑐𝑜𝑠(𝑖𝑘)

𝑌𝐾
′ 𝑠𝑖𝑛(𝑖𝑘)

] (4.19)

 to find the Cartesian coordinates of the given satellite in an earth centered earth fixed (ECEF)

coordinate system. For the purpose of the precision study the coordinates were left in the ECEF

coordinates for simplicity. For use in most autonomous vehicle navigations however, the

coordinates should be converted into Universal Transverse Mercator (UTM) coordinates for

simplicity.

43

4.2. Time Difference Estimation

One of the unknowns in the trilateration algorithm is the time difference between the

satellite and the receiver. This time difference can be estimated from the raw measurement data

given by the satellite, shown in Table 4.2 [54].

Table 4.2: Raw measurement data received from each satellite

Parameter Units

Pseudo Range Integer Number (PRIN) Milliseconds

Code phase (CP) 1/16th chip

Pseudo Range (PR) centimeters

The time difference is on a scale of milliseconds. Simply subtracting the calculated times

of GPS reception, 𝑡𝐺𝑃𝑆𝐾
, and the satellite transmission time, 𝑡𝐾, will not work because these

values are typically calculated in seconds and do not have a high enough precision to find a

reliable difference on the order of milliseconds. Instead, this value is found in a variety of ways

and on the Copernicus II receiver that is used in this study the time is found from the code phase.

The estimation of the time difference is

𝑡𝑒𝑠𝑡 = 𝑐 ∗ (
𝑃𝑅

1000
+

𝐶𝑃

16∗1.023∗106) +
𝑃𝑅

100
 (4.20)

The code phase is 1/16th of the course acquisition code, or C/A code, of the chip, which is 1.23

Mbps for this receiver. This means the code phase unit is 61.0948ns. It should be noted that this

is the time resolution of the receiver, when converted to a distance resolution by multiplying by

the speed of light the resolution is 18.3158 meters and this error is too large for many

applications. This is adjusted for by the time delay, 𝛥𝑇. The time delay is also composed of

unknown factors such as Einstein curvature and unknown ionospheric conditions.

4.3. Receiver Position Estimation

As noted in Chapter 3, the set of equations made from using the satellite data is not

consistent and the solution needs to be estimated. The set of equations can be represented as

44

𝐹(𝑞) = [

𝐹(𝑞1)
𝐹(𝑞2)
𝐹(𝑞3)
𝐹(𝑞4)

] =

[

(X1 − 𝑞1)

2 + (Y1 − 𝑞2)
2 + (Z1 − 𝑞3)

2 − 𝑐2(𝑡𝑒𝑠𝑡1 − 𝑞4)
2

(X2 − 𝑞1)
2 + (Y2 − 𝑞2)

2 + (Z2 − 𝑞3)
2 − 𝑐2(𝑡𝑒𝑠𝑡2 − 𝑞4)

2

(X3 − 𝑞1)
2 + (Y3 − 𝑞2)

2 + (Z3 − 𝑞3)
2 − 𝑐2(𝑡𝑒𝑠𝑡3 − 𝑞4)

2

(X4 − 𝑞1)
2 + (Y4 − 𝑞2)

2 + (Z4 − 𝑞3)
2 − 𝑐2(𝑡𝑒𝑠𝑡4 − 𝑞4)

2]

 (4.21)

where

𝑞 = [

𝑥
𝑦
𝑧

𝛥𝑇

] (4.22)

and q is sought so

𝐹(𝑞) = 0 (4.23)

This problem can be approached in different ways with varying degrees of accuracy.

4.3.1. Least-Squares Method

The least-squares is a very common numerical method [55]–[58] for performing linear

regressions on a set of data and, in the case of this study, finding a state estimation by

minimizing a set of equations. As is typical for numerical solutions the least squares method

starts with an initial guess, 𝑞0, and then uses the Taylor series expansion,

𝐹(𝑞) = 𝐹(𝑞0) + ∇𝐹𝑞(𝑞0)∆𝑞 + 𝜈 (4.24)

to find the root of F(q). In the expansion 𝜈 represents the higher order terms that are neglected.

In formulating the problem it is convenient to form the notation of

∇𝐹𝑞(𝑞0) = A(𝑞0) (4.25)

∆𝑞 = (q − 𝑞0) (4.26)

𝑏(𝑞0) = 𝐹(𝑞) − 𝐹(𝑞0) (4.27)

Then a set of linear equations can be formed as

𝑏(𝑞0) = A(𝑞0)∆𝑞 + 𝜈 (4.28)

and q is sought for which

A(𝑞0)∆𝑞 = 0 (4.29)

45

This usually cannot be found because of the approximations so the minimization of the square

difference is sought as

𝐽(𝑞0) = [b(𝑞0) − A(𝑞0)∆𝑞]𝑇[b(𝑞0) − A(𝑞0)∆𝑞] (4.30)

The derivative of (4.30) becomes

𝛿𝐽(𝑞0) = δ[b(𝑞0) − A(𝑞0)∆𝑞]𝑇[b(𝑞0) − A(𝑞0)∆𝑞] + ⋯

… [b(𝑞0) − A(𝑞0)∆𝑞]𝑇𝛿[b(𝑞0) − A(𝑞0)∆𝑞] (4.31)

where

𝛿𝐽(𝑞0) = 0 (4.32)

is the minimization of (4.30). Equation (4.32) can be simplified to

[A(𝑞0)
𝑇b(𝑞0) − A(𝑞0)

𝑇A(𝑞0)∆𝑞] = 0 (4.33)

Then through algebraic manipulation ∆𝑞 can be solved directly as

∆𝑞 = [A(𝑞0)
𝑇A(𝑞0)]

−1A(𝑞0)
𝑇b(𝑞0) (4.34)

With ∆𝑞 found q is solved for by

𝑞𝑘+1 = 𝑞𝑘 + ∆𝑞𝑘 (4.35)

This process is repeated until

𝜀 > ‖∆𝑞𝑘‖2 (4.36)

This forms the typical least square solution formed in most GPS trilateration algorithms. There

are errors that come with this solution which can be attributed to the ignored higher terms in the

Taylor’s series expansion and the numerical approximation of the inverse of a matrix in solving

for ∆𝑞.

4.3.2. Newtonian Method

One method that seeks to avoid ignoring the higher order terms in the Taylor series

expansion [55]–[58] is by finding the unconstrained minimum of

46

𝑞 = arg min
𝑞

 𝐺(𝑞) (4.37)

where G(q) is defined as

∇𝐺(𝑞) = 𝐹(𝑞) (4.38)

So G(q) can be defined directly as

𝐺(𝑞) = ∑ [∫𝐹𝑘(𝑞) 𝑑𝑞𝑘 − 𝜑𝑘(𝑞)]4
𝑘=1 (4.39)

The terms 𝜑𝑆(𝑞) uphold the continuity of 𝐺(𝑞) such that

𝛿2𝐺(𝑞)

𝛿𝑞𝑖𝛿𝑞𝑗
=

𝛿2𝐺(𝑞)

𝛿𝑞𝑗𝛿𝑞𝑖
 (4.40)

The terms 𝜑𝑆(𝑞) that make equation (4.40) true are

𝜑(𝑞) = [

𝜑1(𝑞)
𝜑2(𝑞)
𝜑3(𝑞)
𝜑4(𝑞)

] =

[

(X2 − 𝑞2)
2𝑞2 + (X3 − 𝑞3)

2𝑞3 + (X4 − 𝑞4)
2𝑞4

(Y1 − 𝑞1)
2𝑞1 + (Y3 − 𝑞3)

2𝑞3 + (Y4 − 𝑞4)
2𝑞4

(Z1 − 𝑞1)
2𝑞1 + (Z2 − 𝑞2)

2𝑞2 + (Z4 − 𝑞4)
2𝑞4

𝜅(𝑡𝑒𝑠𝑡1 − 𝑞1)
2𝑞1 + 𝜅(𝑡𝑒𝑠𝑡2 − 𝑞2)

2𝑞2 + 𝜅(𝑡𝑒𝑠𝑡3 − 𝑞3)
2𝑞3]

 (4.41)

where –c2 is represented as κ. By defining the function η(q) as

𝜂(𝑞) = [

𝜂1(𝑞)
𝜂2(𝑞)
𝜂3(𝑞)
𝜂4(𝑞)

] =
1

3

[

(X1 − 𝑞1)
2(X1 − 2𝑞1)

(Y2 − 𝑞2)
2(Y2 − 2𝑞2)

(Z3 − 𝑞3)
2(Z3 − 2𝑞3)

𝜅(𝑡𝑒𝑠𝑡4 − 𝑞4)
2(𝑡𝑒𝑠𝑡4 − 2𝑞4)]

 (4.42)

equation (4.39) can be simplified as

𝐺(𝑞) = ∑ {[(𝑋𝑘 − 𝑞1)
2 + (𝑌𝑘 − 𝑞2)

2 + (𝑍𝑘 − 𝑞3)
2 − 𝑐2(𝑡𝑒𝑠𝑡𝑘 − 𝑞4)

2]𝑞𝑘 …4
𝑘=1

…− 𝜑𝑘(𝑞) + 𝜂𝑘(𝑞) (4.43)

which can be solved numerically.

 The most straight forward way to solve the minimization of G is to find the root of the

gradient, F, using Newton’s method for root finding. The equation in the case of the functions

defined above becomes

𝑞𝑘+1 = 𝑞𝑘 +
𝐽

𝐻
 (4.44)

47

where J is the Jacobian and H is the Hessian of G. The Jacobian and Hessian of G are defined as

𝐽 = ∇𝐺(𝑞) =

[

𝑑𝐺1

𝑑𝑥1
⋯

𝑑𝐺1

𝑑𝑥𝑚

⋮ ⋱ ⋮
𝑑𝐺𝑛

𝑑𝑥1
⋯

𝑑𝐺𝑛

𝑑𝑥𝑚]

= 𝐹(𝑞) (4.45)

In equation (4.21) the gradient of (4.45) is required so the Hessian needs to be formed as

𝐻 = ∇2𝐺(𝑞) =

[

𝑑2𝐺1

𝑑𝑥1
2 ⋯

𝑑2𝐺1

𝑑𝑥𝑚
2

⋮ ⋱ ⋮
𝑑2𝐺𝑛

𝑑𝑥1
2 ⋯

𝑑2𝐺𝑛

𝑑𝑥𝑚
2]

= ∇𝐹(𝑞) =

[

2(X1 − 𝑞1)

2(Y2 − 𝑞2)

2(Z3 − 𝑞3)

2𝜅(𝑡𝑒𝑠𝑡4 − 𝑞4)]

 (4.46)

Substituting equations (4.45) and (4.46) into (4.44) the following solution to the GPS trilateration

becomes

𝑞𝑘+1 = 𝑞𝑘 + ⋯

…2

[

(X1 − 𝑞1) (X1 − 𝑞2) (X1 − 𝑞3) (X1 − 𝑞4)

(Y2 − 𝑞1) (Y2 − 𝑞2) (Y2 − 𝑞3) (Y2 − 𝑞4)

(Z3 − 𝑞1) (Z3 − 𝑞2) (Z3 − 𝑞3) (Z3 − 𝑞4)

𝜅(𝑡𝑒𝑠𝑡4 − 𝑞1) 𝜅(𝑡𝑒𝑠𝑡4 − 𝑞2) 𝜅(𝑡𝑒𝑠𝑡4 − 𝑞3) 𝜅(𝑡𝑒𝑠𝑡4 − 𝑞4)]

−1

× …

…

[

(X1 − 𝑞1)

2 + (Y1 − 𝑞2)
2 + (Z1 − 𝑞3)

2 − 𝑐2(𝑡𝑒𝑠𝑡1 − 𝑞4)
2

(X2 − 𝑞1)
2 + (Y2 − 𝑞2)

2 + (Z2 − 𝑞3)
2 − 𝑐2(𝑡𝑒𝑠𝑡2 − 𝑞4)

2

(X3 − 𝑞1)
2 + (Y3 − 𝑞2)

2 + (Z3 − 𝑞3)
2 − 𝑐2(𝑡𝑒𝑠𝑡3 − 𝑞4)

2

(X4 − 𝑞1)
2 + (Y4 − 𝑞2)

2 + (Z4 − 𝑞3)
2 − 𝑐2(𝑡𝑒𝑠𝑡4 − 𝑞4)

2]

 (4.47)

For this study there are only four equations used in the set of equations used and because of the

position of the satellites in relation to the receiver the Hessian of G should always be invertible.

4.3.3. Broyden-Fletcher-Goldfarb-Shanno Method

In trilateration algorithms that use more than four satellites and in other applications of

numerical methods the inverse of the Hessian is not always able to be found directly. Because of

this fact and the fact that finding the Hessian can be computationally intense there are a set of

algorithms known as quasi-Newtonian methods. These methods seek to estimate the Hessian

through iterations. The first quasi-Newtonian approximation was formulated by Davidson,

48

Fletcher and Powell and is known as the DFP [59], [60] method which formed three properties

about the Hessian that allowed for a numerical approximation based on those properties. That

method was expanded on by Broyden [61], Fletcher [62], Goldfarb [63] and Shanno [64], each of

whom expanded the DFP method independently. Their method, the BFGS method, seeks to

approximate the inverse of the Hessian to avoid problems with inverting the Hessian should

singularities form in the approximation of the Hessian in the DPF method. Formulation of the

BFGS has become standard and can be found in many numerical method books [55]–[57].

In this method, the inverse of the Hessian, 𝐻̃𝑘, is subject to the same set of constraints

that help form a method for a numerical approximation. The first is that 𝐻̃𝑘 must be symmetric

and the second is that the gradient of the approximation must be equal to the gradient of the

function the current and the previous time step, which is represented as

∇𝑓𝑘 + 𝐻̃𝑘(𝑞𝑘−1 − 𝑞𝑘) = ∇𝑓𝑘−1 (4.48)

and rearranged to form the constraint

𝐻̃𝑘𝑠𝑘−1 = 𝑦𝑘−1 (4.49)

where

𝑠𝑘−1 = (𝑞𝑘−1 − 𝑞𝑘) (4.50)

and

𝑦𝑘−1 = ∇𝑓𝑘 − ∇𝑓𝑘−1 (4.51)

The final constraint is that the change in H at each time step should be minimized forming

‖𝐻̃𝑘 − 𝐻̃𝑘−1‖𝑤
 (4.52)

subject to the first to constraints. This minimization is solved by

𝐻̃𝑘 = (𝐼 − y𝑘−1𝜌𝑘−1𝑠𝑘−1
𝑇)𝐻̃𝑘−1(𝐼 − y𝑘−1𝜌𝑘−1y𝑘−1

𝑇) + 𝑦𝑘−1𝜌𝑘−1𝑦𝑘−1
𝑇 (4.53)

where

49

𝜌𝑘−1 = (𝑦𝑘−1
𝑇 𝑠𝑘−1)

−1 (4.54)

This can be simplified and rewritten as

𝐻̃𝑘+1 = 𝐻̃𝑘 +
[(𝑠𝑘

𝑇𝑦𝑘+y𝑘
𝑇𝐻̃𝑘𝑦𝑘)(𝑠𝑘𝑠𝑘

𝑇)]

(𝑠𝑘
𝑇𝑦𝑘)

2 −
𝐻̃𝑘𝑦𝑘𝑠𝑘

𝑇+𝑠𝑘y𝑘
𝑇𝐻̃𝑘

𝑠𝑘
𝑇𝑦𝑘

 (4.55)

Once the inverse of the Hessian is formed it can be used in place of the actual Hessian of G in

equation (4.47).

4.4. Satellite Selection Algorithm

For the satellite selection the signal strengths were monitored and a selection of the most

similar signal strengths were selected. The data from the preliminary study showed the signal

strengths between 2 and 4 were most common. This gives a good selection criterion for

Copernicus II GPS receivers in Fargo, ND. It is important to note that the strength criterion for

selection may change based on the region and the capabilities of the receiver. Should this method

prove to improve the trilateration precision more studies should be conducted on how to adjust

the selection criterion for different regions and receivers.

50

CHAPTER 5. ROBUST PATH TRACKING CONTROL

This chapter discusses the background and application of path tracking of the robot. Path

tracking requires the combination of the kinematics, dynamics, sensor theory and sensor fusion

discussed in the previous chapters to successfully guide the robot along the desired path.

5.1. Robot Path Tracking and Localization

For path tracking control it is necessary to define where the robot is in relation to the

desired path. In this study the path will be a fixed, predetermined route that is preprogrammed

into the robot although it is often desired to update the path with respects to the surroundings

using methods such as simultaneous localization and mapping (SLAM). The control theory

outlined here can be applied to either a SLAM technique or a preplanned path. Regardless of

how the path is defined the path tracking seeks to find where the robot is, where it is supposed to

be, and how to return the robot back to the correct path.

5.1.1. General Path Tracking and Localization

The general path tracking problem assumes that the robot moves through space with a

body frame of (x,y,z) and the inertial frame (XF,YF,ZF). The body frame is attached to the center

of gravity of the robot and it rotates and moves as the robot rotates and moves. The x, y and z

axis lie on the back and forth, left and right, and up and down motions of the robot respectively

with the positive x, y and z directions in the forward, right and up axis respectively. The inertial

frame is fixed at some point O(0,0,0) and the axis are oriented parallel to the ECEF coordinate

system. In general the location and velocity in the inertial frame at time, t, is (X,Y,Z) and

(VX,VY,VZ) respectively. Theses sets of data are related to each other as

[
𝑋
𝑌
𝑍
] = [

∫𝑉𝑋𝑑𝑡

∫𝑉𝑌𝑑𝑡

∫𝑉𝑍 𝑑𝑡

] (5.1)

51

Since the body frame is attached the robot, the (x,y,z) coordinates will always be equal to zero.

The usefulness in the body frame comes in defining the local velocities (vx,vy,vz) to the inertial

frame velocities as [65]

[
𝑉𝑋

𝑉𝑌

𝑉𝑍

] = [

𝑐𝜃𝑦𝑐𝜃𝑧 𝑐𝜃𝑥𝑠𝜃𝑧 − 𝑐𝜃𝑧𝑠𝜃𝑥𝑠𝜃𝑦 −𝑠𝜃𝑥𝑠𝜃𝑧 − 𝑐𝜃𝑥𝑐𝜃𝑧𝑠𝜃𝑦

−𝑐𝜃𝑦𝑠𝜃𝑧 𝑐𝜃𝑥𝑐𝜃𝑧 + 𝑠𝜃𝑥𝑠𝜃𝑦𝑠𝜃𝑧 𝑐𝜃𝑥𝑠𝜃𝑦𝑠𝜃𝑧 − 𝑐𝜃𝑧𝑠𝜃𝑥

𝑠𝜃𝑦 𝑐𝜃𝑦𝑠𝜃𝑥 𝑐𝜃𝑥𝑐𝜃𝑦

] [

𝑣𝑥

𝑣𝑦

𝑣𝑧

] (5.2)

where the roll-pitch-yaw (RPY) angles (𝜃𝑥, 𝜃𝑦, 𝜃𝑧) relative to the inertial coordinate frame. In

this equation and the following equations in this chapter 𝑐𝜃𝑖 = cos(𝜃𝑖) and 𝑠𝜃𝑖 = sin(𝜃𝑖).

The inverse of this formulation is often times more useful. In this case the current

position, (XG,YG,ZG), is known along the known trajectory and the local velocities, (vx,vy,vz), need

to be found. So to find the inverse of (5.2) the derivative of the inertial frame position,

 [
𝑉𝑋

𝑉𝑌

𝑉𝑍

] =

[

𝑑𝑋

𝑑𝑡
𝑑𝑌

𝑑𝑡
𝑑𝑍

𝑑𝑡]

 (5.3)

is used to find

[

𝑣𝑥

𝑣𝑦

𝑣𝑧

] = [

𝑐𝜃𝑦𝑐𝜃𝑧 𝑐𝜃𝑥𝑠𝜃𝑧 − 𝑐𝜃𝑧𝑠𝜃𝑥𝑠𝜃𝑦 −𝑠𝜃𝑥𝑠𝜃𝑧 − 𝑐𝜃𝑥𝑐𝜃𝑧𝑠𝜃𝑦

−𝑐𝜃𝑦𝑠𝜃𝑧 𝑐𝜃𝑥𝑐𝜃𝑧 + 𝑠𝜃𝑥𝑠𝜃𝑦𝑠𝜃𝑧 𝑐𝜃𝑥𝑠𝜃𝑦𝑠𝜃𝑧 − 𝑐𝜃𝑧𝑠𝜃𝑥

𝑠𝜃𝑦 𝑐𝜃𝑦𝑠𝜃𝑥 𝑐𝜃𝑥𝑐𝜃𝑦

]

𝑇

[

𝑑𝑋

𝑑𝑡
𝑑𝑌

𝑑𝑡
𝑑𝑍

𝑑𝑡]

 (5.4)

With this formulation the body speed can now be related to the desired trajectory rate of change.

If the RYP angles are fixed then the body speed is related using just the trajectory rate of change,

however it is more common for curvilinear motion to be desired. In this case the body velocity is

related to the rate of change of the trajectory and the RYP rates of change as

 𝑑𝜃𝑥 = 𝑌𝑣𝑧𝑑𝑡 − 𝑍𝑣𝑦𝑑𝑡 (5.5)

𝑑𝜃𝑦 = 𝑍𝑣𝑥𝑑𝑡 − 𝑋𝑣𝑧𝑑𝑡 (5.6)

52

𝑑𝜃𝑧 = 𝑋𝑣𝑦𝑑𝑡 − 𝑌𝑣𝑥𝑑𝑡 (5.7)

which is a more complex set of differential equations [66], [67]. The information that needs to be

known about the robot at all times is the current position along the known trajectory.

 There are two main sensors to find the inertial frame position: 3-D IMU and GPS sensors.

These are often times used in tandem to create a more accurate position reading of the robot. The

3-D IMU can sense acceleration along three mutually perpendicular axis, ax, ay and az. The IMU

can also sense the angular acceleration about each axis ωx, ωy and 𝜔z. When the IMU is fixed to

the center of gravity of the robot the information it provides can be related to the RYP angles and

the body velocities as

[

𝜃𝑥

𝜃𝑦

𝜃𝑧

] = [

∫𝜔𝑥𝑑𝑡

∫𝜔𝑦𝑑𝑡

∫𝜔𝑧 𝑑𝑡

] + [

𝜈𝑥

𝜈𝑦

𝜈𝑧

] (5.8)

and

[

𝑣𝑥

𝑣𝑦

𝑣𝑧

] = [

∫𝑎𝑥𝑑𝑡

∫𝑎𝑦𝑑𝑡

∫𝑎𝑧 𝑑𝑡

] + [

𝜇𝑥

𝜇𝑦

𝜇𝑧

] (5.9)

where (νx,νy,νz) and (μx,μy,μz) are the noise components for the RYP angles and body velocities

(5.8) and (5.9) can now be used in equation (5.2) to find the inertial frame velocities and then

equation (5.1) to find the inertial frame position.

The GPS receiver calculates the inertial frame position to by taking information from at

least four satellites. The details of this calculation are introduced in Chapter 2 and then continued

in Chapter 4. Chapter 4 also details the noise associated with these calculations and suggested

improvements to the algorithm.

53

5.1.2. Skid Steered Path Tracking on High Friction, Flat Surfaces

The previous section discussed general path tracking in a large 3-D space which makes

the equations large and cumbersome. It can be simplified by applying the kinematic and dynamic

assumptions outlined in Chapter 3. The first major point in reducing the equations is instead of

assuming the inertial frame is translated from the ECEF coordinate system it is assumed that the

robot moves on a 2-D surface over a small localized area of earth that can be assumed to be flat

such as Universal Transverse Mercator (UTM) zones. Path is then defined in the X and Y

coordinates where

 [

𝑑𝑋𝑟

𝑑𝑡
𝑑𝑌𝑟

𝑑𝑡

] = [
𝑉𝑋

𝑉𝑌
] (5.10)

and the body velocities are

[
𝑣𝑥

𝑣𝑦
] = [

𝑐𝜃𝑧 −𝑠𝜃𝑧

𝑠𝜃𝑧 𝑐𝜃𝑧
]
T

[

𝑑𝑋

𝑑𝑡
𝑑𝑌

𝑑𝑡

] (5.11)

These are then used to define a curvilinear path in relation to the body velocities as

𝑑𝜃𝑧 = 𝑋𝑣𝑦𝑑𝑡 − 𝑌𝑣𝑥𝑑𝑡 (5.12)

The control parameters in this study are based on the linear velocities of the left and right wheels

as Vl and Vr respectively. These can be related to the applied voltage for the left and right motor

as shown in Chapter 3. The body velocities in the y axis is assumed to be zero because on high

friction surfaces lateral sliding is not possible. So the body velocities and the heading angle

become

𝑣𝑥 =
1

2
(𝑉𝑟 + 𝑉𝑙) (5.13)

𝑣𝑦 = 0 (5.14)

𝜃𝑍 = ∫
1

𝐵
(𝑉𝑟 − 𝑉𝑙)𝑑𝑡 (5.15)

54

where B is the axle width of the vehicle.

 Like the general formulation, this study used IMU and GPS localization sensors. This

study also used wheel encoders to add redundancy to the desired information. In this reduced

system the only information required from the IMU are the values of ax and 𝜔z. This is then used

to find the body velocity in along the x axis and the heading angle as

𝑣𝑥 = ∫𝑎𝑥𝑑𝑡 + 𝜇𝑥 (5.16)

𝜃𝑧 = ∫𝜔𝑧 𝑑𝑡 + 𝜈𝑧 (5.17)

subject their respective noise components. The GPS sensor provides X and Y coordinates which

are translated from the ECEF coordinates found in the position fix to UTM corrdinates.

 The encoders are able to find the left and right wheel velocities which can be used to

locate the robot using equations (5.13) through (5.15). The data from the encoder is read as left,

Nl, and right, Nr, wheel counts which is translated to left and right linear velocities as

𝑉𝑙 =
2𝜋𝑟𝑤

𝛥𝑡𝑒𝑁𝑐
𝑁𝑙 + 𝑛𝑙 (5.18)

𝑉𝑟 =
2𝜋𝑟𝑤

𝛥𝑡𝑒𝑁𝑐
𝑁𝑟 + 𝑛𝑟 (5.19)

where Nc is the number of counts in one revolution of the wheel and nl and nr are the errors

associated with wheel slip on the left and right encoders respectively. It is unexpected that the

wheels will slip because of the high friction but this still may happen, especially during turning

maneuvers.

As discussed in detail in previous chapters, these sensors all have noise associated with

them that make any single reading unreliable. This specific selection of sensors are commonly

used for the way they can be used together. The errors in the encoders and the IMU will tend to

drift without bound although over a short period of time, they are very reliable. The GPS on the

other had is imprecise but maintains accuracy over time. The GPS can then be used to keep the

55

overall fusion of the measurement from drifting and the IMU and the encoders can be used to

keep the states precise.

5.2. Formulating Linear State Space Equations

Many standard control algorithms that can be used to solve for the optimal and robust

control of a dynamic systems first require that the system be put into standard state space form.

As indicated in Chapter 3, the dynamic model for the vehicle can be represented by

𝑑𝑉𝑙

𝑑𝑡
= (

2𝑘𝑡𝑛𝑟𝑟𝑤

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

)𝑉𝐷𝐶𝐿
− (

2𝑘𝑏𝑘𝑡𝑛𝑟
2

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

)𝑉𝑙 + Δ𝐿 (5.20)

𝑑𝑉𝑟

𝑑𝑡
= (

2𝑘𝑡𝑛𝑟𝑟𝑤

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

)𝑉𝐷𝐶𝑅
− (

2𝑘𝑏𝑘𝑡𝑛𝑟
2

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

)𝑉𝑟 + Δ𝑅 (5.21)

𝑑𝑣𝑥

𝑑𝑡
= (

𝑘𝑡𝑛𝑟𝑟𝑤

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

) (𝑉𝐷𝐶𝑅
+ 𝑉𝐷𝐶𝐿

) − (
2𝑘𝑏𝑘𝑡𝑛𝑟

2

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

) 𝑣𝑥 + Δ𝐿𝑜𝑠𝑠 (5.22)

𝑑Ω

𝑑𝑡
= (

𝐵2𝑘𝑏𝑘𝑡𝑛𝑟
2

2𝐼𝐼𝐶𝑅𝑅𝑎𝑟𝑤
2)Ω − (

𝐵𝑘𝑡𝑛𝑟

2𝐼𝐼𝐶𝑅𝑅𝑎𝑟𝑤
2) (𝑉𝐷𝐶𝑅

− 𝑉𝐷𝐶𝐿
) + Δ𝑀Ω (5.23)

and the final kinematic equations are

𝑑𝜃𝑧

𝑑𝑡
= 𝛺 (5.24)

𝑑𝑋𝑟

𝑑𝑡
= 𝑣𝑥 𝑐𝑜𝑠(𝜃𝑧) (5.25)

𝑑𝑌𝑟

𝑑𝑡
= 𝑣𝑥 𝑠𝑖𝑛(𝜃𝑧) (5.26)

If the state vector, xk, is defined as

𝑥𝑘 =

[

𝑉𝑙

𝑉𝑟

𝑣𝑥

𝛺
𝜃𝑧

𝑋
𝑌]

 (5.27)

and the measurement vector obtained from all sensors on the vehicle is

56

𝑦𝑘 =

[

𝑁𝑙

𝑁𝑟

𝑎𝑥1

𝑎𝑥2

𝜔𝑧1

𝜔𝑧2

𝑋𝐺𝑃𝑆

𝑌𝐺𝑃𝑆]

 (5.28)

Then these equations were transformed in discrete time form using Euler approximation as [24]

𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 + Δ (5.29)

𝑦𝑘 = 𝐶𝑘𝑥𝑘 + Δ (5.30)

where Δ accounts for all the uncertainties and error terms discussed earlier, The control input

vector, uk, becomes

 𝑢𝑘 = [
𝑉𝐷𝐶𝑙

𝑉𝐷𝐶𝑟
] (5.31)

Using equations (5.20) through (5.26) the state space matrices can be formed through algebraic

manipulation. Therefore the system matrix is

𝐴𝑘 =

[

 1 − (

2𝑘𝑏𝑘𝑡𝑛𝑟
2

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

)𝛥𝑇 0 0 0 0 0 0

0 1 − (
2𝑘𝑏𝑘𝑡𝑛𝑟

2

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

)𝛥𝑇 0 0 0 0 0

0 0 1 − (
2𝑘𝑏𝑘𝑡𝑛𝑟

2

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

)𝛥𝑇 0 0 0 0

0 0 0 1 + (
𝐵2𝑘𝑏𝑘𝑡𝑛𝑟

2

2𝐼𝐼𝐶𝑅𝑅𝑎𝑟𝑤
2)𝛥𝑇 0 0 0

0 0 0 𝛥𝑇 1 0 0
0 0 𝛥𝑇 𝑐𝑜𝑠(𝜃𝑧) 0 0 1 0

0 0 𝛥𝑇 𝑠𝑖𝑛(𝜃𝑧) 0 0 0 1]

 (5.32)

and the input matrix is

𝐵𝑘 =

[

−2𝑘𝑡𝑛𝑟𝑟𝑤

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

0

0
−2𝑘𝑡𝑛𝑟𝑟𝑤

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

−𝑘𝑡𝑛𝑟𝑟𝑤

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

−𝑘𝑡𝑛𝑟𝑟𝑤

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

𝐵𝑘𝑡𝑛𝑟

2𝐼𝐼𝐶𝑅𝑅𝑎𝑟𝑤
2

−𝐵𝑘𝑡𝑛𝑟

2𝐼𝐼𝐶𝑅𝑅𝑎𝑟𝑤
2

0 0
0 0
0 0]

 (5.33)

57

The measurement process matrix is

𝐶𝑘 =

[

𝑁𝑐𝛥𝑡𝑒

2𝜋𝑟𝑤
0 0 0 0 0 0

0
𝑁𝑐𝛥𝑡𝑒

2𝜋𝑟𝑤
0 0 0 0 0

0 0
−2𝑘𝑏𝑘𝑡𝑛𝑟

2

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

0 0 0 0

0 0
−2𝑘𝑏𝑘𝑡𝑛𝑟

2

𝑅𝑎(4𝐼𝑤+𝑚𝑟𝑤
2)

0 0 0 0

0 0 0 1 0 0 0

0 0 0 0
1

∆𝑡
0 0

0 0 0 0 0 1 0
0 0 0 0 0 0 1]

 (5.34)

and the feedforward matrix is zero. The actual properties of the robot are summarized below in

Table 5.1.

Table 5.1: Parameter values

Parameter Value Parameter Value

kb 0.154
V

rad/s
 B 0.86 m, .81

kt 0.13
Nm

amp
 𝐼𝐼𝐶𝑅 26.75 kgm2

nr 20 ΔT 0.785

Ra 0.21 Ω ΔTe 0.785

Iw .764 kgm2 Nc 1024

m 230 kg rw 0.2667 m

Nc 4096

These values can be placed in equations (5.32) through (5.34) to find the numerical

values. It is important to note that the system matrix needs to be update with every time step

because the heading angle will constantly be changing. With this system in place the control

objective is to minimize the tracking error between the robot coordinates and the path

coordinates using something similar to a p-norm,

𝜀 = ‖[
𝑋
𝑌
] − [𝑋̂

𝑌̂
]‖

𝑝

 (5.35)

which will be the focus of the following sections.

58

5.3. Background on Linear Quadratic Control Design

When controlling an autonomous application often times there is some parameter that the

designer attempts to optimize based on the control input. This could be anything from the energy

exerted by the actuators to the efficiency with which the system operates. In path tracking

applications such as the one in this study a popular optimization is the find the minimum tracking

error. The continuous time state space system is defined as

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) (5.36)

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) (5.37)

where the state vector is x, and the input, u,. The system matrices A represents the system dynamics,

B the control input matrix, C represents the sensor fusion matrix and D represents the feed forward

control. Correspondingly, the discrete time state space system is defined as

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘 (5.38)

𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘 (5.39)

 For a system to have an optimal control it is required first that the system be controllable,

observable and stable. The controllability of the system is the idea that the system should

respond to an input by changing all elements of its state vector; practically, controllability is

achieved by proper selection and placement of system actuators. An observable system is one

where all the states are able to be measured directly or indirectly by one or multiple sensors and

is achieved by proper placement and selection of sensors. Normally systems are required to be

stable during their operations, i.e. maintains a certain equilibrium state and would return to that

state when disturbed. This concept can be seen visually in Figure 5.1 where the ball on the left

will return to the bottom of the “cup” if disturbed and the ball on the right will roll off the “hill”

when disturbed. Here the left side represents an unstable system and the right side represents a

59

table system. There are many ways to categorize stability but some of more useful conditions are

known as the Lyapunov Criterion [68].

Figure 5.1: System stability

5.3.1. Lyapunov Criterion and the Bounded Real Lemma on Continuous Time Systems

Stability of dynamic systems is governed by the popular Lyapunov Criterion, which is a

set of equations that describe a stable system based on some scalar function of the state vector

V(x(t)) known as the Lyapunov function, which is always positive. The Lyapunov criteria for a

stable system require the Lyapunov function to be decreasing with time and reaching a zero

value at the equilibrium state 𝑥∗, i.e.,

𝑉(𝑥∗) = 0 (5.40)

𝑉(𝑥(𝑡)) ≥ 0, ∀𝑡 ≥ 0 (5.41)

𝑑𝑉(𝑥(𝑡))

𝑑𝑡
≥ 0, ∀𝑡 ≥ 0 (5.42)

60

There are many possible ways of defining the Lyapunov function for any given system, however,

the most popular for linear systems is the quadratic function, also known as the kinetic energy

function

𝑉(𝑥) = 𝑥𝑇𝑄𝑥 (5.43)

where Q = QT. The first two criterion can be shown relatively easily and the last criterion

requires the derivative of the quadratic function to be taken and is shown as

𝑉̇(𝑥) = 𝑥̇𝑇𝑄𝑥 + 𝑥𝑇[𝑄𝑥̇ + 𝑄̇𝑥] (5.44)

For a homogeneous linear system

𝑥̇(𝑡) = 𝐴𝑥(𝑡) (5.45)

𝑦(𝑡) = 𝐶𝑥(𝑡) (5.46)

the decreasing condition of the Lyapunov function (5.42) becomes

𝑉̇(𝑥) = [𝐴𝑥]𝑇𝑄𝑥 + 𝑥𝑇[𝑄𝐴𝑥 + 𝑄̇𝑥] (5.47)

which implies that

𝐴𝑇𝑄 + 𝑄𝐴 + 𝑄̇ ≤ 0 (5.48)

If Q is time invariant, which is almost always the case for linear systems, then this condition

becomes

𝐴𝑇𝑄 + 𝑄𝐴 = −𝑃 (5.49)

or

𝐴𝑇𝑄 + 𝑄𝐴 + 𝑃 = 0 (5.50)

for some matrix P=PT. The equation, known as the Lyapunov equation can be solved for Q to

find a function that fits the Lyapunov Criterion.

Associated with the Lyapunov equations is the algebraic Riccati equation which appears

in many applications of linear optimal control. One application of Riccati is in defining

61

conditions for which the output of the system is bounded. The governing principle for this

condition is the bounded real lemma, which states that if for the system in (5.36) and (5.37)

||𝑦||∞ < 𝛾 (5.51)

then there exists a nonnegative matrix P = PT such that

𝐴𝑇𝑃 + 𝑃𝐴 + 𝐶𝑇𝐶 + 𝑃𝐵(𝛾2𝐼 − 𝐷𝐷𝑇)−1𝐵𝑇𝑃 ≤ 0 (5.52)

5.3.2. Linear Quadratic Regulator for Continuous Time Systems

The Linear Quadratic Regulator (LQR) forms an optimal control algorithm that seeks to

minimize a quadratic cost function based on methods first developed by Kalman in [69], [70] and

some of the first applications of these methods were developed in [71], [72]. Quite often the

quadratic cost happens to be a Lyapunov functions for the system under study, therefore

minimization of such quadratic function would bring the system to its equilibrium and stabilize

it. The common quadratic cost function for linear systems is the Hamiltonian

𝐻(𝑥, 𝑢, 𝜆) =
1

2
(𝑥𝑇𝑄𝑥 + 2𝑥𝑇𝑁𝑢 + 𝑢𝑇𝑅𝑢) + 𝜆𝑇(𝐴𝑥 + 𝐵𝑢 − 𝑥̇) (5.53)

where 𝜆 is another variable known as the Lagrange multiplier. Minimization of this function is

met by satisfying three sets of equations known as the state equation,
𝑑𝐻

𝑑𝜆
= 0, costate equation

𝑑𝐻

𝑑𝑥
= 0, and stationarity equation

𝑑𝐻

𝑑𝑢
= 0. The stationarity equation leads to

𝑁𝑇𝑥 + 𝑅𝑢 + 𝐵𝑇𝜆 = 0 (5.54)

which when solved for the optimal input uopt results in

𝑢𝑜𝑝𝑡 = −𝑅−1(𝑁𝑇𝑥 + 𝐵𝑇𝜆) (5.55)

The LQR solution is completed by using the method of [73] where the Lagrange multiplier is

treated as a linear combination of the state vector as

𝜆 = 𝑃𝑥 (5.56)

such that

62

𝑢𝑜𝑝𝑡 = −𝑅−1(𝑁𝑇 + 𝐵𝑇𝑃)𝑥 (5.57)

or

𝑢𝑜𝑝𝑡 = 𝐾𝑜𝑝𝑡𝑥 (5.58)

where the optimal feedback gain is

𝐾𝑜𝑝𝑡 = −𝑅−1(𝑁𝑇 + 𝐵𝑇𝑃) (5.59)

The symmetric term P used in defining the Lagrange multiplier is determined and from the state

and costate equations which together define

−𝑃̇ = (𝐴 − 𝐵𝑅−1𝑁𝑇)𝑇𝑃 + (𝐴 − 𝐵𝑅−1𝑁𝑇) − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + (𝑄 − 𝑁𝑅−1𝑁𝑇) (5.60)

which is the differential Riccati equation. In linear systems, the value of P is determined from the

steady state solution of the corresponding Algebraic Riccati equation

(𝐴 − 𝐵𝑅−1𝑁𝑇)𝑇𝑃 + (𝐴 − 𝐵𝑅−1𝑁𝑇) − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + (𝑄 − 𝑁𝑅−1𝑁𝑇) = 0 (5.61)

5.3.3. Lyapunov Criterion and Bounded Real Lemma on Discrete Time Systems

The Lyapunov criterion equation (5.42) for continuous time systems transform into

discrete time from as

𝑉(𝑥𝑘−1) − 𝑉(𝑥𝑘) ≥ 0, ∀𝑘 (5.62)

If the Lyapunov function is defined as in (5.42) then for the homogeneous system (5.44) the

condition (5.62) leads to

𝑉(𝑥𝑘−1) − 𝑉(𝑥𝑘) = 𝑥𝑘−1
𝑇𝑄𝑥𝑘−1 − [𝐴𝑥𝑘−1]

𝑇𝑄[𝐴𝑥𝑘−1] ≥ 0 (5.63)

which requires the presence of Q = QT such that

𝑄 − 𝐴𝑇𝑄𝐴 ≥ 0 (5.64)

or

𝐴𝑇𝑄𝐴 − 𝑄 ≤ 0 (5.65)

63

The Bounded real lemma for discrete time systems can also be shown to require a matrix P such

that

𝐴𝑇𝑃𝐴 − 𝑃 + 𝐶𝑇𝐶 + (𝐴𝑇𝑃𝐵 + 𝐶𝑇𝐷)(𝛾2𝐼 − 𝐷𝐷𝑇−𝐵𝑇𝑃𝐵)−1(𝐵𝑇𝑃𝐴 + 𝐷𝑇𝐶) ≤ 0 (5.66)

5.3.4. Linear Quadratic Regulator for Discrete Time Systems

Quadratic regulators for discrete time systems strive to minimize that the corresponding

Hamilton-Jacobian cost function which is defined as

𝐻𝑘 = 𝑥𝑘−1
𝑇𝑄𝑥𝑘−1 (5.67)

where also

𝐻𝑘 = 𝑥𝑘−1
𝑇𝑃𝑥𝑘−1 + 𝑢𝑘

𝑇𝑅𝑢𝑘 + 𝑥𝑘
𝑇𝑄𝑥𝑘 (5.68)

such that the control problem is to find u that satisfies

𝑥𝑘−1
𝑇𝑄𝑥𝑘−1 = 𝑥𝑘−1

𝑇𝑃𝑥𝑘−1 + 𝑢𝑘
𝑇𝑅𝑢𝑘 + 𝑥𝑘

𝑇𝑄𝑥𝑘 (5.69)

By using equation (5.38) we find that

𝑥𝑘−1
𝑇𝑄𝑥𝑘−1 = 𝑥𝑘−1

𝑇𝑃𝑥𝑘−1 + 𝑢𝑘
𝑇𝑅𝑢𝑘 + [𝐴𝑥𝑘−1 + 𝐵𝑢𝑘]

𝑇𝑄[𝐴𝑥𝑘−1 + 𝐵𝑢𝑘] (5.70)

which results in an optimal control of

𝑢𝑜𝑝𝑡 = −(𝑅 + 𝐵𝑇𝑃𝐵)−1𝐵𝑇𝑄𝐴𝑥𝑘−1

Where Q = QT is determined by using this optimal controller in equation (5.70) to result in the

discrete time Ricatti equation

𝑄 = 𝑃 + 𝐴𝑇𝑄A − A𝑇𝑄B(𝑅 + 𝐵𝑇𝑃𝐵)−1𝐵𝑇𝑄𝐴

5.4. Control Formulation the Skid Steered Vehicle

The control algorithm used in this study is a form of the Linear Quadratic Gaussian

(LQG) controller. As stated earlier this controller assumes the validity of the separation principle

between the measurement and dynamic uncertainties. The two main parts to this controller is the

formulation of a Kalman filter to estimate the state of the robot and then a formulation of Linear

64

Quadratic Regulator (LQR) controller which uses the estimated state to find an optimal input

vector based on the overall position error.

For both the Kalman filter design and the control design it is useful to further define the

uncertainty terms present in the system. The Euler approximations of the standard state space can

be written to include the dynamic and measurement uncertainties as

𝑥𝑘 = [𝐴𝑘 + ∆𝐴]𝑥𝑘 + [𝐵𝑘 + ∆𝐵]𝑢𝑘 + 𝑤𝑘 (5.71)

𝑦𝑘 = [𝐶𝑘 + ∆𝐶]𝑥𝑘 + 𝑣𝑘 (5.72)

The terms ∆𝐴, ∆𝐵, and ∆𝐶 represent the uncertainties caused by the linearization and

simplification of the dynamic and kinematic equations. The state vector can then be expressed in

terms of the nominal value, 𝑥𝑛𝑘
 , from the modeled dynamics and the uncertain value, ∆𝑥𝑘, from

the ignored dynamics as

𝑥𝑘 = 𝑥𝑛𝑘
+ ∆𝑥𝑘 (5.73)

which satisfy

∆𝑥𝑘+1 = ∆𝐴∆𝑥𝑘 + ∆𝐵𝑢𝑘 (5.74)

∆𝑦𝑘 = ∆𝐶∆𝑥𝑘 (5.75)

or simply

[
∆𝑥𝑘+1

∆𝑦𝑘
] = [

∆𝐴 ∆𝐵

∆𝐶 0
] [

∆𝑥𝑘

𝑢𝑘
] (5.76)

The continual effects of the uncertainties will be kept in bound as long as

𝜀 = ‖[
∆𝐴 ∆𝐵

∆𝐶 0
]‖

∞

< 1 (5.77)

The uncertainty matrix above can also be represented as

[
∆𝐴 ∆𝐵

∆𝐶 0
] = [

𝐴𝑥

𝐴𝑌
]𝑊[𝐵1 𝐵2] (5.78)

where 𝐴𝑥 , 𝐴𝑌, 𝐵1 and 𝐵2 are constant structural matrices and

65

𝑊𝑇𝑊 ≤ 1 (5.79)

5.4.1. Control Function

As described earlier the control parameters being sought are the voltages that need to be

applied to the left and the right motor. The required voltage is determined through the control

algorithm that seeks to keep vehicle’s center of gravity (X, Y) follow the desired path (𝑋̂, 𝑌̂) at a set

speed VG. If the vehicle’s current center of gravity is at (X, Y) and its current orientation is at θ ,

the control problem is solved by the constrained minimization of the tracking error, 𝜀 [24]. The

tracking error is defined by the Euclidean distance

𝜀2 = (𝑋̂ − 𝑋)
2
+ (𝑌̂ − 𝑌)

2
+ (𝑡𝑎𝑛−1 (

𝑑𝑌

𝑑𝑋
) − 𝜃)

2

 (5.80)

subject to the requirements

(
𝑑𝑋

𝑑𝑡
)
2

+ (
𝑑𝑌

𝑑𝑡
)
2

= 𝑉2 (5.81)

This constrained minimization is a nonlinear problem with no closed loop solution. However, there

is a numerical solution to the problem. The navigation data will be sampled at regular time

intervals, ΔT and the motion will be determined through straight line segments ΔL defined as

Δ𝐿 = √Δ𝑋2 + Δ𝑌2 (5.82)

At any given time interval, k, the next position is determined by

𝑋𝑘+1 = 𝑋𝑘 + Δ𝑋𝑘 (5.83)

𝑌𝑘+1 = 𝑌𝑘 + Δ𝑌𝑘 (5.84)

As ΔLmax decreases the motion of the vehicle along the desired path will become smoother. To

account for boundary cases equation (5.82) can be turned into an inequality which can be used to

find ΔX and ΔY.

√Δ𝑋𝑘
2 + Δ𝑌𝑘

2 ≤ Δ𝐿max (5.85)

66

The fixed velocity V determines the ΔLmax and ΔT by

𝑉𝑘 =
Δ𝐿max

Δ𝑇
 (5.86)

With a fixed ΔT, the desired Δ𝑋𝑘 and Δ𝑌𝑘 can be established from the kinematic relations as

Δ𝑋𝑘 = 𝑉𝑘 cos(𝜃𝑘)Δ𝑇 (5.87)

Δ𝑌𝑘 = 𝑉𝑘 sin(𝜃𝑘)Δ𝑇 (5.88)

Both 𝑉̂𝑘 and 𝜃̂𝑘 depend on the current values of Vr and Vl.

𝜃𝑘 = tan−1 (
𝑌̂𝑘−𝑌𝑘

𝑋̂𝑘−𝑋𝑘
) = tan−1 (

Δ𝑌𝑘

Δ𝑋𝑘
) (5.89)

Equation (5.89) simplifies the problem by showing that 𝜃𝑘 can be defined in just terms of the

current position (Δ𝑋𝑘, Δ𝑌𝑘) and the next desired position (𝑋̂𝑘, 𝑌̂𝑘).

In Figure 5.2 the desired path is shown with respect to the vehicle’s current position (Xk,

Yk), previous position (Xk-1,Yk-1) and intended position (𝑋̂𝑘, 𝑌̂𝑘). The circle represents the radius of

ΔLmax and the points where the circle intersects the desired path are (X, Y) and (X”, Y”). To decide

which point of intersection should be chosen for time k+1 the distance between each point of

intersection and the position at time k-1 should be determined. Whichever point is further from the

previous position should be chosen as the next point.

Figure 5.2: Path tracking

67

 The current desired orientation 𝜃𝑘 is known and the old orientation 𝜃𝑘−1 is known. With

those values the change in orientation Δθk can be found and related to the velocities Vr and Vl by

Δ𝜃𝑘 = 𝜃𝑘 − 𝜃𝑘−1 = (𝑉𝑟 − 𝑉𝑙)
Δ𝑇

𝐵
 (5.90)

The coordinate changes can also be found using the left and right wheel velocities as

Δ𝑋𝑘 = (𝑉𝑟 + 𝑉𝑙)
Δ𝑇

2
cos(𝜃𝑘) (5.91)

Δ𝑌𝑘 = (𝑉𝑟 + 𝑉𝑙)
Δ𝑇

2
sin(𝜃𝑘) (5.92)

By combining equations (5.90) through (5.92) the left and right velocities at time k can be found

as

𝑉𝑟𝑘
=

Δ𝑋𝑘

Δ𝑇
cos(𝜃𝑘) +

Δ𝑌𝑘

Δ𝑇
sin(𝜃𝑘) +

B

2Δ𝑇
Δ𝜃𝑘 (5.93)

𝑉𝑙𝑘
=

Δ𝑋𝑘

Δ𝑇
cos(𝜃𝑘) +

Δ𝑌𝑘

Δ𝑇
sin(𝜃𝑘) −

B

2Δ𝑇
Δ𝜃𝑘 (5.94)

Now that the left and right wheel velocities have been determined, the required wheel torques can

be calculated.

5.4.2. Control Solution

With the state estimation from the Kalman filter and the control constraints established

the control solution can be formulated based on waypoint selection. If the path at time interval k

is known as

𝑝𝑘 = [

𝜃𝑘

𝑋̂𝑘

𝑌̂𝑘

] (5.95)

then the robot movement can be defined as

[
Δ𝜃𝑘

Δ𝑋𝑘

Δ𝑌𝑘

] = 𝑝𝑘 − 𝐸1𝑥𝑘 (5.96)

where

68

𝐸1 = [
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

] (5.97)

where the change along the X and Y axis is subject to

Δ𝜃𝑘 = tan−1 (
Δ𝑌𝑘

Δ𝑋𝑘
) − 𝜃𝑘 (5.98)

It is desired to find the controller gain matrix Λ𝑘 such that the controller

𝑢𝑘 = Λ𝑘𝑥𝑘 (5.99)

minimizes the 2-norm tracking error

𝜀 = ‖[

𝜃𝑘+1

𝑋̂𝑘+1

𝑌̂𝑘+1

] − [
𝜃𝑘+1

𝑋𝑘+1

𝑌𝑘+1

]‖

2

, ∀𝑘 (5.100)

If the dynamic system without disturbances is represented as

𝑥𝑘+1 = [𝐴𝑘 + ∆𝐴]𝑥𝑘 + [𝐵𝑘 + ∆𝐵]𝑢𝑘 (5.101)

then objective function becomes

𝜀 = ‖𝑝𝑘 − 𝐸1([𝐴𝑘 + ∆𝐴]𝑥𝑘 + [𝐵𝑘 + ∆𝐵]𝑢𝑘‖2 (5.102)

The constraints (5.90) through (5.92) can be defined as

Δ𝜃𝑘 = 2(𝑉𝑟 − 𝑉𝑙)
Δ𝑇

𝐵
− ΩΔ𝑇 (5.103)

Δ𝑋𝑘 = (𝑉𝑟 + 𝑉𝑙)
Δ𝑇

2
cos(𝜃̃𝑘) − 𝑣𝑥Δ𝑇 cos(𝜃̃𝑘) (5.104)

Δ𝑌𝑘 = (𝑉𝑟 + 𝑉𝑙)
Δ𝑇

2
sin(𝜃̃𝑘) − 𝑣𝑥Δ𝑇 sin(𝜃̃𝑘) (5.105)

where

𝜃̃𝑘 = tan−1 (
Δ𝑌𝑘

Δ𝑋𝑘
) (5.106)

Therefore, the robot motion can now be expressed as

[
Δ𝜃𝑘

Δ𝑋𝑘

Δ𝑌𝑘

] = 𝐸2𝑥𝑘 (5.107)

69

where

𝐸2 =

[

 −2

Δ𝑇

𝐵
−2

Δ𝑇

𝐵
0 −Δ𝑇

Δ𝜃𝑘

𝜃𝑘
0 0

Δ𝑇 cos(𝜃̃𝑘) Δ𝑇 cos(𝜃̃𝑘) −Δ𝑇 cos(𝜃̃𝑘) 0 0
Δ𝑋𝑘

𝑋𝑘
0

Δ𝑇 sin(𝜃̃𝑘) Δ𝑇 sin(𝜃̃𝑘) −Δ𝑇 sin(𝜃̃𝑘) 0 0 0
Δ𝑌𝑘

𝑌𝑘]

 (5.108)

By combing the robot motion defined in equation (5.96) with the constraint defined in (5.85) the

path vector can be expressed in terms of the state vectors as

𝑝𝑘 = (𝐸1 + 𝐸2)𝑥𝑘 (5.109)

which can be used in to reformulate the cost function as

𝜀 = ‖(𝐸2 + 𝐸1[𝐼 − 𝐴𝑘 − 𝐴𝑥𝑊𝐵1])𝑥𝑘 − (𝐸1[𝐵𝑘 + 𝐴𝑥𝑊𝐵2])𝑢𝑘‖2 (5.110)

The cost function can now be formed as a quadratic Lyapunov function. To find the optimal

control input based on the cost function a dynamic optimization is performed as described in

Section 6.3. The discrete form of the quadratic function can be shown as

𝜀 = ∑ 𝑥𝑘
𝑇Θξξ𝑥𝑘 +𝑘 𝑢𝑘

𝑇Θuu𝑢𝑘 − 2𝑥𝑘
𝑇Θξu𝑢𝑘 (5.111)

where

Θξξ = (𝐸2 + 𝐸1[𝐼 − 𝐴𝑘 − 𝐴𝑥𝑊𝐵1])
𝑇(𝐸2 + 𝐸1[𝐼 − 𝐹(𝑘) − 𝐴𝑥𝑊𝐵1]) (5.112)

Θuu = (𝐸1[𝐵𝑘 + 𝐴𝑥𝑊𝐵2])
𝑇(𝐸1[𝐵𝑘 + 𝐴𝑥𝑊𝐵2]) (5.113)

Θξu = (𝐸2 + 𝐸1[𝐼 − 𝐴𝑘 − 𝐴𝑥𝑊𝐵1])
𝑇(𝐸1[𝐵𝑘 + 𝐴𝑥𝑊𝐵2]) (5.114)

The solution is well known and can be found in [74], [75] as

𝑢𝑘 = −Λ𝑘𝑥𝑘 (5.115)

where

Λ𝑘 = −(𝐵𝑘
𝑇S𝑘𝐵𝑘 + Θuu)

−1
(𝐴𝑘

𝑇S𝑘𝐵𝑘 + Θξu)
𝑇
 (5.116)

and Sk is the recursive solution the Riccati equation

S𝑘 = 𝐴𝑘
𝑇S𝑘−1𝐴𝑘 + Θξξ −…

70

…(𝐴𝑘
𝑇S𝑘−1𝐵𝑘 + Θξu)(𝐵𝑘

𝑇S𝑘−1𝐵𝑘 + Θuu)
−1

(𝐴𝑘
𝑇S𝑘−1𝐵𝑘 + Θξu) (5.117)

This control assumes that the state vector is known. The state estimation through filtering and

fusion is described in the next chapter.

71

CHAPTER 6. SENSOR PROCESSING: FILTERING AND FUSION

It is widely known that sensor measurement data can never be completely trusted because

of their inherent noise. Autonomous applications need to be especially aware of these

imperfections in the sensor data because errors in this data can be detrimental to the control

algorithm. These errors come in two main forms, accuracy error and precision errors and there

are different solutions to reduce each of them. Filtering can help increase the precision of the

sensors, while the accuracy may be improved by using multiple sensors that are fused together.

Often times the filtering and fusion of sensor can be done at the same time where noise from

each single sensor is filtered out and the results from multiple sensors are fused together all in

one large algorithm. The methods of filtering noise from a single sensor and fusing multiple

sensors are often related as it will become apparent in later sections of this chapter. A widely

accepted definition of sensor fusion as given by Joint Directors of Laboratories is [76]:

“A multi-level process dealing with the association, correlation, combination of data and

information from single and multiple sources to achieve refined position, identify estimates and

complete and timely assessments of situations, threats and their significance.”

A good categorization of what is obtained by sensor fusion is also in [77], which

categorizes the goals of sensor fusion as either creating more information making it more robust

or just introducing complimentary information. There are many more ways to break down

different levels and categories of sensor fusion such as in [78] but the focus of this chapter is to

outline techniques used for state estimation and fusion of sensor based on the probability of

information being accurate.

72

6.1. Fusion Methods

Sensor fusion can be categorized by how they deal with noise. Traditionally sensor fusion

methods were based on the probability that a sensor reading was true. Newer studies found other

methods to deal with problems that arose in the probabilistic methods such as what happens

when two sets of information contradict each other.

6.1.1. Non-Probabilistic Fusion Methods

One of the main non-probabilistic methods for sensor fusion is fuzzy logic which is based

on fuzzy sets of information. The basic theory behind fuzzy logic is that instead of information

being part of a set or excluded from a set, it can have a degree of membership to a set of

information [65]. Fuzzy logic is especially practical in instances where competing information

sets contradict each other. Another popular non-probabilistic fusion technique is based on the

Dempster-Shafer theory developed by Dempster in 1930 [79], [80]. This theory which provides a

framework for reasoning using imprecise data, has found more applications in robotics when

decisions need to be made upon a robot’s state [65]. Since the state cannot always be determined

with complete certainty the Dempster-Shafer theory allows for ambiguity in the state of the robot

to be trusted (belief theory.) Essentially, this approach is similar to fuzzy logic approach and it

requires the designer to develop a set of rules that define the level of ambiguity in the data and

how different pieces of partial information are combined.

6.1.2. Probabilistic Fusion Methods

Many methods of sensor fusion assume some knowledge in the probability of a sensor’s

information being accurate, and use that information to estimate the state of the object. This

process of state estimation based on probability is usually founded on Bayes law, which states

the probability of receiving the set of information from a given sensor based on the noise

73

distribution of that sensor. This process is described well in [81] where sensors are combined

into a “Bayesian team.” This Bayesian team can be described as sensors with competing

information which can be rectified by using the bargaining problem described by [82] for

economic information and extended to sensors by [9] and [10].

One of the most fundamental state estimation models was developed by Kalman in in the

sixties [85]. In this model the assumption is made that the noise of the sensors are known to be

Gaussian and have a zero mean. It is also assumed that dynamics of the model are completely

linear. With this information the Bayesian equations have an optimal analytical solution which is

known as the Kalman filter; these filters are widely used in control applications because of their

ability to filter and fuse information together effectively.

The Kalman Filter makes many assumptions about the system however, one of the main

ones being that the system is linear. However, non-linear systems can be linearized by using a

first order Taylor series expansion resulting in the so called Extended Kalman Filter (EKF) [86].

Linearization of a non-linear model can be computationally expensive, and also introduces

inherent errors, or “scents,” that are carried throughout the state estimation. This linearization

can be eliminated by sampling data and finding the true mean and covariance of a sensor, which

can then be used directly through the non-linear system to find the analytical solution to the

Bayesian state estimation. This filter is known as an unscented Kalman filter and was first

developed in [87].

All of the extensions of the Kalman filter assume the noise is known to have a Gaussian

distribution but this is not always the case. In the particle filter shown in [88], the noise is not

known. However, the noise distribution is calculated by taking a sufficiently large sample size.

This distribution is then used in the Bayesian equations to solve for the state estimation. This

74

method is useful for unknown noise in sensors or non-Gaussian distributions. It can also handle

the non-linearities that the extensions to the Kalman filter seek to address.

6.2. The Kalman Filter Algorithm

As shown in Chapter 3 this research developed a linear model of the skid steered vehicle,

therefore, the Kalman filter is ideal for this application if all sensor noises are assumed to be

Gaussian. This section will discuss the process of state estimation and sensor fusion using a

Kalman filtering.

Linear dynamical systems are normally defined as

𝑥̇ = 𝐴𝑥 + 𝐵(𝑢 + 𝑤) (6.1)

𝑦 = 𝐶𝑥 + 𝐷(𝑢 + 𝑤) + 𝑣 (6.2)

where x, is the state vector; the input signal applied to the actuators, u, is subject to disturbances

in the actuators, w, and the sensor measurements, y, are subject noise corruptions v. Control

applications require knowledge of the state vector from the measurements, y, therefore the state

is estimated using the measurement y, in a way that reduces the effects of noise and disturbances.

The process noise and the measurement noise both are assumed to have normal distributions

whose probability is subject to the process noise covariance and the measurement noise

covariance respectively seen in the equations below.

𝑝(𝑤)~𝒩(0, 𝑄) (6.3)

𝑝(𝑣)~𝒩(0, 𝑅) (6.4)

By using the Certainty Equivalence Principle [89] it can be shown that the optimal control law

for a noise-free deterministic problem is the same as the optimal control law for a noisy

stochastic control problem. Then the exact linear system represented above can be represented as

the estimated noise-free linear system

75

𝑥̇̃ = 𝐴𝑥̃ + 𝐵𝑢 (6.5)

𝑦 = 𝐶𝑥̃ + 𝐷𝑢 (6.6)

where 𝑥̃ is the estimation of the state such that the estimation error, 𝑥𝑒. Where

𝑥𝑒 = 𝑥 − 𝑥̃ (6.7)

is optimally minimized. The estimated system shown in equations (6.5) and (6.6) is then used to

determine the control input that yields optimal performance.

Practical microprocessor based applications use the discrete form of the system as

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘−1 + 𝑤𝑘−1 (6.8)

𝑦𝑘 = 𝐶𝑥𝑘 + 𝑣𝑘 (6.9)

where at the current time instant k, the state vector is 𝑥𝑘, and the measurement is 𝑦𝑘. The

measurement and process noises are 𝑣𝑘 and 𝑤𝑘 respectively. The Kalaman filter can be

developed to estimate the state vector 𝑥̂𝑘 iteratively as where the initial time step state estimation

is

𝑥̂𝑘
− = 𝐴𝑥̂𝑘−1 + 𝐵𝑢𝑘−1 (6.10)

and the current state estimation is the linear combination

𝑥̂𝑘 = 𝑥̂𝑘
− + 𝐾(𝑦𝑘 − 𝐶𝑥̂𝑘

−) (6.11)

Where K, is known as a Kalman gain. The initial and updated errors are calculated as

𝑒𝑘
− = 𝑥𝑘 − 𝑥̂𝑘

− (6.12)

and

𝑒𝑘 = 𝑥𝑘 − 𝑥̂𝑘 (6.13)

respectively with the initial and updated error covariances become

𝑃𝑘
− = ℰ[𝑒𝑘

−𝑒𝑘
−𝑇] = 𝐴𝑃𝑘−1𝐴

𝑇 + 𝑄 (6.14)

and

𝑃𝑘 = ℰ[𝑒𝑘𝑒𝑘
𝑇] = (𝐼 − 𝐾𝐶)𝑃𝑘

− (6.15)

76

where ℰ is the normal expectation. It is seen that 𝑃𝑘
−, the initial error, is a a solution of Lyapunov

stability equations, and the Kalman gain, K, is computed from these two equations as,

𝐾 = 𝑃𝑘
−𝐶𝑇(𝐶𝑃𝑘

−𝐶𝑇 + 𝑅)−1 (6.16)

This set of equations forms the centralized discretized Kalman filter. The initial state

estimation and covariance are found using equations (6.10) and (6.14) respectively. These initial

estimates are then used to find the Kalman gain in equation (6.16), which determines the updated

the state and covariances in equations (6.14) and (6.15) respectively. The filter then runs onto the

next time step and is able to complete real time filtering and fusion.

6.3. Decentralized Kalman Fusion

Some complex sensor systems are decentralized to prevent failure as seen in [90]–[92]. In

decentralized Kalman fusion i separate sensor systems are fused together independently where

𝑥𝑘
(𝑖)

= 𝐴(𝑖)𝑥𝑘−1
(𝑖)

+ 𝐵(𝑖)𝑢𝑘−1
(𝑖)

+ 𝑤𝑘−1
(𝑖)

 (6.17)

𝑦𝑘 = 𝐶(𝑖)𝑥𝑘
(𝑖)

+ 𝑣𝑘
(𝑖)

 (6.18)

In a set of four sensor systems the previous equations become

[

 𝑥𝑘

(1)

𝑥𝑘
(2)

𝑥𝑘
(3)

𝑥𝑘
(4)

]

= [

𝐴(1) 0 0 0
0 𝐴(2) 0 0
0 0 𝐴(3) 0
0 0 0 𝐴(4)

]

[

 𝑥𝑘−1

(1)

𝑥𝑘−1
(2)

𝑥𝑘−1
(3)

𝑥𝑘−1
(4)

]

+ ⋯

…[

𝐵(1) 0 0 0
0 𝐵(2) 0 0
0 0 𝐵(3) 0
0 0 0 𝐵(4)

]

[

 𝑢𝑘−1

(1)

𝑢𝑘−1
(2)

𝑢𝑘−1
(3)

𝑢𝑘−1
(4)

]

+

[

 𝑤𝑘−1

(1)
0 0 0

0 𝑤𝑘−1
(2)

0 0

0 0 𝑤𝑘−1
(3)

0

0 0 0 𝑤𝑘−1
(4)

]

 (6.19)

and

77

[

 𝑦𝑘

(1)

𝑦𝑘
(2)

𝑦𝑘
(3)

𝑦𝑘
(4)

]

= [

𝐶(1) 0 0 0
0 𝐶(2) 0 0
0 0 𝐶(3) 0
0 0 0 𝐶(4)

]

[

 𝑥𝑘

(1)

𝑥𝑘
(2)

𝑥𝑘
(3)

𝑥𝑘
(4)

]

+

[

 𝑣𝑘

(1)

𝑣𝑘
(2)

𝑣𝑘
(3)

𝑣𝑘
(4)

]

 (6.20)

The initial state estimate time equations then become

[

 𝑥̂𝑘

−(1)

𝑥̂𝑘
−(2)

𝑥̂𝑘
−(3)

𝑥̂𝑘
−(4)

]

= [

𝐴(1) 0 0 0
0 𝐴(2) 0 0
0 0 𝐴(3) 0
0 0 0 𝐴(4)

]

[

 𝑥̂𝑘−1

(1)

𝑥̂𝑘−1
(2)

𝑥̂𝑘−1
(3)

𝑥̂𝑘−1
(4)

]

+ [

𝐵(1) 0 0 0
0 𝐵(2) 0 0
0 0 𝐵(3) 0
0 0 0 𝐵(4)

]

[

 𝑢𝑘−1

(1)

𝑢𝑘−1
(2)

𝑢𝑘−1
(3)

𝑢𝑘−1
(4)

]

 (6.21)

[

 𝑃𝑘

−(1)
0 0 0

0 𝑃𝑘
−(2)

0 0

0 0 𝑃𝑘
−(3)

0

0 0 0 𝑃𝑘
−(4)

]

= [

𝐴(1) 0 0 0
0 𝐴(2) 0 0
0 0 𝐴(3) 0
0 0 0 𝐴(4)

] × …

… .

[

 𝑃𝑘−1

(1)
0 0 0

0 𝑃𝑘−1
(2)

0 0

0 0 𝑃𝑘−1
(3)

0

0 0 0 𝑃𝑘−1
(4)

]

[

𝐴(1) 0 0 0
0 𝐴(2) 0 0
0 0 𝐴(3) 0
0 0 0 𝐴(4)

]

𝑇

+

[

𝑄(1)

𝑄(2)

𝑄(3)

𝑄(4)]

 (6.22)

The Kalman gain is then found where

[

𝐾(1)

𝐾(2)

𝐾(3)

𝐾(4)

] =

[

 𝑃𝑘

−(1)
0 0 0

0 𝑃𝑘
−(2)

0 0

0 0 𝑃𝑘
−(3)

0

0 0 0 𝑃𝑘
−(4)

]

[

𝐶(1) 0 0 0
0 𝐶(2) 0 0
0 0 𝐶(3) 0
0 0 0 𝐶(4)

]

𝑇

× …

…

(

[

𝐶(1) 0 0 0
0 𝐶(2) 0 0
0 0 𝐶(3) 0
0 0 0 𝐶(4)

]

[

 𝑃𝑘

−(1)
0 0 0

0 𝑃𝑘
−(2)

0 0

0 0 𝑃𝑘
−(3)

0

0 0 0 𝑃𝑘
−(4)

]

…

78

…× [

𝐶(1) 0 0 0
0 𝐶(2) 0 0
0 0 𝐶(3) 0
0 0 0 𝐶(4)

]

𝑇

+ [

𝑅(1)

𝑅(2)

𝑅(3)

𝑅(4)

]

)

−1

 (6.23)

which then used to update the state equations as

.

[

 𝑃𝑘

(1)
0 0 0

0 𝑃𝑘
(2)

0 0

0 0 𝑃𝑘
(3)

0

0 0 0 𝑃𝑘
(4)

]

= ([

𝐼(1) 0 0 0
0 𝐼(2) 0 0
0 0 𝐼(3) 0
0 0 0 𝐼(4)

] − [

𝐾(1) 0 0 0
0 𝐾(2) 0 0
0 0 𝐾(3) 0
0 0 0 𝐾(4)

]…

…× [

𝐶(1) 0 0 0
0 𝐶(2) 0 0
0 0 𝐶(3) 0
0 0 0 𝐶(4)

])

[

 𝑃𝑘

−(1)
0 0 0

0 𝑃𝑘
−(2)

0 0

0 0 𝑃𝑘
−(3)

0

0 0 0 𝑃𝑘
−(4)

]

 (6.24)

[

 𝑥̂𝑘

(1)

𝑥̂𝑘
(2)

𝑥̂𝑘
(3)

𝑥̂𝑘
(4)

]

=

[

 𝑥̂𝑘

−(1)

𝑥̂𝑘
−(2)

𝑥̂𝑘
−(3)

𝑥̂𝑘
−(4)

]

+ [

𝐾(1)

𝐾(2)

𝐾(3)

𝐾(4)

]

(

[

 𝑦𝑘

(1)

𝑦𝑘
(2)

𝑦𝑘
(3)

𝑦𝑘
(4)

]

− [

𝐶(1) 0 0 0
0 𝐶(2) 0 0
0 0 𝐶(3) 0
0 0 0 𝐶(4)

]

[

 𝑥̂𝑘

−(1)

𝑥̂𝑘
−(2)

𝑥̂𝑘
−(3)

𝑥̂𝑘
−(4)

]

)

 (6.25)

Decentralized Kalman fusion has the advantage that if one sensor system fails the other systems

can be effective. The main drawback is the computational cost in making such large matrices.

6.3.1. Robust Kalman Filtering

The standard Kalman filter solutions discussed above require the model of the system to

be known and be as accurate as possible. The problem in modelling most dynamic systems is

that certain assumptions must be made to simplify the modelling process, but such assumptions

also introduce certain amounts of inaccuracies that can affect the performance of the filter. In the

presence of model uncertainties, a robust Kalman filter is required to perform all the filtering and

fusion operations subject to some limits on the uncertainty size. Robust Kalman filtering has

been studied extensively and many solutions with many different unique applications have been

79

well studied in [93]–[96]. At base of all the filters they seek to find a state estimate, 𝑥̃, based on

the measurement vector, 𝑦𝑘. Many solution seen in the literature can be computationally

expensive and due to the limited computational power of the microcontrollers used in this study

the solutions with lower computational costs were considered. Specifically this study considers

an uncertain system

𝑥𝑘 = [𝐴𝑘 + ∆𝐴]𝑥𝑘 + [𝐵𝑘 + ∆𝐵]𝑢𝑘 + 𝑤𝑘 (6.26)

𝑦𝑘 = [𝐶𝑘 + ∆𝐶]𝑥𝑘 + 𝑣𝑘 (6.27)

The terms ∆𝐴, ∆𝐵, and ∆𝐶 represent the uncertainties caused by the linearization and

simplification of the dynamic and kinematic equations. The state vector can then be expressed in

terms of the nominal value, 𝑥𝑛𝑘
 , from the modeled dynamics and the uncertain value, ∆𝑥𝑘, from

the ignored dynamics as

𝑥𝑘 = 𝑥𝑛𝑘
+ ∆𝑥𝑘 (6.28)

which satisfy

∆𝑥𝑘+1 = ∆𝐴∆𝑥𝑘 + ∆𝐵𝑢𝑘 (6.29)

∆𝑦𝑘 = ∆𝐶∆𝑥𝑘 (6.30)

or simply

[
∆𝑥𝑘+1

∆𝑦𝑘
] = [

∆𝐴 ∆𝐵

∆𝐶 0
] [

∆𝑥𝑘

𝑢𝑘
] (6.31)

The continual effects of the uncertainties will be kept in bound as long as

𝜀 = ‖[
∆𝐴 ∆𝐵

∆𝐶 0
]‖

∞

< 1 (6.32)

The uncertainty matrix above can also be represented as

[
∆𝐴 ∆𝐵

∆𝐶 0
] = [

𝐴𝑥

𝐴𝑌
]𝑊[𝐵1 𝐵2] (6.33)

where 𝐴𝑥 , 𝐴𝑌, 𝐵1 and 𝐵2 are constant structural matrices and

80

𝑊𝑇𝑊 ≤ 1 (6.34)

which are sought to make a robust filter of the form

𝑥̂𝑘+1 = Φ𝑘𝑥̂𝑘 + Γ𝑘𝑦𝑘 (6.35)

which is related to the solutions seen in [95], [96]. This solution finds the next state, 𝑥̂𝑘+1

estimation by combing the current state estimation, 𝑥̂𝑘, and current measurements, 𝑦𝑘. The

estimator matrix Φ𝑘 is used to manipulate the current state and, Γ𝑘, is used to optimally fuse the

measurements to the state vector. Both these matrices are computed from the solution to the

filter.

 The objective of the filter is to bind the covariance of the estimator error such that

ℰ[𝑒𝑘
𝑇𝑒𝑘] ≤ 𝛾 (6.36)

where 𝛾 is some real constant and

𝑒𝑘 = 𝑥𝑘 − 𝑥̂𝑘 (6.37)

The estimator error can be expressed as

𝑒𝑘+1 = 𝑥𝑘+1 − 𝑥̂𝑘+1 (6.38)

= {[𝐴𝑘 + ∆𝐴]𝑥𝑘 + [𝐵𝑘 + ∆𝐵]𝑢𝑘 + 𝑤𝑘} − {Φ𝑘𝑥̂𝑘 + Γ𝑘([𝐶𝑘 + ∆𝐻]𝑥𝑘 + 𝑣𝑘)} (6.39)

= {[𝐴𝑘 + ∆𝐴] − Γ𝑘[𝐶𝑘 + ∆𝐶] − Φ𝑘}𝑥𝑘 − [𝐵𝑘 + ∆𝐵]𝑢𝑘 + Φ𝑘𝑒𝑘 + 𝑤𝑘 − Γ𝑘𝑣𝑘 (6.40)

= Φ𝑘𝑒𝑘 + [𝐴̃𝑘 + 𝐸̃𝑘𝑊𝐵1]𝑥𝑘 + [𝐵𝑘 + 𝐸̃𝑘𝑊𝐵2]𝑢𝑘 + 𝑤𝑘 − Γ𝑘𝑣𝑘 (6.41)

where

𝐴̃𝑘 = 𝐴𝑘 − Γ𝑘𝐶𝑘 − Φ𝑘 (6.42)

𝐸̃𝑘 = 𝐴𝑥 − Γ𝑘𝐴Y (6.43)

For the filter to work the estimator needs to be stable. If the state estimation and error evolution

from time interval k to k+1 is represented in the absence of a control input as

[
𝑥𝑘+1

𝑒𝑘+1
] = [

𝐴𝑘 + 𝐴𝑥𝑊𝐵1 0

𝐴̃𝑘 + 𝐸̃𝑘𝑊𝐵1 Φ𝑘
] [

𝑥𝑘

𝑒𝑘
] + [

1 0
1 −Γ𝑘

] [
𝑤𝑘

𝑣𝑘
] (6.44)

81

𝑒𝑘 = [0 1] [
𝑥𝑘

𝑒𝑘
] (6.45)

Then the estimator is only stable when the solution 𝑋 = 𝑋𝑇 ≤ 0 to the discrete Lyapunov

equation

[
𝐴𝑘 + 𝐴𝑥𝑊𝐵1 0

𝐴̃𝑘 + 𝐸̃𝑘𝑊𝐵1 Φ𝑘
]
𝑇

𝑋 [
𝐴𝑘 + 𝐴𝑥𝑊𝐵1 0

𝐴̃𝑘 + 𝐸̃𝑘𝑊𝐵1 Φ𝑘
] − 𝑋 ≤ 0 (6.46)

exists for all allowable uncertainties [74], [97]. Details of the Lyapunov equations are introduced

in Chapter 6. From the bounded real lemma it can be shown that the evolution of estimator errors

can be bounded by 𝛾>0 such that

𝜀 = ‖𝑒𝑘‖∞ < 𝛾 (6.47)

if the discrete algebraic Riccati equation

[
𝐴𝑘 0

𝐴̃𝑘 Φ𝑘
]
𝑇

𝑍 [
𝐴𝑘 0

𝐴̃𝑘 Φ𝑘
] − 𝑍 + ([

𝐴𝑘 0

𝐴̃𝑘 Φ𝑘
]
𝑇

𝑍 [
𝐴𝑥𝑊𝐵1

𝐸̃𝑘𝑊𝐵1
])…

…× (𝛾2𝐼 − [
𝐴𝑥𝑊𝐵1

𝐸̃𝑘𝑊𝐵1
]
𝑇

𝑍 [
𝐴𝑥𝑊𝐵1

𝐸̃𝑘𝑊𝐵1
])

−1

([
𝐴𝑘 0

𝐴̃𝑘 Φ𝑘
]
𝑇

[
𝐴𝑥𝑊𝐵1

𝐸̃𝑘𝑊𝐵1
]) ≤ 0 (6.48)

has a solution 𝑍 = 𝑍𝑇 for any 𝛾>0 where

(𝛾2𝐼 − [
𝐴𝑥𝑊𝐵1

𝐴̃𝑘𝑊𝐵1
]
𝑇

𝑍 [
𝐴𝑥𝑊𝐵1

𝐴̃𝑘𝑊𝐵1
]) ≤ 0 (6.49)

6.3.1.1. Specific Formulation

Initially the solution to the Kalman filter presented above was solved by partitioning the

solutions to the Lyapunov and Riccati equations, X and Z as

𝑋 = [
𝑋11 𝑋12

𝑋12
𝑇 𝑋22

] , 𝑍 = [
𝑍11 𝑍12

𝑍12
𝑇 𝑍22

] (6.50)

The fully expanded equation based on the partition could be simplified by using the positive

definite covariances Q and R and would result in two decoupled discrete Riccati equations that

can be formed recursively as similar to the ones in [97]–[99] as

82

Σ𝑘+1 = 𝐴𝑘Σ𝑘𝐴𝑘
𝑇 + 𝐴𝑘Σ𝑘𝐵1

𝑇(𝛾2𝐼 − 𝐵1Σ𝑘𝐵1
𝑇)−1𝐵1Σ𝑘𝐴𝑘

𝑇 +
1

𝛾
𝐴𝑥𝐴𝑥

𝑇 + 𝑄 (6.51)

Υ𝑘+1 = 𝐴𝑘Ξ𝑘𝐴𝑘
𝑇 + 𝑀𝑘N𝑘

−1𝑀𝑘
𝑇 + +

1

𝛾
𝐴𝑥𝐴𝑥

𝑇 + 𝑄 (6.52)

where

Ξ𝑘 = (Υ𝑘
−1 − 𝛾𝐵1

𝑇B1)
−1 (6.53)

M𝑘 = 𝑅 +
1

𝛾
𝐴Y𝐴Y

𝑇 + 𝐴𝑘Ξ𝑘𝐴𝑘
𝑇 (6.54)

N𝑘 = 𝐴𝑘Ξ𝑘𝐶𝑘
𝑇 +

1

𝛾
𝐴𝑥𝐴Y

𝑇 (6.55)

The Kalman matrices only depend on the solution to the second Riccatti equation and are defined

as

𝛤𝑘 = 𝑀𝑘𝑁𝑘
−1 (6.56)

𝛷𝑘 = [𝐴𝑘 − 𝛤𝑘𝐶𝑘] [𝐼 +
1

𝛾
𝛶𝑘𝐵1

𝑇(𝐼 − 𝛾𝐵1𝛶𝑘𝐵1
𝑇)] (6.57)

The designer is left to find covariances Q and R as well as the uncertainty bounds 𝐴𝑥 , 𝐴Y, 𝐵1 and

𝛾. If there is no uncertainty in the linearization of the system, or 𝐴𝑥 = 𝐴𝑦 = 𝐵1 = 0, this reduces

to standard Kalman filter.

6.4. Combined Robust State Estimation and Robust Path Tracking Control

In implementation, as shown in the appended code, the robust estimator outlined above and

the controller, shown in Chapter 5, are combined in seven steps:

83

Figure 6.1: Control flow chart

84

CHAPTER 7. EXPERIMENTAL AND SIMULATION RESULTS

This chapter presents the results from the improved GPS algorithm, simulations of the

dynamic model and experimentation of the combined control algorithm and filter.

7.1. GPS Algorithm

Chapter 3 explained the errors in the GPS systems that are amplified by the satellite

selection used to find a position fix. Chapter 4 then goes into detail on the calculations used in

the Copernicus II receiver for a satellite’s ECEF coordinates. Chapter 4 then gave a background

on the least-squares algorithm commonly used to estimate the system of equations used in GPS

trilaterations and explains other numerical methods that may improve the solution for the

estimation to the set of equations. This chapter details the selection method and used and the

results for that selection method in the least squares, Newton’s, and the BFGS methods for

estimation of the solution. These are all compared to the coordinates given by the Copernicus II

receiver.

7.1.1. GPS Improvement Methods

As noted in Chapter 3 most of the signals for the satellites have a strength that in the

range of 2 to 4. In this experiment the satellite selection will be limited to the signal strengths

between 2 and 4 in the least squares, Newton’s, and BFGS methods for estimating a solution to a

set of equations. It is hypothesized that by limiting the selection of satellites to a strength of 2 to

4 the signal strength will become more precise even if the solution becomes less accurate. It is

also hypothesized that Newton’s and the BFGS methods will improve the precision of the

trilateration because they ignore less terms leading to less approximation. The program

developed to test the GPS algorithm is in APPENDIX A.

85

7.1.2. GPS Results

While attempting to achieve a position fix from a custom selection of satellite signals it

was noted that the calculated satellite positions were incorrect. The satellite positions were

calculated as seen in Chapter 4 from the data sent from the Copernicus II receiver and compared

to the expected position based on the two line element (TLE) files downloaded by [100] and then

converted to satellite positions by [101]. A sample of the expected position versus the actual

position can be seen in Table 7.1.

Table 7.1: Satellite ECEF coordinates

 Calculated from Receiver Calculated from TLE

 X Y Z X Y Z Error Uk

PRN

4

8:44 AM -15459101 1969198 21176367 -15436979 2120922 21179065 7.71 1.504

8:48 AM -15483504 1265138 21217767 -15467267 1455204 21218911 15.02 1.541

8:53 AM -15532920 217814 21226803 -15523218 534195 21229892 145.25 1.595

PRN

14

8:44 AM -10158587 11132505 -21640717 -11427077 -19492172 14315491 321.62 -1.491

8:48 AM -9522484 11613871 -21674408 -11040759 -19290712 14885974 315.46 -1.515

8:53 AM -7698498 12837871 -21702095 -10478473 -19006647 15645628 304.05 -1.581

The position calculations from the TLE files should not be considered entirely accurate

because time used to calculate the TLE position will always be slightly different than the actual

time the GPS receiver actually received the satellite information for the satellite calculation. The

TLE positions can however provide an estimate of the general vicinity the satellite should be

located. As can be seen in Table 7.1, sometimes the two calculated positions for a given satellite

are within 5% even, many times the satellite positions are extremely different.

7.2. Control and Robust Filter Performance Results Obtained on the Developed Model

These results will be broken into two sections: results based on model and control

simulation only, without using the developed robust filter, and experimental results on the

vehicle combining all components

86

7.2.1. Simulation Results

A MATLAB code used in simulating the developed model using the developed controller

and the robust filter is shown in APPENIX B. Since there were no sensors to read, the robust

filter essentially runs without producing anything. So these results will only show the

performance of the vehicle and of the controller only. Three types of paths were evaluated as

shown in Table 7.2 and the performance was evaluated based on the average root-mean-squared

(rms) tracking error per step,

𝑒𝑟𝑚𝑠 =
√∑[(𝑋𝑟−𝑥𝑝)2+(𝑌𝑟−𝑦𝑝)2]

𝑁𝑆𝑇𝐸𝑃𝑆
 (7.1)

Where (𝑋𝑟, 𝑌𝑟) are the simulated coordinates tracked by the robot and (𝑥𝑝, 𝑦𝑝) are the desired

path coordinates

Table 7.2: Simulation performance

Path RMS tracking error per step (m)

Semicircle 0.8512

Zigzag 0.4824

Sinusoid 1.4228

87

Figure 7.1: Semicircle path

Figure 7.2: Zigzag path

88

Although the numerical simulation results for the sinusoid path shows failure to turn from

decreasing Northing to increasing Northing as shown in Figure 7.4, the simulation was still able

to fairly capture the behavior within three quarters of the cycle before that failure happened. For

the part where the path was tracked sufficiently tracked as shown in Figure 7.4, the average rms

tracking error was within the robot size. Failure to change the northing direction from negative to

positive is not attributed to the model or the control itself but rather the way trigonometric

functions were handled in the numerical simulator.

Figure 7.3: Full sinusoid path

89

Figure 7.4: Partial sinusoid path

7.2.2. Control and Filter Experimentation

The control experiments were conducted on THUNDAR the autonomous snowplow

which was designed in [102] and is pictured below.

Figure 7.5: THUNDAR the autonomous snow plow

90

7.2.3. Experimental Vehicle

The vehicle was designed to operate with the left side wheels and the right side wheels to

be controlled independently as seen in Figure 7.6. Each side is driven by a Motenergy ME0708

DC motor which is capable of supplying 4.5 KW at 24V.

Figure 7.6: Vehicle drivetrain [102]

Each motor has a total of a 20:1 speed reduction to each wheel through a Baldor

GCF5X02BB 5:1 gear reduction and then an additional 4:1 speed reduction through chains and

gears as shown in Figure 7.7.

Figure 7.7: Motor reduction [102]

91

The circuitry is split into two main sections, one part which drives the high voltage DC

motors and one low voltage circuit which contains the sensors and the microcontrollers

necessary to conduct the control algorithm.

On the high voltage side a RoboteQ VDC2450 motor driver takes PWM signals from the

low voltage circuit and converts it to the high voltage PWM necessary to drive the 24V wheel

DC motors. A RoboteQ LDC2203C motor driver is drive the 12V winch and linear actuator used

on the snowplow blade based on signals from the low voltage circuit. The high voltage circuit

contains two safety kill switches shown in Figure 7.8.

Figure 7.8: High voltage circuit [102]

92

There is one manual safety switch and one remote safety switch. The high voltage side also

contains the remote switch which sends a 12V signal to the low voltage board to switch between

autonomous and remote control modes.

 The low voltage side consists of a circuit board which was developed for this study and is

shown in Figure 7.9 and pictured in Figure 7.10. Further detail of the circuit is shown in the

APPENDIX C.

Figure 7.9: Circuit board diagram

93

Figure 7.10: Picture of circuit board

The sensors used on the board and which measurements they correspond to are shown

below in Table 7.3.

Table 7.3: Measurement vector and corresponding sensors

Measurement Vector Sensor

Nl Yumo E6B2-CWZ3E Encoder

Nr Yumo E6B2-CWZ3E Encoder

ax1 STEVAL-MKI123V1 IMU

ax2 STEVAL-MKI123V1 IMU

ωz1 STEVAL-MKI123V1 IMU

ωz2 STEVAL-MKI123V1 IMU

X Copernicus II GPS

Y Copernicus II GPS

94

The sensors used correspond the sensor measurements required for the filtering in

Chapter 5 and the control algorithm in Chapter 6. It is important to note that the encoders are

only connect to the circuit board, the encoders themselves are mounted directly to one wheel on

each side of the robot. There are two Coretex M4 microcontrollers on board. One is used to

compute the custom GPS algorithm and the other is used to process the other sensors and carry

out the control program. The code used for the control program is shown in APPENDIX D.

7.2.4. Experimental Results

In experimentation the control algorithm was not able to reliably track the desired path of

the robot because most of the time the controller would saturate and fail to respond to the desired

path waypoints. The robot was experimented with several times with different definitions of

waypoints, but all the time the system would fail. The research took time to reexamine the whole

control system and found that while the controller part (equations (5.112) through (5.117)) had

no problems, i.e. if it got the proper state vector, then it would respond well as desired. The

problem was found in the filter that was formulated in Chapter 5. This filter exhibited weak

convergence in calculating the Ricatti equation (equations (6.35) and (6.53) through (6.57)

 and often would result in singular matrices that would force the estimated state vector to be

infinity. A sample of the state vector, raw sensor measurements and control vector can be seen in

Table 7.4, Table 7.5, and Table 7.6 respectively.

95

Table 7.4: Raw measurement vector

Time(ms) Ax1 Gz1 Ax2 Gz2 X Y L Enc R Enc

28092.29 0.00000 0.0000 -83.3 0.0000 -2.6 3 0 0

30173.63 0.00000 0.0000 -83.3 0.0000 -2.9 4 0 0

31688.04 0.00000 0.0000 -83.3 0.0000 -3.8 5 0 0

32734.11 0.00000 0.0000 -83.3 0.0000 -3.8 5 0 0

33772.35 0.00000 0.0000 -83.3 0.0000 -3.8 5 0 0

34810.46 -0.00508 0.0000 -9160.0 0.0000 -3.8 5 0 0

36360.1 0.00000 0.0000 -83.3 0.0000 -3.8 5 0 0

37399.13 -0.00762 0.0012 -9160.0 0.0000 -3.8 5 0 0

38438.26 -0.01271 0.0000 -8910.2 0.0000 -6.5 5 0 0

40034.88 0.00000 0.0000 0.0 0.0000 -6.5 5 0 0

41651.49 -0.01017 0.0000 -8660.4 0.0000 -6.5 5 0 0

42699.6 0.00000 0.0000 -83.3 0.0000 -6.5 5 0 0

43745.71 84.22366 0.0300 -5354.0 0.0312 -4.8 6.5 358 511

45022.32 0.00000 0.0000 83.3 0.0000 -4.8 6.5 859 828

46272.16 -75.5806 -75.446 721.0 -75.142 -4.8 6.5 -255 198

47380.48 -0.65565 0.0012 -13.7 0.0012 -4.8 6.5 -189 153

48916.06 0.00000 0.0000 -82.6 0.0000 -4.8 6.5 1188 1158

49957.26 -0.00508 0.0336 -4714.0 0.0240 -4.8 6.5 1896 2084

51279.8 0.00000 0.0000 0.7 0.0000 -4.8 6.5 905 850

52552.92 0.65311 0.0012 -83.3 0.0012 2.0 2.5 -217 157

53810.78 0.00000 0.0012 5.9 0.0012 2.0 2.5 -233 155

55151.99 21.47649 0.0504 -1869.8 0.0492 2.0 2.5 5 0

56197.21 0.00000 0.0000 -83.3 0.0000 2.0 2.5 0 0

57242.67 0.00000 0.0000 -83.3 0.0000 -18.1 -8 0 0

58828.03 0.00000 0.0036 -9409.9 0.0000 -17.9 -6.5 0 0

60451.8 0.00000 0.0000 -83.3 0.0000 -17.9 -6.5 0 0

62078.71 0.00000 0.0000 -83.3 0.0000 -17.9 -6.5 0 0

63123.75 0.00000 0.0000 -83.3 0.0000 -19.2 -7.5 0 0

96

Table 7.5: Estimated state vector

Time(ms) vl vr vx Ω θ XE YE

28092.29 0.0000 0.0000 -0.000077 0 0 2.6249 -2.9999

30173.63 0.0000 0.0000 -0.000006 697.134 349.3932 -57.5 -168.958

31688.04 0.0000 0.0000 -0.000062 0 0 3.8125 -5.0001

32734.11 0.0000 0.0000 -0.000027 0 -8E-06 3.8125 -4.99996

33772.35 0.0000 0.0000 -0.000078 0 0 3.8124 -4.9999

34810.46 0.0000 0.0000 0.059323 251.026 -9885.08 -3443 50277.79

36360.1 0.0000 0.0000 -0.004451 0 -6.4E-05 3.812 -4.99259

37399.13 0.0000 0.0000 -0.000046 -8E-06 -3E-06 3.8124 -4.99995

38438.26 0.0000 0.0000 -3.64E+08 1.8E+09 5.31E+08 -4E+08 8.43E+08

40034.88 0.0000 0.0000 53851340 110.501 786488.6 4E+07 -8E+07

41651.49 0.0000 0.0000 -7244002 -3E+15 -3.2E+14 -7E+14 -5.6E+14

42699.6 0.0000 0.0000 -77852240 4.9E+09 -2.2E+09 -1E+09 3.38E+08

43745.71 0.0172 0.0196 2.462E+12 -1E+18 -5.2E+17 -5E+16 3.74E+17

45022.32 0.0687 0.0709 -1.16E+15 -2E+19 -5.1E+18 2E+18 -2.4E+17

46272.16 0.0503 0.0646 1.428E+09 -1E+12 2.24E+12 1E+12 8.3E+11

47380.48 -0.027 0.0219 23049.697 -593.75 682.9127 26099 15915.79

48916.06 0.0180 0.0348 -47165.89 1.4E+13 6.98E+12 4E+12 -1E+13

49957.26 0.0912 0.1003 -7.98E+11 1.1E+18 7.41E+17 3E+17 2.41E+17

51279.8 0.0633 0.0675 -3.43E+11 -8E+17 -5.4E+17 6E+12 3E+17

52552.92 0.0526 0.0626 -1.4E+18 -1E+18 1.05E+18 2E+19 -1.1E+18

53810.78 -0.023 0.0168 -1.06E+17 -5E+21 -6.7E+21 1E+21 -2.8E+21

55151.99 -0.010 0.0068 -1.03E+16 -4E+10 -1.5E+14 -6E+15 1.59E+16

56197.21 0.0003 0.0000 4.615E+12 -2E+19 -4E+19 2E+18 -2E+18

57242.67 0.0000 0.0000 6.872E+09 -608999 2.96E+08 9E+09 -7.7E+09

58828.03 0.0000 0.0000 -2.5E+08 -33395 -3655715 -3E+08 2.68E+08

60451.8 0.0000 0.0000 47632308 -576843 548882.4 6E+07 -5.1E+07

62078.71 0.0000 0.0000 29255236 3.7E+14 -1.4E+14 9E+13 1.88E+13

63123.75 0.0000 0.0000 -11687678 -2149.1 -167909 -2E+07 -4359124

97

Table 7.6: Control output and algorithm convergence

 Control Output Conrol Conv Filter Conv

Time(ms) U1 U2 Itt_c Er_c Itt_f Er_f

28092.29 0.43593 0.36253 3 1.844721 75 16587706368

30173.63 211.486 -213.32 3 1.816249 75 1.58049E+11

31688.04 1.#QNAN0 1.#QNAN0 563 1.#QNAN0 75 18879340544

32734.11 0.68747 0.57421 3 1.82911 75 3.385E+11

33772.35 0.68747 0.57419 3 1.829115 75 5.94185E+11

34810.46 -7311.7 -316.52 3 1.829116 75 2.32962E+13

36360.1 1.#QNAN0 1.#QNAN0 600 1.#QNAN0 75 1703359616

37399.13 0.6878 0.57374 3 8.250623 75 4.37957E+13

38438.26 3.9E+08 -5E+08 3 1.829115 75 7.54349E+11

40034.88 1.#QNAN0 1.#QNAN0 654 1.#QNAN0 75 54068789248

41651.49 1.#QNAN0 1.#QNAN0 682 1.#QNAN0 75 3.33201E+12

42699.6 1.#QNAN0 1.#QNAN0 8 1.#QNAN0 75 12194299904

43745.71 1.#QNAN0 1.#QNAN0 12 1.#QNAN0 75 4420327424

45022.32 -1.#INF00 1.#INF00 304 1.#QNAN0 75 15596531712

46272.16 -1.#INF00 1.#INF00 276 1.#QNAN0 75 2.07642E+12

47380.48 1.#QNAN0 1.#QNAN0 80 1.#QNAN0 75 38445314048

48916.06 1.#QNAN0 1.#QNAN0 585 1.#QNAN0 75 1927557760

49957.26 1.#QNAN0 1.#QNAN0 8 1.#QNAN0 75 21354545152

51279.8 -1.#INF00 1.#INF00 366 1.#QNAN0 75 25197451264

52552.92 -1.#INF00 1.#INF00 303 1.#QNAN0 75 2.13941E+12

53810.78 -1.#INF00 1.#INF00 283 1.#QNAN0 75 4845914112

55151.99 -1.#INF00 1.#INF00 392 1.#QNAN0 75 29447045120

56197.21 1.#QNAN0 1.#QNAN0 7 1.#QNAN0 75 1.2458E+18

57242.67 1.#QNAN0 1.#QNAN0 8 1.#QNAN0 75 1.43464E+11

58828.03 1.#QNAN0 1.#QNAN0 647 1.#QNAN0 75 12911873024

60451.8 1.#QNAN0 1.#QNAN0 684 1.#QNAN0 75 205733248

62078.71 1.#QNAN0 1.#QNAN0 693 1.#QNAN0 75 26019204

63123.75 1.#QNAN0 1.#QNAN0 8 1.#QNAN0 75 33034330112

It is important to note that the raw sensor measurements seen here are not directly used in

the as the measurement vector. In the control program a real time operating system was used and

the control function was called every 0.785 seconds. This time period was too large for reliable

IMU to be taken so the IMU was sampled at a higher rate and then the average of all the readings

98

were used as the acceleration and the angular velocity readings. The IMU was sampled

approximately 112 times for every cycle of the control function. It should also be noted that the

second accelerometer was ignored because of bad readings. The measurement vector then simply

read the first accelerometer twice. Also, the raw UTM coordinates were very large so the

coordinate system was adjusted to the starting point of the control path. Reasons for the weak

convergence of the filter are discussed in the conclusions chapter.

99

CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS

This chapter outlines the conclusions based on the results in the previous chapter and

make recommendations for future studies.

8.1. GPS Algorithm

The results for the GPS algorithm show that certain angles used to calculate the satellite

position change over time and overtime can change which quadrant the angle lies in. When

switching past multiples of
𝜋

2
 either the cosine or sine function will change in positivity which

can change the validity of the equations in used. This behavior is highlighted by satellite 4 in the

GPS results which starts with a good satellite position. When the corrected argument of latitude,

uk, switches from less than to greater than
𝜋

2
 between time steps 2 and 3. While it is conceivable

to wait for four satellite positions to be calculated correctly this research aims to study the

accuracy of the position fix over a long period of time and this would not be practical.

Because the changing angles can change the validity of the equations it was concluded

that the information sent from the Copernicus II receiver either needs to be bounded within a

range or a correct reference position needs to be used. This was seen for sure in the corrected

argument of latitude but it is likely true for other angles used in calculation as well. The

information in the Copernicus II manuals did not indicate any special references in the

information the receivers calculated but they may still be there. Attempts to gather information

from Copernicus II proved difficult and time was not sufficient to find the correct ranges and

references to always find an accurate satellite position so this portion of the research was tabled

for now. In future research it is suggest a receiver with better documentation on gathered

information be used.

100

8.2. Dynamic Model Simulations

 The model simulations performed very well and showed that the dynamic model was

sufficiently able to capture the dynamics of the vehicle. Through the path tracking algorithm the

robot was able to maintain the course within 3/4th of the overall length which means part of the

vehicle should have intersected the course at all times. There was however a problem with the

numerics of the control algorithm where the robot lost its way while completing the sinusoidal

path. This is likely due to the change in the direction of the robot and does not show a problem

with the dynamic model which was created.

8.3. Control and Filter Experimentation

In controlling the robot experimentally the filter was unable to converge strongly and this

created errors in the state which the robot was not able to overcome during experimentation. This

could be due to the system matrix terms, which are dependent on the heading angle, turning to

zero during the system update which could cause the system to become unobservable and

possibly uncontrollable. Specifically these terms relate to the X and Y coordinates of the robot. In

practice the uncontrollability would be overcome because the robot would be running initially

and it wouldn’t be able control the X and Y coordinates and it would still be controlling the

velocities. The robot would then move past the point where it is uncontrollable and keep on

going. The observability, however, makes it so the state estimation has an error and this could

cause the system to crash. There are other factors as well such as not having accurate knowledge

of the robot’s physical parameters and not having accurate representations of the noise

characteristics of the sensors. It is recommended that in future studies the system matrix is

monitored and if it becomes unobservable a small value is used instead of zero to maintain

101

observability. It is also recommended that the robot and sensor parameters are accurately

measured.

8.4. Concluding Remarks

In conclusion this study had four main goals. The first goal of creating a model well

suited for high friction surfaces was completed and verified through simulation results. The

second goal was to characterize and reduce errors in low cost GPS and IMU units. This was

partially completed by being able to characterize the errors inherent in low cost GPS units. The

work for reducing the error has yet to be completed because the satellite positions were only

sometimes able to be found. This goal was also partially completed by the formulation of the

robust Kalman filter. The filter had issues with observability but initial formulations were tested

and recommendations for improvements were made. The third goal was also partially completed

because the control algorithm was formulated and was able to converge if the state was known,

however it was not able to be tested full because the state vector was not able to be found

through the Kalman filter. The final goal of experimentation was started and it was found that the

initial formulation of the Kalman filter was preventing the experiments from succeeding. In

future studies the model and control algorithm should work if the model is made to work in the

Kalman filter.

102

REFERENCES

[1] V. Godon and N. Godon, “Fargo , North Dakota Climate.” National Weather Service

Eastern North Dakota, Grand Forks, North Dakota, 2002.

[2] G. Rutherford, N. Marcy, and A. Mills, “The Hazard Screening Report: Yard and Garden

Report,” Consumer Product Safety Commission, 2003.

[3] A. Mandow and J. Martinez, “Experimental kinematics for wheeled skid-steer mobile

robots,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007,

pp. 1222–1227.

[4] J. Yi, H. Wang, and J. Zhang, “Kinematic modeling and analysis of skid-steered mobile

robots with applications to low-cost inertial-measurement-unit-based motion estimation,”

IEEE Trans. Robot., vol. 25, no. 5, pp. 1087–1097, 2009.

[5] J. Pentzer, S. Brennan, and K. Reichard, “On-Line Estimation of Vehicle Motion and

Power Model Parameters for Skid-Steer Robot Energy Use Prediction,” Proc. 2014 Am.

Control Conf., pp. 2786–2791, 2014.

[6] V. Nazari and M. Naraghi, “Sliding Mode Fuzzy Control of a Skid Steer Mobile Robot for

Path Following,” in IEEE/RSJ International Conference on Control, Automation,

Robotics, and Vision, 2008, no. December, pp. 549–554.

[7] R. E. Colyer and J. T. Economou, “Soft modelling and fuzzy logic control of wheeled

skid-steer electric vehicles with steering prioritisation,” Int. J. Approx. Reason., vol. 22,

no. 1–2, pp. 31–52, 1999.

[8] Z. Yu, H. Jibin, L. Xueyuan, L. Shupeng, and G. Jing, “A linear lateral dynamic model of

skid steered wheeled vehicle,” 2013 IEEE Intell. Veh. Symp., no. 4, pp. 964–969, Jun.

2013.

[9] G. Shuang and N. Cheung, “Skid Steering in 4-Wheel-Drive Electric Vehicle,” IEEE

Power Electron. Drive Syst., pp. 1548–1553, 2007.

[10] Z. Jian, W. Shuang-shuang, L. Hua, and L. Bin, “The sliding mode control based on

extended state observer for skid steering of 4-wheel-drive electric vehicle,” 2012 2nd Int.

Conf. Consum. Electron. Commun. Networks, vol. 2, pp. 2195–2200, Apr. 2012.

[11] W. Yu and O. Chuy, “Analysis and experimental verification for dynamic modeling of a

skid-steered wheeled vehicle,” IEEE Trans. Robot., vol. 26, no. 2, pp. 340–353, 2010.

[12] W. Yu and O. Chuy, “Dynamic modeling of a skid-steered wheeled vehicle with

experimental verification,” in IEEE/RJS International Conference on Intelligent Robots

and Systems, 2009, pp. 4212–4219.

103

[13] A. R. Everett, “Sensors for Mobile Robots : Theory,” IEEE Trans. Robot. Autom., vol. 12,

pp. 922–923, 1996.

[14] SICK AG, “Technical Documentation LMS200/211/221/291 Laser Measurement

Systems,” 2006.

[15] Hagisonic Co. Ltd, “Hagisonic StarGazer Robot Localization System,” 2014.

[16] S. Pace, G. Frost, I. Lachow, D. Frelinger, and D. Fossum, The global positioning system:

assessing national policies. Santa Monica, CA, 1995.

[17] T. H. Witte and a M. Wilson, “Accuracy of non-differential GPS for the determination of

speed over ground.,” J. Biomech., vol. 37, no. 12, pp. 1891–8, Dec. 2004.

[18] J. S. Subirana, J. M. J. Zornoza, and M. Hernández-Pajares, GNSS Data Processing

Volume I: Fundamentals and Algorithms, vol. I. Noordwijk, Netherlands: ESA

Communications, 2013.

[19] C. Pinana-Diaz, “GPS multipath detection and exclusion with elevation-enhanced maps,”

in International IEEE Conference on Intelligent Transportation Systems, 2011, pp. 19–24.

[20] J. Meguro, T. Murata, J. Takiguchi, Y. Amano, and T. Hashizume, “GPS Multipath

Mitigation for Urban Area Using Omnidirectional Infrared Camera,” IEEE Trans. Intell.

Transp. Syst., vol. 10, no. 1, pp. 22–30, Mar. 2009.

[21] T. Kos, I. Markezic, and J. Pokrajcic, “Effects of multipath reception on GPS positioning

performance,” in International Symposium ELMAR, 2010, pp. 399–402.

[22] E. Wang, “Research on improving accuracy of GPS positioning based on particle filter,”

in IEEE 8th Conference on Industrial Electronics and Applications (ICIEA), 2013, vol. 1,

pp. 1167–1171.

[23] S. Yamaguchi and T. Tanaka, “GPS standard positioning using Kalman filter,” in SICE-

ICASE, 2006. International Joint Conference, 2006, no. 3, pp. 1351–1354.

[24] A. Narvesen and M. Selekwa, “Reduction of GPS Noise for Precision Control of Robot

Navigation in Confined Areas,” in International Mechanical Engineering Conference,

2014.

[25] M. Bruch, G. Gilbreath, J. Muelhauser, and J. Lum, “Accurate waypoint navigation using

nondifferential GPS.” Space and Naval Warfare Sytems Center, San Diego, California,

2002.

[26] J. Borenstein and L. Feng, “Gyrodometry: a new method for combining data from gyros

and odometry in mobile robots,” Int. Conf. Robot. Autom., vol. 1, no. April, pp. 423–428,

1996.

104

[27] R. Bogue, “MEMS sensors: past, present and future,” Sens. Rev., vol. 27, pp. 7–13, 2007.

[28] C. Acar and A. M. Shkel, “Experimental evaluation and comparative analysis of

commercial variable-capacitance MEMS accelerometers,” J. Micromechanics

Microengineering, vol. 13, pp. 634–645, 2003.

[29] W. Ang and S. Khoo, “Physical model of a MEMS accelerometer for low-g motion

tracking applications,” in International Conference on Robotics and Automation, 2004,

no. April, pp. 1345–1351.

[30] H. Hyvönen, “Thermomechanical and Mechanical Characterization of a 3-Axial MEMS

Gyroscope,” M.S. Thesis, Dept. Elect. Eng., Aalto University, Helsinky, 2011.

[31] L. Dachuan, C. Xiaozhu, C. Jian, L. Longtao, Z. Qiancheng, Y. Zhenchuan, and Y.

Guizhen, “Research on temperature dependent characteristics and compensation methods

for digital gyroscope,” Proc. 3rd Int. Conf. Sens. Technol. ICST 2008, no. 4, pp. 273–277,

2008.

[32] M. Graham and G. J. Martin, “Gyroscopes may cease spinning,” IEEE Spectr., vol. 23, pp.

48–53, 1986.

[33] R. B. Northrop, Introduction to Instrumentation and Measurements, Second Edi. Boca

Raton, FL: Taylor & Francis, 2005.

[34] V. Vali and R. W. Shorthill, “Fiber ring interferometer.,” Appl. Opt., vol. 15, no. 5, pp.

1099–1100, 1976.

[35] B. Shamah, “Steering and control of a passively articulated robot,” Proc. SPIE, vol. 4571,

pp. 96–107, 2001.

[36] R. Wang, H. Zhang, J. Wang, F. Yan, and N. Chen, “Robust lateral motion control of

four-wheel independently actuated electric vehicles with tire force saturation

consideration,” J. Franklin Inst., vol. 352, no. 2, pp. 645–668, 2015.

[37] M. F. Selekwa and J. R. Nistler, “Path tracking control of four wheel independently

steered ground robotic vehicles,” IEEE Conf. Decis. Control Eur. Control Conf., pp.

6355–6360, Dec. 2011.

[38] M. Woods and J. Katupitiya, “Modelling of a 4WS4WD vehicle and its control for path

tracking,” IEEE Symp. Comput. Intell. Control Autom., pp. 155–162, 2013.

[39] R. Oftadeh, “A novel time optimal path following controller with bounded velocities for

mobile robots with independently steerable wheels,” in IEEE/RJS International

Conference on Intelligent Robots and Systems, 2013, pp. 4845–4851.

105

[40] S. Sakai and Y. Hori, “Advantage of electric motor for anti-skid control of electric

vehicle,” Eur. Power Electron. J., vol. 11, no. 4, pp. 26–32, 2001.

[41] M. S. Saidonr, H. Desa, and M. N. Rudzuan, “A differential steering control with

proportional controller for an autonomous mobile robot,” Proc. - 2011 IEEE 7th Int.

Colloq. Signal Process. Its Appl. CSPA 2011, pp. 90–94, 2011.

[42] Y. Z. Y. Zhang, D. H. D. Hong, J. H. Chung, and S. a. Velinsky, “Dynamic model based

robust tracking control of a differentially steered wheeled mobile robot,” in Proceedings

of the American Control Conference, 1998, pp. 850–855.

[43] J. Wong and C. Chiang, “A general theory for skid steering of tracked vehicles on firm

ground,” Proc. Inst. Mech. Eng., vol. 215, no. D, pp. 343–355, 2001.

[44] S. Jayasuriya, “Modeling and motion stability analysis of skid-steered mobile robots,”

2009 IEEE Int. Conf. Robot. Autom., pp. 4112–4117, May 2009.

[45] J. Aslam, S.-Y. Qin, and M. A. Alvi, “Fuzzy sliding mode control algorithm for a four-

wheel skid steer vehicle,” J. Mech. Sci. Technol., vol. 28, no. 8, pp. 3301–3310, 2014.

[46] E. Mohammadpour and M. Naraghi, “Robust Adaptive Stabilization of Skid Steer

Wheeled Mobile Robots Considering Slipping Effects,” Adv. Robot., vol. 25, no. 1–2, pp.

205–227, 2011.

[47] E. Mohammadpour, M. Naraghi, and M. Gudarzi, “Posture stabilization of skid steer

wheeled mobile robots,” 2010 IEEE Conf. Robot. Autom. Mechatronics, RAM 2010, pp.

163–169, 2010.

[48] A. Narvesen and M. Selekwa, “Dynamics and Control of four wheeled differentiall

steered UGVs,” in International Mechanical Engineering Conference, 2014, pp. 1–6.

[49] Motenergy Inc., “Motenergy ME0708 Performance Curves,” 2008.

[50] J. R. Movellan, “DC Motors,” 2010. [Online]. Available:

http://mplab.ucsd.edu/tutorials/dc.pdf.

[51] H. B. Pacejka and E. Bakker, “The magic formula tyre model,” Veh. Syst. Dyn., vol. 21,

no. S1, pp. 1–18, 1992.

[52] ARINC Research Corporation, “Navstar GPS Space Segment / Navigation User

Interfaces,” El Segundo, CA, Tech. Rep. IS-GPS-200 Rev C, 2000.

[53] GPS NAVSTAR, “Global Positioning System Standard Positioning Service Signal

Specification,” 1995.

[54] Trimble Navigation Ltd., “Copernicus ® II GPS Receiver Reference Manual,” 2009.

106

[55] E. K. P. Chong and S. H. Zak, An Introduction to Optimization, 4th ed. Hoboken, New

Jersey: Wiley, 2013.

[56] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes: The Art of

Scientific Computing. New York, New York: Cabridge University Press, 2002.

[57] D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming. New York, New York:

Springer, 2008.

[58] D. Kincaid and W. Cheney, Numerical Analysis, vol. 506. Belmont, California:

Brooks/Cole Publishing Company, 1991.

[59] B. R. Fletcher and M. J. D. Powell, “A rapidly convergent descent method for

minimization,” no. 1, 1960.

[60] W. C. Davidon, “Variance algorithm for minimization,” Comput. J., vol. 10, no. 4, pp.

406–410, 1968.

[61] C. G. Broyden, “The Convergence of a Class of Double-rank Minization Algorithms,” J.

Math. its Appl., vol. 6, pp. 76–90, 1970.

[62] R. Fletcher, “A new approach to variable metric algorithms,” Comput. J., vol. 13, no. 3,

pp. 317–322, 1970.

[63] D. Goldfarb, “A family of variable-metric methods derived by variational means,” Math.

Comput., vol. 24, no. 109, pp. 23–23, 1970.

[64] D. F. Shanno, “Conditioning of quasi-Newton methods for function minimization,” Math.

Comput., vol. 24, no. 111, pp. 647–647, 1970.

[65] B. Siciliano and O. Khatib, Handbook of Robotics, no. February 2007. Würzburg,

Germany: Springer, 2008.

[66] D. T. Greenwood, Advanced Dynamics. New York, New York: Cambridge University

Press, 2003.

[67] A. A. Shabana, Dynamics of Multibody Systems, Third. New York, New York: Cambridge

University Press, 2005.

[68] A. M. Lyapunov, General Problem of the Stability Of Motion. New York, New York:

Taylor & Francis, 1992.

[69] R. E. R. Kalman, “Contributions to the theory of optimal control,” Bol. Soc. Mat. Mex.,

vol. 5, no. 2, pp. 102–119, 1960.

107

[70] R. E. Kalman, “When Is a Linear Control System Optimal?,” J. Fluids Eng., vol. 86, no.

1, pp. 51–60, Mar. 1964.

[71] W. Levine and M. Athans, “On the determination of the optimal constant output feedback

gains for linear multivariable systems,” IEEE Trans. Automat. Contr., vol. 15, no. 1, pp.

44–48, 1970.

[72] W. Levine, T. Johnson, and M. Athans, “Optimal limited state variable feedback

controllers for linear systems,” IEEE Trans. Automat. Contr., vol. 16, no. 6, 1971.

[73] A. E. Bryson, Applied Optimal Control: Optimization, Estimation and Control. New

York, New York: Taylor & Francis, 1975.

[74] K. Zhou, J. C. Doyle, and K. Glover, “Robust and Optimal Control,” 2008.

[75] T. Glad and L. Ljung, Control Theory, 1st ed. New York, New York: Taylor & Francis,

2000.

[76] F. E. White, “Data Fusion Lexicon.” Joint Directors of Laboratories, Washingto, DC,

USA, Tech. Rep. 20100621258, 1991.

[77] T. Henderson, M. Dekhil, R. Kessler, and M. Griss, “Sensor fusion,” Control Problems in

Robotics and Automation, vol. 230. pp. 193–207, 1998.

[78] F. Castanedo, “A review of data fusion techniques.,” Sci. World J., vol. 2013, pp. 1–19,

2013.

[79] A. P. Dempster, “New Methods for Reasoning Towards Posterior Distribution Based on

Sample Data,” Ann. Math. Stat., vol. 37, no. 2, pp. 355–374, 1966.

[80] A. P. Dempster, “Upper and Lower Probabilitites Induced by a Multivalued Mapping,”

Ann. Math. Stat., vol. 38, no. 2, pp. 325–339, 1967.

[81] H. F. Durrant-Whyte, “Sensor Models and Multisensor Integration,” Int. J. Rob. Res., vol.

7, pp. 97–113, 1988.

[82] J. F. Nash, “The Bargaining Problem,” Econometrica, vol. 28, no. 2, pp. 155–162, 1950.

[83] K.-C. Chu, “Team decision theory and information structures in optimal control problems-

-Part II,” IEEE Trans. Automat. Contr., vol. 17, no. 1, 1972.

[84] Y.-C. Ho and K.-C. C. Chu, “Team decision theory and information structures in optimal

control problems--Part I,” IEEE Trans. Automat. Contr., vol. 17, no. 1, pp. 15–22, 1972.

[85] R. E. Kalman, “A new approach to linear filtering and prediction problems,” Journal of

Fluids Engineering, vol. 82. pp. 35–45, 1960.

108

[86] B. D. O. Anderson and J. B. Moore, Optimal Filtering. Englewood Cliffs, New Jersey:

Prentice-Hall, 1979.

[87] S. J. Julier and J. K. Uhlmann, “A New Extension of the Kalman Filter to Nonlinear

Systems,” AeroSense’97, vol. 3, pp. 182–193, 1997.

[88] N. J. Gordon, D. J. Salmond, and a F. M. Smith, “Novel-Approach to Nonlinear Non-

Gaussian Bayesian State Estimation,” IEEE Proceedings-F Radar Signal Process., vol.

140, pp. 107–113, 1993.

[89] Wm. M. Wonham, “On the separation theorem of stochastic control,” SIAM J. Control,

vol. 6, no. 2, pp. 312–326, 1968.

[90] X. Qing, H. R. Karimi, Y. Niu, and X. Wang, “Decentralized unscented Kalman filter

based on a consensus algorithm for multi-area dynamic state estimation in power

systems,” Int. J. Electr. Power Energy Syst., vol. 65, pp. 26–33, 2015.

[91] N. Assimakis, M. Adam, M. Koziri, S. Voliotis, and K. Asimakis, “Optimal decentralized

Kalman filter and Lainiotis filter,” Digit. Signal Process. A Rev. J., vol. 23, no. 1, pp.

442–452, 2013.

[92] A. Ahmad, M. Gani, and F. Yang, “Decentralized robust Kalman filtering for uncertain

stochastic systems over heterogeneous sensor networks,” Signal Processing, vol. 88, no.

8, pp. 1919–1928, 2008.

[93] L. Xie, Y. C. Soh, and C. E. de Souza, “Robust Kalman filtering for uncertain discrete-

time systems,” IEEE Trans. Automat. Contr., vol. 39, no. 6, pp. 1310–1314, 1994.

[94] L. El Ghaoui and G. Calafiore, “Robust Filtering for Discrtete-Time Systems with

Bounded Noise and Parametric Uncertainty,” vol. 46, no. 7, pp. 1084–1089, 2001.

[95] R. F. Souto and J. Y. Ishihara, “Enhanced robust Kalman predictor for discrete-time

systems with uncertain correlated noises,” Proc. IEEE Conf. Decis. Control, pp. 1660–

1665, 2008.

[96] X. Zhu, Y. C. Soh, and L. Xie, “Robust Kalman filter design,” Proc. 39th IEEE Conf.

Decis. Control (Cat. No.00CH37187), vol. 4, pp. 3–8, 2000.

[97] C. E. de Souza, M. Fu, and L. Xie, “Hinf Analysis and Synthesis of Discrete-Time

Systems with Time-Varying Uncertainty,” IEEE Trans. Autom. Contr., vol. 38, no. 3, pp.

1058–1061, 1993.

[98] P. Vaidyanathan, “The discrete-time bounded-real lemma in digital filtering,” IEEE Trans.

Circuits Syst., vol. 32, no. 9, pp. 918–924, 1985.

109

[99] H. K. Wimmer, “Extensions of the bounded real lemma of discrete-time systems,” Int. J.

Control, vol. 73, no. 14, pp. 1322–1328, 2000.

[100] D. S. Kelso, “TLERetriever3.” Center for Space Standards and Innovation, Colorado

Springs, Colorado, 2015.

[101] V. Okan, “GPS 2.4.” Hochschule Darmstadt University of Applied Sciences, Dieburg,

Germany, 1996.

[102] M. Canton, C. Feldner, P. Nelson, M. Stousland, M. Selekwa, and X. Wang,

“Autonomous Snowplow 2013,” 2013.

110

APPENDIX A. IMPROVED GPS TRILATERATION CODE

#include <math.h>

#include <unistd.h>

#include "stm32f4xx.h"

#include "stm32f4xx_gpio.h"

#include "stm32f4xx_pwr.h"

#include "stm32f4xx_rcc.h"

#include "stm32f4xx_usart.h"

typedef struct ret_t

{

 uint8_t Data[500];

 uint8_t Check;

} ret_t;

typedef struct inv

{

 double binv[4][4];

} inv;

typedef struct orbit_t

{

 double M[12];

 double Ek[12];

 double Thk[12];

 double ik[12];

 double uk[12];

} orbit_t;

orbit_t orbital;

typedef struct sat_dat_t

{

 //GPS Fix Data

 float X;

 float Y;

 float Z;

 float X_ECEF;

 float Y_ECEF;

 float Z_ECEF;

 float Time;

 //Sat strength data

 uint8_t NoSat;

 uint8_t Sat[12];

 float Level[12];

 //Sat health data

 uint8_t nSVs;

 uint8_t PRN[12];

 //Ephemeris Data

 float t_ephem[12];

 int IODC[12];

 float T_GD[12];

 float t_oc[12];

 float a_f2[12];

 float a_f1[12];

111

 float a_f0[12];

 uint8_t IODE[12];

 float C_rs[12];

 float delta_n[12];

 float C_uc[12];

 float C_us[12];

 float t_oe[12];

 float C_ic[12];

 float C_is[12];

 float C_rc[12];

 float OMEGADOT[12];

 float IDOT[12];

 double e[12];

 double sqrt_A[12];

 double M_0[12];

 double OMEGA_0[12];

 double i_0[12];

 double omega[12];

 double nn[12];

 double r1me2[12];

 //Raw Data

 double TOM[12];

 uint8_t TDiff[12];

 float codephase[12];

 float SigLev[12];

 float Doppler[12];

 float delta_tr[12];

 float TOW;

 //GC1

 uint16_t GC1weekn;

 uint GC1TOWms;

 int GC1Fractional;

 int GC1Altitude;

 uint8_t GC1SatID[12];

 uint8_t GC1Sig[12];

 uint16_t GC1Aqu[12];

 uint GC1Psuedo[12];

 int GC1RangeRate[12];

} sat_dat_t;

sat_dat_t Sat_Dat;

void myUSART_Init(void);

uint8_t myUSART_GetByte(void);

ret_t myUSART_TrapByte(uint8_t Trap1,uint8_t Trap2);//If normal packet

Trap2==0;

void myUSART_SendByte(uint8_t data);

void Configure_CopernicusGPS(void);

void THUNDAR_GPS(void);

void Satellite_Fix_A(void);

inv invmatrix(double a[4][4]);

void Position_Fix_A(void);

void Position_Fix_B(void);

void Position_Fix_C(void);

112

//Calculated Variables

double X_PA[4];

double Y_PA[4];

double Z_PA[4];

double T_PA[4];

double RR[4];

double PR[4];

double tk[4];

double R[4];

double X_r_BFGS;

double Y_r_BFGS;

double Z_r_BFGS;

double X_r_LS;

double Y_r_LS;

double Z_r_LS;

double X_r_NR;

double Y_r_NR;

double Z_r_NR;

//Temporary data

uint8_t ct;

float test[40];

double testd[15];

float qq[10]={1,1,1,1,1,1,1,1,1,1};

//===

void myUSART_Init(void)

{ GPIO_InitTypeDef GPIO_InitStructure;

 USART_InitTypeDef USART_InitStructure;

 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE);

 RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3, ENABLE);

 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8|GPIO_Pin_9;

 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;

 GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;

 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;

 GPIO_Init(GPIOD, &GPIO_InitStructure);

 // Connect UART pins to GPIO

 GPIO_PinAFConfig(GPIOD, GPIO_PinSource8, GPIO_AF_USART3); // TX

 GPIO_PinAFConfig(GPIOD, GPIO_PinSource9, GPIO_AF_USART3); // RX

 // Initialize USART

 USART_InitStructure.USART_BaudRate = 38400; //Default baud rate

 USART_InitStructure.USART_WordLength = USART_WordLength_8b; // 8

bits

 USART_InitStructure.USART_StopBits = USART_StopBits_1; // 1 stop bit

 USART_InitStructure.USART_Parity = USART_Parity_No; //no parity

113

 USART_InitStructure.USART_HardwareFlowControl =

USART_HardwareFlowControl_None; //No hardware flow control

 USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;

 /* Configure USART */

 USART_Init(USART3, &USART_InitStructure);

 /* Enable the USART */

 USART_Cmd(USART3, ENABLE);

}

//===

uint8_t myUSART_GetByte(void)

{ uint8_t x;

 while (USART_GetFlagStatus(USART3, USART_FLAG_RXNE) == RESET)

 {

 x++;

 if(x>500)

 {break;}

 }

 return (uint8_t) USART_ReceiveData(USART3);

}

//===

ret_t myUSART_TrapByte(uint8_t Trap1,uint8_t Trap2)

{

uint8_t i;

uint8_t k;

uint8_t n;

uint8_t t;

uint8_t TrapByte;

uint8_t nmax;

i=0;

ct=0;

t=0;

ret_t DataArray={0};

//Initial

Bits===

LOOPX:

 if(ct>200){DataArray.Check=1; goto END;}

 else {DataArray.Check=0;}

 ct++;

 n=0;

 TrapByte=myUSART_GetByte();

 if(TrapByte!=0x10) goto LOOPX;

 DataArray.Data[n]=TrapByte;

 n++;

 TrapByte=myUSART_GetByte();

 if(TrapByte!=Trap1) goto LOOPX; //Check for intended packet

 DataArray.Data[n]=TrapByte;

 //n++;

 if(Trap2!=0) //Check if normal or super packet

 {

 //Super Packet Data Header===

 TrapByte=myUSART_GetByte();

 if(TrapByte!=Trap2) goto LOOPX;

 n++;

 DataArray.Data[n]=TrapByte;

 }

114

LOOPX2:

 n++;

 DataArray.Data[n]=myUSART_GetByte();

 if (DataArray.Data[n]==0x10)

 {

 i++; //Count intermediate 0x10 bytes

 }

 if ((DataArray.Data[n]==0x03) && (DataArray.Data[n-1]==0x10) &&

((i&1)==1)) //Check for legal end of data transmission

 {

 goto LOOPY;

 }

 else

 {

 if (n>=179)

 {DataArray.Check=1; goto END;}

 else

 {goto LOOPX2;}

 }

 //Check for Byte Stuffing

 LOOPY:

 nmax=n;

 n=0;

 for (n=1;n<nmax;n++)

 {

 if ((DataArray.Data[n-

1]==DataArray.Data[n])&&(DataArray.Data[n]==0x10)&&(i>1))

 {

 nmax--;

 i=i-2;//subtract 2 on the counter for both 10s

 for(k=n;k<nmax;k++) DataArray.Data[k-1]=DataArray.Data[k];

 }

 }

 if (i!=1)

 {

 DataArray.Check=1;

 }

 END:

 return(DataArray);

}

//===

void myUSART_SendByte(uint8_t data)

{ uint8_t x;

x=0;

 while (USART_GetFlagStatus(USART3, USART_FLAG_TXE) == RESET)

 {

 x++;

 if(x>500)

 {break;}

 }

 USART_SendData(USART3, data);

}

//===

void Configure_CopernicusGPS(void)

115

{

 uint8_t m;

 uint8_t n;

 uint8_t

NavigConfig[]={0x10,0xBB,0x00,0x00,0x01,0x02,0x00,0x3E,0x33,0x33,0x33,0x00,0x

00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00

,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x10,0

x03}; //Navigation dynamics

 uint8_t

TurnOFFPortB[]={0x10,0xBC,0x01,0x06,0x06,0x03,0x00,0x00,0x00,0x00,0x00,0x00,0

x10,0x03}; //Port B

 uint8_t SetIOOptions[]={0x10,0x35,0x25,0x02,0x41,0x01,0x10,0x03}; //IO

Options OK

 uint8_t SetDatum[]={0x10,0x8E,0x15,0x00,0x00,0x10,0x03}; //Datum WGS-84

 uint8_t NoAuto[]={0x10,0x8E,0x20,0x00,0x10,0x03}; //No Auto outputing

ECEF and LLA

 uint8_t NoUTM1[]= {0x10,0x8E,0x17,0x00,0x10,0x03}; //No Auto outputing

UTM Single

 uint8_t NoUTM2[]= {0x10,0x8E,0x18,0x00,0x10,0x03}; //No Auto outputing

UTM Double

 uint8_t NoAuto2[]={0x10,0x8E,0x21,0x00,0x10,0x03}; //No Auto Extra Info

 uint8_t NoAuto3[]={0x10,0x8E,0x23,0x00,0x10,0x03}; //No Auto Extra Info

 uint8_t NoAuto4[]={0x10,0x8E,0x2A,0x00,0x10,0x03}; //No Auto Extra Info

 uint8_t NoAuto5[]={0x10,0x8E,0x2B,0x00,0x10,0x03}; //No Auto Extra Info

 myUSART_Init(); //Set GPS to USART Channel 2, 3,and 4

 m=sizeof(NavigConfig)/sizeof(uint8_t);

 for(n=0;n<m;n++)

 {

 myUSART_SendByte(NavigConfig[n]);

//Configure navigation to Sea Dynamics at 10 degrees level mask

 }

 m=sizeof(TurnOFFPortB)/sizeof(uint8_t);

 for(n=0;n<m;n++)

 {

 myUSART_SendByte(TurnOFFPortB[n]);//Turn Off the unused Port B

 }

 m=sizeof(SetIOOptions)/sizeof(uint8_t);

 for(n=0;n<m;n++)

 {

 myUSART_SendByte(SetIOOptions[n]);

//Configure I/O Options XYZ-ECEF, pps OFF, Superpackets ON

 }

 m=sizeof(SetDatum)/sizeof(uint8_t);

 for(n=0;n<m;n++)

 {

 myUSART_SendByte(SetDatum[n]);

//Set Datum to NAR-C (i.e., NAD 83 CONUS)

 }

 m=sizeof(NoAuto)/sizeof(uint8_t);

116

 for(n=0;n<m;n++)

 {

 myUSART_SendByte(NoAuto[n]);

//No automatic ECEF and LLA outputting

 }

 m=sizeof(NoUTM1)/sizeof(uint8_t);

 for(n=0;n<m;n++)

 {

 myUSART_SendByte(NoUTM1[n]);

//No automatic UTM-Single outputting

 }

 m=sizeof(NoUTM2)/sizeof(uint8_t);

 for(n=0;n<m;n++)

 {

 myUSART_SendByte(NoUTM2[n]);

//No automatic UTM-Double outputting

 }

 m=sizeof(NoAuto2)/sizeof(uint8_t);

 for(n=0;n<m;n++)

 {

 myUSART_SendByte(NoAuto2[n]);

//No automatic UTM-Double outputting

 }

 m=sizeof(NoAuto3)/sizeof(uint8_t);

 for(n=0;n<m;n++)

 {

 myUSART_SendByte(NoAuto3[n]);

//No automatic UTM-Double outputting

 }

 m=sizeof(NoAuto4)/sizeof(uint8_t);

 for(n=0;n<m;n++)

 {

 myUSART_SendByte(NoAuto4[n]);

//No automatic UTM-Double outputting

 }

 m=sizeof(NoAuto5)/sizeof(uint8_t);

 for(n=0;n<m;n++)

 {

 myUSART_SendByte(NoAuto5[n]);

//No automatic UTM-Double outputting

 }

}

117

//===

void THUNDAR_GPS(void)

 {

//Declare Variables

 uint32_t i1;

 uint32_t i2;

 union

 {

 uint64_t HexValue;

 float FloatValue;

 }TempData;

 union

 {

 uint8_t byte[8];

 double DoubleValue;

 }TempDouble;

 ret_t DataArray;

 uint8_t res;

 uint32_t i;

 uint8_t j;

 uint8_t k;

 uint8_t m;

 uint8_t n;

 uint8_t GetSatDat[]={0x10,0x27,0x10,0x03}; //Satellites used

 uint8_t GetTOW[]={0x10,0x21,0x10,0x03}; //Satellites used

 uint8_t GetUsedSat[]={0x10,0x24,0x10,0x03};//Data on Satellites

 uint8_t GetGPSData[]={0x10,0x8E,0x17,0x10,0x03};//Get Coordinates

 uint8_t GetIon[]={0x10,0x38,0x01,0x06,0x1A,0x10,0x03};//Get Ion

 uint8_t

GetIon10[]={0x10,0x38,0x01,0x06,0x10,0x10,0x10,0x03};//Get Ephemiris 0x10

 uint8_t GetRaw[]={0x10,0x3A,0x00,0x10,0x03};//Get Raw Data

 uint8_t GetRaw10[]={0x10,0x3A,0x10,0x10,0x10,0x03};//Get Raw Data

 uint8_t GetChannel1[]={0x8E,0x2A,0x10,0x03};

 uint8_t GetAl[]={0x10,0x38,0x01,0x02,0x1A,0x10,0x03};

//Get Ephemiris

 uint8_t GetAl10[]={0x10,0x38,0x01,0x02,0x10,0x10,0x10,0x03};

//Get Ephemiris 0x10

 //===

 //Read Data

 ct=0;

 res=0;

 res=0;

 Retry0:

 res++;

 for(i=0;i<180;i++)

 {

 DataArray.Data[i]=0;

 }

 DataArray=myUSART_TrapByte(0x42,0);

 if(DataArray.Check==1 && res<50){goto Retry0;}

 ct=0;

 res=0;

 TempData.HexValue=(DataArray.Data[2]<<24)+(DataArray.Data[3]<<16)+(Data

Array.Data[4]<<8)+(DataArray.Data[5]); //GPSData[8] was GPSData[9]

 Sat_Dat.X_ECEF=TempData.FloatValue;

118

 TempData.HexValue=(DataArray.Data[6]<<24)+(DataArray.Data[7]<<16)+(Data

Array.Data[8]<<8)+(DataArray.Data[9]);

 Sat_Dat.Y_ECEF=TempData.FloatValue;

 TempData.HexValue=(DataArray.Data[10]<<24)+(DataArray.Data[11]<<16)+(Da

taArray.Data[12]<<8)+(DataArray.Data[13]);

 Sat_Dat.Z_ECEF=TempData.FloatValue;

 ct=0;

 res=0;

 res=0;

 Retry1:

 res++;

 for(i=0;i<180;i++)

 {

 DataArray.Data[i]=0;

 }

 m=sizeof(GetGPSData)/sizeof(uint8_t);

 for(n=0;n<=m;n++)

 {

 myUSART_SendByte(GetGPSData[n]);

 }

 DataArray=myUSART_TrapByte(0x8F,0x17);

 if(DataArray.Check==1 && res<50){goto Retry1;}

 ct=0;

 res=0;

 TempData.HexValue=(DataArray.Data[6]<<24)+(DataArray.Data[7]<<16)+(Data

Array.Data[8]<<8)+(DataArray.Data[9]); //GPSData[8] was GPSData[9]

 Sat_Dat.Y=TempData.FloatValue;

 TempData.HexValue=(DataArray.Data[10]<<24)+(DataArray.Data[11]<<16)+(Da

taArray.Data[12]<<8)+(DataArray.Data[13]);

 Sat_Dat.X=TempData.FloatValue;

 TempData.HexValue=(DataArray.Data[14]<<24)+(DataArray.Data[15]<<16)+(Da

taArray.Data[16]<<8)+(DataArray.Data[17]);

 Sat_Dat.Z=TempData.FloatValue;

 TempData.HexValue=(DataArray.Data[22]<<24)+(DataArray.Data[23]<<16)+(Da

taArray.Data[24]<<8)+(DataArray.Data[25]);

 Sat_Dat.Time=TempData.FloatValue;

 //Get Satellite Data

 Retry2:

 res++;

 for(i=0;i<50;i++)

 {

 DataArray.Data[i]=0;

 }

 m=sizeof(GetSatDat)/sizeof(uint8_t);

 for(n=0;n<=m;n++)

 {

 myUSART_SendByte(GetSatDat[n]);

 }

119

 DataArray=myUSART_TrapByte(0x47,0);

 if(DataArray.Check==1 && res<50){goto Retry2;}

 Sat_Dat.NoSat=DataArray.Data[2];

 ct=0;

 res=0;

 for(i=0;i<Sat_Dat.NoSat;i++)

 {

 Sat_Dat.Sat[i]=DataArray.Data[3+i*5];

 TempData.HexValue=(DataArray.Data[4+i*5]<<24)+(DataArray.Data[5+i*5]<<1

6)+(DataArray.Data[6+i*5]<<8)+(DataArray.Data[7+i*5]);

 Sat_Dat.Level[i]=TempData.FloatValue;

 }

 for(i=Sat_Dat.NoSat;i<12;i++)

 {

 Sat_Dat.Sat[i]=0;

 Sat_Dat.Level[i]=0;

 }

 //Get Used Satellites

 Retry3:

 res++;

 for(i=0;i<180;i++)

 {

 DataArray.Data[i]=0;

 }

 m=sizeof(GetUsedSat)/sizeof(uint8_t);

 for(n=0;n<=m;n++)

 {

 myUSART_SendByte(GetUsedSat[n]);

 }

 DataArray=myUSART_TrapByte(0x6D,0);

 if(DataArray.Check==1 && res<50){goto Retry3;}

 ct=0;

 res=0;

 Sat_Dat.nSVs=(DataArray.Data[2]&0xF);

 for(i=0;i<12;i++)

 {

 Sat_Dat.PRN[i]=0;

 }

 for(i=0;i<Sat_Dat.nSVs;i++)

 {

 Sat_Dat.PRN[i]=DataArray.Data[19+i];

 }

 //Get Ephemeris Data and Raw Data

 k=Sat_Dat.NoSat;

 for(i=0;i<k;i++)

 {

 Retry4:

 res++;

 for(j=0;j<180;j++)

 {

 DataArray.Data[j]=0;

 }

 if(Sat_Dat.Sat[i]==0x10)

120

 {

 m=sizeof(GetIon10)/sizeof(uint8_t);

 for(n=0;n<=m;n++)

 {

 myUSART_SendByte(GetIon10[n]);

 }

 }

 else

 {

 GetIon[4]=Sat_Dat.Sat[i];

 m=sizeof(GetIon)/sizeof(uint8_t);

 for(n=0;n<=m;n++)

 {

 myUSART_SendByte(GetIon[n]);

 }

 }

 DataArray=myUSART_TrapByte(0x58,0);

 if(DataArray.Check==1 && res<50){goto Retry4;}

 res=0;

 ct=0;

 TempData.HexValue=(DataArray.Data[7]<<24)+(DataArray.Data[8]<<16)+(Data

Array.Data[9]<<8)+(DataArray.Data[10]);

 Sat_Dat.t_ephem[i]=TempData.FloatValue;

 Sat_Dat.IODC[i]=(DataArray.Data[17]<<8)+(DataArray.Data[18]);

 TempData.HexValue=(DataArray.Data[19]<<24)+(DataArray.Data[20]<<16)+(Da

taArray.Data[21]<<8)+(DataArray.Data[22]);

 Sat_Dat.T_GD[i]=TempData.FloatValue;

 TempData.HexValue=(DataArray.Data[23]<<24)+(DataArray.Data[24]<<16)+(Da

taArray.Data[25]<<8)+(DataArray.Data[26]);

 Sat_Dat.t_oc[i]=TempData.FloatValue;

 TempData.HexValue=(DataArray.Data[27]<<24)+(DataArray.Data[28]<<16)+(Da

taArray.Data[29]<<8)+(DataArray.Data[30]);

 Sat_Dat.a_f2[i]=TempData.FloatValue;

 TempData.HexValue=(DataArray.Data[31]<<24)+(DataArray.Data[32]<<16)+(Da

taArray.Data[33]<<8)+(DataArray.Data[34]);

 Sat_Dat.a_f1[i]=TempData.FloatValue;

 TempData.HexValue=(DataArray.Data[35]<<24)+(DataArray.Data[36]<<16)+(Da

taArray.Data[37]<<8)+(DataArray.Data[38]);

 Sat_Dat.a_f0[i]=TempData.FloatValue;

 Sat_Dat.IODE[i]=DataArray.Data[43];

 TempData.HexValue=(DataArray.Data[45]<<24)+(DataArray.Data[46]<<16)+(Da

taArray.Data[47]<<8)+(DataArray.Data[48]);

 Sat_Dat.C_rs[i]=TempData.FloatValue;

 TempData.HexValue=(DataArray.Data[49]<<24)+(DataArray.Data[50]<<16)+(Da

taArray.Data[51]<<8)+(DataArray.Data[52]);

 Sat_Dat.delta_n[i]=TempData.FloatValue;

 for(j=0;j<8;j++)

121

 {

 TempDouble.byte[7-j]= DataArray.Data[53+j];

 }

 Sat_Dat.M_0[i]=TempDouble.DoubleValue;

 orbital.M[i]=TempDouble.DoubleValue;

 TempData.HexValue=(DataArray.Data[61]<<24)+(DataArray.Data[62]<<16)+(Da

taArray.Data[63]<<8)+(DataArray.Data[64]);

 Sat_Dat.C_uc[i]=TempData.FloatValue;

 for(j=0;j<8;j++)

 {

 TempDouble.byte[7-j]= DataArray.Data[65+j];

 }

 Sat_Dat.e[i]=TempDouble.DoubleValue;

 TempData.HexValue=(DataArray.Data[73]<<24)+(DataArray.Data[74]<<16)+(Da

taArray.Data[75]<<8)+(DataArray.Data[76]);

 Sat_Dat.C_us[i]=TempData.FloatValue;

 for(j=0;j<8;j++)

 {

 TempDouble.byte[7-j]= DataArray.Data[77+j];

 }

 Sat_Dat.sqrt_A[i]=TempDouble.DoubleValue;

 TempData.HexValue=(DataArray.Data[85]<<24)+(DataArray.Data[86]<<16)+(Da

taArray.Data[87]<<8)+(DataArray.Data[88]);

 Sat_Dat.t_oe[i]=TempData.FloatValue;

 TempData.HexValue=(DataArray.Data[89]<<24)+(DataArray.Data[90]<<16)+(Da

taArray.Data[91]<<8)+(DataArray.Data[92]);

 Sat_Dat.C_ic[i]=TempData.FloatValue;

 for(j=0;j<8;j++)

 {

 TempDouble.byte[7-j]= DataArray.Data[93+j];

 }

 Sat_Dat.OMEGA_0[i]=TempDouble.DoubleValue;

 if(Sat_Dat.OMEGA_0[i]<0)

 {

 Sat_Dat.OMEGA_0[i]=Sat_Dat.OMEGA_0[i]+M_PI;

 }

 orbital.Thk[i]=TempDouble.DoubleValue;

 TempData.HexValue=(DataArray.Data[101]<<24)+(DataArray.Data[102]<<16)+(

DataArray.Data[103]<<8)+(DataArray.Data[104]);

 Sat_Dat.C_is[i]=TempData.FloatValue;

 for(j=0;j<8;j++)

 {

 TempDouble.byte[7-j]= DataArray.Data[105+j];

 }

 Sat_Dat.i_0[i]=TempDouble.DoubleValue;

 TempData.HexValue=(DataArray.Data[113]<<24)+(DataArray.Data[114]<<16)+(

DataArray.Data[115]<<8)+(DataArray.Data[116]);

 Sat_Dat.C_rc[i]=TempData.FloatValue;

 for(j=0;j<8;j++)

 {

 TempDouble.byte[7-j]= DataArray.Data[117+j];

 }

122

 Sat_Dat.omega[i]=TempDouble.DoubleValue;

 orbital.uk[i]=TempDouble.DoubleValue;

 TempData.HexValue=(DataArray.Data[125]<<24)+(DataArray.Data[126]<<16)+(

DataArray.Data[127]<<8)+(DataArray.Data[128]);

 Sat_Dat.OMEGADOT[i]=TempData.FloatValue;

 TempData.HexValue=(DataArray.Data[129]<<24)+(DataArray.Data[130]<<16)+(

DataArray.Data[131]<<8)+(DataArray.Data[132]);

 Sat_Dat.IDOT[i]=TempData.FloatValue;

 for(j=0;j<8;j++)

 {

 TempDouble.byte[7-j]= DataArray.Data[141+j];

 }

 Sat_Dat.nn[i]=TempDouble.DoubleValue;

 for(j=0;j<8;j++)

 {

 TempDouble.byte[7-j]= DataArray.Data[149+j];

 }

 Sat_Dat.r1me2[i]=TempDouble.DoubleValue;

 Retry5:

 res++;

 for(j=0;j<180;j++)

 {

 DataArray.Data[j]=0;

 }

 if(Sat_Dat.Sat[i]==0x10)

 {

 m=sizeof(GetRaw10)/sizeof(uint8_t);

 for(n=0;n<=m;n++)

 {

 myUSART_SendByte(GetRaw10[n]);

 }

 }

 else

 {

 GetRaw[2]=Sat_Dat.Sat[i];

 m=sizeof(GetRaw)/sizeof(uint8_t);

 for(n=0;n<=m;n++)

 {

 myUSART_SendByte(GetRaw[n]);

 }

 }

 DataArray=myUSART_TrapByte(0x5A,0);

 if(DataArray.Check==1 && res<50){goto Retry5;}

 ct=0;

 res=0;

 for(j=0;j<8;j++)

 {

 TempDouble.byte[7-j]= DataArray.Data[19+j];

 }

 Sat_Dat.TOM[i]=TempDouble.DoubleValue;

 Sat_Dat.TDiff[i]=DataArray.Data[6];

123

 TempData.HexValue=(DataArray.Data[11]<<24)+(DataArray.Data[12]<<16)+(Da

taArray.Data[13]<<8)+(DataArray.Data[14]);

 Sat_Dat.codephase[i]=TempData.FloatValue;

 TempData.HexValue=(DataArray.Data[7]<<24)+(DataArray.Data[8]<<16)+(Data

Array.Data[9]<<8)+(DataArray.Data[10]);

 Sat_Dat.SigLev[i]=TempData.FloatValue;

 TempData.HexValue=(DataArray.Data[15]<<24)+(DataArray.Data[16]<<16)+(Da

taArray.Data[17]<<8)+(DataArray.Data[18]);

 Sat_Dat.Doppler[i]=TempData.FloatValue;

 }

 for(i=k;i<12;i++)

 {

 Sat_Dat.t_ephem[i]=0;

 Sat_Dat.IODC[i]=0;

 Sat_Dat.t_oc[i]=0;

 Sat_Dat.a_f2[i]=0;

 Sat_Dat.a_f1[i]=0;

 Sat_Dat.a_f0[i]=0;

 Sat_Dat.IODE[i]=0;

 Sat_Dat.C_rs[i]=0;

 Sat_Dat.delta_n[i]=0;

 Sat_Dat.M_0[i]=0;

 Sat_Dat.C_uc[i]=0;

 Sat_Dat.e[i]=0;

 Sat_Dat.C_us[i]=0;

 Sat_Dat.sqrt_A[i]=0;

 Sat_Dat.t_oe[i]=0;

 Sat_Dat.C_ic[i]=0;

 Sat_Dat.OMEGA_0[i]=0;

 Sat_Dat.C_is[i]=0;

 Sat_Dat.i_0[i]=0;

 Sat_Dat.C_rc[i]=0;

 Sat_Dat.omega[i]=0;

 Sat_Dat.OMEGADOT[i]=0;

 Sat_Dat.IDOT[i]=0;

 Sat_Dat.nn[i]=0;

 Sat_Dat.T_GD[i]=0;

 Sat_Dat.TOM[i]=0;

 }

 //Get Time of Week

 Retry7:

 res++;

 for(i=0;i<180;i++)

 {

 DataArray.Data[i]=0;

 }

 m=sizeof(GetTOW)/sizeof(uint8_t);

 for(n=0;n<=m;n++)

 {

 myUSART_SendByte(GetTOW[n]);

 }

124

 DataArray=myUSART_TrapByte(0x41,0);

 if(DataArray.Check==1 && res<50){goto Retry7;}

 ct=0;

 res=0;

 TempData.HexValue=(DataArray.Data[2]<<24)+(DataArray.Data[3]<<16)+(Data

Array.Data[4]<<8)+(DataArray.Data[5]);

 Sat_Dat.TOW=TempData.FloatValue;

 //Get Time of Week

 Retry8:

 res++;

 for(i=0;i<500;i++)

 {

 DataArray.Data[i]=0;

 }

 m=sizeof(GetChannel1)/sizeof(uint8_t);

 for(n=0;n<=m;n++)

 {

 myUSART_SendByte(GetChannel1[n]);

 }

 DataArray=myUSART_TrapByte(0x8F,0x2A);

 if(DataArray.Check==1 && res<50){goto Retry8;}

 ct=0;

 res=0;

 TempData.HexValue=(DataArray.Data[5]<<8)+(DataArray.Data[6]);

 Sat_Dat.GC1weekn=TempData.FloatValue;

 TempData.HexValue=(DataArray.Data[7]<<24)+(DataArray.Data[8]<<16)+(Data

Array.Data[9]<<8)+(DataArray.Data[10]);

 Sat_Dat.GC1TOWms=TempData.FloatValue;

 TempData.HexValue=(DataArray.Data[11]<<24)+(DataArray.Data[12]<<16)+(Da

taArray.Data[13]<<8)+(DataArray.Data[14]);

 Sat_Dat.GC1Fractional=TempData.FloatValue;

 TempData.HexValue=(DataArray.Data[15]<<24)+(DataArray.Data[16]<<16)+(Da

taArray.Data[17]<<8)+(DataArray.Data[18]);

 Sat_Dat.GC1Altitude=TempData.FloatValue;

 for(i=0;i<12;i++)

 {

 Sat_Dat.GC1SatID[i]=DataArray.Data[22+i*12];

 Sat_Dat.GC1Sig[i]=(DataArray.Data[23+i*12]);

 Sat_Dat.GC1Aqu[i]=(DataArray.Data[24+i*12]<<8)+(DataArray.Data[25+i*12]

);

 Sat_Dat.GC1Psuedo[i]=(DataArray.Data[26+i*12]<<24)+(DataArray.Data[27+i

*12]<<16)+(DataArray.Data[28+i*12]<<8)+(DataArray.Data[29+i*12]);

 Sat_Dat.GC1RangeRate[i]=(DataArray.Data[30+i*12]<<24)+(DataArray.Data[3

1+i*12]<<16)+(DataArray.Data[32+i*12]<<8)+(DataArray.Data[33+i*12]);

 }

 }

//===

void Satellite_Fix_A(void)

{

125

 uint8_t i;

 int8_t lvlchk;

 uint8_t k;

 uint8_t ss[4];

 uint8_t ss2[4];

 float eps;

 double ET;

 double ET_old;

 double Tmpt[5];

 double we; double M; double Ek; double vk; double thk; double drk;

 double duk; double dik; double rk; double uk; double ik; double

OMk; double Xpr; double Ypr;

 double F=-4.442807633E-10; double fc=1575.42E6;

 eps=1E-5;

 we=7.2921151467E-5;

 float terror=1;

 double told;

 k=0;

 Restart:

 //Level Check

 for (i=0;i<4;i++)

 {

 lvlchk=-50;

 while(lvlchk<0)

 {

 ss2[i]=k;

 if ((Sat_Dat.GC1Sig[ss2[i]]>0) &&

(Sat_Dat.GC1Psuedo[ss2[i]]>0))

 {

 lvlchk=1;

 }

 k++;

 }

 }

 //Satellite Alignment

 k=0;

 for (i=0;i<12;i++)

 {

 if (Sat_Dat.Sat[i]==Sat_Dat.GC1SatID[ss2[k]])

 {

 ss[k]=i;

 k++;

 }

 }

 for (k=0;k<4;k++)

 {

 test[10+k]=Sat_Dat.Sat[ss[k]];

 test[14+k]=Sat_Dat.GC1SatID[ss2[k]];

 }

 float c =299792458;

//TIME

 for (i=0;i<4;i++)

 {

126

 terror=1;

 //Reset Variables

 M=0;Ek=0;vk=0;thk=0;drk=0;duk=0;dik=0;rk=0;uk=0;ik=0;OMk=0;Xpr=0;Ypr=0;

 Tmpt[i]=Sat_Dat.TOM[ss[i]]; //Check initializing

 Tmpt[i]=Sat_Dat.TOM[ss[i]];

 RR[i]=Sat_Dat.GC1Psuedo[ss2[i]]/100;

 tk[i]=Sat_Dat.TOM[ss[i]]-Sat_Dat.t_oe[ss[i]];

 if (tk[i]<-302400)

 {

 tk[i]=tk[i]+604800;

 }

 else if (tk[i]>302400)

 {

 tk[i]=tk[i]-604800;

 }

 M=((Sat_Dat.M_0[ss[i]])+(Sat_Dat.nn[ss[i]])*tk[i]);

 testd[i+4]=Sat_Dat.nn[ss[i]];

 ET=M; ET_old=.1;

 while(fabsf(ET-ET_old)>eps)

 {

 ET_old=ET;

 ET=ET_old-(ET_old-(Sat_Dat.e[ss[i]])*sin(ET_old)-M)/(1-

(Sat_Dat.e[ss[i]])*cos(ET_old));

 }

 Ek=ET;

 testd[i]=-F*Sat_Dat.e[ss[i]]*sin(Ek)*Sat_Dat.sqrt_A[ss[i]];

 vk=atan((sqrt(1-

Sat_Dat.e[ss[i]]*Sat_Dat.e[ss[i]])*sin(Ek)))/(cos(Ek)-Sat_Dat.e[ss[i]]);

 thk=vk+((Sat_Dat.omega[ss[i]]));

 drk=Sat_Dat.C_rc[ss[i]]*cos(2*thk)+Sat_Dat.C_rs[ss[i]]*sin(2*thk);

 duk=Sat_Dat.C_uc[ss[i]]*cos(2*thk)+Sat_Dat.C_us[ss[i]]*sin(2*thk);

 dik=Sat_Dat.C_ic[ss[i]]*cos(2*thk)+Sat_Dat.C_is[ss[i]]*sin(2*thk);

 rk=((Sat_Dat.sqrt_A[ss[i]]*Sat_Dat.sqrt_A[ss[i]]))*(1-

(Sat_Dat.e[ss[i]])*cos(Ek))+drk;

 uk=thk+duk;

 ik=(Sat_Dat.i_0[ss[i]])+dik+Sat_Dat.IDOT[ss[i]]*tk[i];

 OMk=(Sat_Dat.OMEGA_0[ss[i]])+(Sat_Dat.OMEGADOT[ss[i]]-we)*tk[i]-

we*Sat_Dat.t_oe[ss[i]];

 Xpr=rk*cos(uk);

 Ypr=rk*sin(uk);

 //Final Calculation

 X_PA[i]=(Xpr*cos(OMk)-Ypr*sin(OMk)*cos(ik));

 Y_PA[i]=(Xpr*sin(OMk)+Ypr*cos(OMk)*cos(ik));

 Z_PA[i]=(Ypr*sin(ik));

 T_PA[i]=Sat_Dat.codephase[ss[i]]/(16*1.023E6);

 if(X_PA[i]==0||Y_PA[i]==0||Z_PA[i]==0)

 {

 goto Restart;

 }

 }

127

}

inv invmatrix(double a[4][4])

{

 uint8_t i;uint8_t j;uint8_t k;double s;uint8_t L;

 inv inv;

 double binv[4][4];

 double t;

 for (i=0;i<4;i++)

 {

 for (j=0;j<4;j++)

 {

 if (i==j)

 {

 binv[i][j]=1;

 }

 else

 {

 binv[i][j]=0;

 }

 }

 }

 for (j=0;j<4;j++)

 {

 for (i=j;i<4;i++)

 {

 if (a[i][j]!=0)

 {

 for (k=0;k<4;k++)

 {

 s=a[j][k];

 a[j][k]=a[i][k];

 a[i][k]=s;

 s=binv[j][k];

 binv[j][k]=binv[i][k];

 binv[i][k]=s;

 }

 t=1/a[j][j];

 for (k=0;k<4;k++)

 {

 a[j][k]=t*a[j][k];

 binv[j][k]=t*binv[j][k];

 }

 for (L=0;L<4;L++)

 {

 if(L!=j)

 {

 t=-a[L][j];

 for (k=0;k<4;k++)

 {

 a[L][k]=a[L][k]+t*a[j][k];

 binv[L][k]=binv[L][k]+t*binv[j][k];

 }

 }

 }

 }

128

 }

 }

 for (i=0;i<4;i++)

 {

 for (j=0;j<4;j++)

 {

 inv.binv[i][j]=binv[i][j];

 }

 }

 return(inv);

}

 ///

 //==============BFGS Algorithm======================================//

 ///

void Position_Fix_A(void)

{

 float c =299792458;

 uint8_t j;

 uint8_t i;

 uint8_t k;

 uint8_t m;

 double h [8][8];

 double hh [8][8];

 double h_old [8][8];

 double F_old [8]={0,0,0,0,0,0,0,0,0,0};

 double Ff [8];

 double Fd[8];

 double Lagrangian;

 double Lagrangian_d;

 double Eta[8];

 double Etad[8];

 double q[8];

 double d [8];

 double s [8]={1,1,1,1,1,1,1,1,1,1};

 double g [8]={1,1,1,1,1,1,1,1,1,1};

 double gam;

 double sTg; double gTH[8]; double gTHg; double SST[8][8]; double gST

[8][8]; double SgT [8][8];

 double Q;

 double Accuracy;

 double CC;

 double XS[4];

 double YS[4];

 double ZS[4];

 double GG=1;

 double kap;

 double Gkf=100;

 //======================initialize Inverse Hessian=============

 for (i=0;i<8;i++)

 {

129

 for (j=0;j<8;j++)

 {

 if (i==j)

 {

 h[i][j]=0.1;//Free to change the initial value

 }

 else

 {

 h[i][j]=0;

 }

 }

 }

 for (k=0;k<4;k++)

 {

 XS[k]=X_PA[k]/GG;

 YS[k]=Y_PA[k]/GG;

 ZS[k]=Z_PA[k]/GG;

 R[k]=RR[k]/GG;

 }

 //========================Functional Initialization=========

 q[0]=-(2000+517036)/GG;

 q[1]=-(2000+4335706)/GG;

 q[2]=(-2000+4633982)/GG;

 q[3]=10/GG;

 q[4]=1;

 q[5]=1;

 q[6]=1;

 q[7]=1;

 Eta[0]=-(XS[0]-q[0])*(XS[0]-q[0])*(XS[0]+2*q[0])/3;

 Eta[1]=-(YS[1]-q[1])*(YS[1]-q[1])*(YS[1]+2*q[1])/3;

 Eta[2]=-(ZS[2]-q[2])*(ZS[2]-q[2])*(ZS[2]+2*q[2])/3;

 Eta[3]=(R[3]-q[3])*(R[3]-q[3])*(R[3]+2*q[3])/3;

 Eta[4]=0;

 Eta[5]=0;

 Eta[6]=0;

 Eta[7]=0;

 for(k=0;k<4;k++)

 {

 Ff[k]=(XS[k]-q[0])*(XS[k]-q[0])+(YS[k]-q[1])*(YS[k]-q[1])+(ZS[k]-

q[2])*(ZS[k]-q[2])-(R[k]+q[3])*(R[k]+q[3]);

 }

 Ff[4]=(XS[1]-q[0])*q[1]+(XS[2]-q[0])*q[2]+(XS[3]-q[0])*q[3];

 Ff[5]=(YS[0]-q[1])*q[0]+(YS[2]-q[1])*q[2]+(YS[3]-q[1])*q[3];

 Ff[6]=(ZS[0]-q[2])*q[0]+(ZS[1]-q[2])*q[1]+(ZS[3]-q[2])*q[3];

 Ff[7]=-(R[0]+q[3])*q[0]-(R[1]+q[3])*q[1]-(R[2]+q[3])*q[2];

 //==================Minimization=====================================

 Accuracy=1e-15;

 float st;

 uint iter=1;

 for(st=0;st<iter;st++)

 {

 //======== Cost functional G(q) ============================

 Lagrangian=0;

 for (i=0;i<8;i++)

 {

130

 Lagrangian=Lagrangian+(Ff[i]*q[i]+Eta[i]);

 }

 //========== d(n) ===

 for(i=0;i<8;i++)

 {

 d[i]=0;

 for(j=0;j<8;j++)

 {

 d[i]=d[i]-h[i][j]*Ff[j];

 }

 }

 //========================== gamma ===========================

 Gkf=0;

 for (i=0;i<8;i++)

 {

 Gkf= Gkf+Ff[i]*Ff[i];

 }

 gam=1;

 //======================= s(n), q(n) ============================

 for(k=0;k<8;k++)

 {

 s[k]=gam*d[k];

 q[k]=q[k]+gam*d[k];

 }

 //=========================== f(n) and g(n) ===================

 for(k=0;k<8;k++)

 {

 F_old[k]=Ff[k];

 }

 Eta[0]=-(XS[0]-q[0])*(XS[0]-q[0])*(XS[0]+2*q[0])/3;

 Eta[1]=-(YS[1]-q[1])*(YS[1]-q[1])*(YS[1]+2*q[1])/3;

 Eta[2]=-(ZS[2]-q[2])*(ZS[2]-q[2])*(ZS[2]+2*q[2])/3;

 Eta[3]=(R[3]-q[3])*(R[3]-q[3])*(R[3]+2*q[3])/3;

 Eta[4]=0;

 Eta[5]=0;

 Eta[6]=0;

 Eta[7]=0;

 for(k=0;k<4;k++)

 {

 Ff[k]=(XS[k]-q[0])*(XS[k]-q[0])+(YS[k]-q[1])*(YS[k]-

q[1])+(ZS[k]-q[2])*(ZS[k]-q[2])-(R[k]+q[3])*(R[k]+q[3]);

 }

 Ff[4]=(XS[1]-q[0])*q[1]+(XS[2]-q[0])*q[2]+(XS[3]-q[0])*q[3];

 Ff[5]=(YS[0]-q[1])*q[0]+(YS[2]-q[1])*q[2]+(YS[3]-q[1])*q[3];

 Ff[6]=(ZS[0]-q[2])*q[0]+(ZS[1]-q[2])*q[1]+(ZS[3]-q[2])*q[3];

 Ff[7]=-(R[0]+q[3])*q[0]-(R[1]+q[3])*q[1]-(R[2]+q[3])*q[2];

 for(i=0;i<8;i++)

 {

 g[i]=Ff[i]-F_old[i];

 }

 //========================= h(n+1) =========================

131

 for (i=0;i<8;i++)

 {

 for (j=0;j<8;j++)

 {

 h_old[i][j]=h[i][j];

 }

 }

 //==================== Compute scalar sTg =================

 sTg=0;

 for (i=0;i<8;i++)

 {

 sTg=sTg+s[i]*g[i];

 }

 //========== Compute scalar gTHg ================

 for (i=0;i<8;i++)

 {

 gTH[i]=0;

 for (j=0;j<8;j++)

 {

 gTH[i]=gTH[i]+g[j]*h_old[j][i];

 }

 }

 gTHg=0;

 for (i=0;i<8;i++)

 {

 gTHg=gTHg+gTH[i]*g[i];

 }

 //==== Compute rank one matrices ssT, gsT and sgT ===

 for (i=0;i<8;i++)

 {

 for (j=0;j<8;j++)

 {

 SST[i][j]=s[i]*s[j]/sTg;

 gST[i][j]=g[i]*s[j]/sTg;

 SgT[i][j]=s[i]*g[j]/sTg;

 }

 }

 //================== h(n+1) ============= =================

 for (i=0;i<8;i++) // %This part had an error

 {

 for (j=0;j<8;j++)

 {

 hh[i][j]=0;

 for (k=0;k<8;k++)

 {

hh[i][j]=hh[i][j]+h_old[i][k]*gST[k][j]+SgT[i][k]*h_old[k][j];

 }

 hh[i][j]=hh[i][j]+(1+gTHg/sTg)*SST[i][j];

 }

 }

132

 //======== Make sure h(n,n) does not explode because of low sTg

if(sTg>Accuracy)

 {

 for (i=0;i<8;i++)

 {

 for (j=0;j<8;j++)

 {

 h[i][j]=h_old[i][j]+hh[i][j];

 }

 }

 }

}

 X_r_BFGS=q[0]*GG;

 Y_r_BFGS=q[1]*GG;

 Z_r_BFGS=q[2]*GG;

}

void Position_Fix_B(void)

{

 uint8_t j;

 uint8_t i;

 uint8_t k;

 uint8_t L;

 float xx;

 double q[4];

 double dq[4];

 double XS[4];//={12295772,-17793958,-8059098,-133015};

 double YS[4];//={-14225410,-5630114,-23261044,-26297132};

 double ZS[4];//={18708165,18908477,9944606,252052};

 double ATA[4][4];

 double InvA[4][4];

 double GG=1;

 double A[4][4];

 double Er;

 double IATA[4][4];

 double F[4];

 double Fd[4];

 double qn[4];

 double dqold[4];

 inv binv;

 float Lambda=10;

 double Cd;

 double Cf;

 float c =299792458;

//FIX

 for (k=0;k<4;k++)

 {

 XS[k]=X_PA[k]/GG;

 YS[k]=Y_PA[k]/GG;

 ZS[k]=Z_PA[k]/GG;

 R[k]=RR[k]/GG;

 }

 q[0]=-(10+517042)/GG;

 q[1]=-(10+4335720)/GG;

133

 q[2]=(-10+4633945)/GG;

 q[3]=100/GG;

 dq[0]=1;

 dq[1]=1;

 dq[2]=1;

 dq[3]=1;

 Cf=0;

 for (i=0;i<4;i++)

 {

 F[i]=(XS[i]-q[0])*(XS[i]-q[0])+(YS[i]-q[1])*(YS[i]-q[1])+(ZS[i]-

q[2])*(ZS[i]-q[2])-(R[i]+q[3])*(R[i]+q[3]);

 Cf=Cf+F[i]*F[i];

 }

 Er=10000;

 while(Er>0.5)

 {

 A[0][0]=-2*(XS[0]-q[0]);

 A[0][1]=-2*(YS[0]-q[1]);

 A[0][2]=-2*(ZS[0]-q[2]);

 A[0][3]=-2*(R[0]+q[3]);

 A[1][0]=-2*(XS[1]-q[0]);

 A[1][1]=-2*(YS[1]-q[1]);

 A[1][2]=-2*(ZS[1]-q[2]);

 A[1][3]=-2*(R[1]+q[3]);

 A[2][0]=-2*(XS[2]-q[0]);

 A[2][1]=-2*(YS[2]-q[1]);

 A[2][2]=-2*(ZS[2]-q[2]);

 A[2][3]=-2*(R[2]+q[3]);

 A[3][0]=-2*(XS[3]-q[0]);

 A[3][1]=-2*(YS[3]-q[1]);

 A[3][2]=-2*(ZS[3]-q[2]);

 A[3][3]=-2*(R[3]+q[3]);

 for (i=0;i<4;i++)

 {

 for (j=0;j<4;j++)

 {

 if (j==i)

 {

 ATA[i][j]=Lambda;

 }

 else

 {

 ATA[i][j]=0;

 }

 for (k=0;k<4;k++)

 {

 ATA[i][j]=ATA[i][j]+A[k][i]*A[k][j]; //% Check A'*A

 }

 }

 }

134

 binv=invmatrix(ATA);

 for (i=0;i<4;i++)

 {

 for (j=0;j<4;j++)

 {

 InvA[i][j]=binv.binv[i][j];

 }

 }

 for (i=0;i<4;i++)

 {

 for (j=0;j<4;j++)

 {

 IATA[i][j]=0;

 for (k=0;k<4;k++)

 {

 IATA[i][j]=IATA[i][j]+InvA[i][k]*A[j][k];

 }

 }

 }

 for(i=0;i<4;i++)

 {

 dqold[i]=dq[i];

 dq[i]=0;

 for (j=0;j<4;j++)

 {

 dq[i]=dq[i]-IATA[i][j]*F[j];

 }

 }

 for (k=0;k<4;k++)

 {

 qn[k]=q[k];

 q[k]=qn[k]+dq[k];

 }

 Cd=0;

 for (k=0;k<4;k++)

 {

 Fd[k]=(XS[k]-q[0])*(XS[k]-q[0])+(YS[k]-q[1])*(YS[k]-

q[1])+(ZS[k]-q[2])*(ZS[k]-q[2])-(R[k]+q[3])*(R[k]+q[3]);

 Cd=Cd+Fd[k]*Fd[k];

 }

 if (Cd>Cf)

 {

 for (k=0;k<4;k++)

 {

 q[k]=qn[k];

 }

 Lambda=Lambda*10;

 }

 else

 {

 Cf=Cd;

 for (i=0;i<4;i++)

135

 {

 F[i]=Fd[i];

 }

 Lambda=Lambda/2;

 Er=sqrt(Cf);

 }

 X_r_LS=q[0]*GG;

 Y_r_LS=q[1]*GG;

 Z_r_LS=q[2]*GG;

 test[6]=(float) Er;

 }

}

void Position_Fix_C(void)

{

 uint8_t j;

 uint8_t i;

 uint8_t k;

 uint8_t m;

 float F_old [4]={0,0,0,0};

 float A[4][4];

 float Ainv[4][4];

 float Ff[4];

 float Eta[4];

 float Etad[4];

 float q[4];

 float d [4];

 float gam;

 inv binv;

 float Accuracy;

 float XS[4];

 float YS[4];

 float ZS[4];

 float GG=1E8;

 float Gkf=100;

 for (k=0;k<4;k++)

 {

 XS[k]=X_PA[k]/GG;

 YS[k]=Y_PA[k]/GG;

 ZS[k]=Z_PA[k]/GG;

 R[k]=RR[k]/GG;

 }

 //====Functional Initialization=

 q[0]=-(10+517036)/GG;

 q[1]=-(10+4335706)/GG;

 q[2]=(-10+4633982)/GG;

 q[3]=10;

 for(k=0;k<4;k++)

 {

 Ff[k]=(XS[k]-q[0])*(XS[k]-q[0])+(YS[k]-q[1])*(YS[k]-q[1])+(ZS[k]-

q[2])*(ZS[k]-q[2])-(R[k]+q[3])*(R[k]+q[3]);

 }

 //==========Minimization==================================

 Accuracy=1e-15;

 uint st;

 uint iter=1000;

 for(st=0;st<iter;st++)

136

 {

 for (i=0;i<4;i++)

 {

 A[i][0]=2*(XS[i]-q[0]);

 A[i][1]=2*(YS[i]-q[1]);

 A[i][2]=2*(ZS[i]-q[2]);

 A[i][3]=-2*(R[i]-q[3]);

 }

 binv=invmatrix(A);

 for (i=0;i<4;i++)

 {

 for (j=0;j<4;j++)

 {

 Ainv[i][j]=binv.binv[i][j];

 }

 }

 //=========================== d(n) ==========================

 for(i=0;i<4;i++)

 {

 d[i]=0;

 for(j=0;j<4;j++)

 {

 d[i]=d[i]-Ainv[i][j]*Ff[j];

 }

 }

 //========================== gamma ===========================

 Gkf=0;

 for (i=0;i<4;i++)

 {

 Gkf= Gkf+Ff[i]*Ff[i];

 }

 gam=(1E-13)*sqrtf(Gkf);

 //==================== s(n), q(n) =================================

 for(k=0;k<4;k++)

 {

 q[k]=q[k]+gam*d[k];

 }

 //======================== f(n) and g(n) ====================

 for(k=0;k<4;k++)

 {

 F_old[k]=Ff[k];

 }

 for(k=0;k<4;k++)

 {

 Ff[k]=(XS[k]-q[0])*(XS[k]-q[0])+(YS[k]-q[1])*(YS[k]-

q[1])+(ZS[k]-q[2])*(ZS[k]-q[2])-(R[k]+q[3])*(R[k]+q[3]);

 }

}

 X_r_NR=q[0]*GG;

 Y_r_NR=q[1]*GG;

 Z_r_NR=q[2]*GG;

}

137

//===

int main(void)

{

 Configure_CopernicusGPS();

 test[5]=0;

 while(1)

 {

 THUNDAR_GPS();

 Satellite_Fix_A();

 Position_Fix_A();

 Position_Fix_B();

 Position_Fix_C();

 }

}

138

APPENDIX B. DYNAMIC MODEL SIMULATION CODE

clear

clc

IT=0; %counter i9terations

Dt=.785;

Dte=.785;

gam=0.1;

kb=0.154;

kt=0.13;

nr=20;

Iw=0.764;

m=230;

Nc=2014;

B=0.88;

Icr=127.7;

rw=0.2794;

Ra=0.32;

%Heading Angles and delta variables

THk=0;

thi=0;

Dx=0;

Dy=0;

DTHk=0;

%Path definition

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %PATH 1: Zigzag

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Lmax=4.5;

% f=1.4;

%

% path(2,1)=0; path(2,2)=1; path(2,3)=2;

path(2,4)=3; path(2,5)=4; path(2,6)=5; path(2,7)=6;

% path(3,1)=0; path(3,2)=1; path(3,3)=2;

path(3,4)=3; path(3,5)=4; path(3,6)=5; path(3,7)=6;

%

% path(2,8)=7; path(2,9)=8; path(2,10)=9;

% path(3,8)=6; path(3,9)=6; path(3,10)=6;

%

% path(2,11)=10; path(2,12)=11; path(2,13)=12;

% path(3,11)=6; path(3,12)=6; path(3,13)=6;

%

%

% path(2,14)=13; path(2,15)=14; path(2,16)=15;

% path(3,14)=7; path(3,15)=8; path(3,16)=9;

%

% path(2,17)=16; path(2,18)=17; path(2,19)=18;

% path(3,17)=10; path(3,18)=11; path(3,19)=12;

%

139

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%PATH 2: Semicircle-

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Lmax=3.58;

% f=1.5;

% NPP=11;

% radius=20;

% path(:,1)=0;

% for k=2:2*NPP

% path(2,k)=radius*(1-cos(k*0.5*pi/NPP));

% path(3,k)=radius*sin(k*0.5*pi/NPP);

% end

%

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%PATH 3 :Sinusoid

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 Lmax=3;

 f=1.2

 NPP=45

 path(2,:)=[0:NPP];

 path(3,:)=10*sin([0:NPP]*4*pi/(2*NPP));

%%

Traj=[];

X=0;

Y=0;

Pid=2;

xold=[4;4;4;0;0;0;0];

State=[];

Cont=[];

LPATH=length(path);

while (Pid<LPATH+1)

 Traj=[Traj;X,Y];

 DX=path(2,Pid)-X;

 DY=path(3,Pid)-Y;

 L=sqrt(DX^2+DY^2);

 if(L>Lmax)

 L=Lmax;

 end

 Umax=f*L;

 if((abs(DX)<1e-28)&&(DY>0))

 THk=pi/2;

 disp('Zero DX POS DY')

 elseif((abs(DY)<1e-28)&&(DX>0))

 THk=0;

 disp('Zero DY POS DX')

 elseif((abs(DX)<1e-28)&&(DY<0))

 THk=3*pi/2;

 disp('Zero DX NEG DY')

 elseif((abs(DY)<1e-28)&&(DX<0))

140

 THk=pi;

 disp('Zero DY NEG DX')

 elseif((DX>0)&&(DY<0))

 % THk=-atan(abs(DY)/(DX));

 THk=2*pi-atan(abs(DY)/DX);

 disp('DY')

 elseif((DX<0)&&(DY<0))

 THk=pi+atan((abs(DY))/(abs(DX)));

 disp('DX and DY')

 elseif((DX<0)&&(DY>0))

 THk=pi-atan(DY/(abs(DX)));

 disp('DX')

 elseif ((DX>0)&&(DY>0))

 THk=atan(DY/DX);

 disp('Normal')

 else

 disp('Undetermined')

 end

 DTH=THk-xold(5);

 thi=THk;

 xold(5)=thi;

 State=[State,xold];

%===

%%%% Define System Matrices

%================================= Matrix F(k)====================

 Fk(1,1)=1-(2*kt*kb*nr*nr*Dt)/(Ra*(4*Iw+m*rw*rw)); Fk(1,2)=0;

 Fk(1,3)=0; Fk(1,4)=0;

 Fk(1,5)=0; Fk(1,6)=0; Fk(1,7)=0;

 Fk(2,1)=0; Fk(2,2)=1-

(2*kt*kb*nr*nr*Dt)/(Ra*(4*Iw+m*rw*rw)); Fk(2,3)=0;

 Fk(2,4)=0; Fk(2,5)=0; Fk(2,6)=0;

 Fk(2,7)=0;

 Fk(3,1)=0; Fk(3,2)=0; Fk(3,3)=1-

(2*kt*kb*nr*nr*Dt)/(Ra*(4*Iw+m*rw*rw)); Fk(3,4)=0;

 Fk(3,5)=0; Fk(3,6)=0; Fk(3,7)=0;

 Fk(4,1)=0; Fk(4,2)=0; Fk(4,3)=0;

 Fk(4,4)=1+(B*B*kt*kb*nr*nr*Dt)/(4*Icr*Ra*rw*rw);

 Fk(4,5)=0; Fk(4,6)=0; Fk(4,7)=0;

 Fk(5,1)=0; Fk(5,2)=0; Fk(5,3)=0;

 Fk(5,4)=(B*B*kt*kb*nr*nr*Dt)/(4*Icr*Ra*rw*rw)*Dt;

 Fk(5,5)=1; Fk(5,6)=0; Fk(5,7)=0;

 Fk(6,1)=0; Fk(6,2)=0; Fk(6,3)=-

(2*kt*kb*nr*nr*Dt)*Dt*cos(thi)/(Ra*(4*Iw+m*rw*rw)); Fk(6,4)=0;

 Fk(6,5)=0; Fk(6,6)=1; Fk(6,7)=0;

 Fk(7,1)=0; Fk(7,2)=0; Fk(7,3)=-

(2*kt*kb*nr*nr*Dt)*Dt*sin(thi)/(Ra*(4*Iw+m*rw*rw)); Fk(7,4)=0;

 Fk(7,5)=0; Fk(7,6)=0; Fk(7,7)=1;

 Hk(3,3)=-76.23;

 Hk(4,3)=-76.23;

 %========================= Matrix G(k)==========================

 Gk(1,1)=(2*kt*nr*Dt)/(Ra*(4*Iw+m*rw*rw)); Gk(1,2)=0;

141

 Gk(2,1)=0;

Gk(2,2)=(2*kt*nr*Dt)/(Ra*(4*Iw+m*rw*rw));

 Gk(3,1)=(kt*nr*Dt)/(Ra*(4*Iw+m*rw*rw));

Gk(3,2)=(kt*nr*Dt)/(Ra*(4*Iw+m*rw*rw));

 Gk(4,1)=(B*kt*nr*Dt)/(2*Icr*Ra*rw*rw); Gk(4,2)=-

(B*kt*nr*Dt)/(2*Icr*Ra*rw*rw);

 Gk(5,1)=(B*kt*nr*Dt)/(2*Icr*Ra*rw*rw)*Dt; Gk(5,2)=-

(B*kt*nr*Dt)/(2*Icr*Ra*rw*rw)*Dt;

 Gk(6,1)=(2*kt*nr*Dt)/(Ra*(4*Iw+m*rw*rw))*Dt*cos(thi);

 Gk(6,2)=(2*kt*nr*Dt)/(Ra*(4*Iw+m*rw*rw))*Dt*cos(thi);

 Gk(7,1)=(2*kt*nr*Dt)/(Ra*(4*Iw+m*rw*rw))*Dt*sin(thi);

 Gk(7,2)=(2*kt*nr*Dt)/(Ra*(4*Iw+m*rw*rw))*Dt*sin(thi);

 %================= Matrix H(k)==================== ==================

 Hk(1,1)=Nc*Dte/(2*pi*rw); Hk(1,2)=0; Hk(1,3)=0;

 Hk(1,4)=0; Hk(1,5)=0; Hk(1,6)=0;

 Hk(1,7)=0;

 Hk(2,1)=0; Hk(2,2)=Nc*Dte/(2*pi*rw);

Hk(2,3)=0; Hk(2,4)=0; Hk(2,5)=0;

 Hk(2,6)=0; Hk(2,7)=0;

 Hk(3,1)=0; Hk(3,2)=0;

 Hk(3,3)=1/Dt; Hk(3,4)=0; Hk(3,5)=0;

 Hk(3,6)=0; Hk(3,7)=0;

 Hk(4,1)=0; Hk(4,2)=0;

 Hk(4,3)=1/Dt; Hk(4,4)=0; Hk(4,5)=0;

 Hk(4,6)=0; Hk(4,7)=0;

 Hk(5,1)=0; Hk(5,2)=0; Hk(5,3)=0;

 Hk(5,4)=1; Hk(5,5)=0; Hk(5,6)=0;

 Hk(5,7)=0;

 Hk(6,1)=0; Hk(6,2)=0; Hk(6,3)=0;

 Hk(6,4)=0; Hk(6,5)=1/Dt;

 Hk(6,6)=0; Hk(6,7)=0;

 Hk(7,1)=0; Hk(7,2)=0; Hk(7,3)=0;

 Hk(7,4)=0; Hk(7,5)=0; Hk(7,6)=1;

 Hk(7,7)=0;

 Hk(8,1)=0; Hk(8,2)=0; Hk(8,3)=0;

 Hk(8,4)=0; Hk(8,5)=0; Hk(8,6)=0;

 Hk(8,7)=1;

 %================== Matrix J(k)===================

 Jk(1,1)=0; Jk(1,2)=0;

 Jk(2,1)=0; Jk(2,2)=0;

 Jk(3,1)=0*3.46; Jk(3,2)=0*3.46;

 Jk(4,1)=0*3.46; Jk(4,2)=0*3.46;

 Jk(5,1)=0; Jk(5,2)=0;

 Jk(6,1)=0; Jk(6,2)=0;

 Jk(7,1)=0; Jk(7,2)=0;

 Jk(8,1)=0; Jk(8,2)=0;

 %=========== Matrix E1========================

 E1(1,1)=0; E1(1,2)=0; E1(1,3)=0;

 E1(1,4)=0; E1(1,5)=1; E1(1,6)=0;

 E1(1,7)=0;

142

 E1(2,1)=0; E1(2,2)=0; E1(2,3)=0;

 E1(2,4)=0; E1(2,5)=0; E1(2,6)=1;

 E1(2,7)=0;

 E1(3,1)=0; E1(3,2)=0; E1(3,3)=0;

 E1(3,4)=0; E1(3,5)=0; E1(3,6)=0;

 E1(3,7)=1;

 %=========================== Matrix E2================

 E2(1,1)=-0; E2(1,2)=-2*Dt/B; E2(1,3)=2*Dt/B;

 E2(1,4)=-Dt/B; E2(1,5)=DTH/(xold(5));

 E2(1,6)=0; E2(1,7)=0;

 E2(2,1)=Dt*cos(THk); E2(2,2)=Dt*cos(THk); E2(2,3)=-Dt*cos(THk);

 E2(2,4)=0; E2(2,5)=0; E2(2,6)=DX/(xold(6));

 E2(2,7)=0;

 E2(3,1)=Dt*sin(THk); E2(3,2)=Dt*sin(THk); E2(3,3)=-Dt*sin(THk);

 E2(3,4)=0; E2(3,5)=0; E2(3,6)=0;

 E2(3,7)=DY/(xold(7));

 for (i=1:3),

 for (j=1:7),

 E2(i,j)=E2(i,j);%0;

 end

 end

 %============================ Matrix W=========================

 for (i=1:7)

 for (j=1:7)

 if (i==j)

 W(i,j)=1;

 else

 W(i,j)=0;

 end;

 end;

 end;

 %======================== Covariance P===========================

 for (i=1:7)

 for (j=1:7)

 if (i==j)

 P(i,j)=0.001;

 else

 P(i,j)=0;

 end;

 end;

 end;

 %========================= Covariance Q===============================

 for (i=1:8)

 for (j=1:8)

 if (i==j)

 Q(i,j)=0.001;

 else

 Q(i,j)=0;

 end;

 end;

 end;

143

 %======================== Uncertainty matrix A_\xi=====

 Ax(7,7)=0;

 for (i=1:7),

 for (j=1:4),

 if (i==j)

 Ax(i,j)=.5;

 else

 Ax(i,j)=0;

 end;

 end;

 for (j=4:7),

 Ax(i,j)=0;

 end;

 end;

 Ax(4,3)=0.05;

 Ax(5,2)=0.025;

 Ax(6,2)=0.025;

 %===================== Uncertainty matrix A_Y=====================

 Ay(8,7)=0;

 Ay(2,2)=.01;

 Ay(3,2)=.05;

 Ay(4,4)=.068;%.679999977354;

 Ay(5,4)=.068;%.679999977354;

 Ay(7,6)=0;

 %================ Uncertainty matrix B1=================

 for (i=1:7)

 for (j=1:7)

 if (i==j)

 B1(i,j)=0.01;%.25;

 else

 B1(i,j)=0;

 end;

 end;

 end;

 %================== Uncertainty matrix B2============

 for (i=1:7)

 for (j=1:2)

 if (i==j)

 B2(i,j)=0.5;%.5;

 elseif(i==3*j)

 B2(i,j)=0.5;%.5;

 else

 B2(i,j)=0.1;%.5;

 end;

 end;

 end;

144

%===

 %%%%

 %%%% START With The Robust Kalman Filter

 %%%%

 %============ Initial Ups ================

 for (i=1:7),

 for (j=1:7),

 if (i==j),

 UpsNew(i,j)=100;%0.5; %%%%%%%Changed the variable name

 else

 UpsNew(i,j)=0; %%%%%%%Changed the variable name

 end;

 end;

 end;

 Converg=10e8; %%%%%%%Convergence value

 while(Converg>0.00001) %%%%%%%Run in a loop

 for i=1:7

 for j=1:7

 Ups(i,j)=UpsNew(i,j);

 end

 end

 %=============== Calculate inverse Ups =============

 binv7=inv(Ups);

 for (i=1:7)

 for (j=1:7)

 InvUps(i,j)=binv7(i,j);

 end

 end

 %============= Calculate invXi ===============================

 for (i=1:7)

 for (j=1:7)

 invXi(i,j)=0;

 for (k=1:7)

 invXi(i,j)=invXi(i,j)+B1(k,i)*B1(k,j);

 end

 %%%invXi(i,j)=invXi(i,j)-

gam*invXi(i,j);%%

 invXi(i,j)=InvUps(i,j)-invXi(i,j)*gam*gam;

 end

 end

 %========================= Calculate Xi ==================

 binv7=inv(invXi);

 for (i=1:7)

 for (j=1:7)

145

 Xi(i,j)=binv7(i,j);

 end

 end

 %=========== Calculate Nk ================

 for (i=1:7)

 for (j=1:8)

 XiH(i,j)=0;

 for (k=1:7)

 XiH(i,j)=XiH(i,j)+Xi(i,k)*Hk(j,k);

 end

 end

 end

 for (i=1:8)

 for(j=1:8)

 HXiH(i,j)=0;

 for (k=1:7)

 HXiH(i,j)= HXiH(i,j)+Hk(i,k)*XiH(k,j);

 end

 end

 end

 for (i=1:8)

 for (j=1:8)

 AYAT(i,j)=0;

 for (k=1:7)

 AYAT(i,j)=AYAT(i,j)+Ay(i,k)*Ay(j,k);

 end

 Nk(i,j)=Q(i,j)+AYAT(i,j)*gam*gam+HXiH(i,j);

 end

 end

 %======================== Calculate Mk =========================

 for (i=1:7)

 for (j=1:8)

 FXiH(i,j)=0;

 for (k=1:7)

 FXiH(i,j)=FXiH(i,j)+Fk(i,k)*XiH(k,j);

 end

 end

 end

 for (i=1:7)

 for (j=1:8)

 AxAT(i,j)=0;

 for (k=1:7)

 AxAT(i,j)=AxAT(i,j)+Ax(i,k)*Ay(j,k);

 end

 Mk(i,j)=FXiH(i,j)+AxAT(i,j)*gam*gam;

 end

 end

%===

146

 % Update covariances and return Ups

%===

 %Solve Riccati Equation

 %

 %

 for (i=1:7)

 for (j=1:7)

 AxAxT(i,j)=0;

 for (k=1:7)

 AxAxT(i,j)= AxAxT(i,j)+Ax(i,k)*Ax(j,k);

 end

 end

 end

%===

 %%compute inverse of Nk

 binv8=inv(Nk);

 for (i=1:8)

 for (j=1:8)

 NkInv(i,j)=binv8(i,j);

 end

 end

%===

 % %compute InvNkMkT

 for (i=1:8)

 for (j=1:7)

 InvNkMkT(i,j)=0;

 for (k=1:8)

 InvNkMkT(i,j)=InvNkMkT(i,j)+NkInv(i,k)*Mk(j,k);

 end

 end

 end

%===

 % %Now compute MkInvNkMkT

 for (i=1:7)

 for (j=1:7)

 MkInvNkMkT(i,j)=0;

 for (k=1:8)

 MkInvNkMkT(i,j)=MkInvNkMkT(i,j)+Mk(i,k)*InvNkMkT(k,j);

 end

 end

 end

%===

 %%Compute XiFT

 for (i=1:7)

 for (j=1:7)

 XiFT(i,j)=0;

 for (k=1:7)

 XiFT(i,j)= XiFT(i,j)+Xi(i,k)*Fk(j,k);

 end

147

 end

 end

%===

 %%Now compute FXiFT

 for (i=1:7),

 for (j=1:7),

 FXiFT(i,j)=0;

 for (k=1:7),

 FXiFT(i,j)=FXiFT(i,j)+Fk(i,k)*XiFT(k,j);

 end

 end

 end

 %============================== Calculate New Ups ===============

 for (i=1:7)

 for (j=1:7)

 UpsNew(i,j)=FXiFT(i,j)- MkInvNkMkT(i,j)+

AxAxT(i,j)*gam*gam+P(i,j);

 end

 end

%===

%%= Check if Ups has converged ===============================

 Converg=0;

 for i=1:7

 for j=1:7

 CVG(i,j)=UpsNew(i,j)-Ups(i,j);

 Converg=Converg+(UpsNew(i,j)-Ups(i,j))*(UpsNew(i,j)-

Ups(i,j));

 end

 end

 Converg=sqrt(Converg);

 IT=IT+1;

 %Ups

 UpsNew;

 end

 %pause

 %IT=0;

 %================== Calculate Gammak =======================

 binv8=inv(Nk);

 for (i=1:8)

 for (j=1:8)

 InvNk(i,j)=binv8(i,j);

 end

 end

148

 %============================ Finish Gammak =========

 for (i=1:7)

 for (j=1:8)

 GAMMAk(i,j)=0;

 for (k=1:8)

 GAMMAk(i,j)=GAMMAk(i,j)+Mk(i,k)*InvNk(k,j);

 end

 end

 end

 %======================= Calculate Phik ===================

 %===================== Calculate UpsBT ===========

 for (i=1:7)

 for (j=1:7)

 UpsBT(i,j)=0;

 for (k=1:7)

 UpsBT(i,j)=UpsBT(i,j)+Ups(i,k)*B1(j,k);

 end

 end

 end

 %============ Calculate 1-gamma*BUpsBT =========

 for (i=1:7)

 for (j=1:7)

 BUpsBT(i,j)=0;

 for (k=1:7)

 BUpsBT(i,j)=BUpsBT(i,j)+B1(i,k)*UpsBT(k,j);

 end

 if (i==j)

 RInv(i,j)=1-BUpsBT(i,j)*gam*gam;

 else

 RInv(i,j)=-BUpsBT(i,j)*gam*gam;

 end

 end

 end

 %=================== Calculate Inverse ==========

 binv7=inv(RInv);

 for (i=1:7)

 for (j=1:7)

 InvR(i,j)=binv7(i,j);

 end

 end

 %============= Calculate inv(1-gam*B1UpsB1^T)*B1 ===========

 for (i=1:7)

 for (j=1:7)

 Prod1(i,j)=0;

 for (k=1:7)

 Prod1(i,j)=Prod1(i,j)+InvR(i,k)*B1(k,j);

149

 end

 end

 end

 %========== Calculate Ups*B1^T*inv(1-gam*B1UpsB1^T)*B1 ===========

 for (i=1:7)

 for (j=1:7)

 Prod2(i,j)=0;

 for (k=1:7)

 Prod2(i,j)=Prod2(i,j)+UpsBT(k,i)*Prod1(k,j);

 end

 end

 end

 for (i=1:7)

 for (j=1:7)

 Prod3(i,j)=0;

 if (i==j)

 Prod3(i,j)=1+gam*gam*Prod2(i,j); %Multiply with Gama not

division.

 else

 Prod3(i,j)=gam*gam*Prod2(i,j);

 end

 end

 end

 for (i=1:7)

 for (j=1:7)

 GkH(i,j)=0;

 for (k=1:8)

 GkH(i,j)=GkH(i,j)+GAMMAk(i,k)*Hk(k,j);

 end

 Prod4(i,j)=Fk(i,j)-GkH(i,j);

 end

 end

 for (i=1:7)

 for (j=1:7)

 PHIk(i,j)=0;

 for (k=1:7)

 PHIk(i,j)=PHIk(i,j)+Prod4(i,k)*Prod3(k,j);

 end

 end

 end

 %===== The Robust Linear Quadratic Regulator ========

 %

 % Now Determine the Controller:

 %========== THxx ==

 %==

 %========================== Calculate AxW =================

 for (i=1:7)

 for (j=1:7)

 AxW(i,j)=0;

 for (k=1:7)

 AxW(i,j)=AxW(i,j)+Ax(i,k)*W(k,j);

 end

 end

 end

150

 %============ Calculate AxWB1 ===================

 for (i=1:7)

 for (j=1:7)

 AxWB1(i,j)=0;

 for (k=1:7)

 AxWB1(i,j)=AxWB1(i,j)+AxW(i,k)*B1(k,j);

 end

 end

 end

 %====================== Calculate IFA ==========

 for (i=1:7)

 for (j=1:7)

 if (i==j)

 IFA(i,j)=1-Fk(i,j)-AxWB1(i,j);

 else

 IFA(i,j)=-Fk(i,j)-AxWB1(i,j);

 end

 end

 end

 %=================== Calculate E1IFA =================

 for (i=1:3)

 for (j=1:7)

 E1IFA(i,j)=0;

 for (k=1:7)

 E1IFA(i,j)=E1IFA(i,j)+E1(i,k)*IFA(k,j);

 end

 end

 end

 %================ Calculate EEIFA ==================

 for (i=1:3)

 for (j=1:7)

 EEIFA(i,j)=E2(i,j)+E1IFA(i,j);

 end

 end

 %============================= Calculate Thxx ===================

 %Xweights=[0.001;0.002;0.005;0.01;0.01;0.01;0.02];

 for (i=1:7)

 for (j=1:7)

 Thxx(i,j)=0;

 for (k=1:3)

 Thxx(i,j)=Thxx(i,j)+EEIFA(k,i)*EEIFA(k,j);

 end

 if (i==j)

 Thxx(i,j)=Thxx(i,j)+1;

 end

 end

 end

 %================= Calculate Thuu ====================

 %====================

 %========================= Calculate AxWB2 ==================

 for (i=1:7)

 for (j=1:2)

 AxWB2(i,j)=0;

151

 for (k=1:7)

 AxWB2(i,j)=AxWB2(i,j)+AxW(i,k)*B2(k,j);

 end

 end

 end

 %============== Calculate GAW ==================

 for (i=1:7)

 for (j=1:2)

 GAW(i,j)=Gk(i,j)+AxWB2(i,j);

 end

 end

 %=============== Calculate E1GAW =========================

 for (i=1:3)

 for (j=1:2)

 E1GAW(i,j)=0;

 for (k=1:7)

 E1GAW(i,j)=E1GAW(i,j)+E1(i,k)*GAW(k,j);

 end

 E1GAW(i,j)=-E1GAW(i,j);

 end

 end

 %============= Calculate Thuu =====================

 for (i=1:2)

 for (j=1:2)

 Thuu(i,j)=0;

 for (k=1:3)

 Thuu(i,j)=Thuu(i,j)+E1GAW(k,i)*E1GAW(k,j);

 end

 if i==j

 Thuu(i,j)=Thuu(i,j)+1;

 end

 end

 end

 %================ Calculate Thux =============================

 for (i=1:7)

 for (j=1:2)

 Thux(i,j)=0;

 for (k=1:3)

 Thux(i,j)=Thux(i,j)+EEIFA(k,i)*E1GAW(k,j);

 end

 end

 end

 %

 %Solve The Ricatti Equation

 %================== Initial Sk ======================

 for (i=1:7),

 for (j=1:7),

 if (i==j),

 SkNew(i,j)=10;%1E-6;

 else

 SkNew(i,j)=0;

 end;

152

 end;

 end;

 Converg=100; %%%%%%%Convregence value

 while(Converg>10) %%%%%%%Run in a loop

 for i=1:7

 for j=1:7

 Sk(i,j)=SkNew(i,j);

 end

 end

 %================= Calculate FTS ==============

 for (i=1:7)

 for (j=1:7)

 FTS(i,j)=0;

 for (k=1:7)

 FTS(i,j)=FTS(i,j)+Fk(k,i)*Sk(k,j);

 end

 end

 end

 %==================== Calculate FTSF ======================

 for (i=1:7)

 for (j=1:7)

 FTSF(i,j)=0;

 for (k=1:7)

 FTSF(i,j)=FTSF(i,j)+FTS(i,k)*Fk(k,j);

 end

 end

 end

 %================= Calculate FTSG =============================

 for (i=1:7)

 for (j=1:2)

 FTSG(i,j)=0;

 for (k=1:7)

 FTSG(i,j)=FTSG(i,j)+FTS(i,k)*Gk(k,j);

 end

 end

 end

 %==================== Calculate GTS =======================

 for (i=1:2)

 for (j=1:7)

 GTS(i,j)=0;

 for (k=1:7)

 GTS(i,j)=GTS(i,j)+Gk(k,i)*Sk(k,j);

 end

 end

 end

 %============== Calculate GTSG =====================

 for (i=1:2)

 for (j=1:2)

 GTSG(i,j)=0;

 for (k=1:7)

153

 GTSG(i,j)=GTSG(i,j)+GTS(i,k)*Gk(k,j);

 end

 end

 end

 %================== Calculate FGTHxx ============

 for (i=1:7)

 for (j=1:7)

 FGTHxx(i,j)=FTSF(i,j)+Thxx(i,j); %+

 end

 end

 %========================= Calculate GGTHuu ========

 for (i=1:2)

 for (j=1:2)

 GGTHuu(i,j)=GTSG(i,j)+Thuu(i,j);

 end

 end

 %============= Calculate FGTHxu =========

 for (i=1:7)

 for (j=1:2)

 FGTHxu(i,j)=FTSG(i,j)+Thux(i,j);

 end

 end

 %======== Calculate invGSG ================

 binv2=inv(GGTHuu);

 for (i=1:2)

 for (j=1:2)

 invGSG(i,j)=binv2(i,j);

 end

 end

 %================= Calculate FGTHGSG ==========================

 for (i=1:7)

 for (j=1:2)

 FGTHGSG(i,j)=0;

 for(k=1:2)

 FGTHGSG(i,j)=FGTHGSG(i,j)+FGTHxu(i,k)*invGSG(k,j);

 end

 end

 end

 %============ Calculate TH_G_TH ========================

 for (i=1:7)

 for (j=1:7)

 TH_G_TH(i,j)=0;

 for (k=1:2)

 TH_G_TH(i,j)=TH_G_TH(i,j)+FGTHGSG(i,k)*FGTHxu(j,k);

 end

 end

 end

 %========================= Calculate Snew ==============

 for (i=1:7)

 for (j=1:7)

 SkNew(i,j)=FGTHxx(i,j)-TH_G_TH(i,j);

 end

 end

154

 %%%======= Check if Ups has converged ========================

 Converg=0;

 for i=1:7

 for j=1:7

 CVG(i,j)=SkNew(i,j)-Sk(i,j);

 Converg=Converg+(SkNew(i,j)-Sk(i,j))*(SkNew(i,j)-Sk(i,j));

 end

 end

 Converg=sqrt(Converg);

 end

 SkNew;

 %============== Calculate Lam ============

 %===

 %============= Calculate New GTS ========================

 for (i=1:2)

 for (j=1:7)

 GTS(i,j)=0;

 for (k=1:7)

 GTS(i,j)=GTS(i,j)+Gk(k,i)*Sk(k,j);

 end

 end

 end

 %================ Calculate New GTSG ===============================

 for (i=1:2)

 for (j=1:2)

 GTSG(i,j)=0;

 for (k=1:7)

 GTSG(i,j)=GTSG(i,j)+GTS(i,k)*Gk(k,j);

 end

 end

 end

 %=========== Calculate New GGTHuu =======

 for (i=1:2)

 for (j=1:2)

 GGTHuu(i,j)=GTSG(i,j)+Thuu(i,j);

 end

 end

 %============= Calculate New invGSG =============

 binv2=inv(GGTHuu);

 for (i=1:2)

 for (j=1:2)

 invGSG(i,j)=binv2(i,j);

 end

 end

 %========= Calculate New FTS ================

 for (i=1:7)

 for (j=1:7)

 FTS(i,j)=0;

155

 for (k=1:7)

 FTS(i,j)=FTS(i,j)+Fk(k,i)*Sk(k,j);

 end

 end

 end

 %============= Calculate New FTSG ============

 for (i=1:7)

 for (j=1:2)

 FTSG(i,j)=0;

 for (k=1:7)

 FTSG(i,j)=FTSG(i,j)+FTS(i,k)*Gk(k,j);

 end

 end

 end

 % ======================= Calculate New FGTHxu ======================

 for (i=1:7)

 for (j=1:2)

 FGTHxu(i,j)=FTSG(i,j)-Thux(i,j);

 end

 end

 %==================== Calculate Lamk =========

 for (i=1:2)

 for (j=1:7)

 LAMk(i,j)=0;

 for (k=1:2)

 LAMk(i,j)=LAMk(i,j)-GGTHuu(i,k)*FGTHxu(j,k);

 end

 end

 end

 %Y=measure data

 xi=xold;

 Yx=Hk*xi;

 xi=PHIk*xi+GAMMAk*Yx;

 U=-LAMk*xi;

 if(U(1)>Umax)

 U(1)=Umax;

 elseif (U(1)<-Umax)

 U(1)=-Umax;

 end

 if(U(2)>Umax)

 U(2)=Umax;

 elseif (U(2)<-Umax)

 U(2)=-Umax;

 end

 Cont=[Cont,U];

 xnew=(Fk*xi+Gk*U);

 dx=xnew(6)-xi(6);

 dy=xnew(7)-xi(7);

 if (((dx>0) &&(DX<0))||((dx<0) &&(DX>0)))

 disp('X Error')

 end

 X=xnew(6);

156

 Y=xnew(7);

 Pid=Pid+1;

 xold=xnew;

end

 Traj=[Traj;X,Y];

 figure(1)

 plot(Traj(:,1),Traj(:,2),'-r+',path(2,:),path(3,:),'-.bX');

 legend('Simulated Trajectory','Intended Path')

 grid

 xlabel('Easting [m]')

 ylabel('Northing [m]')

 TTx=interp(Traj(:,1),100);

 TTy=interp(Traj(:,2),100);

 PPx=interp(path(2,:),100);

 PPx=PPx';

 PPy=interp(path(3,:),100);

 %for sinusoid only

 PPy=PPy';

 TTX=TTx;

 TTY=TTy;

 PPX=PPx;

 PPY=PPy;

 TTx=0;

 PPx=0;

 TTy=0;

 PPy=0;

 TTx=TTX(1:3510);

 TTy=TTY(1:3510);

 PPx=PPX(1:3510);

 PPy=PPY(1:3510);

 LP=0;

 for k=2:length(PPx)

 LP=LP+sqrt((PPx(k)-PPx(k-1))^2+(PPy(k)-PPy(k-1))^2);

 end;

 ER=sqrt((PPx-TTx).^2+(PPy-TTy).^2);

 mean(ER)

 figure(2)

 plot(TTx,TTy,'-r',PPx,PPy,'-.b');

 legend('Simulated Trajectory','Intended Path')

 grid

 xlabel('Easting [m]')

 ylabel('Northing [m]')

 %Cont=[Cont(:,1:38),Cont(:,38),Cont(:,38)];

 %plot(Traj(:,1),Traj(:,2),'-.r+',path(2,:),path(3,:),'-

bX',Traj(:,1),[State(5,1:NPP-1),State(5,NPP-1)],'-

kd',Traj(:,1),Cont(1,:),'-g+',Traj(:,1),Cont(2,:),'-c+');

157

APPENDIX C. CIRCUIT BOARD DESIGN

C1: GPS Layer

158

C2: Power Layer

159

C3: Sensor Layer

160

APPENDIX D. CONTROL AND FILTERING CODE

/**

 * @attention NDSU - Autonomous Snow Plow Control Firmware, V1.0

 * @author MF Selekwa

 * @version V1.0.0

 * @date 2-January-2014

 * @brief Main program body

**/

/* Includes --*/

#include "thundarconfig.h"

#include "FreeRTOS.h"

#include "task.h"

#include "semphr.h"

#include "timers.h"

#include "queue.h"

#include <math.h>

typedef struct inv8

{

 double binv[8][8];

} inv8;

// Way point format: HOME POSITION, BP1,BP2, BP3,BP4, HOME POSITION

struct Robot

{

uint8_t WP; //Way point Index

uint16_t VR;

uint16_t VL;

};

float probe[50];

struct SensorData

{

float AX1; // IMU data

float GZ1; //End of IMU data

float AX2; // IMU data

float GZ2; //End of IMU data

uint32_t NIMU;

float X; //GPS coordinates data

float Y; //end of GPS coordinates data

float X0; //Initial GPS X-coordinate

float Y0; //Initial GPS Y-coordinate

uint LEnc; //Cummulative Left Encoder data

uint REnc; //Cummulative Right Encoder data

int LEInc; //Incremental Left Encoder data

int REInc; //Incremental Right Encoder data

};

double PHIk[7][7]={{0}};

161

double GAMMAk[7][8]={{0}};

double Ups[7][7]={{0}};

double UpsNew[7][7]={{0}};

double invmatrix88[8][8]={{0}};

double LAMk[2][7]={{0}};

double Sk[7][7]={{0}};

double SkNew[7][7]={{0}};

uint8_t Temp2[180];

uint16_t MaxNegSpeed = 94;

uint16_t ZeroSpeed = 86;

uint16_t MaxPosSpeed = 78;

uint8_t WayPoint=0;

uint64_t u64IdleTicksCnt=0; // Counts when the OS has no task to execute.

uint64_t tickTime=0; // Counts OS ticks (default = 1000Hz).

struct SensorData GEDISensor={0};

struct Robot Controls={0};

double path[3][11];

double Xr; double Yr;

uint32_t Pid;

void GetInitCoordinates(void);

void GPS(void *pvparameters);

void ENCODERS(void *pvparameters);

void IMU(void *pvparameters);

void DriveRobot(void *pvparameters);

void MissionController1(void *pvparameters);

/*===

 Inverse Functions

===/

inv8 invmatrix8(double a[8][8],uint8_t sz)

{

 uint8_t i;uint8_t j;uint8_t k;double s;uint8_t L;

 inv8 invv8;

 double binv[8][8];

 double t;

 for (i=0;i<sz;i++)

 {

 for (j=0;j<sz;j++)

 {

 if (i==j)

 {

 binv[i][j]=1;

 }

 else

 {

 binv[i][j]=0;

 }

 }

 }

162

 for (j=0;j<sz;j++)

 {

 for (i=j;i<sz;i++)

 {

 if (a[i][j]!=0)

 {

 for (k=0;k<sz;k++)

 {

 s=a[j][k];

 a[j][k]=a[i][k];

 a[i][k]=s;

 s=binv[j][k];

 binv[j][k]=binv[i][k];

 binv[i][k]=s;

 }

 t=1/a[j][j];

 for (k=0;k<sz;k++)

 {

 a[j][k]=t*a[j][k];

 binv[j][k]=t*binv[j][k];

 }

 for (L=0;L<sz;L++)

 {

 if(L!=j)

 {

 t=-a[L][j];

 for (k=0;k<sz;k++)

 {

 a[L][k]=a[L][k]+t*a[j][k];

 binv[L][k]=binv[L][k]+t*binv[j][k];

 }

 }

 }

 }

 }

 }

 for (i=0;i<sz;i++)

 {

 for (j=0;j<sz;j++)

 {

 invv8.binv[i][j]=binv[i][j];

 }

 }

 return(invv8);

}

/*===

 Filter Functions

==/

void KalmanFilter(double Ax[7][7],double Ay[8][7],double B1[7][7], double Hk

[8][7], double Fk [7][7],double P[7][7],double Q[8][8],double gam)

{

 uint8_t i;uint8_t j;uint8_t k;

 uint32_t w;

 inv8 binv8;

 //Referenced intermediate terms

163

 double Xi[7][7];

 double Nk[8][8];

 double Mk[7][8];

 //Intermediate Terms

 //Xi

 double InvUps[7][7];

 double invXi[7][7];

 //Nk

 double AYAT[8][8];

 //Mk

 double AxAT[7][8];

 double XiH[7][8];

 double FXiH[7][8];

 //Gamma

 double HXiH[8][8];

 double InvNk[8][8];

 double GkH[7][7];

 //Ups

 double XiFT[7][7];

 double FXiFT[7][7];

 double InvNkMkT[8][7];

 double MkInvNkMkT[7][7];

 double AxAxT[7][7];

 //Phi

 double UpsBT[7][7];

 double BUpsBT[7][7];

 double RInv[7][7];

 double InvR[7][7];

 double Prod1[7][7];

 double Prod2[7][7];

 double Prod3[7][7];

 double Prod4[7][7];

 //Convergence Variables

 double Converg;

 uint16_t IT;

 //===

 Calculate Phik and Gammak

 //===

 //======================== Calculate inverse Ups =====================

 Converg=10E8;

 IT=0;

 //while(Converg>1E5)

 while(IT<75)

 {

 for (i=0;i<7;i++)

 {

 for (j=0;j<7;j++)

 {

 Ups[i][j]=UpsNew[i][j];

 }

164

 }

 for (i=0;i<7;i++)

 {

 for (j=0;j<7;j++)

 {

 invmatrix88[i][j]=Ups[i][j];

 if(i==j)

 {

 probe[7+i]=Ups[i][j];

 }

 }

 }

 binv8=invmatrix8(invmatrix88,7);

 for (i=0;i<7;i++)

 {

 for (j=0;j<7;j++)

 {

 InvUps[i][j]=binv8.binv[i][j];

 }

 }

 //================= Calculate invXi ===========================

 for (i=0;i<7;i++)

 {

 for (j=0;j<7;j++)

 {

 invXi[i][j]=0;

 for (k=0;k<7;k++)

 {

 invXi[i][j]=invXi[i][j]+B1[k][i]*B1[k][j];

 }

 invXi[i][j]=InvUps[i][j]-invXi[i][j]*(gam*gam);

 }

 }

 //================= Calculate Xi ========

 for (i=0;i<7;i++)

 {

 for (j=0;j<7;j++)

 {

 invmatrix88[i][j]=invXi[i][j];

 }

 }

 binv8=invmatrix8(invmatrix88,7);

 for (i=0;i<7;i++)

 {

 for (j=0;j<7;j++)

 {

 Xi[i][j]=binv8.binv[i][j];

 }

 }

 //=============== Calculate Nk ================================

 for (i=0;i<7;i++)

 {

 for (j=0;j<8;j++)

 {

 XiH[i][j]=0;

 for (k=0;k<7;k++)

 {

165

 XiH[i][j]=(XiH[i][j]+Xi[i][k]*Hk[j][k]);

 }

 }

 }

 for (i=0;i<8;i++)

 {

 for(j=0;j<8;j++)

 {

 HXiH[i][j]=0;

 for (k=0;k<7;k++)

 {

 HXiH[i][j]=(HXiH[i][j]+Hk[i][k]*XiH[k][j]);

 }

 }

 }

 //================= Calculate InvNkHXiH ============

 for (i=0;i<8;i++)

 {

 for (j=0;j<8;j++)

 {

 AYAT[i][j]=0;

 for (k=0;k<7;k++)

 {

 AYAT[i][j]=AYAT[i][j]+Ay[i][k]*Ay[j][k];

 }

 Nk[i][j]=(Q[i][j]+AYAT[i][j]*(gam*gam)+HXiH[i][j]);

 }

 }

 //================= Calculate Mk ====================

 for (i=0;i<7;i++)

 {

 for (j=0;j<8;j++)

 {

 FXiH[i][j]=0;

 for (k=0;k<7;k++)

 {

 FXiH[i][j]=(FXiH[i][j]+Fk[i][k]*XiH[k][j]);

 }

 }

 }

 for (i=0;i<7;i++)

 {

 for (j=0;j<8;j++)

 {

 AxAT[i][j]=0;

 for (k=0;k<7;k++)

 {

 AxAT[i][j]=AxAT[i][j]+Ax[i][k]*Ay[j][k];

 }

 Mk[i][j]=(FXiH[i][j]+AxAT[i][j]*(gam*gam));

 }

 }

 //===

 Update covariances and return Ups

 //===

 for (i=0;i<7;i++)

166

 {

 for (j=0;j<7;j++)

 {

 AxAxT[i][j]=0;

 for (k=0;k<7;k++)

 {

 AxAxT[i][j]= AxAxT[i][j]+Ax[i][k]*Ax[j][k];

 }

 }

 }

 //%compute inverse of Nk

 for (i=0;i<8;i++)

 {

 for (j=0;j<8;j++)

 {

 invmatrix88[i][j]=Nk[i][j];

 }

 }

 binv8=invmatrix8(invmatrix88,8);

 for (i=0;i<8;i++)

 {

 for (j=0;j<8;j++)

 {

 InvNk[i][j]=binv8.binv[i][j];

 }

 }

 // %compute InvNkMkT

 for (i=0;i<8;i++)

 {

 for (j=0;j<7;j++)

 {

 InvNkMkT[i][j]=0;

 for (k=0;k<8;k++)

 {

 InvNkMkT[i][j]=(InvNkMkT[i][j]+InvNk[i][k]*Mk[j][k]);

 }

 }

 }

 // %Now compute MkInvNkMkT

 for (i=0;i<7;i++)

 {

 for (j=0;j<7;j++)

 {

 MkInvNkMkT[i][j]=0;

 for (k=0;k<8;k++)

 {

 MkInvNkMkT[i][j]=(MkInvNkMkT[i][j]+Mk[i][k]*InvNkMkT[k][j]);

 }

 }

 }

 //%compute XiFT

 for (i=0;i<7;i++)

 {

 for (j=0;j<7;j++)

 {

 XiFT[i][j]=0;

167

 for (k=0;k<7;k++)

 {

 XiFT[i][j]=(XiFT[i][j]+Xi[i][k]*Fk[j][k]);

 }

 }

 }

 //%Now compute FXiFT

 for (i=0;i<7;i++)

 {

 for (j=0;j<7;j++)

 {

 FXiFT[i][j]=0;

 for (k=0;k<7;k++)

 {

 FXiFT[i][j]=(FXiFT[i][j]+Fk[i][k]*XiFT[k][j]);

 }

 }

 }

 //======== Calculate Ups =============

 for (i=0;i<7;i++)

 {

 for (j=0;j<7;j++)

 {

 UpsNew[i][j]=0.5*(FXiFT[i][j]-

MkInvNkMkT[i][j])+AxAxT[i][j]*(gam*gam)+P[i][j];

 }

 }

 //===== Check if Ups has converged ==========================

 Converg=0;

 for (i=0;i<7;i++)

 {

 for (j=0;j<7;j++)

 {

 Converg=Converg+(UpsNew[i][j]-Ups[i][j])*(UpsNew[i][j]-

Ups[i][j]);

 }

 }

 Converg=sqrt(Converg)/49;

 probe[49]=Converg;

 IT=IT+1;

 probe[48]= IT;

 }

 //=============== Calculate Gammak ================

 for (i=0;i<7;i++)

 {

 for (j=0;j<7;j++)

 {

 Ups[i][j]=UpsNew[i][j];//1E10;

 }

 }

 for (i=0;i<8;i++)

 {

 for (j=0;j<8;j++)

 {

 invmatrix88[i][j]=Nk[i][j];

168

 }

 }

 binv8=invmatrix8(invmatrix88,8);

 for (i=0;i<8;i++)

 {

 for (j=0;j<8;j++)

 {

 InvNk[i][j]=binv8.binv[i][j];

 }

 }

 //========== Finish Gammak ==========================

 for (i=0;i<7;i++)

 {

 for (j=0;j<8;j++)

 {

 GAMMAk[i][j]=0;

 for (k=0;k<8;k++)

 {

 GAMMAk[i][j]=GAMMAk[i][j]-Mk[i][k]*InvNk[k][j];

 }

 }

 }

 //==================== Calculate Phik ==================

 //==================== Calculate UpsBT =================

 for (i=0;i<7;i++)

 {

 for (j=0;j<7;j++)

 {

 UpsBT[i][j]=0;

 for (k=0;k<7;k++)

 {

 UpsBT[i][j]=UpsBT[i][j]+Ups[i][k]*B1[j][k];

 }

 }

 }

 //======Calculate BUpsBT ==============================

 for (i=0;i<7;i++)

 {

 for (j=0;j<7;j++)

 {

 BUpsBT[i][j]=0;

 for (k=0;k<7;k++)

 {

 BUpsBT[i][j]=BUpsBT[i][j]+B1[i][k]*UpsBT[k][j];

 }

 if (i==j)

 {

 RInv[i][j]=1-BUpsBT[i][j]*(gam*gam);

 }

 else

 {

 RInv[i][j]=-BUpsBT[i][j]*(gam*gam);

 }

 }

 }

 //=============== Calculate Inverse =============

 for (i=0;i<7;i++)

169

 {

 for (j=0;j<7;j++)

 {

 invmatrix88[i][j]=RInv[i][j];

 }

 }

 binv8=invmatrix8(invmatrix88,7);

 for (i=0;i<7;i++)

 {

 for (j=0;j<7;j++)

 {

 InvR[i][j]=binv8.binv[i][j];

 }

 }

 for (i=0;i<7;i++)

 {

 for (j=0;j<7;j++)

 {

 Prod1[i][j]=0;

 for (k=0;k<7;k++)

 {

 Prod1[i][j]=Prod1[i][j]+InvR[i][k]*B1[k][j];

 }

 }

 }

 for (i=0;i<7;i++)

 {

 for (j=0;j<7;j++)

 {

 Prod2[i][j]=0;

 for (k=0;k<7;k++)

 {

 Prod2[i][j]=Prod2[i][j]+UpsBT[i][k]*Prod1[k][j]*(gam*gam);

 }

 }

 }

 for (i=0;i<7;i++)

 {

 for (j=0;j<7;j++)

 {

 Prod3[i][j]=0;

 if (i==j)

 {

 Prod3[i][j]=1+Prod2[i][j];

 }

 else

 {

 Prod3[i][j]=Prod2[i][j];

 }

 }

 }

 for (i=0;i<7;i++)

 {

 for (j=0;j<7;j++)

 {

170

 GkH[i][j]=0;

 for (k=0;k<8;k++)

 {

 GkH[i][j]=GkH[i][j]-GAMMAk[i][k]*Hk[k][j];

 }

 Prod4[i][j]=Fk[i][j]-GkH[i][j];

 }

 }

 for (i=0;i<7;i++)

 {

 for (j=0;j<7;j++)

 {

 PHIk[i][j]=0;

 for (k=0;k<7;k++)

 {

 PHIk[i][j]=PHIk[i][j]+Prod4[i][k]*Prod3[k][j];

 }

 }

 }

}

/*===

 Control Function

===

 */

void H2Control(double Ax[7][7],double B1[7][7],double B2[7][2],double W

[7][7],double Fk [7][7],double Gk [7][2],double E1[3][7],double E2[3][7])

{

 uint8_t i;uint8_t j;uint8_t k;

 inv8 binv8;

 //Control Matrices

 double Thuu[2][2]={{0}};

 double Thxx[7][7]={{0}};

 double Thux[7][2]={{0}};

 double AxW[7][7]={{0}};

 double AxWB1[7][7]={{0}};

 double IFA[7][7]={{0}};

 double E1IFA[3][7]={{0}};

 double EEIFA[3][7]={{0}};

 double AxWB2[7][2]={{0}};

 double GAW[7][2]={{0}};

 double E1GAW[3][2]={{0}};

 double FTS[7][7]={{0}};

 double FTSF[7][7]={{0}};

 double FGTHxx[7][7]={{0}};

 double FTSG[7][2]={{0}};

 double FGTHxu[7][2]={{0}};

 double GTS[2][7]={{0}};

 double GTSG[2][2]={{0}};

 double GGTHuu[2][2]={{0}};

 double invGSG[2][2]={{0}};

 double FGTHGSG[7][2]={{0}};

 double TH_G_TH[7][7]={{0}};

171

 //Convergence Variables

 double Converg;

 double CVG[7][7];

 uint16_t IT;

 //======================== THxx ========

 //===

 //============== Calculate AxW ===============

 for (i=0;i<7;i++)

 {

 for (j=0;j<7;j++)

 {

 AxW[i][j]=0;

 for (k=0;k<7;k++)

 {

 AxW[i][j]=AxW[i][j]+Ax[i][k]*W[k][j];

 }

 }

 }

 //=========== Calculate AxWB1 =====

 for (i=0;i<7;i++)

 {

 for (j=0;j<7;j++)

 {

 AxWB1[i][j]=0;

 for (k=0;k<7;k++)

 {

 AxWB1[i][j]=AxWB1[i][j]+AxW[i][k]*B1[k][j];

 }

 }

 }

 //============ Calculate IFA ==========

 for (i=0;i<7;i++)

 {

 for (j=0;j<7;j++)

 {

 if (i==j)

 {

 IFA[i][j]=1-Fk[i][j]-AxWB1[i][j];

 }

 else

 {

 IFA[i][j]=-Fk[i][j]-AxWB1[i][j];

 }

 }

 }

 //============= Calculate E1IFA =========

 for (i=0;i<3;i++)

 {

 for (j=0;j<7;j++)

 {

 E1IFA[i][j]=0;

 for (k=0;k<7;k++)

 {

 E1IFA[i][j]=E1IFA[i][j]+E1[i][k]*IFA[k][j];

 }

172

 }

 }

 //========= Calculate EEIFA ====================================

 for (i=0;i<3;i++)

 {

 for (j=0;j<7;j++)

 {

 EEIFA[i][j]=E2[i][j]+E1IFA[i][j];

 }

 }

 //===== Calculate Thxx ===================================

 for (i=0;i<7;i++)

 {

 for (j=0;j<7;j++)

 {

 Thxx[i][j]=0;

 for (k=0;k<3;k++)

 {

 Thxx[i][j]=Thxx[i][j]+EEIFA[k][i]*EEIFA[k][j];

 }

 if (i==j)

 {

 Thxx[i][j]=Thxx[i][j]+1;

 }

 Thxx[i][j]=Thxx[i][j]*0.1;

 }

 }

 //============ Calculate Thuu ========

 //========= Calculate AxWB2

 for (i=0;i<7;i++)

 {

 for (j=0;j<2;j++)

 {

 AxWB2[i][j]=0;

 for (k=0;k<7;k++)

 {

 AxWB2[i][j]=AxWB2[i][j]+AxW[i][k]*B2[k][j];

 }

 }

 }

 //=============== Calculate GAW ================

 for (i=0;i<7;i++)

 {

 for (j=0;j<2;j++)

 {

 GAW[i][j]=Gk[i][j]+AxWB2[i][j];

 }

 }

 //============= Calculate E1GAW ==============

 for (i=0;i<3;i++)

 {

 for (j=0;j<2;j++)

 {

 E1GAW[i][j]=0;

 for (k=0;k<7;k++)

 {

173

 E1GAW[i][j]=E1GAW[i][j]+E1[i][k]*GAW[k][j];

 }

 E1GAW[i][j]=-E1GAW[i][j];

 }

 }

 //=================== Calculate Thuu ===================

 for (i=0;i<2;i++)

 {

 for (j=0;j<2;j++)

 {

 Thuu[i][j]=0;

 for (k=0;k<3;k++)

 {

 Thuu[i][j]=Thuu[i][j]+E1GAW[k][i]*E1GAW[k][j];

 }

 if (i==j)

 {

 Thuu[i][j]=Thuu[i][j]+1;

 }

 Thuu[i][j]=Thuu[i][j]*0.1;

 }

 }

 //======================= Calculate Thux ================

 //================ Calculate Thux ====================

 for (i=0;i<7;i++)

 {

 for (j=0;j<2;j++)

 {

 Thux[i][j]=0;

 for (k=0;k<3;k++)

 {

 Thux[i][j]=Thux[i][j]+EEIFA[k][i]*E1GAW[k][j];

 }

 Thux[i][j]=Thux[i][j]*0.1;

 }

 }

 //================= Calculate Sk ===================

 //============ Calculate FTS ================================

 for (i=0;i<7;i++)

 {

 for (j=0;j<7;j++)

 {

 if (i==j)

 {

 SkNew[i][j]=10;

 }

 else

 {

 SkNew[i][j]=0;

 }

 }

 }

 Converg=100;

 while(Converg>10)

 {

 for (i=0;i<7;i++)

 {

174

 for (j=0;j<7;j++)

 {

 Sk[i][j]=SkNew[i][j];

 if(i==j)

 {

 probe[14+i]=Sk[i][j];

 }

 }

 }

 for (i=0;i<7;i++)

 {

 for (j=0;j<7;j++)

 {

 FTS[i][j]=0;

 for (k=0;k<7;k++)

 {

 FTS[i][j]=FTS[i][j]+Fk[k][i]*Sk[k][j];

 }

 }

 }

 //============== Calculate FTSF ===========================

 for (i=0;i<7;i++)

 {

 for (j=0;j<7;j++)

 {

 FTSF[i][j]=0;

 for (k=0;k<7;k++)

 {

 FTSF[i][j]=FTSF[i][j]+FTS[i][k]*Fk[k][j];

 }

 }

 }

 //=========== Calculate FTSG ==================================

 for (i=0;i<7;i++)

 {

 for (j=0;j<2;j++)

 {

 FTSG[i][j]=0;

 for (k=0;k<7;k++)

 {

 FTSG[i][j]=FTSG[i][j]+FTS[i][k]*Gk[k][j];

 }

 }

 }

 //=============== Calculate GTS ===================

 for (i=0;i<2;i++)

 {

 for (j=0;j<7;j++)

 {

 GTS[i][j]=0;

 for (k=0;k<7;k++)

 {

 GTS[i][j]=GTS[i][j]+Gk[k][i]*Sk[k][j];

 }

 }

175

 }

 //================ Calculate GTSG ==============

 for (i=0;i<2;i++)

 {

 for (j=0;j<2;j++)

 {

 GTSG[i][j]=0;

 for (k=0;k<7;k++)

 {

 GTSG[i][j]=GTSG[i][j]+GTS[i][k]*Gk[k][j];

 }

 }

 }

 //=============== Calculate FGTHxx ==================

 for (i=0;i<7;i++)

 {

 for (j=0;j<7;j++)

 {

 FGTHxx[i][j]=FTSF[i][j]+Thxx[i][j];

 }

 }

 //================= Calculate FGTHxu ============================

 for (i=0;i<7;i++)

 {

 for (j=0;j<2;j++)

 {

 FGTHxu[i][j]=FTSG[i][j]+Thux[i][j];

 }

 }

 //=============== Calculate GGTHuu ==================

 for (i=0;i<2;i++)

 {

 for (j=0;j<2;j++)

 {

 GGTHuu[i][j]=GTSG[i][j]+Thuu[i][j];

 }

 }

 //=========== Calculate invGSG =======================

 for (i=0;i<2;i++)

 {

 for (j=0;j<2;j++)

 {

 invmatrix88[i][j]=GGTHuu[i][j];

 }

 }

 binv8=invmatrix8(invmatrix88,2);

 for (i=0;i<2;i++)

 {

 for (j=0;j<2;j++)

 {

 invGSG[i][j]=binv8.binv[i][j];

 }

 }

 //============= Calculate FGTHGSG ======================

 for (i=0;i<7;i++)

 {

 for (j=0;j<2;j++)

176

 {

 FGTHGSG[i][j]=0;

 for (k=0;k<2;k++)

 {

 FGTHGSG[i][j]=FGTHGSG[i][j]+FGTHxu[i][k]*invGSG[k][j];

 }

 }

 }

 //===================== Calculate TH_G_TH ====================

 for (i=0;i<7;i++)

 {

 for (j=0;j<7;j++)

 {

 TH_G_TH[i][j]=0;

 for (k=0;k<2;k++)

 {

 TH_G_TH[i][j]=TH_G_TH[i][j]+FGTHGSG[i][k]*FGTHxu[j][k];

 }

 }

 }

 //============= Calculate Snew ==============================

 for (i=0;i<7;i++)

 {

 for (j=0;j<7;j++)

 {

 SkNew[i][j]=FGTHxx[i][j]-TH_G_TH[i][j];

 }

 }

 //================ Check if Ups has converged ==================

 Converg=0;

 for (i=0;i<7;i++)

 {

 for (j=0;j<7;j++)

 {

 Converg=Converg+(SkNew[i][j]-Sk[i][j])*(SkNew[i][j]-

Sk[i][j]);

 }

 }

 Converg=sqrt(Converg);

 probe[47]=Converg;

 IT=IT+1;

 probe[46]=IT;

 }

 //============== Calculate Lam =================

 //============== Calculate New GTS =============

 for (i=0;i<2;i++)

 {

 for (j=0;j<7;j++)

 {

 GTS[i][j]=0;

 for (k=0;k<7;k++)

 {

 GTS[i][j]=GTS[i][j]+Gk[k][i]*Sk[k][j];

 }

 }

177

 }

 //============= Calculate New GTSG ==========================

 for (i=0;i<2;i++)

 {

 for (j=0;j<2;j++)

 {

 GTSG[i][j]=0;

 for (k=0;k<7;k++)

 {

 GTSG[i][j]=GTSG[i][j]+GTS[i][k]*Gk[k][j];

 }

 }

 }

 //============ Calculate New GGTHuu ==========================

 for (i=0;i<2;i++)

 {

 for (j=0;j<2;j++)

 {

 GGTHuu[i][j]=GTSG[i][j]+Thuu[i][j];

 }

 }

 //================ Calculate New invGSG ====================

 for (i=0;i<2;i++)

 {

 for (j=0;j<2;j++)

 {

 invmatrix88[i][j]=GGTHuu[i][j];

 }

 }

 binv8=invmatrix8(invmatrix88,2);

 for (i=0;i<2;i++)

 {

 for (j=0;j<2;j++)

 {

 invGSG[i][j]=binv8.binv[i][j];

 }

 }

 //=============== Calculate New FTS ===========================

 for (i=0;i<7;i++)

 {

 for (j=0;j<7;j++)

 {

 FTS[i][j]=0;

 for (k=0;k<7;k++)

 {

 FTS[i][j]=FTS[i][j]+Fk[k][i]*Sk[k][j];

 }

 }

 }

 //=============== Calculate New FTSG =========================

 for (i=0;i<7;i++)

 {

 for (j=0;j<2;j++)

 {

 FTSG[i][j]=0;

 for (k=0;k<7;k++)

178

 {

 FTSG[i][j]=FTSG[i][j]+FTS[i][k]*Gk[k][j];

 }

 }

 }

 // ============= Calculate New FGTHxu =======================

 for (i=0;i<7;i++)

 {

 for (j=0;j<2;j++)

 {

 FGTHxu[i][j]=FTSG[i][j]+Thux[i][j];

 }

 }

 //=============== Calculate Lamk ==========

 for (i=0;i<2;i++)

 {

 for (j=0;j<7;j++)

 {

 LAMk[i][j]=0;

 for (k=0;k<2;k++)

 {

 LAMk[i][j]=LAMk[i][j]-

GGTHuu[i][k]*FGTHxu[j][k];

 }

 }

 }

}

/*==

 Initial RTOS Code

==*/

//static void prvSetupHardware(void);

/* The semaphore (in this case binary) that is used by the FreeRTOS tick hook

 * function and the event semaphore task.*/

xSemaphoreHandle xEventSemaphore = NULL;

/* The counters used by the various examples. The usage is described in the

 * comments at the top of this file.*/

static volatile uint32_t ulCountOfReceivedSemaphores;

/*

 * When FreeRTOS crashes, you often end up in a hard fault.

 */

/*---*/

static void prvEventSemaphoreTask(void *pvParameters)

{

 while(1)

 {

 /* Block until the semaphore is 'given'. */

 xSemaphoreTake(xEventSemaphore, portMAX_DELAY);

 /* Count the number of times the semaphore is received. */

 ulCountOfReceivedSemaphores++;

 STM_EVAL_LEDToggle(LED5);

 }

}

179

/*---*/

void HardFault_Handler (void){

 STM_EVAL_LEDOn(LED5);

 STM_EVAL_LEDOn(LED6);

}

// This FreeRTOS callback function gets called once per tick (default =

1000Hz).

// ---------

void vApplicationTickHook(void)

{

 static signed portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE;

 static uint32_t ulCount = 0;

 ++tickTime;

 ulCount++;

 if(ulCount >= 250UL)

 {

 xSemaphoreGiveFromISR(xEventSemaphore, &xHigherPriorityTaskWoken);

 ulCount = 0UL;

 }

}

/*---*/

// This FreeRTOS call-back function gets when no other task is ready to

execute.

// On a completely unloaded system this is getting called at over 2.5MHz!

// --

--

void vApplicationIdleHook(void) {

 ++u64IdleTicksCnt;

}

// A required FreeRTOS function.

void vApplicationMallocFailedHook(void) {

 configASSERT(0); // Latch on any failure / error.

}

/*===

 Real Time Tasks

===*/

void GetInitCoordinates(void)

{

 USART_TypeDef* chan;

 chan=UART4;

 union

 {

 uint32_t HexValue;

 float FloatValue;

 }TempData;

 uint8_t res;

 uint8_t i;

 uint8_t m;

 uint8_t n;

 ret_t Data;

180

 uint8_t GetGPSData[]={0x10,0x8E,0x17,0x10,0x03};

 res=0;

 Retry1:

 for(i=0;i<180;i++)

 {

 Data.Data[i]=0;

 }

 m=sizeof(GetGPSData)/sizeof(uint8_t);

 for(n=0;n<=m;n++)

 {

 myUSART_SendByte(chan,GetGPSData[n]);

 }

 Data=TrapByte(0x8F,0x17,chan);

 if(Data.Check==1 && res<3){goto Retry1;}

 res=0;

 TempData.HexValue=(Data.Data[6]<<24)+(Data.Data[7]<<16)+(Data.Data[8]<<

8)+(Data.Data[9]); //

 GEDISensor.Y0=TempData.FloatValue;

 probe[38]=GEDISensor.Y0;

 TempData.HexValue=(Data.Data[10]<<24)+(Data.Data[11]<<16)+(Data.Data[12

]<<8)+(Data.Data[13]);

 GEDISensor.X0=TempData.FloatValue;

 probe[39]=GEDISensor.X0;

 STM_EVAL_LEDToggle(LED3);

}

void GPS(void *pvparameters)

{

 USART_TypeDef* chan;

 chan=UART4;

 union

 {

 uint32_t HexValue;

 float FloatValue;

 }TempData;

 uint8_t res;

 uint8_t i;

 uint8_t m;

 uint8_t n;

 ret_t Data;

 uint8_t GetGPSData[]={0x10,0x8E,0x17,0x10,0x03};

 res=0;

 while(1)

 {

 Retry1:

 for(i=0;i<180;i++)

 {

181

 Data.Data[i]=0;

 }

 m=sizeof(GetGPSData)/sizeof(uint8_t);

 for(n=0;n<=m;n++)

 {

 myUSART_SendByte(chan,GetGPSData[n]);

 }

 Data=TrapByte(0x8F,0x17,chan);

 if(Data.Check==1 && res<3){goto Retry1;}

 res=0;

 TempData.HexValue=(Data.Data[6]<<24)+(Data.Data[7]<<16)+(Data.Data[8]<<

8)+(Data.Data[9]); //

 GEDISensor.Y=TempData.FloatValue-GEDISensor.Y0;

 TempData.HexValue=(Data.Data[10]<<24)+(Data.Data[11]<<16)+(Data.Data[12

]<<8)+(Data.Data[13]);

 GEDISensor.X=TempData.FloatValue-GEDISensor.X0;

 STM_EVAL_LEDToggle(LED3);

 vTaskDelay(500);

 }

}

void ENCODERS(void *pvparameters)

{

 uint16_t temp=0;

 int of;

 while(1)

 {

 temp=(uint16_t) TIM_GetCounter(TIM3);

 of=-temp+GEDISensor.LEnc;

 if((of)>60000)

 {

 GEDISensor.LEInc=65535-of+GEDISensor.LEInc;

 }

 else if((of)<-60000)

 {

 GEDISensor.LEInc=65535+of+GEDISensor.LEInc;

 }

 else

 {

 GEDISensor.LEInc=of+GEDISensor.LEInc;

 }

 GEDISensor.LEnc=temp;

 temp=(uint16_t) TIM_GetCounter(TIM5);

 of=temp-GEDISensor.REnc;

 if((of)>60000)

 {

 GEDISensor.REInc=65535-of+GEDISensor.REInc;

 }

 else if((of)<-60000)

 {

 GEDISensor.REInc=65535+of+GEDISensor.REInc;

 }

 else

 {

182

 GEDISensor.REInc=of+GEDISensor.REInc;

 }

 GEDISensor.REnc=temp;

 STM_EVAL_LEDToggle(LED6);

 vTaskDelay(23);

 }

}

void MissionController1(void *pvparameters)

{

 uint8_t i;

 uint8_t j;

 uint16_t Track;

 //State Matrices

 double Hk[8][7];

 double Fk[7][7];

 double Gk[7][2];

 double Jk[8][2];

 double xnext[7]={0};

 double xold[7]={0};

 //Uncertainty and Structural Matrices

 double Ax[7][7]={{0}};

 double Ay[8][7]={{0}};

 double B1[7][7]={{0}};

 double B2[7][2]={{0}};

 double W[7][7];

 //Measurement and Input Matrices

 double Yk[8];

 double U[2];

 //Noise Matrices

 double P[7][7]={{0}};

 double Q[8][8]={{0}};

 //Path Tracking Matrices

 double E1[3][7];

 double E2[3][7];

 ///Adjustable Scalars

 double Dt=.785;

 double Dte=.785;

 double gam=0.1;

 double kb=0.154;

 double kt=0.13;

 double nr=20;

 double Iw=0.764;

 double m=230;

 double Nc=4096;

 double B=0.88;

 double Icr=127.7;

 double rw=0.2794;

 double Ra=0.32;

 //Heading Angles and delta variables

 double THk=0;

183

 double thi=0;//M_PI_4;

 double Dx=0;

 double Dy=0;

 double DTHk=0;

 //================== Path Matrix========================

 path[0][0]=0; path[0][1]=0; path[0][2]=0;

 path[0][3]=0; path[0][4]=0; path[0][5]=0;

 path[0][6]=0; path[0][7]=0;

 path[1][0]=0; path[1][1]=1; path[1][2]=2;

 path[1][3]=3; path[1][4]=4; path[1][5]=5;

 path[1][6]=6; path[1][7]=7;

 path[2][0]=0; path[2][1]=0; path[2][2]=0;

 path[2][3]=0; path[2][4]=0; path[2][5]=0;

 path[2][6]=0; path[2][7]=0;

 Xr=0;

 Yr=0;

 Pid=0;

 Track=0;

 xold[0]=0.1; xold[1]=0.1; xold[2]=0.1; xold[3]=0; xold[4]=0; xold[5]=0;

xold[6]=0;

 while(1)

 {

 Dx=path[1][Pid]-Xr;

 Dy=path[2][Pid]-Yr;

 probe[25]=Dx;

 probe[26]=Dy;

 DTHk=THk-xold[4];

 probe[27]=DTHk;

 if(fabs(Dx)<1E-1)

 {

 THk=M_PI_4;

 }

 else

 {

 THk=atan((Dy)/(Dx));

 }

 probe[28]=THk;

 DTHk=THk-xold[4];

 probe[29]=DTHk;

 thi=THk;

 xold[4]=thi;

 //================== Matrix F(k)=====================================

 Fk[0][0]=(double)(1-(2*kt*kb*nr*nr*Dt)/(Ra*(4*Iw+m*rw*rw)));

Fk[0][1]=0;

 Fk[0][2]=0;

 Fk[1][0]=0;

 Fk[1][1]=(double)(1-(2*kt*kb*nr*nr*Dt)/(Ra*(4*Iw+m*rw*rw)));

 Fk[1][2]=0;

 Fk[2][0]=0;

 Fk[2][1]=0;

 Fk[2][2]=(double)(1-

(2*kt*kb*nr*nr*Dt)/(Ra*(4*Iw+m*rw*rw)));

 Fk[3][0]=0;

 Fk[3][1]=0;

 Fk[3][2]=0;

184

 Fk[4][0]=0;

 Fk[4][1]=0;

 Fk[4][2]=0;

 Fk[5][0]=0;

 Fk[5][1]=0;

 Fk[5][2]=(double)(-

(2*kt*kb*nr*nr*Dt)*Dt*cos(thi)/(Ra*(4*Iw+m*rw*rw)));

 Fk[6][0]=0;

 Fk[6][1]=0;

 Fk[6][2]=(double)(-

(2*kt*kb*nr*nr*Dt)*Dt*sin(thi)/(Ra*(4*Iw+m*rw*rw)));

 Fk[0][3]=0;

 Fk[0][4]=0; Fk[0][5]=0; Fk[0][6]=0;

 Fk[1][3]=0;

 Fk[1][4]=0; Fk[1][5]=0; Fk[1][6]=0;

 Fk[2][3]=0;

 Fk[2][4]=0; Fk[2][5]=0; Fk[2][6]=0;

 Fk[3][3]=(double)(1+(B*B*kt*kb*nr*nr*Dt)/(4*Icr*Ra*rw*rw)); Fk[3][4]=0;

 Fk[3][5]=0; Fk[3][6]=0;

 Fk[4][3]=(double)((B*B*kt*kb*nr*nr*Dt)/(4*Icr*Ra*rw*rw)*Dt);Fk[4][4]=1;

 Fk[4][5]=0; Fk[4][6]=0;

 Fk[5][3]=0;

 Fk[5][4]=0; Fk[5][5]=1; Fk[5][6]=0;

 Fk[6][3]=0;

 Fk[6][4]=0; Fk[6][5]=0; Fk[6][6]=1;

 //======================== Matrix H(k)=============================

 Hk[0][0]=(double)(Nc*Dte/(M_2_PI*rw)); Hk[0][1]=0; Hk[0][2]=0;

 Hk[0][3]=0; Hk[0][4]=0;

 Hk[0][5]=0; Hk[0][6]=0;

 Hk[1][0]=0;

 Hk[1][1]=(double)(Nc*Dte/(M_2_PI*rw));Hk[1][2]=0; Hk[1][3]=0;

 Hk[1][4]=0; Hk[1][5]=0; Hk[1][6]=0;

 Hk[2][0]=0; Hk[2][1]=0;

 Hk[2][2]=(double)(1/Dt);Hk[2][3]=0; Hk[2][4]=0;

 Hk[2][5]=0; Hk[2][6]=0;

 Hk[3][0]=0; Hk[3][1]=0;

 Hk[3][2]=(double)(1/Dt);Hk[3][3]=0; Hk[3][4]=0;

 Hk[3][5]=0; Hk[3][6]=0;

 Hk[4][0]=0; Hk[4][1]=0;

 Hk[4][2]=0; Hk[4][3]=1; Hk[4][4]=0;

 Hk[4][5]=0; Hk[4][6]=0;

 Hk[5][0]=0; Hk[5][1]=0;

 Hk[5][2]=0; Hk[5][3]=0;

 Hk[5][4]=(double)(1/Dt);Hk[5][5]=0; Hk[5][6]=0;

 Hk[6][0]=0; Hk[6][1]=0;

 Hk[6][2]=0; Hk[6][3]=0; Hk[6][4]=0;

 Hk[6][5]=1; Hk[6][6]=0;

 Hk[7][0]=0; Hk[7][1]=0;

 Hk[7][2]=0; Hk[7][3]=0; Hk[7][4]=0;

 Hk[7][5]=0; Hk[7][6]=1;

 //===================== Matrix G(k)=============================

 Gk[0][0]=(double)(2*kt*nr*Dt)/(Ra*(4*Iw+m*rw*rw));

 Gk[0][1]=(double)(0);

 Gk[1][0]=(double)0;

 Gk[1][1]=(double)((2*kt*nr*Dt)/(Ra*(4*Iw+m*rw*rw)));

185

 Gk[2][0]=(double)(kt*nr*Dt)/(Ra*(4*Iw+m*rw*rw));

 Gk[2][1]=(double)((kt*nr*Dt)/(Ra*(4*Iw+m*rw*rw)));

 Gk[3][0]=(double)(B*kt*nr*Dt)/(2*Icr*Ra*rw*rw);

 Gk[3][1]=(double)(-(B*kt*nr*Dt)/(2*Icr*Ra*rw*rw));

 Gk[4][0]=(double)((B*kt*nr*Dt)/(2*Icr*Ra*rw*rw)*Dt);

 Gk[4][1]=(double)(-(B*kt*nr*Dt)/(2*Icr*Ra*rw*rw)*Dt);

 Gk[5][0]=(double)((2*kt*nr*Dt)/(Ra*(4*Iw+m*rw*rw))*cos(thi));

 Gk[5][1]=(double)((2*kt*nr*Dt)/(Ra*(4*Iw+m*rw*rw))*Dt*cos(thi));

 Gk[6][0]=(double)((2*kt*nr*Dt)/(Ra*(4*Iw+m*rw*rw))*Dt*sin(thi));

 Gk[6][1]=(double)((2*kt*nr*Dt)/(Ra*(4*Iw+m*rw*rw))*Dt*sin(thi));

 //======== Matrix E1================================

 E1[0][0]=0; E1[0][1]=0; E1[0][2]=0;

 E1[0][3]=0; E1[0][4]=1; E1[0][5]=0;

 E1[0][6]=0;

 E1[1][0]=0; E1[1][1]=0; E1[1][2]=0;

 E1[1][3]=0; E1[1][4]=0; E1[1][5]=1;

 E1[1][6]=0;

 E1[2][0]=0; E1[2][1]=0; E1[2][2]=0;

 E1[2][3]=0; E1[2][4]=0; E1[2][5]=0;

 E1[2][6]=1;

 //==================== Matrix E2=============================

 E2[0][0]=-.43*Dt; E2[0][1]=.43*Dt; E2[0][2]=0;

 E2[0][3]=-Dt; E2[0][4]=DTHk/(xold[4]); E2[0][5]=0;

 E2[0][6]=0;

 E2[1][0]=Dt*cos(THk); E2[1][1]=Dt*cos(THk); E2[1][2]=-Dt*cos(THk);

 E2[1][3]=0; E2[1][4]=0;

 E2[1][5]=Dx/(xold[5]); E2[1][6]=0;

 E2[2][0]=Dt*sin(THk); E2[2][1]=Dt*sin(THk); E2[2][2]=-Dt*sin(THk);

 E2[2][3]=0; E2[2][4]=0; E2[2][5]=0;

 E2[2][6]=Dy/(xold[6]);

 for (i=0;i<3;i++)

 {

 for (j=0;j<7;j++)

 {

 E2[i][j]=E2[i][j];//0;

 }

 }

 //============================ Matrix W========================

 for (i=0;i<7;i++)

 {

 for (j=0;j<7;j++)

 {

 if (i==j)

 {

 W[i][j]=1;

 }

 else

 {

 W[i][j]=0;

 }

 }

 }

 //================= Covariance P===========================

 for (i=0;i<7;i++)

 {

 for (j=0;j<7;j++)

 {

186

 if (i==j)

 {

 P[i][j]=1E-6;

 }

 else

 {

 P[i][j]=0;

 }

 }

 }

 //=========================== Covariance Q============================

 for (i=0;i<8;i++)

 {

 for (j=0;j<8;j++)

 {

 if (i==j)

 {

 Q[i][j]=1E-6;

 }

 else

 {

 Q[i][j]=0;

 }

 }

 }

 //=================== Uncertainty matrix A_\xi=======================

 for (i=0;i<7;i++)

 {

 for (j=0;j<4;j++)

 {

 if (i==j)

 {

 Ax[i][j]=.001;//.5;

 }

 else

 {

 Ax[i][j]=0;

 }

 }

 for (j=4;j<7;j++)

 {

 Ax[i][j]=0;

 }

 }

 Ax[4][3]=0.005;//

 Ax[4][2]=0.005;//

 Ax[6][2]=0.005;//

// //================ Uncertainty matrix A_Y==========================

 Ay[0][0]=0;

 Ay[1][1]=0;

 Ay[2][2]=.0001;

 Ay[3][2]=.0001;

 Ay[4][3]=.0001;

 Ay[5][4]=.0001;

 Ay[6][5]=0;

 Ay[7][6]=0;

187

// //=============== Uncertainty matrix B1=========================

 for (i=0;i<7;i++)

 {

 for (j=0;j<7;j++)

 {

 if (i==j)

 {

 B1[i][j]=1E-5;//.25;

 }

 else

 {

 B1[i][j]=0;

 }

 }

 }

// //================ Uncertainty matrix B2=======================

 for (i=0;i<7;i++)

 {

 for (j=0;j<2;j++)

 {

 if (i==j)

 {

 B2[i][j]=1E-5;//.5;

 }

 else if(i==j*3)

 {

 B2[i][j]=1E-5;//.5;

 }

 else

 {

 B2[i][j]=0;

 }

 }

 }

 //============================= Initial Ups ===============

 //======================= Get Filter Matrices ======

 KalmanFilter(Ax,Ay,B1,Hk,Fk,P,Q,gam);

 //=============== Control Algorithm ========================

 H2Control(Ax,B1,B2,W,Fk,Gk,E1,E2);

 //============== Measure sensors for vector Yk ==============

 Yk[0]=(double)(GEDISensor.LEInc);

 Yk[1]=(double)(GEDISensor.REInc);

 Yk[2]=(double)(GEDISensor.AX1/GEDISensor.NIMU)*Dt;

 Yk[3]=(double)(GEDISensor.AX1/GEDISensor.NIMU)*Dt;

 Yk[4]=(double)(GEDISensor.GZ1/GEDISensor.NIMU)*Dt;

 Yk[5]=(double)(GEDISensor.GZ2/GEDISensor.NIMU);

 Yk[6]=(double)(GEDISensor.X);

 Yk[7]=(double)(GEDISensor.Y);

188

 double Umax;

 //=========== Get Filter Matrices =======

 for (i=0;i<7;i++)

 {

 xnext[i]= 0;

 for (j=0;j<7;j++)

 {

 xnext[i]=xnext[i]+PHIk[i][j]*xold[j];

 }

 for (j=0;j<8;j++)

 {

 xnext[i]=xnext[i]+GAMMAk[i][j]*Yk[j];

 }

 }

 //================= Update State Estimate =========================

 for (i=0;i<7;i++)

 {

 xold[i]=xnext[i];

 probe[i]=xnext[i];

 }

 //================== Calculate U from Lamdak =====================

 for (i=0;i<2;i++)

 {

 U[i]=0;

 Umax=U[i];

 for (j=0;j<7;j++)

 {

 U[i]=U[i]+LAMk[i][j]*xold[j];

 }

 if (fabs(U[i])>Umax) {

 Umax=U[i];

 }

 U[i]=-U[i];

 probe[35+i]=U[i];

 }

 if (Umax>8)

 {

 for (i=0;i<2;i++)

 {

 U[i]=U[i]*8/Umax;

 }

 }

 Xr=xold[5];

 Yr=xold[6];

 //================== Reset Measurements ======================

 GEDISensor.LEInc=0;

 GEDISensor.REInc=0;

 GEDISensor.AX1=0;

189

 GEDISensor.AX2=0;

 GEDISensor.GZ1=0;

 GEDISensor.GZ2=0;

 GEDISensor.NIMU=0;

 //============= Voltage To PWM ===============================

 if(Track<40)

 {

 Track++;

 }

 else

 {

 if(Pid>8)

 {

 Controls.VL=ZeroSpeed;

 Controls.VR=ZeroSpeed;

 }

 else {

 Pid++;

 Controls.VR=U[0]+ZeroSpeed;

 if (Controls.VR>MaxNegSpeed)

 {

 Controls.VR=MaxNegSpeed;

 }

 else if(Controls.VR<MaxPosSpeed)

 {

 Controls.VR=MaxPosSpeed;

 }

 Controls.VL=U[1]+ZeroSpeed;

 if (Controls.VL>MaxNegSpeed)

 {

 Controls.VL=MaxNegSpeed;

 }

 else if(Controls.VL<MaxPosSpeed)

 {

 Controls.VL=MaxPosSpeed;

 }

 }

 }

 vTaskDelay(785);

 STM_EVAL_LEDToggle(LED5);

 STM_EVAL_LEDToggle(LED4);

 }

}

void IMU(void *pvparameters)

{

 while(1)

 {

 int16_t Temp;

 GPIO_ResetBits(GPIOE,GPIO_Pin_1); //Set CS Low//3

 Temp=0;

 Temp=(mySPI_GetData(0x29)); //Get High byte

190

 Temp=((Temp<<8)|(mySPI_GetData(0x28))); //Get Low byte, combine

 GEDISensor.AX1=((Temp)*(1/393.5)+GEDISensor.AX1);//Convert to acc

 GPIO_SetBits(GPIOE,GPIO_Pin_1); //Set CS High//3

 GPIO_ResetBits(GPIOE,GPIO_Pin_2); //Set CS Low//4

 Temp=0;

 Temp=mySPI_GetData(0x2D); //Get High byte

 Temp=((Temp<<8)|(mySPI_GetData(0x2C))); //Get Low byte, combine

 GEDISensor.GZ1=(((Temp+1)*(2/29.1))*(M_PI/180)+GEDISensor.GZ1);

 GPIO_SetBits(GPIOE,GPIO_Pin_2); //Set CS high//4

 GPIO_ResetBits(GPIOE,GPIO_Pin_3); //Set CS Low//3

 Temp=0;

 Temp=(mySPI_GetData(0x29)); //Get High byte

 Temp=((Temp<<8)|(mySPI_GetData(0x28))); //Get Low byte, combine

 GEDISensor.AX2=((Temp)*(1/393.5)+GEDISensor.AX2);

 GPIO_SetBits(GPIOE,GPIO_Pin_3); //Set CS High//3

 GPIO_ResetBits(GPIOE,GPIO_Pin_4); //Set CS Low//4

 Temp=0;

 Temp=mySPI_GetData(0x2D); //Get High byte

 Temp=((Temp<<8)|(mySPI_GetData(0x2C))); //Get Low byte, combine

 GEDISensor.GZ2=(((Temp+1)*(2/29.1))*(M_PI/180)+GEDISensor.GZ2);

 GPIO_SetBits(GPIOE,GPIO_Pin_4); //Set CS high//4

 STM_EVAL_LEDToggle(LED6);

 GEDISensor.NIMU++;

 vTaskDelay(7);

 }

}

void DriveRobot(void *pvparameters)

{

 while(1)

 {

 TIM4->CCR1=Controls.VL;

 TIM4->CCR2=Controls.VR;

 STM_EVAL_LEDToggle(LED6);

 vTaskDelay(53);

 }

}

/*===

 Main Program

==*/

int main(void)

{

 uint8_t i;

 uint8_t j;

 /*=================================

 * Initialize Code

191

 * =================================*/

 STM_EVAL_LEDInit(LED3);

 STM_EVAL_LEDInit(LED4);

 STM_EVAL_LEDInit(LED5);

 STM_EVAL_LEDInit(LED6);

 Configure_DCMotors();

 GPS_Configure();

 Encoder_Configure();

 IMU_Configure();

 GEDISensor.NIMU=1;

 GetInitCoordinates();

 for (i=0;i<7;i++)

 {

 for (j=0;j<7;j++)

 {

 if (i==j)

 {

 UpsNew[i][j]=100;//1E10;

 }

 else

 {

 UpsNew[i][j]=0;

 }

 }

 }

 /*=================================

 * Create Tasks

 * =================================*/

 xTaskCreate(GPS, (signed char *) "Read GPS", 100, NULL, 1, NULL);

 xTaskCreate(ENCODERS, (signed char *) "Read Encoders", 50, NULL, 2,

NULL);

 xTaskCreate(IMU, (signed char *) "Read IMU", 50, NULL, 2, NULL);

 xTaskCreate(DriveRobot, (signed char*) "Motors",50,NULL,1,NULL);

 xTaskCreate(MissionController1, (signed char*)

"Motion",5000,NULL,3,NULL);

 /*=================================

 * Run Tasks

 * =================================*/

 vTaskStartScheduler(); // This should never return.

 while(1)

 {

 }

 return 1;

}

