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ABSTRACT

The interaction between droplets and solid surfaces is of great importance in indus-

trial applications, biochemical processes, and fundamental materials research on surface

wettability. In this work, a three-dimensional spectral boundary element method has been

employed to investigate the dynamics of a viscous droplet moving under gravity influence

normal and parallel to a micro-patterned solid surface. The dynamics of the droplet moving

perpendicular to the substrate are investigated under the influence of Bond number, droplet

size, and topological features of the substrate. We find that the droplet dynamics can be

controlled by varying Bond number, droplet size, and pattern height and width; however,

the pattern length has little effect. For a droplet moving parallel to the surface, the Bond

number and pattern projection direction greatly change the droplet dynamics. However,

after moving past the pattern, the droplet position, velocity, and deformation return to that

of a flat-plate solution.
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CHAPTER 1. INTRODUCTION

1.1. Viscous droplet dynamics

Viscous droplets moving in an immiscible medium is a subject which has been stud-

ied intensively. As a droplet moves through a viscous medium or interacts with other

objects, the interface deforms due to an unbalance of forces such as drag, gravity, inertia,

and surface tension. Surface tension counteracts other forces and tries to keep the droplet

spherical. If the other forces are large enough, they can overwhelm surface tension and the

droplet will burst.

The understanding of viscous droplets in an immiscible viscous fluid is important

in industrial applications, lab-on-a-chip devices, and other microfluidic applications [29].

The ability to accurately predict droplet dynamics is essential to fully understanding the

underlying physics and optimize these processes. In lab-on-a-chip applications, droplets of

various fluids are controlled by microfluidic devices to promote droplet mixing or isolation

of specific droplets [1, 29, 30, 38]. The droplet motion is typically controlled by either

optimizing the geometry or by using electric fields [18,30,39]. The former has advantages

over the latter by not having to worry about how the electric fields might adversely interact

with the droplets (or cells in some cases).

Much of the theory behind viscous droplets comes originally from Taylor who dis-

cussed the viscosity of fluid emulsions and studied fluid interfaces [32, 33]. Taylor and

Acrivos then studied the deformation of viscous droplets falling at terminal velocity at

low Reynolds numbers [34]. Their work helped us understand the governing dynamics of

viscous droplets moving in a viscous medium. Dandy et al. studied the buoyancy-driven

motion for bubbles or droplets traveling through a quiescent liquid at moderate Reynolds

numbers [3].

Recently, simulations have been performed on droplets falling in a channel filled with

low-viscosity fluid using a finite element method [11] and high-viscosity fluid using a level
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set method [22].

1.2. Droplet-substrate interaction

The interaction of a viscous droplet with a solid surface has been the focus of much

research for applications in coatings, weathering, and microfluidics, to name a few. There

are also possible applications in cell culturing. When culturing, cells are suspended in a

solution before settling towards a substrate. The interaction of the cells with the substrate

may have a large impact on the survivability of the cells. Goto et al. used micropatterned

surfaces to control the directional growth of cells during culturing [12]. However, the inter-

action of cells as they fall towards the pattern or flow past the pattern were not investigated.

When dealing with droplet-substrate systems, two different regimes exist: the motion

of droplets near a surface and the contact between droplet and surface. The forces acting

on the system include gravity, inertia, and surface tension. The disproportionality of these

forces can be used to simplify the continuity and conservation of momentum equations

governing the fluid flow. For example, droplets traveling fast enough towards the surface

will be dominated by inertia forces and therefore surface tension will play a smaller relative

role. On the other hand, small droplets traveling slow towards the surface will be dominated

by gravitational or surface tension forces and inertia can be neglected.

Two dimensionless parameters govern the dynamics of the system: the Bond number

Bd and the viscosity ratio λ. The Bond number Bd = ∆ρ|g|a2/γ relates the gravitational

force to the interfacial force where ∆ρ is the density difference between the two fluids, |g|

is the magnitude of gravity, a is the droplet radius, and γ is the interfacial tension.

Sadhal et al. performed a comprehensive study on wall interactions with droplets and

bubbles [27]. This study includes theory and experiments for many wall-droplet interac-

tions including droplets near walls and droplets attached to walls.

Research has been done characterizing droplets or bubbles moving parallel to a flat

surface, both experimentally [31] and computationally [19, 36]. Results from these studies

2



show that droplets or bubbles tend to move away from a wall when traveling parallel to it.

Additionally, many studies have also been done on droplets and bubbles moving perpen-

dicular towards a flat surface, again experimentally [16,17] and computationally [2,25,40].

However, the effect of substrate topology on the droplet are still not understood.

1.3. Computational studies on droplet-substrate interaction

The governing continuity and conservation of momentum equations are difficult to

solve analytically in many cases and thus require numerical solutions. Until recently,

most models have required at most two dimensions due to computing limitations. How-

ever, three-dimensional models now provide more realistic results for many difficult prob-

lems. Zhu et al. investigated the motion of droplets in bounded Stokes flow utilizing a

boundary element method to investigate contractile flow through a nozzle [41]. Zinchenko

et al. developed a boundary integral method to study the viscous interaction of multiple

droplets [42].

While there are many simulations including viscous droplet motion in a viscous

medium, the dynamics of droplets approaching or interacting with solid surfaces is a bit

more unique. Ascoli et al. performed studies for droplets approaching flat substrates in

the Stokes regime utilizing an axisymmetric boundary integral method [2]. They found

that the commonly utilized thin-film lubrication equations may not be applicable when a

dimple is formed under the droplet, which is often the case when approaching a flat surface.

Yiantsios et al. also performed extensive work on quantifying the dimple’s formation and

magnitude [40]. They showed that for sufficiently long times, a dimple is always formed

independent of the viscosity ratio, and the dimple radius is defined by its Bond number

and droplet radius when the droplet approaches a rigid surface. The thin-film drainage and

dimpling of finite Reynold’s number droplets was also investigated by Quan who utilized a

finite element method to simulate the approaching finite-inertia droplets [25].

For droplets approaching surfaces at low-Re, little work has been done. Legen-

3



dre et al. performed experimental and simple-modeling research on the bouncing of a

buoyant droplet on a wall with finite Bond and Weber numbers [16, 17]. Simulations of

droplets impacting and bouncing on surfaces have also been performed at small Weber

numbers [20]; however, the quasi-static method deviated from experimental results when

the Bond number was nonzero. Klaseboer et al. created a model for the impinging of

droplets on a flat surface at high-Re [15].

Droplet impact on geometrically-patterned surfaces has been investigated experi-

mentally for liquid droplets surrounded by air [14, 28, 35]. For square-shaped patterns,

the textured pattern is shown to inhibit droplet spreading and deviates from the normal

circular-shaped spreading pattern into diamond-shaped spreading pattern with the widest

spreading occurring at directions parallel to the pattern [28]. A pattern of infinitely long

ridges is shown to promote spreading in the direction parallel to the ridges and inhibit

spreading in the transverse direction [14]. Computationally, research on droplets impacting

patterned surfaces lacking. Reis et al. studied droplets impacting and impinging on porous

surfaces [26]. Pasandideh et al. experimentally and computationally studied droplets im-

pacting and solidifying on a steel plate [23]. All of these studies only looked at the spread-

ing of droplets in contact with the substrate, and not the dynamics of droplets approaching

the substrate. Indeed, in low-viscosity fluids such as air, the presence of a pattern on

the substrate will produce negligible effects on the droplet prior to contact. In a viscous

medium, the approach of the droplet cannot be ignored.

1.4. Summary of current research

The dynamics of viscous droplets surrounded by a viscous liquid impacting a pat-

terned surface has not yet been analyzed computationally or experimentally. Using a three-

dimensional Spectral Boundary Element method (SBEM), this research investigates the

dynamics of a droplet moving near a patterned surface through a viscous medium in the

Stokes (creeping flow) regime. Two studies are performed: the first looks at a droplet
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approaching the patterned surface perpendicularly, and the second investigates a droplet

moving parallel to the surface, across the pattern. The SBEM allows us to benefit from the

spectral method’s exponential convergence and numerical stability and the finite element

method’s ability to work with complicated geometries.

We consider a simplified substrate pattern of comparable size to the droplet in low-

ReStokes flow. The influences of Bond number, the relative size of droplet and substrate

pattern, and substrate geometry on the droplet motion and deformation are investigated.

The results from this study allow us to determine the effect of various substrate pattern

characteristics on both the droplet dynamics as well as the surface stress which can be

used to determine hydrophobic coating wear. The ability to control droplet dynamics with

surface features has applications in droplet microfluidic devices and cell culturing.

This research has been presented at the ND/SD Engineering Research Summit in

2013, the ASME International Mechanical Engineering Congress and Exposition (IMECE)

in 2013, and the ND Experimental Program to Stimulate Competitive Research (EPSCoR)

conference in 2014. It will also be presented at the ASME Joint US-European Fluids Engi-

neering Division Summer Meeting (FEDSM) in 2014 and will be submitted for publication

in Microfluidics and Nanofluidics.
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CHAPTER 2. MATHEMATICAL FORMULATION AND

NUMERICAL METHODS

2.1. Problem description

Figure 1 illustrates a droplet surrounded by another fluid subject to gravity denoted

as g. The fluid inside the droplet, Fluid 1, has a viscosity of λµ and a density of ρ1

while the fluid outside the droplet, Fluid 2, has a viscosity of µ and a density of ρ2. The

surface tension between the two fluids is γ. Both fluids are considered Newtonian and

incompressible. The droplet is falling due to gravity; that is, ρ1 > ρ2. The initial height of

the droplet’s centroid above the lowest part of the substrate is h.

The micropattern shown in Fig. 2 consists of two pillars of width w1 and height w2

separated by a distance w3. The micropatterns extend into and out of the page a finite

distance such that the total length of the pattern is equal to L. All of these lengths are

scaled with the droplet size a. If not specified, w1 = 0.5, w2 = 0.2, w3 = 1, and

L = 2. The coordinate system is such that x denotes direction across the micropattern, y

denotes direction parallel to the micropattern and z denotes direction perpendicular to the

substrate. Theoretically, the substrate should extend to infinity in the x and y directions.

This is approximated by choosing a substrate size large enough that it no longer affects the

results near the center of the plate. The appropriate substrate size is determined later in

section 4.1.4.

In this study, the surrounding fluid is quiescent; that is, no external flow field is

imposed. The fluid flow and viscous stresses result from the motion of the interface

between the droplet and surrounding fluid due to gravity. A dimensionless number is

employed, the Bond number Bd, to quantify the relative importance of the surface tension

and the body forces, in this case gravity,

Bd =
(ρ1 − ρ2)|g|a2

γ
(2.1)
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Figure 1. 2D schematic for a droplet subject to gravity above a micropatterned surface.

Figure 2. 3D schematic of the surface showing the finite depth L of the pillars and the
Cartesian coordinate system. The (0, 0, 0) coordinate is located directly between the two
pillars at the bottom of the substrate.
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Additionally, we have the Capillary number Ca = µU/γ, where U is a characteristic

velocity (usually the terminal velocity of the droplet), that relates the viscous forces to

surface tension, the Weber number We = ρ2U
2a/γ which relates the inertia forces to

surface tension, and the Reynolds number Re = ρ2Ua/µ which relates the inertia forces

and viscous forces. We primarily work with the Bond number Bd in this study.

The length scale is the characteristic length a, the radius of the droplet, while the time

scale is the buoyancy time scale τg = µ/∆ρga where ∆ρ = |(ρ2 − ρ1)|. Therefore, the

velocity scale is U = ∆ρga2/µ.

Theoretically, an extremely small time step can be used, and the simulations can run

indefinitely. However, in practice, this is not reasonable due to compuational limitations

and the simulation must be stopped at some point. In most cases, the simulation is stopped

when the solutions (droplet profile, deformation D, or Uz) for adjacent time steps are

negligibly different. However, due to the quick deceleration of the droplet when very

close to the substrate, the time step may also cause the droplet interface to intersect with

the substrate. In this case, the simulation is considered finished a few steps before the

intersection.

2.2. Derivation of boundary integral equations

Due to negligible inertia (compared with viscous force and surface tension), Reand

Weare much smaller than unit and can be neglected. Therefore, the governing equations for

fluid dynamics include the Stokes equations [36],

−∇p+ µ∇2u = 0 (2.2)

along with continuity,

∇ · u = 0 (2.3)

where p is the dynamic pressure, µ is the viscosity of the fluid, and u is the velocity vector.
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(a) (b)

Figure 3. Boundaries used in the boundary integral equations. (a) represents the “inner”
equation 2.4 while (b) represents the “outer” equation 2.7.

Fundamental solutions Sij and Tijk for velocity and stress, respectively, are intro-

duced into the Stokes and continuity equations 2.2 and 2.3. Then, the new equations are

integrated over a volume of fluid bounded by a surface denoted SB in Fig. 3(a). In this

way, the velocity ui at any point x0 on SB can be defined as a Boundary Integral Equation

(BIE),

ui(xo) = − 1

4πµ

∫
SB

(Sij(x̂)fj(x)− µTijk(x̂)uj(x)nk(x)) dS (2.4)

This equation states that the velocity u at any point x0 on SB is defined as the surface

integral of the velocity and stress over all points x on the same boundary. Additional terms

in the equation include the force vector f , which is defined as fj(x) = σjk(x)nk(x) and

the normal vector n which always points into the volume enclosed by the surface. The

fundamental solutions Sij and Tijk that we introduced in the beginning are defined given

as [24],

Sij =
δij
r

+
x̂ix̂j

r3
(2.5)
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Figure 4. Schematic of the boundaries for a droplet suspended above a patterned surface.

Tijk = −6
x̂ix̂jx̂k

r5
(2.6)

where x̂ = x− x0 and r = |x̂| [24].

Equation 2.4 describes the fluid inside the boundary SB and is thus called the “inner”

equation. The equation which solves for the fluid outside of boundary SB shown in Fig. 3(b)

is determined by assuming a second boundary S∞ infinitely far away from SB with a known

velocity u∞. Doing this results in an “outer” equation similar to the inner equation

u(xo)− 2u∞(xo) = − 1

4πµ

∫
SB

(S · f − µT · u · n) dS (2.7)

where n points into the volume enclosed by surfaces SB and S∞. Note that the direction of

n is opposite in equations 2.4 and 2.7. More detailed derivations of these boundary integral

equations can be found in [13, 24].

For the problem specified in this study, a droplet is suspended near a substrate with

semi-infinitely unbounded fluid surrounding it, shown in Fig. 4. The fluid interface is

denoted as Γ and the solid wall is Sw. The BIEs shown here require a surface to be defined

infinitely far away from the droplet. In practice, this is difficult to perform because using

any finite distance will result in some amount of error. This surface also requires elements
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for the Boundary Element Method (BEM) shown later which will increase computational

cost. However, this can be resolved by introducing “disturbed” velocity and force, uD =

u − u∞ and fD = f − f∞. Based on the fact that S∞ is far away from the droplet, uD

and fD are zero on S∞ and the integration over this surface is zero. The inner equation 2.4

is altered to [24],

uD(xo) = − 1

4πµ

∫
Γ+Sw

(
S · fD − µT · uD · n

)
dS (2.8)

Now, equation 2.4 is applied to the flow inside the droplet, its sign changed due to the

direction of n, and it is subtracted from equation 2.8. This results in a new BIE describing

the system [24],

Ωu(x0)− Ω0u
∞(x0) =

−
∫
Γ

[S · (∆f − f∞)− µT · (u(1− λ)− u∞) · n] dS

+

∫
Sw

[S · f 2 − λµT · u2 · n] dS (2.9)

where Ω = 4πµ(1 + λ) and 4πµ for x0 on Γ and Sw, respectively and Ω0 = 4πµ on all

interfaces. It is important to note that, while S∞ is no longer relevant, the surface Sw is still

infinite and must be large enough to minimize error.

The boundary conditions at the droplet-surrounding fluid interface are,

u = u1 = u2 on boundary Γ (2.10)

∆f ≡ f 2 − f 1 = γ(∇ · n)n+ (ρ2 − ρ1)(g · x)n on boundary Γ (2.11)

where the subscripts “1” and “2” refer to the fluids defined in Fig. 1. The first term on

the right hand side of equation 2.11 contains force due to interfacial tension, while the

second term corresponds to body forces. The vector n is the unit normal pointing out of
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the interfaces – towards the suspending fluid for both the droplet and the substrate. On the

substrate surface Sw, a no-slip boundary condition is applied,

u2 = 0 on boundary Sw (2.12)

Equation 2.9 is a system of Fredholm equations of mixed kinds due to the different

boundary conditions on each boundary.

2.3. Spectral boundary element method

Muldowney and Higdon describe in detail how the Spectral Boundary Element method

(SBEM) is used to solve the BIEs from section 2.2 [21]. The SBEM provides exponential

convergence and numerical stability combined with the finite element method’s ability to

work with complicated geometries. Additionally, the SBEM does not succumb to disadvan-

tages of the spectral methods such as dense systems (because the BIEs are always dense

regardless of the discretization). Dimitrakopoulos and Higdon used the SBEM to study

droplet displacement from surfaces [4, 5, 6, 7, 8]. Wang and Dimitrakopoulos have also

used SBEM to study droplet motion parallel to a surface and Dimitrakopoulos also studied

droplets suspended in a flow [10, 36].

For the SBEM, the entire boundary is divided into a moderate number of quadrilateral

spectral elements NE . Each of these spectral elements is then divided into spectral points

(e.g. NB ≈ 10) in each direction. The droplet boundary is divided into approximately 6 or

10 elements. The pattern on the substrate is also discretized into elements, approximately

one element for each flat surface. The infinite substrate is discretized into multiple ele-

ments, approximately eight, to reduce error due to large mesh size. Figure 5 shows this

discretization for (a) an undeformed droplet and (b) a deformed droplet.

Lagrangian interpolation is used to find the geometrical and physical properties over

the entire droplet interface. To do this, each element is mapped onto a local parametric

variable system of ξ and η. These variables are the zeros of some orthogonal polynomials,
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(a) (b)

Figure 5. Geometry and discretization of a droplet above the substrate: (a) the initial
spherical shape of the droplet, and (b) the deformed droplet shape at time t = 5 for a
droplet with Bd = 10, λ = 0.2, h = 1.3.

such as Legendre or Chebyshev polynomials, on the domain of [-1, 1]. For NB basis points,

the geometry x is,

x(ξ, η) =

NB∑
i=1

NB∑
j=1

x(ξi, ηj)hi(ξ)hj(η) (2.13)

where hi(ξ) and hj(η) are the (NB − 1)-order Lagrange interpolant polynomial. A similar

relation is also used for u and f .

With the geometry and physical properties properly discretized, they can be substi-

tuted into the BIEs with a requirement that the integral equations must be satisfied at the

basis points x0(ξi, ηj) where i, j = 1, . . . , NB on each spectral element. This results in a

linear system of 3NEN
2
B equations to solve,

u = Af +Bu (2.14)

where A and B are defined as the integrals of kernels S and T and the basis functions over

the set of surface elements. These numerical integrations for A and B are best performed
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by Gauss-Legendre quadrature. Combining the BIEs with the boundary data at NEN
2
B

basis points yields a set of 3NEN
2
B equations and 3NEN

2
B unknowns which can be solved

using Gaussian elimination.
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CHAPTER 3. INTERFACIAL DYNAMICS FOR SUSPENDED

DROPLETS NEAR SURFACES

3.1. Dimensionless analysis

The interfacial dynamics for Stokes flow for a droplet falling towards a surface is

governed by dimensionless numbers for the viscosity ratio, λ = µ1/µ2, and the Bond

number, Bd given in Eqn. 2.1. The Bond number describes the opposing forces of gravity,

∆ρ|g|a2, and interfacial tension, γ, where a is the characteristic length (i.e. the radius) of

the droplet. Gravitational force pulling the droplet towards the substrate is contested by the

surface tension attempting to keep the droplet spherical. At some point, these forces will

equalize and the droplet will no longer deform.

Figure 6(a) shows the 2D evolution of deformation of a droplet approaching a pat-

terned substrate. In order to compare droplets with different properties, it is helpful quantify

the amount of deformation D,

D =
l1 − l2
l1 + l2

(3.1)

where l1 and l2 are the longest and shortest distances from the centroid of the deformed

droplet to the droplet interface respectively, shown in Fig. 6(b). For this problem, the

characteristic length a is used as the dimensionless length scale, the velocity scale is U =

∆ρ|g|a2/µ, the force scale is P = µU/a = ∆ρ|g|a, and the time scale is T = U/a =

∆ρ|g|a/µ.

3.2. Time-integration algorithm and smoothing method

The chosen problems examine a droplet suspended above a patterned surface in two

situations: the droplet slowly falling perpendicular to the surface and the droplet slowly

falling parallel to the surface. The governing Stokes equation and continuity have been

reduced to the BIE in equation 2.9 and the boundary conditions given in equations 2.10,

2.11, and 2.12. The Spectral Boundary Element method in section 2.3 is used to solve this

system by first discretizing the domain into a set of spectral elements NE with N2
B Lobatto
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Figure 6. (a) Time evolution of deformation profiles for a droplet approaching a patterned
substrate. (b) An arbitrarily deformed droplet with the two lengths l1 and l2 used to quantify
the amount of deformation.

basis points on each element. The SBEM is then used to solve for the velocity and forces

on each boundary. However, since the substrate is not moving, the velocity is known to

be zero and only the force needs to be determined. On the droplet interface, the interfacial

force ∆f is a known boundary condition based on the amount of deformation the interface

is undergoing, and thus only the velocity needs to be determined. This method so far only

solves for the velocity or force at a given time step, and the procedure for moving forward

in time will be discussed here.

The transient droplet shape is found by using a fourth-order Runge-Kutta method to

solve the kinematic relation,
dx

dt
= (u · n)n (3.2)

where x is the discretized droplet points and n is the normal vector at each point. First, the

interfacial velocity u of the known shape x(t) from the BIE in equation 2.9 is determined.

Next, the discretized points on the droplet interface are moved forward in time by ∆t
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according to each point’s current position and velocity,

x(t+∆t) = x(t) + ∆t(u · n)n (3.3)

It is important to note that so far there is no constraint holding the spectral elements

together. Therefore, after some time, the discontinuities existing at the edge of each spectral

element will break up the moving domains.

To resolve this issue, a first-order smoothing method refines the computed droplet

shape and maintains continuity of the position of the element and the normal and tangent

vectors at the edges of the elements [37]. Briefly, this is done by first averaging the position

of the points along each spectral element edge. The geometry is updated and the geometric

properties are recalculated. Next, the unit tangent vectors is calculated at each point along

the element edges and are similarly averaged for adjacent elements. This also causes the

unit normal vectors to be identical along the edges. Lastly, the first-order derivatives are

determined and updated using the relation |∂x/∂ξ|new = |∂x/∂ξ|old and similarly for η.

Once these edges have been updated, the entire drop shape must be smoothed. This

is done by first generating interior Jacobi points from the N2
B Lobatto basis points on each

element. These Jacobi points are then combined with the smoothed position, tangent, and

first-order derivatives previously found to create a new set of N2
B Lobatto points which

are smoothed. The new Lobatto points are created using a two-dimensional Hermitian

interpolation involving two nested one-dimensional Hermitian interpolations derived by

Dimitrakopoulos [9]. In addition to smoothing the position, tangent vector, and first-

order derivative along the edges, this method also informally smooths the second-order

derivative, the curvature of the droplet. The smoothing method in its entirety is described

by Wang [37].
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CHAPTER 4. DROPLET FALLING NORMAL TO A PATTERNED

SUBSTRATE

4.1. Parameter determination

The numerical method is verified for several parameters including time step, initial

height, geometry discretization, and substrate radius for a droplet approaching a flat sub-

strate. Two measures of performance used are the droplet’s deformation, D defined in

equation 3.1, and centroid velocity perpendicular to the substrate, Uz.

4.1.1. Time step size

The time step was justified by simulating a droplet approaching a substrate for three

different time steps and comparing the deformation between them at a single point in time.

Figure 7 shows the results from this test. We observe that all three time steps resulted in

nearly identical deformation. Due to this, a time step of ∆t = 10−3 was deemed sufficient

for the calculations. However, the time step can be varied during the simulation to speed up

calculations while the droplet is far away from the substrate and improve resolution when

the droplet approaches the substrate.

4.1.2. Initial height

The initial height of the droplet centroid was verified by simulating a droplet ap-

proaching a substrate for four different heights of h0 = 3, 5, 10, 15. The relative error

in deformation between the different heights was calculated when the droplets reached

a height of h = 1. The results from this verification test for deformation are shown in

Fig. 8. As h0 increases, the assumption of a spherical droplet becomes more valid and thus,

the deformation as the droplet approaches the substrate is more precise. Figure 9 shows

that the profiles for three initial height simulations are identical near the substrate. From

these results, an initial height of h0 = 10 was chosen to be sufficient for simulations. Using

similar approaches, Ascoli et al. showed that an initial height of 15 radii above the substrate

is sufficiently large to assume the droplet is spherical in their study [2].
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Figure 7. Relative error in deformation versus time step ∆t. ∆t = 2d − 4 serves as the
base for the relative error of the other ∆t. The parameters chosen for this verification were
Bd = 2, λ = 0.2, h0 = 1.3.

4.1.3. Discretization size

The geometry is discretized into a few spectral boundary elements NE . Each of these

elements has a basis number NB of collocation points in which the variables u and f are

defined. Thus, the total number of spectral points in the geometry is N = NENB
2. An

example of this discretization is shown in Fig. 5. The geometry discretization was verified

by changing the number of basis points NB = 7, 8, 10, 12, 14, 15 and calculating the relative

error between simulated results. The results from the geometry discretization verification

method are shown in Fig. 10. A moderate basis number of NB = 10 corresponding to

N = 2900 was chosen to be sufficient for most situations. Unlike the time step, the basis

number cannot be changed mid-simulation and thus more consideration is taken to ensure

sufficient accuracy.
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Figure 8. Relative error in deformation versus initial height h0. h0 = 15 serves as the
base for the relative error of the other h0. The parameters chosen for this verification were
Bd = 2.5, λ = 0.5.

4.1.4. Substrate radius

Due to the nature of finite element, the substrate cannot be truly infinite. Thus,

it is important to choose a substrate which is large enough to approach infinity but still

reasonable for computations. To chose a sufficient substrate radius, simulations were run

with substrate radii of 20, 30, 40, and 50 and the relative error in deformation between

simulated results was calculated when the droplets reached a height of h = 11. The

substrate radius of 50 serves as the base for the relative error calculation. The results

from this verification are shown in Fig. 11. It is clear that a larger substrate radius will

produce more precise results. However, larger substrates require more elements to ensure

accuracy and thus require more computational effort; a typical trade-off situation. Due to

the relatively low amount of error for all substrate radii considered, a substrate radius of 20

was chosen for further simulations.
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Figure 9. Droplet profiles at h = 2.5, 2.0, 1.5, 1.0, 0.633 for initial heights h0 = 5, 10, 15.
The parameters chosen for this verification were Bd = 2.5, λ = 0.5.

4.2. Validation of numerical method

The numerical method was validated against experimental studies and simulations

from literature. Parameters from simulations of droplets falling towards a flat substrate by

Ascoli et al. [2] were used to validate our spectral boundary element method. The velocity

towards the plate for both our simulation as well as Ascoli et al. is shown in Fig. 12. The

droplet profiles were also compared with Ascoli et al. in Fig. 12 and found to be nearly

identical.

Experiments were performed for droplets approaching a flat plate and compared with

the SBEM simulation results. The experiment was performed using a First Ten Angstroms

FTA1000B drop shape analyzer. A millimeter size water droplet was released in silicone

oil with slightly lower density. The droplet approached a hydrophobic-coated surface

and images were captured at approximately 60 fps. Surface tension and viscosity ratios

were calculated using manufacturer data. An experimental Bond number Bd and viscosity
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Figure 10. Relative error in deformation versus number of spectral points N = NENB
2 for

several different numbers of basis points NB = 7, 8, 10, 12, 14, 15. NB = 15 serves as the
base for the relative error of the other NB. The parameters chosen for this verification were
NE = 29 (Ndroplet = 10, Nsubstrate = 19), Bd = 2, λ = 0.2, h0 = 1.3.

ratio λ were calculated with these parameters and used for the simulation. Simulation

results were then dimensionalized using the experimental parameters. The droplet profile

at its maximum amount of deformation along with some important parameters is shown

in Fig. 14. The largest shape very closely matches the simulation results, but is not exact.

Deformation of the experimental droplet was quantified by importing droplet boundary

data, calculating a centroid using the average of x and y data, and evaluating D from

equation 3.1. The D-h relationship for both experiment and simulation is shown in Fig. 15.

Consistent with the droplet profile, the deformation for both the experiment and simulation

are nearly identical when the droplet is close to the substrate. However, the simulation over-

predicts the deformation when the droplet is further away from the substrate. We believe

this is due to the large size of the droplet resulting in non-negligible amounts of inertia.
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Figure 11. Relative error in deformation versus substrate radius. A substrate radius of 50
serves as the base for the relative error of the other substrate radii. The parameters chosen
for this verification were Bd = 1, λ = 0.3, h0 = 15

Since the simulation assumes creeping flow with zero inertia, this may be responsible for

the discrepancy.

4.3. Results & discussion

The behavior of the droplet free falling towards the substrate is computed using the

methods described. The droplet is at terminal velocity and moves towards the substrate

since Bd > 0 (ρ1 > ρ2). The case where the droplet moves away from the substrate

(i.e. , Bd < 0) is not computed in this study. The effect of different parameters such as Bd,

droplet radius, and substrate parameters w1, w2 and w3 is shown in the proceeding sections.

4.3.1. Influence of Bond number

Two-dimensional profiles of different Bd droplets on the x-z plane are shown in

Fig. 16. The deformation of the droplet is computed as a function of height h for different

Bd and is shown in Fig. 17. Additionally, the velocity of the droplet as a function of h
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Figure 12. Droplet velocity Uz as a function of height h for Bd = 3.75, λ = 1, and
h0 = 15 [2].

Figure 13. Final droplet profile for Bd = 3.75, λ = 1, and h0 = 15 [2].

is shown in Fig. 18. The droplet height h is measured between the droplet centroid and

the substrate surface at z = 0. Since a remained constant, Bd was varied by changing the

surface tension γ. It is clear that the overall deformation of the droplet increases as Bd is

increased. This is described by equation 2.1; as Bd increases, the gravity force dominates

over the surface tension force and the droplet deforms more. The droplet velocity is
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Figure 14. Droplet shape at the point of maximum deformation. The red dotted curve is
the SBEM simulated profile.
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Figure 15. Droplet deformation D as a function of height h for both the simulated and
experimental data.
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relatively unaffected by variations in Bd.

Ascoli et al. use the distance hmin, that is the smallest vertical distance between

the droplet and the substrate, as a potentially interesting parameter to describe droplet

dynamics [2]. A plot of hmin versus h for various Bd is shown in Fig. 19(a). Viewing

the y-axis, as Bd increases, hmin is larger at any given h. Additionally, viewing the x-axis,

as Bd increases, the final centroid location of the droplet is closer to the substrate. This is

a interesting contradiction: while the final centroid location is closer to the substrate, the

hmin is actually larger. Thus, larger Bd droplets tend to squeeze flatter while remaining

levitated further above the substrate.

The stresses on the substrate were also investigated to determine the effect of varying

Bd. Figure 20 shows the normal and shear stress distributions for a three different Bd at

the time of maximum stress. Note that the z-axis has been exaggerated to show detailed

stresses on the pattern. The peak stress at this time is located near the corners of the

pattern. Despite having radically different deformation magnitudes, the stress magnitude

and distribution on the substrate is nearly identical.

It is also interesting to look at the peak stress as a function of h to find if varying Bd

has any discernible effect on when the maximum stress occurs. Figures 21 and 22 show

the maximum normal and shear stress as functions of h. Increasing Bd caused both the

maximum normal and shear stresses to occur at a smaller h. The peaks retained the same

magnitude and the overall maximum stress-h shape was similar for all tested Bd. This is an

important observation for possible use with coatings: the droplet properties don’t seem to

affect the magnitude of stress on the substrate. Droplets with high amounts of deformation

will theoretically produce similar amounts of stress as a solid sphere.

The deformation of the droplet as a function of droplet height h for different Bd

is shown for both patterned and smooth substrates in Fig. 23. Each droplet started from

a height of 1.3 from the substrate and as it approached the substrate it deformed. We
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(a) (b) (c)

Figure 16. 2D droplet profiles for (a) Bd = 0.25, (b) Bd = 1, and (c) Bd = 4 for λ = 0.5
and h0 = 10.

found that the droplet deforms more at the existence of micro-patterns if we measure the

deformation at the same height. It seems that after being dropped from the initial height,

the patterned curves tend to split off away from the Bd = 2 which acts as a sort of anti-

asymptote on this plot. This phenomenon does not appear clearly in the smooth curves.

Additionally, as Bd increases, the difference in the D-h relationship between the droplet

falling on a patterned substrate or a smooth substrate becomes greatly magnified.

4.3.2. Influence of droplet radius

Equation 2.1 shows that the radius of the droplet also directly affects the Bd. How-

ever, since the undeformed droplet radius a is used as the dimensionless length scale, and
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Figure 17. Droplet deformation D as a function of height h and Bond number Bd for
λ = 0.5 and h0 = 10.

thus the relative size of the droplet and substrate must be altered by changing the substrate

size instead. In addition to scaling the substrate size, Bd and the dimensionless scales must

also be changed to account for the “changing droplet radius”. For example, to study a

droplet half of the original radius, the substrate is scaled up by a factor of 2 and Bd is

scaled down by a factor of 0.25. Figure 24 shows the two-dimensional profiles of different

sized droplets approaching the patterned surface.

Figure 25 shows how varying the droplet radius changes the D-h relationship while

Fig. 26 shows the Uz-h relationship. Since the dimensionless scales have been changed, it

is important to introduce units to compare the results from different simulations. Properties

from a typical water-oil experiment were used to scale the axes of Figs. 25 and 26. The fluid

properties were taken from the experiments performed in section 4.2. The chosen length

scales are a = 0.05, 0.10, and 0.20 cm for cases 1, 2, and 3, respectively. This results in

velocity scales of u = 17.84, 71.36, and 285.42 cm/s, respectively. As the relative droplet
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Figure 18. Droplet velocity Uz as a function of height h and Bond number Bd for λ = 0.5
and h0 = 10.

size becomes larger and subsequently Bd becomes larger, the deformation of the droplet

increases. If we keep making the droplet larger and larger, the pattern on the substrate will

be extremely small relative to the droplet, and the droplet will behave as if it is a flat-plate.

Additionally, as the relative droplet size decreases and Bd decreases, the surface tension

forces dominate and thus the droplet deforms less.

A plot of hmin versus h for various droplet sizes is shown in Fig. 27. Interestingly,

these results show an opposite trend to varying Bd. For any given centroid height h, the

larger and more deformable droplet actually reaches closer to the substrate than the smaller

droplet. Additionally, even though the largest droplet starts much farther away from the

substrate than the smallest droplet, each droplet approaches similar final values for hmin

and centroid height h.

The stresses on the substrate were also investigated to determine the effect of varying

relative droplet size. The resulting stress distributions are shown in Fig. 28. For a small
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Figure 19. Minimum height hmin as a function of height h and Bond number Bd for λ = 0.5
and h0 = 10.

droplet shown in Fig. 28(a) and (b), the stress magnitude is much smaller and is focused

on a small part of the substrate beneath the droplet. For a large droplet in Fig. 28(e) and

(e), the stress magnitude is larger and is distributed over the entire substrate rather than

concentrated on the inside of the pattern. Additionally, there is less shear stress between

the pillars more shear stress outside of the pillars for larger droplets compared to smaller

droplets.

Figures 29 and 30 show the maximum normal and shear stress as functions of h for

the different droplet sizes. Again, the axes were scaled with units in order to properly

display the different droplet sizes on the same figure. Clearly varying the droplet size

drastically changes the peak stress magnitude and peak value of h. Larger droplets result

in larger stress magnitudes while smaller droplets result in small stress magnitudes.

4.3.3. Influence of pattern parameters

The different substrate parameters w1, w2 and w3 are varied to see the effect of
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different patterns on the droplet dynamics. For a specified liquid-liquid system, these are

the parameters we hope to control.

The pattern height, w2, is the first substrate parameter to be adjusted. The case in

which Bd = 1, w1 = 0.5, w2 = 0.2, w3 = 1 serves as the control simulation. Two more

cases in which the pattern is taller (w2 = 0.6) and shorter (w2 = 0.06) are simulated.

Final droplet shapes are shown in Fig. 31 for the tested Bd and compared with a flat plate

solution. It is clear that the existence of even a very short pillar effectively eliminates the

dimple seen in a flat-plate solution. As the pillar gets taller, the droplet protrudes further

between the pillars. The variations in D and Uz versus h are shown in Figs. 32 and 33 and

hmin versus h shown in Fig. 34. From these figures, it is clear that the droplet deforms less

when the pillars are taller. The velocity is also smaller for a taller pattern. As the pillars get

shorter, the solution expectedly approaches that of a flat substrate. The minimum height

hmin follows the same trajectory for each pattern height, but ends at a different height due

to the higher pattern.

The pattern width, w3, is varied next. The case in which Bd = 1, w1 = 0.5, w2 = 0.2,

w3 = 1, serves as the control simulation. Two more cases in which the pattern is wider

(w3 = 1.5) and narrower (w3 = 0.5) are simulated. Profiles of the droplet are shown in

Fig. 35. As the pillars get further apart, the solution approaches that of a flat-plate. The

variations in D and Uz versus h are shown in Fig. 36 and 37 and hmin versus h shown

in Fig. 38. As the gap in the pattern gets narrower, the droplet must squeeze between the

pillars which results in a slightly higher value of D at any given h. Additionally, a narrower

gap impedes the motion of the droplet resulting in a lower velocity. As w3 gets large

enough, the solution approaches that of a flat substrate and the pillars have no noticeable

effect. The minimum height hmin follows nearly the same trajectory for each value of w3

with only slightly higher hmin for narrow gaps.

The pattern length, L, is another parameter of importance. The case in which Bd = 1,
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w1 = 0.5, w2 = 0.2, w3 = 1, L = 1 serves as the control simulation. Four more cases

in which the pattern is longer (L = 1.5, 2, 2.5) and shorter (L = 0.5) are computed to

see the variations in D and Uz versus h in Figs. 39 and 40 and hmin versus h in Fig. 41.

The pattern length appears to have very little impact on the numerical properties shown

here. Even the droplet profiles are nearly identical when viewed in both the x-z and y-z

directions. The case when L = 0.5 showed the largest discrepancy in deformed profile, but

not large enough to warrant further investigation.
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(c) (d)

(e) (f)

Figure 20. (a)-(b) Normal and shear stress distribution on the substrate for Bd = 0.5. (c)-
(d) Normal and shear stress distribution on the substrate for Bd = 1. (e)-(f) Normal and
shear stress distribution on the substrate for Bd = 2.
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Figure 21. Maximum normal stress on the substrate as a function of height h and Bond
number Bd.

Figure 22. Maximum shear stress on the substrate as a function of height h and Bond
number Bd.
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Figure 23. Droplet deformation D as a function of height h and Bond number Bd for
λ = 0.2 and h0 = 1.3.
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(a) (b) (c)

Figure 24. 2D droplet profiles for (a) case 1, (b) case 2, and (c) case 3. Cases 1, 2, and 3
represent a smaller droplet, the control size droplet, and a larger droplet, respectively. Case
1: w1 = 1, w2 = 0.4, w3 = 2, Bd = 0.25. Case 2: w1 = 0.5, w2 = 0.2, w3 = 1, Bd = 1.
Case 3: w1 = 0.25, w2 = 0.1, w3 = 0.5, Bd = 4.
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Figure 25. Droplet deformation D as a function of height h for λ = 0.5 and h0 = 10.
Parameters are listed in Fig. 24.
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Figure 26. Droplet velocity Uz as a function of height h and droplet size. Parameters are
listed in Fig. 24.
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Figure 27. Minimum height hmin as a function of height h and droplet size. Parameters are
listed in Fig. 24.
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(a) (b)

(c) (d)

(e) (f)

Figure 28. (a)-(b) Normal and shear stress distribution on the substrate for case 1, a small
droplet. (c)-(d) Normal and shear stress distribution on the substrate for case 2. (e)-(f)
Normal and shear stress distribution on the substrate for case 3, a large droplet. Parameters
are listed in Fig. 24.
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Figure 29. Maximum normal stress on the substrate as a function of height h and droplet
size. Parameters are listed in Fig. 24.

Figure 30. Maximum shear stress on the substrate as a function of height h and droplet
size. Parameters are listed in Fig. 24.
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Figure 31. Droplet profiles for different pattern heights w2 for Bd = 1, λ = 0.5, and
h0 = 10. For the patterned surface, w1 = 0.5 and w3 = 1.
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Figure 32. Droplet deformation D as a function of height h and pattern height w2 for
Bd = 1, λ = 0.5, and h0 = 10. For the patterned surface, w1 = 0.5 and w3 = 1.
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Figure 33. Droplet velocity Uz as a function of height h and pattern height w2 for Bd = 1,
λ = 0.5, and h0 = 10. For the patterned surface, w1 = 0.5 and w3 = 1.

0

0.5

1

1.5

2

0 0.5 1 1.5 2

h

hmin

w2 = 0

0.06

0.2

0.6

Figure 34. Minimum height hmin as a function of height h and pattern height w2 for Bd = 1,
λ = 0.5, and h0 = 10. For the patterned surface, w1 = 0.5 and w3 = 1.
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Figure 35. Droplet deformation D as a function of height h and pattern width w3 for
Bd = 1, λ = 0.5, and h0 = 10. For the patterned surface, w1 = 0.5 and w2 = 0.2.
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Figure 36. Droplet deformation D as a function of height h and pattern width w3 for
Bd = 1, λ = 0.5, and h0 = 10. For the patterned surface, w1 = 0.5 and w2 = 0.2.
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Figure 37. Droplet velocity Uz as a function of height h and pattern width w3 for Bd = 1,
λ = 0.5, and h0 = 10. For the patterned surface, w1 = 0.5 and w2 = 0.2.
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Figure 38. Minimum height hmin as a function of height h and pattern width w3 for Bd = 1,
λ = 0.5, and h0 = 10. For the patterned surface, w1 = 0.5 and w2 = 0.2.
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Figure 39. Droplet deformation D as a function of height h and pattern length L for Bd = 1,
λ = 0.5, and h0 = 10. For the patterned surface, w1 = 0.5, w2 = 0.2 and w3 = 1.
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Figure 40. Droplet velocity Uz as a function of height h and pattern length L for Bd = 1,
λ = 0.5, and h0 = 10. For the patterned surface, w1 = 0.5, w2 = 0.2 and w3 = 1.
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Figure 41. Minimum height hmin as a function of height h and pattern height w2 for Bd = 1,
λ = 0.5, and h0 = 10. For the patterned surface, w1 = 0.5, w2 = 0.2 and w3 = 1.
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CHAPTER 5. DROPLET MOVING PARALLEL TO A PATTERNED

SUBSTRATE

This section describes the results found for a droplet moving parallel to a wall with

a patterned surface. Validation from section 4 was used to determine the appropriate time-

step, mesh size, and substrate radius.

5.1. Results & discussion

The behavior of the droplet moving parallel to a patterned substrate is computed

using the methods described. The droplet is at terminal velocity and moves across a single

pattern on the substrate. The effect of Bd and pattern projection direction on the droplet

dynamics is shown in the proceeding section.

In this preliminary study, simulations are presented for a droplet moving across a sin-

gle pair of pillars with geometry identical to section 4. An example of this system is shown

in Fig. 42 for both positive- and negative- projected patterns. We are currently working

on simulating a droplet moving across an infinitely repeating pattern and determining the

optimal discretization that reduces computational cost without sacrificing accuracy.

5.1.1. Influence of Bond number

The deformation of the droplet is computed as a function of x for different Bd and is

shown in Fig. 43. The velocity of the droplet away from the substrate as a function of x

is shown in Fig. 44. The distance x is parallel to the wall, in the direction of gravity, and

across the pattern. The pattern is contained within −1 ≤ x ≤ 1 and the droplet initially

begins at x0 = −4. The droplet height h is measured between the droplet centroid and the

substrate surface at z = 0.

It is clear that the overall deformation of the droplet increases as Bd is increased,

consistent with previous observations. However, the deformation does not monotonically

increasing to a steady value; it is instead perturbed by the pattern projecting out of the

substrate which causes the droplet to deform more or less depending the location of the
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(a) (b)

Figure 42. Schematic for a droplet falling parallel to a patterned surface with (a) pattern
projection out of the substrate, denoted as +P, and (b) pattern projection into the substrate,
denoted as -P.

droplet. Interestingly, the most deformable droplet (Bd = 3) reaches its peak deformation

directly above the second pillar while a moderately deformable droplet (Bd = 1) reaches

its peak slightly before reaching the first pillar. All of the droplets trend towards a lower

deformation after the pillars.

The velocity Uz away from the substrate also shows a waviness consistent with the

presence of the pillars. Slightly before the first pillar, all of the droplets experience a large

acceleration away from the substrate. This acceleration is then reversed when traversing

between the two pillars. After the second pillar, the velocity of small Bd droplets actually

becomes negative, and the droplet moves towards the substrate. For large enough Bd,

the droplet will not move towards the substrate, but its velocity will become substantially

lower after the second pillar. Wang et al. showed that for a smooth substrate, a droplet will

monotonically move away from the substrate, never towards it [36].

The droplet trajectory h versus x is shown in Fig. 45. These trajectories follow the
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Figure 43. Droplet deformation D as a function of x and Bond number Bd for λ = 1 and
h0 = 1.5. The solid dark areas correspond to the location of the pattern. For the patterned
surface, w1 = 0.5, w2 = 0.2 and w3 = 1.

information obtained from the velocity plot: the droplet moves away from the substrate

when it reaches the first pillar. For small Bd, the droplet will stabilize over the pattern and

actually move towards the substrate after the second pillar. For large Bd, the droplet will

continue moving away from the substrate.

5.1.2. Influence of pattern projection direction

For this study, we are interested in what happens with a pattern projecting into the

substrate rather than out of the substrate like in the previous section 5.1.1. The two different

pattern projection directions are shown in Fig. 42 with (a) the positive projection denoted

as +P and (b) the negative projection denoted as -P.

The deformation of the droplet computed as a function of x for different Bd and

projection direction is shown in Fig. 46. The velocity of the droplet away from the substrate

as a function of x is shown in Fig. 47. The two cases, positive- and negative-projection,
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Figure 44. Droplet velocity Uz as a function of height h and Bd for λ = 1 and h0 = 1.5.
The solid dark areas correspond to the location of the pattern. For the patterned surface,
w1 = 0.5, w2 = 0.2 and w3 = 1.

follow the same general trend for deformation. However, the -P case does not have a large

wavy trend like the +P case, it instead increases up to a peak value and slowly decreases

past the pattern. The slight waviness in the -P case mirrors the waviness from the +P case:

as the +P case deformation increases, the -P case deformation decreases slightly. The flat-

plate case for Bd = 0.3 and 3 is depicted by the solid black lines in each figure and is

consistent with Wang et al. [36]. The -P case closely matches the flat-plate case, while

the +P case completely deviates from flat-plate as it passes the pillars. After passing the

pattern, however, each simulation tends to approach the flat-plate solution, regardless of

the pattern projection direction.

The velocity Uz follows a completely different trend for +P and -P cases as shown

in Fig. 47. Again, the -P case mirrors the +P case: as the +P case accelerates away from

the substrate, the -P case accelerates towards the substrate. However, the magnitude of the
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Figure 45. Centroid height h as a function of x and Bd for λ = 1 and h0 = 1.5. The solid
dark areas correspond to the location of the pattern. For the patterned surface, w1 = 0.5,
w2 = 0.2 and w3 = 1.

acceleration in the -P case is much smaller than the +P case. The -P case almost never has a

negative velocity, only very slightly for the lowest Bd droplet. Compared with the flat-plate

solution, the -P case very closely matches for high Bd and deviates slightly for low Bd. The

+P case completely deviates from the flat-plate regardless of Bd. Again, each simulation

tends to approach the flat-plate solution after passing the pattern.

The droplet trajectory h versus x is shown in Fig. 48 for both +P and -P cases. When

moving across the pattern, the droplets in the +P case move away from the substrate, while

the droplets in the -P case move across the pattern with little effect.

The most surprising result from this study is that both the +P and -P cases approach

the flat-plate solution after the pattern. This is an extremely intriguing result: the pattern

projection direction does not seem to have much effect on the droplet’s final position. At

this low-Reflow, any motion caused by the pillars is negated by an equal and opposite
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Figure 46. Droplet deformation D as a function of x and Bd for λ = 1 and h0 = 1.5. Solid
lines are for a positive-projected pattern (out of the substrate) while dashed lines are for
a negative-projected pattern (into the substrate). Solid black lines represent solutions for
a flat substrate at Bd = 0.3 and 3. The solid dark areas correspond to the location of the
pattern. For the patterned surface, w1 = 0.5, w2 = 0.2 and w3 = 1.

motion after passing the pillars. It is possible that this result can be extrapolated to various

other obstacles such as cylindrical humps or other geometries. This may be a topic for

more study.
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Figure 47. Droplet velocity Uz as a function of x and Bd for λ = 1 and h0 = 1.5. Solid
lines are for a positive-projected pattern (out of the substrate) while dashed lines are for
a negative-projected pattern (into the substrate). Solid black lines represent solutions for
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Figure 48. Centroid height h as a function of x and Bd. Solid lines are for a positive-
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CHAPTER 6. CONCLUSIONS

In this study, a 3D spectral boundary element method has been employed to analyze

droplet dynamics moving towards a patterned substrate under the influence of gravity. Two

problems were investigated: a droplet perpendicularly approaching a patterned surface and

a droplet moving parallel across a patterned surface. For a droplet approaching perpendic-

ularly, the influences of Bd, droplet size, and pattern parameters on the droplet behavior

were investigated. It has been shown that a micropattern on a substrate can indeed be used

to control the deformation and behavior of a droplet moving either perpendicularly towards

the pattern or parallel across it.

A larger Bd results in increased deformation while the vertical velocity remains

largely unaffected. Increased Bd also causes the droplet to flatten and hover above the

substrate rather than contact it. Additionally, for more deformable droplets the peak stress

occurs when the droplet centroid is closer to the substrate. The stress distribution over the

substrate is mostly unaffected by Bd.

Droplet size is also shown to have a large effect on the droplet and substrate. Larger

droplets result in greatly increased deformation and velocity. Small droplets simply fall

between the pillars and remain spherical while large droplets spread out across the entire

pattern. The stress magnitude is much larger for large droplets and is distributed over the

entire pattern while small droplets produce much lower stress concentrated directly under

the droplet.

The different pattern parameters studied also had a profound impact on the way

droplets interact with the surface. The existence of a pattern causes the droplet to protrude

out between the pillars rather than dimple as it does on a flat surface. Increasing the height

of the pillars increases this protrusion and, in turn, the deformation D. Increasing the gap

between the pillars also affects this: small gaps cause the droplet to protrude between the

pillars, while flat-plate behavior is observed for very large gaps between pillars. Lastly,
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the pattern length has very little effect on the droplet as long as it is on the same order of

magnitude as the droplet radius.

For a droplet moving parallel to the patterned substrate, the Bond number was in-

vestigated as well as the projection direction of the pattern. An increased Bd yields higher

deformation, but causes peak deformation to occur at different places. The velocity away

from the substrate is also increased, and low Bd droplets will sometimes move towards

the substrate, while high Bd droplets will always move away. It also seems that large Bd

droplets are much less affected by the pillars and more closely follow flat-plate results.

The projection direction into or out of the substrate show that patterns projected out

of the substrate result in higher deformation. The velocity away from the substrate follows a

completely different pattern for positive and negative projections, with positive projections

showing much larger velocity magnitudes. However, for both cases, the droplet eventually

migrates near the same location after the pattern, which may be true for other obstacles as

well.
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CHAPTER 7. FUTURE WORK

We are currently working on implementing the symmetry boundary condition into

the method so that an infinitely repeating pattern can be simulated. This may also allow us

to more accurately model an infinite substrate without large numbers of elements, reducing

the computational cost.

This research included studies done on droplets moving perpendicular and parallel to

the substrate, but we are also working on droplets approaching at angles to the patterned

substrate. Simulations have been performed for droplets approaching flat substrates at an

incline [25], but never for patterned surfaces.

We are also exploring the use of different patterns on the substrate, including square

pillars repeated in two directions, cylindrical pillars, and serrated triangular pillars. Each

pattern may have a unique interaction with the droplet, allowing us to better understand and

control the droplet dynamics.
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