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ABSTRACT 
 

In the thesis lubrication and wear at metal/HDPE contacts was addressed. In 

particular this type of contact occurs in artificial joint replacements. Wear of HDPE was 

recognized as a major factor limiting device performance.  

In the thesis, fully implicit fully coupled numerical approach was developed to 

simulate lubrication and wear. Approach allows solving stationary and transient problems 

for rough surfaces in a wide range of parameters. Wear coefficients were estimated from 

experimental data.  

Wear particles formed in wear process were investigated. Particles were found to be 

approximately 100 nm in diameter and spherical in shape. Considering theoretical 

solutions, it was concluded that debris may play a role of third-body abrasive wear 

particles.  

In the summary section, some discussion was provided on the topic of theoretical 

modeling of friction and wear and recommendations for future research were formulated.  
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1.  INTRODUCTION 

1.1.  Lubrication 

It has been empirically recognized long time ago that dry contacts between sliding 

or rolling solid bodies produce higher friction forces than lubricated ones. At the same time 

such surfaces wear out considerably faster and correspondingly an operational life of a 

machine element or a whole machine is shortened drastically. These phenomena are closely 

related and play important role in our life. 

Sometimes friction is a desirable force, like in a case of brakes operation, or Stone 

Age practice of firing by friction heat, but in other cases the influence of it must be reduced 

to a minimum. Humans developed different approaches to decrease friction, but one of the 

most powerful ways to accomplish the task is lubrication. Although lubrication is possible 

by means of gases, semifluid (greases) and even solid materials, most effective lubrication 

is provided by liquids. In such contacts liquids manage to penetrate between surfaces, build 

a separation fluid film, reduce friction, improve heat dissipation, carry most of the load and 

prevent excessive destruction.  

It should be mentioned, that the parameters of our interest in lubrication theory are 

film thickness and pressure. Film thickness determines how well two surfaces are separated 

to avoid direct contact and pressure determines how strong the influence of the load on the 

bodies is. 

Practically important devices with lubrication are met in many areas including 

aerospace, power generation, transportation, defense, manufacturing, computer technology 

and biomechanical engineering (Fuller 1984). Artificial joint replacement in biomechanical 

engineering is a particular example of such a device where two articulating surfaces are 
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separated by synovial fluid and pressed against each other by load. One of these surfaces 

usually is made from plastic material, for example, high density polyethylene (HDPE) 

(Charnley 1976).  

1.2.  Wear 

Friction sometime is inevitable and necessary phenomena, but wear has always 

negative consequences, whether it happens with personal belongings or with public 

properties. Obviously, any wear process cost money. For example, wear of clothes, shoes, 

tires, doors, and stairs makes us to spend money on replacements and repairs. It was 

calculated by different sources that personal wear costs are about 25 – 250 dollars per year 

(in 1966) (K.C. 1996). In a scale of a nation, road wear, automotive and air jet engine wear, 

rail road and bridges, and many other sources of wear require constant investment in repair, 

replacement, related energy consumption costs, overall decreasing nation’s productivity. 

Wear also affects biomedical applications, such as artificial joint replacements, causing 

significant operation life reduction of this device (Ingham E. 2005, Sargeant A. 2006). 

Thus, significant and continuous efforts have been provided to the field of wear research 

and wear reduction (Wood W.J. 2011, Wannasria S. 2009).  

There is an increasing interest in the wear of plastic materials, such as 

polytetrafluoroethylene (PTFE), high density polyethylene (HDPE), ultra high molecular 

weight polyethylene (UHMWPE) in application to artificial joint replacements. These 

materials do not wear out completely, however, despite of favorable mechanical properties, 

materials produce considerable wear debris amount to initiate autoimmune response and 

bone loosening. As a consequence, revision surgery could be needed (Akchurin A. 2012). 
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Thus, increasing the wear resistance of artificial joint replacement materials is one of the 

primary goals of modern arthroplasty. 

1.3.  Thesis objective   

As it was pointed out in the previous paragraphs, biomedical engineering devices, 

such as joint replacements, are worn out inducing health problems. Major cause of these 

problems is the wear of a plastic material and reduction of it could improve life quality of 

such patients. Therefore, the objective of this research was to develop a theoretical model 

which predicts wear of HDPE in lubricated conditions as a function of the operational 

parameters. Dependency of wear and friction on these parameters can help to optimize the 

design of such devices. Obviously, experiments were required to verify the model. 

1.4.  Overview 

Chapter 2 of the thesis presents literature review on the topic of lubrication and 

wear with emphasis in lubrication models, as the major phenomenon of the process. 

Chapter 3 is devoted to the theoretical development of a general lubrication model and 

governing equations. In a following Chapter 4, major analytical solutions obtained for 

several cases. In Chapter 5, numerical solution approach is described and obtained 

solutions are discussed. Experimental measurements of friction coefficient and wear mass 

loss are presented in Chapter 6. Comparison of theoretical results with experiments is given 

in Chapter 7. Wear particle measurements and possible relation with theory are provided in 

Chapter 8. Some conclusions and suggestions are summarized in Chapter 9. 
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2.  LITERATURE REVIEW  

2.1.  Artificial joint replacements 

As it was mentioned above, the primary concern of the thesis is the lubrication in 

artificial joint replacements. The reason for this is the increasing demands in such kind of 

devices for patients with joint pain, as it is shown in Figure 1. Abbreviation TKA stands for 

total knee arthroplasty, whereas THA for total hip arthroplasty.  

 
Figure 1. Projections of primary replacement surgeries (Kurtz S. 2007). 

Under healthy conditions, natural joint works under lubricated condition with 

synovial liquid acting as a lubricant. The bearing surfaces are represented by human bones 

with surfaces covered by layers of articular cartilage. Interaction of this material and 

synovial fluid under normal conditions develops very low friction (the range for friction 

coefficient is in 0.005 to 0.04, (Kennedy F.E., Natural and Human Joints 2012)) and 

negligible wear during the lifetime of the human. From the point of view of tribological 

performance of the joint, synovial fluid is the major component. The main constituent of it 

TKA 

THA 
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is water and it also contains long chain protein molecules, hyaluronic acid and 

phospholipids (Neville 2007). Synovial fluid shows strongly non-Newtonian properties 

with viscosity varying in the range from about 0.05 to 1.5 Pa s, depending on operational 

conditions, as well as individual features of the human (Kennedy F.E., Natural and Human 

Joints 2012). Operational conditions important to lubrication analysis in joints can be 

summarized in a Table 1, (Neville 2007). 

     Table 1. Operational conditions in joints. 

Motion Sliding/rolling 

Lubrication regime Hydrodynamic/Boundary lubrication 

Speed 0.03-0.3 m/s 

Contact pressure Max 18 MPa 

Temperature 25-40 °C 
 

Brilliant performance of natural joints sometimes fails and people start to feel pain. 

In this case, replacement surgery is performed, and artificial joint replaces the natural one. 

Schematic of such device for THA is shown in Figure 2.  

  

Figure 2. Schematic representation of artificial hip replacement.  

Acetabular Cup 

Polyethylene Liner 

Femoral Head 
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In a shown case, femoral head and polyethylene liner are the bearing surfaces, and 

as in case with natural joints, they operate in synovial lubrication environment. First 

introduced by Charnley in 1962 (Kennedy F.E., Natural and Human Joints 2012), these 

devices showed low friction and wear performance and are able to relief patients from pain. 

However, sometimes they fail resulting revision, which is a risky and expensive surgery. At 

the same time, younger people need joint replacements demanding additional requirements 

to the performance and longevity of artificial joints. Projections of these revision surgeries 

are shown in Figure 3 

 

Figure 3. Projection of revision surgeries (Kurtz S. 2007). 

It is already admitted by researchers that the major reason of joint failure is the 

wear of polyethylene liner (Atwood S. A. 2006). However, the primary failure is not due to 

mechanical wear through of the liner, but the wear-particle induced immune system 

reaction (osteolysis, resorption of living bone tissue), which leads to a joint loosening (A. 

2012). Thus, increasing the wear resistance of artificial joint replacement materials is one 

of the primary goals of modern arthroplasty. 
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A number of researchers attempted to study the lubrication and wear in artificial 

joints theoretically as it was recently reviewed by Mattei et al (Mattei L. n.d.). Goenka 

(Goenka P 1980) was first to formulate transient Reynolds equation in spherical 

coordinates and solve it using finite element analysis. Using Newton-Raphson approach a 

simultaneous solution of elasto-hydrodynamic lubrication (EHL) problem for ball-in-socket 

geometry was obtained by Jalali-Vahid et al (Jalali-Vahid D 2003). A general methodology 

for steady state EHL analysis of hip implants was developed by Jagatia et al (Jagatia M. 

2001). Newton-Raphson algorithms of Reynolds equation with finite element analysis to 

obtain elastic deformations were used for solution. Sparse fast Fourier transformation 

approach allowed Wang et al (Wang F.C. 2004) to solve EHL problem for realistic 3D 

loading and motion of walking conditions. However, in case when solution requires highly 

dense mesh, Newton-Raphson approach becomes inefficient as a full matrix linear system 

must be solved, which is much more expensive in terms of calculation resources (Gao L. 

M. 2007). For this reason, multi-grid techniques introduced by Lubrecht and further 

improved by Venner (Venner C.H. 2000) are widely employed in EHL analysis of artificial 

joint replacements. As it will be discussed in more details later in the thesis, recently 

developed be Evans et al (Evans H. P. 2000) differential deflection approach allows 

overcoming mentioned drawback and obtaining EHL solution in an efficient manner using 

Newton-Raphson solver. 

In wear modeling of artificial joint replacements, situation is even more 

complicated, due to complex nature of the considered phenomena itself. Most of the studies 

neglect the lubrication (Mattei L. n.d.) and consider Archard’s wear law (Archard 1953) to 

estimate wear factor, or wear coefficient from experimental measurements (Kima N. H. 



 

8 

2005, Mukrasa S. 2009, Benabdallah H. 2006). Using this approach, Fisher et al (Fisher J. 

1994) explored dependency of wear factor on roughness and sliding speed and obtained 

empirical relationship between wear factor and roughness of the tough counter face in case 

of bovine serum lubricated conditions. Wang (Wang 2001) developed a different wear law 

for UHMWPE in multi-directional sliding in lubricated contact. However, the law was not 

coupled with EHL theory, which again means that the influence of lubrication was 

neglected. Kennedy et al (Kennedy F.E., Lubrication and Wear of Artificial Knee Joint 

Materials in a Rolling/Sliding Tribotester 2007) explored wear of UHMWPE in oscillating 

contacts and using Archard’s law found that the wear factor along the wear track in case of 

lubricated contact varies in different locations. EHL theory was employed to explain this 

result, however, estimation of wear factor was solely based on the simplified dry Hertz 

theory solution, which may fail in the lubricated contacts. 

As the normal function of either artificial or natural joints is highly dependent on 

the synovial liquid lubrication, assumption of dry contact may not be fulfilled. Thus, for a 

proper wear analysis, lubrication theory cannot be neglected. Zhu et al (M. A. Zhu D. 

2007) built a sequential numerical algorithm to solve coupled lubricant flow and wear of 

material. As it will be discussed later in the section devoted to numerical approach, there 

are some disadvantages of sequential algorithm, mainly related to the low convergence 

speed of such schemes. In case of modeling a transient problem for rough surfaces, high 

number of EHL solutions coupled with wear theory must be built. For example, for the 

modeling of one wear cycle of a pin-on-disk machine, it is necessary to solve the problem 

at least 300 times, depending on the time step discretization. Thus, low convergence speed 

algorithms cannot be efficiently applied to the wear simulation. For this reason, in the 
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thesis, a fully implicit or simultaneous approach of coupling Archard’s wear law with EHL 

theory was developed.  

2.2.  Lubrication theory 

History of lubrication theory goes more than a century back to 1886 when O. 

Reynolds published famous equation of thin fluid film flow in the narrow gap between two 

solids (Reynolds 1886). This equation carries his name and forms a foundation of the 

lubrication theory. First analytical solutions for pressure distribution in case of parallel and 

converging plane surfaces with fixed separation film thicknesses were obtained by 

Reynolds himself.  

Further, in 1916 Martin (Dowson D., Elasto-Hydrodynamic Lubrication. SI Edition. 

1977) obtained a closed form solution for a minimum film thickness and pressure for a 

cylinder and plane geometry under assumptions of rigid surfaces and isoviscous lubricants. 

But as it was shown experimentally later, this solution did not match with film thickness 

measurements in case of high loads. Comparison of Martin’s rigid body solution with 

experimental measurements can be seen on Figure 4.  

Derivation of several analytical solutions including this one will be shown further in 

the thesis and it will be seen that pressure distribution is fully determined by minimum film 

thickness and therefore is of most importance in theoretical analysis.  

Divergence of experimental and theoretical results by Martin for high loads leaded 

researchers to conclusion that elastic distortion and pressure-viscosity dependence play a 

significant role in lubrication. In 1949, Grubin (Grubin A.N. 1949) obtained a solution for 

so called elasto-hydrodynamic lubrication (EHL) line contact problem with certain 

simplifications, where he combined both elastic deformation and lubricant hydrodynamic 
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flow. Although his solution did not satisfy both elastic and hydrodynamic equations of 

EHL, his analysis was recognized as particularly useful. It also included variance of 

viscosity with pressure. At the same time, Grubin was able to predict formation of pressure 

spike at the outlet region – remarkable feature of EHL solutions. 

 

  
Figure 4. Variation of film thickness with load, (Dowson D., Elasto-Hydrodynamic 

Lubrication. SI Edition. 1977). 
 

Petrushevich (Petrusevich 1951) was actually first to obtain predicted by Grubin 

pressure spike in his numerical analysis of the EHL line contact problem. For this reason, 

the spike sometimes is referred to as “Petrushevich” spike. Obtained in 1951, his solution 

was first solution of combined elastic distortion, fluid flow and pressure-viscosity 

dependency equations. It should be emphasized, that the occurrence of the pressure spike is 

closely related to the variance of viscosity with pressure along with elastic properties of 
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materials and relative speed. In the thesis, it was noticed that pressure spike does not occur, 

if only constant pressure is considered. 

Remarkable analytical solution of a point contact problem was derived by a famous 

Russian scientist P.L. Kapitsa (Cameron 1976) in assumptions of rigid substrates, 

isoviscous fluid and half-Sommerfeld boundary conditions. Under these conditions, he 

obtained a closed form relation of minimum film thickness on load and other parameters of 

the problem. 

By that moment, newly introduced computer technologies became available. 

Further development of the solution approaches was closely related to the growth of 

computer capabilities and evolution of numerical methods.  

In 1959 Dowson and Higginson (Dowson D., A Numerical Solution to the 

Elastohydrodynamic Problem 1959) computed series of numerical solutions of EHL line 

contact problem for a range and obtained a regression formula for a minimum film 

thickness, which is still being widely used. They also introduced three non-dimensional 

groups of parameters, namely “load”, “speed” and “materials” parameters. Equation is 

given by: 

 ��� � 2.65��.��� �.������.�� ( 1 ) 

where �� � ��/��� is the load parameter, �� � ��� is the materials parameter and 

� � ���/��� is the speed parameter.  

Several approaches were introduced to solve the system of EHL equations. Direct 

methods are used to obtain the pressure distribution for a known fluid film thickness and 

inverse methods vice versa: for a fixed pressure distribution, fluid film thickness is 

calculated (Gohar 1988).  
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Multigrid approach introduced by Lubrecht (Lugt P.M. 2011) and further improved 

by Venner (Venner C.H. 2000) significantly increased efficiency of numerical methods and 

allowed researchers analyze more complex problems. Recently, a fully implicit approach 

along with Newton’s method was reexamined in a light of development of differential 

deflection approach (Evans H. P. 2000). Advanced computational methods combined with 

sophisticated hardware nowadays allow tribologists to explore transient problems (Wijnant 

1998), incorporate plastic effects (Ning Ren 2010), surface roughness (H. Y.-Z. Zhu D. 

2001), study thermal problems (Hasim Khan 2009), mixed EHL (Hu Y.Z. Wang H. 2001) 

and wear processes (M. A. Zhu D. 2007).  Recently, CFD (Hartinger 2007) and molecular 

dynamic simulations (Spikes 2006) were employed in EHL problems. 
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3.  FORMULATION AND GOVERNING 

EQUATIONS 

As long the lubrication in joints is analyzed, some theoretical and experimental 

models must be considered. In general, a complex three-dimensional motion and three-

dimensional dynamic loading makes is difficult to simulate and investigate behavior of 

natural and artificial joints. Thus, some simplifications are employed, namely, one-

dimensional loading and one-directional motion. It allows then using a pin-on-disk 

tribometer for experimental measurements of wear and friction. The simplified problem 

formulation is shown in the Figure 5.  

 

 

Figure 5. Schematic representation of the problem.  

Instead of 3-D problem, a 2-D simplified approach is employed. A cylinder with 

radius R with some length in Z direction is considered and it is assumed that nothing 

changes in that direction. There is some lubricant between the steel cylinder and the HDPE 

substrate with certain viscosity, and thickness of this lubricant layer changes with 
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coordinate X. Coordinate system is fixed and related to the steel cylinder. The substrate 

moves with constant velocity U, and the steel cylinder is stationary. When some load is 

applied through the cylinder, a certain pressure is developed in the lubricant and equilibrate 

applied load. As long as the elastic modulus of steel is two orders of magnitude higher than 

of HDPE, the cylinder is considered to be rigid, and only substrate is allowed to deform 

elastically. 

Unknowns here are the pressure developed in lubricant and, actually, separation 

distance between two bodies, which is lubricant film thickness. Knowing these values, one 

can estimate friction, and through some laws estimate wear. And it is important to know, 

how these variables depend on the given parameters, like load, viscosity, speed and any 

other related values. 

In general, EHL model involves two groups of equations (Ai 1993). First group 

consists of: 

1) Reynolds equation 

2) Film thickness equation 

3) Load balance equation 

Second group involves empirical relationships: 

1) Viscosity-pressure relation 

2) Density-pressure relation 

Further, this system of equations can be changed in order to account non-

Newtonian behavior, temperature, plastic deformations, time dependent geometry 

(roughness, wear) and other effects. 
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3.1. Reynolds equation 

Reynolds equation is the result of classical Reynolds theory and is employed in a 

wide range of thin film flow problems. The principles of the theory are derived from the 

observation that the lubricant can be treated as isoviscous and laminar and the fluid film is 

of negligible curvature. Reynolds equation can be derived from the Navier-Stokes 

equations and the equation of continuity under assumptions of: 

1) constant viscosity, Newtonian lubricant 

2) thin film geometry 

3) negligible inertia 

4) negligible body force 

Under these assumptions one can obtain following equation (Szeri 2005): 

 ��� � ��12� �"��# $ ��% � ��12� �"�&# ' �()* �+�� ' �( �+�, � 0 ( 2 ) 

where  " is the pressure, � is the film thickness or gap height, , the time,   the 

density, � the viscosity of lubricant and )* � -./-01  represents the mean velocity of the 

surfaces. First two terms in equation represent Poiseuille pressure induced flow, the third 

one is referred to as Couette term describing the flow induced by mean velocity and the last 

is known as a squeeze term. A sketch with coordinate axes and velocities is shown in a 

Figure 4.  
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Figure 6. Surfaces in a relative motion. 

Equation ( 3 ) is called Reynolds equation and is, in fact, three- dimensional. In a 

following analysis, a simplified two-dimensional version is used: 

��� � ��12� �"��# ' �()* �+�� ' �( �+�, � 0 ( 3 ) 

 
3.2.  Elastic deflection equation 

As long as EHL problems require evaluation of elastic deflection, expression for 

relating pressure and deflection is needed. Detailed derivation of it is given in (Dowson D., 

Elasto-Hydrodynamic Lubrication. SI Edition. 1977), (Johnson 2003), (Timoshenko S. 

1951). Equation is derived for a semi-infinite perfectly elastic body, shown in Figure 7. It is 

supposed that in directions &, % bodies are infinite and in the study only vertical deflections 

are of interest. 

U1 

 U2 

Y 

X 

h 
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Figure 7. Semi-infinite elastic half-space. 

In the examined case, consideration of semi-infinite elastic half-space is justified, as 

the elastic deflection is orders of magnitudes smaller than actual size of the analyzed 

substrate. In this case, analytical solution of equations of elasticity theory gives following: 

�3(�+ � ' 45�� 6 "(��+ ln(� ' ��+ 9��:;
:< $ = ( 4 ) 

where �3(�+ is elastic deflection, "(��+ - pressure, 1/�� � (1 ' >1+/� – reduced 

Young’s modulus, � – Young’s modulus, > – Poisson’s ratio and = is constant. This 

constant is taken in the way, to make the deflection equal zero somewhere significantly far 

from the contact. For example, if at a point �? deflection is zero, then constant is equal to: 

= � 45�� 6 "(��+ ln(�? ' ��+ 9��:;
:<  ( 5 ) 

In case of two elastically deformable bodies, reduced elastic modulus can be 

calculated as an arithmetic average: 

1�� � 12 � 1��� $ 1�1� #  ( 6 ) 

X 

Z 

Y 

�@  



 

18 

In the thesis, a metal/HDPE contact is considered and consequently, metal ball can 

be considered as a rigid body compared to the HDPE substrate. 

It is clear from equation ( 4 ) that deflection at each point depends on pressure 

distribution all over the substrate, which makes the final system of equations differential-

integral and complicates numerical solution.  

3.3.  Film thickness equation 

In the examined two dimensional case, instead of a three dimensional ball, a simple 

geometry of an infinite cylinder is introduced as it is shown in a Figure 8. Hence, the 

problem becomes two dimensional. First, consider only the ball and assume zero point 

coincides with its vicinity. 

 

 

Figure 8. Geometrical component of film thickness. 

Near the vicinity at point � � 0, thickness �A can be represented as a function of a 

current ordinate � and approximated by neglecting all terms of Taylor’s expansion with 

exponents higher than two: 

 �A(�+ � � �1 ' B1 ' C��D1E�/1#  

Taylor’s expansion near zero: 

R- hg 

 

x 

R 

Y hg 

X (0,0) 

hg 
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�1 ' B1 ' C��D1E�/1# F �12�1 

and hence,  

 �A(�+ � �12� ( 7 ) 

Further, we can introduce a substrate on a distance �� from the cylinder as it is 

shown in the Figure 4. 

 

 
Figure 9. Cylinder and substrate.  

Then the distance between the cylinder and the substrate could be written as 

follows: 

 �(�+ � �� $ �A(�+ ( 8 ) 

This gap is considered to be filled by a lubricant and hence, �(�+ is a lubricant 

thickness, or film thickness. Further, if there is an applied load, some pressure distribution 

is going to arise and the substrate is going to deflect according to equation ( 4 ). This 

deformation �3(�+ will increase the distance between surfaces and hence equation ( 8 ) is 

re-written: 

 �(�+ � �� $ �A(�+ $ �3(�+ ( 9 ) 

(0,0) 

hg 

h0 Y 
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It should be emphasized, that parameter �� in equation ( 9 ) cannot be treated as in  

( 8 ) as a minimum distance between two surfaces. Now �� represents only a distance 

between line % � 0 and the cylinder vicinity necessary to equilibrate applied load. This 

parameter is unknown and has to be calculated using force balance equation. 

 

 
Figure 10. Geometrical meaning of ��. 

In case shown in the Figure 10, �� has a negative value according to equation ( 9 ) 

at � � 0. In general, it can be a positive number, if the cylinder does not cross the line % �
0. 

Equation ( 9 ) is not a complete expression for the film thickness, as there are not 

included surface roughness and wear, which directly affect separation thickness. It will be 

done later in the thesis. 

Pressure distribution over a fluid film is highly dependent on the film thickness.  

For EHL problems, elastic deformation of the contracting solids is important and 

influences the gap formation. Thus, final gap between surfaces consists of actual geometry 

and elastic terms. In the other hand, elastic effect is determined by pressure distribution. 

Hence, Reynolds equation and gap thickness formula in EHL problems are strongly 

coupled. 

deformed substrate 

(0,0) 

h0 

Y 
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3.4.  Wear law 

Wear simulation allows studying the process precisely, finding parameters of most 

importance, substituting experiments and, actually, getting some important numbers. At the 

same time, wear itself is a very complicated process, which includes physical and chemical 

transformations. This fact gives rise to a high number of proposed wear models. According 

to the literature surveys (Meng H.C. 1995), the model proposed by Archard (Archard 1953)  

is most frequently used:   

  GH � IH�J ( 10 ) 

where  GH is wear volume, IH is wear coefficient, � is the load and s is a sliding 

distance.  

Now, if both parts of equation ( 10 ) are divided by the area of contact, equation 

takes form: 

 �H � IH"J ( 11 ) 

where �H is a depth of wear and " is pressure. 

In the other hand, when the transient problem is considered, �H depends on time 

and distance can be represented in an incremental form: 

 9�H � IH")9,  ( 12 ) 

and hence, 

  9�H9, � IH") ( 13 ) 

Consider an arbitrary pressure distribution as shown in the Figure 11. 
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Figure 11. Motion of the worn point on a lower surface. 

The coordinate system is fixed and zero point is on the lower surface under the 

vicinity of the cylinder. Consider a point of the surface at moment ,� which experiences 

pressure "� and wear depth due to "� is �H�. Suppose the coordinate of it is �. It is 

necessary to follow this point to find it at moment ,1 under pressure "1 at coordinate 

� $ )(,1 ' ,�+ with wear depth due to "1 is �H1. Total wear depth of this point then is 

� � �H� $ �H1. Hence, following expression for wear in fixed coordinate system can be 

written: 

 �H(� $ ),, ,+ � IH) 6 "(� $ ),�, ,�+9,�K
�

 ( 14 ) 

Thus, every time step, there will be a wear generated by pressure. This wear will 

increase distance between two surfaces and hence must be incorporated into film thickness 

equation as a positive term: 

 �(�+ � �� $ �A(�+ $ �3(�+ $ �H(�+ ( 15 ) 

The fact that the film thickness influences pressure distribution means that wear 

also influences pressure, and it plays a pressure dissipation role.  
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3.5.  Surface roughness 

It is well known that any surface is not ideally flat as it was supposed in previous 

sections. Some irregularities of the surfaces are always present and actually, in case of 

highly loaded contacts can play significant role, as the height of these asperities becomes 

comparable with minimum film thickness. This leads to the local rise of pressures and 

corresponding increase in wear, friction, temperature and other effects. Thus, proper 

treatment of surface roughness should be provided. Obviously, minimum film thickness 

must ensure a full separation of two bodies by a lubricant. To achieve it, film thickness 

must be larger than a sum of asperities height of the two bodies. Thus, asperity heights 

determine optimum parameters to achieve a full separation.  

In general, asperities decrease the distance between the bodies, thus, equation for 

film thickness is re-written with account of asperities height as: 

 �(�+ � �� $ �A(�+ $ �3(�+ $ �H(�+ ' J(�+  ( 16 ) 

where J(�+ is an a sum of asperity heights of two bodies at point �. It is possible to 

introduce roughness from direct measurements of the surface, for example, by atomic force 

microscopy, or for simplicity, through mathematical expression. We can consider a 

following function: 

  J(�+ � L*sin (O�+ ( 17 ) 

where  L* is an amplitude of the asperities, O is a wave length.  

Using this relation it is possible to analyze influence of amplitudes and roughness 

wave length on local film thicknesses and pressures. Moreover, if there are actual 

measurements of surface roughness, it is possible to fit them using equation ( 17 ) at some 

extent and get averaged values.  
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3.6.  Load equation 

Equilibrium of forces is reached when the hydrodynamic pressure obtained from 

Reynolds equation is balanced by applied load �@. For the line contact problem the force 

balance is written as: 

 �@ � 6 "(��+9��:;
:<  ( 18 ) 

where  �@ is a load per unit length.  

Hydrodynamic pressure in lubricant film acting on the upper surface, actually 

initiates two components of forces, in vertical and horizontal directions. But the horizontal 

component of it is very small, as the radius of curvature is very large compared to the 

contact length. Thus, it can be neglected. 

3.7.  Lubricant properties 

Pressure dependent parameters of the fluid, such as viscosity and density are related 

with pressure through empirical equations. As the nature of these relations is empirical, 

various formulas are available for both properties (Venner C.H. 2000). 

Probably, one of the most used equations is known as Barus equation: 

 �("+ � ��exp (�(" ' "�++ ( 19 ) 

where  �� is the viscosity under atmospheric pressure and � is the pressure-

viscosity coefficient. 

The density can be assumed constant or again several experimental results can be 

employed.  Dowson and Higginson (Dowson D., Elasto-Hydrodynamic Lubrication. SI 

Edition. 1977) relation is given by: 
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  ("+ �  � 5.9 · 10U $ 1.34"5.9 · 10U $ "  ( 20 ) 

where   � is the atmospheric density and pressure unit is given in Pa. 

Defined set of equations with corresponding boundary conditions forms a full 

stationary EHL problem. Boundary conditions will be discussed in the numerical scheme 

section. Developed code contains ability of pressure dependent density feature, however, 

pressures developed for metal/HDPE contacts are too small to influence the pressure 

distribution, and thus, in calculations were not considered. 

3.8.  Boundary conditions 

Reynolds equation as the second order differential equation requires two boundary 

conditions to be stated. In one hand side, it is clear that far to the left from the contact in 

considered two dimensional cases pressure must be equal to atmospheric pressure. Thus, 

one of the boundary conditions for the problem is written as: 

 "(�?+ � "� ( 21 ) 

With the same consideration, pressure on the right boundary is supposed to be equal 

to atmospheric pressure: 

 "(�W+ � "� ( 22 ) 

Numerical solution of Reynolds equation with conditions stated boundary 

conditions is shown on the Figure 12 and is referred to as Full Sommerfeld Solution. 

Pressure distribution is asymmetric and contains negative values. This behavior is not 

physically justified, because the fluid cannot sustain pressures below its cavitation pressure 

(Floberg 1961).  
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Figure 12. Full Sommerfeld numerical solution. 

If the pressure goes below vapor, lubricant starts boiling. This condition is believed 

to happen rarely in lubrication problems (Dowson D., Elasto-Hydrodynamic Lubrication. 

SI Edition. 1977). In the other hand, if pressure falls below atmospheric, dissolved gases 

are liberated, forming bubbles and these bubbles maintain pressure near to saturation point. 

For examined case, saturation pressure is close to atmospheric, as the lubricant is opened to 

atmosphere. Such condition is called cavitation and needs to be implemented into 

numerical scheme. Complementarity arises when Reynolds equation is solved along with 

cavitation condition: full solution is subdivided into two areas. Within the one of them 

Reynolds equation solution is taken and within other one pressure is set to zero. The border 

between subdomains is unknown and there are several ways to find it. 

The simplest way is known as Half Sommerfeld Solution and is used to estimate real 

pressure profile and load capacity. This approach simply set hydrodynamic pressure 

obtained by Reynolds equation to zero wherever it is negative. It is stated by Venner 

(Venner C.H. 2000) that half Sommerfeld solution results relatively small errors in 

determination of load capacity. 
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It was first noticed by Reynolds that proper boundary conditions are needed. To 

locate the cavitation point, one more equation is needed. Following equation is referred to 

as Reynolds, or Swift-Stieber boundary condition: 

  X�"��Y:; � 0 ( 23 ) 

It is the most frequently used equation in EHL solution problems and it is found 

from considerations of continuity. It is supposed that lubricant travels through cavitation 

region in streams, separated by bubbles. Separation starts at the point of cavitation, hence, 

at this point velocity profile of the lubricant is linear. Immediately before cavitation region, 

velocity profile obeys Reynolds equation, and hence gives nonlinear distribution, if 

pressure gradient is not zero. Thus, only pressure gradient equal to zero can satisfy these 

considerations. 

One way of cavitation boundary implementation is known as penalty method, 

introduced by Wu (Wu 1986). Consider following form of Reynolds equation: 

 ��� � ��12� �"W�� # ' )* �( �+�� ' �( �+�, ' 1Z "W� � 0 ( 24 ) 

where  "W� � min (0, "W+. It was shown by Wu: 

lim\]� "W(�+ � "(�+,  ^ � 
where "(�+ is the solution of the following system: 

  

_̀à
b  ��� � ��12� �"��# ' )* �( �+�� ' �( �+�, � 0

X�"��Y:; � 0 X ( 25 ) 

Thus, the cavitation boundary condition can be implemented through the solution of 

equation ( 24 ). This approach is used in the thesis. 
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3.9.  Full system of equations 

Finally, it is possible to write down the system of equations fully describing the 

examined problem. 

 

_̀̀
a
`̀b

��� � ��12� �"��# ' )* �( �+�� ' �( �+�, � 0
�@ � 6 "(��+9��:;

�c�(�, ,+ � �� (,+ $ �12� $ �3(�, ,+ $ �H(�, ,+ ' J(�, ,+ 
X ( 26 ) 

Boundary conditions: 

 

_̀̀
a
`̀b

"('∞+ � "� "(�W+ � "� X�"��Y:; � 0 
X ( 27 ) 

where 

  

_̀
à
`̀
b�3(�, ,+ � ' 45�� 6 "(��, ,+ ln(� ' ��, ,+ 9��:;

:< $ =(,+ 
�H(� $ ),, ,+ � IH) 6 "(� $ ),�, ,�+9,�K

� J(�+ � L*sin (O�+ 
X ( 28 ) 

and 

 �("+ � ��exp (�"+ ( 29 ) 

System of equations ( 26 ) - ( 29 ) includes all equations necessary to solve. 
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3.10.  Dimensional equations 

It is convenient to study instead of actual parameters, dimensionless ones. To 

perform this procedure, following dimensionless variables are introduced. 

" ' e� � "�e�,   � � ���,   � � �f�, , � �)* ,�,  IH � IHffffe� , �� � ��� , �f � �e� 
 J � J��, L* � L*ffff�, �@ � �e��@  

Substitution of these variables gives the dimensionless equations: 

 

_̀̀
a
`̀b

���� �L  ��f��� �"����# ' �g ��fh��� ' �g ��fh�,� � 0
�@ � 6 "�(�� �+9�� �:;fff

�c�f(��, ,�+ � �f� (,�+ $ ��12 $ �f3(��, ,�+ $ �fH(��, ,�+ ' J�(��, ,�+ 
X ( 30 ) 

 

_̀̀
a
`̀b

"�('∞+ � 0 "�(��W+ � 0 X�"����Y:�; � 0 
X ( 31 ) 

where parameter L � �e�/12��)*. Now it is possible to consider particular 

analytical solutions of the stated problem. 
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4.  ANALYTICAL SOLUTIONS OF SIMPLIFIED 

PROBLEMS 

In general, stated system of equations cannot be solved analytically, and only in a 

few simplified cases it is possible to obtain such a solution. Three stationary analytical 

solutions are discussed. 

First case to consider is the lubrication of rigid bodies with constant viscosity and 

density. Although it is not applicable in most of the practical cases, it gives a closed form 

solution for a minimum film thickness and shows the relationship between parameters of 

the process. 

As a second solution, Grubin’s approximate formula is derived. This brilliant 

solution is also important to study due to account for viscosity-pressure variation and 

elasticity of contacting bodies.  

Kapitsa solution of a point contact problem is discussed in the last section as the 

only analytical solution of three dimensional problems. It is derived for the case of rigid 

substrates, but takes into account viscosity- pressure variation. The price for this is the use 

of half-Sommerfeld boundary conditions. 

4.1.  Rigid body isoviscous solution 

First, it is convenient to consider the simplest case of sliding motion in which 

bodies are assumed to be rigid. In this case, the system of equations simplifies to the 

following: 
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_̀̀
a
`̀b

���� BL�f� �"����E ' �g�fh��� � 0
�@ � 6 "�(�� �+9�� �:;fff

�c�f(��+ � �f� $ ��12 
X ( 32 ) 

Regular boundary conditions ( 27 ) are applied. 

Following variable substitution is applied: 

 �� � i2�f�tan l ( 33 ) 

Substitution of a new variable l into equations and double integration of the 

Reynolds equation leads to a following system of equations on unknowns lW and �f�: 

 

_̀
a
b̀L�@ �f�2 � m�(lW+L=�f�n2�f� � m1(lW+  

X ( 34 ) 

 

_̀̀
a
`̀b m�(lW+ � 12 B1 $ 34 =�E C1 $ ClW $ 52D ,oplWD $ 18 m1(lW+ � 18 B1 $ 32 =�E Jrp2lW $ 12 B1 $ 34 =�E ClW $ 52D

 =� � ' 1stJ1lW

X ( 35 ) 

Once lW and �f� are known, pressure distribution is calculated according to 

expression: 

"�(l+ � n2�f��f�1L u14 Jrp2l $ l2 $ =� B 132 Jrp4l $ 14 Jrp2l $ 38 lE $ 3516 =�

$ 54v 
( 36 ) 
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If the parameter �f� from the first of equations in ( 34 ) is expressed in terms of 

m�(lW+ and substituted into the second equation, the following relation is obtained: 

 1√2 �m�(lW+L�@ #�1 � m1(lW+L=  ( 37 ) 

This relation dictates the condition for functions m�(lW+ and m1(lW+ to be greater or 

equal to zero. In case if = – dimensionless cavitation pressure is zero, as in considered case, 

m1(lW+ must be equal to zero, as the left hand side is finite when m�(lW+ is greater than zero. 

Function m1(lW+ crosses zero only at one point lW � 0.4436, thus, from the first equation of 

the system ( 34 ), �f� can be calculated as: 

 �f� � 2m�(lW+L�@ � 0.408L�@  ( 38 ) 

Returning back to dimensional variables, final equation for a calculation of the 

minimum film thickness is obtained: 

 �� � 4.9 �)*��@  ( 39 ) 

This solution is known as Martin’s theory approximation (Dowson D., Elasto-

Hydrodynamic Lubrication. SI Edition. 1977), (Grubin A.N. 1949). Although it is well 

known that experimentally measured minimum film thicknesses for highly loaded contacts 

are much greater due to elastic deformation, this solution shows essential relationship of 

parameters in a hydrodynamic lubrication.  Major conclusion in here is that higher 

viscosity lubricants produce thicker separation films. 

4.2.  Grubin’s solution 

As it is visible from the pressure-viscosity relation, viscosity of the lubricant 

increases exponentially with pressure. Thus, according to ( 39 ) minimum film thickness 
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will be increasing too. Based on this relation, Grubin was able to obtain an approximate 

analytical solution of the line contact problem. 

Consider following system of equations: 

  

_̀
à
`̀b

99� � ��12� 9"9�# ' )* 9�9� � 0
�@ � 6 "(��+9��:;

�c�("+ � �� exp(�"+"('∞+ � 0 
X ( 40 ) 

Integrating once first equation, one can obtain: 

  ��12�)*
9"9� � 9�9� $ = ( 41 ) 

where  = is a constant. At some point, pressure gradient equals to zero, and 

corresponding film thickness is noted as ��. If = is expressed through ��, equation ( 41 ) 

takes form: 

 9"9� � 12�)* � '  ����  ( 42 ) 

Introduce a variable "x � (1 ' y�z{+/�, and hence: 

 9 "x9� � 12��)* � '  ����  ( 43 ) 

Under conditions of heavily loaded constants considered by Grubin, pressure in 

contact gets very high, means goes to infinity and " ] ∞, which means "x ] �z � stpJ,, 

| {}|: � 0. Therefore, inside of the contact film thickness is constant, and  �� � ��, where �� 

is the separation film thickness. Another conclusion from this statements is that pressure 

inside of the contact is the same as for the dry contact, as the lubricant is incompressible. 

Thus, the pressure distribution can be considered as Hertzian. From the other hand, Grubin 
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considered pressures outside of the contact zone as small, compared with inside, and 

therefore all deformations outside of it are due to pressure inside. Consequently, film 

thickness outside of Hertzian zone is written as: 

 �(�+ � �� $ �1 ' σ�1�� $ 1 ' σ11�1 # a"*?:δ  ( 44 ) 

where the latter term comes from Hertz theory, a is a half-width of Hertz contact 

and:  

 δ � 2 ��o �C�oD1 ' 1 ' �p ��o $ �C�oD1 ' 1��  ( 45 ) 

For the line contact "*?: � 1��. Introduce a new variable:  

 1�@ � �1 ' σ�1�� $ 1 ' σ11�1 # 15  ( 46 ) 

Then equation ( 44 ) can be written in a short way: 

 �(�+ � �� $ 1�@ �@δ  ( 47 ) 

As the film thickness is constant in contact zone, � '  �� � � ' �� � ��� �@δ . Thus, 

equation ( 43 ) gets form: 

 9 "x9� � 12��)*
1�@ �@δ 

C�� $ 1�@ �@δD� ( 48 ) 

Now it is possible to re-write the last equation in a following form: 

 9"x�9�� � δ �� ( 49 ) 
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and  "x� � C����D1 12��)*o� , �� � � o⁄ . Integration from the negative infinity to -1, 

leads to an equation: 

 "x� ('1+ ' "x� ('∞+ � 6 δ �� 9���
�c  ( 50 ) 

Now the integration can be performed numerically for a range of �� and get an 

approximate expression: 

 "x� ('1+ � 0.0986����� U⁄  ( 51 ) 

In the other hand, "x� ('1+ must be equal to 1 �⁄ . Thus, substituting back all the 

variables, knowing from Hertz theory that o � 2n�@� �@⁄ , �� can be obtained: 

 ���� U⁄ � 2.3664 ��)*�√��@ �@⁄  ( 52 ) 

Equation ( 52 ) is a result of a brilliant analysis of Grubin and as it was shown later, 

fairly matches experimentally measured film thicknesses for highly loaded contacts. 

4.3.  Kapitsa solution of point contact problem 

In case of rigid bodies and half-Sommerfeld boundary conditions, a famous Russian 

scientist Kapitsa was able to obtain an analytical solution of point contact problem.  

Assume a following pressure distribution: 

 " � I��1  ( 53 ) 

Substitution of this expression into three dimensional stationary Reynolds’s 

equation then gives: 

 ' 3I��: ' 2I��� � 12)*� ��: ( 54 ) 
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And thus, I � ' 12)*� 3 $ 2 ����� . For balls, �: � ��, then pressure equals to: 

 " � ' 125 )*���1  ( 55 ) 

From the load balance and half-Sommerfeld boundary conditions, one can obtain: 

 �� � �10.664)*��� 1⁄�@ #1 ( 56 ) 

This solution is not frequently used. In details, derivation of Kapitsa and Grubin’s 

solutions are well described in the book of Cameron (Cameron 1976). 
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5.  NUMERICAL SOLUTION OF THE STATIONARY 

LINE CONTACT PROBLEM 

First numerical calculations of a line EHL problem were performed by Dowson and 

Higginson (Dowson D., A Numerical Solution to the Elastohydrodynamic Problem 1959). 

Calculations in a wide range of parameters allowed them to derive a famous approximate 

formula for the film thickness. In their approach they used a simple Gauss-Seidel relaxation 

scheme. Later, improvements were done by other researchers to obtain solutions in high 

loaded contacts. In 1986 Lubrecht (Venner C.H. 2000) introduced multigrid approach and 

were able to reduce calculation time significantly. Further, Venner (Venner 1991) 

introduced multi-integration technique that made possible high load solutions to be 

obtained. First simultaneous solution using Newton-Raphson procedure was considered by 

Okamura (H. 1982), but further research in this direction was restricted by the nature of 

elastic deflection equation: elastic deflections of any point depends on the pressure all over 

the contact, which makes the resultant Jacobean matrix full. Solution of a system of linear 

equations with full matrix, necessary to solve in this case, requires much more 

computational sources. But relatively recently, differential deflection approach was 

introduced by Evans (Hughes 2000, Evans H.P. 1999) , where he found that the second 

derivative of elastic deflection is highly localized, and used it to build a numerical 

procedure for line and point contact problems. In the thesis, this approach was 

implemented for the line contact solution. Further, it will be discussed in details. 

In general, there are two approaches for the solution of the stated problem. First is 

most frequently used, sequential, solves for all unknowns iteratively. Second approach, 
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fully implicit, and solves for unknowns simultaneously. This approach was abandoned by 

researchers at first, as it resulted in a full matrix of linear systems of equations. But as it 

was mentioned, this restriction could be overcome. Advantages and shortcomings of each 

method are listed in the Table 2. 

Table 2. Comparison of solution approaches. 

Sequential Fully Implicit 

Unknowns: ", ��, �W 

One of the unknowns is solved for, others 

are fixed 

Unknowns are solved for 

simultaneously 

Straightforward and simple 

Small storage capacity 

Fast convergence rate  

Slow convergence rate 

Unstable convergence for moderate and 

high loads 

Full matrix of linearized system of 

equations 

Hard to implement cavitation condition 

Singular matrix for high loads 

 

5.1.  Discretization 

In this section discrete equations are obtained using approximation schemes of 

different order. It should be noticed that several authors propose different schemes and 

approaches for approximations. Here the schemes employed by Ai (Ai 1993) are used.  
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5.1.1.  Reynolds equation 
 

Although a number of approximation schemes are available, the Poiseuillis term in 

Reynolds equation is usually approximated by a second order short central difference 

scheme: 

 

� ���� Bξ �"����E�� � l�/�1 B�"����E�/�1 ' l���1 B�"����E���1∆��  ( 57 ) 

where ∆� represents the mesh step size. The same discretization is applied for inner 

partial derivatives: 

 B�"����E�/�1 � "��/� ' "��∆��  ( 58 ) 

and 

 B�"����E���1 � "�� ' "����∆��  ( 59 ) 

Substitution of (3.12) and (3.13) into (3.11) leads to the following final 

approximation: 

 � ���� Bξ �"����E�� � l�/�1"��/� ' "��(l�/�1 $ l���1+ $ l���1"����∆��1  ( 60 ) 

where 

 l���1 � (l� $ l���+/2, ( 61 ) 

 l���1 �  ����1�f���1
�

�����1
 ( 62 ) 

and 
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 �f���1 � (�f� $ �f���+/2 ( 63 ) 

Density and viscosity follow the same way as � in ( 63 ). 

As well as Poiseuillis term, Couette term should be a second order of accuracy, 

although the first order is used too (Ai 1993). Venner (Venner C.H. 2000) proposed several 

second order schemes: short central order central, long central second order and second 

order upstream approximations. Second order upstream approximation is suggested for 

EHL problems to apply for entire domain a first order upstream discretization on the 

boundary.  

He noticed that for low loads or pressure independent film thickness, any second 

order approximation is suitable. For the simplicity, here the following scheme was taken: 

 ��( �f+��� #� �  ��/��f�/� '  �����f���2∆��  ( 64 ) 

The time derivative term is approximated using first order implicit Euler’s scheme: 

 ��( ��f+�,� #� �  ���f� ' g ���f�h�
∆,�  ( 65 ) 

The superscript p means that this value is taken from the current time step. From 

now on, all the values from current time step will get superscript p, and from the next time 

step won’t have any superscripts. 

Gathering discretized equations and substituting into the first dimensionless 

equation of the system ( 30 ), leads to: 

L l�/�1"��/� ' "��(l�/�1 $ l���1+ $ l���1"����∆��1 '  ��/��f�/� '  ����f���2∆��
'  ��f� ' g ��f�h�

∆,� � 0 
( 66 ) 
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Keeping in mind the penalty formulation ( 24 ), we can introduce following 

function and use it for numerical solution further: 

m�{ � L l�/�1"��/� ' "��(l�/�1 $ l���1+ $ l���1"����∆��1 '  ��/��f�/� '  ����f���2∆��
'  ��f� ' g ��f�h�

∆,� ' 1Z "�W� 
( 67 ) 

5.1.2.  Force balance equation 

 
Force balance equation as well as Reynolds equation can be discretized in a several 

ways. Parabolic approximation of pressure is used by (Ai 1993) in each point and is 

considered by (Gohar 1988). Venner (Venner C.H. 2000) suggests a rectangular 

approximation: 

 �f@ � ∆�� � "���
���  ( 68 ) 

where  � is the number of approximation nodes. The same way as in a previous 

section, function is introduced: 

 m�� � �f@ ' ∆�� � "���
���  ( 69 ) 

5.1.3.  Fluid film thickness equation 
 

According to section  Surface roughness3.5, film thickness equation can be written 

in a following form: 

 �(�+ � �� $ �A(�+ $ �3(�+ $ �H(�+ ' J(�+ ( 70 ) 
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All terms are straightforward to represent in discretized form for each node. Elastic 

term, in general can be represented in a following form: 

 �3(��+ � � ��� "��  ( 71 ) 

This form is usually used in EHL calculations. Coefficients ���  can be considered as 

weights of pressure in point I to the deflection in point r.  It will be shown later, that 

coefficients ���  are decaying very slowly from the point of application. It means that 

deflection in every point strongly depends on pressures even far from the point of interest. 

For sequential schemes, this fact doesn’t make any difference, as the resultant matrix of 

linear equations is derived from Reynolds equation and thus is going to be tridiagonal. But 

in case of fully implicit approach, Jacobean will be a full matrix, and is needed to be 

inverted. Inversion of a full matrix is a very expensive procedure and usually is not used. 

That is the reason of popularity of sequential approach in EHL theory. 

However, recently, as it was mentioned, another approach was invented by Evans 

(Evans H.P. 1999).  Instead of considering the deflection itself, he considered a second 

derivative of the deflection, and was able to come up with following representation: 

 X  �1 �3��1 �:�
� �  �� "��  ( 72 ) 

Solution of a second order differential equation requires two boundary conditions. 

It’s clear that at the left hand side, far from the contact, deflection must be equal to zero. 

On the right boundary, constriction can be calculated through equation ( 71 ). Thus, in 

dimensionless form: 

 �f� � �f� $ ���12 $ 9 � ���"��� ' J�� ( 73 ) 
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Comparison of coefficients in equation ( 71 ) and ( 73 ) is shown in the Figure 13. 

  

 
 Figure 13. Dependence of coefficients on distance from point of application. 

 
As we can see, the second derivative of elastic deflection is strongly localized. 

Thus, instead of considering the original film thickness equation, it is beneficial to work 

with its second derivative and consider the film thickness as an independent variable. Then, 

dimensionless form of the second derivative of the film thickness equation is written in a 

form: 

�f�/� ' 2�f� $ �f���∆�1 � 1 $ 9 �  �� "���  
' J��/� ' 2J�� $ J����∆�1 $ ¡�/� ' 2¡� $ ¡���∆�1  

( 74 ) 

It is possible to introduce following function: 

m�� � �f�/� ' 2�f� $ �f���∆�1 ' 1 
'9 �  �� "��� $ J��/� ' 2J�� $ J����∆�1 ' ¡�/� ' 2¡� $ ¡���∆�1  ( 75 ) 

 

� 
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5.2.  Newton’s method 

The key feature of the approach is to consider pressure and film thickness as 

independent variables. Thus, to obtain diagonally banded matrix, the vector of unknowns 

can be written in a following form: 

G¢£� �

¤¥
¥¥
¥¥
¥¥
¥¦ "�1�f1..."�����f����f��f� §̈

¨̈
¨̈
¨̈
©̈
 ( 76 ) 

Thus, there are 2(� ' 1+ $ 2 unknown variables. For their solution, 2(� ' 1+ $
2  equations ( 66 ),( 68 ),( 73 ),( 74 ) are used. 

According to Newton’s method, following procedure is applied: 

G¢£�/� � G¢£� ' ª��gG¢£�hm(G¢£�+ ( 77 ) 

where m(G¢£�+ is calculated from using previously introduced functions: 

 

m �

¤¥
¥¥
¥¥
¥¥
¥¦ m1{

m1�...m���{
m����m��m�� §̈

¨̈
¨̈
¨̈
©̈
 ( 78 ) 

Matrix of Jacobean must be calculated to solve equation ( 77 ). It is constructed in a 

following way: 
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ª �

¤¥
¥¥
¥¥
¥¥
¥¥
¥¥
¥¥
¥¥
¦ �m1{

�"�1�m1��"�1«

�m1{
��f1�m1���f1«

…  �m1{
�"����

�m1{
��f���    �m1{

��f�
�m1{
��f�…  �m1��"����

�m1���f���    �m1���f�
�m1���f�«�m���{

�"�1 �m���{
��f1

�m���{
�"����

�m���{
��f���    �m���{

��f�
�m���{
��f��m�����"�1�m���"�1�m���"�1

�m������f1�m����f1�m����f1

�m�����"����
�m������f���    �m������f�

�m������f��m���"����
�m����f���    �m����f�

�m����f��m���"����
�m����f���    �m����f�

�m����f� §̈
¨̈
¨̈
¨̈
¨̈
¨̈
¨̈
¨̈
©

 ( 79 ) 

As it can be seen, if all coefficients of the deflection equation are used, then this 

matrix will be full. However, as it was shown, coefficients goes down rapidly, and hence, 

we can assume that only close neighbor points influence the second derivative of deflection 

in the point. In this case, ª becomes banded and band width depends on how many 

neighbor points are considered.  

5.3.  Validation 

In order to validate the proposed method, a number of comparisons were done. 

First, at the limit of infinite elastic modulus, numerical solution must be the same as for 

rigid cylinders. Thus, it is possible to compare analytical and numerical solutions for rigid 

case. Comparison is given in the Figure 14. Obviously, two solutions match. In the same 

figure, the effect of addition of elastic deflections is shown. The influence is very 

pronounced. 
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Figure 14. Comparison of numerical rigid case with analytical solution. 

 
To validate numerical solution in case of elastic bodies, published data was used. 

Two independent sources were taken. Pressure and film thickness profiles were re-built 

from their papers using a ruler and compared with the results obtained in the thesis. First is 

the work by Okamura (H. 1982), who first had used Newton’s method in EHL. In his 

solution, he considered the same line contact problem, however, the second-order 

differential Reynolds equation was first integrated and resulted a first order equation. This 

approach seems to be more accurate, because it reduces approximation errors of the second 

derivative. But this approach cannot be directly used for general 3D case, which makes it 

only particularly useful. In the Figure 15,Figure 16,Figure 17,Figure 18 comparison of 

pressure and film thicknesses with Okamura solution is shown. As it is seen, pressure 

distributions and film thickness profiles are consistent with reference data.  

 



 

47 

 
Figure 15. Comparison with Okamura. Pressure. 

 

 
Figure 16. Relative error in pressure calculation, %, Okamura. 



 

48 

 
Figure 17. Comparison with Okamura. Film Thickness. 

 

 
Figure 18. Relative error in film thickness calculation, %, Okamura. 
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Figure 19. Comparison with Wu. Pressure. 

 
Figure 20. Relative error in pressure calculation, %, Wu. 

To ensure correctness of the developed numerical scheme, pressure distribution was 

compared with another reference, namely, with solution obtained by Wu (Wu 1986). 
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Pressure distributions and relative errors are shown in Figure 19 and Figure 20. Again, it 

can be concluded that profiles are consistent. Thus, numerical solution by fully implicit 

approach is consistent with published data, and, hence, can be considered as correct. 

Solutions obtained by the solver will be used to analyze the stated problem of wear 

simulation. 

5.4.  Discussion of theoretical model 

As it can be seen from the given solutions, there are several features in the EHL 

solution. It is worth to discuss them. First of all, if we consider the film thickness profile, 

we will definitely see the reduction of the film in the outlet of the contact. To analyze this 

fact, first consider red isoviscous curve in the Figure 21. At some point ��, pressure gradient 

is zero. Thus, the flow rate is fully determined by a linear part of velocity profile. At the 

outlet, according to Figure 22, there is a pressure gradient, which will increase velocity by 

addition of non-linear component. Thus, to fulfill the constant flow rate requirement, the 

linear part of velocity must decrease, and it is possible only if the gap height is decreased.  

Further, consider the case of pressure dependent viscosity of lubricant. As it can be 

expected from the rigid theory, as viscosity increases, the film thickness increases, as it can 

be seen from the profiles. However, another feature to the film thickness profile is added, 

when viscosity changes. Right before closure of the film thickness at the outlet, a small 

bump occurs. It happens from the same considerations, when pressure gradient term is 

subtracted from velocity, gap has to be increased to fulfill the constant flow rate. After the 

peak pressure, the gradient again increases velocity, and the gap has to be decreased. As the 

pressure drop in this case is much more visible, the sharpness and deepness of the closure 

is more pronounced for the pressure dependent case, than for isoviscous case. The reasons 
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of pressure spike occurrence are not fully understood (Venner 1991). It is known that it 

occurs only for pressure-dependent viscosity model and for certain speeds, but researchers 

still cannot develop a full explanation. In the thesis, it was found that pressure spike occurs 

only when the Barus relationship is introduced. 

 
Figure 21. Film thickness for constant and pressure dependent viscosity. 

It is worth to study dependence of pressure profile and film thickness on major 

parameters – speed and viscosity. To start with, pressure profiles for the case of given 

parameters were plot, and mean velocity was varied. It was varied around experimental 

value of 0.0079 m/s. In the Figure 23, number of such curves is given. Notation �* � 10, 

means that the mean velocity is increased 10 times compared to experimental value of 

0.0079. For comparison, Hertz solution for the dry case is also presented.  



 

52 

 
Figure 22. Pressure distribution for isoviscous and pressure dependent lubricant. 

 
Figure 23. Dependence of pressure on the mean sliding speed. 
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As it can be readily seen, pressure spike did not occur for the speeds in considered 

range. For low speeds, pressure profile is very close to the Hertz solution profile, as there 

was no liquid at all. Increase in speed leads significant mismatch with dry case solution. 

Thus, at low speeds, the influence of lubricant flow to the pressure profile is small, and 

increases with speed. In general, it can be concluded that increase of speed results in 

decreased maximum pressure and smothered profile. 

Corresponding film thickness profiles are shown in Figure 24. For low speeds, film 

thickness profile has a parallel section, width of which decreases with speed. When in 

pressure spike occurs, film thickness changes drastically, and the parallel section does not 

form. Further increase in speed leads to smoothening of the film, but with larger minimum 

thickness. 

 
Figure 24. Dependence of film thickness on mean speed. 

Next parameter to consider is the influece of viscosity. With all parameters fixed, 

viscosity of the lubricant was varied in the range from 1cP to 1000 cP. Hertz solution for 
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dry case was also drawn for comparison. According to Figure 25, for any viscosity in the 

range, pressure profiles are close to the Hertz solution.  

Film thickness profiles presented in Figure 26, have a wide parallel section for low 

viscosities. With increase in viscosity this section reduces, with overal increase in 

minimum film thickness, which is shwon in Figure 27. Inportant observation here is that 

viscosity does not change the minimum film thickness, which is the separation distance 

between two bodies, significantly in the range of considered parameters. Thus, even 1000 

times increase in viscosity will not guarantee a full separation of surfaces, when roughness 

is about 50-100 nm. In the other hand, for higher viscosities, the widht of the region where 

direct contact may occur is much narrower than for low viscosities, thus the total wear can 

be decreased. The same is actually true for changes in speed too.  

 
Figure 25. Dependence of pressure on viscosity. 

 



 

55 

 
Figure 26. Dependence of film thickness on viscosity. 

 

 
Figure 27. Dependence of minimum film thickness on viscosity. 

It can be concluded from desrcibed calculations, that for the case of considered 

parameters and elastically deformable substrates, influence of viscosity and speed on 
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minimum film thickness is not that important as for rigid case, although, these parameters 

changes profiles significantly. 
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6.  EXPERIMENTAL MEASUREMENTS 

Wear testing was performed under lubricated conditions using a pin-on-disc 

tribometer (CETR-UMT2). Schematic representation of it is shown in Figure 28. The 

polymer sample is fixed on a bottom of a lubricant filled holder, which is attached to a 

rotating disk. The counterpart steel ball is fixed in a ball holder. Controlled misalignment 

between central axis of the rotating disk and the ball holder makes the sliding path in a 

form of a circle with a certain diameter. During the test, friction force is measured by force 

sensors and friction coefficient is calculated. It is also possible to attach a thermocouple (k-

type) and measure the temperature of the lubricant at some fixed point. The main 

controlled parameters are load, speed and duration. 

 

Figure 28. Schematic representation of a tribometer. 

High Density Polyethylene was used as a wearing material. Each test specimen had 

a 1 in. × 1 in. square size and was fixed in a steel chamber filled with the lubricant. A 
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thermocouple was embedded into lubricant to record temperature change in the lubricant. 

Each sample was dried at temperature of 75 degrees Celsius for 12 hours before and after 

the test to exclude any moisture influence to mass measurements.  Stainless steel balls 

(SS440 Grade 25) with diameter of 3/16 in. (4.762 mm) and surface roughness of 2 micro 

in. (0.0051 µm) from Salem Specialty Ball, Inc. were used. Most of the wear testing was 

performed under following conditions: normal load – 5 N, sliding velocity – 60 rpm, 

sliding diameter – 10 mm and duration – 4-8 hours. Friction force and friction coefficients 

as well as temperature of the lubricant in a chamber were recorded during the test. Mass 

wear loss was measured and used to evaluate wear rate.  

  
Figure 29. Wear of HDPE on time. 

As lubricant, deionized water, glycerol and glycerol-water solutions were used. The 

reason for taking these lubricants is in their Newtonian behavior, even for high shear rates, 

encountered in EHL contacts. 

experiment 
theory 
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In the Figure 29 the wear loss in grams is presented for the case of 95% weight 

glycerol-water solution. Corresponding data is given in Table 3. Asterisks represent 

actually measured values and line is the result of nonlinear interpolation. As it is easily 

seen, first four hours produce less wear than further hours. It means that wear is a nonlinear 

process. Increase in wear rate with time is related to the change of wear regime, from mild 

to more severe. Usually, after first four hours of wearing the track is smooth, only 

sometimes having rough cavities on the surface. However, after 8 hours, the track has 

rough surface, fully taken by cavities as it is shown in Figure 30. Thus, it is supposed that 

wear regime is changing in time. Theoretical modeling of wear in a proposed form only can 

be used for one regime, meaning that if coefficient of wear was found in mild regime, it 

cannot be applied to the estimation of wear in a severe regime. As it can be seen from the 

figure, the red line represent theoretically calculated wear rates based on the wear 

coefficient estimated from 4 hour long experiment. In this case, wear coefficient is low, 

IH � 10��� *�* , due to mild wear regime, thus it underestimates wear mass loss in other 

regimes. 

 

Figure 30. Photographs of wear surface evolution in time. 

Important experimental curve can be built if the wear is plot against viscosity of 

lubricant. For this purposes, dry, water lubricated, 95% glycerol-water solution and pure 
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glycerol were used as lubricants in 4 hour long tests. Experimental wear measurements 

then can be used to plot the graph Figure 31. 

 
Table 3. Wear mass loss and standard deviation (95% glycerol-water mixture) 

Time, hours Mean Wear Loss, grams Standard Deviation, grams 
4 0.0008 0.0008 
6 0.002 0.0018 
8 0.004 0.0025 

 

  
Figure 31. Dependence of worn mass on viscosity. 

In the Figure 31 it is seen that the wear rate for dry condition is not highest. Further, 

for the case of water lubrication, the wear rate significantly increases. When the viscosity is 

increased till about 0.38 Pa s, the wear is dropped lower of the dry case. Further increase in 

viscosity leads to the increase in wear mass loss. Thus, it can be assumed, that the 

minimum wear loss under lubricated conditions will be in the range of viscosities starting 

from 1 cP to about 380 cP, and closer to latter. In general, the behavior is quite logical, 

0 

Dry 

Lubricated 
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except of the low worn mass for the dry case. In the other hand, some researchers (Xu S. 

2012) have shown that HDPE has outstanding self-lubrication properties in dry conditions. 

This theory implies that a thin film of HDPE is built in relative motion and protects the 

lower layers of HDPE from wearing. 

Another important experimental measurement is friction coefficient. For the same 

tests, friction coefficient was measured. In case of 95% glycerol-water solution, friction 

coefficient is shown for all experiments in Figure 32. It is necessary to have a mean value 

of friction coefficient, thus, it is plotted in Figure 33. As it can be seen from these figures, 

friction coefficient decreases with time, and as long as the normal load is constant, it means 

that friction force decreases. It is common evidence, which indicates a running-in friction 

region. After it, most of the curves stabilize at some level and this value is of most interest. 

These values for different lubricants are summarized in Table 4. They were used to 

compare with theoretical calculations and discussions. Corresponding elevation in 

temperature is given in Table 5. These values were used for theoretical calculations as the 

estimation of the temperature in contact.  

Viscosities of glycerol and glycerol-water solution were estimated using following 

correlation (Cheng 2008): 

�*�: � �H?K3®¯�A@�W3®°@��¯ ( 80 ) 

where ± is determined through volumetric concentrations of glycerol and water. It 

is necessary to notice that �*�: depends on temperature, as both viscosities of water and 

glycerol depends on temperature. 

�H?K3® � 1.790y�"(('1230 ' ³+³/(36100 $  360³++ ( 81 ) 

and  
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�A@�W3®°@ � 12100y�"(('1233 $ ³+³/(9900 $  70³++ ( 82 ) 

In these equations temperature is measured in Celsius and viscosity is given in cP.  

The last term to identify here is ±: 

± � 1 ' = $ (o´=(1 ' =++/(o= $ ´(1 ' =++ ( 83 ) 

where  = – mass concentration of glycerol in mixture, o � 0.705 '  0.0012³, ´ �
(4.9 $  0.036³+o^2.5. 

 
Figure 32. Friction coefficient measurements for 95% glycerol-water solution. 

Temperature at the contact was taken as 24 degrees Celsius, Table 5. Thus, 

viscosity of pure glycerol equals to 987 cP and of 95% glycerol water solution equals to 

363.8 cP. These values were used as an estimation of lubricant viscosity in a contact. For 

water, 1 cP was taken as it doesn’t change significantly for assumed temperature. 
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Figure 33. Mean friction coefficient for 95% glycerol-water solution. 

Based on data provided in Table 4, it is possible to build a plot of dependence of 

friction coefficient on viscosity.  This type of plot is called a Stribeck curve (Liu 2002) and 

usually it shows dependence of friction coefficient on product of initial viscosity and 

velocity. The following speculations are usually applied. When the distance between two 

rough surfaces is decreased from fully lubricated regime, asperities tend to form a contact 

and the friction is locally determined by shearing the boundary layers present at the 

surfaces. Further decrease will increase the friction and the load will be carried fully by the 

asperities and friction becomes of a Coulomb nature, i.e. independent of load and velocity. 

In the provided experiments, following curve can be plotted: 
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Figure 34. Dependency of friction coefficient on viscosity. Dry viscosity is taken as 0. 

As it can be seen from the Figure 34, maximum coefficient of friction is developed 

for the dry case, which was expected. With addition of pure water, total friction coefficient 

is built by two components, dry and lubricated. As water viscosity is low, the minimum 

film thickness is extremely low and thus, the contribution of dry components is more 

pronounced, which results a high friction coefficient. Further, with increase of viscosity, 

the component of dry contact decreases, resulting decrease in total friction coefficient. 

With further increase in viscosity, dry component still decreasing, however, the lubricated 

component increases and at some viscosity the growth of it will compensate decrease in dry 

component and total friction coefficient will grow, as it is seen for a pure glycerol. This 

behavior misleadingly can be understood as an indicator of a full fluid lubrication regime, 

as it shows a typical relationship of friction and viscosity for fluids. However, as it will be 

shown from theoretical considerations, it is not true. This aspect will be discussed in a 

following section. In advance, it is worth to mention that for HDPE and steel contact for 

Dry 

Lubricated 

0 
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the case of glycerol and considered load, radius of the ball, it is hard to achieve a full fluid 

lubrication regime by changing speed and viscosity, in the considered range. 

Table 4. Coefficient of friction for different lubricants. 

Lubricant COF Standard Deviation 

Dry 0.09 N/A 

Water 0.055 N/A 
95% 

Glycerol 0.031 0.0043 
Pure 

Glycerol 0.036 0.0027 
 

Presence of dry component in friction also indicates that some part of the load is 

carried by asperities. It means, that pressure developed in the lubricant will be lower in 

reality, than calculated using a smooth surfaces theory and considering a full fluid 

lubrication regime. 

To support the assumption of asperity contact, atomic force microscopy 

measurements of roughness of the HDPE surfaces before and after the test were taken. 

Roughness of the surface before the wear is shown in Figure 35 and after the 4 hours wear 

is shown in Figure 36. As it can be seen, initial surface is rough with mean roughness about 

215 nm. During the test, the roughness is decreasing and after four hours, mean roughness 

is only 40 nm, as it can be seen in Figure 36. Forty nanometers is lower than predicted 

minimum film thickness, however, it is only mean value. It is also seen, that there are some 

areas on the surface of wear track, where the relative height is much larger than 52 nm, 

larger than 100 nm. These areas are considered to be asperities and come to direct contact 

with metal surface; hence, they are responsible for the dry component in friction and wear. 

Thus a mixed lubrication regime is encountered, and as it will be seen from the comparison 
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of experimental and theoretical calculation later, the full fluid lubrication regime is not 

encountered for the considered range of parameters. 

 

Figure 35. Surface roughness before wear. 

 
Figure 36. Surface roughness of the wear track after 4 hours. 
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Table 5. Mean temperature for different lubricants. 

Lubricant Temperature, C Standard Deviation, C 

Dry 22.9 N/A 

Water 22.1 N/A 
95% 

Glycerol 23.8 0.91 
Pure 

Glycerol 24.1 0.33 
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7.  THEORETICAL MODELING AND COMPARISON 

WITH EXPERIMENT 

First, parameters used in the theoretical calculations are summarized in Table 6.  

Table 6. Properties in the system. 

Load 5, N 

Radius of the Ball 2.5 · 10��, m 

Um 0.0079, m/s 

E(HDPE) 1.05 · 10¶, Pa � 5.9 · 10�¶, 1/Pa 
T 24 C 

 

Necessary to notice that most of the time, ideally smooth surfaces are considered. 

Viscosities were varied in a range from 1 cP to 1000 cP. It is also important to re-scale a 

load from three dimensional experimental setup, to a two dimensional theoretical model. 

To accomplish it, the width of the wear track was measured after the test, and it was found 

to be about 1 mm. It was taken as constant for all calculations as a rough estimation. As 

long as width of the track is known, then it is easy to recalculate the length of the arc of the 

ball, bounded by a chord of 1 mm. This length was found to be equal  
0.4�  and taken as a scale factor for the load. Thus, force per unit length in direction 

perpendicular to the motion is �@ � �/0.4�, where the actual load is �.   
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Figure 37. Computed pressure distribution and substrate. 

The result of calculation for a standard set of parameters is shown in Figure 37 and 

Figure 38. As it can be seen, there is a pressure spike at the outlet of the pressurized region, 

although it is not very pronounced. Minimum film thickness for this case is equal to 52 nm. 

Thus, if ideally smooth case is considered and full fluid lubrication regime is assumed, then 

the separation film thickness is only 52 nm. Heights of the asperities of HDPE are most 

probably exceeding this value (direct contact), and even if not, considerably decreases this 

minimum distance, hence locally, high pressures may occur. For comparison, in fully 

lubricated steel contacts it is usually of micrometer orders.  
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Figure 38. Pressure and film thickness. 

Further, it is important to calculate friction coefficient for the modeled case and 

compare it with experiments. Dependence of theoretical friction coefficient on viscosity 

was explored and presented in Figure 39. As it can be assumed, the friction is determined 

by internal friction of liquid layers and thus, fully determined by viscosity of the lubricant. 

As it can be readily seen, friction coefficient is more than order of magnitude smaller for 

the viscosities of 363 and 987 cP when compared with experimental measurements.  Based 

on this data and the fact that the minimum film thickness is 52 nm, it can be then concluded 

that the assumption of full fluid lubrication regime leads to underestimation of friction 

coefficient and hence, mixed lubrication is actually takes place. It means that part of the 

load is carried by liquid and part by direct contact, which will increase the total friction 

coefficient significantly. However, as it is seen from experimental curve in the Figure 34, 

friction coefficient highly dependent on viscosity of lubricant, and this fact is not yet 

clarified. The question can be stated, if the order of magnitude mismatch of calculated and 
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experimental friction coefficients is due to direct contact of the surfaces, why then increase 

in viscosity of lubricant in experiments shows significant impact to the measured 

coefficient of friction? This impact is again orders of magnitude higher than calculated 

through the theory. 

 
Figure 39. Comparison of theoretical and experimental friction coefficient on viscosity. 

This question cannot be answered through calculations for ideally smooth surfaces. 

Hypothesized idea is that roughness of the surfaces can play a role there due to increased 

local pressure gradients, and, hence, shear strains. In case of steel contacts, pressures rises 

till 4000 atmospheres and up, this makes viscosity of lubricant to increase according to 

exponential law. For regular oil, pressure viscosity coefficient is usually about 4 times 

higher than for glycerol, thus, ensuring rise of viscosity by orders of magnitude in contact. 

These facts lead to high predicted friction coefficients and match with experimental data. In 

the considered case, pressure is only 250 atmospheres, and hence, there is no significant 

increase in viscosity. Thus, order of magnitude change in shear force can only be achieved 
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due to high pressure gradients or small film thickness. To explore this possibility, instead 

of ideally smooth surface of HDPE, the surface with one asperity with vicinity right under 

the ball tip was considered. Width of it was about 1 micrometer and height was varied. 

Corresponding change in minimum film thickness, pressure distribution and coefficient of 

friction were tracked. 

 
Figure 40. Asperity height and friction coefficient. 

Comparison of Figure 39 and Figure 40 implies that addition of asperity 

significantly increases influence of viscosity on friction. At the same time, according to 

Figure 41, if the asperity height is enough, separation film thickness can get very low and 

direct contact may occur. Thus, friction coefficient will be increased. At the same time, if 

the viscosity of lubricant is increased, local friction around asperity is increased too, no 

matter whether direct contact occurs or not. However, calculated friction coefficient is still 

smaller than experimentally obtained. Thus, combination of dry friction and lubricated 
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friction only can give the experimentally recorded friction coefficient, with high 

dependence of friction on viscosity of lubricant. 

 
Figure 41. Dependence of minimum film thickness on asperity height. 

 
Figure 42. Pressure distribution around the asperity. 
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As it can be seen from Figure 42, anti-symmetrical pressure profile occurs at the 

vicinity of the asperity. This anti-symmetry is more pronounced for the higher asperity, and 

in limit will touch zero pressure value. If this happens, local cavitation may occur, thus, 

local low pressure zones can raise and in these zones no lubrication is provided, hence, 

condition of direct contact of the surfaces can be achieved. It can be speculated here, that 

these zones may be responsible for wear particle formation, their size and their 

morphology. As low pressure fields, surrounded by highly pressurized regions, these 

cavities may serve as a vacuum and an HDPE substrate locally may deflect inside of them. 

In the other hand, on the borders of cavities, high pressures are established; hence, high 

stresses may be experienced by HDPE particle trapped in cavity from both sides of cavity 

borders. Then the abrasive wear delamination of this part of HDPE can be formed and 

produce an HDPE wear particle.  
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8.  WEAR PARTICLES 

Wear debris of materials used nowadays in orthopedic replacements is known to be 

the major cause of failures in a long-term period. Recent studies showed that the 

autoimmune reaction to the foreign body is not only the consequence of the material itself, 

but also depends on the size and shape of the wear particles. Thus, the HDPE debris is 

worth to explore quantitatively and morphologically. Moreover, it can help in analysis of 

major wear mechanism. For these purposes, following experiment was undertaken. Wear 

testing was performed under phosphate buffered saline lubrication using a pin-on-disc 

tribometer (CETR-UMT2). Each test specimen had a 1 in. × 1 in. square size and was fixed 

in a steel chamber filled with the saline lubricant. The wear testing was performed under 

following conditions: normal load – 3 N, sliding velocity – 60 rpm, sliding diameter – 10 

mm and duration – 8 hours. The wear debris was collected, isolated and characterized by 

scanning electron microscopy (SEM) at high magnifications and also by dynamic light 

scattering (DLS) particle sizing. The DLS measurements were in general consistent with 

the SEM observations. Small sphere-shaped wear particles of various diameters 

(predominantly less than 100 nm) were observed on the SEM images. The particles’ 

diameter distributions obtained by the DLS technique also showed that the mean diameters 

of the majority of the particles were mostly less than 100 nm. 

In the Figure 43, the small sphere shaped wear particles of HDPE are shown. 

Diameters are about only 100 nm, but these values are higher than predicted theoretical 

film thickness under employed parameters. In the Figure 45, the idealized Gaussian 

distribution of wear particle diameter is shown. As it can be seen, the mean diameter is 



 

76 

close to 50 nm, which roughly corresponds to SEM results.Figure 45. Idealized Gaussian 

distribution of wear particle diameter. 

 
Figure 43. Sphere-shaped wear particles on the filter surface. 

Calculated theoretical pressure distribution and film thickness for given parameters 

is shown in Figure 44. In this case, minimum film thickness is 52 nm, which is smaller, or 

at least of comparable size with observed wear debris particles. Thus, any of those particles 

passing under the ball will cause a direct contact of two surfaces and will be acting as a 

third body abrasive particle. As it is seen from the same figure, the region of small 

separation film thickness is quite wide, thus the effect of any particle will last through all 

this width. Thus, third body abrasive wear mechanism can be dominant in considered case.  
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Figure 44. Pressure and film thickness for given parameters. 

 
Figure 45. Idealized Gaussian distribution of wear particle diameter. 
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9.  SUMMARY 

9.1.  Discussion 

In the thesis, the problem of lubrication and wear of HDPE at a metal/HDPE 

contact was considered theoretically and experimentally.  

Fully coupled fully implicit elasto-hydrodynamic problem solution approach was 

developed. Numerical solution algorithm allowed consideration of the problem in a wide 

range of physical parameters without special reference. Major parameters such as velocity, 

viscosity, elastic modulus were varied for theoretical calculations in the range of 0.2 mm/s 

to 1000 mm/s, 1-1000 cP, 1 GPa to 200 GPa correspondingly. It means that conditions 

varied from low velocities to very high, from low viscous liquid to high and from soft 

material to hard. In considered cases, calculated minimum film thicknesses varied from the 

order of 10 µm down to about 1 nm and solutions were obtained in maximum 40 Newton-

Raphson iterations. Thus, the numerical solver was shown to be robust and to have high 

convergence rate.  

Incorporation of surface roughness was shown to be important for the estimation of 

friction coefficient and for wear simulation. Addition of one asperity with height of twice 

as much as minimum film thickness for smooth case to the theoretical model showed 

increase in local friction coefficient in about order of magnitude up to 0.06, which is close 

to the dry friction performance. At the same time, local pressure also increased almost 

twice, increasing local wear rate for the same amount, according to Archard’s law. 

Coupled simulation of EHL theory and Archard’s wear law was performed in the 

thesis. In this case, transient problem solutions were obtained. Based on experimental 

measurements for four hour long wear test, wear coefficient was found to be 
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about 10��� *�*  . However, it was shown that this value changes with wear regime, 

encountered when increased wear time was considered.  

From the measurements of surface roughness after the wear test and theoretical 

calculations of minimum film thickness it was concluded that the mixed lubrication regime 

was encountered for the considered range of parameters. In this case, dry contact between 

asperities occurs, which leads to increase in experimentally measured friction coefficients. 

However, theoretical model does not account for it, thus, making estimated friction 

coefficients much lower compared to experimental values. This observation also leads to 

the conclusion that part of the load is carried by dry contact of asperities. However, in 

theoretical model the load is assumed to be carried solely by liquid, which means that 

hydrodynamic pressures are overestimated in developed solutions. According to Archard’s 

law, it means that wear coefficients are underestimated in this case. 

The size of wear particles induced by wearing was addressed in the thesis. These 

debris were found to be about 100 nm in diameter and spherical in shape. Corresponding 

theoretical solution showed that the minimum film thickness was about 52 nm. Thus, as it 

was discussed above, penetration of such particle into the contact will lead to increased 

local friction and local pressure. According to Arhcard’s wear law, increased pressure 

results in increased wear rate. Thus, not only surface asperities can give rise to abrasive 

wear mechanism, but also wear induced particles, and in this case, it will be third-body 

abrasive mechanism. Due to low elastic modulus of HDPE, the plastic surface is highly 

deformable and hence, such particles may still penetrate to the contact, even though the 

separation film thickness is twice smaller than the size of the debris. 
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Considered range of viscosities of Newtonian glycerol-water mixture lubricants was 

close to the range of viscosities encountered in synovial liquid in joints. Experimental 

measurements showed that there was a certain range of viscosities resulting in minimum 

wear mass loss and friction coefficient. It was also found that trends in behavior of friction 

coefficient were close to that of mass loss. Thus, these parameters are closely related in the 

system.  

9.2.  Recommendations for future research 

Developed theoretical model offers great possibilities for further research of friction 

and wear simulation. From that standpoint, topics addressed in the thesis are only several 

items from what can be studied. 

At first, transition to the 3D theoretical model is needed. In the thesis, a 2D problem 

was considered; however, in this case, some simplifications were necessary to be assumed, 

in particular, when 3D load was translated into 2D load. These simplifications introduce 

some error and must be excluded in future. It should be noted that developed approach can 

be employed for the development of such model, requiring only re-formulation of the 

equations in 3D.  

Further, the issue of mixed lubrication model must be addressed. As it was already 

stressed, a mixed lubrication condition is encountered in considered range of parameters 

and direct contact between surfaces occurs. This regime is most likely occurs in artificial 

joints. Hence, it is attractive to investigate the possibility of modeling dry contact 

incorporated to the coupled EHL solution approach. Important issue here would be a 

transition from lubricated to the dry contact. From the point of view of developed in the 

thesis model, it is not possible to distinguish between these contacts as the EHL theory 
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does not contain any information on dry contact. If such theory would be developed, 

correct distribution of load between lubricated and dry contacts might be obtained, which 

would lead to correct assessment of pressures in contact and, hence, wear coefficients.  

Also, although it is referred to as dry or direct contact, it is not clear, whether the fluid film 

is completely removed from the surface or not. For example, addition of low viscosity 

liquid, such as water, decreases the friction coefficient significantly compared to the dry 

case, meaning that there might be some thin boundary film.  

More attention must be paid to the influence of surface roughness on the solution. 

Directly measured values must be incorporated to the model and through such solutions, it 

may be possible to estimate parts of total friction coefficients raised by direct and 

lubricated contacts.  

Another interesting topic for the future studies is the solution of transient problems. 

It is worth to consider this case, as the speeds encountered in joints vary during the walking 

cycle from 0 to about 0.3 m/s due to changes in velocity direction. Locations where the 

velocity becomes zero are important, because there increased wear rate will be 

encountered. From the point of view of EHL theory, steady-state solution will give a zero 

separation thickness for zero velocity. However, the transient solution of reciprocation 

motion will not due to additional dissipation term in Reynolds equation. Thus, solution of 

such problem will give information on the raised film thicknesses and hence, wear in points 

of velocity re-direction.  

Another important topic to address is the non-Newtonian behavior of the synovial 

fluid. When the mentioned above transient problem is considered, non-Newtonian behavior 

of the lubricant becomes essential due to variation of viscosity with shear rates. Thus, 
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incorporation of this effect is necessary for the wear and friction simulation of synovial 

liquid.  
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11.  APPENDIX 

The listing of the main program code developed in Matlab is presented here.  

function  num_calc()  
  
clc;  
close all ;  
  
% %%%% parameters %%%%%%%%%%%%%%% 
R = 2.5*10^-3; % Radius, m  
P0 = 101325; % Pa 
Um = 2*pi*R/2; %%% m/s U1 = 2piR => Um = U1/2  
U1 = 2*Um;  
mu0 = 0.383; %%% Pa*s %%% viscosity at P0, Pa*s %% 0.383 - visco sity of 
%%%% 95% glycerol-water mix at 24 C  
Wl = 3; % Newtons  
Wll = Wl/(0.4*R); % Newtons/m  
Pc = P0; % Pa, cavitation pressure  
Er = 2*1.05*10^9/(1-0.35^2); %% reduced elastic modulus, if Poisson ratio 
for HDPE = 0.35, E = 1.05*10^9 Pa, Poisson ratio = 0.35  
%Er = 2*200*10^9/(1-0.3^2)*1.5; %% for steel  
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
global  alpha;  
%%%%%%% pressure-density-viscosity coefficients  
alpha = 5.9 *10^-9; % pressure-viscosity coefficient; here for glycerol   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
U1 = 2*Um %%% speed of lower surface, m/s  
Ltrack = 2*pi*R; %%% track length (wear track from pin on disk), m  
Ltr_d = Ltrack/R; %%% dimensionless track length  
Ncycles = 1; %%% number of wear cylces %%% number of revolutions  of pin  
  
%%%% dimensionless parameters %  
global  A_C;  
global  Wld;  
global  Pcd;  
global  CE;  
global  gamma_h; %%% fully implicit cavitation boundary parameter  
  
gamma_h = 10^6;  
u1d = U1/Um;  
A_C = R*P0/(12*mu0*Um);  
Wld = Wll/(R*P0);  
Pcd = (Pc - P0)/P0;  
C = Pcd;  
CE = -4*P0/(pi*Er);  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%% non dimensional parameters, Dowson-Higginson  
G = alpha*Er;  
U = mu0*Um/(Er*R);  
W = Wll/(Er*R);  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% define number of nodes  
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Npoints = 500; %%% in a local line (where the pressure and wear is  
calculated)  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
   
%%%%%%% introduce global line (wear track) %%%%%%%% %%%%%%%%%%%%%%%%%%%%%% 
dx_tr = 0.01;  
Xtr = [0:dx_tr:Ltr_d];  
Ntr = length(Xtr);  
Wglobal = zeros(1,Ntr);  
Wear_track = zeros(1,Ntr); %%% intorduce vector of wear (wear in each 
loacation)  
dt = dx_tr/u1d; %%% dimensionless time of travelling from one locat ion on  
t = 0; %% initial time variable  
tmax = Ncycles*Ltr_d/u1d; %%% duration of the modelling is the total path  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% devided by speed %%%%%%%%%%%%%%%%%%%%%%%%%% 
flag_t = 0; %%% set the intial time stop flag, 0 - continue, 1 - stop;  
x_star = 0; %%% begining point (left border of the pressure bui ld up)  
%%%%%%%%%% it is going to change by x_start = x_sta rt + u1d*dt=x_start +  
%%%%%%%%%% dx_tr 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%% declare pressure boundary values, dimensionle ss  
Pleft = 0;  
Pright = 0;  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%  initial value of H0 and pressure can be found  from  
%%%%% analytical solution for isoviscous rigid body  solution of  
%%%%% Reynolds equation  
global  left_border;  
global  step_ksi;  
left_border = -pi/2.0004;  
step_ksi = 0.001;  
%%%%%%%% find ksic for a given parameters %%%%%%%  
[ksic fval exitflag]= 
fminsearch(@find_ksic,0.5,optimset( 'MaxFunEvals' ,15000, 'MaxIter' ,12000));  
if  exitflag~=1  
    display( 'Algorithm did not converge' );  
end  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%% calculate pressure for given parameters %%%%  
[Pan xan aan xcan ksian ksican wan] = calc_p(ksic);  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
H0 = aan;  
xc = xcan;  
%ao = 4.9*mu0*Um*R/Wll; %%% analytical solution of the rigid case, Pc = 0  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 
%%%%%% download an initial guess for pressure and f ilm thickness, if  
%%%%%% available 
load 'matlab_W_5_true_P_new.mat' ; %%% downloads X, P, H, xc, H0  
x_el = X;  
xc = xc*1.1;  
%%%%% construct initial guess in P and H %%%%%%%%%% % 
left_boundary = -0.15;  
right_boundary = xc;  
dx = (right_boundary - left_boundary)/Npoints;  
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X = [left_boundary:dx:right_boundary];  
Pin = interp1(x_el,P,X)'; %%% interpolate downloaded solution to the 
current grid  
Hin = interp1(x_el,H,X)'; %%% interpolate downloaded solution to the 
current grid  
HT = Hin;  
XT = X;  
Pin(end) = P(end);  
idx = find(isnan(Pin) == 1);  
Pin(idx) = 0;  
idx = find(isnan(Hin) == 1);  
if  isempty(idx)==0  
    Hin(idx) = H0 + X(idx).^2/2;  
end  
HT = Hin; %%%% film thickness of the previous time step  
XT = X;  
PT = Pin;  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%% Hertz Solution of dry contact %%%%%%%%%%%  
bh = sqrt(8*Wll*R/(pi*Er));  
tmp = 1 - (X.*R).^2/(bh^2);  
idx = find(tmp<=0);  
tmp(idx) = 0;  
Ph = 2*Wll/(pi*bh)*sqrt(tmp);  
Pmh = 2*Wll/(pi*bh);  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%% roughness parameters  
global  a;  
global  xstart;  
global  Amp; %%%%%% sin amplitude  
global  w_frequency; %%%% sin frequency  
w_frequency = 50*4;  
xstart = 0.04;  
a = 0.5*10^-4;  
a = 0; %%% no roughness  
Ampl = 35*10^-9; %%% meters, no roughness, 0.5 - works  
Amp = Ampl/R; % dimensionless  
Amp = 0;  
%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% wear parameters  
kw_dimensions = 1.83*10^-17; %%% m^2/N, taken from the article  
kw = kw_dimensions*P0; %%% dimensionless  
kw= kw*1.2*128.9793;  
kw = 0;  
%%%%%%%%%%%%%%%%%%% 
%%%%%%% coordinates shift parameters %%%%%%%%%%%%%%%%%%%%%%%%% 
Lleft = 0.15; %%% initial dimensionless distance to left from tha  ball 
tip  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%% service variables %%%%%%%%%%%%%%%%% 
P_ALL = {};  
X_ALL = {};  
H_ALL = {};  
H0_ALL = {};  
XC_ALL = {};  
l = 1; %%%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
N = length(X);  
% %%%% calculate elastic deflection matrix nuclear  
D = zeros(N,N);  
for  i = 1:N  
        xi = (X(i) + X(i) + dx)/2;  
        for  j = 1:N  
            D(i,j) = part_integral_elastic_line( xi , X(j), X(j) + dx);  
        end  
end  
D = D*CE;  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Ncycles_counter = 1;  
while  flag_t==0  
     tic  
     [P H H0 X Wlocal_accumulated] = calc_pressure( Pin, Hin,PT, HT,XT, 
 H0, X,D,R,dt,t,kw,u1d,Lleft,Xtr,Wglobal,alpha_dim, z,P0);  
     time = toc;   
     display(strcat( 'Solution time:' ,num2str(time)));  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%% 
    %%%% calculate total wear in a local mesh %%%%%  
    indexes = 1:length(P);  
    w_local = wfind(P,indexes,dt,kw,u1d,Wlocal_accu mulated);  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    if  X(end) <= Ltr_d %%%% in case if inside of the track  
        Wglobal_temp = interp1(X,w_local,Xtr)'; %%% interpolate local 
pressure to a global mesh  
        idx = find(isnan(Wglobal_temp) == 1);  
        Wglobal_temp(idx) = 0;  
        idx = Wglobal_temp~=0;  
        Wglobal(idx==1) = Wglobal_temp(idx==1);  
    else  %%%% on the border of a periodical solution  
        idx = find(X<=Ltr_d);  
        Wglobal_temp = interp1(X(idx),w_local(idx), Xtr)'; %%% interpolate 
local pressure to a global mesh  
        idx = find(isnan(Wglobal_temp) == 1);  
        Wglobal_temp(idx) = 0;  
        idx = Wglobal_temp~=0;  
        Wglobal(idx==1) = Wglobal_temp(idx==1);  
        idx = find(X>Ltr_d);  
        Wglobal_temp = interp1(X(idx)-Ltr_d,w_local (idx),Xtr)'; %%% 
interpolate local pressure to a global mesh  
        idx = find(isnan(Wglobal_temp) == 1);  
        Wglobal_temp(idx) = 0;  
        idx = Wglobal_temp~=0;  
        Wglobal(idx==1) = Wglobal_temp(idx==1);  
    end  
    if  l==1 %%% save first undisturbed film thickness (time = 0 )  
        Xinit = X;  
        Pinit = P;  
        Hinit = H;  
    end  
        Lleft = Lleft + u1d*dt;  
        if  Lleft>=Ltr_d  
            Lleft = 0.15;  
            Ncycles_counter = Ncycles_counter +1;  
            display(strcat( 'Cycle number:' ,num2str(Ncycles_counter)));  
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        end  
        t = t + dt;  
        x_star = x_star + u1d*dt;  
        if  t>tmax  
            flag_t = 1;  
        end  
        P_ALL{l,1} = P;  
        H_ALL{l,1} = H;  
        X_ALL{l,1} = X;  
        H0_ALL{l,1} = H0;  
        XC_ALL{l,1} = xc;  
         
        if  mod(l,24)==0  
           plot(Xtr,Wglobal, 'r' );  
           hold on;  
        end  
         
    l=l+1  
    HT = H;  
    PT = P;  
    X = XT; %%%% make X as at the begining ('local');  
    Hin = H;  
    Pin = P;  
     
    %%%%%%% save all variables %%%%%%%%%%%%%%%% 
    save(strcat( 'all' ,num2str(dx), '.mat' ));  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
end  
 %%%% equation for ksic (for numerical solution) %%% %%%%%%%%%%% 
function  goal_val = find_ksic(ksic)  
global  Pcd;  
global  A_C;  
global  Wld;  
f1 = load_equation(ksic);  
f2 = pc_equation(ksic);  
goal_val = abs(2*Pcd/(sqrt(A_C)*Wld^(3/2)) - f2/(f1 )^(3/2));  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%% first equation of the system (from load balanc e)% 
function  W = load_equation(ksic)  
c1 = -1/cos(ksic)^2;  
W = 0.5*(1+3/4*c1)*(1+(ksic+pi/2)*tan(ksic)) + 1/8;  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%% second equation of the system (from Reynolds e quation) %%  
function  P = pc_equation(ksic)  
c1 = -1/cos(ksic)^2;  
P = 1/8*sin(2*ksic)*(1+3/2*c1)+1/2*(1+3/4*c1)*(ksic +pi/2);  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%% Pressure function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function  [P x a xc ksi ksic w] = calc_p(ksic)  
global  A_C;  
global  Wld;  
global  Pcd;  
global  left_border;  
global  step_ksi;  
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f1 = load_equation(ksic);  
a = 2*f1/(A_C*Wld);  
  
c1 = -1/cos(ksic)^2;  
k = 3*pi/16*c1+pi/4;  
  
ksi = left_border:step_ksi:ksic;  
  
P = sqrt(2*a)/(a^2*A_C)*(1/4.*sin(2.*ksi) + ksi./2 + 
c1.*(1/32.*sin(4.*ksi) + 1/4.*sin(2.*ksi) + 3.*ksi. /8) + k);  
  
x = sqrt(2*a).*tan(ksi);  
  
xc = sqrt(2*a)*tan(ksic);  
  
w = 2*load_equation(ksic)/(a*A_C);  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function  [P H H0 X Wlocal_accumulated] = calc_pressure(Pin,  Hin,PT, 
HT,XT, H0, X,D,R,dt,t,kw,u1d,Lleft,Xtr,Wglobal,alph a_dim,z,P0);  
  
global  Wld;  
global  gamma_h;  
global  Amp;  
global  w_frequency; %%%% frequency  
  
N = length(X);  
X = X + Lleft;  
Wlocal_accumulated = zeros(1,N)';  
%%% interpolate global accumulated wear to a new lo cal X coordinates 
%%%%%% 
    if  X(end) <= Xtr(end) %%%% in case if inside of the track  
        Wlocal_accumulated = interp1(Xtr,Wglobal,X) ';  
        idx = isnan(Wlocal_accumulated) == 1;  
        Wlocal_accumulated(idx) = 0;  
    else  %%%% on the border of a periodical solution  
        idx = find(X<=Xtr(end));  
        Wlocal_accumulated(idx) = interp1(Xtr,Wglob al,X(idx))';  
        idx = isnan(Wlocal_accumulated) == 1;  
        Wlocal_accumulated(idx) = 0;  
        idx = find(X>Xtr(end));  
        Wlocal_accumulated(idx) = interp1(Xtr,Wglob al,X(idx)-Xtr(end))';  
        idx = isnan(Wlocal_accumulated) == 1;  
        Wlocal_accumulated(idx) = 0;  
    end  
%%% assign initial guess on pressure and h  
   P = Pin;  
   H = Hin ;  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
V = zeros(2*(N-2)+2,1);  
idxp = 1:2:(2*(N-2));  
idxh = 2:2:(2*(N-2));  
V(idxp) = P(2:N-1);  
V(idxh) = H(2:N-1);  
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Nt = length(V);  
V(Nt-1) = H(end);  
V(end) = H0;  
Vt = V; %% vestor for the previous iteration  
  
flag = 0;  
k = 1;  
w_all = 0.01;  
mu_w = 1 - w_all; %%% aetkins parameter  
mu_wp = mu_w;  
w_all_p = w_all;  
  
NormL2_all_p = [];  
NormLinf_all_p = [];  
NormL2_all_h = [];  
NormLinf_all_h = [];  
NormL2_all_h0 = [];  
NormLinf_all_h0 = [];  
  
while  flag == 0  
    Jacobian = 
find_jacobian(P,X,H,R,D,H0,dt,kw,u1d,Lleft,alpha_di m,z,P0,Amp,w_frequency
);  
    F = 
find_f_vector(P,X,H,PT,HT,R,D,H0,Wld,dt,t,kw,u1d,Ll eft,Wlocal_accumulated
,alpha_dim,z,P0);  
    if  k >2  
        Lkhp = NormL2_h;  
    end  
    if  k == 20  
        w_all = 0.1;  
    elseif  k==30  
        w_all = 1;  
    end  
     
    if  mod(k,50)==0;  
        display( 'Stop' );  
    end  
    tic  
    setup.type = 'nofill' ;  
    [A1 A2] = luinc(sparse(Jacobian),setup);  
    tol = 1e-12;   
    maxit = 15;  
      [Vn flag_gmres relres iter] = gmres(Jacobian, Jacobian*V - 
F,10,tol,maxit,A1,A2);  
      if  relres>10^-9  
         display( 'Warning: GMRES did not converge!' );  
         relres  
         iter  
     end  
    time=toc;  
    display(strcat( 'Solution time:' ,num2str(time)));  
    
    Epsilon = sum(abs(Vn-V)./abs(V));  
    Pn = Vn(idxp);  
    Pt = V(idxp);  
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    idx = find(Pt~=0);  
    NormL2_p = sum(((Pn(idx) - 
Pt(idx))./abs(Pt(idx))).^2); %./NormL2_all_p(end);  
    NormL2_h = sum(((Vn(idxh)-
V(idxh))./V(idxh)).^2); %./NormL2_all_h(end);  
    NormL2_h0 = sum(((Vn(end)-V(end))./V(end)).^2); %./NormL2_all_h0(end);  
     
    NormLinf_p = abs(max((Vn(idxp)-
V(idxp))./V(idxp))); %./NormLinf_all_p(end);  
    NormLinf_h = abs(max((Vn(idxh)-
V(idxh))./V(idxh))); %./NormLinf_all_h(end);  
    NormLinf_h0 = abs(max((Vn(end)-
V(end)))./V(end)); %./NormLinf_all_h0(end);  
     
    NormL2_all_p = [NormL2_all_p NormL2_p];  
    NormL2_all_h = [NormL2_all_h NormL2_h];  
    NormL2_all_h0 = [NormL2_all_h0 NormL2_h0];  
     
    NormLinf_all_p = [NormLinf_all_p NormLinf_p];  
    NormLinf_all_h = [NormLinf_all_h NormLinf_h];  
    NormLinf_all_h0 = [NormLinf_all_h0 NormLinf_h0] ;  
      V(idxp) = w_all.*Vn(idxp) + (1-w_all).*V(idxp );  %% P 
     V(idxh) = w_all.*Vn(idxh) + (1-w_all).*V(idxh) ; %% H 
     V(Nt-1) = w_all.*Vn(Nt-1) + (1-w_all).*V(Nt-1) ;  %% Hn 
     V(end) = w_all*Vn(end) + (1-w_all)*V(end); %% H0; 
    dP = (P(end) - P(N-1))/abs(X(1)-X(2));  
    if  NormL2_p < 0.0000099532 && abs(dP)<1500;  
         flag = 1;  
    end  
    residual = sum(abs(Jacobian*F));  
    Vn = V;  
    P(2:N-1) = Vn(idxp);  
    P(1) = 0;  
    P(N) = 0;   
    H(2:N-1) = Vn(idxh);  
    H(N) = Vn(Nt-1);   
    H0 = Vn(end);    
    display(strcat( 'Newtons iteration:' ,num2str(k)));  
    k = k + 1;  
    if  k>1000  
        flag = 1;  
    end  
    display(strcat( 'L2 norm p:' ,num2str(NormL2_p)));  
    display(strcat( 'L2 norm h:' ,num2str(NormL2_h)));  
    display(strcat( 'L2 norm h0:' ,num2str(NormL2_h0)));  
    display(strcat( 'dP:' ,num2str((P(end) - P(N-1))/abs(X(1)-X(2)))));  
    display(strcat( 'F:' ,num2str(sum(F.^2))));  
end  
 

 

 


