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ABSTRACT 

 

Recently, adhesively bonded joints (ABJs) has found more rapidly increasing applications in 

aerospace and aeronautical structures, ground vehicles, and flexible electronics than mechanical fastening 

and welding technologies. However, outstanding issues still exist.  

This work was to develop a systematic semi-analytic method for accurate prediction of the 

interfacial shear and normal stresses of ABJs. Two unknown shear and peeling stress functions at each 

interface was first introduced in formulation, which satisfies all the traction boundary conditions. A set of 

governing ordinary differential equations (ODEs) was determined via triggering the theorem of minimum 

complimentary strain energy. Matlab® code was programmed to execute the proposed method. 

Furthermore, the present method was validated by finite element method and compared with those models 

in the literature.  

The present method is applicable for convenient scaling analysis and optimal design of ABJs and 

other types of ABJs such as adhesively bonded tubular and composite joints, etc. 
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1. INTRODUCTION 

 

In the past five decades, adhesively bonded joints (ABJs) have been successfully structured in broad 

fields with the developments in adhesive chemistry and joining technology. Today, high-performance ABJs 

with compact design, high load-carrying capacity, and high mechanical strength and durability have been 

successfully integrated into broad primary structures in aerospace, aeronautic, and ground vehicles. The 

technology of ABJs has also been utilized in microelectronic packaging and personal electronic devices 

such as built-in contact lenses in camera, foldable cell phones, smart skin temperature monitors, etc.  

Due to the unique features of adhesive bonding, it is crucial to understand the mechanical behavior 

of ABJs such as the mechanical strength, durability, and environmental (e.g., temperature, humidity, 

corrosion, etc.) response when integrated in structures. It is the common sense that stress concentrations 

exist at the edges of the overlap bonding lines due to the mismatch of mechanical properties of neighboring 

adherends. It has been well studied in the literature that shear stress of ABJs concentrates at the edges of 

overlap bonding lines; however, only a small portion of load is carried by the region far away the edges 

(Suo, 2012), so does the normal stress. Such high interfacial stresses near the free edges of the adherends 

are responsible for the debonding failure of ABJs in reality. In addition, more complicated stress field could 

arise in ABJs under the action of combined mechanical or thermomechanical loads. It is essential to gain 

an accurate stress analysis of ABJs for improving structural design and prediction of the mechanical 

durability of ABJs. Therefore, efficient, high-accuracy models of ABJs that are capable of comprehensively 

taking into account the effects of material properties (Young’s modulus, Poisson’s ratio, coefficients of 
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thermal expansion, etc.), design parameters, and external mechanical and thermomechanical loadings are 

still highly desired.  

Substantial investigations on the stress and strength analysis of ABJs have been performed and 

reported in the literature in the past five decades. In the view of engineering, most of the pioneering works 

on stress analysis of ABJs carried their technical deficiencies due to their oversimplifications of the analytic 

models of ABJs. First of all, the stress fields derived from these joint models do not accurately satisfy the 

traction boundary conditions at the free edges of the adherends and adhesive layers. In fact, there are 

supposed to be shear-free at the free-edges of the adherends and adhesive layers. However, most of the 

analytic models reported in the literature, even including those well documented in some major engineering 

textbooks, simply indicated that the maximum value of shear stresses appears at the edge of adherends. 

Secondly, in these ABJ models, stresses and strains of the adhesive layers do not obey the generalized 

Hooke’s law, which also violate the assumption of small stress and strain variation across the adhesive 

layers as commonly adopted in almost all the literature models of ABJs. 

The purpose of this thesis work was to extend the stress-function variational method developed 

recently by Wu and Jenson (2011) in the research group for accurately determining the stress field in ABJs. 

In this approach, in the typical case of adhesively bonded strap joints in planar stress state, two unknown 

interfacial shear and normal stress functions are introduced at each adherend/adhesive interface. The axial 

normal stresses in the adherends and adhesive layer are assumed to vary linearly, following the elementary 

Euler-Bernoulli beam theory. The transverse normal stress and shear stress in the adherends and adhesive 

layer are determined according the stress equilibrium equations of two-dimensional (2D) elasticity. With 

the aid of the theorem of minimum complementary strain energy, a set of four coupled 4th-order ordinary 
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differential equations (ODEs) is derived for determining the unknown interfacial stress functions. The 

gained set of governing ODEs is further solved efficiently by using eigenfunctions of the resulting 

eigenvalue problem. Correspondingly, a robust, efficient, compact MATLABTM code is developed for 

determining the entire stress field in ABJs with varying geometries, material properties, and external 

loadings. Detailed finite element analysis (FEA) based on commercial software package (i.e., ANSYSTM) 

is performed to validate the numerical accuracy of the present semi-analytic ABJ models. These results 

show a major advantage of the proposed method for scaling analysis of stress variation and optimal design 

of ABJs.  
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2. LITERATURE REVIEW 

 

2.1. Structural Joining Technology 

Joining technology could be first invented by human ancestor in making spear that typically 

consisted of stone flakes bonded to a wood handle by tar for hunting (Mazza et al., 2006). After thousands 

of years of development, joining technology has been finding rapidly expanding applications in civil 

structures, aerospace, aeronautical and ground vehicles, and microelectronics (e.g., microchip packaging). 

Compared to mechanical bolts, rivets, and welds, ABJs are overwhelmingly welcome due to their compact 

design, low manufacturing cost, enhanced mechanical durability, sound noise suppression, and obvious 

reduction of weight (Tomblin & Davies, 2004). ABJs have been widely accepted and increasingly used for 

the purpose of load transfer and structural connection in civil structures (Goncalves et al., 2002). In 

aerospace engineering, for instance, stringers and metallic honeycomb assemblies are made of multiple 

ABJs, which are economically preferable (Higgins, 2000). ABJs have also made a significant impact to 

weight reduction of a variety of joint structures, especially for spacecrafts and aircrafts. A typical example 

is the birth of Airbus A300 (Racker, 2004), in which ABJs have been used in the primary structures. ABJs 

also play an essential role in flexible electronics, where thermomechanical stresses are a common factor 

causing the structural failure. (Timoshenko, 1915; Chen & Nelson, 1979; Suhir, 1989). The problem of 

function degradation in microelectronics has attracted growing technical concern over the past three 

decades (Eischen et al., 1990; Suo, 2003). It is technically important to understand the high interfacial 

stresses near the free edges of stiff silicon microchips bonded onto compliant polymeric substrate (Lu et al., 

2007; Kim & Rogers, 2008; Suo, 2012). Bonded joints are better employed in the applications of flexible 
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electronics due to their high mechanical durability (Jiang & Khang, 2008; Sun, 2013). Therefore, it is 

recommendable for structural analysts to wisely select the types of adhesives, which have high strength and 

mechanical durability under various loading and thermal conditions (Wu et al , 2014). 

 

2.2. Current Understanding 

In the past six decades, a significant number of theoretical and experimental investigations have 

been made on the mechanical strength and durability of ABJs. Fig. 2.1 illustrates the typical failure modes 

of ABJs. Historically, Volkersen (1938) was the first to consider the adhesive layer in ABJs as a 

continuously shear spring and find the maximum singular stresses at the edges. Volkersen’s ABJ model has 

the advantage of simplicity but it ignores the role of normal stress in the failure criterion. An improved 

approach was fulfilled by Goland and Reissner (1944) with the assumption of uniform distribution of the 

peeling and shear stresses across the adhesive layer, which became one of classic models of adhesively 

bonded single-lap joints extensively cited in the literature since then. Volkersen’s and Goland and 

Reissner’s ABJ models and their interfacial stress solutions have been adopted in many popular textbooks 

for design and strength analysis of ABJs. Yet, two obvious limitations can be easily identified from these 

ABJs as follows. Firstly, the peak shear stress appears at the adherend ends, which conflicts with the shear-

free condition at the free-ends; secondly, the stress variation across the adhesive layer is neglected due to 

ignorance of the thin adhesive layer. After the above two classic ABJ models, a significant number of 

theoretical follow-ups have been made. To mention a few, Delale et al. (1981) formulated an efficient ABJ 

model based on elementary Euler-Bernoulli beam theory to take into account all the mechanical properties 

and geometries of the ABJs, in which they treated the adherends as Euler-Bernoulli beams and the adhesive 
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layer was ignored due to its negligible deformation across the thickness. However, the interfacial shear 

stress determined by this ABJ model does not satisfy the shear-free condition at the adherend ends. Chen 

and Cheng (1983) developed an innovative ABJ model within the framework of 2D elasticity. In this ABJ 

model, the stress fields in the upper and lower adherends are expressed in terms of two unknown peeling 

stresses according to the elementary Euler-Bernoulli beam theory and the stress equilibrium equations of 

2D elasticity, while the stress variation across the adhesive layer is ignored. A gained set of governing 

ODEs of the peeling stresses along the interface was determined via triggering the theorem of 

complementary strain energy. This model is capable of predicting the reasonable location of the peak 

interfacial shear stress, which is located at a distance about 20% from the free end of adherend. In addition, 

Frostig (1997) used a high-order theory to overcome the limitations of the elastic foundation formulation. 

Her (1999) constructed several analytic models for stress analysis of adhesively bonded single-lap joints as 

well as double lap joints based on a simple tension-bar approach. Mortensen and Thomsen (2002) carried 

on the study of stress distribution in adhesively bonded composite joints. Kadioglu (2003) discovered that 

the environmental temperature had a proportional relation in load transfer through adhesive joints. Keller 

(2004) developed an analytical solution of stress-strain relation in an ABJ, from which a parameter study 

of the overlap length and thickness of layers was demonstrated. In addition, classical laminate plate theory 

was also introduced for stress analysis of ABJs including adhesively bonded composite joints (Xiao, 2004). 

da Silva and Adams (2006) further developed a numerical analysis based on Kadioglu’s study in double lap 

joints. Chataigner (2010) formulated an improved method based on Volkersen’s shear-lag theory for stress 

analysis of double-lap joints. Recently, Sayman (2012) proposed an analytical elastoplastic model of ABJs, 

which was verified by FEA. Finally, Sayman also conducted an analytic study and concluded that the 
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strength of ABJs can be increased via introducing proper residual stresses. Kumar and Scanlan (2013) 

developed a stress function method for stress analysis of adhesively bonded tubular joints. Yousefsani and 

Tahani (2013) formulated a model of layerwise ABJs, from which the divided sub-layers were treated as 

field variables and solved through a set of governing ODEs by evoking the theorem of minimum strain 

energy. Nevertheless, outstanding issues still exist when applying the above ABJ models for determining 

the stress field in adhesively bonded composite joints, in which stress singularity occurs at the end of 

binding lines and laminate interfaces. In fact, transverse deformation plays an essential role in delamination 

failure of composite joints, in which the transverse modulus of composite laminates is very low. Technically, 

the classic and high order laminated plate theories are unable to successfully predict the high stress 

concentration in composite joints due to the nature of laminated structures and limitation of the classic 

laminated plate theory (Renton & Vinson, 1975; Yang & Pang, 1996; Seltzer & Klang, 2003; Yang, 2004). 

Owing mainly to the technical compromises in the above models, the shear-free condition at adherend ends, 

the stress continuity across the bonding lines, and the stress variation between the adhesive layers were not 

well satisfied. Theoretically speaking, the interfacial shear and peeling stresses predicted by FEA (Diaz, 

2009) had the singular values near the adherend ends, which tended to higher and higher in a way of refining 

the mesh in FEA process. With the aid of FEA, computational stress field indicated that both the shear and 

normal stresses reached the maximum values at the ends of bonding lines, and these stresses declined and 

tended to almost zero at the middle portion of the bonding lines (Ozel, 2014). 
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Figure 2.1. Typical failure modes of adhesively bonded joints (Heslehurst & Hart-Smith, 2002). 

 

Recently, a systematic semi-analytic method was developed for accurate prediction of the 

interfacial stresses of bonded joints subjected to external mechanical and/or thermomechanical loadings 

(Wu & Jenson, 2011). In this method, two unknown interfacial shear and peeling stress functions were first 

introduced independently. By adopting the elementary Euler-Bernoulli beam theory, the axial normal stress 

was approached varying linearly across the adherend layers. The transverse normal stress and shear stress 

were determined to satisfy the static equilibrium equations, traction boundary conditions at the top and 

bottom surfaces of adherends, and stress continuity across adhesive layer. Furthermore, the entire stress 

field in the joint was expressed in terms of the unknown interfacial stress functions. Followed by the 

theorem of minimum complimentary strain energy of the joint, a set of governing ODEs in terms of two 

interfacial normal and shear stress functions was established, and an efficient eigenfunction method was 

used to solve the set of the resulting ODEs. The entire solving process was finally implemented via 



9 
 

designing a robust efficient MATLABTM code that involved all the mechanical properties, geometries and 

external mechanical or thermomechanical loads of the joint. As a result, the entire stress field of the bonded 

joints can be determined accurately, which was validated by using FEM based on a commercial FEA 

software package (ANSYSTM) 

 

2.3. Outstanding Problems in Stress Analysis of Bonded Joints and ABJs 

To date, considerable research has been conducted for determination of the interfacial shear and 

normal stress distribution in ABJs made of dissimilar adherends. By manipulating the geometry and loading 

of the ABJs, there are five typically structural ABJs, as illustrated in Fig. 2.2, which will be demonstrated 

for determining the interfacial shear and normal stresses by extending Wu and Jenson’s (2011) stress-

function variational method for bonded joints in this thesis study. The stress-field results of these typical 

ABJs will be validated by using FEM and comparing with literature ABJ models. 
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Figure 2.2. Typical adhesively bonded joints (ABJs) and bonded joints. 

 

To further extend the work of stress-function variational method (Wu & Jenson, 2011), Chapter 3 

is going to demonstrate the formulation of extended stress-function variational method in details for stress 

analysis of adhesively single-sided strap joint consisting of two slender substrate layers (adherends) and a 

slender cover layer, which are bonded with an adhesive layer. The joint under consideration is assumed 
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under action of a uniform axial tension along the substrate layers. Due to the structural and load symmetries 

of the joint, the entire stress analysis is implemented on the half-joint model subjected to uniform axial 

tension far away on the substrate layer. Four unknown interfacial shear and normal stress functions are 

introduced for the model formulation. A set of four coupled 4th-order ODEs is set up, which is solved 

numerically by designing an efficient MATLABTM code. Furthermore, comparison of the stress results 

yielded from the present ABJ model with those obtained by ANSYSTM is demonstrated. Moreover, the 

effectiveness of temperature change in determining the stress field of the joint is further given. This 

generalized method is also applicable for stress analysis of a wide variety of other joined structures (Wu & 

Zhao, 2013).  

In Chapter 4, the stress-function variational method is further applied for stress analysis of 

adhesively bonded single-lap joint comprising of a slender upper adherend layer and a slender bottom 

adherend layer bonded with an adhesive layer under shear traction. In this chapter, the model results not 

only show a very good agreement of the newly obtained ABJ results with those gained by ANSYSTM, but 

also are compared with those given by Erdogan’s simple joint model (Delale et al., 1981).  

Chapter 5 further extends the stress-function variational method developed in Chapter 3 for stress 

analysis of adhesively bonded single-sided joint, double lap bonded joint, and double-sided bonded joint. 

Corresponding FEA models are formulated to validate these semi-analytic joint models by comparing the 

distributions of interfacial stresses.  

Chapter 6 summaries the current research and expects the future work following the thesis work.  
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3. GENERALIZED STRESS-FUNCTION VARIATIONAL METHOD FOR STRESS 

ANALYSIS OF ADHESIVELY BONDED JOINTS 

 

3.1. Problem Formulation—Adhesively Single-sided Strap Joints 

3.1.1. Model Formulation 

In this chapter, a generalized stress-function variational method is to be formulated for 

determination of the stress field in an adhesively single-sided strap joint (ASSJ) subjected to mechanical 

and/or thermomechanical loadings. The stress field in an ASSJ determined by the proposed method can be 

expressed explicitly, which will be further validated via comparison with those obtained by commercial 

FEA software package (ANSYSTM). Due to the mismatch of material properties across the bonding 

interfaces, high interfacial stresses in a complicated three-dimensional (3D) stress state occur near the free 

edges of bonding patch. To simplify the process of stress analysis, the ASSJ under consideration is dealt in 

two-dimensional (2D) stress/strain state by assuming that the joint width to be infinitely long. During the 

formulation of the ASSJ model for stress analysis, a representative segmental element of the ASSJ consists 

of a cover layer, adhesive layer, and substrate layer in 2D. 

The configuration of ASSJ is illustrated in Fig. 3.1(a), where the overlap bonding length is denoted 

as L. For the convenience of the model formulation, subscripts 1, 0, and 2 are attached to the cover, adhesive, 

and substrate layers, respectively. These three layers have the geometrical parameters of thicknesses hi (i = 

1,0,2) and mechanical properties of Young’s moduli Ei (i =1,0,2), Poisson’s ratios νi (i = 1,0,2), and 

coefficients of thermal expansion αi (i = 1,0,2). The width b is assumed to be unit width. The x-coordinate 

in a 2D ASSJ model is chosen from the symmetric mid-span of the system; the y-coordinate is chosen 
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perpendicular to the x-coordinate and along the layer edge. As aforementioned, the external loading can be 

axial tension, shear traction, bending moment, or temperature change, or their combination. In this 

upcoming derivation, the ASSJ is treated in plane-stress state and subjected to a uniform tensile traction p0 

far away the substrate layer; meanwhile the joint has a uniform temperature change ∆T from the reference 

temperature. Furthermore, stress analysis of the ASSJ is made on the right half-portion as shown in Fig. 3.1 

(b); the mechanical and thermomechanical loadings can be treated separately due to the nature of linear 

stress analysis according to the method of superposition. From Fig. 3(c), it can be expected that interfacial 

shear and normal stresses are caused by the mismatch of material properties along the bonding lines; lateral 

deflection can be induced since the joint is not laterally symmetric. In the formulation, all the joint layers 

are treated as isotropic, linearly thermoelastic materials. Furthermore, to convert the results in the plane-

stress state to those in the plane-strain state, it needs to replace the Young’s moduli Ei (i = 1,0,2) by (1- 

υi
2)/Ei, Poisson’s ratios υi (i = 1,0,2) by υi /(1- υi ), and coefficients of thermal expansion αi (i = 1,0,2) by 

(1+ υi)αi. 
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Figure 3.1. Schematic of an adhesively single-sided strap joint: (a) Structural configuration consisting of 

two identical substrate layers, two adhesive layers, and a slender cover layer, (b) reduced right symmetric 

half-joint, (c) distribution of the interfacial stresses in the joint. 

 

 

Figure 3.2. Free body diagrams of representative segmental elements of (a) the cover layer, (b) the adhesive 

layer, and (c) the substrate layer. 
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3.1.2. Static Equilibrium Equations 

The purpose of this work is to find the stress field in the entire ASSJ, particularly the interfacial 

shear and peeling stresses at the interface between the upper adherend and the adhesive layer as well as the 

adhesive layer and the lower adherend, which can be expressed in terms of four independent unknown 

functions as: 

),(11 xf  and ),(11 xg                           (3.1) 

),(22 xf  and ),(22 xg                           (3.2) 

As aforementioned, the free-shear at the adherend edges x=0 and L can be expressed as: 

,0)()0()()0( 2211  LffLff                         (3.3)  

Fig. 3.2(a)-(c) show the typical representative segmental elements, where the shear and normal (peeling) 

stresses can be fully determined with the static equilibrium equations in 2D elasticity with the given axial 

force Si (i = 1,0,2), shear force Qi (i = 1,0,2), and bending moment Mi (i = 1,0,2), which are defined 

according to the standard sign conventions of elementary Mechanics of Materials (Beer et al., 2011). 

For the representative segmental element of the cover layer as shown in Fig. 3.2(a), the static 

equilibrium equations can be obtained as: 

1

1:0 b
dx

dS
Fx  ,                                   (3.4) 

,:0 1
1 b

dx

dQ
Fy                                (3.5) 

.
2

:0 11
1

1 bh
Q

dx

dM
M                              (3.6) 

Meanwhile, the static equilibrium equations of the representative segmental element of the adhesive 

layer [Fig. 3.2(b)] are expressed as 
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)(:0 21

0   b
dx

dS
Fx

,                              (3.7) 

),(:0 21

0   b
dx

dQ
Fy

                              (3.8) 

).(
2

:0 21

0

0

0  
bh

Q
dx

dM
M                         (3.9) 

Accordingly, the static equilibrium equations of the representative segmental element of the 

substrate layer [Fig. 3.2(c)] are written as 

2
2:0 b

dx

dS
Fx  ,                                (3.10) 

,:0 2

2 b
dx

dQ
Fy                                   (3.11) 

.
2

:0 22

2

2 bh
Q

dx

dM
M                            (3.12) 

 

3.1.3. Stress Resultants 

Under the action of uniaxial tension p0 far away the substrate layer, the physical conditions of the 

axial force, shear traction, and bending moment at the ends of the upper adherend, adhesive layer, and lower 

adherend are expressed respectively as: 

,)0( 201 bhpS                                   (3.13a) 

,0)(1 LS                                      (3.13b) 

,0)0(1 Q                                      (3.13c) 

,0)(1 LQ                                      (3.13d) 
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 ,2/)2()0( 2012001 hhhbhpbmM                         (3.13e) 

,0)(1 LM                                     (3.13f) 

,0)0(2 S                                      (3.13g) 

,)( 202 bhpLS                                   (3.13h) 

,0)0(2 Q                                       (3.13i) 

,0)(2 LQ                                       (3.13j) 

,0)0(2 M                                      (3.13k) 

,0)(2 LM                                      (3.13l) 

,0)0(0 S                                       (3.13m) 

,0)(0 LS                                       (3.13n) 

,0)0(0 Q                                       (3.13o) 

,0)(0 LQ                                       (3.13p) 

,0)0(0 M                                       (3.13q) 

.0)(0 LM                                       (3.13r) 

In this case, given a pure temperature change ∆T (p0=0) from the reference temperature of free 

thermomechanical stresses, it needs to adjust all the terms involving p0 to satisfy the traction-free boundary 

conditions (BCs) such as Eq. (3.13a), Eq. (3.13e) and Eq. (3.13h). 

In addition, all the stress resultants for the segmental elements of the three layers can be expressed 

in terms of fi (i = 1,2) and gi (i = 1,2) as followings. With BC (3.13i) and integration of Eq. (3.4) with respect 

to x from x = 0, peeling-force of the cover layer yields as: 
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1  
xx

dbfdS                                  (3.14) 

,)()(
0

1201 
x

dfbbhpxS                               (3.15) 

Meanwhile, shear-force of the cover layer can be written by using BC (3.13c) and integration of 

Eq. (3.5): 

,)(
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1  
xx

dbgdQ                                  (3.16) 

,)()(
0

11 
x

dgbxQ 
                                (3.17) 

Moreover, bending moment of the cover layer is expressed based on BC (3.13e) and integration of 

Eq. (3.6): 
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                (3.19) 

According to the same procedure above, the stress resultants in the adhesive layer with respect to x 

from x=0 can be asserted with BCs [Eq. (3.13m), Eq. (3.13o), and Eq. (3.13q)] and integration of Eqs. (3.7-

9): 
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            (3.25) 
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Similarly, the stress resultants in the substrate layer with respect to x from x = 0 can be determined 

with BCs [Eq. (3.13g), Eq. (3.13i), and Eq. (3.13k)] and integration of Eqs. (3.10-12): 
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xx
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                   (3.31) 

 

3.1.4. Stress Components 

Due to the bending moment superimposed with a uniform axial traction p1 on the cover layer, the 

axial normal stress can be assumed to follow the flexural stress formula according to the Euler-Bernoulli 

beam theory as: 
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(3.32) 

where, p1= p0h2/ h1. Moreover, the shear stress of the cover layer can be determined by integrating the 2D 

static equilibrium equation:  

,0
1

)1()1(

1 



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



yx

xyxx
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                                (3.33) 
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with respect to y1 from an arbitrary point in the cover layer to the top surface y1 = h1/2 and taking into 

account the traction-free BC 0)2/( 1

)1(

1
hxy , which leads to 
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Furthermore, the transverse normal stress of the cover layer can be determined by integrating the 

2D static equilibrium equation: 

,0

)1(

1

)1(

111 
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                              (3.35) 

with respect to y1 from an arbitrary point to the top surface y1=h1/2 and using the traction-free BC 

0)2/( 1

)1(

11
hyy , which yields 
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For the adhesive layer, given the classic Euler-Bernoulli beam theory and 2D static equilibrium 

equation, with the aid of 
0
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0 2( / 2) ( )y y h g x   , the axial, shear, and normal stress can be determined correspondingly such that 
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For the substrate layer, with the aid of the classic Euler-Bernoulli beam theory and 2D static 

equilibrium equation, the axial, shear, and normal stresses can also be determined as 
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With the axial normal stresses varying linearly across the adherends and adhesive layer, the 

corresponding shear and transverse normal (peeling) stresses vary in parabolic and cubical functions, 

respectively. As the matter of fact, the stress field satisfies all the traction BCs and stress continuity across 

the interfaces. 

 

3.1.5. Governing Equations of Interfacial Stresses 

In the view of mathematics, complimentary strain energy is an energy functional with respect to 

the four unknown interfacial stress functions fi (i = 1,2) and gi (i = 1,2) defined above, which were 
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introduced to determine the interfacial stress distribution of ASSJ. To achieve the set of governing ODEs 

of the interfacial stress functions, the entire strain energy of the ASSJ can be determined by integrating the 

strain energy density (per unit length) with respect to the length variable x from x = 0 to x = L such that 
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              (3.43) 

where 
( )i

xx  and 
( )i

yy (i = 1,0,2) are the axial and transverse strains of the cover, adhesive, and lower layer, 

respectively. Based on the generalized Hooke’s law of linearly thermoelectric solids, the strains can be 

expressed as: 
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                          (3.45) 

where αi (i = 1,0,2) are coefficients of thermal expansion of the cover, adhesive, substrate layers, 

respectively, and ΔT is the uniform temperature change from the reference temperature of free 

thermomechanical stresses. According to the theorem of minimum complimentary strain energy, 

mathematical variation of the strain energy functional (3.43) with respect to any of the four interfacial stress 

functions reaches a stationary state such that 
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where δ is the mathematical variational operator with respect to either fi (i = 1,2) or gi (i = 1,2). 

By plugging the stress resultants [Eq. (3.32), Eq. (3.34), and Eqs. (3.36-42)] and normal strains (Eq. 

(3.44) and Eq. (3.45)] into (Eq.3.46), it yields a set of 4th-order ODEs with respect to fi (i = 1,2) and gi (i = 

1,2) as 

( ) / /[A]{ } [B]{ } [C]{ } {D} {0}.IV                        (3.47) 

where 1 1 2 2{ } { ( ), ( ), ( ), ( )}TF G F G      is a column of the dimensionless interfacial stress functions 

with the components defined as 
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In addition, [A], [B], and [C] are four square symmetric coefficient matrices relating the geometric 

properties of ASSJ as 
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where h02 = h0/h2, h12 = h1/h2, e20 = E2/E0, and e21 = E2/E1 are four parameters related to the geometrical 

dimensions and mechanical properties of the ASSJ.  

The column {D} is related to the external mechanical and thermomechanical loads, whose actual 

expression depends upon the types of external loads. 

In the case of the ASSJ subjected to external mechanical and thermomechanical loads, a 

dimensionless force column {D}4×1 can be expressed as 
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The solution to the set of resulting ODEs described in Eq. (3.47) can be determined with the general 

solution {Ψ} superimposed with a particular solution {Φ0} such that 

},{}{}{ 0                                    (3.56) 

where {Ψ}is the general solution of the corresponding set of homogenous ODEs: 

,0}{}]{C[}]{B[}]{A[ //)(  IV
                       (3.57) 

and 

.D}{]C[}{ 1

0

                                   (3.58) 

In order to efficiently solve the resulting homogenous Eq. (3.57), with the aid of eigenfunctions, a 

general solution can be assumed as 

),exp(}{}{ 0                                   (3.59) 

where {Ψ0} and λ are respectively the eigenvector and eigenvalue of the set of homogenous ODEs in Eq. 

(3.57). 

Hence,  

4 2

0 0 0[A]{ } [B]{ } [C]{ } {0}.                            (3.60) 

To reduce the above generalized eigenvalue problem into a standard eigenvalue problem by 

adopting
2

1 0{ } { }   , the resulting standard eigenvalue problem is 
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where I is a 8×8 identity. Eigenvalue problem (3.61) can be solved by using robust, efficient numerical 

algorithms offered by MATLABTM. The final expression of the homogenous solution to Eq. (3.47) can be 

expressed as 

8

0 0 0

1

{ } [ { }exp( ) { }exp( )] { },k k

k k k k

k

c d   


                     (3.62) 

where }{ 0

k  (k = 1, 2, …, 8) are the eigenvectors corresponding to eigenvalues λk (k = 1, 2, …, 8), 

respectively, and ck and dk (k = 1, 2, …, 8) are the coefficients (may be real or complex) to satisfy the 

traction BCs in Eq. (3.3) and Eqs. (3.13a-r). In the present case, the linearly independent BCs can be 

extracted from Eqs. (3.13a-p) accordingly such that 

,0)0(1 F                                     (3.63a) 

,1)/( 21 hLF                                 (3.63b) 

,0)0('1 F                                     (3.63c) 

,0)/(' 21 hLF                                 (3.63d) 

,0)0(1 G                                     (3.63e) 

,2/1)/( 0221 hhLG                                 (3.63f) 

,0)0('1 G                                    (3.63g) 

,0)/(' 21 hLG                                (3.63h) 

,0)0(2 F                                      (3.63i) 

,1)/( 22 hLF                                  (3.63j) 
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,0)0('2 F                                     (3.63k) 

,0)/(' 22 hLF                                  (3.63l) 

,0)0(2 G                                     (3.63m) 

,2/1)/( 22 hLG                                (3.63n) 

,0)0('2 G                                     (3.63o) 

.0)/(' 22 hLG                                  (3.63p) 

Consequently, a set of simultaneous linear algebraic equations can be formulated with the BCs [Eqs. 

(3.63a-p) and formal solution (3.62)]: 
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where,
1,

0

k , 
2,

0

k , 
,3

0

k , and 
,4

0

k (k = 1, 2, …, 8) are respectively the 1st to 4th elements of the k-th 

eigenvector, and
)1(

0 ,
(2)

0 ,
(3)

0 , and
(4)

0 are the 1st to 4th elements of the particular solution vector {Φ0}. 

In the case of the stress field due to a pure temperature change, the above BCs [Eq. (3.63b), Eq. (3.63f), Eq. 

(3.63j), and Eq. (3.63n)] are needed to set as zeros, which further influence the right terms of the algebraic 

equations [Eq. (3.64b), Eq. (3.64f), Eq. (3.64j), and Eq. (3.64n)]. 

Once coefficients ck and dk have been determined by solving the resulting set of homogeneous 

algebraic equations (3.64a-p), the interfacial shear and peeling stresses at the upper and lower interfaces  

can be finalized according to expressions (3.48-51) as 
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3.2. Model Validation 

3.2.1. Interfacial Stresses due to Mechanical Loads 

FEM based on commercial FEA software package (ANSYSTM) is used to validate the present stress 

function variational method for stress analysis of ABJs. Specifically, an ASSJ with unit width is chosen for 

such purpose, which is assumed to be subjected to uniform axial tension on the substrate layers in a general 

2D plane-stress state. The geometrical parameters for the ASSJ are taken as: L = 20 mm, h1 = 2.0 mm 

(steel/cover), h2 = 2.0 mm (aluminum/bottom), and h0 = 0.2 mm (epoxy/adhesive). Material parameters are 

given as: E1 = 210 GPa, ν1 = 0.293 (steel/cover), E2 = 70 GPa, ν2 = 0.345 (aluminum/bottom), and E0 = 10 

GPa, ν0 = 0.40 (epoxy/adhesive). The given tension p0 is assumed to be 1MPa. 

During FEM simulation (ANSYSTM) of the right half-symmetric ASSJ, four-node elements 

(PLANE182) and uniform quadrilateral meshes are employed. In their recent study, Wu and Jenson (2011) 

have determined the accurate stress field in a bonded joint without the adhesive layer using stress function 

varational method, which was validated by means of FEM (ANSYSTM). To understand the trend of the 

singular stresses along the bonding lines, two different mesh sizes (0.05 × 0.05 mm and 0.01 × 0.01 mm) 
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are employed at the two ends of the overlap. Note that the right portion of ASSJ as shown in Fig. 3.1 (b) is 

utilized in FEM modeling, a uniform traction of 1MPa is applied as the axial load, and a single corner node 

is used to constrain the displacement in the vertical direction near the loading point so as to mimic the BCs 

under uniaxial tension. Fig. 3.3 shows the variations of the interfacial shear and normal stresses of the tested 

ASSJ model predicted by the present stress variational method, which are compared with those obtained 

by FEM (ANSYSTM). Because of the existence of bending moment resultant at the middle of the joint [Fig. 

3.1(c)], the interfacial shear and normal stresses at the free-edges of mid-span can be found in high values. 

Compared to the shear stress, the high normal stress mainly contributes to the debonding failure of ABJs. 

Obviously, the interfacial shear stresses predicted by the present method exactly satisfy the shear-free 

boundary condition in ABJs as required by the theoretical formulation. Even though the normal and shear 

stresses assume the very similar varying trends along the upper and lower bonding lines, the difference of 

these stresses does exist around the free edges, especially the interfacial normal stresses, which dominates 

the debonding failure of ABJs.  
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Figure 3.3. Validation of the stress-function variational method by FEM for interfacial shear and normal 

stresses in ASSJ subjected to uniaxial tension: (a) Interfacial shear stress and (b) interfacial normal stress. 

 

  

  

 Mesh size 0.01mm upper interface τmax=0.8835MPa  

 Mesh size 0.01mm lower interface τmax=0.7819MPa 

 Mesh size 0.05mm upper interface τmax=0.5947MPa 

 Mesh size 0.05 mm lower interface τmax=0.7444MPa 

Upper interface τmax= 0.946MPa (Present model) 

Lower interface τmax=1.092MPa (Present model) 

Comparison of interfacial shear stresses 

  
0 4 8 12 16 20 

-1.0 

-0.6 

-0.2 

0 

(a) 

x/h2 Distance from left free-edge 

In
te

rf
ac

ia
l 

sh
ea

r 
st

re
ss

 ô
x
y
 (

M
P

a)
 
 

5 

7 

  

  

Comparison of interfacial normal stresses 

0 4 8 12 16 20 
-1 

0 

1 

3 

 Mesh size 0.01mm upper interface σmax=7.8466MPa 

 Mesh size 0.05mm upper interface σmax=3.3825MPa 

 Mesh size 0.05 mm lower interface σmax=1.4037MPa 

Upper interface σmax= 4.103MPa (Present model) 

Lower interface σmax=1.4707MPa (Present model) 

 Mesh size 0.01mm lower interface σmax=1.2699MPa 

(b) 

x/h2 Distance from left free-edge 

In
te

rf
ac

ia
l 

n
o
rm

al
 s

tr
es

s 
ó

y
y
 (

M
P

a)
 
 



32 
 

To explain the difference between the interfacial stresses across the adhesive layer, let us consider 

a segmental element of the adhesive layer with the length x  as shown in Fig. 3.4. Assume 
2/0h

yy  and 

2/0h

yy

 are the average normal stresses at the top and bottom adhesive surface along the length x . Static 

equilibrium equation of the segmental element can be expressed as 

,0)( 0

2/2/ 00 


hx xy

h

yy

h

yy                            (3.69) 

The difference of the average normal stress can be obtained from Eq. (3.69) as 

./0

2/2/ 00 xhxy

h
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h

yyyy 
                          (3.70) 

Figure 3.4. Free body diagram of a representative adhesive layer segment. 

 

From Eq. (3.70), when x  is much smaller than the thickness of the adhesive layer 0h , the normal 

stress difference could be significantly large. Based on this, the common assumption that the normal and 

shear stresses do not change significantly across the adhesive layer as used in most literature ABJ models 

is not held. 
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Thermomechanical stress analysis of an ASSJ subjected purely to uniform temperature change is 

analogous to that of an adhesively bonded thermostat. To simplify the process, the ASSJ is treated as no 
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residual stresses at the initial load-free state at the reference temperature, and the temperature change is 

assumed uniform throughout the joint. The structural and mechanical parameters of the present joint are 

given as: h1 = 2.5 mm, E1 = 70 GPa, υ1 = 0.345, α1 = 23.6×10-6/oC, h2 = 2.5 mm, E2 = 325 GPa, υ2 = 0.293, 

α2 = 4.9×10-6/oC, L = 50.8 mm, E0 = 10 GPa, υ0 = 0.40, and α0 = 73.8×10-6/oC, and ΔT = 240oC. Two 

thicknesses of the adhesive layer are taken into comparison as: h0 = 0.25 mm and 1.0 mm, respectively. 

Furthermore, plane-strain state from the precious studies is used in the present adhesively bonded 

thermostat. 

Recent work in Dr. Wu’s research group at NDSU has demonstrated the reliability of stress-function 

variational method for solving such type of problems (Wu and Jensen, 2011).  
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Figure 3.5. Thermomechanical shear and normal stresses along the interface of a bimaterial thermostat 

based on stress-function variational method (Wu & Jensen, 2011): (a) Interfacial shear stresses, (b) 

interfacial normal stresses. 
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function variational method for predicting the thermomechanical interfacial stresses in adhesively bonded 

thermostats, a thin adhesive layer is further introduced into Wu and Jenson’s joint model (Wu & Jenson, 

2011). 

Figure 3.6. Variations of the dimensionless thermomechanical interfacial shear stresses in the adhesively 

single-sided strap joint over the dimensionless distance from the mid-span: (a) The interfacial shear stress 

for thickness h0 = 0.25 mm, (b) the interfacial shear stress for thickness h0 = 1 mm.  
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Figure 3.7 Variations of the dimensionless thermomechanical interfacial normal stresses in the adhesively 

single-sided strap joint over the dimensionless distance from the mid-span: (a) The interfacial normal 

stress for thickness h0 = 0.25 mm, (b) the interfacial normal stress for thickness h0 = 1 mm. 
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In the present semi-analytic stress-functional variational method, variations of the 

thermomechanical interfacial shear and normal stresses in the adhesively bonded thermostat at two different 

thicknesses (h0 = 0.25 mm and 1.0 mm) are demonstrated in Fig. 3.6 and Fig. 3.7, respectively. Compared 

to Fig. 3.5 by Wu and Jenson (2011), the shear and normal stresses at the upper and lower interfaces in Fig. 

3.6(a) and Fig. 3.7(a) with a relatively thin adhesive layer (h0 = 0.25 mm) carry very similar varying trends. 

The peak values of both the shear and normal stresses at the lower surface of the adhesive layer are 40% 

higher than those of the biomaterial thermostat with the same geometries, material properties, and 

temperature change. However, the peak values of both the shear and normal stresses at the upper surface of 

the adhesive layer are lower than those of the biomaterial thermostat. Specifically, the peak value of shear 

stress is decreased about 20%, and that of normal stress is decreased around two-thirds. While applying a 

temperature change to the ASSJ with a relatively thin adhesive layer, the adhesive layer appears a large 

thermal expansion due to its large coefficient of thermal expansion and Poisson’s ratio, which cause higher 

stresses at the interface to deform thermostat to the stiffer substrate layer.  

In other case of a thick adhesive layer (h0 = 1.0 mm), the shear and normal stresses at the lower 

interface as shown in Fig. 3.6(b) and Fig. 3.7(b) slightly decrease compared to those of a thinner adhesive 

layer as shown in Fig. 3.6(a) and Fig. 3.7(a). Relatively large mismatched deformations owing to the large 

thickness and low modulus of the adhesive layer between the upper and lower adherends are responsible 

for the inconsistent thermal expansion. In contrast, at the upper surface of the adhesive layer, the directions 

of both the shear and normal stresses are altered, corresponding to the change of the characteristic deflection 

of the upper adherend induced by the varying adhesive layer thickness. In this case, compared to the thinner 
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adhesive layer, the peak value of interfacial shear stress decreases nearly half, and the peak value of 

interfacial normal stress nearly doubles. 

 

3.2.3. Scaling Analysis of Interfacial Stresses due to Mechanical Loads 

A compact, efficient computational code has been designed to implement the present stress-

function variational method for stress analysis of ABJs, which can be used to examine the dependencies of 

the interfacial shear and normal stresses upon all the geometrical and material parameters of the ABJs 

including the layer thickness ratios h0/h2 and h1/h2, length ratio L/h2, modulus ratios E0/E2 and E1/E2, 

Poisson’s ratios υ1, υ2 and υ3, and coefficients of thermal expansion α0, α1 and α2. In single-sided strap joints 

(Wu and Jensen, 2011), scaling parameter studies have been conducted to examine the effects of adherend 

thickness ratio h1/h2, length ratio L/h2 and modulus ratio E1/E2 on the shear and normal stress variations 

along the interface.  

The goal of this section is to examine the effects of thickness and modulus of the adhesive layer on 

the interfacial shear and normal stresses. In addition, it needs to be mentioned that the present ABJ model 

is established within the framework of linear elasticity. Thus, the stress fields in ABJs triggered by 

combined mechanical loads and temperature change can be dealt with separately based on the method of 

superposition. In this case, the adherend length and modulus ratios are fixed as L/h2 = 5 and E1/E2 = 3, and 

Poisson’s ratios of the upper and lower adherends are fixed as υ1 = 0.293 (steel) and υ2 = 0.345 (aluminum). 

For the adhesive layer, two thickness ratios (h0/h2 = 0.2, and 0.5) and two modulus ratios (E0/E2 = 1/20 and 

1/10) are adopted, and the Poisson’s ratio is fixed at υ2 = 0.4 (thermoset epoxy) in the calculations. The 

joint is treated in the state of plane-stress.  
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In comparison, the interfacial shear and normal stresses of a single-sided strap joint (Wu and 

Jenson, 2011) are shown in Figs. 3.8 (a) and (b).  

 

Figure 3.8. Mechanical shear and normal stresses along the interface of single-sided strap joint based on 

the stress-function variational method (Wu & Jensen, 2011): (a) Interfacial shear stresses, (b) interfacial 

normal stresses.  
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In above figure, all the shear stress components satisfy the shear-free condition at the adherend 

ends. Figs. 3.9-16 show variations of the dimensionless interfacial shear stress τ/p0 and normal (peeling) 

stress σ/p0 at the upper and lower interfaces with the dimensionless distance x/h2 from the joint mid-span 

to the right adherend end at five adherend thickness ratios (h1/h2 = 0.5, 0.75, 1.0, 1.5, and 2.0), two adhesive 

thickness ratios (h0/h2 = 0.2 and 0.5), and two adhesive modulus ratios (E0/E2 = 1/10 and 1/20), respectively.  
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Figure 3.9. Comparison of the variations of the dimensionless interfacial shear stresses in the adhesively 

single-sided strap joint over the dimensionless distance from the mid-span: (a) The shear stress at the upper 

interface, (b) the shear stress at the lower interface. Thickness ratio h0/h2 = 0.2, Young’s modulus ratio E2/E0 

= 20. 
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Figure 3.10. Comparison of the variations of the dimensionless interfacial normal stresses in the adhesively 

single-sided strap joint over the dimensionless distance from the mid-span: (a) The normal stress at the 

upper interface, (b) the normal stress at the lower interface. Thickness ratio h0/h2 = 0.2, Young’s modulus 

ratio E2/E0 = 20. 
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Figure 3.11. Comparison of the variations of the dimensionless interfacial shear stresses in the adhesively 

single-sided strap joint over the dimensionless distance from the mid-span: (a) The shear stress at the upper 

interface, (b) the shear stress at the lower interface. Thickness ratio h0/h2 = 0.5, Young’s modulus ratio E2/E0 

= 20. 
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Figure 3.12. Comparison of the variations of the dimensionless interfacial normal stresses in the adhesively 

single-sided strap joint over dimensionless distance from the mid-span: (a) The normal stress at the upper 

interface, (b) the normal stress at the lower interface. Thickness ratio h0/h2 = 0.5, Young’s modulus ratio 

E2/E0 = 20. 
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Figure 3.13. Comparison of the variations of the dimensionless interfacial shear stresses in the adhesively 

single-sided strap joint over the dimensionless distance from the mid-span: (a) The shear stress at the upper 

interface, (b) the shear stress at the lower interface. Thickness ratio h0/h2 = 0.2, Young’s modulus ratio 

E2/E0 = 10. 
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Figure 3.14. Comparison of the variations of the dimensionless interfacial normal stresses in the adhesively 

single-sided strap joint over the dimensionless distance from the mid-span: (a) The normal stress at the 

upper interface, (b) the normal stress at the lower interface. Thickness ratio h0/h2 = 0.2, Young’s modulus 

ratio E2/E0 = 10. 
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Figure 3.15. Comparison of the variations of the dimensionless interfacial shear stresses in the adhesively 

single-sided strap joint over the dimensionless distance from the mid-span: (a) The shear stress at the upper 

interface, (b) the shear stress at the lower interface. Thickness ratio h0/h2 = 0.5, Young’s modulus ratio 

E2/E0 = 10. 
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Figure 3.16. Comparison of the variations of the dimensionless interfacial normal stresses in the adhesively 

single-sided strap joint over the dimensionless distance from the mid-span: (a) The normal stress at the 

upper interface, (b) the normal stress at the lower interface. Thickness ratio h0/h2 = 0.5, Young’s modulus 

ratio E2/E0 = 10. 
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It is obvious to observe that high interfacial shear and normal stress concentrations exist near the 

interior edges of the adherends. For both types of joints with and without the adhesive layer, due to the 

existence of a bending moment at the mid-span, as illustrated in Fig. 3.1(b), the peak value of interfacial 

normal stress at the interior edges is much larger than that of the shear stress in all the cases under this 

study. At both the upper and lower surfaces of the adhesive layer, the peak value of the shear stresses 

decreases with increasing adherend thickness ratio h1/h2. In particular, the shear stresses at the upper and 

low surfaces of the adhesive layer have close variation trending along the interface excluding the case of 

h1/h2 = 0.5. Also, the interfacial normal stresses at the upper and lower interfaces have very similar variation, 

both increasing rapidly with the decrease of adherend thickness ratio h1/h2. This implies that a thicker upper 

adherend (i.e., larger flexural rigidity of the cover layer) can suppress the joint deflection and flexural stress 

and therefore suppress the debonding failure. The larger normal stress at the upper surface of the adhesive 

layer implies that the debonding failure would be pliable to appear along the upper adherend/adhesive 

interface. The observed varying trends of both the interfacial shear and normal stresses hold for all the cases 

under this investigation.  

 

3.3. Conclusions 

The semi-analytic ASSJ model well demonstrated the proposed method for interfacial stress 

analysis under mechanical or thermomechanical loads. First of all, two unknown interfacial shear and 

normal stress functions were introduced at each interface of the ASSJ. Secondly, by means of Euler-

Bernoulli beam theory and 2D linear elasticity, the total stress field was expressed in terms of the interfacial 
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stress functions. Next, a set of four governing ODEs has been successfully formulated by triggering the 

theorem of minimum complementary strain energy, which was solved by using eigenfunction method. A 

semi-analytic solution can be derived for all ABJs made of three layers subjected to tension, shear force, 

bending moment, and thermomechanical loads. The stress results for each type of joint can be determined 

by modifying the traction BCs due to the different applications. The interfacial stress results [Fig. 3.3(a) & 

(b)] as predicted by the proposed ASSJ model not only satisfy all the traction BCs at the adherend ends and 

across the interfaces but also are validated by FEA.  

By examining the interfacial stresses of thermostat in Figs. 3.6 and 3.7, the adhesive layer carries 

a large thermal expansion due to its relatively high Poisson’s ratio, which is responsible for the higher 

interfacial stresses at the lower surface constrained by a stiffer adherend. This observation can be 

understood such that large thickness and low modulus of the adhesive layer could cause large mismatched 

deformations between the upper and lower adherends owing to the inconsistent thermal expansion.  

Furthermore, by scaling analysis, it can be concluded that when letting only one parameter vary 

and fixing the rest parameters, both the interfacial shear and normal stresses decrease noticeably with 

increasing thickness of the adhesive layer and also decrease slightly with decreasing elastic modulus of the 

adhesive layer under the parameters utilized in this study. This observation can be understood such that the 

thicker and more complaint adhesive layer could provide larger deformation to accommodate the 

mismatching deformations between the upper and lower adherends and therefore decrease the interfacial 

stresses. Thus, the above scaling analysis could provide a clear picture on how the joint geometries and 

material properties influence the interfacial shear and normal stresses. These scaling results can be used to 

guide reliable and rational design and strength/failure analysis of ABJs.  
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Consequently, it needs to be emphasized that the theoretical formulation of the present stress-

function variational method is within the framework of Euler-Bernoulli beam theory and linear elasticity, 

and no further assumptions were introduced during the above process. Therefore, the present theoretical 

modeling of stress field in ABJs is theoretically self-consistent; accuracy of the stress field of ABJs based 

on the present model only relies on the numerical process in solving the resulting set of 16 simultaneous 

linear algebraic equations [Eqs. 3.64(a-p)]. 

The present model can be further exploited for accurate structural design and optimization of ABJs 

since only one theoretical limitation was in the model assumption such that the axial stress in the joint varies 

linearly across the thickness. It needs to be noted that except the external stress expression in column {D} 

relevant to the BCs, all the derivations above are independent of the specific configuration of the ABJ. 

Based on this, the set of governing ODE is suitable for developing robust, high-efficiency methods for 

stress analysis of other ABJs as to be demonstrated in the following two chapters. 
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4. INTERFACIAL STRESS ANALYSIS OF ADHESIVELY BONDED SINGLE-LAP JOINTS 

 

4.1. Introduction 

Similar to ASSJ, Fig. 4.1(a) shows the configuration of an adhesively bonded single-lap joint 

(ABSLJ), which illustrates the shear traction applied at the right end of substrate layer. In contrast, at the 

left side of the cover layer, it is assumed that the joint to be fixed at a designed length far away the bonding 

area. The geometrical and mechanical parameters are given as: bonding length L, thicknesses hi (i = 0,1,2), 

Young’s modulus Ei (i = 0,1,2), and Poisson’s ratio νi (i = 0,1,2), and coefficients of thermal expansion αi (i 

= 0,1,2). The variables carrying subscripts 0, 1 and 2 represent those relating the adhesive layer, cover layer, 

and substrate layer, respectively. Similarly, the width b of the joint is considered to be unit. The x-coordinate 

in this simplified 2D system starts from the bonding line; the y-coordinate is along the vertical direction at 

the layer edge. In reality, both of the cover and bottom layers have the length much longer than the length 

of the bonding line. In the process of stress analysis, the left side of the upper layer is assumed to be fixed 

and the length of the bottom layer is L, so that there is only one bending moment resultant acting on the 

cover layer. In addition, the adhesive layer and two adherends of the ABSLJ are treated as isotropic, linearly 

thermoelastic materials, respectively. Fig. 4.1(b) illustrates the interfacial shear and normal stresses of the 

joint subjected to a uniform shear traction τ0 and bending moment resultant M1 = τ0L at the cover layer. 

Since singular stresses of the joint appear near the edge of adherends due to mismatched materials boned 

at a sharp edge, creating a refined mesh in FEA can seize the high stress in the thin adhesive layer, which 

can demonstrate a reasonable comparison between the stress field predicted by the present stress-function 

variational method and those predicted by FEA . Fig. 4.1(c) displays the geometrical model of the single 
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lap joint subjected to a uniform shear force, which is used for FEM simulation of the stress field of the joint. 

In addition, plane-stress state is employed in this ABJ. As aforementioned, for the purpose of determining 

the stress field of the ABJ in the plane-strain state, it needs to replace the Young’s moduli Ei (i = 1,0,2) by 

(1- υi
2)/Ei, Poisson’s ratios υi (i = 1,0,2) by υi /(1- υi ), and coefficients of thermal expansion αi (i = 1,0,2) 

by (1+ υi)αi. 

 

Figure 4.1. Schematic of an adhesively bonded sing-lap joint: (a) Geometrical configuration consists of a 

slender cover layer, an adhesive layer, and a slender substrate layer; (b) distribution of interfacial stresses 

in the joint; (c) geometrical model and loads for FEM simulation. 
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4.2. Model Formulation 

Following the same process of the ASSJ in Chapter 3, the ABSLJ is assumed to be subjected to a 

shear traction t0, the physical conditions of the axial force, shear traction, and bending moment of ABSLJ 

can be conveniently altered from [Figs. 3.2(a)-(c)] such that 

,0)0(1 S                                     (4.1a) 

,0)(1 LS                                     (4.1b) 

,)0( 201 bhtQ                                   (4.1c) 

,0)(1 LQ                                     (4.1d) 

,)0( 11 bmM                                    (4.1e) 

,0)(1 LM                                     (4.1f) 

,0)0(2 S                                     (4.1g) 

,0)(2 LS                                    (4.1h) 

,0)0(2 Q                                     (4.1i) 

,)( 202 bhtLQ                                   (4.1j) 

,0)0(2 M                                    (4.1k) 

,0)(2 LM                                    (4.1l) 

,0)0(0 S                                     (4.1m) 

,0)(0 LS                                      (4.1n) 

,0)0(0 Q                                      (4.1o) 

,0)(0 LQ                                      (4.1p) 
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,0)0(0 M                                      (4.1q) 

.0)(0 LM                                       (4.1r) 

where t0 and m1 are the average shear force and bending moment resultant per unit width of the joint. Given 

the unknown interfacial shear and normal stress functions at the upper and lower interfaces (τ1 = f1, τ2 = f2, 

σ1 = g1, σ2 = g2), the axial normal force, shear traction, and bending moment at the ends of the cover layer 

of the joint are expressed with BCs [Eq. (4.1a), Eq. (4.1c), and Eq. (4.1e)] and integration of Eqs. (3.4-6): 
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Similar to those in Chapter 3, with BCs [Eq. (4.1m), Eq. (4.1o), and Eq. (4.1q)] and integration of 

Eqs. (3.7-9), the axial normal force, shear traction, and bending moment at the ends of adhesive layer in 

ABSLJ are written as: 
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Furthermore, with BCs [Eq. (4.1g), Eq. (4.1i), and Eq. (4.1k)] and integration of Eqs. (3.10-12), the 

axial normal force, shear traction, and bending moment in the bottom adherend of the ABSLJ can be 

expressed as 

,)()(
0

22 
x

dfbxS                                  (4.8) 



56 
 

,)()(
0

22 
x

dgbxQ 
                               (4.9) 

.)(
2

)()(
0

2
2

0 0
22   

xx

df
bh

ddgbxM 


                    (4.10) 

Since the bending moment superimposed with a uniform shear traction t0 on the cover layer which 

is caused by the pure shear traction acting on the substrate layer, the axial normal stress can be determined 

according to the elementary Euler-Bernoulli beam theory and 2D static equilibrium equation [Eq. (3.33) & 

Eq. (3.35)] as 
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With the aid of complimentary strain energy functional (3.43) and the theorem of minimum 

complimentary strain energy, the interfacial stress equations f1, f2, g1, and g2 should satisfy a set of ODEs 

as 

( ) / /[A]{ } [B]{ } [C]{ } {D} {0}.IV                           (4.20) 

where {Φ} is a column of dimensionless interfacial stress functions and [A], [B] and [C] are system matrices 

defined in (3.52), (3.53), and (3.54), respectively. In addition, the dimensionless generalized force column 

{D}4×1 is a function with respect to the shear traction, bending moment resultant, displacement on the 

bonding patch, and thermomechanical loads, etc., as below 
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Furthermore, subjected to the shear traction, differentiation of the particular solution with respect 

to the spatial dimension is: 
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It can be noticed from the above that relation (4.22) is a linear function of x. Then, the solution to 

the interfacial stress functions can be further expressed as 
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In the present case, the reduced BCs for ABSLJ are: 
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The differentiations of the particular solutions are utilized to form the resulting set of simultaneous 

linear algebraic equations with the above BCs [Eqs. (4.24a-p)]: 
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where
1,

0

k , 
2,

0

k , 
,3

0

k , and 
,4

0

k (k = 1, 2, …, 8) are respectively the 1st to 4th elements of the k-th 

eigenvector, and
)1(

0 ,
(2)

0 ,
(3)

0 , and
(4)

0 are the 1st to 4th elements of the particular solution vector {Φ0}.  

Eventually, the interfacial shear stresses [Eqs. (3.48) & (3.50)] have the additional terms of 

derivation of the corresponding particular solution: 
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4.3. Model Validation 

Subjected to shear traction t0 (1MPa), the stress field of ABSLJ is determined by the proposed semi-

analytic stress-function variational method and further compared to numerical solutions based on 

ANSYSTM (with the 2D plane-stress element type: PLANE182) using two different mesh sizes (0.1 × 0.1 

mm and 0.05 × 0.05 mm). The geometrical parameters of the ABSLJ model are taken as: L = 20 mm, h1 = 

2.0 mm (steel/cover), h2 = 2.0 mm (aluminum/bottom), and h0 = 0.2 mm (epoxy/adhesive). Parameters of 

material properties are given as: E1 = 210 GPa, ν1 = 0.293 (steel/cover), E2 = 70 GPa, ν2 = 0.345 

(aluminum/bottom), and E0 = 10 GPa, ν0 = 0.40 (epoxy/adhesive). During the FEA simulation using 

ANSYSTM, to constrain the rigid motion of the joint in the horizontal direction under shear traction, a single 

corner node is constrained as shown in Fig. 4.1(a). 

During the FEA process of the ABSLJ, the shear traction is selected to distribute evenly to all the 

nodes on the right edge of the substrate adherend. For instance, the average shear force acting on a node is 

calculated based on the force resultant of the uniform shear traction 1 MPa acting on an area of the width 

1m and thickness 2 mm: 
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Figure 4.2. Validation of the stress-function variational method for interfacial shear and normal stresses in 

ABSLJ subjected to shear traction: (a) Interfacial shear stress, (b) interfacial normal stress. 
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Shear force with the average force magnitude is applied to the inner nodes of the elements of the 

joint, while shear force with the half average force magnitude is applied to the first and last edge nodes. 

Figs. 4.2 (a) and (b) are the interfacial shear and normal stresses predicted by the present stress-function 

variational method and related validation by ANSYSTM, from which it can be observed that the model 

predicted shear stresses satisfy the shear-free BCs. Also, the present semi-analytic method and FEM 

simulation both predict the interfacial normal and shear stresses carrying the same trends along the bonding 

lines. The shear stresses predicted by the present joint model are slightly higher than those by ANSYSTM. 

Due to the sharp edges responsible for the singular stresses at the joint free-edges, the values of free-edge 

stresses of the joint predicted by FEA are expected to increase with decreasing mesh size. From the 

predicted interfacial stresses, it can be found that the normal stress at the upper interface is higher than that 

at the lower interface, which indicates that debonding failure would most likely initiate at the left edge of 

this particular ABSLJ.  

In addition, Erdogan and his co-workers published an analytic joint model for predicting the 

interfacial stresses of ABSLJ subjected to tension, shear, or bending moment, or their combinations (Delale 

et al., 1981). The deficiencies of Erdogan’s joint model are ignorance of the thickness effect of adhesive 

layer and non-satisfaction of the shear-free BCs. As a result, the stress field predicted by Erdogan’s joint 

model has a large deviation from those predicted by FEA and also the present stress-function variational 

method. Erdogan’s joint model is one of the important semi-analytic joint models available in the literature. 

In Erdogan’s ABSLJ model, the interfacial shear and normal (peeling) stresses are given by the following 

two expressions: 
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where K0, K1, K2, K3, K4, K5, and K6 are the integration constants, α1 and α2 are related to the geometrical 

parameters, 
1 2 3, ,  and    are complex numbers, which are determined to satisfy the multiple traction BCs 

of the joint. 
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Figure 4.3. Comparison of interfacial stresses predicted by the present stress-function variational method 

with those by Erdogan’s model subjected to shear traction: (a) Interfacial shear stress, (b) interfacial normal 

stress. 
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In Fig. 4.3(a), the maximum and minimum values of the interfacial shear stresses according to Eq. 

(4.31) are overestimated though Erdogan’s joint model predicts the similar values of the shear stress as 

predicted by the current method. On the left side of Fig. 4.3(b), the peak values of the interfacial normal 

stresses at the upper and lower interfaces according to Eq. (4.32) are only close to the medium ones 

predicted by the present method. However, at the right end, the peak values of the interfacial normal stresses 

are far higher than those predicted by the present method. 

 

4.4. Conclusions 

In this chapter, the stress-function variational method has been furthered to determine the stress 

field of ABSLJ. Similar to those developed in Chapter 3, a semi-analytic solution has been derived by 

introducing two unknown interfacial shear and normal stress functions at each interface of the ABSLJ. The 

proposed joint model predicted severe concentration of interfacial stresses at the left end of the joint, which 

has been validated by commercial FEA package (ANSYSTM). The interfacial normal stresses are supposed 

responsible for debonding failure of the ABJs because their peak values are much larger than those of the 

shear stresses. The predicted interfacial shear stresses satisfy the shear-free condition at the free edges of 

adherends, which is normally ignored in the majority of joint models well documented in the literature. In 

addition, the present semi-analytic stress-function variational method only used two fundamental 

assumptions of Euler-Bernoulli beam theory and 2D linear elasticity, and the accuracy of the stress field of 

ABJs predicted by the present method only relies on the numerical process in solving the resulting set of 

16 simultaneous algebraic Eqs. [4.25(a-p)].  

 



67 
 

With the robust numerical stress field predicted by the present ASSJ and ABSLJ models, the stress 

field of general ABJs or other bonded joints subjected to arbitrary combination of tension, shear traction, 

bending moment or temperature change can be accurately predicted as the superimposition of the interfacial 

stresses caused by each load separately.  
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5. APPLICATIONS OF STRESS-FUNCTION VARIATIONAL METHOD FOR INTERFACIAL 

STRESS ANALYSIS OF OTHER JOINTS 

 

5.1. Adhesively Single-sided Bonded Joints 

5.1.1. Introduction 

In this section, the robust, high-efficiency stress-function variational method formulated in Chapter 

3 is further used for stress analysis of adhesively single-sided bonded joints (ASSBJs). In this case, the 

configuration of an ASSBJ is shown in Fig. 5.1(a), which consists of a cover layer, an adhesive layer, and 

a substrate layer from the top to bottom with the uniform width b and overlap bonding length L. The 

coordination system is created from the symmetric mid-span of the joint; the y-axis is selected perpendicular 

to x-axis. The cover layer carries the thickness h1, Young’s modulus E1, and Poisson’s ratio ν1; the adhesive 

layer bears the thickness h0, Young’s modulus E0, and Poisson’s ratio ν0; the bottom layer has the thickness 

h2, Young’s modulus E2, and Poisson’s ratio ν2. In particular, a uniform tension is applied at the two ends 

of the substrate layer. Besides, illustration of the interfacial stresses is shown in Fig. 5.1(b). Since the joint 

is structurally symmetric with respect to the y-axis, only the right half portion of the joint is needed for 

stress analysis by means of the innovative stress-function variational method formulated in this study and 

FEM based on the commercial FEA software package (ANSYSTM) [Fig. 5.1(c)]. As aforementioned, when 

the joint is loaded in plane-strain state, it only needs to replace the Young’s moduli Ei (i = 1,0,2) by (1- 

υi
2)/Ei, Poisson’s ratios υi (i = 1,0,2) by υi /(1- υi ), and coefficients of thermal expansion αi (i = 1,0,2) by 

(1+ υi)αi. 



69 
 

 

Figure 5.1. Schematic of an adhesively single-sided bonded joint: (a) Geometrical configuration consists 

of an identical substrate layer, an adhesive layer, and a slender cover layer, (b) interfacial stress distribution, 

and (c) geometrical model and loads for FEM simulation. 

 

5.1.2. Model Formulation 

Theoretically, static equilibrium equations of the representative segmental element of the upper 

adherend, adhesive layer, and lower adherend are the same as those used in the previous two chapters. 

External mechanical loadings in terms of axial force, shear traction, and bending moment at the ends of the 

three layers [Figs. 3.2(a)-(c)] are taken into account. The traction BCs in terms of force and moment 

resultants are given as 
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,0)0(1 S                                     (5.1a) 

,0)(1 LS                                     (5.1b) 

,0)0(1 Q                                    (5.1c) 

,0)(1 LQ                                    (5.1d) 

,0)0(1 M                                      (5.1e) 

,0)(1 LM                                      (5.1f) 

,)0( 202 bhpS                                      (5.1g) 

,)( 202 bhpLS                                   (5.1h) 

 ,0)0(2 Q                                       (5.1i) 

,0)(2 LQ                                       (5.1j) 

,0)0(2 M                                      (5.1k) 

,0)(2 LM                                      (5.1l) 

,0)0(0 S                                       (5.1m) 

,0)(0 LS                                        (5.1n) 

,0)0(0 Q                                        (5.1o) 

,0)(0 LQ                                        (5.1p) 

,0)0(0 M                                       (5.1q) 

.0)(0 LM                                       (5.1r) 

In this case, it is convenient to conduct accurate stress analysis of the ASSBJ model due to its 

simple geometrical configuration. Similar to the derivations developed in the proceeding Chapters 3 and 4, 

the static equilibrium equation of the representative segmental elements can be introduced. In the present 
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model with no external loadings at the cover layer, the normal force, shear traction, and bending moment 

of the joint can be expressed as 
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Similarly, for the adhesive layer, it reads 
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The external loading p0 is implemented at the edges of the substrate layer, thus 
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Compared to the previous two joint models (i.e., ASSJ and ASLBJ), the ASSBJ has the uniform 

axial traction p0 at both the ends of the substrate layer. Similarly, the stress components can be expressed 

on the basis of the Euler-Bernoulli beam theory and 2D elasticity [Eqs. (3.33) & (3.35)].  
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In the next step, according to the theorem of minimum complementary strain energy, the strain 

energy functional (3.43) is further adopted to form a set of governing ODEs in terms of the interfacial stress 

functions f1, f2, g1, g2 [Eqs. (3.1-2)] over the bonding line. In the form of dimensionless interfacial stress 

functions, the set of 4th-order governing ODEs is  
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In the above, 1 1 2 2{ } { ( ), ( ), ( ), ( )}TF G F G      is the stress function column as defined in 

Chapter 3, matrixes [A], [B], and [C] are relevant to the structural and material properties as defined in 

relations (3.52-54), i.e., [A], [B] and [C] are independent of the specific joint type. Generalized 

dimensionless force column {D}4×1 defined in (5.21) is relevant to temperature change, coefficients of 

thermal expansion, tension, Young’s modulus of the substrate layer. In particular, effect of axial tension is 

investigated in this section and temperature change is set as zero. 
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Thus, traction BCs of the DLBJ can be extracted as 

,0)0(1 F                                     (5.22a) 

,0)/( 21 hLF                                  (5.22b) 

,0)0('1 F                                     (5.22c) 

,0)/(' 21 hLF                                   (5.22d) 

,0)0(1 G                                     (5.22e) 

,0)/( 21 hLG                                 (5.22f) 

,0)0('1 G                                    (5.22g) 

,0)/(' 21 hLG                                 (5.22h) 

,0)0(2 F                                      (5.22i) 
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,0)/( 22 hLF                                   (5.22j) 

,0)0('2 F                                      (5.22k) 

,0)/(' 22 hLF                                   (5.22l) 

,0)0(2 G                                       (5.22m) 

,0)/( 22 hLG                                   (5.22n) 

,0)0('2 G                                      (5.22o) 

.0)/(' 22 hLG                                   (5.22p) 

Owing to the structural and loading symmetries, all the right sides of BCs [Eqs. (5.22a-p)] are set 

to zero. Then, the set of simultaneous linear algebraic equations can be conveniently expressed as 

,)1(

0

8

1

1,

0

8

1

1,

0  
 k

k

k

k

k

k dc                            (5.23a)  

,)/exp()/exp( )1(

02

8

1

1,

02

8

1

1,

0  


hLdhLc k

k

k

kk

k

k

k               (5.23b) 

,0
8

1

1,

0

8

1

1,

0  
 k

k

kk

k

k

kk dc                             (5.23c) 

,0)/exp()/exp( 2

8

1

1,

02

8

1

1,

0  


hLdhLc k

k

k

kkk

k

k

kk                 (5.23d) 

,)2(

0

8

1

2,

0

8

1

2,

0  
 k

k

k

k

k

k dc                            (5.23e) 

,)/exp()/exp( )2(

02

8

1

2,

02

8

1

2,

0  


hLdhLc k

k

k

kk

k

k

k                (5.23f)

,0
8

1

2,

0

8

1

2,

0  
 k

k

kk

k

k

kk dc                             (5.23g) 



75 
 

,0)/exp()/exp( 2

8

1

2,

02

8

1

2,

0  


hLdhLc k

k

k

kkk

k

k

kk              (5.23h) 

,)3(

0

8

1

3,

0

8

1

3,

0  
 k

k

k

k

k

k dc                            (5.23i) 

,)/exp()/exp( )3(

02

8

1

3,

02

8

1

3,

0  


hLdhLc k

k

k

kk

k

k

k               (5.23j) 

,0
8

1

3,

0

8

1

3,

0  
 k

k

kk

k

k

kk dc                            (5.23k)

,0)/exp()/exp( 2

8

1

3,

02

8

1

3,

0  


hLdhLc k

k

k

kkk

k

k

kk                 (5.23l)

,)4(

0

8

1

4,

0

8

1

4,

0  
 k

k

k

k

k

k dc                         (5.23m) 

,)/exp()/exp( )4(

02

8

1

4,

02

8

1

4,

0  


hLdhLc k

k

k

kk

k

k

k                (5.23n) 

,0
8

1

4,

0

8

1

4,

0  
 k

k

kk

k

k

kk dc                           (5.23o) 

,0)/exp()/exp( 2

8

1

4,

02

8

1

4,

0  


hLdhLc k

k

k

kkk

k

k

kk                (5.23p) 

where
1,

0

k , 
2,

0

k , 
,3

0

k , and 
,4

0

k (k = 1, 2, …, 8) are respectively the 1st to 4th elements of the k-th 

eigenvector, and
)1(

0 ,
(2)

0 ,
(3)

0 , and
(4)

0 are the 1st to 4th elements of the particular solution vector {Φ0}.  

The final interfacial shear and normal stresses carry the same formal expressions as those in for 

ASSJ: 
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5.1.3. Model Validation 

To validate the stress functional variational method for interfacial stress analysis of the proposed 

joint model, the ASSBJ is assumed under action of uniform axial tension on the substrate layers. In this 

case, the right half-symmetric portion of the joint is used in the simulation. In the present case, the bonded 

length used in the joint model is L/2 = 10 mm. The rest geometrical and material parameters are selected 

as: h1 = 2.0 mm, E1 = 210 GPa, ν1 = 0.293 (steel cover), h2 = 2.0 mm, E2 = 70 GPa, ν2 = 0.345 (aluminum 

bottom), h0 = 0.2 mm, E0 = 10 GPa, and ν0 = 0.40 (epoxy adhesive). The given tension p0 is assumed to be 

1 MPa. The stress analysis of the tested joint model is based on the commercial FEA software package 

(ANSYSTM), in which the PLANE182 element type is used as considered in the precious chapters. Two 

different mesh sizes (0.1 × 0.1 mm and 0.05 × 0.05 mm) are utilized consecutively for the purpose of 

comparison since at the free edges, the stresses tend to increase rapidly with refining mesh size due to the 

nature of stress singularity existing at the free-edges of bimaterials. As shown in Fig. 5.1(c), to eliminate 

the vertical rigid motion of the computational joint model for FEA, a single corner node is used to constrain 

the vertical displacement at the node.  
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Figure 5.2. Validation of the stress-function variational method for interfacial shear and normal stresses in 

ASSBJ subjected to uniform axial tension: (a) Interfacial shear stress, (b) interfacial normal stress. 

 

In Fig. 5.2(a), as expected, the interfacial shear stresses determined by the present stress-function 
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peak values of the interfacial shear stress at the lower interface are a little higher than those at the upper 

interface. In Fig. 5.2(b), it can be observed that the high normal stresses are responsible for the debonding 

failure of ABJs. In contrast, the peak values of the normal stress at the lower interface are much lower than 

those at the upper interface. Yet, the lower interface stress bounces back near the free edges, nor does the 

upper interface stress.  

 

5.1.4. Conclusions 

As the third case study of the present work, the ASSBJ model again demonstrated the robust, high-

efficiency stress-function variational method for stress analysis of ABJs. Subjected to uniform axial tension 

on two sides of the substrate layer, a semi-analytic solution has been derived via introduction of two 

unknown interfacial shear and normal stress functions at each interface of the ASSBJ and triggering of the 

theorem of minimum complementary strain energy. In addition, though not performed yet, the 

thermomechanical effect on the stress analysis of ASSBJ could also be investigated similar to that of ASSJ 

as demonstrated in Chapter 3. From Fig. 5.2, it can be observed that the concentration of interfacial stresses 

gained by the present stress-function variational method occurs close to the ends of the joint. Furthermore, 

the stress field of ASSBJ obtained by the present semi-analytic method has been validated successfully by 

using two different meshing schemes in computational stress analysis by using FEM (ANSYSTM). Within 

the theoretical framework of Euler-Bernoulli beam theory for axial stresses and linear elasticity, the 

accuracy of stress function variational method for stress analysis of the present ASSBJ model only relies 

on the numerical process in solving the resulting set of 16 simultaneous algebraic Eqs. 5.23(a-p). 
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5.2. Double-Lap Bonded Joints 

5.2.1. Introduction 

Bonded joints, combined with three adherends of the same or dissimilar materials, have also found 

broad applications in practice. For instance, recently developed flexible electronics are one of the typical 

examples of such bonded joints, where the rigid silicon islands are bonded onto the compliant polymeric 

substrates. In such bonded joints, substantial interfacial stress concentrations may cause debonding failure 

at free ends of the adherends under mechanical or thermomechanical loads.  As natural extension of the 

above studies, the robust, efficient stress-function variational method can be further extended for the stress 

analysis of such type of bonded joints. In addition, accurate stress analysis of bonded joints can be beneficial 

to optimal joint design and monitoring structural failure in bonded joints such as progressive cracking.  

Without loss of generality, the goal of the upcoming work is to formulate a systematic analytic 

method in solving the stress distribution in bonded joints based on the well-validated stress-function 

variational method in the proceeding chapters. Similar to the above theoretical formulation, two interfacial 

shear and normal stress functions are introduced on each interface of the joint. Then, stress equilibrium 

equations for each layer are established; expressions of the planar stress components can be constructed 

based on the elementary Euler-Bernoulli beam theory and 2D elasticity. Furthermore, a set of 4th-order 

differential equations, resulted from minimization of the complementary strain energy of the bonded joints, 

can be gained and further solved by using eigenfunctions. Finally, a computational code based on 

MATLABTM is designed to implement the semi-analytic method for stress analysis.  

Hereafter, the stress-function varational method is utilized for interfacial stress analysis of double-

lap bonded joint (DLBJ) as shown in Fig. 5.3(a), in which three adherend layers are involved, similar to the 
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above ABJs. Unlike the other models, DLBJ has a middle layer under uniform tension p0 on the right side, 

and its top and bottom layers are subjected to a traction p1 = p0h0/(2h1) on the left side. The coordinate 

system is introduced as shown in Fig. 5.3(a), in which the x-axis is set along the axis of the middle adherend 

layer while the y-axis is established vertically. Schematic distribution of the interfacial stresses is shown in 

Fig. 5.3(b). Fig. 5.3(c) shows the geometrical model, loads, and BCs of the half-symmetrical joint to be 

used for FEA-based computational validation of the stress field predicted by the present stress-function 

variational method, where structural and loading symmetries have been used. 

 

Figure 5.3. Schematic of a double-lap bonded joint: (a) Geometrical configuration consisting of an identical 

substrate layer, an adhesive layer, and a slender cover layer, (b) interfacial stress distribution, and (c) half 

symmetrical model for FEA. 
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5.2.2. Model Formulation 

Based on the free body diagrams as shown in Figs. 3.2(a-c), the given BCs in terms of the axial 

forces, shear tractions, and bending moments at the ends of the upper, middle, and lower adherends are 

expressed as 
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,0)0(0 M                                    (5.28q) 

0 ( ) 0.M L                                      (5.28r) 

By introducing four independent unknown interfacial shear and normal stress functions (f1, g1, f2, 

g2) at the upper and lower interfaces, integration of the internal force equilibrium equations (3.4-6) leads to 

the stress resultants in the upper layer: 
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Similarly, integration of internal force equilibrium equations (3.10-12) yields the stress resultants 

in the bottom layer: 
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Consequently, integration of internal force equilibrium equations (3.7-9) results in the stress 

resultants in the middle layer: 
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Similarly, by assuming that the axial stresses in the adherends follow Euler-Bernoulli beam theory 

and 2D elasticity as used in Chapters 3 and 4, all the planar stress components can be determined in terms 

of the four unknown interfacial stress functions fi (i = 1,2) and gi (i = 1,2) defined at the two interfaces of 

the DLBJ.  
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By triggering the theorem of minimum complementary strain energy of the DBLJ similar to those 

formulated in Chapters 3 and 4, a similar set of four 4th-order ODEs (Eq. 5.20) in terms of the four 

dimensionless stress functions can be determined. In this case, system matrices [A], [B], and [C] are the 

same as (3.52-54), and the generalized dimensionless force column {D}4×1 can be determined in terms of 

the joint geometries, material properties, mechanical loads and temperature change as 
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As a result, the above traction BCs of the joint (5.28a-r) can be reduced in terms of the 

dimensionless interfacial stress functions as 
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By using the similar procedure as described in Chapter 3, a set of simultaneous linear algebraic 

equations can be expressed with the above BCs [Eqs. (5.48a-p)]: 
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where,
1,

0

k , 
2,

0

k , 
,3

0

k , and 
,4

0

k (k = 1, 2, …, 8) are respectively the 1st to 4th elements of the k-th 

eigenvector, and
)1(

0 ,
(2)

0 ,
(3)

0 , and
(4)

0 are the 1st to 4th elements of the particular solution vector {Φ0}. 

Ultimately, the final solutions of interfacial shear and normal stresses can be expressed in the forms similar 

to solutions (5.24-27).  
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5.2.3. Model Validation 

For model validation, the DLBJ is assumed to be subjected to uniform axial tension on one side of 

each adherend as shown in Fig. 5.3(c). Herein FEM based on commercial FEA software package 

(ANSYSTM) is used to simulate the stress field in the top half-symmetrical portion of the DLBJ model. 

Plane-stress PLANE182 element is used for the FEM simulation. The FEA results are compared with those 

gained from the present semi-analytic DLBJ model. Geometrical and material parameters used in the FEM 

simulation are kept as the same as those used in the proceeding simulations: L = 10 mm, h1 = h2 = 1.0 mm, 

E1 = E2 = 210 GPa, ν1 = ν2 = 0.293, h0 = 2 mm, E0 = 70 GPa, and ν0 = 0.345. The active tension p0 is fixed 

as 1 MPa, and the reaction tension p1 = 1 MPa based on p1 = p0h0/(2h1) [Fig. 5.3(b)]. In FEM simulation of 

the stress field of the DLBJ based on ANSYSTM, two different mesh sizes (0.1 × 0.1 mm and 0.05 × 0.05 

mm) are utilized at the two free ends of each adherend layer. A single corner node is used to constrain the 

horizontal displacement in avoiding the rigid motion of the joint as required in FEA based on ANSYSTM.  
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Figure 5.4. Validation of the stress-function variational method for the interfacial shear and normal stresses 

in double-lap bonded joint subjected to uniaxial tension: (a) Interfacial shear stress, (b) interfacial normal 

stress. 
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Due to adoption of symmetrical conditions of the joint in FEA, the shear and normal stresses at the 

lower interface have the same values as those at the upper interface. It can be observed from Fig. 5.4(a) that 

two peak values of the interfacial shear stresses appear close to the edges on each side, the first reaches at 

0.15 MPa while the second reaches at ~0.42 MPa. In Fig. 5.4(b), it can be found that the peak value (0.29 

MPa) of the normal stress happens at the right end. Compared to the interfacial shear stresses, the value of 

interfacial normal stresses is not as high as that of the interfacial shear stresses, to some extent, it is even 

lower. 

 

5.2.4. Conclusions 

The stress analysis of the DLBJ further endorses the applicability of the novel stress-function 

variational method for interfacial stress analysis of bonded joints. It can be concluded that once the middle 

adherend is regarded as the adhesive layer, in the view of mechanics, the DLBJ can be treated as the same 

as ASSJ studied in Chapter 3. Technically, the interfacial shear and normal stresses can be expressed in 

explicit forms. The gained stress field determined by the present stress-function variational method satisfies 

all the traction BCs, including the shear-free condition at all free-edges of the adherends, which was 

normally neglected in most ABJ models in the literature. In addition, the model predicted stress field in the 

DLBJ has been well validated by FEM with the aid of commercial FEA software package (ANSYSTM). The 

close agreement between the results of the proposed stress-function variational method and those obtained 

by FEM simulations reveal the validity of the proposed method. The highly robust, efficient stress-function 

variational method can be conveniently implemented for stress analysis of ABJs and bonded joints by 

designing a concise MATLABTM code to take into account all the geometries, material properties and 
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external loads. Thus, the stress function varational method can be conveniently used for optimal design and 

scaling analysis of ABJs. 

 

5.3. Double-sided Bonded Joints 

5.3.1. Introduction 

In this section, double-sided bonded joint (DSBJ) under uniaxial tension as shown in Fig. 5.5(a) is 

considered. The x-coordinate is picked from the symmetric mid-span of the joint and extended along the 

centroidal axis, while the y-coordinate is pointed upward from the centroids. The overlap bonding length is 

defined as 2L = 20 mm. In the following, subscripts (i = 1, 2, 0) are adopted to indicate the geometries, 

material properties, and stresses of the upper, lower, and middle layers, respectively. It is assumed that the 

joint is doubly symmetric, i.e., the geometries and material properties of the upper and lower strengthening 

layers are identical. Fig. 5.5(b) illustrates the distribution of interfacial stresses. The analytical treatment of 

DSBJ under uniaxial tension loads can be simplified due to the symmetrical structure. In virtue of the double 

symmetry, there is no lateral deflection, and symmetric BCs are mandated in Fig. 5.5(c) in FEM, simulation 

for numerical validation of the semi-analytic method for stress analysis of DSBJ. 
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Figure 5.5. Schematic of a double-sided bonded joint: (a) Geometrical configuration consists of an identical 

substrate layer, an adhesive layer, and a slender cover layer, (b) interfacial stress distribution, and (c) 

geometrical model, loads and constraints used for FEA. 

 

5.3.2. Model Formulation 

Uniaxial tension is exerted along the middle layer of the DSBJ. The corresponding traction BCs in 

terms of axial force, shear traction, and bending moment [Fig. 3.2(a-c)] are 

,0)0(1 S                                 (5.50a) 

,0)(1 LS                                 (5.50b) 
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,0)0(1 Q                                 (5.50c) 

,0)(1 LQ                                 (5.50d) 

,0)0(1 M                                (5.50e) 

,0)(1 LM                                 (5.50f) 

,0)0(2 S                                  (5.50g) 

,0)(2 LS                                  (5.50h) 

,0)0(2 Q                                  (5.50i) 

,0)(2 LQ                                  (5.50j) 

,0)0(2 M                                 (5.50k) 

,0)(2 LM                                 (5.50l) 

,)0( 000 bhpS                               (5.50m) 

,)( 000 bhpLS                               (5.50n) 

,0)0(0 Q                                  (5.50o) 

,0)(0 LQ                                    (5.50p) 

,0)0(0 M                                  (5.50q) 

,0)(0 LM                                  (5.50r) 

In DLBJ, only the middle layer is granted with uniaxial tension. Similar to the proceeding procedure, 

by introducing four independent unknown functions for the interfacial shear and normal stresses (f1, g1, f2, 

g2), the stress resultants of the upper layer can be derived with BCs [Eq. (5.50a), Eq. (5.50c), and Eq. 

(5.50e)]: 
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Similarly, with BCs [Eq. (5.50g), Eq. (5.50i), and Eq. (5.50k)], the stress resultants in the bottom 

layer can be expressed as: 
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Consequently, with BCs [Eq. (5.50m), Eq. (5.50o), and Eq. (5.50q)], the stress resultants in the 

middle layer can be expressed: 
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Again, the axial normal stress of the layers is assumed to vary linearly as that of Euler-Bernoulli 

beam theory. In addition, static equilibrium equations in 2D elasticity are used to determine the shear and 

lateral normal stress components in the three layers of the joint. As a result, the stress components can be 

expressed as: 
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Moreover, by defining the complimentary strain energy (3.43) of the joint in terms of the stress 

components of the three layers and triggering the theorem of minimum complimentary strain energy, similar 
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to Eq. (5.20), a set of four governing ODEs in terms of the four interfacial stress functions is reached. 

Herein, the generalized dimensionless force column {D}4×1 in this particular joint case can be obtained as:  
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In the present case, the joint carries the symmetric structure under uniaxial tension. Hence, the 

traction BCs are equivalent to Eqs. (5.22a-p). As a result, a set of simultaneous linear algebraic equations 

similar to Eqs. (5.23a-p) can be obtained with the proper traction BCs. The final stress expressions can be 

expressed as the same as Eqs. (5.24-27). 

     

5.3.3. Model Validation 

For the reason that DSBJ is doubly symmetric with respect to both x and y axes, a FEM model [Fig. 

5.5(c)] is built up with two symmetric boundaries to validate the stress field of the joint predicted by the 

present stress-function variational method. Due to the nature of double symmetry of the joint, only the 

quarter-joint needs to be considered. The geometrical parameters for the quarter-DSBJ are taken as: L = 10 

mm, h1 = h2 = 1.0 mm, and h0/2 = 2 mm. Material parameters of the joint are specified as: E1 = E2 = 400 

GPa, ν1 = ν2 = 0.25, E0 = 210 GPa, and ν0 = 0.293. The uniform tensile traction p0 is fixed as 1 MPa. 

Quadrilateral elements of the size of 0.1 × 0.1 mm are first generated at the two ends of the middle layer, 

and refined quadrilateral elements of the size 0.05 × 0.05 mm are further introduced near the free edges.  
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Figure 5.6. Validation of the stress-function variational method for interfacial shear and normal stresses in 

double-sided bonded joint subjected to axial tension: (a) Interfacial shear stress, (b) interfacial normal stress. 
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Due to the double geometrical symmetry, the upper right quarter-portion of the joint is employed 

for FEA. The interfacial stresses of the upper layer at the right half-length can also represent those at the 

lower layer or the left half joint. In Fig. 5.6 (a), it can be detected that the interfacial shear stress is highly 

localized within an interval from x = 12 mm to the left free-edge with the peak value around 0.31 MPa. The 

locus of the peak value of interfacial shear stress predicted by the current method is at x = 19 mm; however, 

FEM simulation predicts the locus of the peak shear stress at x = 20 mm, almost at the free-end of the joint. 

In Fig. 5.6 (b), it is noticed that the interfacial normal stress also behaves highly localized near the free-

edge of the joint. In this case, the peak value of normal stress predicted by the proposed semi-analytic 

method is 25% lower than that predicted by FEM simulation (ANSYSTM). The peak value of the latter is 

0.21 MPa as shown in Fig. 5.6(b). 

 

5.3.4. Conclusions 

 DSBJ is another type of commonly used joint models in practice. With the powerful stress-

function variational method in this study, two unknown interfacial shear and normal stress functions are 

introduced at the upper interface of the quarter-joint model. The interfacial shear stresses from the current 

method exactly satisfy the shear-free condition at the free-end of the joint. By comparison of the model-

predicted stress field with those predicted by FEA, the semi-anlytic DSBJ model has been validated. Due 

to both the shear and normal stresses appear singular near the free-edge of the joint with the close magnitude, 

the interfacial shear and normal stresses are both responsible for debonding failure of the joint in this case. 

The deviations of stress results between the ANSYSTM and the present semi-analytic method can be noticed, 

which implies that some further theoretical refinements could be made in this case.  
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6. CONCLUSIONS 

 

 In summary, adhesively bonded joints (ABJs) have been evidenced for use in broad load-carrying 

aerospace and aeronautical structures, ground vehicles, offshore derricks, etc. Accurate and reliable stress 

analysis plays a crucial role in optimal design and failure prediction of these ABJs. In this thesis work, by 

extending Wu and Jenson’s seminal work (Wu & Jensen, 2011) on stress-function variational method for 

stress analysis of bonded joints, this accurate and high-efficiency method has been successfully 

implemented for stress analysis of ABJs and other three-layered bonded joints. Several theoretical results 

have been accomplished as follows. 

1. By introducing two interfacial shear and normal stress functions on each interface and assuming 

the linear-varying axial stress across the adherends (Euler-Bernoulli beam theory), the entire stress 

field of three-layered ABJs and bonded joints can be expressed explicitly in terms of the unknown 

interfacial stress functions. Such formal stress field satisfies all the multiple traction BCs. In 

particular, the shear-free conditions at the edges of these three-layered ABJs and bonded joints, 

which have been commonly neglected in most literature ABJ models. 

2. The set of governing ODEs (Eq. 3.47) of three-layered ABJs and bonded joints is determined via 

triggering the theorem of minimum complimentary strain energy, which has been uniformly solved 

by eigenfunction method. Also, the system matrices [A], [B], and [C] of the ODEs are universal to 

all the three-layered ABJs and bonded joints, while different type of joints only corresponds to the 

its specific generalized force column {D}.  
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3. The stress fields of all the three-layered ABJs and bonded joints predicted by the present stress-

function variational method in this thesis study have been validated successfully by detailed FEA 

based on ANSYSTM. Comparative studies (Chapters 3, 4 and 5) indicate that the present stress-

function variational method is a highly reliable, accurate and efficient semi-analytic method for 

stress analysis of all three-layered ABJs and bonded joints.  

4. The present stress-function varational method also indicates that due to the very high shear and 

normal stresses near the edges of ABJs (Chapter 3), the stress variation across the thin adhesive 

layer is noticeable. However, in the majority of the ABJ models in the literature, the stress variation 

across the adhesive layer is ignored. 

5. The theoretical formalism of stress function variational method can be conveniently extended for 

stress analysis of multi-layered joints and adhesively bonded composite joints, which lays the 

theoretical basis for universal stress analysis of adhesively multi-material bonded joints. 

Furthermore, with the success of the present theoretical study on stress-function varational method 

for stress analysis of three-layered ABJs and bonded joints, further advanced applications of the present 

method could be initiated as follows. 

1. Formulation of a universal, reliable, high-efficiency stress-function variational method for stress 

analysis of multi-layered composite joints and related computational code development.  

2. Extension of the present stress-function variational method for failure and fracture analysis of joints 

and composites such as progressive cracking in multilayered coatings and laminated composites, 

debonding and delamination of ABJs and composite joints, etc. 
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3. Potential applications of the present stress-function variational method for nondestructive 

evaluation (NDE) of multilayered structures such as coatings and laminated composites, including 

static and dynamic methods. 

4. Development of reliable finite-strip method for static and dynamic analysis of layered structures, 

in which all the physical quantities could be potentially expressed as functions of the physical 

quantities at the surfaces or interfaces by extending the present stress-function variational method. 
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