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ABSTRACT

Robots that can be reconfigured to perform more than one task would be to consumers.
The Four-Wheel Independent-Drive, Four-Wheel Independent-Steer (4AWD4WS) robot is well
suited for the role of reconfigurable robot due to its extremely high maneuverability and torque
control. However, the nonlinear dynamics in conjunction with complex kinematic constraints
make the 4WD4WS structure an extremely difficult control problem. As a result of this many
who model the 4WD4WS structure make simplifications that aren’t realistic for a reconfigurable
consumer robot.

A 4WD4WS robot is kinematically and dynamically modeled using both the front and
rear path angles and their respective coordinates. High fidelity equations of motion, for robots of
arbitrary width, length, and mass, undergoing arbitrary accelerations at arbitrary steering angles
have been created that have the potential to increase the path tracking ability of 4AWD4WS

systems. Simulations show the model behaves realistically, but needs a controller.
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1. INTRODUCTION
1.1. Background and Motivation

Starting with early industrial revolution, there has been a steady growth in technological
advances towards automation of various tasks in human life. Some of these tasks, though
necessary, are extremely undesirable due to either the task itself, or the location in which the task
is being performed. A common criteria for identifying an undesirable task is the phrase: dull,
dirty, and dangerous. Some tasks that fall within this criteria are: warehouse inventory
movement, sewer reconnaissance, and bomb disposal.

The introduction of robots, flexibly programmable machines that can handle a variety of
repetitive tasks in a variety of environments, was motivated by the presence of tasks identified as
dull, dirty, and dangerous. Although the history of industrial robotics can be traced as back as in
the 1930’s the first programmable industrial robot is believed to have been commissioned by
Unimation in the early 60s, [1]. Most of the robots developed along the line of Unimation were
industrial manipulators for performing motion in the 3-D space, and were primarily used in
industrial manufacturing. Over the years, applications of robotic systems have expanded to
include industries such as nuclear and explosives handling, agriculture, manufacturing, logistics,
undersea exploration, and for use as personal robots [2].

As the world continues to enjoy the growth of technological advances throughout the
next decade, demands for robot applications will grow accordingly. Ground robotic vehicles is
the main field of robotics that is likely to see tremendous demands because it creates the platform
on which other special purpose robotic devices can be attached and made to reach the intended
objective task. Many types of robots, for example, fire-fighting robots, search and rescue robots,

mining robots, and domestic service robots, must be able to move from one place to another.



Therefore, no matter what specific task the robot will be intended to accomplish, it will
have to have a mobile platform. While there are a plethora of different methods of locomotion
including: air, sea, underwater, and ground; ground robots will see the most growth due to the
limited number of constraints compared to aerial robots and the broader amount of tasks
compared to sea-based robots. Ground robots can take many forms as well, and while
maneuverability requirements may stipulate a certain robot locomotion system, such as legged
movement, most of these robotic vehicles will rely on wheels for their locomotion as they are
much more efficient movement and are significantly less expensive than legged systems.

Domestic service personal robots are autonomous ground robotic vehicles equipped with
specific purpose-implements that are meant to reduce the burden of a homeowner by performing
tasks that also fall under the dull, dirty and dangerous criteria. These tasks may include lawn
mowing, gardening, snow-removal, vacuuming, and carrying groceries. They could eventually
be used for home security as well as home maintenance [3].

While the idea of personal robots may seem reasonable due to the presence of tasks that
fall within the dull, dirty, dangerous criteria; they are often hard to justify economically.
Typically, industrial robots are often quite expensive; however, they are also productive and their
cost can be offset by the increase in quality they provide or the reduction in labor they may
entail. On the other hand, personal service robots can be harder to economically justify if their
cost is not offset by financial gain. As a result of this, most personal robots are often designed in
a way that minimizes the cost to the consumer without sacrificing quality of the task being
performed. However, this is often at the detriment to the robot’s time efficiency.

Some of the popular service robots currently available in the market are shown in Figure

1.1.1 and Figure 1.1.2, i.e., the John Deere Tango E5 autonomous lawn-mower, [4], and the



iRobot Roomba 960 autonomous vacuum cleaner [5]. Both of these robots utilize a ‘random
walk’, visualized in Figure 1.1.3, to cover the task area. This is a very inefficient navigation
method that does not guarantee to coverage of the intended area. However, the ‘random walk’
significantly reduces the cost of the robot as it removes the need for expensive localization

sensors such as lasers, UHF trilateration, or GPS trilateration.

Figure 1.1: The John Deere Tango E5 can be seen in (1) and is an autonomous lawn-mower, [4].
The Roomba 960, as shown in (2), is an autonomous vacuum, [5]. Both of these robots utilize a
‘random walk’, shown in (3), which results in the inefficient completion of the task, [6], but at a
large cost reduction to the cost of the robot.

While the Roomba 960 and the John Deere Tango E5 are both designed in a way that
minimizes cost, they are still quite expensive with the Roomba costing close to $700.00 and the
E5 at around $2,120. Also, these robots are designed to perform one task, as are most robots, [7].
This means that a homeowner who desires to automate tasks within the dull, dirty, and dangerous
criteria will end up owning a fleet of unique robots which, in addition to being relatively
expensive, all require maintenance, as well as storage space.

With this in mind there is the opportunity for a robotic vehicle to be designed that could
fulfill more than one task having the potential to save cost, space, and increase the convenience
to the user. This type of robotic system, which can perform more than one task, will be referred
to here as a reconfigurable robot.

The areas of lawn-mowing and snow-removal are ideal tasks to be integrated into a

reconfigurable system. As it stands, a lawn-mower/snow-plow hybrid has the potential to
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perform much more efficiently than the Tango E5 in Figure 1.1.1. The time it takes to complete
the entire map of a ‘random-walk’ increase exponentially with the size of the map. For this
reason the Tango ES5 is currently sold in Europe where lawns are smaller than those in the US.
By utilizing the guidance system of the snowplow the mower would be able to follow an
efficient path, dramatically reducing the time of mowing while also reducing wasted energy.

Snow-plows often perform their work in low-friction environments, which means they
need to have a steering-system that has a large amount of traction in order to effectively get
enough torque to ground to push snow. With snow-plows, wheel slip during steering is not an
issue. They must also be maneuverable enough to operate in the constrained space of an
unplowed driveway. In contrast, robotic lawn-mowers require maneuverability in order to mow
the intricate geometry patterns that are seen in many yards. While it does not matter for snow-
plows, there must not be any wheel slip in robotic lawn-mowers as maneuvers would damage the
lawn surface.

The focus of this research is on reconfigurable robotic vehicles for domestic personal
services that include lawn-mowing, lawn-fertilization and snow-removal. Snow-removal
requires large, heavy, robots in order to create the desired friction force to remove snow. In
contrast, lawn-mowing and lawn-fertilization processes discourage the use of heavy robots to
avoid damaging the lawn surface. While the snow-removal process can sweep the area is straight
line segments, lawn operations are expected to follow irregular paths depending on the lawn
design. In areas with large lawns, these robotic vehicles are expected to run at sufficiently high
speeds so the job can be completed in the shortest possible time. Robots for both lawn operations
and snow removal must be equipped with an accurate guidance system so that the task gets

carried out in an organized manner for the job to be effective; additionally, they must be capable



of adjusting their own speed by either accelerating or decelerating depending on the perception
of the working environment.

These conditions require the robotic vehicle to not only be capable of accurately sensing
the environment, with a powerful control algorithm, but also be highly maneuverable with
wheels that offer sufficient traction on snow but do not damage grass. One element that
guarantees maneuverability is the steering system. The next section provides an overview of
existing steering systems and justification for the steering system used in this research.

1.2. Robot Steering Systems

This analysis will focus exclusively on wheeled mobile robots. Legged mobile robots
have the potential to navigate through terrain that is inaccessible to wheeled vehicles, [8], which
currently represents about half of earth’s total landmass. However, they are also much less
efficient than wheeled robots, [2], [7], and are also extremely difficult to implement and control,
[7]. Figure 1.2.1 and Figure 1.2.2 show a few examples of legged mobile robots. Though these
systems are extremely advanced, they are also impractically expensive for use as personal robots
due to the large number of actuators, precision sensors, and powerful computers that are needed

to perform simple tasks like maintaining static and dynamic balance.



Figure 1.2: The LS3(Legged Squad Support System, [9, p. 3]) legged mobile robot by Boston
Dynamics can be seen in (1), while Atlas, which can be seen in (2) and is also built by Boston
Dynamics, represents their research in two-handed mobile manipulation, [10].

Steering systems for wheeled vehicles are often categorized by their performance in three
different areas.

e Traction and Stability: The robot must have enough traction to maneuver through the

indented terrain while also maintaining stability about the center of gravity [11].

e Maneuverability: The robot must be nimble enough to perform the desired task within
the design space such that the quality of the task is not affected and the robot does not
get stuck in the design space.

e Controllability: The robot must be controllable, in its motion, to follow the prescribed
path to the desired degree of accuracy.

It is clear that there is no steering system that maximizes the qualities of maneuverability,
controllability, and traction because the environments that robots face are unique to the task
performed, [11], [12]. Also, high performance in a one area, often results in low performance in
another. Some steering-systems that are highly controllable offer poor maneuverability while
some steering-systems that are highly maneuverable have poor traction.
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There are a large number of steering systems that have been developed for use on
wheeled robotic vehicles. These include, differential-steering, skid-steering, two-wheel steer
(2WS) Ackerman, four-wheel steer (4WS) Ackerman, articulating four-wheel drive, synchro-
drive, Swedish-wheel omnidirectional, spherical-wheel omnidirectional, and four-wheel
independent-drive/four-wheel independent-steer (4WD4WS).

1.2.1. Differential Steering System

Differential-steering is a steering-system that produces a motion vector by summing the
individual wheel motions. This is a 2-DOF (degree-of-freedom) robot, as shown in Figure 1.3.1,
in that the motion is a combination of longitudinal translation and yaw. Differential drive robots
can be found in many industrial settings such as cleaning and sanitation, [13], as well as
warehouse material transport, [14]. The Pioneer 3, shown in Figure 1.3.2, is a differentially
steered robot that is used for many applications including: mapping, navigation, reconnaissance,

vision, and manipulation, [15].

GRF
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Figure 1.3: The kinematic model of a differential steering robot, [16],with two self-aligning
castor wheels can be seen in (1) while the Pioneer 3, [17], differential steered robot can be seen
in (2).

Differential-steering robots have a high degree of maneuverability, evident by their

ability to do zero-turn maneuvers, [12]. If a circular frame is utilized the vehicle can maneuver in
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any space, that the frame can fit into, without getting stuck in that space. Also, the differential-
steering system is highly controllable since it involves only two control signals and has no
kinematic constraint to satisfy.

While differential-steering offers a high degree of maneuverability, it is vulnerable to
performance errors that may be induced by lateral disturbances. For example, although lawn-
mowing operations are likely to have less lateral disturbances, plowing snow at some blade angle
is associated with a lateral reaction that differential steering cannot withstand. This is visualized
in Figure 1.4. Additionally, this steering system works only on two wheeled robots with one or
two casters. This limits the traction that can be achieved especially on slippery surfaces such as

SNOw.

Figure 1.4: The differential steering robot cannot overcome lateral disturbances due to the
longitudnal force distribution of the wheels

1.2.2. Skid Steering Systems

Skid-steering is similar to differential steering in that it performs curvilinear maneuvers
by combining the velocity vectors of the wheels or tracks. Figure 1.5.1 shows how the velocity
vectors of the robot define the yaw-rate of the robot. Skid steering robots, such as Seekur Jr in
Figure 1.5.2, are often utilized for such applications as waste management, security, defense, and

applications that involve harsh terrain navigation, [18].



(1)

Figure 1.5: The kinematic model of a skid-steer robot, [19], is shown in (1) while the Seekur Jr,
[20], skid steer robot can be seen in (2).

Skid-steering vehicles possess similar levels of maneuverability, especially on low
friction surfaces, as differentially steered robots, and also offer high traction because of the
increase in contact points, [12]. The maneuverability suffers as the surface friction increases due
to the increase in torque required to ‘scratch’ the surface. In comparison to its counterpart,
differential steering, this steering system offers some resistance to lateral disturbances if friction
is sufficient. This is because of the counter-moment provided by the extra points of wheel-

ground contact, shown in Figure 1.6.

Figure 1.6: Skid-Steering robots are better able to handle lateral disturbances due to the counter
moment created by the contact between the wheels and the ground.
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While skid-steering has the advantage of being better suited for the high traction
requirement of snow-removal, it is horribly unsuited for lawn-mowing. The reason for this is that
every movement that a skid-steer robot makes involves slip. The combination of high traction
and slip would tear up a lawn. Skid-steer robots are also difficult to model, kinematically and
dynamically, because of the nonlinear relationships that exist between surfaces of uneven friction
in conjunction with the vehicles curvilinear motion. Uneven friction between the left and right
halves of the vehicle complicate navigation as the magnitude of the wheel slip is made up of
induced slip from vehicle motion and unintended slip from uneven surface friction, [12]. Skid-
steer vehicles are also inefficient, especially on surfaces of high friction, as the robot wastes
energy while sliding the wheels against the ground while it is turning. This can have a high cost
on the battery, [12], [21], and can even overcome the current limit of the motors or drivers [21].
1.2.3. Ackerman Two Wheel Steering Systems

Two-wheel steer (2WS) Ackerman is a steering system that utilizes two steered wheels in
conjunction with two-wheel drive (2WD) or four-wheel drive (4WD). The wheels can either be
mechanically linked or controlled by steer-by-wire in order to correctly negotiate turns. These
steering systems are quite common in areas requiring long range transportation, [22]. The
kinematic model for 2WS Ackerman steering, Figure 1.7.1, shows how the inner and outer
steering tires do not have the same angle when steering. This angle offset is either accomplished
with a tie-rod or steer-by-wire coordination. The GRP 2200 mobile robot which is used for many
applications such as defense, material transport, mapping, and navigation, shown in Figure 1.7.2

uses this kind of steering, [23].
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Figure 1.7: The kinematic model of a 2WS Ackerman robot, [22], can be seen in (1) while the
GRP 2200 2WS mobile robot, created by Ambot, [21], can be seen in (2).

2WS Ackerman, which is an extremely common steering system in automobiles, has very
good lateral stability during high speed turns, [11]. The system is also very controllable due to
the simplicity of the kinematic and dynamic models, [19]. One reason for the dynamic
simplicity, especially compared to skid-steer, is that there is little to no slip when maneuvering.
Thus the wheel motion can be modeled using the pure-rolling condition.

While the 2WS Ackerman is highly controllable, it has extremely poor maneuverability
at low speeds, due to the fact that the turning radius is larger than the vehicle itself, [11], [12],
[24]. This is evident whenever lateral shifts and parking maneuvers are attempted as several
changes in direction are often required, [11], [12]. During high speed maneuvers in automobiles
the radius of curvature, on highways, is often large to avoid large centrifugal forces as well as the
oversteer phenomenon, which means the limited steering radius is not a big issue. However, the
reconfigurable robot would have severely limited lateral movement. Additionally, the drive
wheel must be independently driven or utilize some form of differential in order to maintain the

pure-rolling condition.
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1.2.4. Ackerman Four Wheel Steering Systems

4WS Ackerman is different from 2WS Ackerman as there are steering inputs in both the
front wheels and rear wheels. The system can be either 2WD or 4WD. The wheels can either be
mechanically linked or controlled by steer-by-wire in order to maintain the ICR. Figure 1.8.1
shows the steering kinematics of 4WS Ackerman. Note how the ICR is perpendicular from the
COG in Figure 1.8.1. Whenever Ackerman steering is used, the ICR is constrained to a
perpendicular bisector from some point, often the midpoint between axles. Figure 1.9 shows how
4WS systems can also utilize ‘crab’ or ‘in-phase’ steering when a steer-by-wire system is used in
order to translate without yaw. The Nomad robot, an experimental planetary rover shown in

Figure 1.8.2, utilizes a steer-by-wire system that utilizes 4WS Ackerman kinematics.

O

Figure 1.8: The kinematics of counter-phase steering, [25], can be seen in (1). The Nomad robot
[25], which is designed to maneuver through planetary terrain, can be seen in (2).

4WS Ackerman has a significant advantage of maneuverability when compared to 2WS
Ackerman due to the decreased radius of the ICR induced by the second steering angle, [26].
Additionally, when the front and rear steering are controlled distinctly the system has the
advantage of utilizing in-phase steering which greatly increases high-speed straight line stability

as the robot can maneuver laterally and longitudinally without yaw. This is desirable for
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countering the snow load while snow-plowing. The ability to utilize 4WD is also advantageous
as the extra traction provided by two more drive motors is helpful for overcoming heavy snow

loads.
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Figure 1.9: The difference between in-phase and counter-phase steering, [24].

4WS Ackerman does have some disadvantages. Though it can maneuver much better
than its 2WS counterpart, it is still much less maneuverable than differential and skid steering.
Furthermore, its ability to perform maneuvers that incorporate all 3-DOF should be taken with
caution as it can only perform 2-DOF maneuvers at one time with combinations being translation
motion (in-phase steering) or longitudinal and yaw motion (anti-phase steering). The system is
also much more difficult to control than 2WS Ackerman, [26], as there can be as many as six
inputs to control the multi-body system’s nine DOF.
1.2.5. Articulating Steering Systems

Avrticulating robots are composed of two rigid bodies that actuate the yaw-angle between
the two bodies, shown in Figure 1.10.1, to direct the motion of the robot, [27]. This is very
similar to 4WS Ackerman in that the ICR is fixed on a perpendicular bisector of the robot.
However, this bisector occurs at the joint of the two bodies as opposed to the midpoint of the

front and rear axle of 4WS Ackerman robots. Articulating vehicles are often used in the
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agricultural, landscaping, forestry, and construction industries because of their high
maneuverability, especially compared to the Ackerman system, [11], [27]. A robotic snow-plow

concept utilizing articulating steering can be seen in Figure 1.10.2.
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Figure 1.10: The kinematics of an articulating robot, [27], can be seen in (1) while the prototype
of an articulating robotic snow-plow, [28], can be seen in (2).

Acrticulating vehicles often are 4WD and have large tires. This is advantageous in many
rough-terrain industries because they often involve wet or slippery terrain. The big tires also
have the added benefit of reducing the pitch motion of the vehicle, [27]. The articulating steering
system often has wheel slip, regardless of differentials or independent wheel drive, due to the
large width of the tires used. However, this is not a detriment as the industries in which it is often
used have soil conditions that easily absorb the slip which prolongs tire life. Finally, the
articulating vehicle has the added benefit of being more controllable than anti-phase 4WS
Ackerman as it has one less control input since the front and rear bodies are mechanically linked.

The downfalls of the articulating steering system are that it is inherently unstable at high
speeds. One of these instabilities occurs in the form of jackknifing, which happens when the
front body tries to fold around the rear body. Additionally, the slip, which is not a detriment to
the industries in which it is often employed, would wreck a lawn surface. Finally, lawn-mowing

can often occur on steep road ditches. Articulating robots are very unstable, and could tip, when
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turning on steep slopes as the lateral wheel base gets skinnier when making sharp turns [11],
[27].
1.2.6. Synchro-Drive Steering Systems

Synchro-drive is a steering system that maneuvers very similarly to anti-phase steering in
that the motion vector is composed of a combination of lateral and longitudinal movement.
Synchro-drive robots can be used as office robots, [29], as well as cleaning robots, [30]. Figure
1.11.1 shows how the steering and driving are coordinated with one motor each while a

prototype synchro-drive mobile robot can be seen in Figure 1.11.2.
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Figure 1.11: The mechanical linkages, [12], that dictate steering and driving of a synchro drive
robot can be seen in (1) while a synchro-drive mobile robot, [30], can be seen in (2).

Synchro-drive is a highly controllable steering-system because there are only two inputs:
wheel angle and wheel velocity. The drive wheels and steering angles are all coordinated by one
motor each which utilizing chains and linkages. This makes straight-line motion of any kind a
straight forward task as there is no need for a complex control structure in order to coordinate
wheel velocities. The reason they are good at cleaning floors is due to the ‘complete coverage’
allowed by their purely translational movement [30].

While synchro-drive robots are easy to control, they are severely limited in their

maneuverability in that they are not able to change heading which makes it an extremely poor
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candidate for the role of reconfigurable robot. Also, the mechanical linkage system that couples
the steering and drive systems is very complex and requires very precise machining.
1.2.7. Omnidirectional Steering Systems

Swedish Wheels, shown in Figure 1.12.2 are a type of wheel that can be used to create an
omnidirectional robot. Utilizing four Swedish Wheels, like the robot in Figure 1.12.3 with the
wheel configuration of Figure 1.12.1, a robot can create motion from any combination of lateral,
longitudinal, and yaw velocities. Robots with Swedish wheels are used for applications involving
factory workshops, hospitals, elderly care facilities, and other areas with consistent, low-friction

surfaces that utilize their high maneuverability in constrained environments, [31].
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Figure 1.12: The kinematic model of a Swedish Wheel omnidirectional robot, [32], can be seen
in (1). A 45° Swedish Wheel, [32], can be seen in (2). The Uranus omnidirectional robot, [11],
with 45° Swedish Wheels can be seen in (3).

Omnidirectional robots are infinitely maneuverable on a plane surface. The system also
only has four control inputs for the 3-DOF of the rigid body which means that it has less inputs
and more control than other steering systems such as 4WS Ackerman [12]. Additionally, these
robots do not have to reorient their wheels to turn which makes them truly omnidirectional when
compared to other high maneuverability frames such as four-wheel independent-drive/four-

wheel independent-steer, [33].
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A robot utilizing Swedish wheels is undesirable for the position of reconfigurable robot
because its motion occurs through sliding. Not only would this destroy grass, but omnidirectional
wheels, such as Swedish Wheels, have very low friction with the surface which means that the
steering-system would not be able to push snow. Though there are less control inputs than 4WS
Ackerman, Swedish Wheel robots are much more difficult to control because of the
nonholonomic nature inherent to sliding. Ground clearance is also limited because of a limited
number of models available. Finally, they have trouble operating on uneven-surfaces where the
castor is the only portion of the wheel in contact with the surface, therein negating the latitudinal
vector created by the rollers [31].

Spherical Wheels produce motion vector by combining the motion of three wheels,
positioned at the vertices of an equilateral triangle, with rollers producing motion at 120° from
each other, as shown in Figure 1.13.1. The system is omnidirectional. A prototype robot,

produced by EFPL, without the wheels can be seen in Figure 1.13.2.

spheric bearing motor

Figure 1.13: The roller/wheel layout as well as a prototype omnidirectional robot, named
Tribolo, which uses spherical wheels can be seen in (1) and (2) respectively, [12].

Spherical Wheel robots have the same advantages that Swedish Wheel robots do, which

is their infinite maneuverability. Spherical Wheeled systems are also slightly more controllable
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when compared to Swedish Wheel robots as their omnidirectionality is controlled with three
inputs as opposed to four. The wheel design is also much less complex than Swedish Wheels.

However, like Swedish Wheel robots, their motion occurs through sliding which is not
suitable to grass environments. In addition, they are also limited to small payloads and have
extremely low ground clearance due to a limited number of spherical wheel sizes [12].
1.2.8. Four-Wheel Independent-Drive/Four-Wheel Independent-Steer

Four-Wheel Independent-Drive/Four-Wheel Independent-Steer (4AWD4WS) system
utilizes four drive motors to generate traction and four steering motors to control the heading
direction of the wheels as illustrated in in Figure 1.14.1. This poses a strong challenge on
meeting the kinematic constraints of driving around curved paths. The 4WD4WS steering-
system has many advantages, especially the fact that it is most highly maneuverable steering
system that can guarantee high tractions and reliability [34]. If the robot is viewed as a rigid
body, then it is a highly over-actuated system utilizing eight control inputs to control 3-DOF.
Their over-actuation and kinematic constraint characteristics have attracted strong research
interest in recent days. A large number of robotic prototypes utilizing the 4WD4WS steering
system have been developed due to the large amount of research that has been done on better
controlling the structure. Robotic prototypes can be seen in Figure 1.14.2, Figure 1.14.3, Figure

1.15.1, Figure 1.15.2, and Figure 1.15.3.
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Figure 1.14: The kinematic model, [35], depicting the steering angles with respect to the ICR can
be seen in (1). The iMoro, ,[36] mobile platform can be seen in (2). BIBOT, by NDSU
Mechanical Engineering, [37], can be seen in (3).

Figure 1.15: The GRP 4400 by Ambot can be seen in (1), Seekur, [38], by Omron Adept Mobile
Robots can be seen in (2), and Hank by NDSU Mechanical Engineering can be seen in (3).

Additionally utilization of over actuated systems in conjunction with a flexible controller
and high-speed response actuators, such as electric motors, means that the system has extremely
good breaking and steering performance [39]. Vehicle stability can also be manipulated utilizing
lateral dynamics as yaw moments can be counteracted by torque differentials between motors
[39], [40]. The infinite maneuverability of omnidirectional-wheeled robots, the 4WD structure
that improves the performance of plowing snow, in conjunction with no-slip make the 4WD4WS
steering system the strongest candidate for the reconfigurable robot role.

However, the 4WD4WS system is also one of the most, if not the most, difficult systems

to control. The reasons for this stem from the complex, nonlinear, multi-body dynamics that
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dictates the motion of the system as governed by the coordination of the many kinematic
constraints which are required to maintain the no-slip condition.
1.3. Research Objectives

Owing to the nature of the tasks that need to be handled by the target robot, which
involve variable loads, variable speeds and high maneuverability, it is recommended to employ a
four-wheel independent drive, four-wheel independent-steer reconfigurable robotic vehicle.
However, as it was noted early, this steering system is difficult to control because of its tight
kinematic constraints, as illustrated in Figure 1.16, where if the path is constrained to go through
the middle of the front and rear of the chassis, then the wheel speed and direction must satisfy
the instantaneous center of rotation (ICR) condition. The most difficult part of control a
4WD4WS vehicle is on implementing the kinematic constraints in which the steering angle and
wheel velocities are coordinated properly to satisfy the ICR conditions above, [36], [41].
Existing control algorithms circumvent this by measuring the yaw-rate and lateral velocity of the
robot and assuming some constant longitudinal velocity, [42]-[44]. By using these
measurements only, the individual wheel velocity vectors and the steering angles are determined.
There can be considerable errors with this approach, [37] since the yaw-rate is an estimated state,
the controller will always lag the vehicle motion. This means the system will always fail to

satisfy the desired kinematic constraints, especially on curved paths.
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Figure 1.16: The steering angles of the robot constrained to the ICR by the path angles, [37].

A high fidelity dynamic model of the vehicle is required to develop an effective control
algorithm for this system that can sustain variable loads and variable speeds while being
effective in negotiating tight corners.

Although an extensive amount of research has been carried out to better understand and
control this specific steering system: [36], [39], [41], [45]-[47], [47]-[69], most of it tend to
make simplifying assumptions on the dynamics of the vehicle, which only apply to slow moving
light weight robots and on paths with large curvatures. For example, some assume that angles
between the robot and the path are very small, as seen in, [45], [49], [60], which demand large
path curvatures. This assumption always has detrimental effects to the accuracy of path-tracking
at large steering angles and tight curvatures [48]. There are some who make assumptions to
allow some slip, especially when the terrain has extremely low friction, [60], [65]. The high
traction required, and the large accelerations that may be involved make this an unreasonable
assumption. Many models, such as: [36], [46], [69], [70], to name a few, are based on this
assumption as it is valid when tractive forces have not been met, [57].

A common implementation, that allows some slip, sets the front pair of steering angles to

be equal and also the rear pair of steering angles to be equal, [53]. As a result of this the front
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and rear steering angles can be described by one angle each in a model known as ‘bicycle’ or
‘single-track’. Again, this assumption is reasonable only in maneuvers involving a large radius of
curvature, such as highways.

There are some robot controllers that avid the complex robot dynamics by relying on the
robot kinematics only, [71]-[73]. By doing this the movement of the vehicle is equal to the
actuator outputs. However, in order to maintain stability in the system the robot must be run at
very low speeds while also avoiding large loads and high accelerations, [61], [65]. In this way
Newton’s Second Law can be set to zero and the dynamics can be considered negligible. These
conditions are not realistic for the target robot of this research especially since it involves large
loads. High accelerations are also inevitable; the robot will be plowing large snow loads and
undergoing large cornering forces in its operation.

These simplifications outlined above are normally done in order to maximize the
characteristics of the 4WD4WS structure that are beneficial to the designed task whether that
task be harvesting a field, [46], or controlling a vehicle on a highway, [45]. As discussed, these
assumptions are inadequate since they don’t capture the actual robot dynamics. This research
understands that the dynamics of any four wheel drive, four wheel steered vehicle can better be
described using constrained Lagrangian formulation, which happens to be highly non-linear and
non-holonomic. Therefore, the research has five objectives as follows.

1.3.1. Dynamic Modelling of a 4WD4WS Robotic Vehicle

There are many components of the 4WD4WS robot, however, for the purpose of dynamic
modelling, the vehicle is assumed to be made of the main body (the robot’s chassis), and four
wheel assemblies. The main body has momentum in the lateral, longitudinal, and yaw

orientations while each of the wheel subsystems also has its own momentum in lateral,
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longitudinal, and yaw orientations similar to that of the chassis along with rotational momentum
about the wheel axis and about the steering axis. The dynamics of the main body are dictated by
the dynamics of each individual wheel system as the summation of the force vectors of each
wheel subsystem results in the motion of the body. Each wheel subsystem needs to be
coordinated in order to avoid wheel slip. This means that the force vectors on the body are not
random and must be constrained by some fashion that enables the whole system to execute
general plane motion stresslessly. On negotiation corners, a well-defined instantaneous center of
rotation (ICR) must be satisfied by all parts of the robot.
1.3.2. Development of a Control Algorithm based on the Formulated Dynamic Model

The objective of any robot control algorithm to steer the robot to track the desired path.
Many algorithms track the center of mass (CG) of the robot, and typically such algorithms
always fail to track curved paths, since the if the wheels are to remain on the path, then CG will
be off the path, and for CG to remain on the path, then the robot wheels must be off the path.
This research intends to develop a control algorithm that tracks both the front and rear wheels
while satisfying the high fidelity dynamic model of the robot. Both standard linear and nonlinear
control methods will be evaluated and possibly fused to develop a new control algorithm suitable
for the intended applications.

The environments of the reconfigurable system are unique. The robot must be traveling at
a realistic speed and also change its speed to accommodate the curvature of the path in
conjunction with the momentum of the robot. The robot must be able to make sharp turns. The
robot must be able to maneuver when the tires have exceeded their saturation limit. These are

conditions that both lawn-mowing and snow-plowing require regularly.
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1.3.3. Numerical Validation of the Developed Control Algorithm

Before implementing the developed control algorithm on a real robot, it will be subjected
to numerical validation steps through computer simulation. MATLAB environment will be used
for this simulation.
1.3.4. Experimental Validation of the Developed Control Algorithm

The developed control algorithm will be experimentally tested on a real 4WS4WD
robotic vehicle. This task has two parts, the first part is on developing a robotic vehicle equipped
with the necessary sensors and actuators that fits the dynamics of the vehicle itself. The second
part will be on coding the robot with the developed algorithm and run it on paths of various
curvature at variable speeds and variable loads while tracking the wheels.
1.3.5. Thesis Write-up of the Results

This thesis is divided into five chapters. The next chapter will analyze the experimental
vehicle that will be used to validate the model. Chapter three will discuss, in detail, the creation
of the kinematic and dynamic models. Chapter four will discuss numerical simulations. Chapter

five will discuss the experimental results. Chapter six will summarize the research.
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2. THE EXPERIMENTAL 4WD4WS PROTOTYPE
2.1. Evolution of the Experimental 4WD4WS Prototype

The initial robotic vehicle, BIBOT-I, was used by Jonathan Nistler on his thesis research,
[37]. However, Jonathon determined that the robot had several insufficiencies which limited the
performance of the robot. He recommended that the IMU performance be improved as it was
prone to dead-reckoning errors on the order of kilometers within a time span of one minute. He
recommended that individual wheel encoders be added to provide feedback for wheel velocity.
BIBOT-I utilized castor wheel on the center of the robot that provided absolute velocity of the
COG with a resolution of 32 bits per revolution. Without individual wheel encoders wheel
velocity had to be measured indirectly through the PWM output of the wheel controller, which is
inaccurate. Another recommendation was that the control of the steering motors be improved
such that the speed of the steering motor be variable as opposed to just on/off and position. The
final recommendation was that GPS be added to improve the accuracy of the absolute position
due to the fact that traveling farther than thirty meters resulted in large dead-reckoning errors.

With this in mind, BIBOT-I, Figure 2.1.1 and Figure 2.1.2, was stripped of its electronic
control system and sensor system, as shown in Figure 2.5.1. Figure 2.2, Figure 2.3, and Figure
2.4 show the isometric view, the front and rear profile views, and the top and left profile views of

the upgraded robot, Hank.
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Figure 2.1: BIBOT-1, shown in (1), was the experimental robot used in Jonathan Nistler's thesis
research, [37]. The robot’s batteries and printed circuit boards can be seen in (2).

Hank was designed to incorporate all of the recommended changes that Jonathan
suggested in his research. A new IMU, with accuracy up to +/- 5° static yaw accuracy and +/-8°
degree dynamic yaw accuracy has been added. Stepper motor drivers with direction, speed, and
on/off control were implemented. Wheel encoders to provide velocity feedback were designed
with resolution of 1024 bits to provide accurate velocity feedback. Finally, RTK GPS was
implemented to provide position localization.

In addition to Jonathan’s recommendation, other systems were also updated. A SICK
laser range finder replaced the original perception system which consisted of an array of sonar
sensors. A 32 bit ARM CORETEX M4 STM32F407VG microcontroller, by STM electronics, as
well as a RASBERRY PI 3B single board computer replaced the five dsPIC33FJIMC128 PIC
Microchip’s used in BIBOT. A fuse box was added that included a main fuse that incorporated
all of the systems, as well as individual sub fuses, to ensure that no system was harmed by
excessive current. Finally, powerful DC Motor Drivers were added that allowed for a variety of

control and feedback options from the DC motors.
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Figure 2.2: Hank is the upgraded version of BIBOT utilizing an advanced sensor and control
system in order to increase the path tracking accuracy.

Figure 2.3: The front profile and rear profile views of the experimental system, Hank

Figure 2.4.1 and Figure 2.4.2 put emphasis on some of the new features that are utilized
in the experimental system. Figure 2.4.1 shows the plastic gears, A, that are used in the encoder
assembly. Additionally, Figure 2.4.1 also shows the stepper motors drivers, B. The drivers and
encoder design are shown in further detail in Figure 2.5.2. Figure 2.4.2 labels several of the
robots systems in including the laser perception system, C, the safety stop, D, the control system,

E, the rotary encoders, F, and the buck-converter, G.
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Figure 2.4: The left side, (1), and top, (2), views are shown of Hank, the experimental system. In
(1), A, shows the plastic gears used to transfer wheel speed through a shaft to the encoders, F,
which are shown in (2). Two of the four stepper motor drivers can be seen in B from (1). The
sick laser, safety stop, control system, and buck-converter are shown in C, D, E, and G from (2)
respectively.
2.2. Subsystems of the 4WD4WS Prototype

2.2.1. Main Chassis and Wheel Suspension

The chassis of the mobile robot, without sensors or motors, can be seen in Figure 2.5.1.
The robots width and length are .75 meters and 1 meter respectively. There are four individual,
yet identical, wheel steering/driving units on the vehicle, one of which is shown in Figure 2.5.2.
Each steering/drive unit is independent of the others since the steering system is steer-by-wire.

Each contact point needs a suspension system because of this. The suspension system is a

‘double wishbone’ which means two A-arms are used in tandem with a shock absorber.
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Figure 2.5: The chassis of the robot can be seen in (1). The steering, driving, and suspension
system for each wheel can be seen in (2)

Two 12 Volt batteries were connected in series to provide power to the entire robot. A
buck-converter was also installed to provide 12 VVolt power while maintaining equal charge
within the batteries. A fuse-box was constructed to protect the drivers, sensors, and control unit.

There are eight actuators on the robot comprised of four DC Motors and four stepper
motors. The motors can be seen on the wheel units Figure 2.5.2. The DC Motors are connected
to Roboteq drivers. While each of the DC Motors drivers can operate two channels, the stepper
motor drivers can only control one motor each which means there are four of them total Figure
2.6 shows the graphical relationship between the power source, the drivers, and the motors. The
drivers act as a buffer between the control system and the high voltage/current of the motors.
2.2.2. Power and Actuation

Two 12 Volt batteries were connected in series to provide power to the entire robot. A
buck-converter was also installed to provide 12 Volt power while maintaining equal charge

within the batteries. A fuse-box was constructed to protect the drivers, sensors, and control unit.
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There are eight actuators on the robot comprised of four DC Motors and four stepper
motors. The motors can be seen on the wheel units in Figure 2.5.2. The DC Motors are
connected to Roboteq drivers. While each of the DC Motors drivers can operate two channels,
the stepper motor drivers can only control one motor each which means there are four of them
total. Figure 2.6 shows the graphical relationship between the power source, the drivers, and the
motors. The drivers act as a buffer between the control system, which is a microcontroller, and

the high voltage/current of the motors.
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¢ Stepper #2 D)

'(%tepper #_ff\i‘

 Stepper #3

‘ 24V GND +

Figure 2.6: The actuators and their power source are shown. The Drivers receive a control signal
from the microcontroller which dictates the output of the actuators.

2.2.3. Sensor Measurement

The experimental prototype has a significant sensor system in order to provide accurate
feedback to the control system. Though the control model is constrained to six degrees-of-
freedom, the robot’s steer-by-wire system has a total of fifteen degrees-of-freedom. Eight of the
fifteen DOF are actuators, and have their own feedback systems.

The potentiometers, seen in Figure 2.5.2 and Figure 2.7, are used to measure the steering
angle of the stepper motors. Though feedback of stepper motors is uncommon, it has the
advantage of not needing to ‘home’ the motors at startup. It also removes inaccuracies that can

accumulate from counting steps if the motor slips. The potentiometers are a linear measurement,
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assuming the excitation voltage is constant, which means the relationship between angle and
measured voltage can be found with a quick calibration. The control system uses an analog

digital converter to create 16 bit resolution values for the potentiometer positions.
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Figure 2.7: The Measurement and Actuation Systems of the robot are both connected to the

Control System. The drive motors and steering motors, eight of the fifteen degrees-of-freedom,
each have their own feedback sensors.
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The DC Motors are hub motors which means the axles are rigidly locked to the forks of
the suspension system. Most rotary encoders are attached to the axle of the measured apparatus,
which is not possible for hub motors since the axle is fixed. An encoder measurement assembly
was created in order to measure the wheel velocities of hub motors. A gear was attached to the
hub motor which was connected to an idler gear. This idler gear connected to the encoder via a
shaft. Bearings were used to minimize the torque exerted on the gears. The encoders are
quadrature which means the control system can recognize positive or negative velocity. The
encoder and gears can be seen in Figure 2.4.2. The resolution of the encoder is 1024
bits/revolution. It is straightforward to calculate velocity even though the encoder measure the
change in position. This is done by dividing the traveled distance over a known time interval or
vice versa. In either case, a constant relating the linear travel to the angular velocity, in bits per

second, results in linear velocity.
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A UM7 IMU was used to provide feedback for the yaw-rate of the robot. While the
potentiometers and rotary encoders provided feedback for the individual wheel units, the IMU
provides feedback for the robot’s chassis. The IMU also has a magnetometer which means the
yaw position can be verified as opposed to integrating the yaw acceleration twice, which is prone
to significant round off error. The IMU uses SPI protocol to communicate with the control
system.

A RTK GPS (Real Time Kinematics Global Positioning System) is used to provide
absolute lateral and longitudinal position of the robot. Four satellites, as well as a reference
position, are used in tandem to provide the user with latitude, longitude, and elevation
information accurate to within a centimeter. The fourth satellite is used to provide a time
reference to the system. The ‘super user’, as shown in Figure 2.8, increases the accuracy of the
standalone GPS signal. It does this by computing the error of its known location from the GPS

signal, it then relays that error to the ‘user” who then corrects its position with the obtained error,

[74].

User
(Unkown location)

Control Super user
center (known Location)

Figure 2.8: The relationship between the GPS satellites, the user, and the known location, [74].

While the IMU, potentiometers, and encoders that are used do provide very useful
feedback, they are also prone to round off errors that accumulate with time due to integration.
Figure 2.9.1 shows the estimated position of a robot following a path without GPS localization. It

can be seen that the uncertainty of the robot’s position grows as the robot progresses along the
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path as time increases. A similar path is shown in Figure 2.9.2, and has a much lower position
uncertainty than in Figure 2.9.1, due to the fact that the system is able to provide absolute

position checks that are not prone to the integration errors that accompany the other sensors.

Path:- - -- Estimated Position: @ Path:- --- Estimated Position: @
1[’ Y

o009 P —
® S °

s ® '

(1) (2)

Figure 2.9: A robot following a path without global localization is shown in (1) while a robot
following the same path with global localization is shown in (2).

2.2.4. Control System

The control system of the robot is made up of an STM32F4 CoretexM4 (STM)
microcontroller and a RASBERRY PI3 (PI) single-board computer. The STM microcontroller
was used to measure sensor data from the potentiometers, encoders, and IMU, as seen in Figure
2.10 and Figure 2.11

The microcontroller was used for prototyping this robotic system as they can offer a
certain amount of flexibility, such as the large number of GPIO pins, timers, and wide range of
communication protocols, which allow for changes during the development cycle. For example,
the stepper drivers were frequency based which meant that standard PWM would not work as a
changing input. To account for this, four timer channels were reconfigured to act as inputs for the
stepper. All, in all, thirty-four pins from the microcontroller were utilized for the PCB in Figure
2.10. This includes eighteen pins for the sensor inputs and sixteen pins for the driver outputs.

The single-core computer was used due to the ease in which it could deconstruct NMEA
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messages from the GPS, a task that would have required a large amount of programming from
the microcontroller. Additionally, utilization of a computer negates the necessity of developing a
real-time operating-system (RTOS) within the microcontroller. Due to the benefits and

limitations of both systems, a hybrid control system was utilized to increase the programming

and control efficiency.

Figure 2.10: A shows the Rover RTK GPS, B shows the emergency safety stop, and C shows the
RASBERRY PI 3B. D shows the IMU, E the STM32F4 microcontroller, and F shows the
connection to the stepper and DC motors. G shows the PCB that was developed to connect the
sensor and driver inputs to the microcontroller.

2.3. Architecture of the Robot Control System

Figure 2.11 is very helpful for understanding the relationship between the sensors,
drivers, and processors. The STM measures wheel velocity via the encoders, steering angle via
the potentiometers, and yaw-rate, as well as heading, from the IMU. The STM then sends this
data to the PI using the MAVIink protocol. The PI, after decoding the RTK GPS data, combines
the data from the sensors into an array, which represents the states of the robot. This array is
logged to either a micro SD card or sent to a nearby computer over WIFI. The PI then uses the
state data, as well as the dynamic equations of motion, in conjunction with a high-level controller

to determine the necessary outputs for the systems actuators.
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Sensor Measurements

Motor Setpoints

Figure 2.11: Relationship between the microcontrollers, sensors, and actuators

The PI, after determining the set-points for the steering and driving actuators, sends those
values to each of the respective low-level controllers. The set-point for the stepper motors is
steering angle while the setpoint for the DC motors is wheel velocity. This process continues

until the target location has been reached.
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3. KINEMATIC AND DYNAMIC MODELLING OF THE 4WD4WS ROBOTIC SYSTEM
3.1. Definition of Bodies and Coordinates
In developing this model, the first step considers the case of robotic motion in a 3D space
following path coordinates defined using Cartesian Coordinates, P(X, Y, Z). The robot body is
assumed to be homogenous with its Center-of-Gravity (COG), located in the center of the robot

with respect to the height and width, as shown in Figure 3.1.

H
H2

M

CcoG

Figure 3.1: The location of the COG with respect to the dimensions of the robot.

A four wheeled vehicle is a multi-body system composed of five bodies, i.e., four wheel
bodies as well as the chassis. The position and orientation of each body can be defined using
each body’s inertial coordinates and Euler Angles. Figure 3.2 shows the five bodies and the
coordinates that define each body. Under this assumption, the robot vehicle system seems to

have thirty degrees of freedom.

XYy Zy,
91,01, ¥1)

(X5, Yo, Zy,
Py, 6, 12)
]

(X3, YS’ Zi:
93, 03, y3)

Figure 3.2: The coordinates that define the 6 Degree-of-Freedom pose of each body.
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However, normal surface ground vehicles are constrained to flat horizontal plane motion
which means the vertical, Z, pitch, @, and roll, 6, motion of each body don’t come into play. This
reduces the model’s 30 DOF to 15 DOF. As shown in Figure 3.3, are all defined in the global
frame.

The primary problem in controlling these vehicles lies in the required coordination of the
wheel drive speed, and steering angle to avoid, not only, wheel-slip, but also structural damage
due to overstressing the axles. This means that the orientation of each wheel body is not
arbitrary. While there may be 15 coordinates necessary to define the pose of each body, the
required coordination of the wheel bodies means the system motion must have less than 15 DOF

to allow for the constraint above to be satisfied.

Figure 3.3: The coordinates that define the 3 Degree-of-Freedom pose of each bodly.

3.2. Path Tracking: The Relationship between the Path and Chassis Position

The common method of path-tracking for 4WD4WS robots is to track the path through
the chassis’ center-of-gravity while simultaneously controlling the orientation of the robot. This
is so that positive obstacles, obstacles that protrude from the ground, are avoided, [37]. This
tactic is common in research due to the simplicity offered by defining the motion relative to the

robot’s COG, which, in turn, increases the flexibility in the robot being able to determine its
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orientation and position. This helps in achieving obstacle avoidance capabilities. However, this
method of path-tracking, shown in Figure 3.4, includes the possibility of the wheel bodies

driving off the road, even while the COG stays on the path.

Figure 3.4: Path-Tracking through the COG of the robot. The orientation is flexibile such that
positive obstacles are avoided. Driving off the path with a wheel body is a possible consequence
of COG tracking.

This research employs another method of path-tracking where the midpoint of the front
and rear of the chassis have to remain on the center of the path, as shown in Figure 3.5. This
method of path-tracking was proposed earlier in, [37], however, at the time of its introduction,
the model that was developed was based off geometric constraints only. Under this approach, the
robot will never drive outside the path-boundary if the path is predetermined with that goal in
mind.

Figure 3.6 shows that the pose of the chassis is determined at the COG. However, Figure
3.5 shows that the COG is independent of the path when tracking through the midpoint of the
front and rear. This is problematic as the position of the robot relative to the path should always

be known in order to track it effectively.
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Figure 3.5: Path-Tracking through the midpoints of the front and rear of the robot. The path
should be determined from the path boundary such that the robot never drives into negative
obstacles.

Since the dynamics of the vehicle require its COG to be known, under the proposed path
tracking approach, the location of the COG will be defined by the midpoints of the front and rear

of the robot such that,

Xp =R, (3.1)
Yp+Y

Vp = LE, (3.2)

tan(¥p) = =, (33)

where Xg, Yg, and Wg define the pose of the chassis, as illustrated in Figure 3.6, and X, YF, XRg,
and Yr are the Cartesian Coordinates that define the position of the front and rear midpoints of
the chassis will be referred to, hereafter, as ‘path coordinates’.

The position of the four wheel bodies, also shown in Figure 3.6, can easily be derived in
terms of the path coordinates if the pose of the chassis is known. The wheel bodies are
permanently connected to the frame which means their position can be related to the position of

the COG.
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Figure 3.6: The relationship between the pose of the chassis, the path coordinates, and the wheel
positions.

In particular, the position of each wheel body, for the pose shown in Figure 3.6, then
becomes,

X1 = Xp + = cos(Pg) — = sin(hp), (3.4)
Y = Yp +5 cos(Pp) +=-sin(¥s), (3.5)
X, = Xp + 2 cos(hp) + —sin(yp), (3.6)
Y, = Yp + = cos(ihp) — = sin(s), (3.7)
X3 = Xp — 5 cos(Pg) — = sin(p), (3.8)
Y3 = Yz — > cos(Pp) + - sin(Pg), (3.9)
X, = Xp — 2 cos(ihp) + = sin(yp), (3.10)
Y, =Yg — 2 cos(iPg) — =-sin(Py). (3.11)

Equations (3.4)-(3.11) show the individual position components of each wheel body with

respect to the pose of the chassis. These equations can be further modified such that they are with
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respect to the path coordinates. First, the relationship between sine, cosine, and tangent with

respect to the path coordinates must be known, where

tan(ys) = 28 (3.12)
cos(p) = =28, (3.13)
sin(Pp) = =, (3.14)

Using the relationships in (3.13) and (3.14), Equations (3.4)-(3.11) can be replaced with,

Xy = XFZ;XR + % (Xp — Xg) — % (Yr —Yg), (3.15)
Y= % + % (Xr — Xg) + % (Yr = Yr), (3.16)
Xy = XFZ;XR + % (Xp — Xg) + % (Yr = Yz), (3.17)
Y, = YF:_YR + % (Xr — Xg) — % (Yr = Yr), (3.18)
X3 =XF2;XR_%(XF_XR)_%(YF_YR)’ (3.19)
Y3 = % - % (Xp —Xp) + % (Yr —Yg), (3.20)
Xy = " — = (Xp — Xg) + 5= (Y — Vo), (3.21)
Yy = 2 — L (X — Xg) — - (Yp — Va). (3.22)

These equations define the orientation of the body, and positions of all bodies in the
system using the path coordinates only. The next task is to define the wheel orientations using

these path coordinates. To do so, the instantaneous center of rotation, ICR, must be known.
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3.3. Relationship between the Path and the ICR

The steering angles of the wheels and the drive wheel velocities need to be coordinated
based off the ICR such that wheel slip is avoided. However, the position of the ICR is infinitely
variable on a 2D plane which means that its position must first be determined before the wheel’s
orientations and velocities can be determined. Figure 3.7 shows that the angle between the
perpendicular bisector of the width and a line tangent to the path can be formed at both the front
and rear of the robot. These angles are labeled or and 0r. Line segments, labeled pr and pr,
extend perpendicular from the path angles, dr and dor. The intersection of the radius’, pr and pr,

is the location of the ICR.

(XRS YR) ASR P (XFﬂ YF)
Start ’ -
5 , Op .-y
‘.\ /J ~ . _ - - f!
i PR Pr End
ICR

Figure 3.7: The relationship between the path and the position of the ICR.

The ICR position can be found using a method called Intersection of Two Circles, [75].
Figure 3.8 shows the robot at an arbitrary angle, ys, with an ICR located at (Xo, Yo). By
imagining a triangle formed with the height, H, and the path ICR radius’s, pr and pr, the third
point, (Xo, Yo), can be calculated by the known points (Xr, Yg) and (Xg, YR).

The values, F and V, as shown in Figure 3.8, are,
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2_ 2 2
F :pF PR

Pt (3.23)
V = prcos(6r). (3.24)

With these values, Xo and Yo become,
Xo = Xp — Fcos(yp) + Vsin(yp), (3.25)
Yo = Yp — Fsin(yp) — Vcos(p). (3.26)

These equations can be simplified to using, (3.12), (3.23), (3.24), (3.41), (3.42) to create,

. (6r) [
Xo = Xp — cos(8g) sin(8F) csc(8g + 6p) (Xp — Xg) + —Cojingg::Zi)F) (Yr — Yg), (3.27)
Yo = Yp — cos(8) sin(8z) csc(8g + 8p) (Yp — V) — S2XORIOSOD) (v
o = Ir — €0S(0g) SIN(0F) CSC(Or T+ Op) Ip — Ip Sin(87105) F R)- (3.28)

Figure 3.8: Finding the vertex position of a triangle using known points. The method is called
“Intersection of Two Circles”, [75].
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3.4. Relationship between the ICR and the Steering Angles
With the location of the ICR identified, the steering angles of each wheel body can be
found using trigonometric laws such as the Law of Sines and the Law of Cosines. To make use

of these laws, the relative wheel angles, 81, 82, 63, 4, are defined to relate the wheel angle, ¥;,

and the body angle, ¥g as

Wy =W + 4y, (3.29)
¥y =¥ + 0, (3.30)
W3 =Wp + 83, (3.31)
W, =W, + 6, (332)

as shown in Figure 3.9, where the yaw-orientations, Vi, are measured counterclockwise from the
global, X, axis. However, the steering angle orientations are defined clockwise for angles, 61 and
d2, illustrated in Equations (3.29) and (3.30), and counterclockwise for angles, 63 and 94,

illustrated in Equations (3.31) and (3.32).

X

Figure 3.9: The relationship between the global orientation and steering angle of the wheel
bodies.
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Figure 3.10 and Figure 3.11 reveals how these triangles can be constructed to include
the ICR and the sides of the robot, W and H. Also included are the steering angles, 61 and &2, the
path angles, or and 0r, as well as the ICR radius, p1, p2, pr and pr. Figure 3.10 deals exclusively

with the front steering wheels while Figure 3.11 can be used to determine the angle of the rear

steering wheels,

p1sin(8;) = pp sin(8p), (3.33)
p2 sin(8;) = pr sin(dp), (3.34)
p3 sin(83) = pg sin(8g), (3.35)
P4 5in(8,) = pg sin(8g). (3.36)

Equations (3.33)-(3.36) show the initial form of the law-of-sines. These equations will be

used later when the time derivative of the wheel steering angles are required for Lagrangian

Dynamics.

YEIAC
\Js,

P2

ICR

Figure 3.10: Triangular geometry used to determine steering angles 1 and 2.
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Figure 3.11: Triangular geometry used to determine steering angles 3 and 4.

(3.36),

The front and rear pairs of steering angles can be found by rearranging Equations (3.33)-

8y = sin™" (22200 S‘“(‘SF)) (3.37)
8, = sin~? (pFS‘“(5F)) (3.38)
85 = sin~1 (”RS”‘“R)), (3.39)
8, = sin~1 (%‘j‘m) (3.40)

Equations (3.37) and (3.38), corresponding to Figure 3.10, represent the front pair of

steering angles, 61 and &2, whereas Equations (3.39) and (3.40), corresponding to Figure 3.11,

represent the rear pair of steering angles, 63 and d4. There is a large amount of symmetry between

these equations. For starters, the front steering angles are dependent on the front ICR radius and

path angle, pr and 6, whereas the rear steering angles are dependent on pr and or. Individually,

each steering angle, di, also depends on the magnitude of its’ own ICR radius, pi.

The triangles for solving the variables, pr and pr, are shown in both Figure 3.10 and

Figure 3.11; these distances are determined using the Law of Sines as,
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H sin(8g)

__ Hsin(5F)
PR = Sin@rton) (3.42)

Equations (3.41) and (3.42) remove some of the unknowns from Equations (3.37)-(3.40).
However, the individual ICR radius’s, pi, are still not solved for. While the Law-of-Sines cannot
be used again, the Law-of-Cosines can be. Thus, the ICR radiuses for each steering angle turn

out to be,

2

pi = pr? +(3) +prWeos(dp), (3.43)
0% = pr+ (%) = peWeos(sp) (3.44)
0% = pe + (%) + prWeos(a), (3.45)
ot = pe + (%) = preWeos(si). (3.46)

An additional equation can be made for pg which is the ICR radius connecting the ICR to

the COG,

o =2 +2oe2 = (2) (347)
Equation (3.43)-(3.46) provide the final unknowns to Equations (3.37)-(3.40). The same
symmetry present in Equations (3.37)-(3.40) can be seen in Equation (3.43)-(3.46) as the front
two ICR radius’s are dependent on pr and 6F while the rear two are dependent on pr and Jr.
However, Equations (3.41) and (3.42) show that pr and pr are dependent on their opposite path
angle. That is, pr is dependent on dr, and pr is dependent on dr. This coupling, though
unavoidable, will prove inconvenient in future simplifications. Equation (3.43)-(3.46) are also

squared. The reasoning for this is that the time derivatives of the squared equations are simpler
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than those where the square root is taken. It is simple to also square Equations (3.37)-(3.40) and
Equations (3.41) and (3.42) in order to accommodate the form of Equation (3.43)-(3.46).

The angle, 6i, has been used to define the orientation of the wheel body in these
derivations while Figure 3.2 and Figure 3.3 define the angle orientation using, ;. The reason for
this change is that the angle, &i, is local, relative to the orientation of the robot, and depends on
the position of the ICR whereas, ¥, is global.

From here the generalized coordinate vector representing the robotic vehicle in its

configuration space can be defined as,

q:[XF Yp Xg Yr Op 5R]T,

(3.48)
which defines the positions of all of the coordinates shown in Figure 3.3. For the sake of
convenience for future mathematical operations, the vector can be redefined as,

g=[1 9% 4B 91+ 95 96]". (3.49)

3.5. Wheel Velocities and Body Yaw Rates
While the ICR has been useful for deriving the no-slip orientation, or steering angles, of
the wheel bodies, it is also useful for determining the velocity for each respective wheel body.

Figure 3.12 shows how the yaw-rate of the ICR is the same yaw-rate on the body.
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Figure 3.12: The relationship between the yaw-rate of a rigid body local velocity.

The velocity of any of the bodies can be determined with the x and y components, V1,

defined as the derivatives of the body positions of Equations (3.4)-(3.11) as
Vix = Vg cos(yp) + glp - %1/1’ (3.50)

Viy = Vg sin(yp) + %d’ + %lp (3.51)
Velocities defined this way requires the COG velocity and body yaw rates to be known.

Figure 3.6 is very similar to Figure 3.12 in that both show the aspect ratio of the robot. The major
difference is that Figure 3.6 focuses on the relationship between wheel body position and the
path coordinates while Figure 3.12 shows the relationship between the path velocities, yaw-rate,
and wheel body velocities. The wheel velocities can also be shown using path coordinates only.
Thus, the components of the wheel velocities can be found through the time derivative of the
wheel positions from Equations (3.15)-(3.21) without explicitly involving the body velocities

and yaw rates. These velocity components are,
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X1 = XF - %(YF - YR)!
Y, =Yg+ %(XF — Xg),
Xz = XF + %(YF - YR)v
Yz = YF - %(XF - XR)v
Xs = XR - %(YF - YR)!
Y; =Yg +%(XF — Xg),
Xy =Xp+ %(YF — Yp),
Y4 = YR _%(XF _XR)-
The chassis velocity can be expressed as,

XB _ (XFJZrXR)

YB _ (YF'ZFYR)_

The squared magnitude of the wheel body or chassis velocities is the sum of the

individual velocity components squared,

Vi = (X2 +77).

With this knowledge, the five body velocities become,

VE = (XE+V?) - %XF(YF —Yg) + %YF(XF — Xg) +£(X§ +XR+VE+ YR -
ZXFXR - ZYFYR),
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(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)



Vi =Xz +Y#) +%XF(YF —Yz) —%YF(XF — Xg) +%22(X,§ +XE+YZ+YE—

ZXFXR - ZYFYR)’ (3'64)

V32 =(XI%+YR2)_%XR(YF_YR)+%YR(XF XR)+ (XF+XR+YF +YR
2XpXg — 2VpYR), (3.65)

V42 =(XI%+YR2)_%XR(YF_YR)+%YR(XF XR)+ (XF+XR+YF +YR
ZXFXR - ZYFYR)1 (366)
V2 = (XE+XR+YE+VE +2XFXR+2YFYR) (367)

4

Equation (3.3) shows the relationship between the path-coordinates and the orientation,
yaw, of the robot. In order to derive the rate of change of orientation, yaw-rate, the time

derivative of this must be taken,

(YF=YRr)  (Xp—XR)(YF—YR)
(XFp—XR) (Xp—XR)?

sec*(Pp)ip = (3.68)
Since cosine is defined in terms of the generalized coordinates in (3.13), the value for
secant squared can be replaced with,

H?2

2
sec” () = G357 (3.69)
Using Equations (3.68) and (3.69), the final form of the yaw-rate becomes,
1/)3 _ (YF_YR)(XF_XR)H_Z(XF_XR)(YF_YR)l (3.70)

3.6. Formulation of Constraints
While the robot motion can be described by six generalized coordinates, the robot body
still has fifteen DOF. This means that nine constraint equations are needed so that the motion of

every coordinate is defined at every moment.
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Constraint equations have the form,

@i(q,t) =0, (3.71)
which simply means that there must be a function composed of the generalized coordinates that
equates to zero.

These nine constraints can be broken into two categories: position constraints and
velocity constraints. All constraints must maintain the form of Equation (3.71) in order to
maintain their holonomy. To be able to include position constraints into the equations of motion,
their time derivatives must be derived in velocity form for inclusion in the Lagrange equations of
motion.

3.6.1. Position Constraints

The first constraint will have the form,

Hmethod 1_ H=0. (3.72)
The term, H, in Equation (3.72) is the height of the robot, as shown in Figure 3.6. In order

to incorporate, the following relationship can be utilized,

HmethOd 1 — (XF —_ XR)Z + (YF - YR)Z- (373)

The constraint then takes the form of,

(Xr —Xg)*+ (Yp — Yp)? —H? = 0. (3.74)

The time derivative must be taken of Equation (3.74) such that it is of the form shown in

Equation (3.71). Doing so leads to,

(Xr — Xr)(Xr — Xg) + (Ve — Vi) (Yp — Y) = 0. (3.75)
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This can then be expressed using the generalized coordinates of Equation (3.49),

(@1 —93)41 + (@2 — 44) G2 — (91 — 93)93 — (@2 — q4)4s = 0. (3.76)
In order to increase the simplicity of the constraint matrix, a summation of the terms in

Equation (3.76) leads to,

Yr=1C1i(q, 1) G = 0. (3.77)

The form of Equation (3.77) is extremely valuable. Variable, C, represents the constraint
matrix, which is a Jacobian of the constraints in Equation (3.73), while the subscripts, 1 and K,
represent the constraint and term respectively. Since there will be nine constraints then there will
be nine rows to the matrix. Similarly, each term in the columns represents the quantity which
will be multiplied by the corresponding generalized coordinate velocity. That is, the first column
corresponds to the first generalized coordinate velocity. With that, it can be seen that columns
five and six of Equation (3.77) will be zero since that constraint does not depend on those
velocities.

The second two position constraints are found using the Law-of-Sines. However, the
location of the ICR must first be known before this trigonometric law can be used. A visual
description of this method is presented in Figure 3.8.

Figure 3.10 and Figure 3.11 show the relationship between the path lengths, ps and pr, as
well as the steering angles, o and . Figure 3.8 provides a coordinate position, Xo and Yo, to the

ICR in Figure 3.10 and Figure 3.11. The sine rule relationship can now be visualized as,

(Xp=X0)*+(Yr=Y0)*) _ ((Xr=Xo)*+(Yr=Yo)?) _ L?
cos2(8g) o cos2(8r) " sin2(8p+6R)’

(3.78)
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Therefore, the first constraint will have the form,

((Xp=-Xo)?+(YF-Y)?) _ ((Xr—Xo)?+(Yr-Yp)?) —

cos?(8r) cos2(8g) 0, (3.79)
while the second will have the form,
(Xr=X0)*+(Yr—Y0)?) L2 —
cos?(6F) sin2(8p+6g) 0. (3.80)

The time derivative leads to the new form of constraint two,

[(XF — Xo)(XF — Xo) + (YF - YO)(YF - Yo)] cos?(8r) — Sr[(Xr — Xo)? + (3.81)
(Y — Yo)z] cos(6r) sin(6f) — [(XR - XO)(XR — Xo) + (YR - YO)(YR -
Yo)] cos?(8g) + 8r[(Xgr — X0)? + (Yz — Y5)?] cos(8g) sin(8z) = 0.

It can be seen that the velocity of the ICR is needed in constraint two. In order to find the
velocities, the ICR position from Equations (3.27) and (3.28), must be have their time derivatives
taken.

The time derivative, expansion, and simplification of Equations (3.27) and (3.28) lead to

the expressions,

Xo = [1 —sin(gs) cos(qe) csc(qs + q6) 41] — cos(qs) cos(qe) csc(gs +q6) G2+ (3.8)
sin(gs) cos(qe) csc(qs + q¢) 43 + cos(qs) cos(qe) csc(qs + qs) Ga +
{[(q2 — q4) sin(gs) — (q1 — q3) cos(qs)] cos(qe) csc(qs + q6) — [(q1 —
qs) sin(qs) + (g2 — q4) cos(gs)] cos(qe) cot(qs + g¢) csc(qs + g¢)ds} —
[(q1 — g3) sin(gs) — (@2 — q4) COS(qs)])CjSC(qg; + q¢) (sin(qe) + cos(qe) cot(qs +
9e))q6,

Yo = [ cos(gs) cos(qe) csc(qs + qe) 1] + [1 + cos(gs) cos(ge) csc(gs + (3.83)
96)1q2 + sin(gs) cos(qe) csc(qs + q¢) g3 — cos(qs) cos(qe) csc(qs + qe) s +
{[(q2 — q4) sin(gs) — (q1 — q3) cos(gs)] cos(qe) csc(qs + q6) — [(q1 —
q3) sin(qs) — (g2 — q4) cos(gs)] cos(qe) csc(gs + g¢) cot(qs + g¢) csc(qs +
q6)qs} — [(q1 — g3) sin(gs) — (2 — q4) cos(gs)] csc(gs + q6) csc(gs +
qs) (sin(qe) + cos(qs) cot(qs + qe)) -
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The instant center vectorial velocities can be written as a matrix summation. The matrix
will maintain the same form as the matrix, C, in Equation (3.77). However, it will have two

columns, instead of nine, to accompany the two Equations: (3.82) and (3.83). It is written as,

d 1 Xh=1Hix(q,t) g = 0. (3.84)

In matrix, H, the j column represents the equations for the X vector and the Y vector, in
that order. Two more matrices can be created to further simplify the definition of constraints two
and three. The matrix, D, will parse the position difference terms while the matrix, N, will parse
the velocity difference terms. By doing this, constraints two and three will be of the form shown

in Equation (3.77),

Xr — Xo = [(q1 — 93) sin(gs) + (g2 — q4) cos(gs)] cos(qe) csc(qs + qe) = (3.85)
Di11(q,t),

Yp — Yo = [(q1 — q3) sin(gs) — (g2 — q4) cos(gs)] cos(qe) csc(gs + q6) = (3.86)
Di,(q,t),

Xr = Xo = [(q1 — g3) cos(qe) — (g2 — q4) sin(ge)] cos(gs) csc(qs + g6) = (3.87)
D,41(q,0),

Yp =Yy = =[(q1 = q3) cos(qe) + (g2 — qa) sin(ge)] cos(gs) csc(gs + q¢) = (3.88)
D,,(q,t).

The matrix, N, has a very similar form to the matrix, H. The first two rows are,

Xr — Xo = sin(gs) cos(qe) csc(gs + qe) 41 + cos(gs) cos(qe) csc(qs + (3.89)
d6) 42 —sin(gs) cos(qe) csc(qs + qs) G3 — cos(qs) cos(qe) csc(qs + qe) Ga —
{[(g2 — q4) sin(gs) — (g1 — q3) cos(qs)] cos(qe) csc(qs + q) — [(q1 —
q3) sin(qs) + (g2 — q4) cos(qs)] cos(qe) cot(qs + qe) csc(qs + q¢)qs} —
[(q1 — q3) sin(gs) + (g2 — q4) cos(gs)] csc(gs + q¢) (sin(ge) + cos(qe) cot(qs +
q6))qs = 22=1 N1,k(q' t)qy,
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Yp — Yo = sin(gs) cos(qs) csc(gs + qe) g1 — cos(qs) cos(qe) csc(qs + qs) 42 = (3.90)
sin(gs) cos(qe) csc(qs + qe) 43 + cos(qs) cos(qe) csc(qs + qe) Ga +
{[(g2 — q4) sin(gs) + (g1 — q3) cos(gs)] cos(qe) csc(gs + q6) — [(q1 —
qs) sin(qs) + (g2 — q4) cos(gs)] cos(qe) csc(qs + q¢) cot(qs + q¢) csc(qs +
q6)qs} — [(q1 — g3) sin(gs) — (g2 — q4) cos(gs)] csc(gs + q6) csc(gs +
qs) (sin(ge) + cos(ge) cot(qs + qe))de = Lo=1 Ny (g, t) Gk,

Xr — Xo = cos(qs) cos(gs) csc(gs + qe) g1 — cos(gs) sin(ge) csc(gs + (3.91)
d6) G2 —cos(qs) cos(qe) csc(qs + q6) G3 + cos(qs) sin(qe) csc(qs + ) Ga —
[(q1 — q3) cos(qe) — (g2 — q4) sin(ge)] csc(gs + qe) (sin(qe) + cos(gs) cot(qs +
q6))qs — {[(q1 — q3) sin(ge) + (g2 — q4) cos(ge)] cos(gs) csc(qs + q¢) +
[(q1 — q3) cos(qe) — (g2 — q4) sin(ge)] cos(qs) csc(qs + q¢) cot(qs + qs)3qe =
Yho1 N3 (g, t)qx,

Yp — Y5 = —cos(gs) cos(qe) csc(qs + qe6) §1 — cos(gs) sin(ge) csc(qs + (3.92)
qs) 42 tcos(gs) cos(qe) csc(qs + qe) 3 + cos(qs) sin(ge) csc(qs + qe) G4 +
[(q1 — q3) cos(qe) + (g2 — q4) sin(qe)] csc(gs + g¢) (sin(ge) + cos(gs) cot(qs +
q6))qs + {[(q1 — q3) sin(ge) — (g2 — q4) cos(ge)] cos(gs) csc(qs + q¢) +
[(q1 — q3) cos(qe) + (g2 — q4) sin(ge)] cos(qs) csc(qs + q¢) cot(qs + qs)3qe =
Yh-1 Ny (g, t)qx.

With these matrices defined, the first four column terms for the second and third

constraints can be written in a more condensed form,

Cox(q, 1) = [D11(q,t)N1x(q,t) + D1 ,(q, )N,k (g, t)] cos®(gs) — (3.93)
[D2,1(q; t)N3x(q,t) + D, 5(q, t)Ny i (q, t)] cos®(qe), k = 1: 4,

C31(q,t) = [D21(q, )N34(q, ©) + Dy 2(q, )N, (q, )] sin?(gs + ge). (3.94)

The fifth and sixth columns of the second and third constraint are more in-depth,

C25(q,t) = [D11(q,)N15(q, t) + D1 5(q, )Nz 5(q, )] cos?(gs) — (3.95)
[D2,1(q1 t)N35(q,t) + D5 5(q,t)Nys(q, t)] cos?(qe) — [D12,1 + D12,2] cos(qs) sin(qs),
Cr6(q,t) = [D11(q, )Ny 6(q, £) + D1 2(q, )N, 6(q, t)] cos?(gs) — (3.96)
[D2,1(CI: t)N36(q,t) + Dy (g, t)Ny i (q, t)] cos®(qe) + [D22,1 +
D3] cos(ge) sin(ge),
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C35(q,t) = [Dy,1(q,)N35(q, t) + D 2(q, )N, 5(q, )] sin®(qs + q¢) — (3.97)
[Df1(q, t) + Df(q, t)] cos(gs + qe) sin(gs + qe) + L? sin(gs) cos(gs),

C3,6(q,t) = [D3,1(q,t)N36(q, t) + D 2(q, )Ny 6(q, )] sin®(gs + q¢) + (3.98)
[D?1(q,t) + D7,(q,t)] cos(gs + qs) sin(gs + qe).

Equations (3.93)-(3.98) give the coefficients for the second and third constraints. They

can be written in the form,

S2Xk=1Cia(q, ) Gy = 0. (3.99)
3.6.2. Velocity Constraints
Before the form of the wheel velocity constraints can be shown, the theory behind them
must first be understood. For starts, the velocity of a point on a body can be related to the yaw-

rate and the ICR radius,

Vi = Ppp;. (3.100)
It was mentioned during the derivation of the wheel velocities that all the points on a

rigid body have the same yaw-rate. This means that Equation (3.100) can be rearranged as,

_ Y

Y =2 (3.101)
and then rewritten as
VilViojg
o o VT (3.102)

A constraint equation can then be formed using the knowledge that a constraint takes the
form of Equation (3.71). Six constraint equations can be made with the relationship shown in

Equation (3.102),

V1 V2 V3 Vy Ve _ Vg
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It is important to not use redundant constraints as it will leave an element of the system
unconstrained. This means there can be six constraint equations from the combination of the five
velocities and ICR radius’s, Vi and pi. Seven constraint equations from these variables would
result in a redundant constraint. However, the form of Equations (3.101) presents difficulties
with the time derivative, as nonholonomy is introduced into the equations by the square present
in Equations (3.63) through (3.67). For that reason, they must be modified. A velocity vector, has
components in both the, i, and, j, unit vectors. Also, it is known that the magnitude of a vector

can be written using sines and cosines. For example,

u, = cos(@) 1+ sin(0)J. (3.104)

In Equation (3.104), uy, represents the unit vector of an arbitrary vector while the angle,
0, represents the ratio of the vector in the specific coordinate direction. Thus, the velocity vector
can be dotted with the unit vector to result in the magnitude of that vector,

(X2 +72)* = (X;7+ V1) - (cos(,) T+ sin(y;) ) = X, (Yp—y) -y, (XTX) (3.105)

Simplification matrices, A, B, J, K, and G will be created to function much the same as
matrices, H, D, and N. This will be done in order to simplify the velocity constraints. Some of
these matrices will also be used in the kinetic energy section of the derivation.

The first of these matrices will be matrix, A, which defines the, X, component of the
wheel linear velocities. The wheel linear velocities depend on their position relative to the path
velocities, as illustrated in Figure 3.12. Thus, the individual, X component, wheel velocities can
be redefined as,

(0) (0) (0) 0)
. 1 Xl . Yl . 1 XL . YL . )
Ko= (340 i =+ (55 ) 4o + e = 3 B Au(a. D (3.106)
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Equation (3.106) does not depend on the path angle rates, which means the terms, k=5
and k=6, are zero in the, A, matrix. The, B, matrix is very similar to the, A, matrix but focus on

the Y component of the velocity,

Yi = %fh + G + %) 42 — %0)% + (% - %0)) Ga = Z?=1 22=1 Bi.k(q’ t) g (3.107)
The terms, Xi©®, and, Yi©, are the initial position of the Wheel-Body, i. This can be seen
in Figure 3.6.
Assuming the COG of the robot starts at the coordinates, (0,0,0), the wheel positions

from Equations (3.106) and (3.107) can be defined as,
0 _H 0 _H 0 _ _H 0 _ _H
X =5 X =X =—2. X, =3, (3.108)

The matrix, J, has many similarities to the matrix, D, except that it is the distance from
the ICR to the wheel coordinates whereas, D, is the distance from the ICR to the path
coordinates. J, is defined as,

Xo(q,t) — Xi(q,t) = q; — [(q1 — q3) sin(gs) + (g2 — (3.110)
1 1 (0)
q4) cos(gs)] cos(qe) csc(qs + q¢) — (5 (@1 +q3) +7 [(ql — @)X —

(g2 — CI4)Yi(O)D =1,i(q,0),

Yo(q, t) —Yi(q,t) = q; — [(q1 — q3) sin(qs) + (q2 — (3.111)
44) c0s(qs)] cos(qe) cse(qs + o) — (5 (a1 + ) + [ (a1 — 42)X(” -

(a, - 4% ]) = L4, 0).
With the matrices, A, B, and J defined, three of the six constraints, in the form of

Equation (3.103) can be constructed,
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S (7 (4060 0)10(@ O = B (@, 01240, 0] = [Aex@ D12@ D~ (3112)
B2e(@ ))22(4 D]} dic = Tt Car (4 ) e

S {7 (4240 0)1.2(0. 0 — B2ie (0, 01220 D] ~ 5 [Asi(@ Dhs@ )~ (3113)
B3(@, )23(4 D]} 4 = Tt Cs (4 ) e

S {7 (4510 015 ) = B3je(0, 01230 D] = 5 [Aai(@ Dha(@ )~ (3114)
Baie(@ 0))24(@, O]} 4 = Tt Cor(q) dic

The seventh constraint uses the path coordinate velocities in its derivation. Using the
relationship shown in Equation (3.104), the following expression can be created,
. 1/2 o LR — . = 5
(X2 +7Y2) /2 _ (Xpt+ YJ) - (cos(p + 65) T+ sin(@p + 8p) J) = Xpcos(Pp +  (3.115)
8r) + Y; sin(yp + 6p).

Using the relationships for Wg, rearranging terms, and simplifying results in an equivalent

expression to Equation (3.115),

(K2 +72)"" = 2 (g1 — 45) cos(gs) = (@2 — 40) sin(ge)lds +1[(a2 —  (3.116)
qa) cos(qs) +(q1 — q3) sin(qs)1q2 = Xf=1 K1x(@,t) i

A similar relationship can be made for the rear path coordinate,

(X3 + )1/ (Ch q3) cos(qe) + (q2 — q4) sin(ge)]qy + % [(q2 — (3.117)
q4) COS(%) — (g1 — q3) sin(ge)1q, = 22=1 K2x(q,t) G-

Using the matrices, A, B, J, and K, the seventh and eight constraints are,

o1 {7 (400, 01,400, 0) = Bus(@, 0140 D] = - Ki (0, D)} i = (3.118)
Yr=1Crx(q, 1) G

1 1 . .
Tfe1 (K0, ) = =Ko (9,0} i = Bhims Cone (0 ) i (3.119)
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To define the ninth and final constraint, one more simplification matrix is needed. This

matrix, G, will define the body velocities shown in Equations (3.60), (3.61), and (3.70). This

matrix is,
A T :
Xp =51 +q3) = Yh=1G1(@t) Qi (3.120)
A U :
Yp=2(q2+qu) = Yh=1G2.(q, 1) G, (3.121)
S .1 .1 .1 .
Y= =502 =)0 + 5 (01— q3)02 + 5 (42 = 44)G3 — 5 (41 — 43)44 = (3.122)

Yho1 G3(q,t) gy

Using the matrices, K and G, the final constraint can be shown as,

es (Ko (@ 8) = Gsx (0, D} i = Ty Coxe (@ 1) G (3.123)

The complete set of nine constraints can be expressed in holonomic form as,

Yh=1Cri(qt) 4]
Yh=1Cor(a,t) G
Yh=1Cs(a,t) G
Yh=1Car(aq,t) Gi
f(q,q,t) =|Xh=1Csx(q, ) G | = 0. (3.124)
Y=1Cox(a,t) Gi
Yi=1Cri(q,t) Gk
Yi=1Cex(a,t) Gk
Y k=1 Cox(q,t) i

3.7. Formulation of the Generalized Forces
The wheels, due to a torque from the DC motors, exert a tractive force on the surface of
motion. The direction of this force will be a vector in the global X-Y plane. The steering motors

produce a torque, in the z-axis. These forces and torques can be seen in Figure 3.13 where the
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tractive force of each wheel is represented by, Fri, while the steering torques are represented by,

Tsi .

X

Figure 3.13: The forces and torques exerted on the ground by the multi-body system. F;
represents the tractive forces exerted by the wheels on the ground while Ts; is the torques exerted
on the ground by the steering motors.

The vectorial tractive effort, Fri, can be written as,

Fry = Fpq(cos(y,) T+ sin(y,) J), (3.125)
Fry = Fry(cos(¥2) T+ sin(¥y) J), (3.126)
Frs = Fr3(cos(¥3) T+ sin(y)3) J), (3.127)
Frq = Fra(cos(i,) T+ sin(ip,) ). (3.128)

However, the relationship formed in Equations (3.29)-(3.32) must be used to put the
forces in terms of more convenient coordinates. Though the body orientation can be determined
based off of the position of the path coordinates, as shown in Equation (3.3), it is often more
convenient to use the IMU measured yaw angle in conjunction with the global position

determined from the GPS to determine the robot’s pose. Additionally, the steering angles are
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relative to the body which makes the global angle a simple summation of the body yaw and the
steering angle.

The tractive effort exerted on the ground is higher than the actual force absorbed by the
ground. This is because the wheel bodies and chassis have the same acceleration. Since the
accelerations are the same then the distribution of forces cannot be equal as the masses are not
equal. Thus, the tractive effort, Fri, must me multiplied by some factor to describe the amount of

force absorbed by the ground and the body,

R.(q,t) =viFr, (3.129)
where, vi, IS the scaling factor between the tractive effort and the tractive force. From here the

tractive forces can be summed to be expressed as,

F5(q,t) = i1 Ru(q,0). (3.130)

The moment reaction at the body is the result of the individual wheel forces in
conjunction with their location relative to the body. Figure 3.14 shows how how the position of
the wheels are defined relative to the COG. While this has already been discussed, primariliy in
Equations (3.4) through (3.11), it can sometimes be easier to represent the positions in vectorial

format. Thus, the moment reaction is,

Mp(q,t) = 2?—1[771'/0(61, t) —75,6(q,t) ] X R,(q,t). (3.131)

The wheel torques can be written as,

Ts, = Tsik. (3.132)

The resultant force and moment at the wheels can be expressed as,
Fi(q.t) = (1 —y)Fr.k, (3.133)
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M,(q,t) =Ts,. (3.134)

<

&5

Ri®

RBt'G

X

Figure 3.14: The position of the COG, in the global frame, is shown by RB/G. The position of an
arbitrary wheel-body, in the global frame, is shown by Ri/G. The position of Ri/G can be related
to RB/G with the dimensions, W and H, of the robot.

The generalized forces for the system can be expressed as,

o7p oF

— /G . T oYp(q,t)k — iG T
Q= 2, FB(q,t)+—Baqj MB(q,t)+2;*=1[aqj E(q,t) + (3.135)

0Yi(q.)k T+
T]_Mz(q, t)]-
Equation (3.135) is very complex. However, steps can be taken to decrease the

complexity to a small degree. Using Equations (3.4) through (3.11) can be used to create the

vectors, ric. With that, the following derivatives can be created,

e (e D)re (D) o159
s - (D) (42 o150
e (- 2)1- (@) 615



e (B)r4 -2 o159

Also, the following relationship is known,

31[)i — a]21 a]ll
qu []11 ]21 0q; ] (3140)

The final generalized force equations can be written as,

Q=X {FTi E +(1-v) XTLO (qz Q4) vil(az — q)X? + (q1 — q3)YiO]] (%) + (3.141)
Fri [(1 70— () 01 - aX0 - (2 - q4)Y-°]] (2) +

[/ ~ sin(gs) cos(qe) esc(qs + ds) — | = Jo, [1 = (sin(gs) cos(qs) csc(gs +

w23}

Q= le{Fn- [—(1 0%~ (258) (g, - q4)Xi°+(q1—q3)Yi°]l (L) + G2
Fri [§+<1—m’% +(252) 001~ 42)X0 = (a2 - q4>Y°]] (L) +

x9

Tsi l]u [1 + cos(qs) cos(qg) csc(qs + qs) — = — _l] _

L

o[~ (cos(gs) cos(as) eselqs + qe) + Ti)]]},

Qs =Tk {Fn [ - =% - (5) vila: — X0 + (a1 - qg)YiO]] (L) + @143

Pi

Fr [(1 — 10— () )1 — 45)X° — (@2 q4)Yl-°]] (&) -

Tsi

o []1,1’ [sin(q5) cos(qe) csc(qs + qs) + YT] —J2i [Sin(q5) cos(qs) csc(qs + gs) —

)
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Q4 = Z?=1 {FTi l(l - Vi)YTiO (q1 Q3) vil(gz — 4)Xi0 + (g, — Q3)Yi0]] (%) + (3.144)

P = (= 0= (252) 0100 - 4%0 - (aa - a1 (&) +

Z—z [ Li [— cos(s) cos(qe) csc(qs + qs) — 5 + XTO] ~Ja, [COS(qs) cos(gs) csc(qs +
Yio
de) — T]l},

Qs = Xi- 17;,2 csc(qs + qs) Uil [— (a1 — g3) cos(gs) + (g2 — (3.145)

q4) sin(qs)] cos(qe) + [(g1 — q3) sin(gs) — (q2 — q4) cos(gs)] cos(qe) cot(qs +
qe)] — J2,:[—[(q1 — q3) cos(gs) — (g2 — q4) sin(gs)] cos(qe) + [(q1 —
q3) sin(gqs) + (g2 — qa) cos(gs)] cos(qe) cot(qs + g6)1},

Qs = Xi 1T2 csc(qs + qs) {J1.:[[(q1 — g3) sin(gs) — (g2 — q4) cos(gs)](sin(qe) +  (3.146)

cos(qe) cot(qs +q6))] — J2:[[(q1 — g3) sin(gs) + (g2 — q4) cos(gs)](sin(ge) +
cos(ge) cot(gs + g6))]}-

3.8. Formulation of the Lagrangian of Motion
The Lagrangian of the multi-body system is a sum of the individual kinetic energies of

the system minus the system’s potential energies,

L=XT—-2V. (3.147)
In Equation (3.147), L, is the Lagragian, T, is the kinetic energy, and, V, is the potential
energy. Since there are no springs, and since the robot is constrained to a level surface where
there are no changes in elevation, there is no change in potential energy. The potential energy
can be eliminated by setting the reference for the potential energy to the COG of the robot. The
Lagrangian then depends entirely on the kinetic energy since the potential energy is zero.

The Equations of Motion (EOM) for the system can be found using the Lagrangian

Derivative,
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d (0L oL .
S -=e+rc@a. (3.148)

In Equation (3.148), Q is the generalized force vector, A is the LaGrange multiplier, and
C are the kinematic constraints. L, from Equation (3.147), is the Lagrangian and, g, from
Equation (3.48) is the generalized coordinate vector, since the robot is composed of rigid bodies,
as opposed to particles, the corresponding kinetic energy of each of the bodies will be composed
of both translational and rotational components. The bodies are shown in Figure 3.2. The total

Kinetic energy for the system is,

— 4 . . )
T= TBtranslation + TBrotation + Zl:l Tltranslation + Tlsteering + Tldrive' (3149)

Each kinetic energy component, from Equation (3.149) can be written in terms of the
generalized coordinates. The body has two components of motion. These can be combined into

one expression,

1 . . 1 Y
TBtranslation + TBrotation = EmB (X5 + YB?) + EIB (lpB) ) (3150)
The terms in Equation (3.150) can be expressed in terms of the matrix, G, shown in

Equations (3.120), (3.121), and (3.122),

1 . .
Tp = S mp X5-1 2i=1[G1, (4 )G (q, ) + G2, j(q, )Gk (q, )]G + (3.151)
1 .
15 Y51 2k=1[G3,(@, Gk (9, D] 4541

The components of the kinetic energy for the wheels is expressed in three distinct terms,
as shown in Equation (3.149). However, the kinetic energy created from the rotational inertia of
the wheels can be directly related to the translational velocity of the frame. That is the wheel
positions shown in Figure 3.6 and velocity in Figure 3.12 show that the translational velocity can
be derived from the velocity of the body. While this is true, it is known that the physical system

works in reverse as the body movement is derived from the wheel motion. This means the linear
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distance traveled by the wheels is equivalent to the translational movement of the frame at the
location of each wheel-body. Assuming there is no slip in the system, this relationship can be

shown as,

_w

w; = (3.152)

Tw
In Equation (3.152), the wheel radius is represented by the variable, rw, and the angular
velocity is shown as, ®i. Then, two of the three wheel kinetic energy terms, not including the

steering, from Equation (3.149) can be summed into one equation,

1

Iy . .
itranslation + idrive = E (mW + E) (Xlz + le) (3153)

Equation (3.106) and (3.107) already show the wheel velocities in matrix form with the,
X, velocities in matrix, A, and the, Y, velocities in matrix, B. With that, Equation (3.153) can be

represented as the following summation,

1 I
T =3 (m, + _vzv) i=1 X5=1 XR=1[A40; (@, DAk (g, ) + (3.154)
B;;(q,©)Bix(q, )] d;dx-

The term, Tisteering, from Equation (3.149) is the most complex term in the Lagrangian as
it is based off the yaw-rate of the individual steering angles. The derivation of the steering angles
can be seen in Equations (3.37) through (3.40). However, these angles are relative to the robot.
This means that the derivative of these equations would be the angular rate relative to the robot.
This means that using these equations would result in an inaccurate Lagrangian. For that reason,

the global yaw-rates, shown in Equations (3.29) through (3.32), must be used in the Lagrangian,

T, = 2 (Us) ($2). (3.155)
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While Equations (3.29) through (3.32) show the global steering yaw angles as a function
of the body position and the local steering angles. However, these can be written in a less

complicated form,

C— pan—1 (X0@)-Xi(q )\ _ -1 (Jwil@D)
i = tan (Yi(q,t)—Yo(q,t))_tan (Jz,i(Q.t)>' (3.156)

The time derivative of the global wheel yaw angles can then be written as,

(Yi(@-Yo(a)(Xo(@)-X:(at)-(Xo(a.0-X(a.))(Vi(a)-Yo(a.)) (3.157)
(Xo(a.D-Xi(at) +(vi(a.H-Yo(@.))" '

¥ =
The global wheel yaw rates can be written in matrix form such that they are not only

expressed in generalized coordinates, but also simplified in their presentation,

d)i = 5522:1{]2,1'(61) t) [Ai,k (q; t) - Hl,k (ql t)] - ]1,i(q' t) [Bi,k (q' t) - (3158)
H,x(q, t)]} Ik = =1 Sik(q, t) .

With the global yaw-rates now defined, Equation (3.157) can be redefined as,

1 .
Tisteering = EIS Z?=1 Z?’:l Zl6c=1 Si,j (q' t)Si,k (Qr t) Qij- (3.159)

The corresponding Euler-Lagrange equations of motion, derived from Equation (3.148), are

Yh-1 {mB[Gu(Q» )G1x(q, 1) — G2 ;(q,)Go1(q, )] + I5G3 j(q, ) G3 (g, 8) + (3.160)
s (m + ) [41(0, 0400, = Bij(4,0Bix(a,0] +
Issl-,,-(q, 010 O i + Is Doy Dma By (57 (q, 0 Ze22 4
e, 0) L) Gy = 15 By B T (ST 0,0 00 4

0S;n(q,t)
L ‘”)qnqk—Q,(q,tsz G0

where Ak are Lagrange multipliers. The simplified expression turns out to be due to derivatives
for many of the terms die out in the mass matrix and are zero as a result; they can be expressed in

a condensed form as
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Ye=1]0k(q O + Too1 Wiaen (@ ) Gndic] = Q;(q, 1) + Xi=y Ak Crj (g, 1). (3.161)
In Equation (3.161), ©jk, is the generalized mass matrix and, Wjxn, are the generalized

damping coefficients.
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4. NUMERIC SIMULATION
Computer simulations were done in order to verify the response of the created model.
The vehicle Parameters are shown in Table 1. These values are used from, [37]. The code used

for the simulation can be seen in 0.

Table 4.1: The numeric constants used for the simulations

Ms 50 (kg)
Is 5.5 (kg/m?)
Mi 3.5 (kg)

li .025 (kg/m?)

I, 009 (kg/m?)
W 75 (m)

H 1(m)

fw 085 (m)

The model is extremely nonlinear, as shown in the derivation from Chapter 3. However,
simple simulations can still be performed, in lieu of a controller, in order to see if the system’s
response is realistic. Figure 4.1 shows the velocity response of the robot undergoing a turn
maneuver. It can be seen that the wheels accelerate at a constant velocity, which makes sense
considering the force applied is constant. Also, it can be seen that the pairs of wheels, one and
three as well as two and four, are inverted. This makes sense since those pairs are opposites, as
shown in Figure 3.3. The position of wheel two goes negative while wheel four goes positive.

This means the velocity of two should be negative while four is positive.
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Figure 4.1: The velocities vs positions using a constant force input
Figure 4.2 shows the front and rear path coordinates on straight-line trajectory. The track

is created by using steering angles of zero and constant force applied to the drive wheels which

means straight line motion should be produced. The coordinates almost overlap perfectly.
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Figure 4.2: Front and Rear Coordinates on a straight line trajectory

The simulations from Figure 4.1 and Figure 4.2 both show model accuracy, albeit

different facets of it. The accuracy displayed in Figure 4.1 is that of the wheels and how they
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respond to force and torque inputs while the accuracy of Figure 4.2 is for the body to see if it
consistently follows a straight line given inputs for that straight line.

There system is inherently unstable due to the nonlinear nature of the model. Another
part of the instability is most likely due to the poor integration from the trapezoidal integrator
used in the model. An accurate integrator, such as fourth order Runge-Kutta, as well as a

controller would most likely clean up the response from Figure 4.1.
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5. EXPERIMENTAL SIMULATION

While the experimental system was created, there was not time for experimental testing.
All the sensors and actuators are operational, however, the overall programming architecture of
the system was not completed. Further work needed to be done in several areas, including,
increasing communication reliability between the Pl and the ST microcontroller, creation of a P
controller for the stepper motors, utilization of a more accurate sensor for the steering angle, data
communication between the Pl and a data logging laptop, communication between the PI and the
GPS, and programming the SICK laser. However, much of the code is written as shown in, 0 and
0. Section 0 is the ‘h files’ for all the code used to program the robot while section 0 is the
corresponding ‘c files’. The ‘main’ file can be found in, 0. This is the starting point for the code.
The rest of the code branches out from that.

It was desired to simulate the system is a manner in which it was to be utilized, such as
paths that may be common to mowing-lawn or moving snow. This means paths that are both grid
like and with planned maneuvers throughout to represent obstacles from landscaping. Figure 5.1
shows a proposed trajectory. This model doesn’t have any obstacles built into it, but it does have
turns that become tighter and tighter throughout the length of the path. This is meant to simulate
the systems reaction to obstacles. The system may need to evade obstacles quickly which means
a tight maneuver might need to be performed. The ability to track the path accurately in these
circumstance is critical to mission performance.

Figure 5.1 could also be used for velocity testing. Once the speed limitations from the
turning tests had been determined, tests that focus on the relationship between velocity and

straight-line path tracking could be performed. The idea behind this is that the nonlinear model
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should run at a certain ratio of the velocity. However, it may be that hardware limitations prevent

that ratio from being reached. This may have an effect on path tracking.
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Figure 5.1: A proposed trajectory to test the dynamic model of the 4AWD4WS system. The
decreasing radius of the curves is meant to determine the path tracking accuracy under conditions
of higher acceleration.

Thus, it should be determined what effect velocity has on path tracking performance and
what amount of error is reasonable. It could be that a large velocity increase, resulting in a
iteration to velocity ratio that is smaller than desirable, may result in an insignificant decrease in
path tracking performance.

Tables could be made that show the error against velocity such that standards could be
created for different tasks. Some tasks, like mowing of a professional baseball stadium, may
require pinpoint accuracy, and a lower overall velocity, while other applications may be able to

get by with less precision.
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6. CONCLUDING REMARKS

This thesis has investigated the kinematic and dynamic modelling for a four-wheel
independent-drive, four-wheel independent-steer robotic vehicle for the use as a consumer
reconfigurable robotic system. The 4WD4WS structure was chosen to be a reconfigurable
system due to its ability to handle many unique environments, such as grass and snow, while also
maximizing mission performance.

The developed dynamic model boasts very high fidelity when compared to current
models. Kinematic relationships guarantee that the system will never drive into obstacles which
further increases the models path-tracking potential. This model is designed for a robot of
arbitrary width and length, to follow a path of arbitrary steering angles, in a vehicle with
arbitrary mass. The presents a system of incredible flexibility which means it can be incorporated
into a wide variety of environments, including automotive, industrial, and consumer. This is in
contrast to many models who limit their steering angles, use a vehicle of minimal mass, use a
fixed frame size, or drive at small velocities in order to negate the effects of Newton’s second
law. While these models work well for their limited application, they are not flexible.

It became quite clear during the derivation of the model that it was far more complex than
initially thought. The original plan was to create the dynamic model and advanced controller in
tandem with the experimental system. While the experimental system was successfully created,
the dynamic model kept growing in complexity and scale. Thus, the new focus of the project
became the completion of the system’s equations of motion. As discussed earlier, the dynamics
are incredibly flexible. This is because we didn’t take shortcuts, as many do, in order to get a

simpler system. As a result, the flexible system is like none before it. With these equations, a
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follow up thesis would be in a very good spot to create a control algorithm to test with the
completed experimental system.
6.1. Future Work

It is recommended that the current equations of motion be utilized to create a fully
comprehensive control system that incorporates advanced control theory in conjunction with the
advanced experimental vehicle. This would further prove the models effectiveness which may
help the 4AWD4WS structure be used in more mobile robots. It is also recommended that the
control algorithm incorporate dynamic path planning. This would provide a system that would

not only stay on the path but also avoid obstacles.
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APPENDIX
A.1l. MATLAB Simulation Code
A.1.1. Equations_Non_Symbolic.m

clear
clc
%% Defintion of Constants and Variables

Mb = 50; %kg

Ib = 5.5; Skg*m”2

Mi = 3.5; %kg

Ii = .025; %kg*m"2

rw = .085; %m

Is = .009; %kg*m"2

W = .75; % meter;

L = 1; % meter;

% Xf Yf Xr Yr df dr
q= [1; 1; 1; 1; 1; 1]1;

gdd = [1; 1; 1; 1; 1; 1];
%% Positions

\O

¢ Initial Body Position
XBo = 0;
YBO = 0;

% Initial Wheel Positions
Xlo = L/2; %2.44
X20 = L/2; %2.44
X30 = -L/2; %2.44

Xd4o = -L/2; %2.44
Xo = zeros(4,1);
Xo(l,l) Xlor
XO(2,1) Xzor

Xo (3,1) = X30;
Xo(4,1) X40;
Ylo = W/2; %2.45 %Note, the aspect ratio is not used
Y20 = -W/2; %2.45
Y30 = -W/2; %2.45
Y40 = W/2; %2.45
Yo = zeros(4,1);

Yo(l,1) = Ylo;
Yo(2,1) = Y2o0;
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Yo (3,1) = Y3o;
Yo(4,1) = Y4o;

% Body Position
XB S5*(g(l)-g(3)); %2.31
YB = .5*(g(2)-q(4)); %2.31

[o)

% Wheel-Body Positions

X1 = .5%(gq(1)+g(3))+(1/L)* ((g(1)-qg(3)) *Xlo-(qg(2)-g(4)) *Ylo); %2.42
X2 = 5% (gq(1)+g(3))+(1/L) * ((g(1l)-q(3)) *X20-(q(2) -q(4)) *Y20);
X3 = .5%(g(1)+g(3))+(1/L) * ((g(1l)-q(3)) *X30-(q(2)-q(4)) *Y30);
X4 = 5% (gq(1)+g(3))+(1/L)* ((g(l)-q(3)) *Xdo-(q(2)-q(4))*Y4o0);
Y1 = .5%(q(2)+g(4))+(1/L)* ((g(2)-q(4)) *Xlo+(q(1l)-g(3))*Ylo); %2.42
Y2 = 5% (q(2)+g(4))+(1/L)* ((g(2)-q(4)) *X20+ (g (1) -q(3)) *Y20);
Y3 = .5%(q(2)+g(4))+(1/L) *((g(2)-g(4))*X30+(q(1)-g(3)) *Y30);
Y4 = 5% (q(2)+g(4))+(1/L)*((g(2)-g(4)) *X4o+(q(1l)-g(3)) *Y4o);
% ICR Position
X0 = -(g(4)*cos(g(5))*cos(q(6)) -
q(2)*cos (q(5)) *cos (q(6))+g(l)*cos(q(5)) *sin(q(6))+q(3) *cos (g (6)) *sin(qg
(5)))/sin(q(5)+q(6)); $2.36
YO = - (g(l)*cos(g(5))*cos(g(6))-
g (3) *cos (g (5))*cos(q(6))+g(2) *cos(g(5))*sin(g(6))+qg(4) *cos(g(6)) *sin (g
(5)))/sin(g(5)+q(6)); $2.39

%% pl definitions

pf = L*cos(q(6))/(sin(g(5)+q(6)))
pr = L*cos(q(5))/ (s

% (pisqg represents the squared distance from the wheel-body, i, to the
ICR,

plsg = (X1-X0)"2+(Y1-Y0)"2
p2sg = (X2-X0)"2+(Y2-Y0) "2
p3sg = (X3-X0)"2+(Y3-Y0) "2
pé4sg = (X4-X0)"2+(Y4-Y0) "2

%pl represents the distance from the wheel-body, i, to the ICR,

pl =

L*cos (q(6))/sin(g(5)+q(6))* (1+W*cos (q(5)) *sin(q(5)+q(6))/ (L*cos (q(6)))
+ (W*sin (g (5)+g(6))/ (2*L*cos (g (6))))"2)".5; %positive for left

p2 = L*cos(g(6))/sin(qg(5)+q(6))* (1-

W*COS(q(5))*Sln(q(5)+q(6))/( *cos (g (6)))+(W*sin (g (5)+q(6))/ (2*L*cos (q(

6))))"2)~.5;  %negative for right

p3 = L*cos(g(5))/sin(g(5)+g(6))* (1-

W*cos (g (6)) *sin(q(5)+q(6))/ (L*cos (q(5)))+(Wrsin (g (5)+g(6))/ (2*L*cos (g (

5))))"2)"~.5; %negative for right

pd =

L*cos (g (5))/sin(q(5)+q(6))* (1+W*cos (g (6)) *sin(q(5)+q(6))/ (L*cos (q(5)))

+ (W*rsin (g (5)+g(6))/ (2*L*cos (g (5))))"2)".5; %positive for left

1
q
6
L
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PR = zeros(4,1); $These values for ro are used
Force and EOM equations

PR(1) = pl;

PR(2) = p2;

PR(3) = p3;

PR(4) = p4;

%% J

$The Jxi terms from Equation (2.47) and (2.48)
J = zeros(2,4);

in the Generalized

$Ixi

J(1,1) = a(l)-((g(l)-g(3))*sin(g(5))+(q(2) -
g(4))*cos(g(35)))*cos(q(6))*csc(qg(5)+g(6)) -
(.5*(q(1)+g(3))+(1/L) * ((g(1)-g(3))*Xlo-(g(2)-q(4))*Ylo));
J(1,2) = a(l)-((g(1l)-g(3))*sin(g(5))+(q(2) -
q(4))*cos(g(5)))*cos(g(6))*csc(g(5)+g(6)) -
(.5*%(q(1)+g(3))+(1/L) * ((q(1)-q(3)) *X20-(q(2)-q(4))*Y20));
J(1,3) = a(l)-((g(1l)-g(3))*sin(g(5))+(q(2) -
a(4))*cos(g(5)))*cos(g(6))*csc(g(5)+g(6)) -
(.5*%(q(1)+g(3))+(1/L) * ((q(1)-q(3))*X30-(q(2)-q(4))*¥30));
J(1,4) = a(l)-((g(1l)-g(3))*sin(g(5))+(q(2) -
q(4))*cos(g(5)))*cos(q(6))*csc(g(5)+q(6)) -
(.5*(q(1)+g(3))+(1/L) * ((a(1l)-g(3))*X4o-(g(2)-q(4))*Y4o));
Jyi

J(2,1) = g(2)-((gq(1)-a(3))*sin(g(5))-(q(2) -
g(4))*cos(q(5)))*cos(q(6))*csc(g(5)+q(6)) -
(.5*%(q(2)+g(4))+(1/L) * ((q(2)-q(4)) *Xlo+ (g (l)-g(3))*Ylo));
J(2,2) = a(2)-((g(1)-g(3))*sin(g(5))-(q(2) -
q(4))*cos(g(5)))*cos(g(6))*csc(g(5)+g(6)) -
(.5*%(q(2)+g(4))+(1/L)* ((q(2)-q(4)) *X20+ (g (1) -g(3))*Y20));
J(2,3) = a(2)-((gq(1l)-g(3))*sin(a(5))-(q(2) -
q(4))*cos(g(5)))*cos(g(6))*csc(g(5)+g(6)) -
(.5*%(q(2)+g(4))+(1/L) *((q(2)-q(4))*X30+(q(1l)-g(3))*Y¥30));
J(2,4) = a(2)-((g(l)-a(3))*sin(g(5))-(a(2) -
a(4))*cos(g(5)))*cos(g(6))*csc(g(5)+g(6)) -
(.5*%(gq(2)+g(4))+(1/L) * ((q(2)-q(4)) *Xdo+(q(1l)-g(3))*Y4do));
$% A

% The Aik terms from Equation 2.60, subscripts are wheel (i),
term (k)

A = zeros (4,6);

A(l,1) = (1/2 + Xlo/L);

A(2,1) (1/2 + X20/L);

A(3,1) = (1/2 + X30/L);

A(4,1) = (1/2 + X40/L);

A(l,2) -(Ylo/L);

A(2,2) = -(Y20/L);

A(3,2) = —-(Y30/L);
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4
4
4
4

1/2 - X40/L);

)
)
)
)

1/2 - Xlo/L);
1/2 - X20/L);
1/2 - X30/L);

-(Y40/L) ;

(4,2)

~— ~— ~— — ©°

RGOS RS o0 o

then

(1),

subscripts are wheel

The Bik terms from Equation 2.62,

) i
) i
) i
) i

1/2 + Xlo/L);
1/2 + X20/L);
1/2 + X30/L);
1/2 + X4o0/L);
1/2 - Xlo/L);
1/2 - X20o/L);
1/2 - X30/L);
1/2 - X4o0/L);

(k)
zeros (4,06);

term

B
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The Hxi and Hyi terms from Equation 2.66 and 2.68
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Hx (3,1) 0;
Hx (3,2) = 0;
Hx (3,3) = 0;
Hx (3, 4) 0;
Hx (3,5) = (cos(g(5))*cos(g(6))-
sin(g(5)) *cos (g (6)) *cot (q(5)+g(6))) *csc(g(D5)+q(6));
Hx (3,6) = (-sin(g(5))*sin(qg(6))-
sin(g(5)) *cos(g(6)) *cot (q(5)+q(6))) *csc(g(5)+q(6));
Hx(4,1) = 0;
Hx(4,2) = 0;
Hx(4,3) = 0;
Hx (4,4) 0;
Hx (4,5) = (-sin(g(5))*cos(q(6))-
cos (g (5))*cos (g (6))*cot (g (5)+g(6))) *csc(q(5)+q(6));
Hx (4,6) = (-cos(g(5))*sin(qg(6))-
cos (g (5)) *cos (g (6)) *cot (g(5)+g(6))) *csc(g(5)+q(6));
x(5,1) = (-cos(g(5))*cos(g(6))*csc(g(5)+g(6))-
sin(g(5)) *cos (g(6)) *csc(q(5)+g(6)) *cot (q(5)+g(6))) ;%
x(5,2) = (sin(g(5))*cos(g(6))*csc(g(5)+g(6))-
cos (g (5)) *cos (g (6)) *csc(g(5)+g(6)) *cot (g(5)+g(6))) ;%
x(5,3) =
(cos (g (5)) *cos (g(6)) *csc(g(5)+g(6))+sin(g(5)) *cos(g(6)) *csc(g(5)+g(6))
*cot (q(5)+q(6))) 5%
x(5,4) = (-
sin(g(5)) *cos(g(6)) *csc(g(5)+g(6))+cos(g(5))*cos(g(6))*csc(g(5)+g(6))*
cot (g(5)+g(6))) ;%
Hx (5,5) = ((g(2)-g(4))*cos(q(5))+(q(l)-
g(3))*sin(q(5))) *cos(q(6)) *csc(q(5)+gq(6))-((q(2)-g(4))*sin(q(5))-
(g(1)-g(3))*cos(g(5)))*cos(g(6))*csc(q(5)+g(6)) *cot (q(5)+q(6)) ...
- ((g(l)-g(3)) *cos(g(5))-(q(2)-
q(4))*sin(qg(5))) *cos(q(6))*csc(g(5)+q(6))*cot (g(5)+gq(6)) ...
+((q(1)-g(3)) *sin(g(5))+(g(2)-
a(4))*cos(g(5)))*cos(g(6))*csc(g(5)+g(6)) *cot (q(5)+g(6)) "2+ ((a(l )
g(3)) *sin(g(5))+(g(2)-g(4))~* COS(q(5))) cos (g(6)) *csc(g(d5)+g(6))” %
x(5,6) = ((g(2)-g(4))*sin(g(5))-(q(l)-g(3))*cos(q(5)))* (-
sin(g(6)) *csc(g(5)+g(6))-cos(gq(6))*csc(g(5)+g(6))*cot(g(5)+g(6))) ...
-((g(1)-g(3))*sin(g(5))+(g(2)-g(4))*cos(q(5))) * (-
sin(g(6))*csc(g(5)+g(6)) *cot (q(5)+q(6)) -
cos (g (6)) *csc(g(5)+g(6)) *cot (g(5)+q(6))"2-cos(g(6))*csc(g(5)+qg(6))"3);

SLAfé%é)T*é;c(q(5)+q(6))*(sin(q(6))+cos(q(6))*cot(q(5)+q(6))));%
coéféié);*é;c(q(5)+q(6))*(sin(q(6))+cos(q(6))*cot(q(5)+q(6))));%
(sig};15;)*csc(q(5)+q(6))*(sin(q(6))+cOs(q(6))*cot(q(5)+q(6))));%
(c£§}é15;)*csc(q(5)+q(6))*(sin(q(6))+cos(q(6))*cot(q(5)+q(6)))); s
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a(l)-q(3))*cos(q(5))-(a(2) -
)

- ((g(1)-g(3)) *sin(g(5))+(q(2) —gq(4)) *cos(q(5))) * (-
csc(q(5)+g(6)) *cot (g(5)+q(6))*(sin(g(6))+cos(g(6))*cot (q(5)+g(6)))-
cos (g(6)) *csc(g(5)+g(6))"3); %

Hx (6,6) = - ((g(1)-g(3))*sin(g(5))+(g(2)-qg(4))*cos(g(5)))* (-
csc(g(95)+g(6))*cot (q(5)+g(6))*(sin(g(6))+cos(g(6))*cot (q(5)+g(6)))+csc
(d(5)+g(6)) *(cos(g(6))-sin(g(6)) *cot (q(5)+g(6)) -

cos (g (6))*csc(g(d)+g(6))"2)); %

Hy = zeros(6,6);

HY(l,l) = O;

HY(112) = O;

HY(113) = O;

Hy(1,4) = 0;

Hy (1,5) =

(sin(g(5)) *cos (g (6))+cos (g(5))*cos(q(6)) *cot (q(5)+q(6))) *csc(g(5)+g(6)
) ;

Hy (1,6) =

Hy(2,1) = 0;

Hy(2,2) = 0;

Hy(2,3) = 0;

Hy (2,4) 0;

Hy (2,5) = (-sin(g(5))*cos(g(6))-

cos (g (95)) *cos (g (6)) *cot (g(5)+g(6))) *csc(q(5)+g(6));
Hy (2,6) = (cos(g(5))*sin(g(6))-

cos (g (95)) *cos (g (6)) *cot (g(5)+g(6))) *csc(q(5)+g(6));
Hy (3,1) = 0;

Hy (3,2) = 0;

Hy (3,3) = 0;

HY(314) = 0;

Hy (3,5) = (cos(g(5))*cos(qg(6))-

sin(g(5)) *cos (g(6)) *cot (q(5)+g(6))) *csc(g(5)+q(6));
Hy (3,6) = (-sin(g(5))*sin(qg(6))-

sin(g(5)) *cos (g(6)) *cot (q(5)+g(6))) *csc(g(5)+q(6));
Hy(4,1) = 0;

Hy(4,2) = 0;

HY(413) = O;

Hy(4,4) = 0;

Hy (4,5) =

(sin(g(5)) *cos (g (6))+cos (g(5))*cos(q(6))*cot (q(5)+q(6))) *csc(g(5)+g(6)
) ;

Hy (4,6) = (cos(g(5))*sin(g(6))-

cos (g (5)) *cos (g (6)) *cot (q(5)+g(6))) *csc(g(d5)+q(6));
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Hy(5,1) = (-cos(g(5))*cos(q(6))*csc(g(5)+g(6))-
sin(g(5)) *cos (g (6)) *csc(q(5)+g(6)) *cot (q(5)+g(6)));
Hy (5,2) =
(sin(g(5))*cos (g(6))*csc(g(5)+g(6))+cos(g(5))*cos(g(6))*csc(g(5)+g(6))
*cot (g (5)+g(6)));
Hy (5,3) =
(cos (g(5))*cos(g(6))*csc(g(5)+g(6))+sin(g(5)) *cos(g(6))*csc(g(5)+g(6))
*cot (q(5)+g(6)));
Hy (5,4) = (-sin(g(5))*cos(g(6))*csc(q(5)+g(6))-
cos(g(5)) *c g(6))*csc(g(5)+g(6))*cot(g(5)+g(6)));
Hy (5,5) = ( 2)-g(4))*cos(q(5))+(g(l)-
q(3))*sin(q )) *cos (g(6))*csc(g(5)+g(6))-((g(2)-g(4))*sin(g(5))-
(q(1)-g(3)) s(g(5)))*cos(g(6))*csc(g(5)+g(6)) *cot (g(5)+g(6)) ...
- (

)+ (g (2) -
(5)+g(6)) *cot (g (5)+g(6)) ...

) - (q(2) -
(5)+g(6)) *cot (g(5)+q(6)) "2+ ((
g(5))) *cos(g(6))*csc(g(5)+g(6
) - (aq(1 )—q(3))*COS(q(5)))*(—
)
)
)
)

S

)

l

(

(

)

os (

g(l)-g(3))*cos(g(5
g(4)) *sin( ))) *cos (g (6)) *csc(
g(l)-g(3))*sin(g(5
))) *cos (g (6)) *csc(
)) - ( (2) -
q (4
(
g
(
(

q
n
g(4))*cos (g
g(3))*sin(g
Hy (5,6) =

sin(q(6))*c

6 q(l)-

( )) "3 %
*sin (g (5

) —cos (g ( *csc (g (5)+g(6)) *cot (g(5)+g(6))) ...
*sin(g (5

) *cot (g (

)

*cot (g (

)
+(q(2)-q(4)) *cos (a(5))) * (-

+q(6)) -

+q(6)) "2-cos (q(6)) *csc(q(d)+q(6))"3);

sin(qg(6))*c

)

q

)

q

4)) *cos (

)

6

)

5

cos(g(6)) *cs 5

(
*csc (g (5)+g(6)) *(sin(g(6))+cos(g(6)) *cot (g(5)+g(6)))) ;%
(cos (g(5))*csc(g(5)+g(6)) * (sin(g(6))+cos(g(6)) *cot(g(d5)+g(6)))):5%
Hy (6, 4) (-
cos (q(5)) *csc (g
(

Hy (6, 5) - ((q
q(4))*si

—q(3)) *cos (q(5))+(q(2) -

T
)
(sin(q(5;)*csc(q(5)+q(6))*(sin(q(6))+cos(q(6))*cot(q(5)+q(6))));%
)
; csc(q(5)+g(6))* (sin(q(6))+cos(q(6))*cot (q(5)+g(6))) ..

5)+a(6)) * (sin(q(6))+cos (q(6)) *cot (q(5)+q(6)))); %
)

(q(5))

- ((g(1)-g(3)) *sin(g(5))-(q(2)-g(4)) *cos(q(5))) * (-
csc(gq(5)+g(6)) *cot (g(5)+gq(6))*(sin(g(6))+cos(g(6))*cot(q(5)+g(6)))-
cos (g(6)) *csc(g(5)+g(6))"3) ;5%

Hy (6,6) = -((g(1)-g(3))*sin(g(5))-(g(2)-g(4))*cos(q(5)))* (-
csc(g(95)+g(6))*cot (q(5)+g(6))* (sin(g(6))+cos(g(6))*cot(q(5)+g(6)))+csc
(d(5)+g(6)) *(cos(g(6))-sin(g(6)) *cot (q(5)+g(6)) -

cos (g (6))*csc(g(d)+g(6))"2)); %

o\

o)
°

S (Wheel Yaw-Rate)
The Sik terms from Equation 2.71, subscripts are wheel (i), then

o\

term (k)

S = zeros(4,6);

S(1,1) = (1/pl”2)*(J(2,1)*(A(1,1)-H(1,1))-J(1,1)*(B(1,1)-H(2,1)));
S(1,2) = (1/pl”2)*(J(2,1)*(A(1,2)-H(1,2))-J(1,1)*(B(1,2)-H(2,2)));
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Kfk is row 1 while Krk is row 2
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(D(2,1)*U(1,1)+D(2,2)*U(2,1)) *sin(q(5)+q(6))"2;
(D(2,1)*U(1,2)+D(2,2)*U(2,2)) *sin(q(5)+q(6))"2;

) *sin (g (6));

C(3,1)
C(3,2)



C(3,3) = (D(2,1)*U(1,3)+D(2,2)*U(2,3))*sin(qg(5)+q(6))"2;
C(3,4) = (D(2,1)*U(1,4)+D(2,2)*U(2,4))*sin(qg(5)+q(6))"2;
C(3,5) =
(D(2,1)*U(1,5)+D(2,2)*U(2,5))*sin(g(5)+q(6)) "2+ (D
(g(5)+g(6)) *sin(g(5)+g(6))+L"2*sin (g (5)) *cos (g(5));
C(316) =
(D(2,1)*U(1,6)+D(2,2)*U(2,6))*sin(g(5)+q(6)) "2+ (D
(d(5)+g(6)) *sin(q(5)+g(6));

C(4,1) = (1/pl72)*(A(1,1)*J(1,1)-B(1,1)*J(2,1))~-
(1/p272)*(A(2,1)*3(1,2)-B(2,1)*J(2,2));

C(4,2) = (1/pl72)*(A(1,2)*J(1,1)-B(1,2)*J(2,1))~-
(1/p272)*(A(2,2)*3(1,2)-B(2,2)*3(2,2));

C(4,3) = (1/pl72)*(A(1,3)*J(1,1)-B(1,3)*J(2,1))~-
(1/p272)*(A(2,3)*3(1,2)-B(2,3)*J(2,2));

C(4,4) = (1/pl172)*(A(1,4)*J(1,1)-B(1,4)*J(2,1))-
(1/p27°2)*(A(2,4)*3(1,2)-B(2,4)*J(2,2));

C(4,5) = (1/pl172)*(A(1,5)*J(1,1)-B(1,5)*J(2,1))-
(1/p27°2)*(A(2,5)*3(1,2)-B(2,5)*J(2,2));

C(4,6) = (1/pl”2)*(A(1,6)*J(1,1)-B(1,6)*J(2,1))-
(1/p27°2)*(A(2,6)*3(1,2)-B(2,6)*J(2,2));

C(5,1) = (1/p272)*(A(2,1)*J(1,2)-B(2,1)*J(2,2)) -
(1/p372)*(A(3,1)*J3(1,3)-B(3,1)*J(2,3));

C(5,2) = (l/p2 2)*(A(2,2)*J(1,2)-B(2,2)*J(2,2)) -
(1/p372)*(A(3,2)*3(1,3)-B(3,2)*3(2,3));

C(5,3) = (l/p2 2)*(A(2,3)*J(1,2)-B(2,3)*J(2,2)) -
(1/p372)*(A(3,3)*J(1,3)-B(3,3)*J(2,3));

C(5,4) = (1/p2 2)*(A(2,4)*3(1,2)-B(2,4)*J(2,2)) -
(1/p372)*(A(3,4)*3(1,3)-B(3,4)*3(2,3));

C(5,5) = (1/p2 2)*(A(2,5)*3(1,2)-B(2,5)*J(2,2)) -
(1/p372)*(A(3,5)*3(1,3)-B(3,5)*J(2,3));

C(5,6) = (1/p2 2)*(A(2,6)*J(1,2)-B(2,6)*J(2,2))-
(1/p372)*(A(3,6)*J(1,3)-B(3,6)*J(2,3));

C(6,1) = (1/p372)*(A(3,1)*J(1,3)-B(3,1)*J(2,3))-
(1/p4”2)*(A(4,1)*3(1,4)-B(4,1)*3(2,4));

C(6,2) = (1/p372)*(A(3,2)*J(1,3)-B(3,2)*J(2,3))-
(1/p472)*(A(4,2)*3(1,4)-B(4,2)*3(2,4));

C(6,3) = (1/p372)*(A(3,3)*J(1,3)-B(3,3)*J(2,3))-
(1/p472)*(A(4,3)*3(1,4)-B(4,3)*J(2,4));

C(6,4) = (1/p372)*(A(3,4)*J(1,3)-B(3,4)*J(2,3))-
(1/p472)* (A(4,4)*3(1,4)-B(4,4)*3(2,4));

C(6,5) = (1/p372)*(A(3,5)*J(1,3)-B(3,5)*J(2,3)) -
(1/p472)*(A(4,5)*3(1,4)-B(4,5)*3(2,4));

C(6,6) = (1/p372)*(A(3,6)*J(1,3)-B(3,6)*J(2,3))-
(1/p472)*(A(4,6)*3(1,4)-B(4,6)*T(2,4));

C(7,1) = ((1/p4"2)*(A(4,1)*J(1,4)-B(4,1)*J(2,4))-(1/pf)*K
C(7,2) = ((1/p4"2)*(A(4,2)*T(1,4)-B(4,2)*J(2,4))-(1/pf)*K
C(7,3) = ((1/p4"2)*(A(4,3)*J(1,4)-B(4,3)*J(2,4))-(1/pf)*K
C(7,4) = ((1/p4"2)*(A(4,4)*T(1,4)-B(4,4)*J(2,4))-(1/pf)*K

(1,1)72+4D(1,2)"2)~*

(1,1)72+4D(1,2)"2)~*
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zeros (1,4);

zikg3 2(1)

(sin(g(5)) *cos (q(6)) *csc(q(5)+g(6))-(1/2)+Xo(1)/L);
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zikg3_2(2) = (sin(g(5))*cos(q(6))*csc(q(5)+q(6))-(1/2)+Xo(2)/L)
zikg3_2(3) = (sin(g(5))*cos(q(6))*csc(q(5)+q(6))-(1/2)+Xo(3)/L)
zikg3_2(4) = (sin(g(5))*cos(q(6))*csc(q(5)+q(6))-(1/2)+Xo(4)/L)

Ne Ne N

zikg4 1 = zeros(1l,4);

zikg4 _1(1) = (-cos(g(5))*cos(g(6))*csc(q(5)+q(6))-(1/2)+Xo(1)/L);
zikg4 _1(2) = (-cos(g(5))*cos(g(6))*csc(q(5)+q(6))-(1/2)+Xo(2)/L);
zikg4 1(3) = (-cos(g(5))*cos(g(6))*csc(q(5)+q(6))-(1/2)+Xo(3)/L);
zikg4 1(4) = (-cos(g(5))*cos(g(6))*csc(q(5)+q(6))-(1/2)+Xo(4)/L);
zikgd4 2 = zeros(1l,4);

zikg4_2(1) = (cos(g(5))*cos(g(6))*csc(g(5)+q(6))-Yo(l)/L);
zikgd_2(2) (cos (q(5))*cos(q(6))*csc(q(5)+g(6))-Yo(2)/L);
zikg4_2(3) = (cos(g(5))*cos(g(6))*csc(q(5)+q(6))-Yo(3)/L);
zikg4_2(4) = (cos(g(5))*cos(g(6))*csc(q(5)+q(6))-Yo(4)/L);
zikg5_ 1 = - ((a(1)-g(3))*cos(g(5))+(g(2)-
g(4))*sin(qg(5)))*cos(q(6))*csc(q(d5)+g(6));

zikg5 2 = ((g(1)-g(3))*sin(g(5))-(g(2)-
q(4))*cos(g(5)))*cos(g(6))*csc(g(5)+g(6))*cot(q(5)+g(6));

zikg5_ 3 = - ((a(1)-g(3))*cos(q(5))-(q(2)-
a(4))*sin(qg(5)))*cos(g(5))*csc(g(5)+a(6));

zikg5 4 = ((9(1)-g(3))*sin(g(5))+(g(2)-
a(4))*cos(g(5)))*cos(g(6))*csc(g(5)+g(6)) *cot(q(5)+g(6));

zikgo 1 = (

((@(l)-a(3))*sin(qg(5))-(q(2) -
g(4))*cos(g(5)))*(sin(g(6))*csc(g(5)+g(6))+tcos(g(6))*csc(g(5)+g(6)) *co
t(g(5)+g(6)))
zikg6b_2 = ((qg (3)) *sin(g(5))+(a(2) -
a(4))*cos (q(5 sin(g(6)) *csc(g(5)+g(6))+cos(q(6)) *csc(g(5)+g(6)) *co

)))

(
t(a(5)+a(6

%% Generalized Force Matrix

Ti = zeros(4,1); $Force from Drive Motors

To = zeros(4,1); $Torque from Steering motors
g = .1; $Tractive Coefficient

Q = zeros(6,4);

Q(1,1) = Ti(1)*((.5+ (1~ g))*(XO(l)/L)+((q(2) q(4))/L"3) ((q(2) -
q(4))*Xo (1) +(q(l)-q(3))*Yo(i)))*(-J(2,1)/PR(1)) .
+T1 (1) * ((1-g) * (Yo (1) /L) - ((q(2) q(4))/L 3)*g* ((q(1) -
q(3))*Xo(1)-(q(2)-g(4))*Yo(i)))*(J(1,1)/PR(1)) .
+(To (1) /PR(1)"2)* (T (1,1)* (-
sin(g(5))*cos(q(6))*csc(q(5)+q(6))-Yo(i)/L)-J(2,1)*(1-
sin(q(5))*cos(q(6))*csc(q(5)+q(6))-.5-Xo (1) /L)) ;
Q(2,1) = Ti(1)*((=(1-9))*(Yo(1)/L)+((a(l)-q(3))/L"3)*g* ((q(2)-
q(4))*Xo(1)+(q(l)-q(3))*Yo(1)))*(-J(2,1)/PR(1)) .
FT1 (1) * ((.5+(1-g))* (Yo (1 )/L)+((q(1) q( )) /L"3) ((q(l)-
q(3))*Xo(1)=-(a(2)-qg(4))*Yo(i)))*(J(1,1)/PR(1)).



+(To (i) /PR(1)7"2)*(J(1,i)* (1+cos(g(5))*cos(g(6))*csc(g(5)+g(6))—-.5-
o(i)/L)-J(2,1)*(-cos(q(5))*cos(g(6))*csc(q(5)+q(6))+Yo(i)/L));

Q(3,1) = 1(1)*((.5—(1—g))*(Xo(1)/L) ((q(2)-g(4))/L"3) *g* ((q(2) -
q(4))*Xo(1)+(q(l)-q(3))*Yo(i)))*(-J(2,1)/PR(1)) ...
+T1 (1) * (((1=-9)) * (Yo (1) /L) - ((q(2) -q(4))/L"3) *g* ((q(1) -
q(3))*Xo(1)-(a(2)-q(4))*Yo(i)))*(J(1,1)/PR(1)) ...

+(To(i)/PR(i)A2)*(J(l,i)*(sin(q(S))*cos(q(6))*csc(q(5)+q(6))+Yo i) /L) -
J(2,1)* (sin(g(5)) *cos(g(6))*csc(g(5)+g(6))-.5+Xo (1) /L))

Q(4,1) = Ti(1)*(((1-g))*(Yo(1)/L)+((a(l)-g(3))/L"3)*g* ((qg(2)~-
g(4))*Xo(1)+(g(l)-g(3))*Yo(i)))*(-J(2,1)/PR(1)).
+Ti (1) *((.5-(1-g))*(Xo (1) /L) = ((a(1l)-g(3))/L"3)*g* ((a(l) -
g(3))*Xo(i)-(g(2)-g(4))*Yo(i)))*(J(1,1i)/PR(1)) ..
+(To (i) /PR(1)"2)* (J(1,1i)* (-
cos(g(5)) *cos (g (6))*csc(g(5)+g(6))-.5+Xo (1 )/L)
J(2,1)*(cos(g(5))*cos(g(6))*csc(g(5)+g(6))-Yo(i)/L));

Q(5,1) = (To(i)/PR(1)"2)*((J(1,1)*(zikg5 1+zikg5 2))-
J(2,1)*(zikg5 3+zikg5 4));

Q(6,1) = (To(1)/PR(1)"2)*(J(1,1)* (zikqg6 1)-J(2,1i)*zikg6 2);
end

o°

% RO derivatives for gb g6 from PR1 PR2 PR3 PR4

sgl =

sgrt (W"2*sin (q(5)+g(6)) "2/ (4*L"2*cos (q(6) ) 2)+W*sin (g (5)+g(6)) *cos (g (5
))/ (L*cos (q(6)))+1);
sg2 = sqrt (W "2*sin (g
W*sin (g (5)+gq(6)) *cos
sgq3 = sqgrt (W "2*sin (g
W*sin (g (5)+g(6)) *cos
sgd =

sqrt (W"2*sin (g (5)+g(6)) "2/ (4*L"2*cos (g (5))"2)+W*sin (g (5)+g(6)) *cos (g (6
))/ (L*cos (q(5)))+1);

)+q(6)) ~2/ (4*L"2*cos (q(6)) "2) -
(5 ))/(L*COS(q(6)))+l);
)+q(6)) "2/ (4*L"2*cos (q(5)) "2) -

(
(
(
(q(6 ))/(L*COS(q(5)))+l);

Q o Q o

%derivative of ro wrt gb
PRd = zeros(4,2);

PRA(1,1) = L*cos(g(6))* ((W*cos(q(5)+q(6))*cos(q(5))/ (L*cos(g(6))))-
(W*Sln(q( ) +q(6)) *sin(q(5))/ (L*cos (g (6))))+ (W 2*cos (g (5)+q(6)) *sin(q(5
) +q(6))/ (2*L"2*cos (q(6))"2)))/(2*sin(q(5)+g(6)) *sql) -

(L*cos (q(5)+g(6)) *cos (q(6)) *sql) /sin(g(5)+q(6))"2; %

PRA(2,1)= L*COS(q(6>)*((W*Sln(q(5) g(6))*sin(q(5))/ (L*cos(q(6))))-
(W*COS(q(5> g(6))*cos (g (5))/ (L*cos (g ( ))))+(Wr2*cos (q(5)+g(6)) *sin (g (5
) +q(6))/ (2*L" 2*COS(q(6))A2)))/(2*51n(q(5)+q(6)) sqz) -

(L*cos (q(5)+g(6)) *cos (g (6)) *sg2)/ (sin(g(5)+q(6)))"2; %

PRA(3,1)= —L*Sln(q(S))*sq3/sin( (5)+gq(6)) -

(L*COS(q(S) q(6))*cos(q(5))*sq3/sin (g (5)+q(6))"2) -

L*cos (g(5))* ((W*COS(q(5)+q(6)) cos (q(6))/ (L*cos (g (5))))-
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(W"2*cos (g (5)+g(6)) *sin(q(5)+q(6))/ (2*L"2*cos (q(5))"2)) -
(W"2*sin (g (5)+g(6))*2*sin(q(5))/ (2*L"2*cos (q(5)) *3))+W*sin(q(5)+q(6))*
cos (g (6))*sin(g(5))/ (L*cos(q(5))"2))/(2*sin(q(5)+q(6))*sq3) ;%

PRd (4,1)= - (L*cos(q(5)+g(6))*cos(q(5))*sqd/sin(q(5)+g(6))"2) -

L*sin (g (5)) *sqg4/sin(q(5) +q(6))+L*cos (q(5))* ((W*cos (q(5)+q(6)) *cos (q(6)
)/ (L*cos (g (5))))+ (W 2*cos (q(5) +g(6)) *sin (g (5)+q(6))/ (2*L"2*cos (q(5)) "2
))+ (W 2*sin (g (5)+q(6)) "2*sin(g(5))/ (2*L"2*cos (q(5)) "3))+W*sin (g (5)+g (6
)) *cos (g (6))*sin(g(5))/ (L*cos(q(5))"2))/(2*sin(g(5)+q(6))*sqgd) ;%

%derivative of ro wrt g6
PRA(1,2) =

L*cos (g (6))* ((W*cos (q(5)+q(6)) *cos (q(5))/ (L*cos(g(6))))+ (W 2*cos (g (5)+
g(6))*sin(q(5)+g(6 ))/(Z*L 2*cos (g (6))"2))+(W*2*sin (g (5)+gq(6)) "2*sin (g (
6))/ (2*L"2*cos (g (6))"3) )+ (W*sin (g (5) +q(6)) *cos (q(5)) *sin(g(6))/ (L*cos (
a(6))~2)))/(2*sin(g(5)+q(6)) *sqgl) -

(L*cos (g (5)+g(6)) *cos (q(6)) *sqgl) /sin (g (5)+q(6)) ~2-

L*sin(q(6))* Sql/Sln(q(5) +9(6));%

PRA(2,2) = -L*cos(q(6))*((W*cos(q(5)+g(6))*cos(q(5))/ (L*cos(q(6))))-
(Wh2*cos (g (5)+q(6)) *sin(g(5) + (6))/(2*L 2*cos (q(6))"2)) -

(WA2*sin (g (5)+q(6)) "2*sin (g (6 ))/(2*L 2*cos (g(6))"3) )+ (W*sin(q(5)+g(6))
*cos (g (5 ))*Sln(q(6))/(L*COS( (6))" )))/(2*sin(q(5)+q(6)) sg2) -
(L*cos (q(5)+q(6)) *cos (q(6)) *sq2) /sin (g (5)+q(6)) "2-

L*sin(g(6))* sq2/51n (5)+q(6))'%

PRA(3,2) = L*cos(q(5))*((W*sin(gq(5)+g(6))*sin(g(6))/ (L*cos(q(5))))-
(W*COS(q(5> +q(6)) *cos (g (6))/ (L*cos (q(5))))+ (W 2*cos (q(5)+q(6)) *sin (g (5
)+q(6))/ (2*L"2*cos (g (5))"2)))/(2*sin(q(5)+g(6))* sq3)—
(L*cos (g (5)+g(6)) *cos (q(5)) *sg3) /sin(q(5)+q(6) )" %

PRdA(4,2) = L*cos(g(5))*((W*cos(g(5)+g(6)) *cos (q(6>)/(L*cos(q(5)>)>—
(W*Sln(q(5)+q(6)) sin(g(6))/ (L*cos(g(5))))+ (W 2*cos (g(5)+q(6)) *sin (g (5
)+a(6))/ (2*L"2*cos (g (5))"2)))/(2*sin(g(5)+q(6))* sq4)—

(L*cos (q(5)+q(6)) *cos (gq(5)) *sq4) /sin (g (5)+q(6))" %

%% dSdg Matrix, S derivative

dsdg = zeros(4,6,6); %1 is the 4, k is the column, j is the depth

for k = 1:6

dsdg(i,k,1) = (zikqgl 1(i)*(A(i,k)-H(1l,k))-zikgl 2(i)*(B(i,k)-
H(2,k)))/PR(1)"2;

dsdg(i,k,2) = (zikqg2 1(i)*(A(i,k)-H(1l,k))-zikg2 2(i)*(B(i,k)-
H(2,%)))/PR(1)"2;

dsdg(i,k,3) = (zikqg3 1(i)*(A(i,k)-H(1l,k))-zikg3 2(i)*(B(i,k)-
H(2,%)))/PR(1)"2;

dsdg(i,k,4) = (zikg4 1(i)*(A(i,k)-H(1l,k))-zikgd 2(i)*(B(i,k)-

(2,k)))/PR(1)"2;

dsdg (i, k,5) = (PR(i)"2*((zikgb 1+zikgb5 2)* (A(i,k)-

H(1l,k))+J(2,1)*Hx(k,5)-J(1,1)*Hy(k,5)—-(zikg5 3+zikg5 4)*(B(i,k)-
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H(2,k)))-(J(2,1)*(A(1,
H(2,k)))*2*PR(')*PRd(1
(

H(1,k))-J(1,1)*(B(i,k)~-
))/PR( ) " 45

dsdg (i, k,6) = (1) "2* ((zikg6_1)* (A(i,k) -

H(1 )) J(2,1) *Hx (k,6)-J (1, l)*HY(k 6)-(zikg6 2)*(B(i,k)-H(2,k)))-

(J ( i)*(A (l k)-H(1,k))-J(1,1)*(B(i,k)-

H(2 )))*Z*PR( )*PRd( ))/PR( ) "4

end

end
%% Term Colation
Tpl lequation = zeros(6,6); % THis sum is for the mB portion of the KE

in Equation (2.158)

o

Tpl 2equation = zeros(6,6); % THis sum is for the IB portion of the KE

in Equation (2.158)

Tpl 3equation = zeros(6,6,4); %
portion of the KE in Equation (2.158)
Tpl 4equation = zeros(6,6,4); %

KE in Equation (2.158)

[o)

for 3 = 1:6

THis sum is for the (mw+Iw/rw”2)

THis sum is for the Is portion of the

% This summation is for the first two lines of Equation 2.158

for k=1:6
Tpl lequation(j,k) = G(1,])*G(1,k)+G(2,])*G(2,k);
Tpl 2equation(j,k) = G(3,])*G(3,k);
for i=1:4
Tpl 3equation(j,k,1) = A(i,J)*A(i,k)+B(1i,J)*B(i,k);
Tpl 4equation(j,k,1) = S(i,J)*S(i,k);
end

end
end

EquationPartl 1 =

Mb*sum (Tpl lequation (1,

1)) *gdd (1) +Ib*sum (Tpl 2equation(l, :))*gdd(1l)+ (M

i+Ii/rw”2) *sum(sum(Tpl 3equation(l,:,:)))*gdd(1l)+(Is) *sum(sum(Tpl 4equ

ation(l,:,:)))*qgdd (1)
EquationPartl 2 =

Mb*sum (Tpl lequation (2,

1)) *gdd (2) +Ib*sum (Tpl 2equation(2,:))*gdd(1l)+ (M

i+Ii/rw”2) *sum(sum(Tpl 3equation(2,:,:)))*qgdd(2)+(Is) *sum(sum(Tpl 4equ

ation(l,:,:)))*qgqdd(2);
EquationPartl 3 =

Mb*sum (Tpl lequation (3,

1)) *qdd (3) +Ib*sum(Tpl 2equation (3, :))*gdd(1l)+ (M

i+Ii/rwA2)*sum(sum(Tpl_3equation(3,:,:)))*qdd(3)+(Is)*sum(sum(Tpl_4equ

ation(l,:,:)))*qgdd(3);
EquationPartl 4 =

Mb*sum (Tpl lequation (4,

1)) *qdd (4) +Ib*sum(Tpl 2equation(4,:))*gdd(1l)+ (M

i+Ii/rwA2)*sum(sum(Tpl_Bequation(4,:,:)))*qdd(4)+(Is)*sum(sum(Tp1_4equ

ation(1l,:,:)))*gdd (4);
EquationPartl 5 =

Mb*sum (Tpl lequation (5,

1)) *qdd (5) +Ib*sum(Tpl 2equation (5, :))*gdd(1l)+ (M
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i+Ii/rw”2) *sum(sum(Tpl 3equation (5,
ation(l,:,:)))*qgdd(5);
EquationPartl 6 =

Mb*sum (Tpl lequation (6,
i+Ii/rw”2) *sum(sum(Tpl 3equation (6,

1,:)))*qdd (5) + (Is) *sum(sum(Tpl 4equ

1)) *qdd (6) +Ib*sum(Tpl 2equation (6, :))*gdd(1l)+ (M
1,:)))*qdd (6)+ (Is)*sum(sum(Tpl 4equ

ation(l,:,:)))*gdd(6);

SUMS KNI1 = zeros(6,6,4); %$This matrix is for the first triple
summation in Equation 2.158

SUMS KNIZ = zeros(6,6,4); %This matrix is for the second triple
summation in Equation 2.158

there I am building the terms through the summation shown in lines 3
and 4
%o0f Equation 2.158
for k=1:6
for n=1:6
for i=1:4

SUMS KNI1l(k,n,1i) = S(i,1)*sum(dsdg(i,k,n)) +

S(i,k)"*sum(dsSdg(i,1l,n))

SUMS_KNT1 (k,n,

S(i, k) "*sum(dSdg(i,2,n))

SUMS_KNT1 (k,n,

S(i,k)"*sum(dsdg(i,3,n))

SUMS_KNT1 (k,n,

S(i,k)"*sum(dsdg(i,4,n))

SUMS_KNT1 (k,n,

S(i,k)"*sum(dsdg(i,5,n))

SUMS_KNT1 (k,n,

S(i, k) "*sum(dSdg (i, 6,n))

SUMS_KNI2 (k,n,

S(i,k)"*sum(dsdg(i,n,1))

SUMS_KNI2 (k,n,

S(i, k) "*sum(dSdg(i,n,2))

SUMS_KNIZ2 (k,n,

S(i, k) "*sum(dSdg (i, n,3))

SUMS_KNI2 (k,n,

S(i,k)"*sum(dSdg(i,n,4))

SUMS_KNIZ2 (k,n,

S(i, k) "*sum(dSdg(i,n,5))
SUMS KNI2 (k,n
S(i, k) "*sum(dSdg(i,n,6))
end
end
end

SUMS knil Total =
SUMS kniZ Total =
for 1 = 6

for 3 = 1:6

SUMS knil Total (i,

zeros (6,
zeros (6,

; SEQL
i) =
; SEQ2
i) = S(i,3)*sum(dSdqg (i, k,n))
; 3EQ3
i) =
; SEQ4
i) =
; 3EQS

S(i,2)*sum(dSdg(i, k,n))

S(i,4)*sum(dSdg (i, k,n))

S(i,5)*sum(dSdg (i, k,n))
i) = S(i,6)*sum(dSdg (i, k,n))
; SEQ6

i) =
; SEQL
i) =
; 3EQ2
i) = S(i, k) *sum(dsSdg (i, k,3))
; 3EQ3

i) S(i,k)*sum(dSdg (i, k,4))
; 3EQ4
i)

; SEQS
i

) =
; SEQ6

S(i,k)*sum(dsdg (i, k,1))

S(i,k)*sum(dsdg (i, k,2))

1O

1O

S(i,k)*sum(dsdg(i, k,5))

S(i,k)*sum(dsdg (i, k,6))

6);
6);

7)
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SUMS kni2 Total (i, 3J)
end
end

$here I am summing the terms of the summation shown in lines 3 and 4

$o0of Equation 2.158
EquationPart2 1 =

Is*SUMS knil Total (1, :

= sum(SUMS_KNI2(i,3,:))*qd(i)*qd(j);

(1/2)*Is*SUMS kni2 Total(l,:);

EquationPart2 2 = Is*SUMS knil Total (2, :

(1/2) *Is*SUMS_kni2 Total (2, :);

EquationPart2 3 =

Is*SUMS knil Total(3,:

(1/2) *Is*SUMS_kni2 Total (3,:);

EquationPart2 4 =

Is*SUMS knil Total (4, :

(1/2)*Is*SUMS_kni2 Total (4, :);

EquationPart2 5 = Is*SUMS knil Total (5,:

(1/2)*Is*SUMS_kni2 Total (5, :);

EquationPart2 6 =

Is*SUMS knil Total (6, :

(1/2)*Is*SUMS kni2 Total(6,:);

$This 1s the left hand side of the EOM.

Lagrangian EOM Left Side 1
Lagrangian EOM Left Side 2 =
Lagrangian EOM Left Side 3
Lagrangian EOM Left Side 4
Lagrangian EOM Left Side 5 =
Lagrangian EOM Left Side 6 =

= EquationPartl 1

EquationPartl:Z
EquationPartl 3
EquationPartl 4
EquationPartl 5
EquationPartl 6

+ + 4+ + + +

(d/dt) * (dL/dgd) -dL/dg

EquationPart2 1;
EquationPart2 2;
EquationPart2 3;
EquationPart2 4;
EquationPart2 5;
EquationPart2 6;

Ql = sum(Q(1,:)); %Generalized Force 1
Q2 = sum(Q(2,:)); %Generalized Force 2
03 = sum(Q(3,:)); %Generalized Force 3
Q4 = sum(Q(4,:)); %Generalized Force 4
05 = sum(Q (5, :)); %Generalized Force 5
Q6 = sum(Q(6,:)); %$Generalized Force 6
% The constraints are above, but will be summd here
Cl = sum(C(1,:));

C2 = sum(C(2,:));

C3 = sum(C(3,:));

C4 = sum(C(4,:));

C5 = sum(C(5,:));

C6 = sum(C(6,:));

C7 = sum(C(7,:));

C8 = sum(C(8,:));

C9 = sum(C(9,:));
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A.1.2. Simulation.m

MyConstants
y=[0;0;0;0;0;0;0;0;0;0;0;0];
dt=0.005
Px=0:1:1000;
Py=3*sin (2*pi*Px/400) ;
for s=1:1:1000
Ti = 5e-2*[1;1;1;11; $Force from Drive Motors
To = 0.2*sin(2*pi*s/1000)*[-1,1,-1,11;
% To = 0.3*sin(2*pi*s/1000)*[-1,-1,1,1];
$To = 0.5*sin(2*pi*s/1000)*[1,1,-1,-17;
Equations Non Symbolic;
Mml=Mb* (G(1l,:) "*G(1l, :)+G(2,:)"*G(2,:))+Ib*G(3,:)"*G(3,:);
Mm2= (Mi+Ii/rw”2)* (A'"*A+B'*B)+Is*S'*S;
Mm=Mm1+Mm2 ;
Sdsdgl=2*S"'*theDsDqg;
X=[qg;qdl];

F=[X(7);X(8);X(9);X(10);X(11);X(12);pinv (Mm)* (Sdsdql) * [X (1) ;X (2) ;X (3);
X(4);X(5);X(6)1+[01;02;03;04;05;06]+C"*Lamb'*1e-10];

if s>2
X=y (:,8)+dt* (y(:,8-1)+F)/2;
else
X=y (:,s)+dt*F;
end
for i=1:6
g(i)=X(1);
end
for i=1:6
qd (i) =X (i+6) ;
end
y=[ly,X];
end
y=y*10/dt;
figure (1)

s plot(y(1,:),y(7,:),'vr=.",y(2,:),y(8,:), "k-
! Y(Br:)IY(91:)I'b:'IY(4r:)IY(1Or:)I'g__
S,y(5,:),y(11,:), 'm+",y(6,:),y(12,:),"'c+")
plot(s,y(7,:), 'r=.",s,y(8,:),"'k=",8,v(9,:),'b:",s,y(10,:), "'g-—

)5, y(5, ), y(11, ), 'mt",y(6,:),y(12,:),"ct")

grid

xlabel ('positions')

ylabel ('Velocities')

legend ('Wheel 1', 'Wheel 2', '"Wheel 3', '"Wheel 4")
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A.2. H Files for Experimental Prototype

A.2.1. RTC lInitialization.h

#ifndef KEK RTC Initializations
#define KEK RTC Initializations

#include "tm stm32f4 rtc.h"

#endif

A.2.2. Pdm_filter.h

#ifndef  PDM FILTER H
#define _ PDM FILTER H

#ifdef  cplusplus
extern "C" {
#endif

typedef struct {
uintlé t Fs;
float LP HZ;
float HP HZ;
uintl6é t In MicChannels;
uintl6 t Out MicChannels;
char InternalFilter([34];
} PDMFilter InitStruct;

#define HTONS (A) ((((ulé) (A) & 0xff00) >> 8) | \
(((ule) (A) & O0x00ff) << 8))

void PDM Filter Init(PDMFilter InitStruct * Filter);
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int32 t PDM Filter 64 MSB(uint8 t* data, uintl6 t* dataOut,
uintl6é t MicGain, PDMFilter InitStruct * Filter);

int32 t PDM Filter 80 MSB(uint8 t* data, uintl6 t* dataOut,
uintl6 t MicGain, PDMFilter InitStruct * Filter);

int32 t PDM Filter 64 LSB(uint8 t* data, uintl6 t* dataOut,
uintl6 t MicGain, PDMFilter InitStruct * Filter);

int32 t PDM Filter 80 LSB(uint8 t* data, uintl6 t* dataOut,
uintl6 t MicGain, PDMFilter InitStruct * Filter);

#ifdef  cplusplus

iendif

#endif /*  PDM FILTER H */
A.2.3. DC_Motor_Initializations.h

#ifndef KARL DC Motor Initializations H
#define KARL DC Motor Initializations H

#include <stm32f4xx rcc.h>
#include <stm32f4xx tim.h>

#include "tm stm32f4 gpio.h" // General Purpose Input/Output
#include "tm stm32f4 spi.h" // Serial Peripheral Interface
void DC GPIO Initializations(void) {

GPIO InitTypeDef GPIO InitStructure;

/* INITIALIZE PERIPHERAL
CLOCK */

RCC_AHBlPeriphClockCmd (RCC AHBlPeriph GPIOD, ENABLE);
/*Timer Initializations*/
/*DC 1 | DC 2* | DC 3 | DC4/

/* GPIOE Configuration: TIM4 CH1 (PD12), TIM4 CH2 (PD13)
TIM4 CH3 (PD14), TIM4 CH4 (PD15) */

GPIO InitStructure.GPIO Pin=GPIO Pin 12 | GPIO Pin 13 |
GPIO Pin 14 | GPIO Pin 15 ;

GPIO InitStructure.GPIO Mode=GPIO Mode AF;

GPIO InitStructure.GPIO OType=GPIO OType PP;

GPIO InitStructure.GPIO Speed=GPIO Speed 100MHz;

GPIO InitStructure.GPIO PuPd=GPIO Pubd UP;

GPIO Init (GPIOD, &GPIO_InitStructure);

108



GPIO PinAFConfig
GPIO PinAFConfig
GPIO PinAFConfig
GPIO PinAFConfig

’

GPIOD,GPIO PinSourcel2,GPIO AF TIM4);
GPIOD,GPIO PinSourcel3,GPIO AF TIM4);
)
)

’

GPIOD,GPIO PinSourceld4,GPIO AF TIM4
GPIOD,GPIO PinSourcel5,GPIO AF TIM4

4

P

void DC TIM Init(void) ({

uint32 t CCR1 Val
uint32 t CCR2 Val
uint32 t CCR3 Val =
uint32 t CCR4 Val

Il
. Ne

o O O o

’

’

GPIO PinAFConfig (GPIOD,GPIO PinSourcel2,GPIO AF TIM4);
GPIO PinAFConfig (GPIOD,GPIO PinSourcel3,GPIO AF TIM4);
( )
)

4

GPIO PinAFConfig (GPIOD,GPIO PinSourcel4,GPIO AF TIM4
GPIO PinAFConfig (GPIOD,GPIO PinSourcel5,GPIO AF TIM4
TIM TimeBaseInitTypeDef TIM BaseStruct;

4

/*Clock for TIM4 */
RCC_APBlPeriphClockCmd (RCC_APBlPeriph TIM4, ENABLE);

TIM BaseStruct.TIM Prescaler = 6;

TIM BaseStruct.TIM CounterMode =
Count up */

TIM BaseStruct.TIM Period = 60000; /*The ARR value for

TIM CounterMode Up; /*

200HZ*/

TIM BaseStruct.TIM ClockDivision = TIM CKD DIV1;

TIM BaseStruct.TIM RepetitionCounter = 0;

TIM TimeBaseInit (TIM4, &TIM BaseStruct); /* Initialize TIM4
*/

TIM Cmd(TIM4, ENABLE); /* Start count on TIM4 */

TIM OCInitTypeDef TIM OCStruct;
/* OC Settings */
TIM OCStruct.TIM OCMode = TIM OCMode PWMI1;
TIM OCStruct.TIM OutputState = TIM OutputState Enable;
TIM OCStruct.TIM OCPolarity = TIM OCPolarity High;

/*Set toggle period for each channel*/
TIM OCStruct.TIM Pulse = CCR1 Val; /* 25% Toggle */
TIM OClInit(TIM4, &TIM OCStruct);
TIM OClPreloadConfig(TIM4, TIM OCPreload Enable);

TIM OCStruct.TIM Pulse = CCR2 Val; /* 50% Toggle */
TIM OC2Init (TIM4, &TIM OCStruct);
TIM OC2PreloadConfig(TIM4, TIM OCPreload Enable);

TIM OCStruct.TIM Pulse = CCR3 Val; /* 75% Toggle */
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TIM OC3Init(TIM4, &TIM OCStruct);
TIM OC3PreloadConfig(TIM4, TIM OCPreload Enable);

TIM OCStruct.TIM Pulse = CCR4 Val; /* 100% Toggle */
TIM OC4Init (TIM4, &TIM OCStruct);
TIM OC4PreloadConfig(TIM4, TIM OCPreload Enable);

TM GPIO Tnit (
//DC Motor Pins
GPIOD,
// GPIO Port D
GPIO Pin 12 | GPIO Pin 13 | GPIO Pin 14 |
GPIO Pin 15,
TM GPIO Mode AF,
// Mode: output
TM GPIO OType PP,
// Mode: Push/Pull
TM GPIO PupPd_UP,
// No pull up/down resistor
TM GPIO Speed Fast
// ...fast
)
*/

#endif // KARL DC Motor Initializations H
A.2.4. DC_Motor_Actuation.h

#ifndef KARL DC Motor Actuation H
#define KARL DC Motor Actuation H

uint32 t CCR1 Val = 18000;
uint32 t CCR2 Val = 18000;
uint32 t CCR3 Val = 18000;
uint32 t CCR4 Val = 18000;

void DC Motor Actuate(float* Power)
{

int 1i;

//uint32 t CCR[4] = {21000,12000,24000,12000};
//*waypoint = 1;

/*CCR1 Val = 6000/100*Power[0]+18000;
CCR2 Val = 6000/100*Power[1]+18000;
CCR3 Val = 6000/100*Power[2]+18000;
CCR4 Val = 6000/100*Power[3]+18000;

*/
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CCR2 Val =
CCR3 Val
CCR1 Val =
CCR4 Val =

TIM4->CCR1
TIM4->CCR2
TIM4->CCR3
TIM4->CCR4

}

#endif // KARL DC Motor Actuation H

A.2.5. DC_Motor_PID.h

#ifndef

6000/100*Power [
6000/100*Power [
6000/100*Power [
6000/100*Power [

= CCR4_Val;
= CCR2_Val;
= CCR3 Val;
= CCR1 Val;

0]
2]
1]
3]

//Motor
//Motor
//Motor
//Motor

#define DC_MOTOR PID CONTROLLER KEK

void DC MOTOR PID(float* Power,

IntegralError) {

DC_MOTOR PID CONTROLLER KEK

float* VelocityError,

float Kp = 0;

float Ki .1

float PowerOld[4] =

float dt 1;

IntegralError[0] = IntegralkError
IntegralError[l] = IntegralError
IntegralError[2] = IntegralError
IntegralError[3] = IntegralError
Power = Ki*IntegralError[0] +
Power = Ki*IntegralError[1l] +
Power = Ki*IntegralError[2] +
Power = Ki*IntegralError[3] +

// Power
0*VelocityError|

// Power

// Power

// Power

}

#endif

+18000;
+18000;
+18000;
+18000;

PN WD

0]
1] +
2]
3]

Kp*VelocityError
Kp*VelocityError
Kp*VelocityError
Kp*VelocityError

2*Kp* (VelocityError[0] +Power0O1d[0] +

= Kp*VelocityError[l]+PowerOld[1l];

Kp*VelocityError[2]+Power0Old[2];
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= Kp*VelocityError[3]+Power0ld[3];

//DC_MOTOR_PID CONTROLLER KEK

+ VelocityError
VelocityError
+ VelocityError
+ VelocityError

[0
[1
[2
[3

]
]
]
]

[0
[1
[2
[3

’

’

’

’

float™*

{Power[0], Power[1l],Power[2],Power[3]};

] *dt;
] *dt;
] *dt;
]*dt;



A.2.6. Stepper_Initializations.h

#ifndef  KEK Stepper  INITIALIZATION H
#define  KEK Stepper  INITIALIZATION H

void Stepper GPIO Initialization (void) {

//Initialize Direction pins for the four motors
TM GPIO Init(
GPIOD,
// GPIO Port D
GPIO Pin 0 | GPIO Pin 1 | GPIO Pin 2 |
GPIO Pin 3, // Pin 0, 1, 2, 3
TM GPIO Mode OUT,
// Mode: output
TM GPIO OType PP,
// Mode: Push/Pull
TM GPIO_ PuPd_NOPULL,
// No pull up/down resistor
TM GPIO Speed Fast // ...fast
) i

//Initialize On/Off pins for the four motors
TM GPIO Init (
GPIOE,
// GPIO Port E
GPIO Pin 0 | GPIO Pin 1 | GPIO Pin 2 |
GPIO Pin 3, // Pin 0, 1, 2, 3
TM GPIO Mode OUT,
// Mode: output
TM GPIO OType PP,
// Mode: Push/Pull
TM GPIO PuPd NOPULL,
// No pull up/down resistor
TM GPIO Speed Fast // ...fast
) ;

GPIO InitTypeDef GPIO InitStructure;

RCC AHBlPeriphClockCmd (RCC AHBlPeriph GPIOE, ENABLE);
GPIO InitStructure.GPIO Pin = GPIO Pin 6;

GPIO InitStructure.GPIO Mode=GPIO Mode AF;

GPIO InitStructure.GPIO OType=GPIO OType PP;

GPIO InitStructure.GPIO Speed=GPIO Speed 100MHz;

GPIO InitStructure.GPIO PuPd=GPIO Pubd UP;

GPIO Init (GPIOE, &GPIO_ InitStructure);

GPIO PinAFConfig (GPIOE,GPIO PinSourcebt,GPIO AF TIMY);
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RCC_AHBlPeriphClockCmd (RCC AHBlPeriph GPIOB, ENABLE);

GPIO InitStructure.GPIO Pin=GPIO Pin 8 | GPIO Pin 9|

GPIO Pin 14;

Count up */

200HZ*/

*/

}

GPIO InitStructure.GPIO Mode=GPIO Mode AF;

GPIO InitStructure.GPIO OType=GPIO OType PP;
GPIO InitStructure.GPIO Speed=GPIO Speed 100MHz;
GPIO InitStructure.GPIO PuPd=GPIO_ Pubd UP;

GPIO Init (GPIOB, &GPIO InitStructure);

GPIO PinAFConfig (GPIOB,GPIO PinSource8, GPIO AF TIMIO);
GPIO PinAFConfig (GPIOB,GPIO PinSource9, GPIO AF TIMI11);
GPIO PinAFConfig (GPIOB,GPIO PinSourcel4,GPIO AF TIMI2);

void Stepper TIM 9 Init(void) {

}

uint32 t CCR2 Per = 0;

/*Clock for TIM9 */
RCC_APB2PeriphClockCmd (RCC _APB2Periph TIM9, ENABLE);

TIM TimeBaseInitTypeDef TIM BaseStruct;

TIM BaseStruct.TIM Prescaler = 6;
TIM BaseStruct.TIM CounterMode = TIM CounterMode Up; /*
TIM BaseStruct.TIM Period = CCR2 Per; /*The ARR value for

TIM BaseStruct.TIM ClockDivision = TIM CKD DIV1;
TIM BaseStruct.TIM RepetitionCounter = 0;
TIM TimeBaseInit (TIM9, &TIM BaseStruct); /* Initialize TIM4

TIM Cmd(TIMS, ENABLE); /* Start count on TIM4 */

TIM OCInitTypeDef TIM OCStruct;
/* OC Settings */
TIM OCStruct.TIM OCMode = TIM OCMode PWMI1;
TIM OCStruct.TIM OutputState = TIM OutputState Enable;
TIM OCStruct.TIM OCPolarity = TIM OCPolarity High;

TIM OCStruct.TIM Pulse = CCR2 Per/2; /* 50% Toggle */
TIM OC2Init (TIM9, &TIM OCStruct);
TIM OC2PreloadConfig(TIM9, TIM OCPreload Enable);

void Stepper TIM 10 Init (void) {

uint32 t CCR1 Per = 0;
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/*Clock for TIM1O */
RCC_APB2PeriphClockCmd (RCC_APB2Periph TIM10, ENABLE);

TIM TimeBaseInitTypeDef TIM BaseStruct;

TIM BaseStruct.TIM Prescaler = 6;

TIM BaseStruct.TIM CounterMode =
Count up */

TIM BaseStruct.TIM Period = CCR1 Per/2; /*The ARR value for

TIM CounterMode Up; /*

200HZ*/

TIM BaseStruct.TIM ClockDivision = TIM CKD DIV1;

TIM BaseStruct.TIM RepetitionCounter = 0;

TIM TimeBaseInit (TIM10, &TIM BaseStruct); /* Initialize
TIM4 */

TIM Cmd(TIM10, ENABLE); /* Start count on TIM4 */

TIM OCInitTypeDef TIM OCStruct;
/* OC Settings */
TIM OCStruct.TIM OCMode = TIM OCMode PWMI;
TIM OCStruct.TIM OutputState = TIM OutputState Enable;
TIM OCStruct.TIM OCPolarity = TIM OCPolarity High;

/*Set toggle period for each channel*/
TIM OCStruct.TIM Pulse = CCR1 Per/4; /* 25% Toggle */
TIM OClInit (TIM10, &TIM OCStruct);
TIM OClPreloadConfig(TIM10, TIM OCPreload Enable);

}

void Stepper TIM 11 Init (void) {
uint32 t CCR1 Per = 0;

/*Clock for TIM11l */
RCC_APB2PeriphClockCmd (RCC_APB2Periph TIMI11l, ENABLE);

TIM TimeBaseInitTypeDef TIM BaseStruct;

TIM BaseStruct.TIM Prescaler = 6;

TIM BaseStruct.TIM CounterMode =
Count up */

TIM BaseStruct.TIM Period = CCR1 Per/2; /*The ARR value for

TIM CounterMode Up; /*

200HZ*/

TIM BaseStruct.TIM ClockDivision = TIM CKD DIV1;

TIM BaseStruct.TIM RepetitionCounter = 0;

TIM TimeBaseInit (TIM11l, &TIM BaseStruct); /* Initialize
TIM4 */

TIM Cmd(TIM11, ENABLE); /* Start count on TIM4 */

TIM OCInitTypeDef TIM OCStruct;
/* OC Settings */
TIM OCStruct.TIM OCMode = TIM OCMode PWMI;
TIM OCStruct.TIM OutputState = TIM OutputState Enable;
TIM OCStruct.TIM OCPolarity = TIM OCPolarity High;
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/*Set toggle period for each channel*/
TIM OCStruct.TIM Pulse = CCR1l Per/4; /* 25% Toggle */
TIM OClInit(TIM11l, &TIM OCStruct);
TIM OClPreloadConfig(TIM11l, TIM OCPreload Enable);

}

void Stepper TIM 12 Init (void) {
uint32 t CCR1 Per = 0;

/*Clock for TIM12 */
RCC_APBlPeriphClockCmd (RCC_APBlPeriph TIM12, ENABLE);

TIM TimeBaseInitTypeDef TIM BaseStruct;

TIM BaseStruct.TIM Prescaler = 6;

TIM BaseStruct.TIM CounterMode =
Count up */

TIM BaseStruct.TIM Period = CCR1 Per; /*The ARR value for

TIM CounterMode Up; /*

200HZ*/

TIM BaseStruct.TIM ClockDivision = TIM CKD DIV1;

TIM BaseStruct.TIM RepetitionCounter = 0;

TIM TimeBaseInit (TIM12, &TIM BaseStruct); /* Initialize
TIM4 */

TIM Cmd(TIM12, ENABLE); /* Start count on TIM4 */

TIM OCInitTypeDef TIM OCStruct;
/* OC Settings */
TIM OCStruct.TIM OCMode = TIM OCMode PWMI;
TIM OCStruct.TIM OutputState = TIM OutputState Enable;
TIM OCStruct.TIM OCPolarity = TIM OCPolarity High;

/*Set toggle period for each channel*/
TIM OCStruct.TIM Pulse = CCR1 Per/2; /* 25% Toggle */
TIM OClInit(TIM12, &TIM OCStruct);
TIM OClPreloadConfig(TIM12, TIM OCPreload Enable);

}
#endif // KEK Stepper  INITIALIZATION H

A.2.7. Stepper Actuatuion.h

#ifndef  KEK Stepper Actuation H
#define  KEK Stepper Actuation H

void Stepper Motor Actuate Left (uint32 t* CCRs, float*
SteeringAngle)
{
float Kp = 1; //Need a frequency range and corresponding
power settings

GPIO ResetBits (GPIOE, GPIO Pin 0); /*Motor 1 On/Off*/
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GPIO ResetBits (GPIOD, GPIO Pin 3); /*Motor 1 Direction*/

TIM11->ARR = CCRs|[0]; /*Motor 1
ARR*/
TIM11->CCR1 = CCRs[0]/2; /*Motor 1 PWM*/
GPIO ResetBits(GPIOE, GPIO Pin 1); /*Motor 2 On/Off*/
GPIO ResetBits (GPIOD, GPIO Pin 2); /*Motor 2 Direction*/
TIM10->ARR = CCRs[1]; /*Motor 2
ARR*/
TIM10->CCR1 = CCRs[1]/2; /*Motor 2 PWM*/
GPIO_ResetBitS(GPIOE, GPIO_Pin_2); /*Motor 3 On/Off*/
GPIO ResetBits (GPIOD, GPIO Pin 1); /*Motor 3 Direction*/
TIM12->ARR = CCRs|[2]; /*Motor 3
ARR*/
TIM12->CCR1 = CCRs|[2]/2; /*Motor 3 PWM*/
GPIO_ResetBitS(GPIOE, GPIO_Pin_3); /*Motor 4 On/Off*/
GPIO SetBits (GPIOD, GPIO Pin 0); /*Motor 4 Direction*/
TIM9->ARR = CCRs[3]; /*Motor 4 ARR*/
TIM9->CCR2 = CCRs[3]/2; /*Motor 4
PWM* /

}

void Stepper Motor Actuate Right (uint32 t* CCRs,float*
SteeringAngle)
{
float Kp = 1; //Need a frequency range and corresponding
power settings

GPIO_ResetBitS(GPIOE, GPIO_Pin_O); /*Motor 1 On/Off*/
GPIO SetBits (GPIOD, GPIO Pin 3); /*Motor 1 Direction*/
TIM11->ARR = CCRs[0]; /*Motor 1
ARR*/
TIM11->CCR1 = CCRs[0]/2; /*Motor 1 PWM*/
GPIO ResetBits (GPIOE, GPIO Pin 1); /*Motor 2 On/Off*/
GPIO SetBits (GPIOD, GPIO Pin 2); /*Motor 2 Direction*/
TIM10->ARR = CCRs|[1]; /*Motor 2
ARR*/
TIM10->CCR1 = CCRs[1]/2; /*Motor 2 PWM*/
GPIO ResetBits (GPIOE, GPIO Pin 2); /*Motor 3 On/Off*/
GPIO SetBits (GPIOD, GPIO Pin 1); /*Motor 3 Direction*/
TIM12->ARR = CCRs|[2]; /*Motor 3
ARR*/
TIM12->CCR1 = CCRs[2]/2; /*Motor 3 PWM*/
GPIO ResetBits (GPIOE, GPIO Pin 3); /*Motor 4 On/Off*/
GPIO ResetBits (GPIOD, GPIO Pin 0); /*Motor 4 Direction*/
TIM9->ARR = CCRs[3]; /*Motor 4 ARR*/
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TIM9->CCR2 = CCRs[31/2; /*Motor
PWM* /
}
#endif // KEK Stepper  Actuation H

A.2.8. Stepper_Motor_Actuation.h

#ifndef  KEK Stepper Motor  Actuation H
#define  KEK Stepper Motor  Actuation H
int sacl;
int sac2;
int sac3;
int sac4;

void Stepper Motor Action Determination(float* SteeringAngle,
float* SteeringSetpoint, uint32 t* StepperAction) {
int 1i;
float tol = 6; //degrees

/*for (i=0; i<4; i++){
if (abs (SteeringAngle[i]-SteeringSetpoint[i])>tol) {
if (SteeringAngle[i]>SteeringSetpoint[i]) {

StepperAction[i] = 0;
} else{
StepperAction[i] = 2;

}
}
if (abs (SteeringAngle[i]-SteeringSetpoint[i])<tol) {
StepperAction[i] = 1;
}
*/

if (abs ((SteeringAngle[0]-SteeringSetpoint[0]))>tol) {
if (SteeringAngle[0]>SteeringSetpoint[0]) {

StepperAction[0] = 0;
} else{
StepperAction[0] = 2;
}
lelse(
StepperAction[0] = 1;

}
if (abs (SteeringAngle[1l]-SteeringSetpoint[1l])>tol) {
if (SteeringAngle[l]>SteeringSetpoint[1]) {

StepperAction[l] = 0;
} else{
StepperAction[l] = 2;
}
lelse(
StepperAction[l] = 1;
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}

}
//if (abs (SteeringAngle[2]-SteeringSetpoint[2])>tol) {
// if (SteeringAngle[2]>SteeringSetpoint[2]) {

// StepperAction[2] = 0;
// } else{

// StepperAction[2] = 2;
// }

// lJelse{

// StepperAction[2] = 1;

//}

if (abs (SteeringAngle[3]-SteeringSetpoint[3])>tol) {
if (SteeringAngle[3]>SteeringSetpoint[3]) {

StepperAction[3] = 0;
} else{
StepperAction[3] = 2;
}
lelse(
StepperAction[3] = 1;
}
sacl = StepperAction ;

[0]
sac?2 = StepperAction[l];
sac3 = StepperAction[2];
sac4d = StepperAction[3]

4

void Stepper Motor Actuate (uint32 t* CCRs,uint32 t*
StepperAction)

{

int 1i;
float Kp = 1; //Need a frequency range and corresponding

power settings

On/Off*/
Direction*/

ARR*/

Direction*/

sacl = StepperAction[0];

sac?2 = StepperAction[l];

sac3 = StepperAction[2];

sac4 = StepperAction[3];

if (sacl == 0) {
GPIO ResetBits (GPIOE, GPIO Pin 0); /*Motor 1
GPIO ResetBits(GPIOD, GPIO Pin 3); /*Motor 1
TIM11->ARR = CCRs[1l]; /*Motor 1
TIM11->CCR1 = CCRs[1l]/2; /*Motor 1 PWM*/
}

if (sacl == 1) {
GPIO SetBits (GPIOE, GPIO Pin 0); /*Motor 1 On/Off*/
GPIO ResetBits (GPIOD, GPIO Pin 3); /*Motor 1
TIM11->ARR = 0O; /*Motor 1 ARR*/

TIM11->CCR1 0; /*Motor 1 PWM*/



}

if (sacl == 2){

GPIO_ResetBitS(GPIOE, GPIO_Pin_O); /*Motor 1
On/Off*/
GPIO SetBits (GPIOD, GPIO Pin 3); /*Motor 1 Direction*/
TIM11->ARR = CCRs[1l]; /*Motor 1
ARR*/
TIM11->CCR1 = CCRs[1]/2; /*Motor 1 PWM*/
}
if(sac2 == 0){
GPIO_ResetBitS(GPIOE, GPIO_Pin_l); /*Motor 2
On/Off*/
GPIO_ResetBitS(GPIOD, GPIO_Pin_Z); /*Motor 2
Direction*/
TIM10->ARR = CCRs|[0]; /*Motor 2
ARR*/
TIM10->CCR1 = CCRs[0]/2; /*Motor 2 PWM*/
}
if (sac2 == 1) {
GPIO SetBits (GPIOE, GPIO Pin 1); /*Motor 2 On/Off*/
GPIO SetBits (GPIOD, GPIO Pin 2); /*Motor 2 Direction*/
TIM10->ARR = 0O; /*Motor 2 ARR*/
TIM10->CCR1 = O; /*Motor 2 PWM*/
}
if (sac2 == 2){
GPIO ResetBits (GPIOE, GPIO Pin 1); /*Motor 2
On/Off*/
GPIO SetBits (GPIOD, GPIO Pin 2); /*Motor 2 Direction*/
TIM10->ARR = CCRs[0]; /*Motor 2
ARR*/
TIM10->CCR1 = CCRs[0]/2; /*Motor 2 PWM*/
}
if (sac3 == 0) {
GPIO ResetBits (GPIOE, GPIO Pin 2); /*Motor 3
Oon/Off*/
GPIO ResetBits (GPIOD, GPIO Pin 1); /*Motor 3
Direction*/
TIM12->ARR = CCRs|[2];: /*Motor 3
ARR*/
TIM12->CCR1 = CCRs[2]/2; /*Motor 3 PWM*/
}
if (sac3 == 1) {
GPIO SetBits (GPIOE, GPIO Pin 2); /*Motor 3 On/Off*/
GPIO ResetBits (GPIOD, GPIO Pin 1); /*Motor 3
Direction*/
TIM12->ARR = 0O; /*Motor 3 ARR*/
TIM12->CCR1 = 0; /*Motor 3 PWM*/
}
if (sac3 == 2){
GPIO ResetBits (GPIOE, GPIO Pin 2); /*Motor 3

Oon/Off*/
GPIO SetBits (GPIOD, GPIO Pin 1); /*Motor 3 Direction*/
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TIM12->ARR = CCRs|[2]; /*Motor 3
ARR*/
TIM12->CCR1 = CCRs[2]/2; /*Motor 3 PWM*/
}
if (sacd == 0) {
GPIO ResetBits (GPIOE, GPIO Pin 3); /*Motor 4
On/Off*/
GPIO SetBits (GPIOD, GPIO Pin 0); /*Motor 4 Direction*/
TIM9->ARR = CCRs[3]: /*Motor 4 ARR*/
TIM9->CCR2 = CCRs[3]/2; /*Motor 4
PWM* /
}
if (sacd == 1) {
GPIO_SetBitS(GPIOE, GPIO_Pin_3); /*Motor 4 On/Off*/
GPIO SetBits (GPIOD, GPIO Pin 0); /*Motor 4 Direction*/
TIM9->ARR = 0; /*Motor 4 ARR*/
TIM9->CCR2 = 0; /*Motor 4 PWM*/
}
if (sacd == 2){
GPIO ResetBits (GPIOE, GPIO Pin 3); /*Motor 4
On/Off*/
GPIO ResetBits (GPIOD, GPIO Pin 0); /*Motor 4
Direction*/
TIM9->ARR = CCRs[3]; /*Motor 4 ARR*/
TIM9->CCR2 = CCRs[3]1/2; /*Motor 4
PWM* /

}
/*
void Stepper Motor Actuate Right (uint32 t* CCRs, float*
SteeringAngle)
{
float Kp = 1; //Need a frequency range and corresponding
power settings

GPIO ResetBits (GPIOE, GPIO Pin 0); /*Motor 1 On/Off*/
//GPIO_SetBits (GPIOD, GPIO Pin 3); /*Motor 1 Direction*/
//TIM11->ARR = CCRs|[0]; /*Motor 1
ARR*/
//TIM11->CCR1 = CCRs[0]/2; /*Motor 1 PWM*/
//GPIO _ResetBits (GPIOE, GPIO Pin 1); /*Motor 2 On/Off*/
//GPIO_SetBits (GPIOD, GPIO Pin 2); /*Motor 2 Direction*/
//TIM10->ARR = CCRs[1l]; /*Motor 2
ARR*/
//TIM10->CCR1 = CCRs[1l]/2; /*Motor 2 PWM*/
//GPIO_ResetBits (GPIOE, GPIO Pin 2); /*Motor 3 On/Off*/
//GPIO_SetBits (GPIOD, GPIO Pin 1); /*Motor 3 Direction*/
//TIM12->ARR = CCRs[2]; /*Motor 3
ARR*/
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//TIM12->CCR1 = CCRs[2]/2; /*Motor 3 PWM*/

//GPIO_ResetBitS(GPIOE, GPIO_Pin_3); /*Motor 4 On/Off*/
//GPIO_ResetBits (GPIOD, GPIO Pin 0); /*Motor 4 Direction*/
//TIM9->ARR = CCRs[3]; /*Motor 4
ARR*/
//TIM9->CCR2 = CCRs[3]1/2; /*Motor 4
PWM* /
//}
//*/
#endif

A.2.9. ADC _Initialization.h

#ifndef  KARL GPIO_ Potentiometer Initializations H
#define  KARL GPIO Potentiometer Initializations H
#include <stm32f4xx rcc.h>

#include <stm32f4xx gpio.h>

#include <stm32f4xx tim.h>

#include "stm32f4xx dma.h"

#include "stm32f4xx adc.h"

void RCC Configuration (void);

void GPIO Potentiometer Initializations(void);
void ADC Configuration (void);

void DMA Configuration (uintl6 t* memBuffer);

/****************************************************************

**********************/

void RCC Configuration (void) {
RCC_AHBlPeriphClockCmd (RCC AHBlPeriph GPIOC |
RCC_AHBlPeriph GPIOA | RCC_AHBlPeriph GPIOB | RCC AHBlPeriph DMA2,
ENABLE) ;
RCC_APB2PeriphClockCmd (RCC APB2Periph ADC1, ENABLE);

}

/****************************************************************
**********************/

void GPIO_Potentiometer Initializations(void) {
GPIO InitTypeDef GPIO InitStructure; //

/*
* Need to use either ADCl or ADC2, ADC3 is not connected
to all analog pins

*

* PBO = Analog Channel 8
* PB1 = Analog Channel 9
* PC4 = Analog Channel 14
* PA3 = Analog Channel 3
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*/

// Port B pin init

GPIO InitStructure.GPIO Pin = GPIO Pin O | GPIO Pin 1;
GPIO InitStructure.GPIO Mode = GPIO Mode AN;

GPIO InitStructure.GPIO PuPd = GPIO PuPd NOPULL ;

GPIO Init (GPIOB, &GPIO InitStructure);

// Port C pin init
GPIO InitStructure.GPIO Pin = GPIO Pin 4;
GPIO InitStructure.GPIO Mode = GPIO Mode AN;
GPIO InitStructure.GPIO PuPd = GPIO PuPd NOPULL ;
GPIO Init(GPIOC, &GPIO InitStructure);

// Port A pin init
GPIO InitStructure.GPIO Pin = GPIO Pin 3;
GPIO InitStructure.GPIO Mode = GPIO Mode AN;
GPIO InitStructure.GPIO PuPd = GPIO PuPd NOPULL ;
GPIO Init (GPIOA, &GPIO InitStructure);
}

/****************************************************************

**********************/

void ADC Configuration (void) {

ADC CommonInitTypeDef ADC CommonInitStructure; //
ADC InitTypeDef ADC InitStructure; //

/* ADC Common Init */

ADC CommonInitStructure.ADC Mode =
ADC Mode Independent;

ADC CommonInitStructure.ADC Prescaler =
ADC Prescaler Div2;

ADC CommonInitStructure.ADC DMAAccessMode =
ADC DMAAccessMode Disabled;

ADC CommonInitStructure.ADC TwoSamplingDelay
ADC TwoSamplingDelay 5Cycles;

ADC CommonInit (&ADC CommonInitStructure);

ADC InitStructure.ADC Resolution =
ADC Resolution 12b;

ADC InitStructure.ADC ScanConvMode = ENABLE; //
multiple channel

ADC InitStructure.ADC ContinuousConvMode
Conversions Triggered, disable to manually do ADC ops

ADC InitStructure.ADC ExternalTrigConvEdge =
ADC ExternalTrigConvEdge None; // Manual

ADC InitStructure.ADC ExternalTrigConv = 0;

ADC InitStructure.ADC DataAlign =
ADC DataAlign Right;

ENABLE; //
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ADC InitStructure.ADC NbrOfConversion = 4; // want to
read analog values from 4 pins
ADC Init (ADC1l, &ADC InitStructure);

/* ADC1l channel (s) configuration */

ADC RegularChannelConfig (ADC1l, ADC Channel 8, 1,
ADC SampleTime 144Cycles); // PBO, front left

ADC RegularChannelConfig (ADC1, ADC Channel 9, 2,
ADC SampleTime 144Cycles); // PBl, front right

ADC RegularChannelConfig (ADC1l, ADC Channel 14, 3,
ADC_ SampleTime 144Cycles); // PC4, rear left

ADC RegularChannelConfig (ADC1, ADC Channel 3, 4,
ADC_SampleTime 144Cycles); // PA3, rear right

}

/****************************************************************
**********************/

void DMA Configuration (uintl6 t* memBuffer) {
/*
* DMA (Direct Memory Access) is used to automatically
* transfer multiple analog reads to a known location in

memory
*/

DMA InitTypeDef DMA InitStruct; //

DMA InitStruct.DMA Channel = 2;

DMA InitStruct.DMA PeripheralBaseAddr = (uint32 t) &ADCIl-
>DR; // ADCl's data register

DMA InitStruct.DMA MemoryOBaseAddr =
(uint32 t)memBuffer; // actual location to put data, passed

as an argument
DMA InitStruct.DMA DIR =

DMA DIR PeripheralToMemory; // direction memory travels during
DMA operation
DMA InitStruct.DMA BufferSize = 4;

// number of (32-bit) wvalues to copy

DMA InitStruct.DMA Peripherallnc =
DMA PeripherallInc Disable; /] 22

DMA InitStruct.DMA MemoryInc = DMA MemoryInc Enable;
/] 27

DMA InitStruct.DMA PeripheralDataSize =
DMA PeripheralDataSize HalfWord; // because peripheral produces 1l6-bit
values

DMA InitStruct.DMA MemoryDataSize =
DMA MemoryDataSize HalfWord; // because buffer stored 16-bit
values

// bunch of stuff pertaining to actual DMA transfer
DMA InitStruct.DMA Mode = DMA Mode Circular;
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DMA InitStruct.DMA Priority = DMA Priority High;
DMA TInitStruct.DMA FIFOMode DMA FIFOMode Disable;
DMA InitStruct.DMA FIFOThreshold =

DMA FIFOThreshold HalfFull;
DMA InitStruct.DMA MemoryBurst = DMA MemoryBurst Single;
DMA InitStruct.DMA PeripheralBurst =

DMA PeripheralBurst Single;

DMA Init (DMAZ2 Stream0O, &DMA InitStruct);
DMA_Cmd(DMA2_StreamO, ENABLE) ;
}

/****************************************************************
**********************/

#endif //  KARL GPIO Potentiometer Initializations H
A.2.10. ADC_Measurement.h
#ifndef  KARL POTENTIOMETER Position NEW H

#define _ KARL POTENTIOMETER Position NEW H
// STM32 ADC1 CH11 (PC.1l) STM32F4 Discovery - sourcer32@gmail.com

#include "stm32f4xx.h"
//#include "stm32f4 discovery.h"
#include "stm32f4xx gpio.h"
#include "stm32f4xx rcc.h"

//#include "stm32f4xx usart.h"
//#include "stm32f4xx delay.h"

#define DEBUGGING ADC

float S1;
float S2;
float S3;
float S4;

uintleée t SS1;
uintlé t SS3;
uintleé t SS2;
uintl6 t SS4;

uintlé t motorValues([4];
#define MOTOR FRONT LEFT 0
#define MOTOR FRONT RIGHT 1

#define MOTOR BACK LEFT 2
#define MOTOR BACK RIGHT 3
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#define MOTOR CONTROL THRESHOLD 2048 // out of 4095 or ~50%

void SteeringMotorAngles (float* SteeringAngle)
{

SS1 = motorValues[MOTOR FRONT LEFT];
SS2 = motorValues[MOTOR FRONT RIGHT];
SS3 = motorValues [MOTOR BACK LEFT];

SS4 = motorValues [MOTOR BACK RIGHT];

//slope X
intercept
S1=.1197*(SS1-2092) ;
S2=.0807*(SS2-3038) ;
S3=.0776* (SS3-1884) ;
S4=.0825* (SS4-2409) ;
//if (OffsetArray != 0) {
// int i;
// S1 -= OffsetArrayl[0];
// S2 -= OffsetArray[1l];
// S3 -= OffsetArray[2];
// S4 -= OffsetArray[3];
//}
SteeringAngle[0] = S1;
SteeringAngle[l] = S2;
SteeringAngle[2] = S3;
SteeringAngle[3] = S4;
}
#endif // KARL POTENTIOMETER Position NEW H

A.2.11. ENC_Initialization.h

#ifndef  KARL ENCODER Initializations H
#define  KARL ENCODER Initializations H

#include <stm32f4xx rcc.h>
#include <stm32f4xx gpio.h>
#include <stm32f4xx tim.h>

void GPIO_ Encoder and TIM Initializations(void)

{
GPIO InitTypeDef GPIO InitStructure;
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2o

99909000009

0090000000

9000909000009

//ENCODER
//ENCODER

//ENCODER
//ENCODER

//ENCODER
//ENCODER

//ENCODER
//ENCODER

o

090900000

9090900

1A->PE9
1B->PE1

2A->PC6
2B->PC7

3A->PAG6
3B->PA7

4A->PA1
4B->PA0

o

o

2=

o990

->

1->

->
->

->

S

20222592

890000000

TIM1-CH1
TIM1-CH2

TIM8-CH1
TIM8-CH2

TIM5-CH1
TIM5-CH2

TIM3-CH1
TIM3-CH2

o

o

2222920280000 009 398509909

2222000282000 9200000905 0505

o

S

990909

// Initialize the peripheral clocks.

RCC_AHBlPeriphClockCmd (RCC AHBlPeriph GPIOE, ENABLE); / /ENC

RCC_AHBlPeriphClockCmd (RCC AHBlPeriph GPIOC, ENABLE); / /ENC

RCC_AHBlPeriphClockCmd (RCC AHBlPeriph GPIOA, ENABLE); / /ENC
&& ENC 4

RCC_APB2PeriphClockCmd (RCC_APB2Periph TIM1, ENABLE); //ENC

RCC_APB2PeriphClockCmd (RCC_APB2Periph TIM8, ENABLE); //ENC

RCC_APBlPeriphClockCmd (RCC APBlPeriph TIM5, ENABLE); / /ENC

RCC_APBlPeriphClockCmd (RCC APBlPeriph TIM3, ENABLE); / /ENC

Pins
GPIO Pin GPIO Pin 9|GPIO Pin 11;
GPIO Speed = GPIO Speed 100MHz;

//Enable Encoder 1
GPIO InitStructure.
GPIO InitStructure.

GPIO InitStructure.GPIO Mode = GPIO Mode AF;
GPIO InitStructure.GPIO OType = GPIO OType PP;
GPIO InitStructure.GPIO PubPd = GPIO PuPd NOPULL;

GPIO Init (GPIOE, &GPIO InitStructure);

Pins

GPIO Pin = GPIO_Pin 6|GPIO Pin 7;
GPIO Speed = GPIO Speed 100MHz;

//Enable Encoder 2
GPIO InitStructure.
GPIO InitStructure.

GPIO InitStructure.GPIO Mode = GPIO Mode AF;
GPIO InitStructure.GPIO OType = GPIO OType PP;
GPIO InitStructure.GPIO PuPd = GPIO PuPd NOPULL;

GPIO Init (GPIOC, &GPIO InitStructure);

//Enable Encoder 3 Pins
GPIO InitStructure.GPIO Pin GPIO Pin O|GPIO Pin 1;
GPIO InitStructure.GPIO Speed = GPIO Speed 100MHz;
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//
//

//
//

//
//

//
//

TIM1

TIM1

TIMS8

TIM8

TIMS

TIMS

TIM3

TIM3

CH.

CH.

CH.

CH.

CH.

CH.

CH.

CH.

GPIO InitStructure.GPIO Mode = GPIO Mode AF;
GPIO InitStructure.GPIO OType = GPIO OType PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd NOPULL;
GPIO Init (GPIOA, &GPIO InitStructure);

//Enable Encoder 4 Pin

S

GPIO InitStructure.GPIO Pin = GPIO Pin 6|GPIO Pin 7;
GPIO InitStructure.GPIO Speed = GPIO Speed 100MHz;
GPIO InitStructure.GPIO Mode = GPIO Mode AF;

GPIO InitStructure.GPIO OType = GPIO OType PP;

GPIO InitStructure.GPIO PuPd = GPIO PuPd NOPULL;
GPIO Init(GPIOA, &GPIO InitStructure);

//Connect TIM Encoder pins to GPIO

GPIO PinAFConfig (GPIOE
1->ENC 1A
GPIO PinAFConfig (GPIOE
2->ENC 1B

GPIO PinAFConfig (GPIOC
1->ENC 2A
GPIO PinAFConfig (GPIOC
2->ENC 2B

GPIO PinAFConfig (GPIOA
1->ENC 3A
GPIO PinAFConfig (GPIOA
2->ENC 3B

GPIO PinAFConfig (GPIOA
1->ENC 4A
GPIO PinAFConfig (GPIOA
2->ENC 4B

TIM TimeBaseInitTypeDe
TIM ICInitTypeDef TIM

TIM TimeBaseStructure.
TIM TimeBaseStructure.
TIM TimeBaseStructure.
TIM TimeBaseStructure.
TIM TimeBaseInit (TIMI,
TIM TimeBaseInit (TIMS,
TIM TimeBaseInit (TIMS5,
TIM TimeBaseInit (TIM3,
TIM EncoderInterfaceCo

, GPIO PinSource9, GPIO AF TIMIL);

, GPIO PinSourcell, GPIO AF TIMIL);

, GPIO PinSource6, GPIO AF TIMS);

, GPIO PinSource?7, GPIO_AF TIMS);

, GPIO PinSource(O, GPIO_AF TIMS);

, GPIO PinSourcel, GPIO_AF TIMS);

, GPIO PinSource6, GPIO AF TIM3);

, GPIO PinSource’7, GPIO AF TIM3);

f TIM TimeBaseStructure;
ICInitStruct;

TIM Prescaler = 0;

TIM Period = OXFFFFFFFF; // Maximal

TIM ClockDivision = 0;

TIM CounterMode = TIM CounterMode Up;
&TIM TimeBaseStructure); //ENC 1
&TIM TimeBaseStructure); //ENC 2
&TIM TimeBaseStructure); //ENC 3
&TIM TimeBaseStructure); //ENC 4

nfig(TIM1, TIM EncoderMode TI1,TIM ICP

olarity Rising,TIM ICPolarity Rising); //ENC 1

TIM EncoderInterfaceCo

nfig (TIM8, TIM EncoderMode TI1,TIM ICP

olarity Rising,TIM ICPolarity Rising); //ENC 2

TIM EncoderInterfaceCo

nfig (TIM5, TIM EncoderMode TI1,TIM ICP

olarity Rising,TIM ICPolarity Rising); //ENC 3
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TIM EncoderInterfaceConfig(TIM3,TIM EncoderMode TI1,TIM ICP
olarity Rising,TIM ICPolarity Rising); //ENC 4

TIM_ICInitStruct.TIM_Channel = TIM Channel 1;
TIM ICInitStruct.TIM ICPolarity = TIM ICPolarity Rising;
TIM ICInitStruct.TIM ICSelection =

TIM ICSelection DirectTI;
TIM_ICInitStruct.TIM_ICPrescaler = TIM ICPSC DIVI;
TIM_ICInitStruct . TIM_ICFilter = 0OxFF;

TIM ICInit (TIM1,&TIM ICInitStruct); //ENC 1
TIM ICInit (TIM8,&TIM ICInitStruct); //ENC 2
TIM ICInit (TIM5,&TIM ICInitStruct); //ENC 3
TIM ICInit (TIM3,&TIM ICInitStruct); //ENC 4
TIM ICInitStruct.TIM Channel = TIM Channel 2;
TIM ICInit (TIM1,&TIM ICInitStruct); //ENC 1
TIM ICInit(TIM8,&TIM ICInitStruct); //ENC 2
TIM ICInit(TIM5,&TIM ICInitStruct); //ENC 3
TIM ICInit(TIM3,&TIM ICInitStruct); //ENC 4
TIM Cmd(TIM1, ENABLE); //ENC 1
TIM Cmd(TIM8, ENABLE); //ENC 2
TIM Cmd(TIM5, ENABLE); //ENC 5
TIM Cmd(TIM3, ENABLE); //ENC 3

}

#endif // __KARL ENCODER Initializations H

A.2.12. ENC_measurement.h
#ifndef  KARL ENCODER Measurement H
#define = KARL ENCODER Measurement H

#define Velocity 1 0x01
#define Velocity 2 0x02
#define Velocity 3 0x03
#define Velocity 4 0x04

float V1;
float V2;
float V3;
float V4;

float VS1;
float VS2;
float VS3;
float VS4;

int G11;
int G21;
int G31;
int G41;
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int G12;
int G22;
int G32;
int G42;

float EVI1;
float EV2;
float EV3;
float EV4;

//int T1;
int T3;
int True = 0;

/*This is a function to reset the TIM count from the encoders.
Eventually the encoders reach a maximum value and the velocity
measurements stop. This should prevent that.*/

void TIM ResetCounter (TIM TypeDef* TIMx)

{

/* Check the parameters */
assert param(IS TIM ALL PERIPH(TIMX));

/* Reset the Counter Register value */
TIMx->CNT = 0;
}

void Get Wheel Velocity(float* WheelVelocity, float*
VelocitySetpoint, float* VelocityError) {

int 1 = 0;
int Flag([4] = {0,0,0,0};
int InitialTime = TM Time;

int ticks = 40;

VSl = VelocitySetpoint[0];
VS2 = VelocitySetpoint[1l];
VS3 = VelocitySetpoint[2];
VsS4 = VelocitySetpoint[3];
True = 0;

1f(G12>50000) {
TIM ResetCounter (TIMI);
}

1f(G22>50000) {
TIM ResetCounter (TIMS8) ;
}

1f (G32<10000) {
TIM ResetCounter (TIMS);
}
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1f(G42<10000) {
TIM ResetCounter (TIM3);
}

G11=TIM GetCounter (TIMI);

G21=TIM GetCounter (TIMS8);

G31=TIM GetCounter )
)

G41=TIM GetCounter

4

TIMS
TIM3

4

—_~ e~~~

while (True<1l) {

G12=TIM GetCounter (TIMI1);
G22=TIM GetCounter (TIMS8);
G32=TIM GetCounter )

)

G42=TIM GetCounter

4

TIMS
TIM3

P

’

if ((Gl2-Gl1l)>ticks && Flag[0]==0) {
T3 = TM Time;
V1l = ticks*0.025512695*1000/ (T3-InitialTime) ;

WheelVelocity[0] = V1;
EVl = VSl - V1;
VelocityError[0] = EVI1;
Flag[0] = 1;

}

if ((G22-G21)>ticks && Flag[1l]==0) {

T3 = TM Time;
V2 = ticks*0.025512695*1000/ (T3-InitialTime);

WheelVelocity[l] = V2;
EV2 = VS2 - V2;
VelocityError[l] = EV2;
Flag[l] = 1;

}

if ((G31-G32)>ticks && Flag[2]==0) {

T3 = TM Time;

V3 = ticks*0.025512695*1000/ (T3-InitialTime) ;
WheelVelocity[2] = V3;
EV3 = VS3 - V3;
VelocityError[2] = EV3;
Flag[2] = 1;
}
if ((G41-G42)>ticks && Flag[3]==0) {

T3 = TM Time;

V4 = ticks*0.025512695*1000/ (T3-InitialTime) ;
WheelVelocity[3] = V4;

EV4 = VsS4 - V4,

VelocityError[3] = EV4;

Flag[3] = 1;
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if (Flag[0]==1 && Flag[l]==lss& Flag[2]==1 &s

Flag[3]==1) {
True = 1;
}
if (i == 5000000) {
True = 1;
if(Flag[0]1<1) {
vl = 0;
WheelVelocity[0] = V1;
EVl = VSl - V1;
VelocityError[0] = EV1;
}
if (Flag[1]1<1){
V2 = 0;
WheelVelocity[l] = V2;
EV2 = VS2 - V2;
VelocityError[l] = EV2;
}
if(Flag[2]1<1){
V3 = 0;
WheelVelocity[2] = V3;
EV3 = VS3 - V3;
VelocityError[2] = EV3;
}
1if(Flag[3]<1) {
vd = 0;
WheelVelocity[3] = V4;
EV4d = VsS4 - V4;
VelocityError[3] = EV4;
}
}
i = 1i+1;
}
}
#endif // __KARL ENCODER Measurement H
//if (Flag[0]==1 && Flag[l]l==1 && Flag[3]==1){

//http://www.robotc.net/wikiarchive/Tutorials/Arduino Projects/Mo
bile Robotics/VEX/Using encoders to drive straight
//https://www.tetrixrobotics.com/GettingStartedGuide/files/addons
/encoders/Programming/programmingGuides/RC_ProgGuide.pdf
//https://www.toptal.com/robotics/programming-a-robot-an-
introductory-tutorial
//https://arduino.stackexchange.com/questions/24437/dc-motor—
speed-measurement-using-rotary-encoder

/%
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if ((TIM GetCounter (TIM1l)-WheelVelocityInitialBits[0])>50) {
//TM RTC GetDateTimeFromUnix (&Time, TM Time);
T2 = TM Time;
WheelVelocity[0] = 50*0.025512695*1000/ (T2-T1);
}

if ((TIM GetCounter (TIM8)-WheelVelocityInitialBits[1])>50) {
//TM RTC GetDateTimeFromUnix (&Time, TM Time) ;
//T2 = Time.unix;
// T2 = TM Time;
T2 = TM Time;
WheelVelocity[1l] = 50*0.025512695*1000/ (T2-T1) ;

if ((TIM GetCounter (TIM3)-WheelVelocityInitialBits[2])>50) {
//TM RTC GetDateTimeFromUnix (&Time, TM Time);

//T2 = Time.unix;
T2 = TM Time;
WheelVelocity[2] = 50*%0.025512695*1000/ (T2-T1) ;

if ((TIM GetCounter (TIM5)-WheelVelocityInitialBits[3])>50) {
//TM RTC GetDateTimeFromUnix (&Time, TM Time);

//T2 = Time.unix;
T2 = TM Time;
WheelVelocity[3] = 50*0.025512695*1000/ (T2-T1) ;

*/

//WheelVelocityFinalBits[0] = TIM GetCounter (TIMI);
//WheelVelocityFinalBits[1l] = TIM GetCounter (TIMS8);
//WheelVelocityFinalBits[2] = TIM GetCounter (TIM3);
//WheelVelocityFinalBits[3] = TIM GetCounter (TIMS);

/*
for (i=0;1=3;1i=1i+1) {
if (WheelVelocityFinalBits[i]<WheelVelocityInitialBits[i]) {
Buffer[i]=(65535-
WheelVelocityInitialBits[i])+WheelVelocityFinalBits[i];
}
else{
Buffer[i]=WheelVelocityFinalBits[i]-
WheelVelocityInitialBits[i];
}
WheelVelocity[i] = 0.025512695*Buffer[i]/.050; //Wheel Velocity
= .025512695 (inches/bit) * (bits travelled)/ (time difference)
}

*/
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A.2.13. IMU_Initialization.h

#ifndef KEK IMU _ INITIALIZATION H
#define  KEK IMU _ INITIALIZATION H

#define UM7 SLAVESELECT PORT GPIOA
#define UM7 SLAVESELECT PIN GPIO Pin 4

#include "tm stm32f4 gpio.h" // General Purpose Input/Output
#include "tm stm32f4 spi.h" // Serial Peripheral Interface
#include "tm stm32f4 delay.h" // Delay

#include "tm stm32f4 usart.h" // USART Peripheral

#include "tm stm32f4 disco.h" // center lights on stm board

#include "tm stm32f4 usb vcp.h" // Virtual COM Port
#include "cstm_um7_interface.h" // needs the above 2 #defines to
work properly

B e e

// custom libraries
//float rollRate;
//float yawRate;
//float tiltRate;
//MESSAGE  msg t;

void IMU Initializations (void) {

// TM DISCO LedInit(); // initialize center leds
(various debug utilities)
//TM DISCO ButtonInit(); // initialize user button
//TM DELAY Init(); // initialize delay
configuration (needed for um7 communication)
TM USB VCP Init(); // initialize virtual COM port

(USB serial)

// Init UM7 on SPI 1
TM SPT TnitFull (
SPI1, // SPI 1
TM SPI PinsPack 2, // MOSI: PBS,
MISO: PB4, SCK: PB3
SPI BaudRatePrescaler 256, // default
baudrate is 45MHz

TM SPI Mode O, // clock
polarity low, data transmit on rising edge

SPI Mode Master, // spi master

SPI FirstBit MSB // transmit data

Most Significant Bit first
) ;

// Init Slave Select for UM7 IMU (NSS)
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TM_GPIO Init (

GPIOA, // GPIO Port A
GPIO Pin 4, // Pin 4

TM GPIO Mode OUT, // Mode: output

TM GPIO OType PP, // Mode: Push/Pull

TM _GPIO_PuPd NOPULL, // No pull up/down
resistor
TM GPIO Speed Fast // ...fast
) ;
}
#endif // KEK IMU _ INITIALIZATION H

A.2.14. IMU_measurement.h

#ifndef KEK IMU _ MEASUREMENT H
#define  KEK IMU _ MEASUREMENT H

#include "tm stm32f4 delay.h"
float Iroll;

float Ipitch;

float Iyaw;

float Mag;

int IMU Flag = 0;

void Zero IMU Rate Bias(void) {

um7_NSS_Low(); // select um7 device
um?/_ sendCalibrationCommand (SPI1) ;
Delayms (10) ;

um7 NSS High(); // deselect um7 device

void Get IMU Data (float* IMU) {
IMU Flag = O;

while (IMU Flag<l) {
// loop events here
//static um7measurement r, p, V;
//r.id = 'r';
//p.id = 'p';
v';

//y.id = 'y';

um7 NSS Low(); // select um7 device
IMU[O] = um7 getRateAxis (SPI1, UM7 AXIS X);
IMU[1] = um7 getRateAxis (SPI1, UM7 AXIS Y);
IMU[2] = um7 getRateAxis (SPII,

UM7_AXIS 7);

IMU[3] = um7 getAngle(SPI1, UM7 ANGLE YAW);
Delayms (10) ;
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/*

UM7_ANGLE_YAW) ;

UM7_ANGLE ROLL) ;

UM7_ANGLE_PITCH) ;

*/
/%

TM_USB_VCP_CONNECTED)

roll
pitch

yaw

*/

}

#endif // KEK

A.2.15. cstm_um7_interface

#ifndef
#define

JJc

__JJC__UM7__INTERFACE H
__JJC__UM7__INTERFACE H

um7 NSS High(); // deselect um7 device

Iroll = IMU[O];
Ipitch = IMUI[1];
Iyvaw = IMU[2];
Mag = IMU[3];

// _msg t.id = MSGID um7RateGyroX;
// _msg _t.payload.f = rollRate;

um?7 NSS Low () ;
//y.data = um7 getAngle (SPI1,

//y.data = um7 getAngle (SPI1,

//p.data

um’/_ getAngle (SPI1,

Delayms (1) ;
um?7 NSS High();

// send the data over the serial link
1f(TM USB VCP GetStatus () ==
{

TM DISCO_ LedOn (LED GREEN) ;

TM DISCO LedOff (LED RED);

//TM _USB VCP_Send((uint8 t*)s&r, 5); // send

//TM USB VCP_ Send((uint8 t*)s&p, 5); // send

TM USB VCP_Send( (uint8 t*)&y, 5);
} else {

TM DISCO LedOn (LED RED) ;
TM DISCO LedOff (LED GREEN) ;

IMU Flag=1;
}

IMU MEASUREMENT H

#include "tm stm32f4 spi.h"
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// Slave Select port and pin needs to be defined outside of this
file

#ifndef UM7 SLAVESELECT PORT

#error um7 Slave Select port (UM7 SLAVESELECT PORT) needs to be
defined

#endif // UM7 SLAVESELECT PORT

#ifndef UM7_SLAVESELECT_PIN

#error um7 Slave Select pin (UM7 SLAVESELECT PIN) needs to be
defined

#endif // UM7_SLAVESELECT PIN

typedef enum {
UM7 AXIS X = 0, UM7 AXIS Y = 1, UM7 AXIS Z = 2
} UM7 AXIS;

typedef enum {
UM7 ANGLE ROLL = 0, UM7 ANGLE PITCH = 1, UM7 ANGLE YAW = 2
} UM7_ANGLE;

typedef struct {
float roll;
float pitch;
float vyaw;

} um7 RollPitchYaw;

// mostly used internally

typedef enum {
UM7 CMD getRollPitch =
UM7 CMD getYaw
UM7 CMD getRateGyroX
UM7 CMD getRateGyroY
UM7 CMD getRateGyroZz
UM7 CMD ZeroGyros

} UM7 CMD;

~

I
~

~

I
~

~

Il
ad Wb - O

// macros for setting/resetting slave select pin

#define um7 NSS High () TM GPIO SetPinHigh (
UM7 SLAVESELECT PORT, UM7 SLAVESELECT PIN)
#define um7 NSS Low() TM GPIO SetPinLow (

UM7 SLAVESELECT PORT, UM7 SLAVESELECT PIN)

// return 1 on success, 0 on failure
uintlé t um7 sendCommand (SPI TypeDef* spix, UM7 CMD cmd) {
uint8 t sendCmd[2] = {0x00, 0x00};
switch (cmd) {
case UM7 CMD getRollPitch:

sendCmd[1l] = 0x70; break;
case UM7 CMD getYaw:

sendCmd[1l] = 0x71; break;
case UM7 CMD getRateGyroX:

sendCmd[1l] = 0x61l; break;
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case UM7 CMD getRateGyroY:

sendCmd[1l] = 0x62; break;
case UM7 CMD getRateGyroZz:

sendCmd[1l] = 0x63; break;
case UM7 CMD ZeroGyros:

sendCmd[0] = 0x01;

sendCmd[1l] = OxAD; break;
default:

return 0; // dont send anything over the SPI line

}

TM SPI Send(spix, sendCmd[0]);

Delay(6); // data sheet says to wait 5 usec, we're playing
it safe

TM SPI Send(spix,

Delay (6); //

sendCmd[1]) ;

return 1;

}

uintl6 t um7 sendCalibrationCommand (SPI TypeDef* spix) {

uint8 t sendCmd[6] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
sendCmd[0] = 0x01;
sendCmd[1] = O0xAD;
sendCmd[2] = 0x00;
sendCmd[3] = 0x00;
sendCmd[4] = 0x00;
sendCmd[5] = 0x00;
TM SPI Send(spix, sendCmd[0]);

Delay(6); // data sheet says to wait 5 usec, we're playing
it safe
TM SPI Send(spix,
Delay (6); //
TM SPI Send(spix, sendCmd[Z2]);

Delay(6); // data sheet says to wait 5 usec,

sendCmd[1]) ;

we're playing
it safe

it safe

}

TM SPI Send(spix,
Delay (6); //

TM SPI Send(spix,
Delay(6); // data

TM SPI Send(spix,
Delay (6); //

return 1;

sendCmd[3]) ;

sendCmd (4]) ;

sheet says to wait 5 usec, we're playing

sendCmd [5]) ;

// buffer is expected to have 4 bytes of free space
void um?/_ readReply4Byte (SPI TypeDef* spix, uint8 t* buffer) ({

TM SPI ReadMulti (spix, buffer + O,

Delay (6);

0x00, 1);
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TM SPI ReadMulti (spix, buffer + 1, 0x00, 1);
Delay (6) ;
TM SPI ReadMulti (spix, buffer + 2, 0x00, 1);
Delay (6);
TM SPI ReadMulti (spix, buffer + 3, 0x00, 1);
Delay (6);

}

intl6_t um7 byteSwapIntl6 (intl6 t input) {
typedef union {
intlé _t iData;
uint8 t bytes[2];
} ByteData;

ByteData bd;
bd.iData = input;

uint8 t temp = bd.bytes[0];
bd.bytes[0] = bd.bytes[1];
bd.bytes[1] temp;

return bd.iData;

float um7 byteSwapFloat (float input) {
typedef union {
float fData;
uint8 t bytes[4];
} ByteData;

ByteData bd;
bd.fData = input;

uint8 t temp = bd.bytes[0];
bd.bytes[0] = bd.bytes[3];
bd.bytes[3] = temp;

temp = bd.bytes[1l];
bd.bytes[1] bd.bytes[2];
bd.bytes[2] temp;

return bd.fData; // return the, now byte-swapped, float
}

float um7 getAngle (SPI TypeDef* spix, UM7 ANGLE angle) {
intle t replyl2];

switch (angle) {
case UM7 ANGLE ROLL:
um?7_ sendCommand (spix, UM7 CMD getRollPitch);
um?7_ readReply4Byte (spix, reply);
{
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float roll =
(float)um7 byteSwapIntl6 (reply[0]);
return (roll / 91.02222);
}
break;
case UM7 ANGLE PITCH:
um?7 sendCommand (spix, UM7 CMD getRollPitch);
um?7 readReply4Byte (spix, reply);
{
float pitch =
(float)um7 byteSwapIntl6 (reply[1]);
return (pitch / 91.02222);
}
break;
case UM7 ANGLE YAW:
um?7_ sendCommand (spix, UM7 CMD getYaw) ;
um?7 readReply4Byte (spix, reply);
{
float yaw =
(float)um?7 byteSwapIntl6 (reply[0]);
return (yaw / 91.02222f);
}
break;
default:
break;
}
return um7 byteSwapFloat ((float)3.14159f);

float um7 getRateAxis(SPI TypeDef* spix, UM7 AXIS axis) {
uint8 t x axis cmd[2] = {0x00, 0x61l};
uint8 t y axis cmd[2] = {0x00, 0x62};
uint8 t z axis cmd[2] = {0x00, 0x63};

int hasData = 0;
int i; // for use in for loops
float returnbData = 0.0f;

switch (axis) {
case UM7 AXIS X:
for(i = 0; i < 2; i++) {
TM SPI Send(spix, x axis cmd[i]);
Delay (6) ;
}
hasData = 1;
break;
case UM7 AXIS Y:
for(i = 0; i < 2; 1i++) {
TM SPI Send(spix, y axis cmd[i]);
Delay (6) ;
}
hasData = 1;

139



break;
case UM7 AXIS 7:
for(i = 0; i < 2; i++) {
TM SPI Send(spix, z_ axis cmd[i]);
Delay (6) ;
}
hasData = 1;
break;
default:
break;

}

if (hasData) {
uint8 t imuDatal4];
for(i = 0; i < 4; i++) {
TM SPI ReadMulti (spix, imuData+i, 0x00, 1);
Delay (6) ;
}

// byte swap the data

returnData = * (float*)imuData;

}

return um7 byteSwapFloat (returnData) ;

}

#endif // JJC_UM7 INTERFACE H

A.2.16. tm_stm32f4_delay

/**
* @author Tilen Majerle
* @email tilen@majerle.eu

* Qwebsite http://stm32f4-discovery.com

* @link http://stm32f4-discovery.com/2014/04/1ibrary-03-
stm32f429-discovery-system-clock-and-pretty-precise-delay-library/
@version v2.4
@ide Keil uVision
@license GNU GPL v3
@brief Pretty accurate delay functions with SysTick or any

other timer
*

X X X X

@verbatim

Copyright (C) Tilen Majerle, 2015

This program is free software: you can redistribute it and/or
modify
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it under the terms of the GNU General Public License as
published by

the Free Software Foundation, either version 3 of the
License, or

any later version.

This program is distributed in the hope that it will be

useful,

but WITHOUT ANY WARRANTY; without even the implied warranty
of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public
License

along with this program. If not, see
<http://www.gnu.org/licenses/>.

@endverbatim

*/
#ifndef TM DELAY H
#define TM DELAY H 240

/* C++ detection */
#ifdef  cplusplus
extern "C" {

fendif

/**

* @addtogroup TM STM32F4xx Libraries
* @{

*/

/**
* @defgroup TM DELAY
* @brief Pretty accurate delay functions with SysTick or any
other timer - http://stm32fd4-discovery.com/2014/04/1ibrary-03-
stm32f429-discovery-system-clock-and-pretty-precise-delay-library/
* @{
*
@verbatim
If you are using GCC compiler, then your microseconds delay is
probably totally inaccurate.
USE TIMER FOR DELAY, otherwise your delay will not be accurate.

Another way is to use ARM compiler.

@endverbatim
*

* As of version 2.0 you have now two possible ways to make a
delay.
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* The first (and default) is Systick timer. It makes interrupts
every 1lms.
* If you want delay in "us" accuracy, there is simple pooling

(variable) mode.
*

*

* The second (better) options is to use one of timers on Fédxx
MCU.

* Timer also makes an interrupts every lms (for count time)
instead of lus as it was before.

* For "us" delay, timer's counter is used to count ticks. It
makes a new tick each "us".

* Not all MCUs have all possible timers, so this lib has been
designed that you select your own.

*

* \par Select custom TIM for delay functions

*

* By default, Systick timer is used for delay. If you want your
custom timer,

* open defines.h file, add lines below and edit for your needs.

*

\code{.c}

//Select custom timer for delay, here is TIM2 selected.

//1f you want custom TIMx, just replace number "2" for your TIM's
number.

#define TM DELAY TIM TIM2
#define TM DELAY TIM IRQ TIM2 IRQn
#define TM DELAY TIM TRQ HANDLER TIM2 IRQHandler
\endcode

*
*

* With this setting (using custom timer) you have better
accuracy in "us" delay.

* Also, you have to know, that if you want to use timer for
delay, you have to include additional files:

- CMSIS:
- STM32F4xx TIM
- MISC
- TM:
T™M TIMER PROPERTIES

Delay functions (Delay, Delayms) are now Inline functions.
This allows faster execution and more accurate delay.

X% X % ok ok ok X X X X

If you are working with Keil uVision and you are using Systick
for delay,
then set KEIL IDE define in options for project:

- Open "Options for target"

- Tab "C/C++"

- Under "Define" add "KEIL IDE", without quotes

P T
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\par Custom timers

b S

Custom timers are a way to make some tasks in a periodic
value.

* As of version 2.4, delay library allows you to create custom
timer which count DOWN and when it reaches zero, callback is called.

*

* You can use variable settings for count, reload value and auto
reload feature.

*

* \par Changelog
*
@verbatim
Version 2.4
- May 26, 2015
- Added support for custom timers which can be called
periodically

Version 2.3
- April 18, 2015
- Fixed support for internal RC clock

Version 2.2
- January 12, 2015
- Added support for custom function call each time 1ms
interrupt happen
- Function is called TM DELAY ImsHandler (void), with  weak
parameter
- attributes.h file needed

Version 2.1
- GCC compiler fixes
- Still prefer that you use TIM for delay if you are working
with ARM-GCC compiler

Version 2.0
- November 28, 2014
- Delay library has been totally rewritten. Because Systick is
designed to be used
in RTOS, it is not compatible to use it at the 2 places at
the same time.
For that purpose, library has been rewritten.
- Read full documentation above

Version 1.0

- First release
@endverbatim

*

* \par Dependencies
*

@verbatim
- STM32F4xx
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- STM32F4xx RCC: Only if you want to use TIMx for delay
instead of Systick

- STM32F4xx TIM: Only if you want to use TIMx for delay
instead of Systick

- MISC

- defines.h

- TM TIMER PROPERTIES: Only if you want to use TIMx for delay
instead of Systick

- attribute.h

@endverbatim

*/
#include "stm32f4xx.h"
#include "stm32f4xx rcc.h"
#include "defines.h"

#include

"attributes.h"

/* If user selectable timer is selected for delay */
#if defined(TM DELAY TIM)

#include
#include
#include
#endif

#include

/**

* @defgr
* @brief
* @{

*/

/**
* @brief
*/
typedef s

"misc.h"

"stm32f4xx tim.h"

"tm stm32f4 timer properties.h"
"stdlib.h"

oup TM DELAY Typedefs
Library Typedefs

Custom timer structure

truct {

uint32 t ARR; /*!< Auto reload value */

uint32 t AutoReload; /*1< Set to 1 i1if timer should be
auto reloaded when it reaches zero */

uint32 t CNT; /*!1< Counter value, counter

counts down */

uint8 t Enabled; /*!< Set to 1 when timer is

enabled */

void (*Callback) (void *); /*!< Callback which will be
called when timer reaches zero */
void* UserParameters; /*!1< Pointer to user parameters
used for callback function */
} ™ DELAY Timer t;

/**
* @}
*/

/**

* @defgroup TM DELAY Macros
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* @brief Library Macros
* @f
*/

/ * %
* @brief Number of allowed custom timers
* (@note Should be changes in defines.h file if necessary
*/

#ifndef DE LAY MAX CUSTOM TIMERS

#define DELAY MAX CUSTOM TIMERS 5

#endif

/* Memory allocation function */
#ifndef LIB ALLOC_ FUNC

#define LIB ALLOC_FUNC malloc
#endif

/* Memory free function */
#ifndef LIB FREE FUNC

#define LIB FREE FUNC free
#endif

/**
* @}
*/

/**

* @defgroup TM DELAY Variables
* Q@brief Library Variables
* @{

*/

/**
* This variable can be used in main
* It is automatically increased every time systick make an
interrupt
*/
extern IO uint32 t TM Time;
extern IO uint32 t TM TimeZ2;
extern IO uint32 t mult;

/**
* @}
*/

/‘k*

* @defgroup TM DELAY Functions
* (@brief Library Functions
* @{

*/

/‘k*
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* @param Delays for specific amount of microseconds
* @param micros: Time in microseconds for delay

* @retval None

* @note Declared as static inline

*/

static _ INLINE void Delay(uint32 t micros) {
#if defined(TM DELAY TIM)

#else

100000000)

volatile uint32 t timer = TM DELAY TIM->CNT;

do {
/* Count timer ticks */
while ((TM_DELAY_TIM—>CNT - timer) == ) ;

/* Increase timer */
timer = TM_DELAY_TIM—>CNT;

/* Decrease microseconds */
} while (--micros);

uint32 t amicros;

/* Multiply micro seconds */
amicros = (micros) * (mult);

#ifdef  GNUC
if (SystemCoreClock == 180000000 || SystemCoreClock ==
{
amicros —-= mult;

}
#endif

/* If clock is 100MHz, then add additional multiplier */
/* 100/3 = 33.3 = 33 and delay wouldn't be so accurate */
#1f defined (STM32F411xE)

amicros += mult;

fendif

/* While loop */
while (amicros--);

#endif /* TM DELAY TIM */

}
/‘k*

* @param Delays for specific amount of milliseconds
* @param millis: Time in milliseconds for delay

* @retval None

* @note Declared as static inline

*/

static _ INLINE void Delayms (uint32 t millis) {

volatile uint32 t timer = TM Time;

/* Called from thread */
146



if (! get IPSR()) {
/* Wait for timer to count milliseconds */
while ((TM Time - timer) < millis) {
#ifdef DELAY_SLEEP
/* Go sleep, wait systick interrupt */

_WFI();
fendif
}
} else {
/* Called from interrupt */
while (millis) {
if (SysTick->CTRL & SysTick CTRL COUNTFLAG Msk) {
millis--;
}
}
}
}
/**
* @brief Initializes timer settings for delay
* @note This function will initialize Systick or user timer,

according to settings
* @param None
* @retval None
*/
void TM DELAY Init(void);

/**
* @brief Gets the TM Time variable value
* @param None
* @retval Current time in milliseconds
*/
#define TM DELAY Time () (TM Time)

/**
* @brief Sets value for TM Time variable
* @param time: Time in milliseconds
* @retval None
*/
#define TM DELAY SetTime (time) (TM Time = (time))

/**
* @brief Re-enables delay timer It has to be configured before
with TM DELAY Init ()
* @note This function enables delay timer. It can be systick
or user selectable timer.
* @param None
* @retval None
*/
void TM DELAY EnableDelayTimer (void);

J**
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* @brief Disables delay timer
* @note This function disables delay timer. It can be systick
or user selectable timer.
* @param None
* @retval None
*/
void TM DELAY DisableDelayTimer (void);

/**
* @brief Gets the TM Time2 variable value
* @param None
* @retval Current time in milliseconds

* @note This is not meant for public use

*/
#define TM DELAY Time2 () (TM Time2)
/**

* @brief Sets value for TM Time variable
* @param time: Time in milliseconds
* @retval None

* @note This is not meant for public use
*/
#define TM DELAY SetTime2 (time) (TM Time2 = (time))
/**
* @brief Creates a new custom timer which has 1lms resolution
* @note It uses (@ref malloc for memory allocation for timer
structure

* @param ReloadValue: Number of milliseconds when timer reaches
zero and callback function is called

* @param AutoReload: If set to 1, timer will start again when
it reaches zero and callback is called

* @param StartTimer: If set to 1, timer will start immediately

* @param *TM DELAY CustomTimerCallback: Pointer to callback
function which will be called when timer reaches zero

* @param *UserParameters: Pointer to void pointer to user
parameters used as first parameter in callback function

* @retval Pointer to allocated timer structure

*/

TM DELAY Timer t* TM DELAY TimerCreate (uint32 t ReloadValue,

uint8 t AutoReload, uint8 t StartTimer, void
(*TM DELAY CustomTimerCallback) (void *), void* UserParameters);

/**
* @brief Deletes already allocated timer
* @param *Timer: Pointer to @ref TM DELAY Timer t structure
* @retval None
*/
void TM DELAY TimerDelete (TM DELAY Timer t* Timer);

/**

* @brief Stops custom timer from counting
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* @param *Timer: Pointer to @ref TM DELAY Timer t structure
* @retval Pointer to @ref TM DELAY Timer t structure
*/

TM DELAY Timer t* TM DELAY TimerStop (TM DELAY Timer t* Timer);

/ * %
* @brief Starts custom timer counting
* @param *Timer: Pointer to @ref TM DELAY Timer t structure
* @retval Pointer to @ref TM DELAY Timer t structure
*/
TM DELAY Timer t* TM DELAY TimerStart (TM DELAY Timer t* Timer);

/**
* @brief Resets custom timer counter value
* @param *Timer: Pointer to @ref TM DELAY Timer t structure
* @retval Pointer to @ref TM DELAY Timer t structure
*/
TM DELAY Timer t* TM DELAY TimerReset (TM DELAY Timer t* Timer);

/**
* @brief Sets auto reload feature for timer
* @note Auto reload features is used for timer which starts
again when zero is reached if auto reload active
* @param *Timer: Pointer to @ref TM DELAY Timer t structure
* uint8 t AutoReload: Set to 1 if you want to enable AutoReload
or 0 to disable
* @retval Pointer to @ref TM DELAY Timer t structure
*/
TM DELAY Timer t* TM DELAY TimerAutoReload(TM DELAY Timer t*
Timer, uint8 t AutoReload);

/**
* @brief Sets auto reload value for timer
* @param *Timer: Pointer to @ref TM DELAY Timer t structure
* @param AutoReloadValue: Value for timer to be set when zero
is reached and callback is called
* @note AutoReload feature must be enabled for timer in order
to get this to work properly
* @retval Pointer to @ref TM DELAY Timer t structure
*/
TM DELAY Timer t* TM DELAY TimerAutoReloadValue (TM DELAY Timer t*
Timer, uint32 t AutoReloadValue) ;

/*k*
* @brief User function, called each lms when interrupt from
timer happen
* @note Here user should put things which has to be called
periodically
* @param None
* @retval None
* (@note With  weak parameter to prevent link errors if not
defined by user
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*/
__weak void TM DELAY lmsHandler (void);

/**
* @}
*/

/**
* @}
*/

/**
* @}
*/

/* C++ detection */
#ifdef  cplusplus
}

#endif

#endif

A.2.17. tm_stm32f4_disco

/**

* @author Tilen Majerle

* @email tilen@majerle.eu

* @Qwebsite http://stm32f4-discovery.com
*

@link http://stm32f4-discovery.com/2014/04/stm32£429~
discovery-gpio-tutorial-with-onboard-leds-and-button/
@version v1.11
@ide Keil uVision
@license GNU GPL v3
@brief Leds and button library for STM32F401 - , STM32F4 -,
STM32F411 - and STM32F429 Discovery boards.

* Also works with Nucleo F411 and Nucleo F401 boards
and STM324x9-EVAL boards

*

X X X X

@verbatim

Copyright (C) Tilen Majerle, 2015

This program is free software: you can redistribute it and/or
modify

it under the terms of the GNU General Public License as
published by

the Free Software Foundation, either version 3 of the
License, or

any later version.
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This program is distributed in the hope that it will be

useful,

but WITHOUT ANY WARRANTY; without even the implied warranty
of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public
License

along with this program. If not, see
<http://www.gnu.org/licenses/>.

@endverbatim
*/
#ifndef TM DISCO H
#define TM DISCO H 1110
/x% B B
* Qaddtogroup TM STM32F4xx Libraries
* @{
*/

/**

* @defgroup TM DISCO

* @brief Leds and buttons for STM32F4 Discovery, Nucleo and
eval boards - http://stm32f4-discovery.com/2014/04/stm32f429-
discovery-gpio-tutorial-with-onboard-leds-and-button/

* @{

*

* Library supports all STM32F4 Discovery boards, All STM32F4
Nucleo boards and STM324x9 eval board.

\par Supported boards

X X * %

- STM32F429 Discovery: (STM32F429ZI) -
<code>TM DISCO STM32F429 DISCOVERY</code>

- Leds:
- LED GREEN on PG13
- LED RED on PGl4

- Button: (HIGH when pressed)
- Blue button on PAOQO
- NUCLEO-F401: (STM32F401RE) -
<code>TM DISCO NUCLEO F401</code>
* — NUCLEO-F411: (STM32F411RE) -
<code>TM DISCO NUCLEO F411</code>
- Led:
- LED_GREEN on PAS
- Button: (LOW when pressed)
- Blue button on PC13
- STM32F401-Discovery: (STM32F401VC) -
<code>TM DISCO_ STM32F401 DISCOVERY</code>

151

L S S

X % X X %



* — STM32F411-Discovery: (STM32F411VE) -
<Code>TM_DISCO_STM32F4ll_DISCOVERY</COde>

* - STM32F4-Discovery: (STM32F407VG) -
<code>TM DISCO_STM32F4 DISCOVERY</code>

- Button: (HIGH when pressed)
- Blue button on PAO
- STM324x9-Eval (STM32F439NI) -
<code>TM DISCO STM324x9 EVAL</code>

* - Leds:

* - LED_GREEN on PD12
* - LED_ORANGE on PD13
* - LED RED on PD14
* - LED BLUE on PD15
*

*

*

- Leds:
- LED_ GREEN on PG6
- LED_ORANGE on PG7
- LED_RED on PG10
- LED_ BLUE on PG1l2

- Button: (HIGH when pressed)
- Blue button on PAOQO

\par Select your board

To select your board, you have several options:
- Add define for your board in defines.h file or
- Add define for your board in compiler's global settings
- For Keil uVision you have "Options for Target" and

"C/C++" tab where you can set this.
*

b S S . S T P D N P .

* Imagine, we want to work with STM324x9-Eval board. Then, you
can open <code>defines.h</code> file and add define:
*
@verbatim
//Select STM324x9-Eval for DISCO library
#define TM DISCO STM324x9 EVAL
@endverbatim
* Or if you want STM32F429-Discovery, do this:
@verbatim
//Select STM32F429-Discovery for DISCO library
#define TM DISCO STM32F429 DISCOVERY
@endverbatim
*

* \par Changelog
*
@verbatim
Version 1.11
- March 18, 2015
- Added support for STM324x9-Eval board

Version 1.10
- March 14, 2015
- Fixed issue with pull resistors on boards
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Version 1.9
- March 10, 2015
- Added support for my new GPIO library
- Added support for STM32F411-Discovery board

Version 1.8
- February 01, 2015
- Added support for button OnPress and OnRelease events

Version 1.7
- December 02, 2014
- Fixed bug with checking if led is on

Version 1.6
- November 28, 2014
- Almost all functions are now defines, for faster execution

Version 1.5
- November 06, 2014
- Added function TM DISCO_SetLed()

Version 1.4
- Added support for Nucleo F411-RE board

Version 1.3
- Added support for STM32F401 Discovery board

Version 1.2
- Added support for Nucleo F401-RE board

Version 1.1
— Check if LED is on or off

Version 1.0

- First release
@endverbatim

*

* \par Dependencies

*
@verbatim

- STM32F4xx

- defines.h

- TM GPIO
@endverbatim

*/
#include "stm32f4dxx.h"
#include "defines.h"
#include "tm stm32f4 gpio.h"

/* Recognize correct board */
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/* CooCox support */
#i1if defined (STM32F429 439xx) || defined(STM32F4297ZI)
/* STM32F429 Discovery support */
#ifndef TM DISCO_STM32F429 DISCOVERY
#define TM_DISCO_STM32F429_DISCOVERY
fendif
#elif defined (STM32F407VG) || defined (STM32F401VC)// ||
defined (STM32F40 41xxx)
/* STM32F4 and STM32F401 Discovery support */
#ifndef TM DISCO STM32F4 DISCOVERY
#define TM DISCO STM32F4 DISCOVERY
fendif
#elif defined (STM32F401xx) || defined (STM32F401RE) ||
defined (STM32F401RB)
/* Nucleo F401RE board support */
#ifndef TM DISCO NUCLEO F401
#define TM DISCO NUCLEO F401
fendif
#elif defined (STM32F411xx) || defined (STM32F411RE)
defined (STM32F411RB)
/* Nucleo F411RE board support */
#ifndef TM DISCO NUCLEO F41l
#define TM DISCO NUCLEO F411
fendif
fendif

/* STM32F429 Discovery */
#if defined (TM DISCO STM324x9 EVAL)

#define LED GREEN GPIO_PIN 6
#define LED ORANGE GPIO_PIN 7
#define LED RED GPIO_PIN 10
#define LED BLUE GPIO_PIN 12

#define LED ALL LED GREEN |

LED RED | LED ORANGE | LED BLUE

#define TM DISCO SWAP LOGIC

#define TM DISCO LED PORT GPIOG

#define TM DISCO LED PINS LED GREEN | LED RED
LED ORANGE | LED BLUE

#define TM DISCO BUTTON PORT GPIOA

#define TM DISCO BUTTON PIN GPIO_PIN 0

#define TM DISCO BUTTON PRESSED 1

#define TM DISCO BUTTON PULL TM GPIO PuPd_DOWN

#elif defined(TM DISCO_STM32F429 DISCOVERY)

#define LED GREEN GPIO_PIN 13

#define LED RED GPIO_PIN 14

#define LED ORANGE 0

#define LED BLUE 0

#define LED ALL LED GREEN |

LED RED
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#define
#define

#define
#define
#define
#define
/* STM32F4 &

TM DISCO_LED PORT GPIOG

TM DISCO LED PINS LED GREEN | LED RED
TM DISCO BUTTON PORT GPIOA

TM DISCO BUTTON PIN GPIO_PIN 0

TM DISCO BUTTON PRESSED 1

TM DISCO BUTTON PULL TM_GPIO_PuPd_DOWN

STM32F401 Discovery */

#elif defined(TM DISCO STM32F4 DISCOVERY) ||
defined(TM DISCO STM32F401 DISCOVERY) ||
defined(TM DISCO STM32F411 DISCOVERY)

#define
#define
#define
#define
#define

LED GREEN GPIO PIN 12
LED ORANGE GPIO PIN 13
LED RED GPIO PIN 14
LED BLUE GPIO PIN 15

LED ALL LED GREEN |

LED RED | LED ORANGE | LED BLUE

#define
#define

TM DISCO LED PORT GPIOD
TM DISCO LED PINS LED GREEN | LED RED

LED ORANGE | LED BLUE

#define
#define
#define
#define

TM_DISCO_BUTTON PORT GPIOA
TM DISCO BUTTON PIN GPIO PIN 0
TM_DISCO BUTTON PRESSED 1

TM_DISCO_BUTTON PULL TM_GPIO_PuPd_DOWN

/* Nucleo F401-RE & F411-RE */
#elif defined(TM DISCO NUCLEO F401) ||
defined (TM DISCO NUCLEO F411)

#define
#define
#define
#define
#define

#define
#define

#define
#define
#define
#define

LED GREEN GPIO_PIN 5
LED RED 0

LED ORANGE 0

LED BLUE 0

LED ALL LED GREEN
TM DISCO LED PORT GPIOA

TM DISCO_LED PINS LED GREEN

TM DISCO BUTTON PORT GPIOC

TM DISCO BUTTON PIN GPIO_PIN 13

TM DISCO BUTTON PRESSED 0

TM DISCO BUTTON PULL TM GPIO PupPd_UP

/* STM324x9 EVAL board */

#else

#error "tm stm32f4 disco.h: Please select your board. Open

tm stm32f4 disco.h and follow instructions!!"

#endif

/**
* @defgroup
* @brief

TM DISCO_Functions
Library Functions
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* @y
*/

/**
* @brief Configures LED pins as outputs
* @param None
* @retval None
*/
void TM DISCO LedInit (void);

/**
* @brief Configures Button pin as input
* @param None
* @retval None
*/
void TM DISCO ButtonInit (void);

/**

* @brief Turns on LED on board

* @note STM32F4x9-Eval board uses inverse logic for leds
* @param led: LED you want to turn on
* - LED RED: Red led

* - LED GREEN: Green led

* - LED BLUE: Blue led

* - LED ORANGE: Orange led
* - LED ALL: All leds

* @retval None

*/

#ifndef TM DISCO SWAP LOGIC
#define TM DISCO LedOn (led)
TM GPIO SetPinHigh (TM DISCO LED PORT, (led))
#else
#define TM DISCO LedOn (led)
TM GPIO SetPinLow (TM DISCO LED PORT, (led))

#endif
/**
* @brief Turns off LED on board
* @note STM32F4x9-Eval board uses inverse logic for leds
* @param led: LED you want to turn off
* - LED RED: Red led
* - LED GREEN: Green led
* - LED BLUE: Blue led
* - LED ORANGE: Orange led
* - LED ALL: All leds
* @retval None
*

~

#ifndef TM DISCO SWAP LOGIC
#define TM DISCO LedOff (led)
TM _GPIO SetPinLow (TM DISCO LED PORT, (led))
#else
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#define TM DISCO LedOff (led)
TM GPIO SetPinHigh (TM DISCO LED PORT, (led))

#endif
/**
* @brief Toggles LED on board
* (@param led: LED you want to toggle
* - LED RED: Red led
* - LED GREEN: Green led
* - LED BLUE: Blue led
* - LED ORANGE: Orange led
*

- LED ALL: All leds
@retval None

*

*/
#define TM DISCO LedToggle (led)
TM GPIO TogglePinValue (TM DISCO LED PORT, (led))

>*

/
@brief Checks if led is on
@note STM32F4x9-Eval board uses inverse logic for leds
@param led: Led you want to checking

- LED RED: Red led

LED GREEN: Green led

- LED BLUE: Blue led

- LED ORANGE: Orange led

- LED ALL: All leds

@retval 1 if led is on or 0 if not

b S . S . S D S R
|

~

#ifndef TM DISCO SWAP LOGIC
#define TM DISCO LedIsOn (led)

TM_GPIO GetOutputPinValue (TM DISCO LED PORT, (led))
#else
#define TM DISCO LedIsOn (led)

!TM GPTO GetOutputPinValue (TM DISCO LED PORT, (led))
#endif

*

/
@brief Sets led value
@param led: LED you want to set value
- LED RED: Red led
- LED GREEN: Green led
LED BLUE: Blue led
- LED ORANGE: Orange led
- LED ALL: All leds
@param state: Set or clear led
- 0: led is off
> 0: led is on

b S T T S S P N
|

*

@retval None
*/
#define TM DISCO SetLed(led, state) ((state) ?
TM_DISCO_LedOn (led): TM DISCO LedOff (led))
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/**

* @brief Checks if user button is pressed
* @param None

* @retval Button status

* - 0: Button is not pressed
* - > 0: Button is pressed
*/

#define TM DISCO ButtonPressed()
((TM_GPIO GetInputPinValue (TM DISCO BUTTON PORT, TM DISCO BUTTON PIN)
== 0) != TM_DISCO_BUTTON_PRESSED)

/**

* @brief Checks if button was pressed now, but was not already
pressed before

* @param None

* @retval Button on pressed value

* - 0: In case that button has been already pressed on
last call or was not pressed at all yet

* - > 0: Button was pressed, but state before was
released

*/

uint8 t TM DISCO ButtonOnPressed(void);

/**
* (@brief Checks if button was released now, but was already
pressed before
* (@param None
* @retval Button on released value
* - 0: In case that button has been already released
on last call or was not released at all yet
* - > 0: Button was released, but state before was
pressed
*/
uint8 t TM DISCO ButtonOnReleased(void);

/**
* @}
*/
/**
* @}
*/
/*k*
* @}
*/

#endif
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A.2.18. tm_stm32f4_gpio

/**

* @author Tilen Majerle

* @email tilen@majerle.eu

* Qwebsite http://stm32f4-discovery.com
*

@link http://stm32f4-discovery.com/2015/03/1library-53-gpio-
for-stm32f4

@version v1.5

@ide Keil uVision

@license GNU GPL v3

@brief GPIO Library for STM32F4xx devices

X X X X X%

@verbatim

Copyright (C) Tilen Majerle, 2015

This program is free software: you can redistribute it and/or
modify

it under the terms of the GNU General Public License as
published by

the Free Software Foundation, either version 3 of the
License, or

any later version.

This program is distributed in the hope that it will be

useful,

but WITHOUT ANY WARRANTY; without even the implied warranty
of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public
License

along with this program. If not, see
<http://www.gnu.org/licenses/>.

@endverbatim

*/
#ifndef TM GPIO H
#define TM GPIO H 150

/* C++ detection */
#ifdef  cplusplus
extern "C" {

#endif

/**
* Qaddtogroup TM STM32F4xx Libraries
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*@{

*/

/**

* @defgroup TM GPIO

* @brief TM GPIO Library for STM32F4xx - http://stm32f4-
discovery.com/2015/03/1ibrary-53-gpio-for-stm32£f4

* @{

*

* GPIO library can be used for GPIO pins.

*

*

It features fast initialization methods as well pin
input/output methods.
*

* It can be used as replacement for STD/HAL drivers GPIO
library.

*

* \par Changelog
*
@verbatim
Version 1.5
- June 10 2015
- Added 2 new functions for getting used GPIO pins

Version 1.4
- April 28, 2015
- Added support for PORT locking

Version 1.3
- March 23, 2015
- Totally independent from HAL / SPD drivers
- Library can be used with any drivers or totally itself

Version 1.2
- March 10, 2015
- Added functions TM GPIO SetPinAsInput and
TM GPIO SetPinAsOutput
- Added functions TM GPIO GetPortSource and
TM GPIO GetPinSource
0
Version 1.1
- March 09, 2015
- Added function to deinit pin. Pin is set to analog input
which allows lowest current consumption

Version 1.0
- March 08, 2015
- Initial release
@endverbatim
*

* \par Dependencies
*
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@verbatim

- STM32F4xx

- STM32F4xx GPIO
- defines.h
@endverbatim

*/

#include "stm32f4dxx.h"
#include "stm32f4xx gpio.h"
#include "defines.h"

/**
* @defgroup TM GPIO Macros
* @brief GPIO Library macros

* @
*/

/**

* @brief GPIO Pins declarations

* @note For HAL drivers compatibility

*/
#ifndef GPIO _PIN 0
#define GPIO PIN O ((uintlé6 t)0x0001)
#define GPIO PIN 1 ((uintlé6 t)0x0002)
#define GPIO PIN 2 ((uintlé6 t)0x0004)
#define GPIO PIN 3 ((uintlé6 t)0x0008)
#define GPIO PIN 4 ((uintl6 t)0x0010)
#define GPIO PIN 5 ((uintl6 t)0x0020)
#define GPIO PIN 6 ((uintl6 t)0x0040)
#define GPIO PIN 7 ((uintl6 t)0x0080)
#define GPIO PIN 8 ((uintl6 t)0x0100)
#define GPIO PIN 9 ((uintl6 t)0x0200)
#define GPIO PIN 10 ((uintl6 t)0x0400)
#define GPIO PIN 11 ((uintl6 t)0x0800)
#define GPIO PIN 12 ((uint16 t)0x1000)
#define GPIO PIN 13 ((uint16 t)0x2000)
#define GPIO PIN 14 ((uint16 t)0x4000)
#define GPIO PIN 15 ((uintl6 t)0x8000)
#define GPIO PIN ALL ((uintl6 t)OxFFFF)
#endif

/**

* @brief GPIO Pins declarations

* @note For STD Periph drivers compatibility
*/
#ifndef GPIO Pin O
#define GPIO Pin 0 ((uintlé_t)0x0001)
#define GPIO Pin 1 ((uintlé t)0x0002)
#define GPIO Pin 2 ((uintlé_t)0x0004)
#define GPIO Pin 3 ((uintlé_t)0x0008)
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#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

GPIO Pin 4
GPIO Pin 5
GPIO Pin 6
GPIO Pin 7
GPIO Pin 8
GPIO Pin 9
GPIO Pin 10
GPIO Pin 11
GPIO Pin 12
GPIO Pin 13
GPIO Pin 14
GPIO Pin 15
GPIO Pin All

#endif

/**
* @}
*/

/**

(uintl6 t)0x0010
(uintl6 t)0x0020
(uintl6 t)0x0040
(uintl6 t)0x0080
(uintl6 t)0x0100
(uintl6 t)0x0200
(uintl6 t)0x0400
(uintl6 t)0x0800
(uintle t)0x1000
(uintl6 t)0x2000
(uintl6 t)0x4000
(

)
)
)
)
)
)
)
)
)
)
)
uintlé t)0x8000)

((uintl6_t) OxFFFF)

* @defgroup TM GPIO Typedefs

* Q@brief

initializat
*@{
*/

/**

ion purposes

* @brief GPIO Mode enumeration

*/

typedef enum {

Input */
Output */

Function */

TM GPIO Mode IN
TM GPIO Mode OUT
TM GPIO Mode AF

TM GPIO Mode AN

} TM GPIO Mode t;

/**

0x00,
0x01
0x02,

0x03,

, /*!< GPIO

/*!< GPIO Pin as

Pin as

/*!< GPIO Pin as

/*!< GPIO Pin as

* @brief GPIO Output type enumeration

*/

typedef enum {
TM_GPIO OType PP =

*/

TM GPIO OType OD

} TM GPIO OType t;

/**

* Q@brief

*/

typedef enum {

0x00
0x01

, /*!< GPIO

Output

/*1< GPIO Output

GPIO Speed enumeration
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Analog */
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TM GPIO Speed Low = 0x00, /*!< GPIO Speed Low */
TM GPIO_Speed Medium = 0x01, /*!< GPIO Speed Medium */
TM GPIO Speed Fast = 0x02, /*!< GPIO Speed Fast */
TM GPIO Speed High = 0x03 /*!< GPIO Speed High */

} TM GPIO Speed t;

/**
* @brief GPIO pull resistors enumeration
*/
typedef enum {
TM GPIO_PuPd NOPULL = 0x00, /*!< No pull resistor */
TM GPIO PuPd UP = 0x01, /*!< Pull up resistor enabled
*/
TM GPIO PuPd DOWN = 0x02 /*!1< Pull down resistor enabled
*/
} TM _GPIO PuPd t;

/**
* @} TM GPIO Typedefs
*/

/**
* @defgroup TM GPIO Functions
* @brief GPIO Functions
* @{
*/

/**
* @brief Initializes GPIO pins(s)
* @note This function also enables clock for GPIO port
* @param GPIOx: Pointer to GPIOx port you will use for
initialization
* @param GPIO Pin: GPIO pin(s) you will use for initialization
* @param GPIO Mode: Select GPIO mode. This parameter can be a
value of @ref TM GPIO Mode t enumeration
* @param GPIO OType: Select GPIO Output type. This parameter
can be a value of @ref TM GPIO OType t enumeration
* @param GPIO PuPd: Select GPIO pull resistor. This parameter
can be a value of @ref TM GPIO PuPd t enumeration
* @param GPIO Speed: Select GPIO speed. This parameter can be a
value of @ref TM GPIO Speed t enumeration
* @retval None
*/
void TM GPIO Init (GPIO TypeDef* GPIOx, uintlé t GPIO Pin,
TM GPIO Mode t GPIO Mode, TM GPIO OType t GPIO OType, TM GPIO PuPd t
GPIO PuPd, TM GPIO Speed t GPIO_ Speed);

/**
* @brief 1Initializes GPIO pins(s) as alternate function
* (@note This function also enables clock for GPIO port

* @param GPIOx: Pointer to GPIOx port you will use for
initialization
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* @param GPIO Pin: GPIO pin(s) you will use for initialization

* @param GPIO OType: Select GPIO Output type. This parameter
can be a value of @ref TM GPIO OType t enumeration

* @param GPIO PuPd: Select GPIO pull resistor. This parameter
can be a value of @ref TM GPIO PuPd t enumeration

* @param GPIO Speed: Select GPIO speed. This parameter can be a
value of @ref TM GPIO Speed t enumeration

* @param Alternate: Alternate function you will use

* @retval None

*/

void TM GPIO InitAlternate(GPIO TypeDef* GPIOx, uintlé6 t

GPIO Pin, TM GPIO OType t GPIO OType, TM GPIO PuPd t GPIO PuPd,

TM GPIO Speed t GPIO Speed, uint8 t Alternate);

/**

* @brief Deinitializes pin(s)

* @note Pins(s) will be set as analog mode to get low power
consumption

* @param GPIOx: GPIOx PORT where you want to set pin as input

* @param GPIO Pin: Select GPIO pin(s). You can select more pins
with | (OR) operator to set them as input

* @retval None

*/

void TM GPIO DeInit (GPIO TypeDef* GPIOx, uintl6 t GPIO Pin);

/**
* @brief Sets pin(s) as input
* @note Pins HAVE to be initialized first using @Qref
TM GPIO Init() or @ref TM GPIO InitAlternate() function

* @note This is just an option for fast input mode

* @param GPIOx: GPIOx PORT where you want to set pin as input

* @param GPIO Pin: Select GPIO pin(s). You can select more pins
with | (OR) operator to set them as input

* @retval None

*/

void TM GPIO SetPinAsInput (GPIO TypeDef* GPIOx, uintl6 t
GPIO Pin);

/**
* @brief Sets pin(s) as output
* @note Pins HAVE to be initialized first using @Qref
TM GPIO Init() or @ref TM GPIO InitAlternate() function

* @note This is just an option for fast output mode

* (@param GPIOx: GPIOx PORT where you want to set pin as output

* @param GPIO Pin: Select GPIO pin(s). You can select more pins
with | (OR) operator to set them as output

* @retval None

*/

void TM GPIO_ SetPinAsOutput (GPIO TypeDef* GPIOx, uintl6 t
GPIO Pin);

/‘k*
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* @brief Sets pin(s) as analog

* (@note Pins HAVE to be initialized first using @ref
TM GPIO Init() or @ref TM GPIO InitAlternate() function

* @note This is just an option for fast analog mode

* (@param GPIOx: GPIOx PORT where you want to set pin as analog

* @param GPIO Pin: Select GPIO pin(s). You can select more pins
with | (OR) operator to set them as analog

* @retval None

*/

void TM GPIO SetPinAsAnalog(GPIO TypeDef* GPIOx, uintl6 t
GPIO Pin);

/**
* @brief Sets pin(s) as alternate function
* @note For proper alternate function, you should first init
pin using @ref TM GPIO InitAlternate() function.
* This functions is only used for changing GPIO mode

* @param GPIOx: GPIOx PORT where you want to set pin as
alternate

* @param GPIO Pin: Select GPIO pin(s). You can select more pins
with | (OR) operator to set them as alternate

* @retval None

*/

void TM GPIO SetPinAsAlternate (GPIO TypeDef* GPIOx, uintl6 t
GPIO Pin);

/**
* @brief Sets pull resistor settings to GPIO pin(s)
* @note Pins HAVE to be initialized first using @Qref

TM GPIO Init() or @ref TM GPIO InitAlternate() function

* (@param *GPIOx: GPIOx PORT where you want to select pull
resistor

* @param GPIO Pin: Select GPIO pin(s). You can select more pins
with | (OR) operator to set them as output

* @param GPIO PuPd: Pull resistor option. This parameter can be
a value of @ref TM GPIO PuPd t enumeration

* @retval None

*/

void TM GPIO_ SetPullResistor (GPIO TypeDef* GPIOx, uintl6 t

GPIO Pin, TM GPIO PuPd t GPIO PuPd);

/**
* @brief Sets pin(s) low
* @note Defined as macro to get maximum speed using register
access
* @param GPIOx: GPIOx PORT where you want to set pin low
* @param GPIO Pin: Select GPIO pin(s). You can select more pins
with | (OR) operator to set them low
* @retval None
*/
#define TM GPIO_SetPinLow (GPIOx, GPIO Pin) ( (GPIOX) -
>BSRRH = (GPIO Pin))
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/**
* Qbrief Sets pin(s) high

* (@note Defined as macro to get maximum speed using register
access
* (@param GPIOx: GPIOx PORT where you want to set pin high
* @param GPIO Pin: Select GPIO pin(s). You can select more pins
with | (OR) operator to set them high
* @retval None
*/
#define TM GPIO_ SetPinHigh (GPIOx, GPIO_ Pin) ((GPIOx) -
>BSRRL = (GPIO Pin))
/**
* Qbrief Sets pin(s) value
* (@note Defined as macro to get maximum speed using register
access
* @param GPIOx: GPIOx PORT where you want to set pin value
* @param GPIO Pin: Select GPIO pin(s). You can select more pins
with | (OR) operator to set them value
* @param val: If parameter is 0 then pin will be low, otherwise
high
* @retval None
*/
#define TM GPIO SetPinValue (GPIOx, GPIO Pin, val) ((val) ?
TM GPIO SetPinHigh (GPIOx, GPIO Pin) : TM GPIO SetPinLow (GPIOx,
GPIO Pin))
/**
* @brief Toggles pin(s)
* @note Defined as macro to get maximum speed using register
access
* @param GPIOx: GPIOx PORT where you want to toggle pin value
* @param GPIO Pin: Select GPIO pin(s). You can select more pins
with | (OR) operator to toggle them all at a time
* @retval None
*/
#define TM GPIO TogglePinValue (GPIOx, GPIO Pin) ((GPIOx) -

>0DR "= (GPIO Pin))

/**
* @brief Sets value to entire GPIO PORT
* @note Defined as macro to get maximum speed using register
access

* @param GPIOx: GPIOx PORT where you want to set value
* @param value: Value for GPIO OUTPUT data
* @retval None
*/
#define TM GPIO_SetPortValue (GPIOx, value) ((GPIOx) -
>0DR = (value))

/‘k*
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@brief Gets input data bit

@note Defined as macro to get maximum speed using register
access
* (@param GPIOx: GPIOx PORT where you want to read input bit
value
* @param GPIO Pin: GPIO pin where you want to read value
* @retval 1 in case pin is high, or 0 if low
*/
#define TM GPIO GetInputPinValue (GPIOx, GPIO Pin) (((GPIOx)->IDR &
(GPIO Pin)) == 0 2 0 : 1)
/**
* @brief Gets output data bit
* @note Defined as macro to get maximum speed using register
access
* @param GPIOx: GPIOx PORT where you want to read output bit
value
* @param GPIO Pin: GPIO pin where you want to read value
* @retval 1 in case pin is high, or 0 if low
*/
#define TM GPIO GetOutputPinValue (GPIOx, GPIO Pin) (((GPIOx) -
>0ODR & (GPIO Pin)) == 0 2 0 : 1)
/**
* @brief Gets input value from entire GPIO PORT
* @note Defined as macro to get maximum speed using register
access
* (@param GPIOx: GPIOx PORT where you want to read input data
value
* @retval Entire PORT INPUT register
*/
#define TM GPIO GetPortInputValue (GPIOX) ((GPIOXx) -
>IDR)
/**
* @brief Gets output value from entire GPIO PORT
* @note Defined as macro to get maximum speed using register
access
* (@param GPIOx: GPIOx PORT where you want to read output data
value
* @retval Entire PORT OUTPUT register
*/
#define TM GPIO GetPortOutputValue (GPIOXx) ((GPIOx) -
>0DR)
/**
* @brief Gets port source from desired GPIOx PORT
* @note Meant for private use, unless you know what are you
doing

* @param GPIOx: GPIO PORT for calculating port source
* @retval Calculated port source for GPIO
*/
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uintl6 t TM GPIO GetPortSource (GPIO TypeDef* GPIOx) ;

/**
* @brief Gets pin source from desired GPIO pin
* @note Meant for private use, unless you know what are you
doing
* @param GPIO Pin: GPIO pin for calculating port source
* @retval Calculated pin source for GPIO pin
*/
uintl6é t TM GPIO GetPinSource (uintl6 t GPIO Pin);

/**
* @brief Locks GPIOx register for future changes
* @note You are not able to config GPIO registers until new
MCU reset occurs
* @param *GPIOx: GPIOx PORT where you want to lock config
registers
* @param GPIO Pin: GPIO pin(s) where you want to lock config
registers
* @retval None
*/
void TM GPIO Lock (GPIO TypeDef* GPIOx, uintlé t GPIO Pin);

/**
* @brief Gets bit separated pins which were used at least once
in library and were not deinitialized
* (@param *GPIOx: Pointer to GPIOx peripheral where to check
used GPIO pins
* @retval Bit values for used pins
*/
uintl6 t TM GPIO GetUsedPins (GPIO TypeDef* GPIOX);

/**
* @brief Gets bit separated pins which were not used at in
library or were deinitialized
* (@param *GPIOx: Pointer to GPIOx peripheral where to check
used GPIO pins
* @retval Bit values for free pins
*/
uintlé t TM GPIO GetFreePins (GPIO TypeDef* GPIOX) ;

/**
* @}
*/
/*k*
* @}
*/
/**
* @}
*/

/* C++ detection */
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#ifdef  cplusplus
}
#endif

#endif

A.2.19. tm_stm32f4_spi

/**

* @author Tilen Majerle

* (@email tilen@majerle.eu

* @website http://stm32f4-discovery.com
*

@link http://stm32f4-discovery.com/2014/04/1library-05-spi-
for-stm32f4dxx/

@version v2.0

@ide Keil uVision

@license GNU GPL v3

@brief SPI library for STM32F4xx

P T

@verbatim

Copyright (C) Tilen Majerle, 2015

This program is free software: you can redistribute it and/or
modify

it under the terms of the GNU General Public License as
published by

the Free Software Foundation, either version 3 of the
License, or

any later version.

This program is distributed in the hope that it will be

useful,

but WITHOUT ANY WARRANTY; without even the implied warranty
of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public
License

along with this program. If not, see
<http://www.gnu.org/licenses/>.
@endverbatim
*/
#ifndef TM SPI H
#define TM SPI H 200

/* C++ detection */

#ifdef  cplusplus
extern "C" {
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#endif

/**
* Qaddtogroup TM STM32F4xx Libraries
* @{
*/
/**
* @defgroup TM SPI
* @brief SPI library for STM32F4xx - http://stm32f4-
discovery.com/2014/04/1library-05-spi-for-stm32f4dxx/
CE
*
* It supports all 6 SPIs in master with 3 Lines Full Duplex mode
*
* \par Default SPI settings
*
* All six SPIs work the same principle by default:
* - Master mode
* - 8 data bits
* - Clock polarity low, data sampled at first edge, SPI mode
0
* - Prescaler set to 32
* - Firstbit MSB
* - Software SS pin configure
* - Direction 1is full duplex 3 wires
*
* \par Pinout
*
@verbatim
| PINS PACK 1 | PINS PACK 2 | PINS
PACK 3
SPIX | MOSI MISO SCK | MOSI MISO SCK | MOSI
MISO SCK
|
SPI1 | PA7 PAG PAS | PB5 PB4 PB3 |
SPI2 | PC3 PC2 PB10 | PB15 PB14 PB13 |PI3
PI2 PIO
SPI3 | PB5 PB4 PB3 |PC12 PC11 PC10 |
SPI4 | PE6 PES PE2 |PE14 PE13 PE12 |
SPI5 | P9 PF8 PF7 |PF11 PH7 PH6 |
SPIG6 | PG14 PG12 PG13 |
@endverbatim
*
* In case these pins are not good for you, you can use
* TM SPI PinsPack Custom in function and callback function
will be called,
* where you can initialize your custom pinout for your SPI
peripheral
*
* Possible changes to each SPI. Set this defines in your

defines.h file.
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* Change x with 1-6, to match your SPI
*

@verbatim

//Default prescaler

#define TM SPIx PRESCALER SPI BaudRatePrescaler 32
//Specify datasize

#define TM SPIx DATASIZE SPI DataSize 8b
//Specify which bit is first
#define TM SPIx FIRSTBIT SPI FirstBit MSB

//Mode, master or slave
#define TM SPIx MASTERSLAVE SPI Mode Master
//Specify mode of operation, clock polarity and clock phase
#define TM SPIx MODE TM SPI Mode 0
@endverbatim
*

* \par Changelog
*
@verbatim
- Version 2.0
- June 06, 2015
- Added support for changing SPI data size on runtime

Version 1.9
- March 21, 2015
- SPI Send BUG fixed

Version 1.8
- March 10, 2015
- Updated to be mode independent of STD/HAL drivers

Version 1.7
- March 08, 2015
- Added support for my new GPIO settings

Version 1.6
- March 05, 2015
- Added 2 new functions, TM SPI InitFull and
TM SPI GetPrescalerFromMaxFrequency ()

Version 1.5
- January 13, 2015
- Added function TM SPI InitWithMode () to initialize SPI with
custom SPI mode on the fly

Version 1.4
- November 09, 2014
- Added methods for 16-bit SPI mode

Version 1.3
- September 14, 2014
- Added additional pins for SPIZ2
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Version 1.0
- First release

@endverbatim
*

* \par Dependencies

*

@verbatim

- STM32F4xx

- STM32F4xx RCC
- STM32F4xx GPIO
- STM32F4xx SPI
- defines.h

- attributes.h

- TM GPIO
@endverbatim

*/

#include "stm32fdxx.h"

#include "stm32f4xx rcc.h"
#include "stm32f4xx gpio.h"
#include "stm32f4xx spi.h"

#include "defines.h"

#include "attributes.h"
#include "tm stm32f4 gpio.h"

/**

* @defgroup TM SPI Typedefs
* Q@brief Library Typedefs

* @Y
*/

/**

* @brief SPI modes selection

*/
typedef enum {
TM SPI Mode O,

/*1< Clock polarity low, clock phase 1st
/*1< Clock polarity low, clock phase 2nd
/*1< Clock polarity high, clock phase 1lst

/*1< Clock polarity high, clock phase 2nd

* @brief SPI PinsPack enumeration to select pins combination

edge */
TM SPI Mode 1,
edge */
TM_SPI Mode 2,
edge */
TM SPI Mode 3
edge */
} TM SPI Mode t;
/‘k*
for SPI

*/
typedef enum {
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TM SPI PinsPack 1, /*1< Select PinsPackl from Pinout
table for specific SPI */

TM SPI PinsPack 2, /*!1< Select PinsPack2 from Pinout
table for specific SPI */
TM SPI PinsPack 3, /*!< Select PinsPack3 from Pinout

table for specific SPI */
TM SPI PinsPack Custom /*1< Select custom pins for
specific SPI, callback will be called, look @ref
TM SPI InitCustomPinsCallback */
} T™ SPI PinsPack t;

/**
* Qbrief Daza size enumeration
*/
typedef enum {
TM SPI DataSize 8b, /*!< SPI in 8-bits mode */
TM SPI DataSize 16b /*!< SPI in 16-bits mode */
} T™M SPI DataSize t;

/**
* @}
*/

/**

* @defgroup TM SPI Macros

* @brief Library defines
* @{

*/

/**
* @brief Supported SPI modules
*/

#define USE SPI1

#define USE SPI2

#define USE SPI3

#ifdef SPI4

#define USE SPI4

ffelse

#warning "SPI4 undefined. Please update library with STD drivers
from ST.com"

#endif

#ifdef SPI5

#define USE SPI5

#else

#warning "SPI5 undefined. Please update library with STD drivers
from ST.com"

#endif

#ifdef SPI6

#define USE SPIG6

felse

#warning "SPI6 undefined. Please update library with STD drivers
from ST.com"
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#endif

//===== SPI1 options start -------

//Options can be overwriten in defines.h file
#ifndef TM SPI1 PRESCALER

#define TM SPI1 PRESCALER SPI BaudRatePrescaler 32
fendif

//Specify datasize

#ifndef TM SPI1 DATASIZE

#define TM SPI1 DATASIZE  SPI DataSize 8b

#endif

//Specify which bit is first

#ifndef TM SPI1 FIRSTBIT

#define TM SPI1 FIRSTBIT  SPI FirstBit MSB

#endif

//Mode, master or slave

#ifndef TM_SPII_MASTERSLAVE

#define TM SPI1 MASTERSLAVE SPI Mode Master

fendif

//Specify mode of operation, clock polarity and clock phase
#ifndef TM SPI1 MODE

#define TM SPI1 MODE TM _SPI Mode 0
#endif

[/ ===== SPI1 options end —--——-—-—---

[/ ===== SPI2 options start —--——-—----

//Options can be overwriten in defines.h file
#ifndef TM SPI2 PRESCALER

#define TM SPI2 PRESCALER SPI BaudRatePrescaler 32
#endif

//Specify datasize

#ifndef TM SPI2 DATASIZE

#define TM SPI2 DATASIZE  SPI DataSize 8b

#endif

//Specify which bit is first

#ifndef TM SPI2 FIRSTBIT

#define TM SPI2 FIRSTBIT SPI FirstBit MSB

fendif

//Mode, master or slave

#ifndef TM SPI2 MASTERSLAVE

#define TM SPI2 MASTERSLAVE SPI Mode Master

#endif

//Specify mode of operation, clock polarity and clock phase
#ifndef TM SPI2 MODE

#define TM SPI2 MODE TM SPI Mode O
fendif

//===== SPI2 options end -------

[/ ===== SPI3 options start —--—-----

//Options can be overwriten in defines.h file
#ifndef TM SPI3 PRESCALER
#define TM SPI3 PRESCALER SPI BaudRatePrescaler 32

174



#endif

//Specify datasize

#ifndef TM SPI3 DATASIZE

#define TM SPI3 DATASIZE  SPI DataSize 8b
fendif

//Specify which bit is first

#ifndef TM SPI3 FIRSTBIT

#define TM_SPIB_FIRSTBIT SPI_FirstBit_MSB
fendif

//Mode, master or slave

#ifndef TM SPI3 MASTERSLAVE

#define TM SPI3 MASTERSLAVE SPI Mode Master
#endif

//Specify mode of operation, clock polarity and clock phase
#ifndef TM SPI3 MODE

#define TM_SPI3_MODE TM_SPI_MOde_O
#endif

//===== SPI3 options end -------

//—==—= SPI4 options start —-------

//Options can be overwriten in defines.h file
#ifndef TM SPI4 PRESCALER

#define TM SPI4 PRESCALER SPI BaudRatePrescaler 32
fendif

//Specify datasize

#ifndef TM SPI4 DATASIZE

#define TM SPI4 DATASIZE  SPI DataSize 8b

fendif

//Specify which bit is first

#ifndef TM SPI4 FIRSTBIT

#define TM SPI4 FIRSTBIT SPI_FirStBit_MSB

#endif

//Mode, master or slave

#ifndef TM SPI4 MASTERSLAVE

#define TM SPI4 MASTERSLAVE SPI Mode Master

fendif

//Specify mode of operation, clock polarity and clock phase
#ifndef TM SPI4 MODE

#define TM SPI4 MODE TM SPI Mode O
#endif

//===== SPI4 options end -------

/=== SPI5 options start ————---

//Options can be overwriten in defines.h file
#ifndef TM SPI5 PRESCALER

#define TM SPI5 PRESCALER SPI BaudRatePrescaler 32
#endif

//Specify datasize

#ifndef TM SPI5 DATASIZE

#define TM SPI5 DATASIZE SPI DataSize 8b

fendif

//Specify which bit is first
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#ifndef TM SPI5 FIRSTBIT

#define TM SPI5 FIRSTBIT  SPI FirstBit MSB

#endif

//Mode, master or slave

#ifndef TM_SPI5_MASTERSLAVE

#define TM SPI5 MASTERSLAVE SPI Mode Master

fendif

//Specify mode of operation, clock polarity and clock phase
#ifndef TM SPI5 MODE

#define TM SPI5 MODE TM SPI Mode 0
#endif

//===== SPI5 options end -—---—---

//===== SPI6 options start -------

//Options can be overwriten in defines.h file
#ifndef TM SPI6 PRESCALER

#define TM SPI6 PRESCALER SPI BaudRatePrescaler 32
fendif

//Specify datasize

#ifndef TM SPI6 DATASIZE

#define TM SPI6 DATASIZE  SPI DataSize 8b

fendif

//Specify which bit is first

#ifndef TM SPI6 FIRSTBIT

#define TM SPI6 FIRSTBIT SPI FirstBit MSB

fendif

//Mode, master or slave

#ifndef TM SPI6 MASTERSLAVE

#define TM SPI6 MASTERSLAVE SPI Mode Master

#endif

//Specify mode of operation, clock polarity and clock phase
#ifndef TM SPI6 MODE

#define TM SPI6 MODE TM SPI Mode 0
#endif
//===== SPI6 options end -------
/**
* @brief Check SPI busy status
*/
#define SPI IS BUSY(SPIx) (((SPIx)->SR & (SPI_SR TXE |
SPI SR RXNE)) == 0 || ((SPIx)->SR & SPI_SR BSY))
/**
* @brief SPI wait till end
*/
#define SPI_WAIT(SPIX) while (SPI_IS_BUSY(SPIX))
/**
* @brief Checks if SPI is enabled
*/
#define SPI_CHECK_ENABLED(SPIX) if (! ((SPIx)->CR1l &

SPI CR1 SPE)) {return;}
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/**
* @brief Checks if SPI is enabled and returns value from
function 1if not
*/
#define SPI_CHECK_ENABLED_RESP(SPIX, val) if (! ((SPIx)->CR1l &
SPI CR1 SPE)) {return (val);}

/**
* @}
*/

/**
* @defgroup TM SPI Functions
* @brief Library Functions
* @{
*/

/**
* @brief Initializes SPIx peripheral with custom pinspack and
default other settings
* @param *SPIx: Pointer to SPIx peripheral you will use, where
X 1s between 1 to 6
* (@param pinspack: Pinspack you will use from default SPI
table. This parameter can be a value of (@ref TM SPI PinsPack t
enumeration
* @retval None
*/
void TM SPI Init(SPI TypeDef* SPIx, TM SPI PinsPack t pinspack);

/**
* @brief Initializes SPIx peripheral with custom pinspack and
SPI mode and default other settings
* @param *SPIx: Pointer to SPIx peripheral you will use, where
X 1is between 1 to 6
* (@param pinspack: Pinspack you will use from default SPI
table. This parameter can be a value of @ref TM SPI PinsPack t
enumeration
* @param SPI Mode: SPI mode you will use. This parameter can be
a value of @ref TM SPI Mode t enumeration
* @retval None
*/
void TM SPI InitWithMode (SPI TypeDef* SPIx, TM SPI PinsPack t
pinspack, TM SPI Mode t SPI Mode);

/**
* @brief Initializes SPIx peripheral with custom settings
* @param *SPIx: Pointer to SPIx peripheral you will use, where
%X 1s between 1 to 6
* (@param pinspack: Pinspack you will use from default SPI
table. This parameter can be a value of @ref TM SPI PinsPack t
enumeration
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* @param SPI BaudRatePrescaler: SPI baudrate prescaler. This
parameter can be a value of @ref SPI BaudRatePrescaler

* @param SPI Mode t: SPI mode you will use. This parameter can
be a value of @ref TM SPI Mode t enumeration

* @param SPI Mode: SPI mode you will use:

* - SPI Mode Master: SPI in master mode (default)

* - SPI Mode Slave: SPI in slave mode

* @param SPI FirstBit: select first bit for SPI

* - SPI FirstBit MSB: MSB is first bit (default)

* - SPI FirstBit LSB: LSB is first bit

* @retval None

*/

void TM SPI InitFull (SPI TypeDef* SPIx, TM SPI PinsPack t

pinspack, uintl6 t SPI BaudRatePrescaler, TM SPI Mode t SPI Mode t,
uintl6 t SPI Mode, uintl6 t SPI FirstBit);

/**
* @brief Calculates bits for SPI prescaler register to get
minimal prescaler value for SPI peripheral
* @note SPI has 8 prescalers available, 2,4,6,...,128,256
* @note This function will return you a bits you must set in

your CR1 register.
*

* @note Imagine, you can use 20MHz max clock in your system,
your system is running on 168MHz, and you use SPI on APB2 bus.

* On 168 and 180MHz devices, APB2 works on Fclk/2, so 84
and 90MHz.

* So, if you calculate this, prescaler will need to be

84MHz / 20MHz = 4.xx, but if you use 4 prescaler, then you will be
over 20MHz.

* You need 8 prescaler then. This function will
calculate this.

* @param *SPIx: Pointer to SPIx peripheral you will use, where
x is between 1 to 6.

* Different SPIx works on different clock and is
important to know for which SPI you need prescaler.

* @param MAX SPI Frequency: Max SPI frequency you can use.
Function will calculate the minimum prescaler you need for that.

*

* @retval Bits combination for SPI CR1l register, with aligned
location already, prepared to set parameter for @ref TM SPI InitFull ()
function.

*/

uintlé t TM SPI GetPrescalerFromMaxFrequency (SPI TypeDef* SPIx,
uint32 t MAX SPI Frequency);

/**

* @brief Sets data size for SPI at runtime

* @note You can select either 8 or 16 bits data array.

* (@param *SPIx: Pointer to SPIx peripheral where data size will
be set

178



* @param DataSize: Datasize which will be used. This parameter
can be a value of @ref TM SPI DataSize t enumeration
* @retval Status of data size before changes happen
*/
TM SPI DataSize t TM SPI SetDataSize (SPI_ TypeDef* SPIX,
TM SPI DataSize t DataSize);

/**
* @brief Sends single byte over SPI
* @param *SPIx: Pointer to SPIx peripheral you will use, where
x is between 1 to 6
* @param data: 8-bit data size to send over SPI
* @retval Received byte from slave device
*/
static  INLINE uint8 t TM SPI Send(SPI TypeDef* SPIx, uint8 t
data) {
/* Check if SPI is enabled */
SPI_CHECK _ENABLED RESP(SPIx, 0);

/* Wait for previous transmissions to complete if DMA TX
enabled for SPI */
SPI WAIT (SPIX);

/* Fill output buffer with data */
SPIx->DR = data;

/* Wait for transmission to complete */
SPI WAIT (SPIX);

/* Return data from buffer */
return SPIx->DR;

}
/‘k*

* @brief Sends and receives multiple bytes over SPIx

* @param *SPIx: Pointer to SPIx peripheral you will use, where
X 1is between 1 to 6

* @param *dataOut: Pointer to array with data to send over SPI

* (@param *datalIn: Pointer to array to to save incoming data

* @param count: Number of bytes to send/receive over SPI

* @retval None

*/

void TM SPI SendMulti (SPI TypeDef* SPIx, uint8 t* datalOut,

uint8 t* dataln, uint32 t count);

/**

* @brief Writes multiple bytes over SPI

* @param *SPIx: Pointer to SPIx peripheral you will use, where
%X 1s between 1 to 6

* @param *dataOut: Pointer to array with data to send over SPI

* @param count: Number of elements to send over SPI

* @retval None
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*/
void TM SPI WriteMulti (SPI TypeDef* SPIx, uint8 t* dataOut,
uint32 t count);

/**
* @brief Receives multiple data bytes over SPI
* @note Selected SPI must be set in 16-bit mode
* @param *SPIx: Pointer to SPIx peripheral you will use, where
X is between 1 to 6
* @param *datalIn: Pointer to 8-bit array to save data into
* @param dummy: Dummy byte to be sent over SPI, to receive
data back. In most cases 0x00 or OxFF
* @param count: Number of bytes you want read from device
* @retval None
*/
void TM SPI ReadMulti (SPI TypeDef* SPIx, uint8 t *dataln, uint8 t
dummy, uint32 t count);

/**
* @brief Sends single byte over SPI
* @note Selected SPI must be set in 16-bit mode
* @param *SPIx: Pointer to SPIx peripheral you will use, where
X 1s between 1 to 6
* (@param data: 16-bit data size to send over SPI
* @retval Received 16-bit value from slave device
*/
static _ INLINE uintl6 t TM SPI Sendl6 (SPI_TypeDef* SPIx, uint8 t
data) {
/* Check if SPI is enabled */
SPI_CHECK ENABLED RESP(SPIx, 0);

/* Wait for previous transmissions to complete if DMA TX
enabled for SPI */
SPI WAIT (SPIX);

/* Fill output buffer with data */
SPIx->DR = data;

/* Wait for transmission to complete */
SPI WAIT(SPIX);

/* Return data from buffer */
return SPIx->DR;
}

/**

* @brief Sends and receives multiple bytes over SPIx in 16-bit
SPI mode

* @note Selected SPI must be set in 16-bit mode

* @param *SPIx: Pointer to SPIx peripheral you will use, where
x 1s between 1 to 6

* @param *dataOut: Pointer to array with data to send over SPI
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* @param *datalIn: Pointer to array to to save incoming data
* @param count: Number of 16-bit values to send/receive over
SPI
* @retval None
*/
void TM SPI SendMultil6 (SPI_TypeDef* SPIx, uintl6 t* dataOut,
uintl6 t* dataln, uint32 t count);

/**
* @brief Writes multiple data via SPI in 16-bit SPI mode
* @note Selected SPI must be set in 16-bit mode
* @param *SPIx: Pointer to SPIx peripheral you will use, where
x is between 1 to 6
* @param *dataOut: Pointer to 16-bit array with data to send
over SPI
* @param count: Number of elements to send over SPI
* @retval None
*/
void TM SPI WriteMultilé6 (SPI TypeDef* SPIx, uintlé t* dataOut,
uint32 t count);

/**
* @brief Receives multiple data bytes over SPI in 16-bit SPI
mode
* @note Selected SPI must be set in 16-bit mode
* (@param *SPIx: Pointer to SPIx peripheral you will use, where
X 1s between 1 to 6
* (@param *datalIn: Pointer to 16-bit array to save data into
* @param dummy: Dummy 16-bit value to be sent over SPI, to
receive data back. In most cases 0x00 or OxFF
* @param count: Number of 16-bit values you want read from
device
* @retval None
*/
void TM SPI ReadMultil6 (SPI TypeDef* SPIx, uintl6 t* dataln,
uintl6 t dummy, uint32 t count);

/**

* @brief Init custom SPI pins for your SPIx. This is callback
function and will be called from my library if needed.

* @note When you call TM SPI Init() function, and if you pass
TM SPI PinsPack Custom to function,

* then this function will be called where you can
initialize custom pins for SPI peripheral

@note You have to initialize MOSI, MISO and SCK pin

X % X

@param *SPIx: Pointer to SPIx peripheral for which you have
to set your custom pin settings

* @param AlternateFunction: Alternate function which should be
used for GPIO initialization

* @retval None
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* @note With  weak parameter to prevent link errors if not
defined by user
*/
void TM SPI InitCustomPinsCallback (SPI TypeDef* SPIx, uintl6 t
AlternateFunction) ;

/**
* @}
*/

/**
* @}
*/

/**

* @}

*/

/* C++ detection */
#ifdef  cplusplus
}

#endif
#endif

A.2.20. tm_stm32f4_usart

/**

* @author Tilen Majerle

* @email tilen@majerle.eu

* Qwebsite http://stm32f4-discovery.com
*

@link http://stm32f4-discovery.com/2014/04/1ibrary-04-
connect-stm32£f429-discovery-to-computer-with-usart/

* @version v2.5
* (@ide Keil uVision
* @license GNU GPL v3
* (@brief USART Library for STM32F4 with receive interrupt
*
@verbatim
Copyright (C) Tilen Majerle, 2015
This program is free software: you can redistribute it and/or
modify

it under the terms of the GNU General Public License as
published by

the Free Software Foundation, either version 3 of the
License, or

any later version.
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This program is distributed in the hope that it will be

useful,

but WITHOUT ANY WARRANTY; without even the implied warranty
of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public
License

along with this program. If not, see
<http://www.gnu.org/licenses/>.

@endverbatim

*/
#ifndef TM USART H
#define TM USART H 250

/* C++ detection */
#ifdef  cplusplus
extern "C" {

#endif

/**

* @addtogroup TM STM32F4xx Libraries
* @{

*/

/**
* @defgroup TM USART
* @brief TM USART Library for STM32F4xx - http://stm32f4-
discovery.com/2014/04/1ibrary-04-connect-stm32f429-discovery-to-
computer-with-usart/
* @{
*
* <b>Library works for all 8 U(S)ARTs which are supported on
STM32F4xx devices.</b>

\par USART receive interrupt handlers

X X X X

Every USART channel has it's own receive interrupt which
stores incoming data into cyclic buffer.

* If you want to use your own receive handler, then you have to
open defines.h files and set a define.

@verbatim

//Use custom IRQ Receive handler

//Change X with possible U(S)ARTs: USART1, USART2, USART3, UART4,
UARTS5, USART6, UART7, UARTS

#define TM X USE CUSTOM IRQ

@endverbatim

* After you set define, you have to create a function, which
will handle custom request
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@verbatim

//Change X with possible U(S)ARTs: USART1, USART2, USART3, UARTY4,
UARTS5, USART6, UART7, UARTS

//Parameter c i1s a received character

void TM X ReceiveHandler (uint8 t c) {

//Do your stuff here when byte is received
}
@endverbatim
* @note If you use custom receive interrupt handler, then

incoming data is not stored in internal buffer

\par USART Internal cyclic buffer

X X X X

In your project you can set internal cyclic buffer length,
default is 32Bytes, with:
@verbatim
//Set buffer sie for all buffers
#define USART BUFFER SIZE number of bytes
@endverbatim
* in your project's defines.h file. This will set default length
for each buffer.
* So if you are working with F429 (it has 8 U(S)ARTs) then you
will use 8kB RAM if
* you set define above to 1024.
*
* As of version 2.0, you can now set different buffer sizes for
different U(S)ARTs.
* If you don't change anything, then all USART's have buffer
length of value, stored in
* <code>USART BUFFER SIZE</code> define. If you want let's say
just for USART1 to be 1kB, but others default value,
* you can add define below in defines.h file:
@verbatim
//Buffer length for USART1 is 1kB, for others is still
TM USART BUFFER SIZE
#define TM USART1 BUFFER SIZE 1024
@endverbatim

* Other possible settings are (for other U(S)ARTs):
- TM USART1 BUFFER SIZE

- TM USART2 BUFFER SIZE

- TM USART3 BUFFER SIZE

- TM UART4 BUFFER SIZE

- TM UART5 BUFFER SIZE

TM USART6 BUFFER SIZE

- TM UART7 BUFFER SIZE

- TM UART8 BUFFER SIZE

\par Custom string delimiter for @ref TM USART Gets () function

P . R S . S S S
|

As of version 2.5, you can now set custom string delimiter for
@ref TM USART Gets() function.
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* By default, LF
select custom character

TM USART SetCustomStringEndCharacter ()

*

* \par Pinout
*

(Line Feed)
using @ref

@verbatim

|PINSPACK 1
U (S)ARTX | TX RX
USART1 | PAS PA10
USART?2 | PA2 PA3
USART3 | PB10O PB11
UART4 | PAO PAl
UARTS | PC12 PD2
USART®6 | PC6 PC7
UART7 | PE8 PE7
UARTS | PE1 PEO
@endverbatim

*

* In case these pins are not good

character was used, but now you can

function.

| PINSPACK 2

| TX RX

| PB6 PB7

| PD5 PD6
|PC10 PC1l1
|PC10 PC1l1

| — —

| PG14 PG9

| PE7 PF6

for you,

| PINSPACK 3
| TX RX
= -
= -

| PD8 PDS

you can use

* TM USART PinsPack Custom in function and callback function

will be called,

* where you can initialize your custom pinout for your USART

peripheral

b S R S S S

fill settings
@verbatim

In this section,

Open \ref defines.h file,

\par Change USART default operation modes

you can change USART functionality.
Do this only in case you know what are you doing!

copy define you want to change and

//Change X with possible U(S)ARTs: USART1, USARTZ2, USART3, UART4,
UARTS, USART6, UART7, UARTS8

//Set flow control

#define TM X HARDWARE FLOW CONTROL

TM USART HardwareFlowControl None

//Set mode

#define TM X MODE
USART Mode Rx

//Set parity

#define TM X PARITY

//Set stopbits

#define TM X STOP BITS
//Set USART datasize
#define TM X WORD LENGTH

@endverbatim
*

* \par Changelog

*
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@verbatim
Version 2.5
- April 15, 2015
- Added support for custom character for string delimiter

Version 2.4
- April 09, 2015
- Added support for new function
TM USART InitWithFlowControl ()

Version 2.3.2
- March 21, 2015
- Code optimizations

Version 2.3.2
- March 17, 2015
- Added support for Doxygen

Version 2.3
- March 14, 2015
- Added support for STM32F446xx devices

- Changed function name for custom pins initialization
callback

Version 2.2
- March 10, 2015

- Updated to be more independent of STD/HAL drivers but still
not totally

Version 2.1
- March 08, 2015
- Output pins are more clear initialized.

- TM GPIO library is now required to get USART to work
properly

Version 2.0
- December 21, 2014
- New cyclic buffer system,
each U(S)ART can have different buffer size (less RAM can
be used for USART purpose)
- Added function to check if buffer is full,
- TM USART Gets now returns O till '\n' is not available in
buffer or buffer is full
Useful for prevent infinite loop if '\n' never happen

Version 1.0
- First release

@endverbatim
*

* \b Dependencies
*

@verbatim
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- STM32
- STM32
- STM32
- STM32

Fdxx

Fdxx RCC
Fidxx GPIO
Fdxx USART

- attributes.h

- defin

- TM GP
@endverb

*/
#include
#include
#include
#include
#include
#include
#include
#include

/* F405/
#1f defi
#define
#define
#define
#define
#define
#define
fendif

/* F427/

#if defined (STM32F427 437xx)

#define
#define
#define
#define
#define
#define
#define
#define
#endif

/* F401/
#if defi
#define
#define
#define
#endif

/**

es.h
10
atim

"misc.h"
"stm32f4xx.h"
"stm32f4xx rcc.h"
"stm32f4xx gpio.h"
"stm32f4xx usart.h"
"attributes.h"
"defines.h"

"tm stm32f4 gpio.h"

407/415/417/F446 */
ned (STM32F40 41xxx)
USE USARTIL

USE USART2

USE USART3

USE UART4

USE UARTS

USE USARTG6

429/437/439 */

USE_USART1
USE_USART?2
USE_USARTS3
USE_UART4
USE_UARTS5
USE_USART6
USE_UART7
USE_UARTS

411 */

ned (STM32F401xx) ||
USE USARTIL

USE USART2

USE USART6

| | defined (STM32F446xx)

|| defined (STM32F429 439xx)

defined (STM32F411xE)

* @defgroup TM USART Typedefs

* @brie
* @{
*/

f USART Typedefs
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/**
* @brief USART PinsPack enumeration to select pins combination
for USART

*/
typedef enum {
TM USART PinsPack 1, /*!< Select PinsPackl from Pinout
table for specific USART */
TM USART PinsPack 2, /*!< Select PinsPack2 from Pinout
table for specific USART */
TM USART PinsPack 3, /*!1< Select PinsPack3 from Pinout

table for specific USART */
TM USART PinsPack Custom /*!< Select custom pins for
specific USART, callback will be called, look @ref
TM USART InitCustomPinsCallback */
} T™M USART PinsPack t;

/**

* @brief USART Hardware flow control selection

* (@note Corresponsing pins must be initialized in case you
don't use "None" options

*/

typedef enum {
TM USART HardwareFlowControl None = 0x0000, /*!< No flow

control */
TM USART HardwareFlowControl RTS

0x0100, /*1< RTS flow
control */

TM USART HardwareFlowControl CTS 0x0200, /*!< CTS flow
control */

TM USART HardwareFlowControl RTS CTS = 0x0300 /*!< RTS and
CTS flow control */

} TM USART HardwareFlowControl t;

/**
* @}
*/
/**
* @defgroup TM USART Macros
@brief USART default values for defines
* @{

*

*

All values can be overwritten in your project's defines.h
file.

*

* Do this only in case you know what are you doing.

*/

/* Default buffer size for each USART */
#ifndef USART_BUFFER_SIZE

#define USART_BUFFER_SIZE 32
#endif
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*/
#ifndef TM USART1 BUFFER SIZE
#define TM USART1 BUFFER_SIZE
fendif
#ifndef TM USART2 BUFFER SIZE
#define TM USART2 BUFFER SIZE
fendif
#ifndef TM USART3 BUFFER_SIZE
#define TM USART3 BUFFER SIZE
#endif
#ifndef TM UART4 BUFFER SIZE
#define TM UART4 BUFFER SIZE
#endif
#ifndef TM UART5 BUFFER SIZE
#define TM UARTS BUFFER SIZE
fendif
#ifndef TM USART6 BUFFER SIZE
#define TM_USART6_BUFFER_SIZE
fendif
#ifndef TM UART7 BUFFER SIZE
#define TM UART7 BUFFER SIZE
fendif
#ifndef TM UART8 BUFFER SIZE
#define TM UART8 BUFFER SIZE
fendif
/* NVIC Global Priority */
#ifndef USART NVIC PRIORITY
#define USART NVIC PRIORITY
#endif
/* U(S)ART settings, can be changed in your
file */

/* Set default buffer size for specific USART if not set by user

/* USART1 default settings */

#ifndef TM USART1 HARDWARE FLOW CONTROL
#define TM USART1 HARDWARE FLOW CONTROL
TM USART HardwareFlowControl None
#endif

#ifndef TM USART1 MODE

#define TM USART1 MODE

USART Mode Tx | USART Mode Rx

#endif

#ifndef TM USART1 PARITY

#define TM USART1 PARITY

#endif

#ifndef TM USART1 STOP BITS

#define TM USART1 STOP BITS

#endif

#ifndef TM USART1 WORD LENGTH

#define TM USART1 WORD LENGTH

USART WordLength 8b
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#endif

/* USART2 default settings */

#ifndef TM USART2 HARDWARE FLOW_ CONTROL

#define TM USART2 HARDWARE FLOW CONTROL

TM USART HardwareFlowControl None

#endif

#ifndef TM_USART2_MODE

#define TM USART2 MODE

USART Mode Tx | USART Mode Rx

#endif

#ifndef TM USARTZ2 PARITY

#define TM USART2 PARITY USART Parity No
#endif

#ifndef TM USART2 STOP BITS

#define TM USART2 STOP BITS USART StopBits 1
#endif

#ifndef TM_USARTZ_WORD_LENGTH

#define TM USART2 WORD LENGTH

USART WordLength 8b

#endif

/* USART3 default settings */

#ifndef TM USART3 HARDWARE FLOW CONTROL

#define TM USART3 HARDWARE FLOW CONTROL

TM USART HardwareFlowControl None

fendif

#ifndef TM USART3 MODE

#define TM_USART3_MODE

USART Mode Tx | USART Mode Rx

#endif

#ifndef TM USART3 PARITY

#define TM_USART3_PARITY USART_Parity_NO
#endif

#ifndef TM USART3 STOP BITS

#define TM USART3 STOP BITS USART StopBits 1
fendif

#ifndef TM USART3 WORD LENGTH

#define TM USART3 WORD LENGTH

USART WordLength 8b

#endif

/* UART4 default settings */

#ifndef TM UART4 HARDWARE FLOW_CONTROL

#define TM UART4 HARDWARE FLOW_CONTROL

TM USART HardwareFlowControl None

#endif

#ifndef TM UART4 MODE

#define TM_UART4_MODE USART_Mode_TX |
USART Mode Rx

#endif

#ifndef TM UART4 PARITY
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#define TM UART4 PARITY

USART Parity No

#endif

#ifndef TM UART4 STOP BITS

#define TM UART4 STOP BITS USART StopBits 1
#endif

#ifndef TM UART4 WORD LENGTH

#define TM UART4 WORD LENGTH

USART WordLength 8b

#endif

/* UART5 default settings */

#ifndef TM UART5 HARDWARE FLOW_CONTROL

#define TM UART5 HARDWARE FLOW_ CONTROL

TM USART HardwareFlowControl None

#endif

#ifndef TM UARTS5 MODE

#define TM UARTS5 MODE USART Mode Tx |
USART Mode Rx

#endif

#ifndef TM UARTS5 PARITY

#define TM UARTS5 PARITY

USART Parity No

#endif

#ifndef TM UART5 STOP BITS

#define TM UART5 STOP BITS USART StopBits 1

#endif

#ifndef TM UART5 WORD LENGTH

#define TM UART5 WORD LENGTH

USART WordLength 8b

fendif

/* USART6 default settings */

#ifndef TM USART6 HARDWARE FLOW_ CONTROL

#define TM USART6 HARDWARE FLOW CONTROL

TM USART HardwareFlowControl None

#endif

#ifndef TM USART6 MODE

#define TM USART6 MODE

USART Mode Tx | USART Mode Rx

fendif

#ifndef TM USART6 PARITY

#define TM USART6 PARITY USART Parity No
fendif

#ifndef TM USART6 STOP BITS

#define TM USART6 STOP BITS USART StopBits 1
fendif

#ifndef TM USART6_ WORD LENGTH

#define TM USART6_ WORD LENGTH

USART WordLength 8b

#endif
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/* UART7 default settings */

#ifndef TM UART7 HARDWARE FLOW_CONTROL

#define TM UART7 HARDWARE FLOW_CONTROL

TM USART HardwareFlowControl None

#endif

#ifndef TM UART7 MODE

#define TM_UART7_MODE USART_Mode_Tx |
USART Mode Rx

#endif

#ifndef TM UART7 PARITY

#define TM UART7 PARITY

USART Parity No

#endif

#ifndef TM UART7 STOP BITS

#define TM UART7 STOP BITS USART StopBits 1

#endif

#ifndef TM UART7 WORD LENGTH

#define TM UART7 WORD LENGTH

USART WordLength 8b

#endif

/* UART8 default settings */

#ifndef TM UART8 HARDWARE FLOW CONTROL

#define TM UART8 HARDWARE FLOW CONTROL

TM USART HardwareFlowControl None

#endif

#ifndef TM UART8 MODE

#define TM UARTS8 MODE USART Mode Tx |
USART Mode Rx

#endif

#ifndef TM UART8 PARITY

#define TM UART8 PARITY

USART Parity No

#endif

#ifndef TM UART8 STOP BITS

#define TM UART8 STOP BITS USART StopBits 1

#endif

#ifndef TM UART8 WORD LENGTH

#define TM UART8 WORD LENGTH

USART WordLength 8b

#endif

/**
* @brief Wait till USART finishes transmission
*/
#define USART_TXEMPTY(USARTX) ( (USARTx) ->SR &
USART FLAG TXE)
#define USART_WAIT(USARTX) do { while
(!USART_TXEMPTY(USARTX)); } while (0)

/**
* @brief Default string delimiter for USART
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*/
#define USART STRING DELIMITER "\n'

/**
* @}
*/

/**
* @defgroup TM USART Functions
* @brief USART Functions
* @
*/

/**
* @brief Initializes USARTx peripheral and corresponding pins
* @param *USARTx: Pointer to USARTx peripheral you will use
* (@param pinspack: This parameter can be a value of @ref
TM USART PinsPack t enumeration
* (@param baudrate: Baudrate number for USART communication
* @retval None
*/
void TM_USART_Init(USART_TypeDef* USARTx, TM_USART_PinSPack_t
pinspack, uint32 t baudrate);

/**
* @brief 1Initializes USARTx peripheral and corresponding pins
with custom hardware flow control mode

* @note Hardware flow control pins are not initialized. Easy
solution is to use @arg TM USART PinsPack Custom pinspack option
* when you call @ref TM USART Init () function and

initialize all USART pins at a time inside @ref
TM USART InitCustomPinsCallback ()

* callback function, which will be called from my
library

* @param *USARTx: Pointer to USARTx peripheral you will use

* (@param pinspack: This parameter can be a value of @Qref
TM USART PinsPack t enumeration

* (@param baudrate: Baudrate number for USART communication

* @param FlowControl: Flow control mode you will use. This
parameter can be a value of Qref TM USART HardwareFlowControl t
enumeration

* @retval None

*/

void TM USART InitWithFlowControl (USART TypeDef* USARTX,

TM USART PinsPack t pinspack, uint32 t baudrate,
TM USART HardwareFlowControl t FlowControl);

/**
* @brief Puts character to USART port
* @param *USARTx: Pointer to USARTx peripheral you will use
* @param c: character to be send over USART
*

@retval None
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*/
static ___INLINE void TM USART Putc (USART TypeDef* USARTX,
volatile char c) {
/* Check USART if enabled */
if ((USARTx->CR1 & USART CR1 UE)) ({
/* Wait to be ready, buffer empty */
USART_WAIT(USARTX);
/* Send data */
USARTx->DR = (uintl6_t) (c & OxO0lFF);
/* Wait to be ready, buffer empty */
USART WAIT (USARTX) ;

}

/**
* @brief Puts string to USART port
* @param *USARTx: Pointer to USARTx peripheral you will use
* @param *str: Pointer to string to send over USART
* @retval None
*/
void TM USART Puts (USART TypeDef* USARTx, char* str);

/**

@brief Sends data array to USART port

@param *USARTx: Pointer to USARTx peripheral you will use
@param *DataArray: Pointer to data array to be sent over

*

USART
* (@param count: Number of elements in data array to be send
over USART
* @retval None
*/
void TM USART Send(USART TypeDef* USARTx, uint8 t* DataArray,
uintlé6 t count);

/**
* @brief Gets character from internal USART buffer
* @param *USARTx: Pointer to USARTx peripheral you will use
* @retval Character from buffer, or 0 if nothing in buffer
*/

uint8 t TM USART Getc (USART TypeDef* USARTX) ;

/**
@brief Gets string from USART

This function can create a string from USART received
data.

It generates string until "\n" is not recognized or
buffer length is full.

*

* @note As of version 1.5, this function automatically adds
O0x0A (Line feed) at the end of string.
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* @param *USARTx: Pointer to USARTx peripheral you will use

* @param *buffer: Pointer to buffer where data will be stored
from buffer

* @param bufsize: maximal number of characters we can add to
your buffer, including leading zero

* @retval Number of characters in buffer

*/

uintl6 t TM USART Gets (USART TypeDef* USARTx, char* buffer,

uintl6 t bufsize);

/**
* @brief Checks if character c is available in internal buffer
* @param *USARTx: Pointer to USARTx peripheral you will use
* @param c: character to check if it is in USARTx's buffer
* @retval Character status:
* - 0: Character was not found
* - > 0: Character has been found in buffer
*/
uint8 t TM USART FindCharacter (USART TypeDef* USARTx, uint8 t c);
/**
* @brief Checks if internal USARTx buffer is empty
* (@param *USARTx: Pointer to USARTx peripheral you will use
* @retval Buffer empty status:
* - 0: Buffer is not empty
* - > 0: Buffer is empty
*/
uint8 t TM USART BufferEmpty (USART TypeDef* USARTX) ;
/**
* @brief Checks if internal USARTx buffer is full
* @param *USARTx: Pointer to USARTx peripheral you will use
* @retval Buffer full status:
* - 0: Buffer is not full
* - > 0: Buffer is full
*/

uint8 t TM USART BufferFull (USART TypeDef* USARTX) ;

/**
* @brief Clears internal USART buffer
* @param *USARTx: Pointer to USARTx peripheral you will use
* @retval None
*/
void TM USART ClearBuffer (USART TypeDef* USARTX) ;

/*k*

* @brief Sets custom character for @ref TM USART Gets ()
function to detect when string ends

* @param *USARTx: Pointer to USARTx peripheral you will use

* @param Character: Character value to be used as string end

* @note Character will also be added at the end for your
buffer when calling @ref TM USART Gets() function
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* @retval None
*/
void TM USART SetCustomStringEndCharacter (USART TypeDef* USARTX,
uint8 t Character);

/**
* @brief Callback for custom pins initialization for USARTx.
*
* When you call @ef TM USART Init() function, and if you
pass @arg TM USART PinsPack Custom to function,
* then this function will be called where you can

initialize custom pins for USART peripheral.

* @param *USARTx: Pointer to USARTx peripheral you will use for
initialization

* @param AlternateFunction: Alternate function which should be
used for GPIO initialization

* @retval None

* (@note With  weak parameter to prevent link errors if not
defined by user

*/

void TM USART InitCustomPinsCallback (USART TypeDef* USARTX,

uintl6 t AlternateFunction);

/**
* @brief Callback function for receive interrupt on USART1 in
case you have enabled custom USART handler mode
* @note With  weak parameter to prevent link errors if not
defined by user
* @param c: character received via USART
* @retval None
*/
__weak void TM USART1 ReceiveHandler (uint8 t c);

/**
* @brief Callback function for receive interrupt on USART2 in
case you have enabled custom USART handler mode
* @note With  weak parameter to prevent link errors if not
defined by user
* (@param c: character received via USART
* @retval None
*/
__weak void TM USARTZ2 ReceiveHandler (uint8 t c);

/*k*
* @brief Callback function for receive interrupt on USART3 in
case you have enabled custom USART handler mode
* @note With  weak parameter to prevent link errors if not
defined by user
* @param c: character received via USART
* @retval None
*/
__weak void TM USART3 ReceiveHandler (uint8 t c);
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/**
* @brief Callback function for receive interrupt on UART4 in
case you have enabled custom USART handler mode
* (@note With  weak parameter to prevent link errors if not
defined by user
* @param c: character received via USART
* @retval None
*/
__weak void TM UART4 ReceiveHandler (uint8 t c);

/**
* @brief Callback function for receive interrupt on UARTS5 in
case you have enabled custom USART handler mode
* @note With  weak parameter to prevent link errors if not
defined by user
* @param c: character received via USART
* @retval None
*/
__weak void TM UARTS5 ReceiveHandler (uint8 t c¢);

/**
* @brief Callback function for receive interrupt on USART6 in
case you have enabled custom USART handler mode
* @note With  weak parameter to prevent link errors if not
defined by user
* @param c: character received via USART
* @retval None
*/
__weak void TM USART6 ReceiveHandler (uint8 t c);

/**
* @brief Callback function for receive interrupt on UART7 in
case you have enabled custom USART handler mode
* @note With  weak parameter to prevent link errors if not
defined by user
* @param c: character received via USART
* @retval None
*/
__weak void TM UART7 ReceiveHandler (uint8 t c);

/**
* @brief Callback function for receive interrupt on UARTS8 in
case you have enabled custom USART handler mode
* @note With  weak parameter to prevent link errors if not
defined by user
* @param c: character received via USART
* @retval None
*/
___weak void TM UART8 ReceiveHandler (uint8 t c);

/‘k*
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* @)
*/

/**
* @}
*/

/**

* @}

*/
/* C++ detection */
#ifdef  cplusplus
}
#endif

#endif

A.2.21. tm_stm32f4_vcp

/‘k*

* @author Tilen Majerle

* @email tilen@majerle.eu

* @website http://stm32f4-discovery.com
*

@link http://stm32f4-discovery.com/2014/08/1ibrary-24-
virtual-com-port-vcp-stm32fidxx/

@version v1.2

@ide Keil uVision

@license GNU GPL v3

@brief USB Virtual COM Port for STM32F4xx devices

P

@verbatim

Copyright (C) Tilen Majerle, 2015

This program is free software: you can redistribute it and/or
modify

it under the terms of the GNU General Public License as
published by

the Free Software Foundation, either version 3 of the
License, or

any later version.

This program is distributed in the hope that it will be
useful,

but WITHOUT ANY WARRANTY; without even the implied warranty
of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.
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You should have received a copy of the GNU General Public
License

along with this program. If not, see
<http://www.gnu.org/licenses/>.

@endverbatim

*/

#ifndef TM USB VCP H
#define TM USB VCP_H 120

/* C++ detection */
#ifdef  cplusplus
extern "C" {

#endif

/**

* Qaddtogroup TM STM32F4xx Libraries
* @{

*/

/**

* @defgroup TM USB VCP

* @brief USB Virtual COM Port for STM32F4xx devices -
http://stm32f4-discovery.com/2014/08/library-24-virtual-com-port-vcp-
stm32fdxx/

* @{

*

* With this library, your STM32F4xx will be seen to your
computer as Virtual COM Port (VCP).

* To be able to work, you have to install ST's VCP Driver, from
link below:

http://www.st.com/web/en/catalog/tools/PF257938

This library can work in 2 ways.

First and default is Full-Speed mode, second option is High-
Speed mode.

Also, different modes have different pinouts.

X % X x X%

In default settings, USB FS mode is selected.

STM32F4-Discovery has USB connected to FS mode, but
STM32F429-Discovery has connected it to USB HS in FS mode.
But if you have cable, like me, USB->4wires, you can connect
Data+ and Data- to any pin on Discovery board.

* I did this, to check, if both mdoes work on bots discovery
boards and yes, it worked.

* For security reasons set 220hm resistors in serial to your
data pins.

*

* USB FS MODE (micro USB connected on STM32F4 Discovery board)
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* - This is default option and don't need any special
settings.
*

* \par Pinout for USB FS mode

*

@verbatim

USB STM32F4xx
Data + PAl12

Data - PAl1
@endverbatim

*

* USB HS in FS mode (micro USB connected on STM32F429 Discovery
board)

* If you are working with STM32F429 Discovery board, and you
want to use microUSB connector for VCP,
* then set define below in your defines.h file
*
@verbatim
//Activate USB HS in FS mode
#define USE USB OTG HS
@endverbatim
*

* \par Pinout for USB HS in FS mode

*

@verbatim

USB STM32F4xx
Data + PB15

Data - PR14
@endverbatim

*
*
* \par Changelog
*
@verbatim
Version 1.2
- March 08, 2015
- Added options to get user settings from terminal
- Baudrate, stop bits, parity, data bits.
- Useful if you make USB->UART converter like FTDI

Version 1.1
- December 27, 2014
- Added advanced functions for string operations
- Now, Gets function will wait till buffer is full or \n is
received
- This 1is prevent for while loop if \n character is not
received

Version 1.0
- First release
@endverbatim
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*

* \par Dependencies
*

@verbatim

- STM32F4xx

- STM32F4xx RCC
- STM32F4xx GPIO
- STM32F4xx EXTI
- misc.h

- defines.h

- USB CDC DEVICE
@endverbatim

*/

#include "stm32f4xx.h"
#include "stm32f4xx rcc.h"
#include "stm32f4xx gpio.h"
#include "stm32f4xx exti.h"
#include "misc.h"

#include "defines.h"

/* Parts of USB device */

#include "usb vcp/usbd cdc core.h"
#include "usb vcp/usb conf.h"
#include "usb vcp/usbd desc.h"
#include "usb vcp/usbd cdc _vcp.h"

/**
* @defgroup TM USB VCP Macros
* Q@brief Library defines
* @{
*/

/**

* @brief Default buffer length

* (@note Increase this value if you need more memory for VCP
receive data

*/

#ifndef USB VCP RECEIVE BUFFER LENGTH

#define USB VCP RECEIVE BUFFER LENGTH 128

fendif

/**
* @}
*/

/*k*
* @defgroup TM USB VCP_ Typedefs
* (@brief Library Typedefs
* @{
*/
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/**
* @brief VCP Result Enumerations
*/

typedef enum {

™™ USB_VCP_OK, /*1< Everything ok */
TM USB_VCP ERROR, /*!< An error occurred */
TM USB_VCP_RECEIVE BUFFER FULL, /*!< Receive buffer is full
*/
TM USB_VCP_DATA OK, /*!< Data OK */
TM USB VCP DATA EMPTY, /*1< Data empty */
TM USB_VCP_NOT CONNECTED, /*!< Not connected to PC */
TM USB_VCP CONNECTED, /*!< Connected to PC */
TM USB VCP DEVICE SUSPENDED, /*1< Device is suspended */
TM USB VCP DEVICE RESUMED /*!< Device is resumed */
} TM USB VCP Result;
/**
* @brief Structure for USART if you are working USB/UART
converter with STM32F4xx
*/
typedef struct {
uint32 t Baudrate; /*!< Baudrate, which is set by user on
terminal.

Value is number of bits per second,

for example: 115200 */
uint8 t Stopbits;

/*1< Stop bits,

which is set by user on

terminal.
Possible values:
- 0: 1 stop bit
- 1: 1.5 stop bits
- 2: 2 stop bits */
uint8 t DataBits; /*!< Data bits, which is set by user on
terminal.
Possible values:
- 5: 5 data bits
- 6: 6 data bits
- 7: 7 data bits
- 8: 8 data bits
- 9: 9 data bits */
uint8 t Parity; /*1< Parity, which is set by user on
terminal.
Possible values:
- 0: No parity
- 1: 0dd parity
- 2: Even parity
- 3: Mark parity
- 4: Space parity */
uint8 t Changed; /*!< When you check for settings in my
function,

this will be set to 1 if user has

changed parameters,
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so you can reinitialize USART

peripheral if you need to. */

} TM USB _VC
/**

* @}

*/

/**

P Settings t;

* @defgroup TM USB VCP Functions

* @brief
* @
*/

/**
* Q@brief
* (@param
* Qretval
*/
TM USB_VCP_

/**
* Qbrief
* @note
* @param

Library Functions

Initializes USB VCP
None
TM USB_VCP_OK

Result TM USB VCP Init (void);
Reads settings from user

These settings are set in terminal on PC
*Settings: Pointer to TM USB VCP Settings t structure

where to save data

* @retval

*/

TM_USB_VCP_OK

TM USB VCP Result TM USB VCP GetSettings(TM USB VCP Settings t*

Settings);

/**
* @brief
* @param
* @Qretval
*
*c_str
*

*/

Gets received character from internal buffer
*c: pointer to store new character to
Character status:
- TM USB _VCP_DATA OK: Character is valid inside

- TM USB_VCP_DATA EMPTY: No character in *c

TM USB VCP Result TM USB VCP Getc(uint8 t* c);

/**
* Q@brief
* @param
* Qretval

*/

Puts character to USB VCP
c: character to send over USB
TM_USB_VCP_OK

TM USB VCP Result TM USB VCP Putc(volatile char c);

/**
* Q@brief

*

Gets string from VCP port
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* @note To use this method, you have to send \n (0x0D) at the
end of your string,

* otherwise data can be lost and you will fall in
infinite loop.

* @param *buffer: Pointer to buffer variable where to save
string

* (@param bufsize: Maximum buffer size

* @retval Number of characters in buffer:

* - 0: String not wvalid

* - > 0: String valid, number of characters inside
string

*/

uintlé t TM USB VCP Gets (char* buffer, uintl6 t bufsize);

/**
* @brief Puts string to USB VCP
* @param *str: Pointer to string variable
* @retval TM USB VCP OK
* / - o o
TM USB VCP Result TM USB VCP Puts(char* str);

/**
* @brief Sends array of data to USB VCP
* (@param *DataArray: Pointer to 8-bit data array to be sent
over USB
* (@param Length: Number of elements to sent in units of bytes
* @retval Sending status
*/
TM USB VCP Result TM USB VCP Send(uint8 t* DataArray, uint32 t
Length) ;

/**
* @brief Gets VCP status
* @param None
* @retval Device status:
* - TM USB _VCP CONNECTED: Connected to computer
* - other: Not connected and not ready to communicate
*/
TM USB VCP Result TM USB VCP GetStatus(void);
/**
* @brief Checks if receive buffer is empty
* @param None
* @retval Buffer status:
* - 0: Buffer is not empty
* - > 0: Buffer is empty
*/

uint8 t TM USB VCP BufferEmpty(void);

/**
* @brief Checks if receive buffer is fukk
* @param None
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* @retval Buffer status:

* - 0: Buffer is not full
* - > 0: Buffer is full
*/

uint8 t TM USB VCP BufferFull (void);

/**
* @brief Checks if character is in buffer
* (@param c: Character to be checked if available in buffer
* @Qretval Character status:
* - 0: Character is not in buffer
* - > 0: Character is in buffer
*/

uint8 t TM USB VCP FindCharacter(volatile char c¢);

/* Internal functions */
extern TM USB VCP Result TM INT USB VCP AddReceived(uint8 t c);

/**
* @}
*/

/**
* @}
*/

/**

* @}

*/
/* C++ detection */
#ifdef  cplusplus
}
#endif

#endif
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A.3. C Files for Experimental System
A.3.1. Main.c
#include <tm stm32f4 usb vcp.h>
#include <tm stm32f4 disco.h>

#include <tm stm32f4 delay.h>

#define HIGH 1
#define LOW O

// simple packet protocol stuff

#include <packet/SimplifiedPacketProtocol.h>
#include "RTC Initialization.h"
#include "pdm filter.h"

#include "DC Motor Initializations.h"
#include "DC Motor Actuation.h"
#include "DC Motor PID.h"

#include "Stepper Initializations.h"
#include "Stepper Actuation.h"
#include "Stepper Motor Actuation.h"
#include "ADC Initialization.h"
#include "ADC Measurement.h"

#include "ENC Initialization.h"
#include "ENC measurement.h"

#include "IMU Initialization.h"
#include "IMU measurement.h"
//#include "DCtest.h"

//#include "ENC packet.h"

//#include "ADC packet.h"

//#include "IMU Fill packet.h"

//Define Global Variables
int waypoint = 0; // For Debug

/***********DC Motor variables***********/

float Power[4] = {20, 20, 20, 20};

float WheelVelocity[4] = {0, 0, 0, 0};
float VelocityError[4] = {0, 0, 0, 0};
float VelocitySetpoint[4] {0, 0, 0, 0%};
float IntegralError[4] = {0, 0, 0, 0};

[xFFxAFxAFxStepper Motor Variableg**xxxxixx/
//uint32 t CCR[4] = {21000,21000,21000,21000};
//uint32 t CCRs[4] = {60000,60000,0,60000};
uint32 t CCRs[4] = {0,60000,0,0};

uint32 t CCRper[4] = {5000,15000,15000,15000};
float SteeringAngle[4] = {0, 0};

0, 0,
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float SteeringSetpoint([4]= {0, 0, 0, 0};
uint32 t StepperAction[4] = {

/*********IMU Variables*********/
float IMU[4] = {0,0,0,0%};

TM RTC Time t Time;

int main (void) {
// Setup
SystemInit () ;
RCC_HSEConfig (RCC_HSE ON) ;
while(!RCC_WaitForHSEStartUp()){;}

SimplePacket sp;
SP reset (&sp);

TM DISCO_ LedInit();
TM DISCO SetLed (LED RED, HIGH);

TM USB VCP Init(); //initialize the Virtual
COM Port //KEK edit

while (TM_USB VCP GetStatus() != TM USB VCP CONNECTED) { ; }
// walit for successful connection //KEK edit

TM _DELAY Init();

TM DISCO SetLed(LED RED, LOW) ;
TM DISCO_SetLed(LED GREEN, HIGH); // USB is good to go

/**********************************************************
****************************/

//DC Motor Configurations
//DC_GPIO Initializations();
//DC_TIM Init(); //Initialize the DC motor TIM
ports

/**********************************************************

****************************/
//IMU Initualizations

//IMU Initializations(); //Initialize the IMU pins
//Zero IMU Rate Bias();

/**********************************************************
****************************/

//Encoder Configurations
//GPIO__ Encoder and TIM Initializations();

/**********************************************************

****************************/

//ADC Configurations
//RCC_Configuration();
//GPIO__ Potentiometer Initializations();
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//ADC_Configuration();

//DMA Configuration (motorValues);
//ADC_DMARequestAfterLastTransferCmd (ADC1l, ENABLE) ;
//ADC_DMACmd(ADCl, ENABLE) ;

//ADC_Cmd(ADCl, ENABLE) ;
//ADC_SoftwareStartConv (ADC1) ;

/*********************************************************************
*****************/

//Stepper Configurations
//Stepper GPIO Initialization();
//Stepper TIM 9 Init();
//Stepper TIM 10 Init();
//Stepper TIM 11 Init();
//Stepper TIM 12 Init()

4

/**********************************************************
****************************/

//RTC Initialization

//TM RTC Init (TM RTC ClockSource Internal);
/**********************************************************

****************************/

//float SteeringStart[4];

//SteeringMotorAngles (SteeringStart, &waypoint, 0);
//SteeringMotorAngles (SteeringAngle) ;

//Delayms (3000) ;

while (1) {
//SteeringMotorAngles (SteeringAngle) ;
//DC_Motor Actuate (Power) ;

//Get Wheel Velocity (WheelVelocity,VelocitySetpoint,VelocityError
)7
//DC_MOTOR PID (Power,VelocityError,IntegralError);

//Get IMU Data (IMU) ;

char c;
if (TM USB VCP Getc(&c) == TM USB VCP DATA OK) { //
wait for data request

int 1i;
SP_reset (&sp); // clear the buffer
for(i = 0; i < 4; 1++)
SP_addInt(&sp, 3 * i); // testing with
known values

//SteeringMotorAngles (SteeringAngle) ;
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//Stepper Motor Action Determination (SteeringAngle, SteeringSetpoi
nt, StepperAction);
//Stepper Motor Actuate (CCRs,StepperAction);

// send data if VCP port is ready
if (TM _USB VCP GetStatus() ==
TM USB_VCP_CONNECTED) {
TM USB _VCP_Send(sp.buffer, sp.buf size);

// indicate good USB connection

TM DISCO_SetLed(LED GREEN, HIGH) ;

TM DISCO_ SetLed(LED ORANGE, LOW);
} else {

// indicate USB connection error

TM DISCO_SetLed (LED GREEN, LOW);

TM DISCO_SetLed(LED ORANGE, HIGH);

}
// lol, return to what!?
return O;

}

A.3.2. tm_stm32f4_delay

/**

* @author Tilen Majerle

* (@email tilen@majerle.eu

* Qwebsite http://stm32f4-discovery.com

* @link http://stm32f4-discovery.com/2014/04/1ibrary-03-

stm32f429-discovery-system-clock-and-pretty-precise-delay-library/
@version v2.4

@ide Keil uVision

@license GNU GPL v3

@brief Pretty accurate delay functions with SysTick or any

other timer
*

X % x %

@verbatim

Copyright (C) Tilen Majerle, 2015

This program is free software: you can redistribute it and/or
modify

it under the terms of the GNU General Public License as
published by

the Free Software Foundation, either version 3 of the
License, or

any later version.

209



This program is distributed in the hope that it will be

useful,

but WITHOUT ANY WARRANTY; without even the implied warranty
of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public
License

along with this program. If not, see
<http://www.gnu.org/licenses/>.

@endverbatim

*/
#ifndef TM DELAY H
#define TM DELAY H 240

/* C++ detection */
#ifdef  cplusplus
extern "C" {

fendif

/**

* @addtogroup TM STM32F4xx Libraries
* @{

*/

/**
* @defgroup TM DELAY
* @brief Pretty accurate delay functions with SysTick or any
other timer - http://stm32f4-discovery.com/2014/04/1library-03-
stm32f429-discovery-system-clock-and-pretty-precise-delay-library/
* @{
*
@verbatim
If you are using GCC compiler, then your microseconds delay is
probably totally inaccurate.
USE TIMER FOR DELAY, otherwise your delay will not be accurate.

Another way is to use ARM compiler.
@endverbatim
*
* As of version 2.0 you have now two possible ways to make a
delay.
* The first (and default) is Systick timer. It makes interrupts
every lms.
* If you want delay in "us" accuracy, there is simple pooling

(variable) mode.
*

*

210



* The second (better) options is to use one of timers on Fédxx
MCU.

* Timer also makes an interrupts every 1lms (for count time)
instead of lus as it was before.

* For "us" delay, timer's counter is used to count ticks. It
makes a new tick each "us".

* Not all MCUs have all possible timers, so this 1lib has been
designed that you select your own.

\par Select custom TIM for delay functions

X X X X%

By default, Systick timer is used for delay. If you want your
custom timer,
* open defines.h file, add lines below and edit for your needs.
*
\code{.c}
//Select custom timer for delay, here is TIM2 selected.
//If you want custom TIMx, just replace number "2" for your TIM's
number.

#define TM DELAY TIM TIM2
#define TM DELAY TIM IRQ TIM2 IRQn
#define TM DELAY TIM IRQ HANDLER TIM2 IRQHandler
\endcode

*

*

* With this setting (using custom timer) you have better
accuracy in "us" delay.

* Also, you have to know, that if you want to use timer for
delay, you have to include additional files:

- CMSIS:
- STM32F4xx TIM
- MISC
- TM:
TM TIMER PROPERTIES

Delay functions (Delay, Delayms) are now Inline functions.
This allows faster execution and more accurate delay.

L . T S S D S R

If you are working with Keil uVision and you are using Systick
for delay,
* then set KEIL IDE define in options for project:

* - Open "Options for target"

* - Tab "C/C++"

* - Under "Define" add "KEIL IDE", without quotes
*

* \par Custom timers

*

*

Custom timers are a way to make some tasks in a periodic
value.

* As of version 2.4, delay library allows you to create custom
timer which count DOWN and when it reaches zero, callback is called.
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*

* You can use variable settings for count, reload value and auto
reload feature.
*

* \par Changelog
*
@verbatim
Version 2.4
- May 26, 2015
- Added support for custom timers which can be called
periodically

Version 2.3
- April 18, 2015
- Fixed support for internal RC clock

Version 2.2
- January 12, 2015
- Added support for custom function call each time 1lms
interrupt happen
- Function is called TM DELAY ImsHandler (void), with  weak
parameter
- attributes.h file needed

Version 2.1
- GCC compiler fixes
- Still prefer that you use TIM for delay if you are working
with ARM-GCC compiler

Version 2.0
- November 28, 2014
- Delay library has been totally rewritten. Because Systick is
designed to be used
in RTOS, it is not compatible to use it at the 2 places at
the same time.
For that purpose, library has been rewritten.
- Read full documentation above

Version 1.0

- First release
@endverbatim

*

* \par Dependencies
*
@verbatim

- STM32F4xx

- STM32F4xx RCC: Only if you want to use TIMx for delay
instead of Systick

- STM32F4xx TIM: Only if you want to use TIMx for delay
instead of Systick

- MISC

- defines.h
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- TM TIMER PROPERTIES: Only if you want to use TIMx for delay
instead of Systick
- attribute.h
@endverbatim
*/
#include "stm32f4xx.h"
#include "stm32f4xx rcc.h"
#include "defines.h"
#include "attributes.h"
/* If user selectable timer is selected for delay */
#if defined(TM DELAY TIM)
#include "misc.h"
#include "stm32f4xx tim.h"
#include "tm stm32f4 timer properties.h"
#endif
#include "stdlib.h"

/**
* @defgroup TM DELAY Typedefs
* Q@brief Library Typedefs
* @{
*/
/**
* @brief Custom timer structure
*/
typedef struct {
uint32 t ARR; /*!< Auto reload value */
uint32 t AutoReload; /*1< Set to 1 if timer should be
auto reloaded when it reaches zero */
uint32 t CNT; /*1< Counter value, counter
counts down */
uint8 t Enabled; /*!< Set to 1 when timer is
enabled */

void (*Callback) (void *); /*!< Callback which will be
called when timer reaches zero */
void* UserParameters; /*!< Pointer to user parameters
used for callback function */
} TM DELAY Timer t;

/**
* @}
*/

/‘k*

* @defgroup TM DELAY Macros
* Qbrief Library Macros
* @{

*/

/**

* @brief Number of allowed custom timers
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* @note Should be changes in defines.h file if necessary
*/

#ifndef DELAY MAX CUSTOM TIMERS

#define DELAY MAX CUSTOM TIMERS 5

fendif

/* Memory allocation function */
#ifndef LIB ALLOC FUNC

#define LIB ALLOC_ FUNC malloc
#endif

/* Memory free function */
#ifndef LIB FREE FUNC

#define LIB FREE FUNC free
#endif

/**
* @}
*/

/**

* @defgroup TM DELAY Variables
* @brief Library Variables
* @{

*/

/**
* This variable can be used in main
* It is automatically increased every time systick make an
interrupt
*/
extern IO uint32 t TM Time;
extern IO uint32 t TM Time2;
extern IO uint32 t mult;

/**
* @}
*/

/**

* @defgroup TM DELAY Functions
* Q@brief Library Functions
* @{

*/

/**

* (@param Delays for specific amount of microseconds
* @param micros: Time in microseconds for delay

* @retval None

* @note Declared as static inline

*/

static _ INLINE void Delay (uint32 t micros) {
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#if defined(TM DELAY TIM)
volatile uint32 t timer = TM DELAY TIM->CNT;

do {
/* Count timer ticks */
while ((TM_DELAY_TIM—>CNT - timer) == 0);

/* Increase timer */
timer = TM_DELAY_TIM—>CNT;

/* Decrease microseconds */
} while (--micros):;
#else
uint32 t amicros;

/* Multiply micro seconds */
amicros = (micros) * (mult);

#ifdef  GNUC
if (SystemCoreClock == 180000000 || SystemCoreClock ==
100000000) {
amicros —-= mult;
}
#endif

/* If clock is 100MHz, then add additional multiplier */
/* 100/3 = 33.3 = 33 and delay wouldn't be so accurate */
#if defined (STM32F411xE)

amicros += mult;

fendif

/* While loop */

while (amicros-—-);
#endif /* TM DELAY TIM */
}

/**

* @param Delays for specific amount of milliseconds
* @param millis: Time in milliseconds for delay

* @retval None

* @note Declared as static inline

*/
static  INLINE void Delayms (uint32 t millis) {

volatile uint32 t timer = TM Time;

/* Called from thread */

if (! get IPSR()) {
/* Wait for timer to count milliseconds */
while ((TM Time - timer) < millis) {

#ifdef DELAY SLEEP
/* Go sleep, wait systick interrupt */
_ WEFI(Q);
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#endif
}
} else {
/* Called from interrupt */
while (millis) {
if (SysTick->CTRL & SySTick_CTRL_COUNTFLAG_MSk)
millis—--;

}

/**
* @brief Initializes timer settings for delay
* @note This function will initialize Systick or user timer,

according to settings
* @param None
* @retval None
*/
void TM DELAY Init (void);

/**
* @brief Gets the TM Time variable value
* (@param None
* @retval Current time in milliseconds
*/
#define TM DELAY Time () (TM_Time)

/**
* @brief Sets value for TM Time variable
* @param time: Time in milliseconds
* @retval None
*/
#define TM DELAY SetTime (time) (TM Time = (time))

/**
* @brief Re-enables delay timer It has to be configured before
with TM DELAY Init ()
* @note This function enables delay timer. It can be systick
or user selectable timer.
* @param None
* @retval None
*/
void TM DELAY EnableDelayTimer (void);

/**
* @brief Disables delay timer
* @note This function disables delay timer. It can be systick

or user selectable timer.
* @param None
* @retval None
*/
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void TM DELAY DisableDelayTimer (void);

/**
* @brief Gets the TM Time2 variable value
* @param None
* @retval Current time in milliseconds

* @note This is not meant for public use

*/
#define TM DELAY Time2 () (TM_Time2)
/**

* @brief Sets value for TM Time variable
* @param time: Time in milliseconds
* @retval None

* @note This is not meant for public use
*/
#define TM DELAY SetTime2 (time) (TM Time2 = (time))
/**
* @brief Creates a new custom timer which has 1lms resolution
* @note It uses @ref malloc for memory allocation for timer
structure

* (@param ReloadValue: Number of milliseconds when timer reaches
zero and callback function is called

* (@param AutoReload: If set to 1, timer will start again when
it reaches zero and callback is called

* (@param StartTimer: If set to 1, timer will start immediately

* @param *TM DELAY CustomTimerCallback: Pointer to callback
function which will be called when timer reaches zero

* @param *UserParameters: Pointer to void pointer to user
parameters used as first parameter in callback function

* @retval Pointer to allocated timer structure

*/

TM DELAY Timer t* TM DELAY TimerCreate (uint32 t ReloadValue,

uint8 t AutoReload, uint8 t StartTimer, void
(*ITM DELAY CustomTimerCallback) (void *), void* UserParameters);

/**
* @brief Deletes already allocated timer
* @param *Timer: Pointer to @ref TM DELAY Timer t structure
* @retval None
*/
void TM DELAY TimerDelete (TM DELAY Timer t* Timer);

/**
* @brief Stops custom timer from counting
* @param *Timer: Pointer to @ref TM DELAY Timer t structure
* @retval Pointer to @ref TM DELAY Timer t structure
*/
TM DELAY Timer t* TM DELAY TimerStop (TM DELAY Timer t* Timer);

/‘k*
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* @brief Starts custom timer counting
* @param *Timer: Pointer to @ref TM DELAY Timer t structure
* @retval Pointer to @ref TM DELAY Timer t structure
*/
TM DELAY Timer t* TM DELAY TimerStart (TM DELAY Timer t* Timer);

/ * %
* @brief Resets custom timer counter value
* @param *Timer: Pointer to @ref TM DELAY Timer t structure
* @retval Pointer to @ref TM DELAY Timer t structure
*/
TM DELAY Timer t* TM DELAY TimerReset (TM DELAY Timer t* Timer);

/**
* @brief Sets auto reload feature for timer
* @note Auto reload features is used for timer which starts
again when zero is reached if auto reload active
* @param *Timer: Pointer to @ref TM DELAY Timer t structure
* uint8 t AutoReload: Set to 1 if you want to enable AutoReload
or 0 to disable
* @retval Pointer to @ref TM DELAY Timer t structure
*/
TM DELAY Timer t* TM DELAY TimerAutoReload(TM DELAY Timer t*
Timer, uint8 t AutoReload);

/**
* @brief Sets auto reload value for timer
* @param *Timer: Pointer to @ref TM DELAY Timer t structure
* @param AutoReloadValue: Value for timer to be set when zero
is reached and callback is called
* @note AutoReload feature must be enabled for timer in order
to get this to work properly
* @retval Pointer to @ref TM DELAY Timer t structure
*/
TM DELAY Timer t* TM DELAY TimerAutoReloadValue (TM DELAY Timer t*
Timer, uint32 t AutoReloadValue);

/**
* @brief User function, called each 1lms when interrupt from
timer happen
* @note Here user should put things which has to be called
periodically
* @param None
* @retval None
* @note With  weak parameter to prevent link errors if not
defined by user
*/
__weak void TM DELAY lmsHandler (void);

/**
* @}
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*/

/**
* @}
*/

/**

* @}

*/

/* C++ detection */
#ifdef  cplusplus
}
#endif

#endif

A.3.3. tm_stm32f4_gpio

| Copyright (C) Tilen Majerle, 2015

* | This program is free software: you can redistribute it
and/or modify

* | it under the terms of the GNU General Public License as
published by

* | the Free Software Foundation, either version 3 of the
License, or

* | any later version.

o
* | This program is distributed in the hope that it will be

useful,
* | but WITHOUT ANY WARRANTY; without even the implied warranty

of
* | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the
| GNU General Public License for more details.
|
| You should have received a copy of the GNU General Public
License

* | along with this program. If not, see
<http://www.gnu.org/licenses/>.

*/
#include "tm stm32f4 gpio.h"

/* Private function */
static uintl6_t GPIO UsedPins(1l1] = {0,0,0,0,0,0,0,0,0,0,0};
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/* Private functions */

void TM GPIO INT EnableClock (GPIO TypeDef* GPIOX);

void TM GPIO INT DisableClock (GPIO TypeDef* GPIOX);

void TM GPIO_INT Init (GPIO TypeDef* GPIOx, uintl6 t GPIO Pin,
TM GPIO Mode t GPIO Mode, TM GPIO OType t GPIO OType, TM GPIO PuPd t
GPIO PuPd, TM GPIO Speed t GPIO_Speed);

void TM GPIO Init (GPIO TypeDef* GPIOx, uintlé6 t GPIO Pin,
TM GPIO Mode t GPIO Mode, TM GPIO OType t GPIO OType, TM GPIO PuPd t
GPIO PuPd, TM GPIO Speed t GPIO Speed) {
/* Check input */
if (GPIO Pin == 0x00) {
return;

}

/* Enable clock for GPIO */
TM GPIO INT EnableClock (GPIOX) ;

/* Do initialization */
TM GPIO INT Init (GPIOx, GPIO Pin, GPIO Mode, GPIO OType,
GPIO PuPd, GPIO Speed);
}

void TM GPIO InitAlternate (GPIO TypeDef* GPIOx, uintl6 t
GPIO Pin, TM GPIO OType t GPIO OType, TM GPIO PuPd t GPIO PuPd,
TM GPIO Speed t GPIO Speed, uint8 t Alternate) ({
uint32 t pinpos;

/* Check input */
if (GPIO _Pin == 0x00) {
return;

}

/* Enable GPIOx clock */
TM GPIO INT EnableClock (GPIOx) ;

/* Set alternate functions for all pins */
for (pinpos = 0; pinpos < 0x10; pinpos++) {
/* Check pin */
if ((GPIO Pin & (1 << pinpos)) == 0) {
continue;

}

/* Set alternate function */

GPIOx->AFR[pinpos >> 0x03] = (GPIOx->AFR[pinpos >>
0x03] & ~(0x0F << (4 * (pinpos & 0x07)))) | (Alternate << (4 * (pinpos
& 0x07)));

}

/* Do initialization */
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TM_GPIO INT Init (GPIOx, GPIO Pin, TM GPIO Mode AF,
GPIO OType, GPIO PuPd, GPIO_ Speed);
}

void TM GPIO DeInit (GPIO TypeDef* GPIOx, uintl6 t GPIO Pin) {
uint8 t 1i;
uint8 t ptr = TM GPIO GetPortSource (GPIOX);

/* Go through all pins */
for (i = 0x00; 1 < 0x10; i++) {
/* Pin is set */
if (GPIO Pin & (1 << 1)) |
/* Set 11 bits combination for analog mode */
GPIOx->MODER |= (0x03 << (2 * 1));

/* Pin is not used */
GPIO UsedPins|[ptr] &= ~(1 << i);

}

void TM GPIO SetPinAsInput (GPIO TypeDef* GPIOx, uintl6 t
GPIO Pin) {
uint8 t 1i;
/* Go through all pins */
for (i = 0x00; 1 < 0x10; i++) {
/* Pin is set */
if (GPIO Pin & (1 << 1)) {
/* Set 00 bits combination for input */
GPIOxX->MODER &= ~ (0x03 << (2 * 1)),

}

void TM GPIO_ SetPinAsOutput (GPIO TypeDef* GPIOx, uintl6 t
GPTO Pin) {
uint8 t 1i;
/* Go through all pins */
for (i = 0x00; i < 0x10; i++) {
/* Pin is set */
if (GPIO Pin & (1 << 1)) f{
/* Set 01 bits combination for output */
GPIOx->MODER = (GPIOx->MODER & ~ (0x03 << (2 *
1))) | (0x01 << (2 * 1));
}
}
}

void TM GPIO_ SetPinAsAnalog (GPIO TypeDef* GPIOx, uintlé6 t
GPIO Pin) {
uint8 t i;
/* Go through all pins */
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for (i = 0x00; 1 < 0x10; i++) {
/* Pin is set */
if (GPIO Pin & (1 << 1)) {
/* Set 11 bits combination for analog mode */
GPIOx->MODER |= (0x03 << (2 * 1i));

}

void TM GPIO SetPinAsAlternate (GPIO TypeDef* GPIOx, uintl6 t
GPIO Pin) {

uint8 t 1i;

/* Set alternate functions for all pins */
for (i = 0; 1 < 0x10; 1++) {
/* Check pin */
if ((GPIO Pin & (1 << 1)) == 0) {
continue;

}

/* Set alternate mode */

GPIOx->MODER = (GPIOx->MODER & ~(0x03 << (2 * 1i))) |
(0x02 << (2 * 1)) ;

}
}

void TM GPIO SetPullResistor (GPIO TypeDef* GPIOxX, uintl6 t
GPIO Pin, TM GPIO PuPd _t GPIO PuPd) ({
uint8 t pinpos;

/* Go through all pins */
for (pinpos = 0; pinpos < 0x10; pinpos++) {
/* Check if pin available */
if ((GPIO Pin & (1 << pinpos)) == 0) {
continue;

}

/* Set GPIO PUPD register */
GPIOx->PUPDR = (GPIOx->PUPDR & ~ (0x03 << (2 *
pinpos))) | ((uint32 t) (GPIO PuPd << (2 * pinpos)));
}
}

void TM GPIO Lock (GPIO TypeDef* GPIOx, uintl6 t GPIO Pin) {
uint32 t d;

/* Set GPIO pin with 16th bit set to 1 */
d = 0x00010000 | GPIO_Pin;

/* Write to LCKR register */
GPIOx->LCKR = d;
GPIOx->LCKR = GPIO Pin;
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GPIOx->LCKR = d;

/* Read twice */

(void) GPIOx->LCKR;

(void) GPIOx->LCKR;
}

uintl6 t TM GPIO GetPinSource (uintl6 t GPIO Pin) {
uintl6 t pinsource = 0;

/* Get pinsource */
while (GPIO Pin > 1) {
/* Increase pinsource */
pinsource++;
/* Shift right */
GPIO Pin >>= 1;
}

/* Return source */
return pinsource;

}

uintl6e t TM GPIO GetPortSource (GPIO TypeDef* GPIOx) {
/* Get port source number */

/* Offset from GPIOA Difference
between 2 GPIO addresses */

return ((uint32_t)GPIOX - (GPIOA BASE)) / ((GPIOB BASE) -
(GPIOA BASE)) ;

}

/* Private functions */
void TM GPIO INT EnableClock(GPIO TypeDef* GPIOx) {
/* Set bit according to the 1 << portsourcenumber */
RCC->AHB1ENR |= (1 << TM GPIO GetPortSource (GPIOX));
}

void TM GPIO INT DisableClock (GPIO TypeDef* GPIOx) {
/* Clear bit according to the 1 << portsourcenumber */
RCC->AHB1ENR &= ~(1 << TM GPIO GetPortSource (GPIOx));
}

void TM_GPIO_INT_Init(GPIO_TypeDef* GPIOx%, uintl6_t GPIO_Pin,
TM GPIO Mode t GPIO Mode, TM GPIO OType t GPIO OType, TM GPIO PuPd t
GPIO PuPd, TM GPIO Speed t GPIO Speed) {
uint8 t pinpos;
uint8 t ptr = TM GPIO GetPortSource (GPIOX);

/* Go through all pins */
for (pinpos = 0; pinpos < 0x10; pinpos++) {
/* Check if pin available */
if ((GPIO_Pin & (1 << pinpos)) == 0) {
continue;
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}

/* Pin is used */
GPIO UsedPins|[ptr] |= 1 << pinpos;

/* Set GPIO PUPD register */

GPIOx->PUPDR = (GPIOx->PUPDR & ~ (0x03 << (2 *
pinpos))) | ((uint32 t) (GPIO PubPd << (2 * pinpos)));

/* Set GPIO MODE register */

GPIOx->MODER = (GPIOx->MODER & ~((uint32_t)(OXO3 << (2
* pinpos)))) | ((uint32 t) (GPIO Mode << (2 * pinpos))):;

/* Set only if output or alternate functions */
if (GPIO Mode == TM GPIO Mode OUT || GPIO Mode ==
TM GPIO Mode AF) {
/* Set GPIO OTYPE register */
GPIOx->0OTYPER = (GPIOx->OTYPER & ~(uint16_t)(0x01

<< pinpos)) | ((uintl6 t) (GPIO OType << pinpos));

/* Set GPIO OSPEED register */
GPIOx->OSPEEDR = (GPIOx->OSPEEDR &
~((uint32 t) (0x03 << (2 * pinpos)))) | ((uint32 t) (GPIO Speed << (2 *
pinpos)));
}

}

uintl6 t TM GPIO GetUsedPins (GPIO TypeDef* GPIOx) {
/* Return used */
return GPIO UsedPins[TM GPIO GetPortSource (GPIOXx)];

}

uintl6é t TM GPIO GetFreePins (GPIO TypeDef* GPIOx) {
/* Return free pins */
return ~GPIO UsedPins[TM GPIO GetPortSource (GPIOX)];

}

A.3.4.tm_stm32f4_spi

/**
* | _____________________________________________________________
| Copyright (C) Tilen Majerle, 2014
|
* | This program is free software: you can redistribute it
and/or modify
* | it under the terms of the GNU General Public License as
published by
* | the Free Software Foundation, either version 3 of the

License, or
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| any later version.

| This program is distributed in the hope that it will be

useful,
* | but WITHOUT ANY WARRANTY; without even the implied warranty
of
* | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the
| GNU General Public License for more details.
|
| You should have received a copy of the GNU General Public
License

* | along with this program. If not, see
<http://www.gnu.org/licenses/>.

*/
#include "tm stm32f4 spi.h"

/* Private functions */

static void TM SPIx Init (SPI TypeDef* SPIx, TM SPI PinsPack t
pinspack, TM SPI Mode t SPI Mode, uintlé t SPI BaudRatePrescaler,
uintl6 t SPI MasterSlave, uintl6 t SPI FirstBit);

void TM SPI1 INT InitPins(TM SPI PinsPack t pinspack

( )i
void TM SPIZ INT InitPins(TM SPI PinsPack t pinspack):;
void TM SPI3 INT InitPins(TM SPI PinsPack t pinspack):;
void TM SPI4 INT InitPins(TM SPI PinsPack t pinspack);
( )7
( )

4

void TM SPI5 INT InitPins(TM SPI PinsPack t pinspack
void TM SPI6 INT InitPins(TM SPI PinsPack t pinspack

4

void TM SPI Init(SPI TypeDef* SPIx, TM SPI PinsPack t pinspack) {
/* Init with default settings */
#ifdef USE SPI1
if (SPIx == SPI1) {
TM SPIxX Init(SPI1, pinspack, TM SPI1 MODE,
TM SPI1 PRESCALER, TM SPI1 MASTERSLAVE, TM SPI1 FIRSTBIT);
}

#endif
#ifdef USE SPI2
if (SPIx == SPI2) {

TM SPIx Init(SPI2, pinspack, TM SPI2 MODE,
TM_SPIZ_PRESCALER, TM_SPIZ_MASTERSLAVE, TM_SPI2_FIRSTBIT);
}

#endif
#ifdef USE SPI3
if (SPIx == SPI3) {

TM SPIx Init(SPI3, pinspack, TM SPI3 MODE,
TM_SPIB_PRESCALER, TM_SPI3_MASTERSLAVE, TM_SPIB_FIRSTBIT);
}

#endif
#ifdef USE_SPI4
if (SPIx == SPI4) {
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TM SPIx Init (SPI4, pinspack, TM SPI4 MODE,
TM_SPI4 PRESCALER, TM SPI4 MASTERSLAVE, TM SPI4 FIRSTBIT);
}

#endif
#ifdef USE SPI5
if (SPIx == SPI5) {

TM SPIx Init (SPI5, pinspack, TM SPI5 MODE,
TM_SPIS_PRESCALER, TM_SPI5_MASTERSLAVE, TM_SPIS_FIRSTBIT);
}

#endif
#ifdef USE_SPI6
if (SPIx == SPIo6) {

TM SPIx Init (SPI6, pinspack, TM SPI6 MODE,
TM_SPI6_PRESCALER, TM_SPI6_MASTERSLAVE, TM_SPI6_FIRSTBIT);
}
#endif
}

void TM SPI InitWithMode (SPI TypeDef* SPIx, TM SPI PinsPack t
pinspack, TM SPI Mode t SPI Mode) {
/* Init with custom mode, 0, 1, 2, 3 */
#ifdef USE SPI1
if (SPIx == SPI1l) {
TM SPIx Init (SPI1, pinspack, SPI Mode,
TM SPI1 PRESCALER, TM SPI1 MASTERSLAVE, TM SPI1 FIRSTBIT);
}

#endif
#ifdef USE_SPI2
if (SPIx == SPI2) {

TM SPIx Init(SPI2, pinspack, SPI Mode,
TM_SPIZ_PRESCALER, TM_SPIZ_MASTERSLAVE, TM_SPIZ_FIRSTBIT);
}

#endif
#ifdef USE SPI3
if (SPIx == SPI3) {

TM SPIx Init(SPI3, pinspack, SPI Mode,
TM SPI3 PRESCALER, TM SPI3 MASTERSLAVE, TM SPI3 FIRSTBIT);
}

#endif
#ifdef USE_SPI4
if (SPIx == SPI4) {

TM SPIx Init(SPI4, pinspack, SPI Mode,
TM_SPI4_PRESCALER, TM_SPI4_MASTERSLAVE, TM_SPI4_FIRSTBIT);
}

#endif
#ifdef USE_SPI5
if (SPIx == SPI5) {

TM SPIxX Init (SPI5, pinspack, SPI Mode,
TM_SPI5_PRESCALER, TM_SPIS_MASTERSLAVE, TM_SPIS_FIRSTBIT);
}
#endif
#ifdef USE SPI6
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if (SPIx == SPI6) {
TM SPIx Init(SPI6, pinspack, SPI Mode,
TM SPI6 PRESCALER, TM SPI6 MASTERSLAVE, TM SPI6 FIRSTBIT) ;
}
#endif
}

void TM SPI InitFull (
SPI TypeDef* SPIx,
TM SPI PinsPack t pinspack,
uintlé t SPI BaudRatePrescaler,
TM SPI Mode t SPI Mode t,
uintlé t SPI Mode,
uintl6 t SPI FirstBit

s s

) A
/* Init FULL SPI settings by user */
#ifdef USE SPI1
if (SPIx == SPI1l) {
TM SPIx Init(SPI1, pinspack, SPI Mode t,
SPI BaudRatePrescaler, SPI Mode, SPI FirstBit);
}

#endif
#ifdef USE_SPI2
if (SPIx == SPI2) {

TM SPIx Init(SPI2, pinspack, SPI Mode t,
SPI BaudRatePrescaler, SPI Mode, SPI FirstBit);
}

#endif
#ifdef USE_SPI3
if (SPIx == SPI3) {

TM SPIx Init(SPI3, pinspack, SPI Mode t,
SPI BaudRatePrescaler, SPI Mode, SPI FirstBit);
}

#endif
#ifdef USE_SPI4
if (SPIx == SPI4) {

TM SPIx Init (SPI4, pinspack, SPI Mode t,
SPI BaudRatePrescaler, SPI Mode, SPI FirstBit);
}

#endif
#ifdef USE_SPI5
if (SPIx == SPI5) {

TM SPIx Init(SPI5, pinspack, SPI Mode t,
SPI BaudRatePrescaler, SPI Mode, SPI FirstBit);
}

#endif
#ifdef USE SPI6
if (SPIx == SPIo6) {

TM SPIxX Init(SPI6, pinspack, SPI Mode t,
SPI BaudRatePrescaler, SPI Mode, SPI FirstBit);

}
#endif
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}

uintl6é t TM SPI GetPrescalerFromMaxFrequency (SPI TypeDef* SPIx,
uint32 t MAX SPI Frequency) {
RCC ClocksTypeDef RCC Clocks;
uint32 t APB Frequency;
uint8 t i;

/* Prevent false input */
if (MAX SPI Frequency == 0) {
return SPI BaudRatePrescaler 256;

}

/* Get clock values from RCC */
RCC GetClocksFreqg(&RCC Clocks);

/* Calculate max SPI clock */

if (0

#ifdef USE_SPI1

|| SPIx == SPI1
#endif
#ifdef USE_SPI4

|| SPIx == SPI4
#endif
#ifdef USE_SPIS

|| SPIx == SPI5
#endif
#ifdef USE_SPI6

|| SPIx == SPIG6
#endif

) |
APB Frequency = RCC Clocks.PCLK2 Frequency;
} else {
APB Frequency

RCC Clocks.PCLK1l Frequency;
}

/* Calculate prescaler value */

/* Bits 5:3 in CR1 SPI registers are prescalers */

/* 000 =2, 001 =4, 002 =28, ..., 111 = 256 */

for (i = 0; 1 < 8; i++) {

if (APB Frequency / (1 << (i + 1)) <=
MAX SPI Frequency) {

/* Bits for BP are 5:3 in CR1 register */
return (1 << 3);

}

/* Use max prescaler possible */
return SPI BaudRatePrescaler 256;
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TM SPI DataSize t TM SPI SetDataSize (SPI_ TypeDef* SPIx,
TM SPI DataSize t DataSize) {
TM SPI DataSize t status = (SPIx->CRl & SPI_CR1 DFF) 2
TM SPI DataSize 16b : TM SPI DataSize 8b;

/* Disable SPI first */
SPIx->CR1 &= ~SPI_CR1 SPE;

/* Set proper value */

if (DataSize == TM SPI DataSize 16b) {
/* Set bit for frame */
SPIx->CR1l |= SPI_CRl_DFF;

} else {

/* Clear bit for frame */
SPIx->CR1 &= NSPI_CRl_DFF;

}

/* Enable SPI back */
SPIx->CR1 |= SPI_CR1 SPE;

/* Return status */
return status;

}

void TM SPI SendMulti (SPI TypeDef* SPIx, uint8 t* datalOut,
uint8 t* datalIn, uint32 t count) {
uint32 t i;

/* Check if SPI is enabled */
SPI_CHECK_ENABLED(SPIX);

/* Wait for previous transmissions to complete if DMA TX
enabled for SPI */
SPI WAIT (SPIX);

for (i = 0; 1 < count; i++) {
/* Fill output buffer with data */
SPIx->DR = dataOut[i];

/* Wait for SPI to end everything */
SPI WAIT (SPIX);

/* Read data register */
dataIn[i] = SPIx->DR;

}

void TM SPI WriteMulti (SPI TypeDef* SPIx, uint8 t* datalOut,
uint32 t count) {
uint32 t i;
/* Check if SPI is enabled */
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SPI CHECK ENABLED (SPIX);

/* Wait for previous transmissions to complete if DMA TX
enabled for SPI */
SPI WAIT (SPIX);

for (i = 0; 1 < count; i++) {
/* Fill output buffer with data */
SPIx->DR = dataOut[i];

/* Wait for SPI to end everything */
SPI WAIT (SPIX);

/* Read data register */
(void) SPIx->DR;

}

void TM SPI ReadMulti (SPI TypeDef* SPIx, uint8 t* dataln, uint8 t
dummy, uint32 t count) {
uint32 t 1i;

/* Check if SPI is enabled */
SPI_CHECK_ENABLED(SPIX);

/* Wait for previous transmissions to complete if DMA TX
enabled for SPI */
SPI WAIT (SPIX);

for (i = 0; 1 < count; i++) {
/* Fill output buffer with data */
SPIx->DR = dummy;

/* Wait for SPI to end everything */
SPI WAIT(SPIX);

/* Save data to buffer */
dataIn[i] = SPIx->DR;

}

void TM SPI SendMultilé (SPI TypeDef* SPIx, uintl6 t* dataOut,
uintlé t* dataln, uint32 t count) ({
uint32 t i;

/* Check if SPI is enabled */
SPI_CHECK_ENABLED(SPIX);

/* Wait for previous transmissions to complete if DMA TX

enabled for SPI */
SPI_WAIT(SPIX);
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for (i = 0; 1 < count; i++) {
/* Fill output buffer with data */
SPIx->DR = dataOut[i];

/* Wait for SPI to end everything */
SPI WAIT (SPIX);

/* Read data register */
dataIn[i] = SPIx->DR;

}

void TM SPI WriteMultil6 (SPI TypeDef* SPIx, uintl6é t* dataOut,
uint32 t count) {
uint32 t i;

/* Check if SPI is enabled */
SPI_CHECK_ENABLED(SPIX);

/* Wait for previous transmissions to complete if DMA TX
enabled for SPI */
SPI WAIT (SPIX);

for (i = 0; 1 < count; i++) {
/* Fill output buffer with data */
SPIx->DR = dataOut[i];

/* Wait for SPI to end everything */
SPI WAIT (SPIX);

/* Read data register */
(void) SPIx->DR;

}

void TM SPI ReadMultil6 (SPI TypeDef* SPIx, uintl6 t* dataln,
uintl6 t dummy, uint32 t count) {
uint32 t 1i;

/* Check 1if SPI is enabled */
SPI_CHECK_ENABLED(SPIX);

/* Wait for previous transmissions to complete if DMA TX
enabled for SPI */
SPI WAIT (SPIX);

for (i = 0; 1 < count; i++) {
/* Fill output buffer with data */
SPIx->DR = dummy;

/* Wait for SPI to end everything */
SPI WAIT (SPIX);
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/* Save data to buffer */
dataIn[i] = SPIx->DR;

}

__weak void TM SPI InitCustomPinsCallback(SPI_TypeDef* SPIX,
uintl6 t AlternateFunction) {
/* Custom user function. */
/* In case user needs functionality for custom pins, this
function should be declared outside this library */

}

/* Private functions */
static void TM SPIx Init (SPI TypeDef* SPIx, TM SPI PinsPack t
pinspack, TM SPI Mode t SPI Mode, uintlé t SPI BaudRatePrescaler,
uintl6 t SPI MasterSlave, uintlé t SPI FirstBit) ({
SPI InitTypeDef SPI InitStruct;

/* Set default settings */
SPI StructInit (&SPI InitStruct);
#ifdef USE SPI1

if (SPIx == SPI1) {
/* Enable SPI clock */
RCC->APB2ENR |= RCC_APBZENR_SPIlEN;

/* Init pins */
TM SPI1 INT InitPins (pinspack);

/* Set options */
SPI_InitStruCt.SPI_DataSize = TM_SPIl_DATASIZE;
}

fendif
#ifdef USE_SPI2
if (SPIx == SPI2) {
/* Enable SPI clock */
RCC->APB1ENR |= RCC APBlENR SPIZEN;
/* Init pins */
TM SPI2Z INT InitPins (pinspack):;
/* Set options */
SPI_InitStruCt.SPI_DataSize = TM_SPIZ_DATASIZE;
}
fendif
#ifdef USE SPI3
if (SPIx == SPI3) {
/* Enable SPI clock */
RCC->APB1ENR |= RCC_APBlENR_SPI3EN;

/* Init pins */
TM SPI3 INT InitPins (pinspack);
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/* Set options */
SPI_InitStruct.SPI_DataSize = TM SPI3 DATASIZE;

}

fendif
#ifdef USE_SPI4
if (SPIx == SPI4) {
/* Enable SPI clock */
RCC->APB2ENR |= RCC APB2ENR SPI4EN;
/* Init pins */
TM SPI4 INT InitPins (pinspack);
/* Set options */
SPI_InitStruCt.SPI_DataSize = TM_SPI4_DATASIZE;
}
fendif
#ifdef USE SPIS
if (SPIx == SPI5) {
/* Enable SPI clock */
RCC->APB2ENR |= RCC_APBZENR_SPI5EN;
/* Init pins */
TM SPI5 INT InitPins (pinspack);
/* Set options */
SPI InitStruct.SPI DataSize = TM SPI5 DATASIZE;
}
#endif
#ifdef USE SPI6
if (SPIx == SPI6) {
/* Enable SPI clock */
RCC->APB2ENR |= RCC_APB2ENR_SPI6EN;
/* Init pins */
TM SPI6 INT InitPins(pinspack);
/* Set options */
SPI InitStruct.SPI DataSize = TM SPI6 DATASIZE;
}
#endif

/* Fill SPI settings */
SPI InitStruct.SPI BaudRatePrescaler =
SPI BaudRatePrescaler;
SPI InitStruct.SPI Direction =
SPI Direction Z2Lines FullDuplex;
SPI InitStruct.SPI FirstBit = SPI FirstBit;
SPI InitStruct.SPI Mode = SPI MasterSlave;
SPI InitStruct.SPI NSS = SPI NSS Soft;
//SPI InitStruct.SPI DataSize = SPI DataSize 16b;
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/* SPI mode */
if (SPI Mode == TM SPI Mode 0) {
SPI_InitStruct.SPI_CPOL = SPI_CPOL_Low;
SPI_InitStruct.SPI_CPHA = SPI_CPHA_lEdge;
} else if (SPI Mode == TM SPI Mode 1) {
SPI_InitStruct.SPI_CPOL = SPI_CPOL_Low;
SPI_InitStruct.SPI_CPHA = SPI_CPHA_ZEdge;
} else if (SPI Mode == TM SPI Mode 2) ({
SPI InitStruct.SPI CPOL = SPI_CPOL High;
SPI_InitStruct.SPI CPHA = SPI CPHA 1Edge;
} else if (SPI Mode == TM SPI Mode 3) {
SPI InitStruct.SPI CPOL = SPI CPOL High;
SPI_InitStruct.SPI _CPHA = SPI CPHA 2Edge;

}

/* Disable first */
SPIx->CR1 &= ~SPI_CR1_SPE;

/* Init SPI */
SPI Init (SPIx, &SPI InitStruct);

/* Enable SPI */
SPIx->CR1 |= SPI_CRl_SPE;

}

/* Private functions */
#ifdef USE SPI1
void TM SPI1 INT InitPins(TM SPI PinsPack t pinspack) {
/* Init SPI pins */
#1f defined (GPIOA)
if (pinspack == TM SPI PinsPack 1) {
TM_GPIO_InitAlternate(GPIOA, GPIO_PIN_5 | GPIO_PIN_6 |
GPIO PIN 7, TM GPIO OType PP, TM GPIO PuPd NOPULL, TM GPIO Speed High,
GPIO AF SPI1);
}

#endif
#if defined (GPIOB)
if (pinspack == TM SPI PinsPack 2) {

TM GPIO InitAlternate (GPIOB, GPIO PIN 3 | GPIO PIN 4 |
GPIO _PIN 5, TM GPIO OType PP, TM GPIO PuPd NOPULL, TM GPIO Speed High,
GPIO AF SPI1);
}

#endif
if (pinspack == TM SPI PinsPack Custom) {
/* Call user function */
TM SPI InitCustomPinsCallback(SPI1, GPIO AF SPI1);
}
}
#endif

#ifdef USE SPI2
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void TM SPI2 INT InitPins(TM SPI PinsPack t pinspack) {
/* Init SPI pins */
#1if defined (GPIOB) && defined (GPIOC)
if (pinspack == TM SPI PinsPack 1) {
TM_GPIO_InitAlternate(GPIOB, GPIO_PIN_lO,
TM GPIO OType PP, TM GPIO PuPd NOPULL, TM GPIO Speed High,
GPIO AF SPI2);
TM_GPIO_InitAlternate(GPIOC, GPIO_PIN_Z | GPIO_PIN_3,
TM GPIO OType PP, TM GPIO PuPd NOPULL, TM GPIO Speed High,
GPIO AF SPI2);
}

#endif
#if defined (GPIOB)
if (pinspack == TM SPI PinsPack 2) {

TM GPIO InitAlternate(GPIOB, GPIO PIN 13 | GPIO PIN 14
| GPIO _PIN 15, TM GPIO OType PP, TM GPIO PuPd NOPULL,
TM GPIO Speed High, GPIO AF SPI2);
}

#endif
#1f defined (GPIOI)
if (pinspack == TM SPI PinsPack 3) {

TM GPIO InitAlternate (GPIOI, GPIO PIN 0 | GPIO PIN 2 |
GPIO _PIN 3, TM GPIO OType PP, TM GPIO PuPd NOPULL, TM GPIO Speed High,
GPIO_AF SPI2);
}

fendif
if (pinspack == TM SPI PinsPack Custom) {
/* Call user function */
TM SPI InitCustomPinsCallback(SPI2, GPIO AF SPI2);
}
}
#endif

#ifdef USE SPI3
void TM SPI3 INT InitPins(TM SPI PinsPack t pinspack) {
/* Enable SPI pins */
#if defined (GPIOB)
if (pinspack == TM SPI PinsPack 1) {
TM GPIO InitAlternate(GPIOB, GPIO PIN 3 | GPIO PIN 4 |
GPIO PIN 5, TM GPIO OType PP, TM GPIO PuPd NOPULL, TM GPIO Speed High,
GPIO AF SPI3);
}

#endif
#if defined (GPIOC)
if (pinspack == TM SPI PinsPack 2) {

TM GPIO InitAlternate(GPIOC, GPIO PIN 10 | GPIO PIN 11
| GPIO_PIN_lZ, TM_GPIO_OType_PP, TM_GPIO_PuPd_NOPULL,
TM GPIO Speed High, GPIO_AF SPI3);
}
#endif
if (pinspack == TM SPI PinsPack Custom) {
/* Call user function */
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TM_SPI InitCustomPinsCallback (SPI3, GPIO AF_SPI3);

}

}
#endif

#ifdef USE SPI4
void TM SPI4 INT InitPins(TM SPI PinsPack t pinspack) {
/* Init SPI pins */
#1if defined (GPIOE)
if (pinspack == TM SPI PinsPack 1) {
TM GPIO InitAlternate (GPIOE, GPIO PIN 2 | GPIO PIN 5 |
GPIO PIN 6, TM GPIO OType PP, TM GPIO PuPd NOPULL, TM GPIO Speed High,

GPIO AF SPI4);
}

#endif
#1f defined (GPIOE)
if (pinspack == TM SPI PinsPack 2) {

TM GPIO InitAlternate (GPIOE, GPIO PIN 12 | GPIO PIN 13

| GPIO _PIN 14, TM GPIO OType PP, TM GPIO_ PuPd NOPULL,
TM GPIO Speed High, GPIO AF SPI4);
}

#endif
if (pinspack == TM SPI PinsPack Custom) {
/* Call user function */
TM SPI InitCustomPinsCallback(SPI4, GPIO AF SPI4);
}
}
fendif

#ifdef USE SPI5
void TM SPI5 INT InitPins(TM SPI PinsPack t pinspack) {

/* Init SPI pins */
#1f defined (GPIOF)
if (pinspack == TM SPI PinsPack 1) {
TM GPIO InitAlternate(GPIOF, GPIO PIN 7 | GPIO PIN 8 |
GPIO PIN 9, TM GPIO OType PP, TM GPIO PuPd NOPULL, TM GPIO Speed High,
GPIO AF SPI5);
}

fendif
#if defined (GPIOF) && defined (GPIOH)
if (pinspack == TM SPI PinsPack 2) {

TM GPIO InitAlternate (GPIOF, GPIO PIN 11,
TM GPIO OType PP, TM GPIO PuPd NOPULL, TM GPIO Speed High,

GPIO AF SPI5);
TM GPIO InitAlternate (GPIOH, GPIO PIN 6 | GPIO PIN 7,
TM GPIO OType PP, TM GPIO PuPd NOPULL, TM GPIO Speed High,
GPIO AF SPI5);

}

#endif
if (pinspack == TM SPI PinsPack Custom) {

/* Call user function */
TM SPI InitCustomPinsCallback(SPI5, GPIO AF SPIS);
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}

}

#endif

#ifdef USE SPI6
void TM SPI6 INT InitPins(TM SPI PinsPack t pinspack) {
#if defined (GPIOG)

if (pinspack == TM SPI PinsPack 1) {
/* Init SPI pins */
TM GPIO InitAlternate (GPIOG, GPIO PIN 12 | GPIO PIN 13

| GPIO PIN 14, TM GPIO OType PP, TM GPIO PuPd NOPULL,
TM _GPIO Speed High, GPIO AF_SPI6);

}

#endif
if (pinspack == TM SPI PinsPack Custom) {
/* Call user function */
TM SPI InitCustomPinsCallback(SPI6, GPIO AF SPIG6);
}
}
#endif

A.3.5. tm_stm32f4_usart

/**
* | _____________________________________________________________
| Copyright (C) Tilen Majerle, 2014
|
* | This program is free software: you can redistribute it
and/or modify
* | it under the terms of the GNU General Public License as

published by

* | the Free Software Foundation, either version 3 of the

License, or

* | any later version.
*

* | This program is distributed in the hope that it will be

useful,
* | but WITHOUT ANY WARRANTY; without even the implied warranty
of
* | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the
| GNU General Public License for more details.
|
| You should have received a copy of the GNU General Public
License

* | along with this program. If not, see

<http://www.gnu.org/licenses/>.
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#include "tm stm32f4 usart.h"

/**
* @brief Internal USART struct
*/
typedef struct {
uint8 t *Buffer;
uintl6e t Size;
uintl6 t Num;
uintlé t In;
uintlé t Out;
uint8 t Initialized;
uint8 t StringDelimiter;
} TM USART t;

/* Set variables for buffers */

#ifdef USE_USART1

uint8 t TM USART1 Buffer[TM USART1 BUFFER SIZE];
#endif

#ifdef USE_USART2

uint8 t TM USART2 Buffer[TM USART2 BUFFER SIZE];
#endif

#ifdef USE_USART3

uint8 t TM USART3 Buffer[TM USART3 BUFFER STZE];
#endif

#ifdef USE_UART4

uint8 t TM UART4 Buffer [TM UART4 BUFFER SIZE];
#endif

#ifdef USE_UARTS

uint8 t TM UARTS Buffer [TM UART5 BUFFER SIZE];
#endif

#ifdef USE USART6

uint8 t TM USART6 Buffer[TM USART6 BUFFER SIZE];
#endif

#ifdef USE_UART7

uint8 t TM UART7 Buffer [TM UART7 BUFFER SIZE];
#endif

#ifdef USE UARTS

uint8 t TM UART8 Buffer [TM UART8 BUFFER SIZE];
#endif

#ifdef USE_USART1

TM_USART_t TM_USARTl = {TM_USARTI_Buffer, TM_USARTI_BUFFER_SIZE,
o, o0, 0, O, USART_STRING_DELIMITER};

#endif

#ifdef USE_USART2

TM_USART_t TM_USART2 = {TM_USART2_Buffer, TM_USART2_BUFFER_SIZE,
o, 0, 0, O, USART_STRING_DELIMITER};

#endif

#ifdef USE USART3

TM USART t TM USART3 = {TM USART3 Buffer, TM USART3 BUFFER SIZE,
o, 0, 0, O, USART_STRING_DELIMITER};
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#endif

#ifdef USE_UART4

TM USART t TM UART4 = {TM UART4 Buffer, TM UART4 BUFFER SIZE, O,
o, 0, O, USART_STRING_DELIMITER};

#endif

#ifdef USE UARTS

TM USART t TM UART5 = {TM UART5 Buffer, TM UARTS BUFFER SIZE, 0,
o, 0, O, USART_STRING_DELIMITER};

#endif

#ifdef USE_USART6

TM USART t TM USART6 = {TM USART6 Buffer, TM USART6 BUFFER SIZE,
o, o0, 0, O, USART_STRING_DELIMITER};

#endif

#ifdef USE_UART7

TM USART t TM UART7 = {TM UART7 Buffer, TM UART7 BUFFER SIZE, O,
0o, 0, O, USART_STRING_DELIMITER};

#endif

#ifdef USE UARTS

TM USART t TM UART8 = {TM UART8 Buffer, TM UART8 BUFFER SIZE, O,
0o, 0, O, USART_STRING_DELIMITER};

#endif

/* Private functions */

void TM USART1 InitPins(TM USART PinsPack t pinspack):;

void TM USART2 InitPins(TM USART PinsPack t pinspack);

void TM USART3 InitPins(TM USART PinsPack t pinspack);

void TM UART4 InitPins (TM_USART PinsPack t pinspack);

void TM UARTS5 InitPins (TM_USART PinsPack t pinspack);

void TM USART6 InitPins(TM USART PinsPack t pinspack);

void TM UART7 InitPins (TM USART PinsPack t pinspack);

void TM UART8 InitPins (TM USART PinsPack t pinspack);

void TM USART INT InsertToBuffer (TM USART t* u, uint8 t c¢);
TM USART t* TM USART INT GetUsart (USART TypeDef* USARTX) ;
uint8 t TM USART INT GetSubPriority (USART TypeDef* USARTX) ;
uint8 t TM USART BufferFull (USART TypeDef* USARTX) ;

/* Private initializator function */
static void TM USART INT Init(
USART TypeDef* USARTx,
TM USART PinsPack t pinspack,
uint32 t baudrate,
TM USART HardwareFlowControl t FlowControl,
uint32 t Mode,
uint32 t Parity,
uint32 t StopBits,
uint32 t WordLength
)

void TM USART Init (USART TypeDef* USARTx, TM USART PinsPack t
pinspack, uint32 t baudrate) {
#ifdef USE USARTI
if (USARTx == USARTI1) {
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TM USART INT Init (USART1, pinspack, baudrate,
TM USART1 HARDWARE FLOW CONTROL, TM USART1 MODE, TM USART1 PARITY,
TM USART1 STOP BITS, TM USART1 WORD LENGTH) ;
}

#endif
#ifdef USE_USART2
if (USARTx == USART2) {

TM USART INT Init (USARTZ, pinspack, baudrate,
TM USART2 HARDWARE FLOW CONTROL, TM USART2 MODE, TM USART2 PARITY,
TM USARTZ STOP BITS, TM USART2 WORD LENGTH) ;
}

#endif
#ifdef USE_USART3
if (USARTx == USART3) {

TM USART INT Init (USART3, pinspack, baudrate,
TM USART3 HARDWARE FLOW CONTROL, TM USART3 MODE, TM USART3 PARITY,
TM USART3 STOP BITS, TM USART3 WORD LENGTH) ;
}

#endif
#ifdef USE_UART4
if (USARTx == UART4) {

TM USART INT Init (UART4, pinspack, baudrate,
TM UART4 HARDWARE FLOW CONTROL, TM UART4 MODE, TM UART4 PARITY,
TM UART4 STOP BITS, TM UART4 WORD LENGTH) ;

}

#endif
#ifdef USE_UART5
if (USARTx == UART5) {

TM USART INT Init (UARTS5, pinspack, baudrate,
TM_UART5 HARDWARE FLOW CONTROL, TM UART5 MODE, TM UART5 PARITY,
TM UART5 STOP BITS, TM UART5 WORD LENGTH) ;
}

#endif
#ifdef USE USART6
if (USARTx == USART6) {

TM USART INT Init (USART6, pinspack, baudrate,
TM USART6 HARDWARE FLOW CONTROL, TM USART6 MODE, TM USART6 PARITY,
TM USART6 STOP BITS, TM USART6 WORD LENGTH) ;
}

#endif
#ifdef USE_UART7
if (USARTx == UART7) {

TM USART INT Init (UART7, pinspack, baudrate,
TM_UART7_ HARDWARE FLOW CONTROL, TM UART7 MODE, TM UART7_ PARITY,

TM UART7 STOP BITS, TM UART7 WORD LENGTH) ;
}

#endif
#ifdef USE_UARTS
if (USARTx == UARTS8) {

TM USART INT Init (UART8, pinspack, baudrate,
TM UART8 HARDWARE FLOW CONTROL, TM UART8 MODE, TM UART8 PARITY,
TM UART8 STOP BITS, TM UART8 WORD LENGTH) ;
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}
#endif

}

void TM USART InitWithFlowControl (USART TypeDef* USARTX,
TM USART PinsPack t pinspack, uint32 t baudrate,
TM USART HardwareFlowControl t FlowControl) {
#ifdef USE USART1
if (USARTx == USART1) {
TM USART INT Init (USART1, pinspack, baudrate,
FlowControl, TM USART1 MODE, TM USART1 PARITY, TM USART1 STOP BITS,
TM USART1 WORD LENGTH) ;
}

#endif
#ifdef USE_USARTZ
if (USARTx == USART2) {

TM USART INT Init (USARTZ2, pinspack, baudrate,
FlowControl, TM USART2 MODE, TM USART2 PARITY, TM USART2 STOP BITS,
TM_USART2_ WORD_LENGTH) ;
}

#endif
#ifdef USE USART3
if (USARTx == USART3) {

TM USART INT Init (USART3, pinspack, baudrate,
FlowControl, TM USART3 MODE, TM USART3 PARITY, TM USART3 STOP BITS,
TM USART3 WORD LENGTH) ;
}

#endif
#ifdef USE_UART4
if (USARTx == UART4) {

TM USART INT Init (UART4, pinspack, baudrate,
FlowControl, TM UART4 MODE, TM UART4 PARITY, TM UART4 STOP BITS,
TM_UART4 WORD_LENGTH) ;
}

#endif
#ifdef USE UARTS
if (USARTx == UART5) {

TM USART INT Init (UARTS5, pinspack, baudrate,
FlowControl, TM UART5 MODE, TM UARTS5 PARITY, TM UART5 STOP BITS,
TM UARTS5 WORD LENGTH) ;
}

#endif
#ifdef USE USART6
if (USARTx == USART6) {

TM USART INT Init (USART6, pinspack, baudrate,
FlowControl, TM USART6 MODE, TM USART6 PARITY, TM USART6 STOP BITS,
TM_USART6_WORD_LENGTH) ;
}

#endif
#ifdef USE_UART7
if (USARTx == UART7) {
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TM USART INT Init (UART7, pinspack, baudrate,
FlowControl, TM UART7 MODE, TM UART7 PARITY, TM UART7 STOP BITS,
TM UART7 WORD LENGTH) ;
}

#endif
#ifdef USE_UARTS
if (USARTx == UARTS8) {

TM USART INT Init (UARTS8, pinspack, baudrate,
FlowControl, TM UART8 MODE, TM UART8 PARITY, TM UART8 STOP BITS,
TM UART8 WORD LENGTH) ;
}
#endif
}

uint8 t TM USART Getc (USART TypeDef* USARTx) {
int8 t ¢ = 0;
TM USART t* u = TM USART INT GetUsart (USARTX) ;

/* Check if we have any data in buffer */

if (u-—>Num > 0 || u->In != u->0Out) {
/* Check overflow */
if (u->Out == u->Size) {

u->0ut = 0;
}

/* Read character */
c = u->Buffer[u->0ut];

/* Increase output pointer */
u->0ut++;

/* Decrease number of elements */
if (u->Num) {
u->Num—-;

}

/* Return character */
return c;

}

uintl6 t TM USART Gets (USART TypeDef* USARTx, char* buffer,
uintlé t bufsize) {
uintle t i = O;

/* Get USART structure */
TM USART t* u = TM USART INT GetUsart (USARTX) ;

/* Check for any data on USART */
if |
u->Num == 0 ||
/*1< Buffer empty */
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!T™ USART FindCharacter (USARTx, u-
>StringDelimiter) && /*!< String delimiter not in buffer */
u->Num != u->Size
/*!1< Buffer is not full */
)

/* Return 0 */
return O;

}

/* If available buffer size 1is more than 0 characters */

while (1 < (bufsize - 1)) {
/* We have available data */
buffer[i] = (char) TM_USART_GetC(USARTX);

/* Check for end of string */
if ((uint8 t) buffer[i] == (uint8 t) u-
>StringDelimiter) {
/* Done */
break;

}

/* Increase */
i++;
}

/* Add zero to the end of string */
buffer[++i] = 0;

/* Return number of characters in buffer */
return 1i;

}

uint8 t TM USART BufferEmpty (USART TypeDef* USARTx) {
TM USART t* u = TM USART INT GetUsart (USARTX) ;

/* Check if number of characters 1is zero in buffer */
return (u->Num == 0 && u->In == u->0ut);

}

uint8 t TM USART BufferFull (USART TypeDef* USARTx) {
TM USART t* u = TM USART INT GetUsart (USARTX) ;

/* Check if number of characters is the same as buffer size
*/
return (u->Num == u->Size);

}

void TM USART ClearBuffer (USART TypeDef* USARTx) ({
TM USART t* u = TM USART INT GetUsart (USARTX) ;
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/* Reset variables */
u->Num = 0O;
u->In = 0;
u->0ut = 0;

void TM USART SetCustomStringEndCharacter (USART TypeDef* USARTX,
uint8 t Character) ({
/* Get USART structure */
TM USART t* u = TM USART INT GetUsart (USARTX) ;

/* Set delimiter */
u->StringDelimiter = Character;
uint8 t TM USART FindCharacter (USART TypeDef* USARTx, uint8 t c)

uintl6 t num, out;
TM USART t* u = TM USART INT GetUsart (USARTX) ;

/* Temp variables */
num = u-—->Num;
out u->0ut;

while (num > 0) {
/* Check overflow */
if (out == u->Size) {
out = 0;
}

/* Check if characters matches */

if ((uint8 t) u->Buffer[out] == (uint8 t) c) {
/* Character found */
return 1;

}

/* Set new variables */
out++;
num--;

}

/* Character 1is not in buffer */
return O;

void TM USART Puts (USART TypeDef* USARTx, char* str) {
TM USART t* u = TM USART INT GetUsart (USARTX);
/* If we are not initialized */
if (u->Initialized == 0) {
return;
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}

/* Go through entire string */

while (*str) {
/* Wait to be ready, buffer empty */
USART_WAIT(USARTX);
/* Send data */
USARTx->DR = (uintl6_t) (*str++ & OxOLlFF);
/* Wait to be ready, buffer empty */
USART_WAIT(USARTX);

void TM USART Send(USART TypeDef* USARTx, uint8 t* DataArray,
uintlé t count) {

}

uintlé t i;
TM USART t* u = TM USART INT GetUsart (USARTX) ;
/* If we are not initialized */
if (u->Initialized == 0) {
return;

}

/* Go through entire data array */

for (i = 0; 1 < count; i++) {
/* Wait to be ready, buffer empty */
USART WAIT (USARTX) ;
/* Send data */
USARTx->DR = (uintlé6 t) (DataArray[i]);
/* Wait to be ready, buffer empty */
USART WAIT (USARTX) ;

/* Private functions */
void TM USART INT InsertToBuffer (TM USART t* u, uint8 t c) {

}

/* Still available space in buffer */
if (u->Num < u->Size) {
/* Check overflow */
if (u->In == u->Size) {
u->In = 0;

}

/* Add to buffer */
u->Buffer[u->In] = c;
u->In++;

u->Num++;

__weak void TM USART InitCustomPinsCallback (USART TypeDef*
USARTx, uintl6 t AlternateFunction) {

/* Custom user function. */

/* In case user needs functionality for custom pins, this

function should be declared outside this library */
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}

TM USART t* TM USART INT GetUsart (USART TypeDef* USARTx) {
TM USART t* u;

#ifdef USE USART1
if (USARTx == USART1) ({
u = &TM USART1;
}

#endif
#ifdef USE_USARTZ
if (USARTx == USART2) {
u = &TM_USART2;
}
#endif
#ifdef USE USART3
if (USARTx == USART3) {
u = &TM USART3;
}
#endif
#ifdef USE_UART4
if (USARTx == UART4) {
u = &TM UART4;
}
#endif
#ifdef USE_UART5
if (USARTx == UART5) {
u = &TM UARTS;
}
#endif
#ifdef USE USART6
if (USARTx == USART6) {
u = &TM_USART6;
}
#endif
#ifdef USE_UART7
if (USARTx == UART7) {
u = &TM UART7;
}
#endif
#ifdef USE UARTS
if (USARTx == UARTS8) {
u = &TM_UARTS;
}
#endif

return u;

}

uint8 t TM USART INT GetSubPriority (USART TypeDef* USARTx) {
uint8 t u;
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#ifdef USE USART1

if (USARTx == USART1l) {
u = 0;
}
#endif
#ifdef USE_USART2
if (USARTx == USART2) {
u=1;
}
#endif
#ifdef USE_USART3
if (USARTx == USART3) {
u = 2;
}
#endif
#ifdef USE_UART4
if (USARTx == UART4) {
u = 4;
}
#endif
#ifdef USE UARTS
if (USARTx == UART5) {
u = 5;
}
fendif
#ifdef USE_USART6
if (USARTx == USART6) {
u = 6;
}
#endif
#ifdef USE_UART7
if (USARTx == UART7) {
u = 7;
}
#endif
#ifdef USE UARTS
if (USARTx == UARTS8) {
u = 8;
}
#endif

return u;

}

#ifdef USE USART1
void TM USART1 InitPins(TM USART PinsPack t pinspack) {
/* Init pins */
#1if defined (GPIOA)
if (pinspack == TM USART PinsPack 1) {
TM GPIO InitAlternate (GPIOA, GPIO Pin 9 | GPIO Pin 10,
TM GPIO OType PP, TM GPIO PuPd UP, TM GPIO Speed High,
GPIO_AF_USARTI);
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}
#endif
#i1if defined (GPIOB)
if (pinspack == TM USART PinsPack 2) {
TM GPIO InitAlternate (GPIOB, GPIO Pin 6 |
TM GPIO OType PP, TM GPIO PuPd UP, TM GPIO Speed High,
GPIO_AF_USZ—\RT]_ )
}

#endif
if (pinspack == TM USART PinsPack Custom) {

/* Init custom pins, callback used */
TM USART InitCustomPinsCallback (USARTI1,

GPIO AF USART1);
}

GPIO_Pin 7,

}
#endif

#ifdef USE USART2
void TM USART2 InitPins(TM USART PinsPack t pinspack) {

/* Init pins */
#1f defined (GPIOA)
if (pinspack == TM USART PinsPack 1) {
TM GPIO InitAlternate (GPIOA, GPIO Pin 2 |
TM GPIO OType PP, TM GPIO PuPd UP, TM GPIO Speed High,
GPIO AF USART2);
}

GPIO Pin_3,

fendif
#if defined (GPIOD)
if (pinspack == TM USART PinsPack 2) {
GPIO Pin 6,

TM GPIO InitAlternate(GPIOD, GPIO Pin 5 |
TM GPIO OType PP, TM GPIO PuPd UP, TM GPIO Speed High,
GPIO AF USART2);

}

#endif
if (pinspack == TM USART PinsPack Custom) {

/* Init custom pins, callback used */
TM USART InitCustomPinsCallback (USARTZ,

GPIO_AF USART2) ;
}

}
#endif

#ifdef USE USART3
void TM USART3 InitPins (TM USART PinsPack t pinspack) {
/* Init pins */
#1f defined (GPIOB)
if (pinspack == TM USART PinsPack 1) {
TM GPIO InitAlternate (GPIOB, GPIO Pin 10 |
GPIO Pin 11, TM GPIO OType PP, TM GPIO PuPd UP, TM GPIO Speed High,

GPIO AF USART3);
}
#endif
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#i1if defined (GPIOC)
if (pinspack == TM USART PinsPack 2) {
TM GPIO InitAlternate (GPIOC, GPIO Pin 10 |
GPIO Pin 11, TM GPIO OType PP, TM GPIO PuPd UP, TM GPIO Speed High,

GPIO_AF USART3) ;
}

#endif
#1if defined (GPIOD)
if (pinspack == TM USART PinsPack 3) {

TM GPIO InitAlternate (GPIOD, GPIO Pin 8 | GPIO Pin 9,
TM GPIO OType PP, TM GPIO PuPd UP, TM GPIO Speed High,
GPIO AF USART3);

}

#endif
if (pinspack == TM USART PinsPack Custom) {

/* Init custom pins, callback used */
TM USART InitCustomPinsCallback (USART3,

GPIO_AF USART3) ;
}

}
#endif

#ifdef USE UART4
void TM UART4 InitPins (TM_USART PinsPack t pinspack) {

/* Init pins */
#if defined (GPIOA)
if (pinspack == TM USART PinsPack 1) {
TM GPIO InitAlternate (GPIOA, GPIO Pin 0 | GPIO Pin 1,
TM GPIO OType PP, TM GPIO PuPd UP, TM GPIO Speed High, GPIO AF UART4);

}

#endif
#if defined (GPIOC)
if (pinspack == TM USART PinsPack 2) {

TM GPIO InitAlternate (GPIOC, GPIO Pin 10 |
GPIO Pin 11, T™M GPIO OType PP, TM GPIO PuPd UP, TM GPIO Speed High,
GPIO AF UART4);
}

fendif
if (pinspack == TM USART PinsPack Custom) {
/* Init custom pins, callback used */
TM USART InitCustomPinsCallback (UART4, GPIO AF UART4);
}
}
#endif

#ifdef USE UARTS
void TM UARTS5 InitPins(TM USART PinsPack t pinspack) {
/* Init pins */
#1if defined (GPIOC) && defined (GPIOD)
if (pinspack == TM USART PinsPack 1) {
TM GPIO InitAlternate (GPIOC, GPIO Pin 12,
TM GPIO OType PP, TM GPIO PuPd UP, TM GPIO Speed High, GPIO AF UARTS);
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TM GPIO InitAlternate (GPIOD, GPIO Pin 2,
TM_GPIO OType PP, TM GPIO PuPd UP, TM GPIO Speed High, GPIO AF UARTS);

}

fendif
if (pinspack == TM USART PinsPack Custom) {
/* Init custom pins, callback used */
TM USART InitCustomPinsCallback (UART5, GPIO AF UARTS) ;
}
}
#endif

#ifdef USE USARTG6
void TM USART6 InitPins (TM USART PinsPack t pinspack) {

/* Init pins */
#if defined (GPIOC)
if (pinspack == TM USART PinsPack 1) {
TM GPIO InitAlternate(GPIOC, GPIO Pin 6 | GPIO Pin 7,
TM GPIO OType PP, TM GPIO PuPd UP, TM GPIO Speed High,
GPIO AF USART6) ;
}

#endif
#if defined(GPIOG)
if (pinspack == TM USART PinsPack 2) {

TM_GPTIO TnitAlternate (GPIOG, GPIO Pin 14 | GPIO Pin 9,
TM_GPIO OType PP, TM GPIO PuPd UP, TM GPIO Speed High,
GPIO AF USARTS) ;

}

#endif
if (pinspack == TM USART PinsPack Custom) {

/* Init custom pins, callback used */
TM USART InitCustomPinsCallback (USART6,

GPIO_AF USART6) ;
}

}
#endif

#ifdef USE UART7
void TM UART7 InitPins (TM_USART PinsPack t pinspack) {

/* Init pins */
#if defined (GPIOE)
if (pinspack == TM USART PinsPack 1) {
TM GPIO InitAlternate(GPIOE, GPIO Pin 8 | GPIO Pin 7,
TM GPIO OType PP, TM GPIO PuPd UP, TM GPIO Speed High, GPIO AF UART7);

}

#endif
#1f defined (GPIOF)
if (pinspack == TM USART PinsPack 2) {

TM GPIO InitAlternate (GPIOF, GPIO Pin 7 | GPIO Pin 6,
TM GPIO OType PP, TM GPIO PuPd UP, TM GPIO Speed High, GPIO AF UART7);

}

#endif
if (pinspack == TM USART PinsPack Custom) {
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/* Init custom pins, callback used */
TM_USART_InitCustomPinsCallback(UART7, GPIO AF UART7);

}

}
#endif

#ifdef USE UARTS
void TM UART8 InitPins (TM USART PinsPack t pinspack) {
/* Init pins */
#i1if defined (GPIOE)
if (pinspack == TM USART PinsPack 1) {
TM GPIO InitAlternate (GPIOE, GPIO Pin 1 | GPIO Pin O,
TM GPIO OType PP, TM GPIO PuPd UP, TM GPIO Speed High, GPIO AF UARTS);

}

#endif
if (pinspack == TM USART PinsPack Custom) {
/* Init custom pins, callback used */
TM USART InitCustomPinsCallback (UART8, GPIO AF UARTS) ;
}
}
fendif

#ifdef USE USARTI1
void USART1 IRQHandler (void) {
/* Check if interrupt was because data is received */
if (USART1->SR & USART SR RXNE) {
#ifdef TM USART1 USE_CUSTOM IRQ
/* Call user function */
TM USART1 ReceiveHandler (USART1->DR);
#else
/* Put received data into internal buffer */
TM USART INT InsertToBuffer (§TM USART1, USART1-

>DR) ;
#endif
}

}
#endif

#ifdef USE USART2
void USARTZ IRQHandler (void) {
/* Check if interrupt was because data is received */
if (USART2->SR & USART_SR_RXNE) {
#ifdef TM USART2 USE CUSTOM IRQ
/* Call user function */
TM USARTZ ReceiveHandler (USART2->DR) ;
#else
/* Put received data into internal buffer */
TM USART INT InsertToBuffer (§TM USART2, USART2-

>DR) ;
#endif
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#endif

#ifdef USE USART3
void USART3 IRQHandler (void) {
/* Check if interrupt was because data is received */
if (USART3->SR & USART_SR_RXNE) {
#ifdef TM USART3 USE CUSTOM IRQ
/* Call user function */
TM USART3 ReceiveHandler (USART3->DR) ;

#else
/* Put received data into internal buffer */
TM USART INT InsertToBuffer (&TM USART3, USART3-
>DR) ;
#endif
}
}
#endif
#ifdef USE_UART4
void UART4 IRQHandler (void) {
/* Check if interrupt was because data is received */
if (UART4->SR & USART_SR_RXNE) {
#ifdef TM UART4 USE_CUSTOM IRQ
/* Call user function */
TM UART4 ReceiveHandler (UART4->DR) ;
#else
/* Put received data into internal buffer */
TM USART INT InsertToBuffer (&§TM UART4, UARTA4-
>DR) ;
#endif
}
}
#endif
#ifdef USE UARTS
void UARTS5 IRQHandler (void) {
/* Check if interrupt was because data is received */
if (UART5->SR & USART SR RXNE) {
#ifdef TM UART5 USE_CUSTOM IRQ
/* Call user function */
TM_UART5_ReceiveHandler(UART5—>DR);
#else
/* Put received data into internal buffer */
TM_USART_INT_InsertToBuffer(&TM_UART5, UARTS5-
>DR) ;

#endif
}

}
#endif

#ifdef USE USARTG6
void USART6 IRQHandler (void) {
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/* Check if interrupt was because data is received */
if (USART6->SR & USART SR RXNE) {
#ifdef TM USART6 USE CUSTOM IRQ
/* Call user function */
TM USART6 ReceiveHandler (USART6->DR) ;
#else
/* Put received data into internal buffer */
TM_USART_INT_InsertToBuffer(&TM_USART6, USART6-
>DR) ;
#endif
}
}
#endif

#ifdef USE UART7
void UART7 IRQHandler (void) {
/* Check if interrupt was because data is received */
if (UART7->SR & USART_SR_RXNE) {
#ifdef TM UART7 USE_CUSTOM IRQ
/* Call user function */
TM_UART7_ReceiveHandler(UART7—>DR);
#else
/* Put received data into internal buffer */
TM USART INT InsertToBuffer (&§TM UART7, UART7-

>DR) ;
fendif
}
}
#endif
#ifdef USE UARTS
void UART8 IRQHandler (void) {
/* Check if interrupt was because data is received */
if (UART8->SR & USART_SR_RXNE) {
#ifdef TM UART8 USE CUSTOM IRQ
/* Call user function */
TM UART8 ReceiveHandler (UART8->DR);
#else
/* Put received data into internal buffer */
TM USART INT InsertToBuffer (&TM UART8, UART8-
>DR) ;

#endif
}

}
#endif

static void TM USART INT Init(
USART TypeDef* USARTx,
TM USART PinsPack t pinspack,
uint32 t baudrate,
TM USART HardwareFlowControl t FlowControl,
uint32 t Mode,
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uint32 t Parity,
uint32 t StopBits,
uint32 t WordLength

USART InitTypeDef USART InitStruct;
NVIC InitTypeDef NVIC InitStruct;
TM USART t* u = TM USART INT GetUsart (USARTX) ;

/* Set USART baudrate */
USART InitStruct.USART BaudRate = baudrate;

/*
* Initialize USARTx pins
* Set channel for USARTx NVIC
*/
#ifdef USE USART1
if (USARTx == USART1l) {
/* Enable USART clock */
RCC->APB2ENR |= RCC_APBZENR_USARTlEN;

/* Init pins */
TM USART1 InitPins (pinspack);

/* Set IRQ channel */
NVIC InitStruct.NVIC IRQChannel = USART1 IROn;
}
fendif
#ifdef USE_USARTZ
if (USARTx == USART2) {
/* Enable USART clock */
RCC->APB1ENR |= RCC_APBlENR_USART2EN;

/* Init pins */
TM USARTZ InitPins (pinspack);

/* Set IRQ channel */
NVIC InitStruct.NVIC IRQChannel = USART2 IROn;
}
#endif
#ifdef USE USART3
if (USARTx == USART3) {
/* Enable USART clock */
RCC->APB1ENR |= RCC_APBlENR_USART3EN;

/* Init pins */
TM USART3 InitPins (pinspack);

/* Set IRQ channel */
NVIC InitStruct.NVIC IRQChannel = USART3 IRQn;
}
#endif
#ifdef USE UART4
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if

}
#endif

(USARTx == UART4) {

/* Enable UART clock */
RCC->APB1ENR |= RCC_APBIENR_UART4EN;

/* Init pins */
TM UART4 InitPins (pinspack);

/* Set IRQ channel */
NVIC_InitStruct.NVIC_IRQChannel = UART4 IRQn;

#ifdef USE UART5

if

}
#endif

(USARTx == UART5) {

/* Enable UART clock */
RCC->APB1lENR |= RCC_APBIENR_UART5EN;

/* Init pins */
TM UARTS InitPins (pinspack);

/* Set IRQ channel */
NVIC InitStruct.NVIC IRQChannel = UART5 IRQn;

#ifdef USE USART6

if

}
#endif

(USARTx == USART®6) {

/* Enable UART clock */
RCC->APB2ENR |= RCC_APBZENR_USART6EN;

/* Init pins */
TM USART6 InitPins (pinspack);

/* Set IRQ channel */
NVIC InitStruct.NVIC IRQChannel = USART6 IRQn;

#ifdef USE_UART7

if

}
#endif

(USARTx == UART7) {

/* Enable UART clock */
RCC->APB1lENR |= RCC_APBlENR_UART7EN;

/* Init pins */
TM UART7 InitPins(pinspack);

/* Set IRQ channel */
NVIC InitStruct.NVIC IRQChannel = UART7 IRQn;

#ifdef USE_UARTS

if

(USARTx == UARTS8) {

/* Enable UART clock */
RCC->APBlENR |= RCC_APBlENR_UART8EN;
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/* Init pins */
TM UART8 InitPins(pinspack);

/* Set IRQ channel */
NVIC InitStruct.NVIC IRQChannel = UARTS8 IRQn;

}
#endif

/* Deinit USART, force reset */
USART_DeInit(USARTX);

/* Fill NVIC settings */
NVIC InitStruct.NVIC IRQChannelCmd = ENABLE;
NVIC InitStruct.NVIC IRQChannelPreemptionPriority =
USART NVIC PRIORITY;
NVIC InitStruct.NVIC IRQChannelSubPriority =
TM USART INT GetSubPriority (USARTx);
NVIC_Init(&NVIC_InitStruct);

/* Fill default settings */

USART InitStruct.USART HardwareFlowControl
USART InitStruct.USART Mode = Mode;

USART InitStruct.USART Parity = Parity;
USART InitStruct.USART StopBits = StopBits;
USART InitStruct.USART WordLength = WordLength;

FlowControl;

/* We are not initialized */
u->Initialized = 0;

do {
volatile uint32 t x = OxFFF;
while (x--);

} while (0);

/* Init */
USART_Init(USARTX, &USART_IDitStrUCt);

/* Enable RX interrupt */
USARTx->CR1 |= USART CR1 RXNEIE;

/* We are initialized now */
u->Initialized = 1;

/* Enable USART peripheral */
USARTx->CR1 |= USART CR1 UE;
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A.3.6. tm_stm32f4_usart

| Copyright (C) Tilen Majerle, 2014

* | This program is free software: you can redistribute it
and/or modify

* | it under the terms of the GNU General Public License as
published by

* | the Free Software Foundation, either version 3 of the
License, or

* | any later version.

*
* | This program is distributed in the hope that it will be

useful,
* | but WITHOUT ANY WARRANTY; without even the implied warranty

of
* | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the
| GNU General Public License for more details.
|
| You should have received a copy of the GNU General Public
License

* | along with this program. If not, see
<http://www.gnu.org/licenses/>.

*/
#include "tm stm32f4 usb vcp.h"
#include "usb vcp/usbd usr.h"

/* Private */

uint8 t
TM INT USB_VCP ReceiveBuffer[USB_VCP RECEIVE BUFFER LENGTH];

uint32 t tm int usb vcp buf in, tm int usb vcp buf out,
tm int usb vcp buf num;

extern TM USB VCP Result TM USB VCP INT Status;

extern LINE CODING linecoding;

uint8 t TM USB VCP_INT Init = 0;

USB OTG CORE HANDLE USB_OTG dev;

/* USB VCP Internal receive buffer */
extern uint8 t
TM_INT USB VCP ReceiveBuffer [USB VCP RECEIVE BUFFER LENGTH];

TM USB_VCP Result TM USB_VCP Init (void) ({
/* Initialize USB */
USBD Init( &USB_OTG dev,

#ifdef USE _USB OTG FS
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USB_OTG_FS_CORE_ID,

#else

USB_OTG_HS CORE_ID,
#endif

&USR desc,

§USBD _CDC cb,

&USR cb) ;

/* Reset buffer counters */
tm int usb vecp buf in = 0;
tm int usb vecp buf out = 0;
tm _int usb vcp buf num = O

4

/* Initialized */
TM USB VCP_INT Init = 1;

/* Return OK */
return TM USB VCP OK;
}

uint8 t TM USB VCP BufferEmpty(void) {
return (tm int usb vcp buf num == 0);

}

uint8 t TM USB VCP BufferFull (void) {
return (tm int usb vcp buf num ==
USB_VCP RECEIVE BUFFER LENGTH) ;
}

uint8 t TM USB VCP FindCharacter(volatile char c) {
uintl6 t num, out;

/* Temp variables */
num = tm int usb vcp buf num;
out = tm int usb vcp buf out;

while (num > 0) {
/* Check overflow */

if (out == USB VCP RECEIVE BUFFER LENGTH) {
out = 0;

}

if (TM INT USB VCP ReceiveBuffer[out] == c) {

/* Character found */
return 1;

}
out++;
num--;

}

/* Character 1s not in buffer */
return O;
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TM USB VCP Result TM USB VCP Getc(uint8 t* c) {
/* Any data in buffer */
if (tm _int usb vcp buf num > 0) {
/* Check overflow */
if (tm _int usb vcp buf out >=
USB_VCP RECEIVE BUFFER LENGTH) ({
tm int usb vcp buf out = 0;
}
*o =
TM INT USB VCP ReceiveBuffer[tm int usb vcp buf out];
TM INT USB VCP ReceiveBuffer[tm int usb vcp buf out] =
07

/* Set counters */
tm int usb vcp buf out++;
tm int usb vcp buf num--;

/* Data OK */
return TM USB_VCP_ DATA OK;
}
*c = 0;
/* Data not ready */
return TM USB_VCP DATA EMPTY;

TM USB_VCP _Result TM USB VCP Putc(volatile char c) {
uint8 t ce = (uint8 t)c;

/* Send data over USB */
VCP DataTx (&ce, 1);

/* Return OK */
return TM USB VCP OK;

TM USB VCP Result TM USB VCP Puts (char* str) {
while (*str) {
TM USB VCP Putc(*str++);
}

/* Return OK */
return TM USB VCP OK;

TM USB VCP Result TM USB VCP Send(uint8 t* DataArray, uint32 t
Length) {
/* Send array */
VCP_DataTx (DataArray, Length);

/* Return OK */
return TM USB VCP OK;
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}

uintlé t TM USB VCP Gets (char* buffer, uintl6 t bufsize) {
uintle t i = 0;
uint8 t c;

/* Check for any data on USART */
if (TM USB VCP BufferEmpty () ||
(!TM_USB_VCP_FindCharacter(‘\n') && !TM USB VCP BufferFull())) ({
return 0;

}

/* If available buffer size 1is more than 0 characters */

while (i < (bufsize - 1)) {
/* We have available data */
while (TM USB_VCP Getc(&c) != TM USB_VCP_DATA OK) ;
/* Save new data */
buffer[i] = (char) c;
/* Check for end of string */
if (buffer[i] == '\n') {
i++;
/* Done */
break;
} else {
i++;

}
}

/* Add zero to the end of string */
buffer[i] = 0;

/* Return number of characters in string */
return 1i;

}

TM USB VCP Result TM INT USB VCP AddReceived(uint8 t c) {
/* Still available data in buffer */
if (tm int usb vcp buf num < USB_VCP _RECEIVE BUFFER LENGTH)

/* Check for overflow */
if (tm int usb vcp buf in >=
USB_VCP_RECEIVE_BUFFER_LENGTH) {
tm int usb vcp buf in = 0;
}
/* Add character to buffer */
TM INT USB VCP ReceiveBuffer[tm int usb vcp buf in] =

/* Increase counters */
tm int usb vcp buf in++;
tm int usb vcp buf num++;
/* Return OK */
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return TM USB_VCP OK;
}

/* Return Buffer full */
return TM USB_VCP_RECEIVE BUFFER FULL;

TM USB _VCP_Result TM USB VCP GetStatus (void) {
if (TM USB _VCP_INT Init) {
return TM USB VCP INT Status;
}
return TM USB VCP ERROR;

TM USB VCP Result TM USB VCP GetSettings(TM USB VCP Settings t*
Settings) {

/* Fill data */

Settings->Baudrate = linecoding.bitrate;
Settings->DataBits = linecoding.datatype;
Settings->Parity = linecoding.paritytype;
Settings->Stopbits = linecoding.format;

Settings->Changed = linecoding.changed;

/* Clear changed flag */
linecoding.changed = 0;

/* Return OK */
return TM USB VCP OK;
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