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ABSTRACT

Recently, adhesively bonded joints (ABJs) has found more rapidly increasing applications in
aerospace and aeronautical structures, ground vehicles, and flexible electronics than mechanical fastening
and welding technologies. However, outstanding issues still exist.

This work was to develop a systematic semi-analytic method for accurate prediction of the
interfacial shear and normal stresses of ABJs. Two unknown shear and peeling stress functions at each
interface was first introduced in formulation, which satisfies all the traction boundary conditions. A set of
governing ordinary differential equations (ODEs) was determined via triggering the theorem of minimum
complimentary strain energy. Matlab® code was programmed to execute the proposed method.
Furthermore, the present method was validated by finite element method and compared with those models
in the literature.

The present method is applicable for convenient scaling analysis and optimal design of ABJs and

other types of ABJs such as adhesively bonded tubular and composite joints, etc.
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1. INTRODUCTION

In the past five decades, adhesively bonded joints (ABJs) have been successfully structured in broad
fields with the developments in adhesive chemistry and joining technology. Today, high-performance ABJs
with compact design, high load-carrying capacity, and high mechanical strength and durability have been
successfully integrated into broad primary structures in aerospace, aeronautic, and ground vehicles. The
technology of ABJs has also been utilized in microelectronic packaging and personal electronic devices
such as built-in contact lenses in camera, foldable cell phones, smart skin temperature monitors, etc.

Due to the unique features of adhesive bonding, it is crucial to understand the mechanical behavior
of ABJs such as the mechanical strength, durability, and environmental (e.g., temperature, humidity,
corrosion, etc.) response when integrated in structures. It is the common sense that stress concentrations
exist at the edges of the overlap bonding lines due to the mismatch of mechanical properties of neighboring
adherends. It has been well studied in the literature that shear stress of ABJs concentrates at the edges of
overlap bonding lines; however, only a small portion of load is carried by the region far away the edges
(Suo, 2012), so does the normal stress. Such high interfacial stresses near the free edges of the adherends
are responsible for the debonding failure of ABJs in reality. In addition, more complicated stress field could
arise in ABJs under the action of combined mechanical or thermomechanical loads. It is essential to gain
an accurate stress analysis of ABJs for improving structural design and prediction of the mechanical
durability of ABJs. Therefore, efficient, high-accuracy models of ABJs that are capable of comprehensively

taking into account the effects of material properties (Young’s modulus, Poisson’s ratio, coefficients of



thermal expansion, etc.), design parameters, and external mechanical and thermomechanical loadings are
still highly desired.

Substantial investigations on the stress and strength analysis of ABJs have been performed and
reported in the literature in the past five decades. In the view of engineering, most of the pioneering works
on stress analysis of ABJs carried their technical deficiencies due to their oversimplifications of the analytic
models of ABJs. First of all, the stress fields derived from these joint models do not accurately satisfy the
traction boundary conditions at the free edges of the adherends and adhesive layers. In fact, there are
supposed to be shear-free at the free-edges of the adherends and adhesive layers. However, most of the
analytic models reported in the literature, even including those well documented in some major engineering
textbooks, simply indicated that the maximum value of shear stresses appears at the edge of adherends.
Secondly, in these ABJ models, stresses and strains of the adhesive layers do not obey the generalized
Hooke’s law, which also violate the assumption of small stress and strain variation across the adhesive
layers as commonly adopted in almost all the literature models of ABJs.

The purpose of this thesis work was to extend the stress-function variational method developed
recently by Wu and Jenson (2011) in the research group for accurately determining the stress field in ABJs.
In this approach, in the typical case of adhesively bonded strap joints in planar stress state, two unknown
interfacial shear and normal stress functions are introduced at each adherend/adhesive interface. The axial
normal stresses in the adherends and adhesive layer are assumed to vary linearly, following the elementary
Euler-Bernoulli beam theory. The transverse normal stress and shear stress in the adherends and adhesive
layer are determined according the stress equilibrium equations of two-dimensional (2D) elasticity. With

the aid of the theorem of minimum complementary strain energy, a set of four coupled 4"-order ordinary
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differential equations (ODEs) is derived for determining the unknown interfacial stress functions. The
gained set of governing ODEs is further solved efficiently by using eigenfunctions of the resulting
eigenvalue problem. Correspondingly, a robust, efficient, compact MATLAB™ code is developed for
determining the entire stress field in ABJs with varying geometries, material properties, and external
loadings. Detailed finite element analysis (FEA) based on commercial software package (i.e., ANSYS™)
is performed to validate the numerical accuracy of the present semi-analytic ABJ models. These results
show a major advantage of the proposed method for scaling analysis of stress variation and optimal design

of ABJs.



2. LITERATURE REVIEW

2.1. Structural Joining Technology

Joining technology could be first invented by human ancestor in making spear that typically
consisted of stone flakes bonded to a wood handle by tar for hunting (Mazza et al., 2006). After thousands
of years of development, joining technology has been finding rapidly expanding applications in civil
structures, aerospace, aeronautical and ground vehicles, and microelectronics (e.g., microchip packaging).
Compared to mechanical bolts, rivets, and welds, ABJs are overwhelmingly welcome due to their compact
design, low manufacturing cost, enhanced mechanical durability, sound noise suppression, and obvious
reduction of weight (Tomblin & Davies, 2004). ABJs have been widely accepted and increasingly used for
the purpose of load transfer and structural connection in civil structures (Goncalves et al., 2002). In
aerospace engineering, for instance, stringers and metallic honeycomb assemblies are made of multiple
ABJs, which are economically preferable (Higgins, 2000). ABJs have also made a significant impact to
weight reduction of a variety of joint structures, especially for spacecrafts and aircrafts. A typical example
is the birth of Airbus A300 (Racker, 2004), in which ABJs have been used in the primary structures. ABJs
also play an essential role in flexible electronics, where thermomechanical stresses are a common factor
causing the structural failure. (Timoshenko, 1915; Chen & Nelson, 1979; Suhir, 1989). The problem of
function degradation in microelectronics has attracted growing technical concern over the past three
decades (Eischen et al., 1990; Suo, 2003). It is technically important to understand the high interfacial
stresses near the free edges of stiff silicon microchips bonded onto compliant polymeric substrate (Lu et al.,

2007; Kim & Rogers, 2008; Suo, 2012). Bonded joints are better employed in the applications of flexible
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electronics due to their high mechanical durability (Jiang & Khang, 2008; Sun, 2013). Therefore, it is
recommendable for structural analysts to wisely select the types of adhesives, which have high strength and

mechanical durability under various loading and thermal conditions (Wu et al , 2014).

2.2. Current Understanding

In the past six decades, a significant number of theoretical and experimental investigations have
been made on the mechanical strength and durability of ABJs. Fig. 2.1 illustrates the typical failure modes
of ABJs. Historically, Volkersen (1938) was the first to consider the adhesive layer in ABJs as a
continuously shear spring and find the maximum singular stresses at the edges. Volkersen’s ABJ model has
the advantage of simplicity but it ignores the role of normal stress in the failure criterion. An improved
approach was fulfilled by Goland and Reissner (1944) with the assumption of uniform distribution of the
peeling and shear stresses across the adhesive layer, which became one of classic models of adhesively
bonded single-lap joints extensively cited in the literature since then. Volkersen’s and Goland and
Reissner’s ABJ models and their interfacial stress solutions have been adopted in many popular textbooks
for design and strength analysis of ABJs. Yet, two obvious limitations can be easily identified from these
ABJs as follows. Firstly, the peak shear stress appears at the adherend ends, which conflicts with the shear-
free condition at the free-ends; secondly, the stress variation across the adhesive layer is neglected due to
ignorance of the thin adhesive layer. After the above two classic ABJ models, a significant number of
theoretical follow-ups have been made. To mention a few, Delale et al. (1981) formulated an efficient ABJ
model based on elementary Euler-Bernoulli beam theory to take into account all the mechanical properties

and geometries of the ABJs, in which they treated the adherends as Euler-Bernoulli beams and the adhesive
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layer was ignored due to its negligible deformation across the thickness. However, the interfacial shear
stress determined by this ABJ model does not satisfy the shear-free condition at the adherend ends. Chen
and Cheng (1983) developed an innovative ABJ model within the framework of 2D elasticity. In this ABJ
model, the stress fields in the upper and lower adherends are expressed in terms of two unknown peeling
stresses according to the elementary Euler-Bernoulli beam theory and the stress equilibrium equations of
2D elasticity, while the stress variation across the adhesive layer is ignored. A gained set of governing
ODEs of the peeling stresses along the interface was determined via triggering the theorem of
complementary strain energy. This model is capable of predicting the reasonable location of the peak
interfacial shear stress, which is located at a distance about 20% from the free end of adherend. In addition,
Frostig (1997) used a high-order theory to overcome the limitations of the elastic foundation formulation.
Her (1999) constructed several analytic models for stress analysis of adhesively bonded single-lap joints as
well as double lap joints based on a simple tension-bar approach. Mortensen and Thomsen (2002) carried
on the study of stress distribution in adhesively bonded composite joints. Kadioglu (2003) discovered that
the environmental temperature had a proportional relation in load transfer through adhesive joints. Keller
(2004) developed an analytical solution of stress-strain relation in an ABJ, from which a parameter study
of the overlap length and thickness of layers was demonstrated. In addition, classical laminate plate theory
was also introduced for stress analysis of ABJs including adhesively bonded composite joints (Xiao, 2004).
da Silva and Adams (2006) further developed a numerical analysis based on Kadioglu’s study in double lap
joints. Chataigner (2010) formulated an improved method based on Volkersen’s shear-lag theory for stress
analysis of double-lap joints. Recently, Sayman (2012) proposed an analytical elastoplastic model of ABJs,

which was verified by FEA. Finally, Sayman also conducted an analytic study and concluded that the
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strength of ABJs can be increased via introducing proper residual stresses. Kumar and Scanlan (2013)
developed a stress function method for stress analysis of adhesively bonded tubular joints. Yousefsani and
Tahani (2013) formulated a model of layerwise ABJs, from which the divided sub-layers were treated as
field variables and solved through a set of governing ODEs by evoking the theorem of minimum strain
energy. Nevertheless, outstanding issues still exist when applying the above ABJ models for determining
the stress field in adhesively bonded composite joints, in which stress singularity occurs at the end of
binding lines and laminate interfaces. In fact, transverse deformation plays an essential role in delamination
failure of composite joints, in which the transverse modulus of composite laminates is very low. Technically,
the classic and high order laminated plate theories are unable to successfully predict the high stress
concentration in composite joints due to the nature of laminated structures and limitation of the classic
laminated plate theory (Renton & Vinson, 1975; Yang & Pang, 1996; Seltzer & Klang, 2003; Yang, 2004).
Owing mainly to the technical compromises in the above models, the shear-free condition at adherend ends,
the stress continuity across the bonding lines, and the stress variation between the adhesive layers were not
well satisfied. Theoretically speaking, the interfacial shear and peeling stresses predicted by FEA (Diaz,
2009) had the singular values near the adherend ends, which tended to higher and higher in a way of refining
the mesh in FEA process. With the aid of FEA, computational stress field indicated that both the shear and
normal stresses reached the maximum values at the ends of bonding lines, and these stresses declined and

tended to almost zero at the middle portion of the bonding lines (Ozel, 2014).
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d. Cohesive Fracture - Peel

Adhesive Failure Modes

Figure 2.1. Typical failure modes of adhesively bonded joints (Heslehurst & Hart-Smith, 2002).

Recently, a systematic semi-analytic method was developed for accurate prediction of the
interfacial stresses of bonded joints subjected to external mechanical and/or thermomechanical loadings
(Wu & Jenson, 2011). In this method, two unknown interfacial shear and peeling stress functions were first
introduced independently. By adopting the elementary Euler-Bernoulli beam theory, the axial normal stress
was approached varying linearly across the adherend layers. The transverse normal stress and shear stress
were determined to satisfy the static equilibrium equations, traction boundary conditions at the top and
bottom surfaces of adherends, and stress continuity across adhesive layer. Furthermore, the entire stress
field in the joint was expressed in terms of the unknown interfacial stress functions. Followed by the
theorem of minimum complimentary strain energy of the joint, a set of governing ODEs in terms of two
interfacial normal and shear stress functions was established, and an efficient eigenfunction method was

used to solve the set of the resulting ODEs. The entire solving process was finally implemented via
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designing a robust efficient MATLAB™ code that involved all the mechanical properties, geometries and
external mechanical or thermomechanical loads of the joint. As a result, the entire stress field of the bonded
joints can be determined accurately, which was validated by using FEM based on a commercial FEA

software package (ANSYS™)

2.3. Outstanding Problems in Stress Analysis of Bonded Joints and ABJs
To date, considerable research has been conducted for determination of the interfacial shear and
normal stress distribution in ABJs made of dissimilar adherends. By manipulating the geometry and loading
of the ABJs, there are five typically structural ABJs, as illustrated in Fig. 2.2, which will be demonstrated
for determining the interfacial shear and normal stresses by extending Wu and Jenson’s (2011) stress-
function variational method for bonded joints in this thesis study. The stress-field results of these typical

ABJs will be validated by using FEM and comparing with literature ABJ models.
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Figure 2.2. Typical adhesively bonded joints (ABJs) and bonded joints.

To further extend the work of stress-function variational method (Wu & Jenson, 2011), Chapter 3
is going to demonstrate the formulation of extended stress-function variational method in details for stress
analysis of adhesively single-sided strap joint consisting of two slender substrate layers (adherends) and a

slender cover layer, which are bonded with an adhesive layer. The joint under consideration is assumed



under action of a uniform axial tension along the substrate layers. Due to the structural and load symmetries
of the joint, the entire stress analysis is implemented on the half-joint model subjected to uniform axial
tension far away on the substrate layer. Four unknown interfacial shear and normal stress functions are
introduced for the model formulation. A set of four coupled 4"-order ODEs is set up, which is solved
numerically by designing an efficient MATLAB™ code. Furthermore, comparison of the stress results
yielded from the present ABJ model with those obtained by ANSYS™ is demonstrated. Moreover, the
effectiveness of temperature change in determining the stress field of the joint is further given. This
generalized method is also applicable for stress analysis of a wide variety of other joined structures (Wu &
Zhao, 2013).

In Chapter 4, the stress-function variational method is further applied for stress analysis of
adhesively bonded single-lap joint comprising of a slender upper adherend layer and a slender bottom
adherend layer bonded with an adhesive layer under shear traction. In this chapter, the model results not
only show a very good agreement of the newly obtained ABJ results with those gained by ANSYS™, but
also are compared with those given by Erdogan’s simple joint model (Delale et al., 1981).

Chapter 5 further extends the stress-function variational method developed in Chapter 3 for stress
analysis of adhesively bonded single-sided joint, double lap bonded joint, and double-sided bonded joint.
Corresponding FEA models are formulated to validate these semi-analytic joint models by comparing the
distributions of interfacial stresses.

Chapter 6 summaries the current research and expects the future work following the thesis work.
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3. GENERALIZED STRESS-FUNCTION VARIATIONAL METHOD FOR STRESS

ANALYSIS OF ADHESIVELY BONDED JOINTS

3.1.Problem Formulation—Adhesively Single-sided Strap Joints

3.1.1. Model Formulation

In this chapter, a generalized stress-function variational method is to be formulated for
determination of the stress field in an adhesively single-sided strap joint (ASSJ) subjected to mechanical
and/or thermomechanical loadings. The stress field in an ASSJ determined by the proposed method can be
expressed explicitly, which will be further validated via comparison with those obtained by commercial
FEA software package (ANSYS™). Due to the mismatch of material properties across the bonding
interfaces, high interfacial stresses in a complicated three-dimensional (3D) stress state occur near the free
edges of bonding patch. To simplify the process of stress analysis, the ASSJ under consideration is dealt in
two-dimensional (2D) stress/strain state by assuming that the joint width to be infinitely long. During the
formulation of the ASSJ model for stress analysis, a representative segmental element of the ASSJ consists
of a cover layer, adhesive layer, and substrate layer in 2D.

The configuration of ASSJ is illustrated in Fig. 3.1(a), where the overlap bonding length is denoted
as L. For the convenience of the model formulation, subscripts 1, 0, and 2 are attached to the cover, adhesive,
and substrate layers, respectively. These three layers have the geometrical parameters of thicknesses h; (i =
1,0,2) and mechanical properties of Young’s moduli E; (i =1,0,2), Poisson’s ratios vi (i = 1,0,2), and
coefficients of thermal expansion o (i = 1,0,2). The width b is assumed to be unit width. The x-coordinate

in a 2D ASSJ model is chosen from the symmetric mid-span of the system; the y-coordinate is chosen
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perpendicular to the x-coordinate and along the layer edge. As aforementioned, the external loading can be
axial tension, shear traction, bending moment, or temperature change, or their combination. In this
upcoming derivation, the ASSJ is treated in plane-stress state and subjected to a uniform tensile traction po
far away the substrate layer; meanwhile the joint has a uniform temperature change AT from the reference
temperature. Furthermore, stress analysis of the ASSJ is made on the right half-portion as shown in Fig. 3.1
(b); the mechanical and thermomechanical loadings can be treated separately due to the nature of linear
stress analysis according to the method of superposition. From Fig. 3(c), it can be expected that interfacial
shear and normal stresses are caused by the mismatch of material properties along the bonding lines; lateral
deflection can be induced since the joint is not laterally symmetric. In the formulation, all the joint layers
are treated as isotropic, linearly thermoelastic materials. Furthermore, to convert the results in the plane-
stress state to those in the plane-strain state, it needs to replace the Young’s moduli E; (i = 1,0,2) by (1-
vi?)/Ei, Poisson’s ratios vi (i = 1,0,2) by vi /(1- vi ), and coefficients of thermal expansion o; (i = 1,0,2) by

(1+ vi)ai.
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Figure 3.1. Schematic of an adhesively single-sided strap joint: (a) Structural configuration consisting of
two identical substrate layers, two adhesive layers, and a slender cover layer, (b) reduced right symmetric
half-joint, (c) distribution of the interfacial stresses in the joint.
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Figure 3.2. Free body diagrams of representative segmental elements of (a) the cover layer, (b) the adhesive
layer, and (c) the substrate layer.
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3.1.2. Static Equilibrium Equations

The purpose of this work is to find the stress field in the entire ASSJ, particularly the interfacial
shear and peeling stresses at the interface between the upper adherend and the adhesive layer as well as the
adhesive layer and the lower adherend, which can be expressed in terms of four independent unknown
functions as:

7, = f,(X), and o, = g,(X), (3.1
7, = f,(X), and o, =9g,(x), 3.2)
As aforementioned, the free-shear at the adherend edges x=0 and L can be expressed as:

f,(0) = f.(L)= f,(0) = f,(L) =0, (3.3)
Fig. 3.2(a)-(c) show the typical representative segmental elements, where the shear and normal (peeling)
stresses can be fully determined with the static equilibrium equations in 2D elasticity with the given axial
force S; (i = 1,0,2), shear force Qi (i = 1,0,2), and bending moment M; (i = 1,0,2), which are defined

according to the standard sign conventions of elementary Mechanics of Materials (Beer et al., 2011).
For the representative segmental element of the cover layer as shown in Fig. 3.2(a), the static

equilibrium equations can be obtained as:

ds
>F, =O:d—X1=—brl, (3.4)
.dQ
ZFy :O.d—Xl:—bO']_, (35)
P \" P _hlbr1 36
M =0: ™ =Q, > (3.6)

Meanwhile, the static equilibrium equations of the representative segmental element of the adhesive

layer [Fig. 3.2(b)] are expressed as
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ds,

>F, =0: =b(z, —7,). (3.7)
dx
d
F, =0: on =b(o, — 7,), (3.8)
dMm h,b
M =0: dXO =Q, —%(rl +7,). (3.9

Accordingly, the static equilibrium equations of the representative segmental element of the

substrate layer [Fig. 3.2(c)] are written as

SF, =0: ddsx2 =br,, (3.10)
IF, =0: d;iz =bo,, (3.11)
M =0: d'c\l/)'(z _Q, —hszTZ. (3.12)

3.1.3. Stress Resultants

Under the action of uniaxial tension po far away the substrate layer, the physical conditions of the
axial force, shear traction, and bending moment at the ends of the upper adherend, adhesive layer, and lower

adherend are expressed respectively as:

S,(0) = pybh,, (3.133)
Si(L)=0, (3.13b)
Q0) =0, (3.13¢)
Q(L)=0, (3.13d)
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M, (0) = bm, = p,bh, (h, + 2h, +h,)/2, (3.13¢)

M, (L) =0, (3.13f)
S,(0)=0, (3.139)
S, (L) = p,bh,, (3.13h)
Q,(0) =0, (3.13i)
Q,(L)=0, (3.13))
M,(0) =0, (3.13K)
M,(L) =0, (3.131)
S,(0) =0, (3.13m)
Sp(L) =0, (3.13n)
Q,(0) =0, (3.130)
Q(L) =0, (3.13p)
M, (0) =0, (3.13q)
M, (L) =0. (3.13r)

In this case, given a pure temperature change AT (po=0) from the reference temperature of free
thermomechanical stresses, it needs to adjust all the terms involving po to satisfy the traction-free boundary
conditions (BCs) such as Eq. (3.13a), Eq. (3.13¢) and Eg. (3.13h).

In addition, all the stress resultants for the segmental elements of the three layers can be expressed
in terms of fi (i = 1,2) and gi (i = 1,2) as followings. With BC (3.13i) and integration of Eq. (3.4) with respect

to x from x = 0, peeling-force of the cover layer yields as:
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[/ ds, = bf,(&)de, (3.14)
8,(¥) = pgbh, —b[ ,(£)d, (3.15)
Meanwhile, shear-force of the cover layer can be written by using BC (3.13c) and integration of
Eq. (3.5):
[ dQ, =~ bg,(&)de, (3.16)
Q) =-b[ g,(£)de,

(3.17)

Moreover, bending moment of the cover layer is expressed based on BC (3.13e) and integration of

Eqg. (3.6):
oM, = [1e,) - 25 de, @18)
x e bh, ¢x
M. (x) =mgb—b| [ g,()dcds — =+ [ fi(£)de.

(3.19)

According to the same procedure above, the stress resultants in the adhesive layer with respect to x

from x=0 can be asserted with BCs [Eqg. (3.13m), Eq. (3.130), and Eq. (3.13q)] and integration of Egs. (3.7-

9):
[l ds, = [ bIT,(6)- F,()1dé, (3.20)

So(x) =b[ [,(&) - F,(£)]d, (3:21)

[/ dQ, =['blg, (&) - g, (£0z, (3.22)

Qu(x) =b[ [9:(£) - 9,(&)1d¢, (3.23)

J; aMo = [1Q0(9) —%(a +7,)]d&, (3.24)

M, () =b]" ['10,(£) - 9, ({)1ddE —% INAGIRAG) S (3.25)
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Similarly, the stress resultants in the substrate layer with respect to x from x = 0 can be determined

with BCs [Eq. (3.139), Eqg. (3.13i), and Eq. (3.13k)] and integration of Egs. (3.10-12):

joxols2 - jo bf ,(£)d¢, (3.26)
5,00 =b] f,(£)de, (327)
[ dQ, = ["bg, (&)a¢, (3.28)
Q,(0) =b[ g,()dé, (3:29)
x x h,bz,
[ aM. = [[1Q, (&) ——=-21d¢, (3.30)
M, (0 =D} [ 9.()dgde — 222 [ 1, (&)de. @31

3.1.4. Stress Components

Due to the bending moment superimposed with a uniform axial traction p; on the cover layer, the
axial normal stress can be assumed to follow the flexural stress formula according to the Euler-Bernoulli

beam theory as:

12y,
h

S My 1 x
o _ Y1 171 _ _
e N RCL A

X ¢S hl X
S [-mo + [, [, 0:()déds + = [ (£)dé], 332

where, pi1= poh2/ h1. Moreover, the shear stress of the cover layer can be determined by integrating the 2D

static equilibrium equation:

@
90, 9%y

XX

Ty =0, (3.33)
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with respect to y; from an arbitrary point in the cover layer to the top surface y: = hi/2 and taking into
account the traction-free BC r (h /2) =0, which leads to

ol - - S G ona@e

Furthermore, the transverse normal stress of the cover layer can be determined by integrating the

2D static equilibrium equation:

ao.(l) az.(l)
— 4 ™ (3.35)

oy, OX '

with respect to y; from an arbitrary point to the top surface y;=hi/2 and using the traction-free BC

(1) (h /2) =0, which yields

ot = LB By T By I ) I

r; ;Zzhl LR e E (3.36)
E[ 4 (E‘)ﬁ)_—(g_yo]gl(x)-

For the adhesive layer, given the classic Euler-Bernoulli beam theory and 2D static equilibrium
equation, with the aid of Ti(hy/2)==f,(X) , 0 (-h/2)=-F,(x) , o) (h/2)= . and

0530 (—h0 12)= gz(x) , the axial, shear, and normal stress can be determined correspondingly such that

0 S M.V, 1 (x
o = -2 == | [H(8) - f,()dS
bh, 1, I (3.37)

12y°{j J 196~ 9.(0N0cds -2 [ T4, + LN,

A =00~ 0+ D0~ BT 06— + 0]
0 (3.38)

6 o h§ ‘
*ie 06— [0:6) - (e
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(0) _ 0 ! __0 0 E ! — !
Tyo30 =92 () + (Yo + =) 1, (X)+h0[2(yo ) 5 Yo+ S 00 = 1, (X)]

[(yo h°) ", + I 00+ 1, (0] (3:39)

2

ho o _
hl[3()/0 —)——(yo )][gl(X) 9,(x)].

For the substrate layer, with the aid of the classic Euler-Bernoulli beam theory and 2D static

equilibrium equation, the axial, shear, and normal stresses can also be determined as

R W RAGLES (N ENOLEES Y RXCEH Er

bh, I, h,
@__1 hyy 8 2 My M o () 3.41
i (e LR (yz ), 0:(6)d¢, (341)

o gl h22_2 Ly 3.1 s b LSNP
Oy.y, { [(2 )+ (y,+ 2)+h22[3(y1+8) 4(y2+2)]}f2(x) 62

%)]gz(x).

6 1 h2
_E[g(yg+§)_f(y2 +

With the axial normal stresses varying linearly across the adherends and adhesive layer, the
corresponding shear and transverse normal (peeling) stresses vary in parabolic and cubical functions,

respectively. As the matter of fact, the stress field satisfies all the traction BCs and stress continuity across

the interfaces.

3.1.5. Governing Equations of Interfacial Stresses

In the view of mathematics, complimentary strain energy is an energy functional with respect to

the four unknown interfacial stress functions fi (i = 1,2) and gi (i = 1,2) defined above, which were
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introduced to determine the interfacial stress distribution of ASSJ. To achieve the set of governing ODEs
of the interfacial stress functions, the entire strain energy of the ASSJ can be determined by integrating the
strain energy density (per unit length) with respect to the length variable x from x = 0 to x = L such that

h /2 1+v
U= I Jh /2{2[0.(1)8(1) +O.(1)8(1)]+ 1[ (1)] Yy, dx

hy /2 © g0 | (0) © 1+Uo @
+b[ [ h,z{z[" D1+ —= EO [755)1° ey, dlx (3.43)

hy /2
I J‘hlz{z[am £@ 4 (2) (2)]+ [ (2)] Yy, dx.

where 6‘( )

and 8§,iy) (i=1,0,2) are the axial and transverse strains of the cover, adhesive, and lower layer,
respectively. Based on the generalized Hooke’s law of linearly thermoelectric solids, the strains can be

expressed as:

gl 1 oy ol + AT
E, | (3.44)
() 1 () @i
Eyy =any -—o0, +aAT
i | (3.45)

where «; (i = 1,0,2) are coefficients of thermal expansion of the cover, adhesive, substrate layers,
respectively, and AT is the uniform temperature change from the reference temperature of free
thermomechanical stresses. According to the theorem of minimum complimentary strain energy,
mathematical variation of the strain energy functional (3.43) with respect to any of the four interfacial stress

functions reaches a stationary state such that
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U = J‘J‘“i’z 1 (1)55(1)+50(1)8(1)+6 55(1)+5G<1) (1)] 2(1+v,) e

X
h/2 2 E, Y1

o ) Ydy, dx
fol2 1 @5 © © (0 , (0.0 0 .7, 2A+v;) 2057 0
,[ Ih,z 2 O 0, +00, ey +o, /o) +oo, e |+ 3 - 07 ) 57 () 3y, dx (3.46)

thZ/z 1 (2)&(2)+50(2) (2)+O'(2)58(2)+5O'(2) (2)] 2(1+Uz) (2)52.(2)}dy dx =0.

hy /2
2 2

where 8 is the mathematical variational operator with respect to either fi (i = 1,2) or gi (i = 1,2).

By plugging the stress resultants [Eq. (3.32), Eq. (3.34), and Egs. (3.36-42)] and normal strains (Eq.

(3.44) and Eq. (3.45)] into (Eq.3.46), it yields a set of 4"-order ODEs with respect to f; (i = 1,2) and gi (i =
1,2) as

[A{®™ }+[BH{®" }+[CH{®}+{D}={0}. (347)

where {®}={F1(§),Gl(§), Fz (f)a G2 (5)}T is a column of the dimensionless interfacial stress functions

with the components defined as

R = R(x/h) =———[*f,)d, (3.48)
Poh, ~°

R (&) = Fy(x/ b)) =——— [ £,(5)d, (3.49)
Poh, 70

6.(6)=6,(x/h) =— [ [[ sundndc,
P, (3.50)

G(6) =G, (x/ 1) = [ [ g, ).
P, (3.51)

In addition, [A], [B], and [C] are four square symmetric coefficient matrices relating the geometric

properties of ASSJ as
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1 11
E (hgzezo + h132621) m (hozzezo - h122e21)
13
% (hozezo + h12e21)
[A]=
Sys
[ 4 1 1
_E (hozezo + h12e21) (_g + 00)620 + (E - Ul)e21
12 _
- g (hozlezo + h121621)
[B]=
Sys
4(h(-);ezo + h1-;e21) 6(h(;§ezo - héeu)
] 12Nz + )

Sys

hhe,  oohie
:—230 &0 % ho220
%(ﬂ hie,) %(1—@;% |
g (1+hy,ey) |
% Ny,€s50 —€y
1 € % hos €50

4 1 1
—E(l-i- hozezo) (E—Uo)ezo _E+Uz

—% A+he,)
2h2e,, -6h2e,,
6h2e,, -12hse,,
4(1+hle,) 6@1-h’e,) |
12(1+h2e,)

(3.52)

,(3.53)

(3.54)

where hgz = ho/hz, hiz = ha/hs, €20 = E2/Eo, and ex1 = E2/E; are four parameters related to the geometrical

dimensions and mechanical properties of the ASSJ.

The column {D} is related to the external mechanical and thermomechanical loads, whose actual

expression depends upon the types of external loads.

In the case of the ASSJ subjected to external mechanical and thermomechanical loads, a

dimensionless force column {D}4x1 can be expressed as

24



_hy +3py(L+2hy, +hy,)h;, AT

D +— (-, +,),
1 E, 2 (—a, 1)
D :_6p0(1+2h02+h12)h1_23
2 E, ’ (3.55)
AT
D, :7(_052 +ay),
D,=0.

The solution to the set of resulting ODEs described in Eq. (3.47) can be determined with the general
solution {¥} superimposed with a particular solution {®o} such that

{0} ={¥}+{®.}, (3.56)

where {¥}is the general solution of the corresponding set of homogenous ODEs:

[AI{Y™}+ [BI{¥"}+ [CI{¥}={0} (357)

and
{®,}=-CI{D} (3.58)
In order to efficiently solve the resulting homogenous Eq. (3.57), with the aid of eigenfunctions, a
general solution can be assumed as
{¥}={¥}ep(45), (3.59)
where {Wo} and A are respectively the eigenvector and eigenvalue of the set of homogenous ODEs in Eq.
(3.57).
Hence,
A IAI 3+ A BIY 3+ [CH{Y}={0}. (360)
To reduce the above generalized eigenvalue problem into a standard eigenvalue problem by

adopting{‘Pl}: /12{‘{"0}, the resulting standard eigenvalue problem is
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o Al e a

(3.61)

where | is a 8x8 identity. Eigenvalue problem (3.61) can be solved by using robust, efficient numerical

algorithms offered by MATLAB™. The final expression of the homogenous solution to Eq. (3.47) can be

expressed as

{0}= Z[Ck{‘l’ﬁ}exp(ﬂkf) +d {¥oYexp(-A )] +{D},

(3.62)

where {‘PA( } (k=1, 2, ..., 8) are the eigenvectors corresponding to eigenvalues A (k =1, 2, ..., 8),

respectively, and ¢« and d« (k = 1, 2, ..., 8) are the coefficients (may be real or complex) to satisfy the

traction BCs in Eq. (3.3) and Egs. (3.13a-r). In the present case, the linearly independent BCs can be

extracted from Eqgs. (3.13a-p) accordingly such that

F(0)=0,
F(L/h)=-1,
F'(0)=0,
F'(L/h,) =0,
G,(0) =0,

G,(L/h,)=1/2+h,,,
G,'(0) =0,
G,'(L/h,)=0,

F,(0) =0,

F,(L/h)=-1,
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(3.63a)

(3.63)

(3.63¢)

(3.63d)

(3.63¢)

(3.63f)

(3.63g)

(3.63h)

(3.63i)

(3.63j)



F,'(0) =0, (3.63K)

F,'(L/h,)=0, (3.631)

G, (0) =0, (3.63m)
G,(L/h,)=1/2, (3.63n)
G,'(0) =0, (3.630)
G,'(L/h,)=0. (3.63p)

Consequently, a set of simultaneous linear algebraic equations can be formulated with the BCs [Egs.

(3.63a-p) and formal solution (3.62)]:

8 8
Do Wyt + > d Yt =0, (3.64a)
k=1 k=1
8 8
> e Yt ep(A L)+ d Wt exp(-4 L/ h) =1+ D], (3.64b)
k=1 k=1
8 8
e AW =D d AN =0, (3.64¢)
k=1 k=1
8 8
Y A ep(4LIh) =Y d A Y ep(-4L/h,) =0, (3.64d)
k=1 k=1
8 8
de Y+ ) d Wy =-0f, (3.64e)
k=1 k=1
8 8
ey tep(AL/h)+> d Y exp(-AL1h) =1/2+hy, - D, (3.64f)
k=1 k=1
8 8
> CAY A=Y d AW =0, (3.640)
k=1 k=1
8 8
Y cAY P ep(4L/h,)-> d A exp(-4L/h,) =0, (3.64n)
k=1 k=1
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8 8
DoVt + ) d Wyt =-0f, (3.64i)
k=1 k=1

8 8
Y. et ep(A L)+ d Yy e (=4 L h,) = -[L+0f], (3.64])
k=1 k=1
8 8
> e A= d AP =0, (3.64K)
k=1 k=1
8 8
DAY ep(4Llh) - d A ep(-4L/h,)=0, (3.641)
k=1 k=1
8 8
de Yt + ) d Wt =-0f, (3.64m)
k=1 k=1
8 8
D e ¥t ep(ALih)+ ) d W exp(-A L/ h,) =1/2-0f, (3.64n)
k=1 k=1
8 8
DoAYyt =Y d A =0, (3.640)
k=1 k=1
8 8
DoAY ep(ALIh) - d A Wy exp(-AL/h,)=0. (3.64p)
k=1 k=1

Where,\Pk'l, ‘Pg’z, ‘1’5’3, and ‘PEA (k =1, 2, ..., 8) are respectively the 1% to 4" elements of the k-th
eigenvector, and (I)gl) , CDEf’ , (Dés) , and (Dg4) are the 1% to 4" elements of the particular solution vector {®o}.
In the case of the stress field due to a pure temperature change, the above BCs [Eqg. (3.63b), Eq. (3.63f), Eq.
(3.63)), and Eq. (3.63n)] are needed to set as zeros, which further influence the right terms of the algebraic
equations [Eqg. (3.64b), Eq. (3.64f), Eq. (3.64j), and Eq. (3.64n)].

Once coefficients cx and dk have been determined by solving the resulting set of homogeneous
algebraic equations (3.64a-p), the interfacial shear and peeling stresses at the upper and lower interfaces

can be finalized according to expressions (3.48-51) as
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8 8
00/ po == CAYs  ep(Ax/h,) + D d AW exp(=Ax/hy), (3.65)
k=1 k=1

8 8
9:(¥)/ Po = D C A Y2 (A4 x/h,) + Y d AWy exp(-2,x/h,), (3.66)
k=1 k=1
8 8
f,(X)/ Py == C A ¥y (A x/hy) + > d, 4 Wy exp (=4, x/h,), (3.67)
k=1 k=1
8 8
9,(\)/ Po = D_C AVt (A x/h,) + D d AW exp (-4, x/hy). (3.68)
k=1 k=1

3.2. Model Validation

3.2.1. Interfacial Stresses due to Mechanical Loads

FEM based on commercial FEA software package (ANSYS™) is used to validate the present stress
function variational method for stress analysis of ABJs. Specifically, an ASSJ with unit width is chosen for
such purpose, which is assumed to be subjected to uniform axial tension on the substrate layers in a general
2D plane-stress state. The geometrical parameters for the ASSJ are taken as: L = 20 mm, h; = 2.0 mm
(steel/cover), h, = 2.0 mm (aluminum/bottom), and ho = 0.2 mm (epoxy/adhesive). Material parameters are
given as: E; =210 GPa, v1 = 0.293 (steel/cover), E; = 70 GPa, v, = 0.345 (aluminum/bottom), and Eo = 10
GPa, vo = 0.40 (epoxy/adhesive). The given tension po is assumed to be 1MPa.

During FEM simulation (ANSYS™) of the right half-symmetric ASSJ, four-node elements
(PLANE182) and uniform quadrilateral meshes are employed. In their recent study, Wu and Jenson (2011)
have determined the accurate stress field in a bonded joint without the adhesive layer using stress function
varational method, which was validated by means of FEM (ANSYS™). To understand the trend of the

singular stresses along the bonding lines, two different mesh sizes (0.05 x 0.05 mm and 0.01 x 0.01 mm)
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are employed at the two ends of the overlap. Note that the right portion of ASSJ as shown in Fig. 3.1 (b) is
utilized in FEM modeling, a uniform traction of 1MPa is applied as the axial load, and a single corner node
is used to constrain the displacement in the vertical direction near the loading point so as to mimic the BCs
under uniaxial tension. Fig. 3.3 shows the variations of the interfacial shear and normal stresses of the tested
ASSJ model predicted by the present stress variational method, which are compared with those obtained
by FEM (ANSYS™). Because of the existence of bending moment resultant at the middle of the joint [Fig.
3.1(c)], the interfacial shear and normal stresses at the free-edges of mid-span can be found in high values.
Compared to the shear stress, the high normal stress mainly contributes to the debonding failure of ABJs.
Obviously, the interfacial shear stresses predicted by the present method exactly satisfy the shear-free
boundary condition in ABJs as required by the theoretical formulation. Even though the normal and shear
stresses assume the very similar varying trends along the upper and lower bonding lines, the difference of
these stresses does exist around the free edges, especially the interfacial normal stresses, which dominates

the debonding failure of ABJs.
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Figure 3.3. Validation of the stress-function variational method by FEM for interfacial shear and normal
stresses in ASSJ subjected to uniaxial tension: (a) Interfacial shear stress and (b) interfacial normal stress.
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To explain the difference between the interfacial stresses across the adhesive layer, let us consider

a segmental element of the adhesive layer with the length Ax as shown in Fig. 3.4. Assume 5;;/2 and

~hy!

W Zare the average normal stresses at the top and bottom adhesive surface along the length Ax. Static

o
equilibrium equation of the segmental element can be expressed as

(G2 -5, )Ax -1, hy =0, (3.69)

The difference of the average normal stress can be obtained from Eq. (3.69) as

Ao, =o' -G, =1, | AX (3.70)

L

RImEEs
—

ho

Figure 3.4. Free body diagram of a representative adhesive layer segment.

From Eq. (3.70), when AX is much smaller than the thickness of the adhesive layer ho , the normal
stress difference could be significantly large. Based on this, the common assumption that the normal and
shear stresses do not change significantly across the adhesive layer as used in most literature ABJ models

is not held.

3.2.2. Interfacial Stresses due to Thermal Loads

Thermomechanical stress analysis of an ASSJ subjected purely to uniform temperature change is

analogous to that of an adhesively bonded thermostat. To simplify the process, the ASSJ is treated as no
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residual stresses at the initial load-free state at the reference temperature, and the temperature change is
assumed uniform throughout the joint. The structural and mechanical parameters of the present joint are
given as: hy = 2.5 mm, E; = 70 GPa, v1 = 0.345, a1 = 23.6x10°%/°C, h, = 2.5 mm, E, = 325 GPa, v2 = 0.293,
oz = 4.9x10%/°C, L = 50.8 mm, Eo = 10 GPa, vo = 0.40, and ao = 73.8x10%/°C, and AT = 240°C. Two
thicknesses of the adhesive layer are taken into comparison as: ho = 0.25 mm and 1.0 mm, respectively.
Furthermore, plane-strain state from the precious studies is used in the present adhesively bonded
thermostat.

Recent work in Dr. Wu’s research group at NDSU has demonstrated the reliability of stress-function

variational method for solving such type of problems (Wu and Jensen, 2011).
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Figure 3.5. Thermomechanical shear and normal stresses along the interface of a bimaterial thermostat
based on stress-function variational method (Wu & Jensen, 2011): (a) Interfacial shear stresses, (b)
interfacial normal stresses.

In Fig. 3.5, predictions of the thermomechanical shear and normal stresses are pretty close to those

obtained by Suhir (1989), Eischen et al. (1990), Ru (2002), etc. To better demonstrate the proposed stress-
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function variational method for predicting the thermomechanical interfacial stresses in adhesively bonded

thermostats, a thin adhesive layer is further introduced into Wu and Jenson’s joint model (Wu & Jenson,

2011).

80 Interfacial shear stress of an adhesively bonded |7
;«? 60 thermostat (Adhesive layer thickness ho=0.25 mm) || |
2 T on the lower surface of adhesive layer
; 40  — 1 on the upper surface of adhesive layer .
(0]
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= -40 .
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(a)
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Figure 3.6. Variations of the dimensionless thermomechanical interfacial shear stresses in the adhesively
single-sided strap joint over the dimensionless distance from the mid-span: (a) The interfacial shear stress
for thickness ho = 0.25 mm, (b) the interfacial shear stress for thickness ho =1 mm.
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Figure 3.7 Variations of the dimensionless thermomechanical interfacial normal stresses in the adhesively
single-sided strap joint over the dimensionless distance from the mid-span: (a) The interfacial normal
stress for thickness ho = 0.25 mm, (b) the interfacial normal stress for thickness ho = 1 mm.
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In the present semi-analytic stress-functional variational method, variations of the

thermomechanical interfacial shear and normal stresses in the adhesively bonded thermostat at two different

thicknesses (ho = 0.25 mm and 1.0 mm) are demonstrated in Fig. 3.6 and Fig. 3.7, respectively. Compared

to Fig. 3.5 by Wu and Jenson (2011), the shear and normal stresses at the upper and lower interfaces in Fig.

3.6(a) and Fig. 3.7(a) with a relatively thin adhesive layer (ho = 0.25 mm) carry very similar varying trends.

The peak values of both the shear and normal stresses at the lower surface of the adhesive layer are 40%

higher than those of the biomaterial thermostat with the same geometries, material properties, and

temperature change. However, the peak values of both the shear and normal stresses at the upper surface of

the adhesive layer are lower than those of the biomaterial thermostat. Specifically, the peak value of shear

stress is decreased about 20%, and that of normal stress is decreased around two-thirds. While applying a

temperature change to the ASSJ with a relatively thin adhesive layer, the adhesive layer appears a large

thermal expansion due to its large coefficient of thermal expansion and Poisson’s ratio, which cause higher

stresses at the interface to deform thermostat to the stiffer substrate layer.

In other case of a thick adhesive layer (ho= 1.0 mm), the shear and normal stresses at the lower

interface as shown in Fig. 3.6(b) and Fig. 3.7(b) slightly decrease compared to those of a thinner adhesive

layer as shown in Fig. 3.6(a) and Fig. 3.7(a). Relatively large mismatched deformations owing to the large

thickness and low modulus of the adhesive layer between the upper and lower adherends are responsible

for the inconsistent thermal expansion. In contrast, at the upper surface of the adhesive layer, the directions

of both the shear and normal stresses are altered, corresponding to the change of the characteristic deflection

of the upper adherend induced by the varying adhesive layer thickness. In this case, compared to the thinner
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adhesive layer, the peak value of interfacial shear stress decreases nearly half, and the peak value of

interfacial normal stress nearly doubles.

3.2.3. Scaling Analysis of Interfacial Stresses due to Mechanical Loads

A compact, efficient computational code has been designed to implement the present stress-
function variational method for stress analysis of ABJs, which can be used to examine the dependencies of
the interfacial shear and normal stresses upon all the geometrical and material parameters of the ABJs
including the layer thickness ratios ho/h. and hi/h,, length ratio L/hz, modulus ratios Eo/E, and Ei/E,
Poisson’s ratios v1, vz and vz, and coefficients of thermal expansion o, 01 and a,. In single-sided strap joints
(Wu and Jensen, 2011), scaling parameter studies have been conducted to examine the effects of adherend
thickness ratio hi/h,, length ratio L/h, and modulus ratio Ei1/E; on the shear and normal stress variations
along the interface.

The goal of this section is to examine the effects of thickness and modulus of the adhesive layer on
the interfacial shear and normal stresses. In addition, it needs to be mentioned that the present ABJ model
is established within the framework of linear elasticity. Thus, the stress fields in ABJs triggered by
combined mechanical loads and temperature change can be dealt with separately based on the method of
superposition. In this case, the adherend length and modulus ratios are fixed as L/h, = 5 and Ei/E, = 3, and
Poisson’s ratios of the upper and lower adherends are fixed as v1=0.293 (steel) and v, = 0.345 (aluminum).
For the adhesive layer, two thickness ratios (ho/h, = 0.2, and 0.5) and two modulus ratios (E¢/E> = 1/20 and
1/10) are adopted, and the Poisson’s ratio is fixed at v, = 0.4 (thermoset epoxy) in the calculations. The

joint is treated in the state of plane-stress.
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In comparison, the interfacial shear and normal stresses of a single-sided strap joint (Wu and
Jenson, 2011) are shown in Figs. 3.8 (a) and (b).
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Figure 3.8. Mechanical shear and normal stresses along the interface of single-sided strap joint based on
the stress-function variational method (Wu & Jensen, 2011): (a) Interfacial shear stresses, (b) interfacial
normal stresses.
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In above figure, all the shear stress components satisfy the shear-free condition at the adherend
ends. Figs. 3.9-16 show variations of the dimensionless interfacial shear stress t/po and normal (peeling)
stress o/po at the upper and lower interfaces with the dimensionless distance x/h, from the joint mid-span
to the right adherend end at five adherend thickness ratios (hi/h, = 0.5, 0.75, 1.0, 1.5, and 2.0), two adhesive

thickness ratios (ho/h, = 0.2 and 0.5), and two adhesive modulus ratios (Eo/E> = 1/10 and 1/20), respectively.
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Figure 3.9. Comparison of the variations of the dimensionless interfacial shear stresses in the adhesively
single-sided strap joint over the dimensionless distance from the mid-span: (a) The shear stress at the upper
interface, (b) the shear stress at the lower interface. Thickness ratio ho/h2= 0.2, Young’s modulus ratio E2/Eo
= 20.
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Figure 3.10. Comparison of the variations of the dimensionless interfacial normal stresses in the adhesively
single-sided strap joint over the dimensionless distance from the mid-span: (a) The normal stress at the

upper interface, (b) the normal stress at the lower interface. Thickness ratio ho/h, = 0.2, Young’s modulus
ratio E»/Eo = 20.
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Figure 3.11. Comparison of the variations of the dimensionless interfacial shear stresses in the adhesively
single-sided strap joint over the dimensionless distance from the mid-span: (a) The shear stress at the upper
interface, (b) the shear stress at the lower interface. Thickness ratio ho/h> = 0.5, Young’s modulus ratio E2/Eq
= 20.
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Figure 3.12. Comparison of the variations of the dimensionless interfacial normal stresses in the adhesively
single-sided strap joint over dimensionless distance from the mid-span: (a) The normal stress at the upper
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Figure 3.13. Comparison of the variations of the dimensionless interfacial shear stresses in the adhesively
single-sided strap joint over the dimensionless distance from the mid-span: (a) The shear stress at the upper
interface, (b) the shear stress at the lower interface. Thickness ratio ho/h, = 0.2, Young’s modulus ratio
Ez/Eo =10.
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Figure 3.14. Comparison of the variations of the dimensionless interfacial normal stresses in the adhesively

single-sided strap joint over the dimensionless distance from the mid-span: (a) The normal stress at the

upper interface, (b) the normal stress at the lower interface. Thickness ratio ho/h2= 0.2, Young’s modulus

ratio E2/Eo = 10.
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Figure 3.15. Comparison of the variations of the dimensionless interfacial shear stresses in the adhesively
single-sided strap joint over the dimensionless distance from the mid-span: (a) The shear stress at the upper
interface, (b) the shear stress at the lower interface. Thickness ratio ho/h. = 0.5, Young’s modulus ratio
Ez/Eo =10.
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Figure 3.16. Comparison of the variations of the dimensionless interfacial normal stresses in the adhesively

single-sided strap joint over the dimensionless distance from the mid-span: (a) The normal stress at the

upper interface, (b) the normal stress at the lower interface. Thickness ratio ho/h, = 0.5, Young’s modulus

ratio E»/Eo = 10.
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It is obvious to observe that high interfacial shear and normal stress concentrations exist near the

interior edges of the adherends. For both types of joints with and without the adhesive layer, due to the

existence of a bending moment at the mid-span, as illustrated in Fig. 3.1(b), the peak value of interfacial

normal stress at the interior edges is much larger than that of the shear stress in all the cases under this

study. At both the upper and lower surfaces of the adhesive layer, the peak value of the shear stresses

decreases with increasing adherend thickness ratio hi/h,. In particular, the shear stresses at the upper and

low surfaces of the adhesive layer have close variation trending along the interface excluding the case of

hi/h, = 0.5. Also, the interfacial normal stresses at the upper and lower interfaces have very similar variation,

both increasing rapidly with the decrease of adherend thickness ratio h:/h,. This implies that a thicker upper

adherend (i.e., larger flexural rigidity of the cover layer) can suppress the joint deflection and flexural stress

and therefore suppress the debonding failure. The larger normal stress at the upper surface of the adhesive

layer implies that the debonding failure would be pliable to appear along the upper adherend/adhesive

interface. The observed varying trends of both the interfacial shear and normal stresses hold for all the cases

under this investigation.

3.3. Conclusions

The semi-analytic ASSJ model well demonstrated the proposed method for interfacial stress

analysis under mechanical or thermomechanical loads. First of all, two unknown interfacial shear and

normal stress functions were introduced at each interface of the ASSJ. Secondly, by means of Euler-

Bernoulli beam theory and 2D linear elasticity, the total stress field was expressed in terms of the interfacial
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stress functions. Next, a set of four governing ODEs has been successfully formulated by triggering the
theorem of minimum complementary strain energy, which was solved by using eigenfunction method. A
semi-analytic solution can be derived for all ABJs made of three layers subjected to tension, shear force,
bending moment, and thermomechanical loads. The stress results for each type of joint can be determined
by modifying the traction BCs due to the different applications. The interfacial stress results [Fig. 3.3(a) &
(b)] as predicted by the proposed ASSJ model not only satisfy all the traction BCs at the adherend ends and
across the interfaces but also are validated by FEA.

By examining the interfacial stresses of thermostat in Figs. 3.6 and 3.7, the adhesive layer carries
a large thermal expansion due to its relatively high Poisson’s ratio, which is responsible for the higher
interfacial stresses at the lower surface constrained by a stiffer adherend. This observation can be
understood such that large thickness and low modulus of the adhesive layer could cause large mismatched
deformations between the upper and lower adherends owing to the inconsistent thermal expansion.

Furthermore, by scaling analysis, it can be concluded that when letting only one parameter vary
and fixing the rest parameters, both the interfacial shear and normal stresses decrease noticeably with
increasing thickness of the adhesive layer and also decrease slightly with decreasing elastic modulus of the
adhesive layer under the parameters utilized in this study. This observation can be understood such that the
thicker and more complaint adhesive layer could provide larger deformation to accommodate the
mismatching deformations between the upper and lower adherends and therefore decrease the interfacial
stresses. Thus, the above scaling analysis could provide a clear picture on how the joint geometries and
material properties influence the interfacial shear and normal stresses. These scaling results can be used to

guide reliable and rational design and strength/failure analysis of ABJs.
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Consequently, it needs to be emphasized that the theoretical formulation of the present stress-
function variational method is within the framework of Euler-Bernoulli beam theory and linear elasticity,
and no further assumptions were introduced during the above process. Therefore, the present theoretical
modeling of stress field in ABJs is theoretically self-consistent; accuracy of the stress field of ABJs based
on the present model only relies on the numerical process in solving the resulting set of 16 simultaneous
linear algebraic equations [Egs. 3.64(a-p)].

The present model can be further exploited for accurate structural design and optimization of ABJs
since only one theoretical limitation was in the model assumption such that the axial stress in the joint varies
linearly across the thickness. It needs to be noted that except the external stress expression in column {D}
relevant to the BCs, all the derivations above are independent of the specific configuration of the ABJ.
Based on this, the set of governing ODE is suitable for developing robust, high-efficiency methods for

stress analysis of other ABJs as to be demonstrated in the following two chapters.
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4. INTERFACIAL STRESS ANALYSIS OF ADHESIVELY BONDED SINGLE-LAP JOINTS

4.1, Introduction

Similar to ASSJ, Fig. 4.1(a) shows the configuration of an adhesively bonded single-lap joint

(ABSLJ), which illustrates the shear traction applied at the right end of substrate layer. In contrast, at the

left side of the cover layer, it is assumed that the joint to be fixed at a designed length far away the bonding

area. The geometrical and mechanical parameters are given as: bonding length L, thicknesses h; (i = 0,1,2),

Young’s modulus E; (i =0,1,2), and Poisson’s ratio vi (i = 0,1,2), and coefficients of thermal expansion g; (i

=0,1,2). The variables carrying subscripts 0, 1 and 2 represent those relating the adhesive layer, cover layer,

and substrate layer, respectively. Similarly, the width b of the joint is considered to be unit. The x-coordinate

in this simplified 2D system starts from the bonding line; the y-coordinate is along the vertical direction at

the layer edge. In reality, both of the cover and bottom layers have the length much longer than the length

of the bonding line. In the process of stress analysis, the left side of the upper layer is assumed to be fixed

and the length of the bottom layer is L, so that there is only one bending moment resultant acting on the

cover layer. In addition, the adhesive layer and two adherends of the ABSLJ are treated as isotropic, linearly

thermoelastic materials, respectively. Fig. 4.1(b) illustrates the interfacial shear and normal stresses of the

joint subjected to a uniform shear traction 1o and bending moment resultant M1 = 1oL at the cover layer.

Since singular stresses of the joint appear near the edge of adherends due to mismatched materials boned

at a sharp edge, creating a refined mesh in FEA can seize the high stress in the thin adhesive layer, which

can demonstrate a reasonable comparison between the stress field predicted by the present stress-function

variational method and those predicted by FEA . Fig. 4.1(c) displays the geometrical model of the single
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lap joint subjected to a uniform shear force, which is used for FEM simulation of the stress field of the joint.

In addition, plane-stress state is employed in this ABJ. As aforementioned, for the purpose of determining

the stress field of the ABJ in the plane-strain state, it needs to replace the Young’s moduli E; (i = 1,0,2) by

(1- vi?)/E;, Poisson’s ratios v (i = 1,0,2) by vi /(1- vi ), and coefficients of thermal expansion a; (i = 1,0,2)

by (1+ vi)a.
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Figure 4.1. Schematic of an adhesively bonded sing-lap joint: (a) Geometrical configuration consists of a

slender cover layer, an adhesive layer, and a slender substrate layer; (b) distribution of interfacial stresses
in the joint; (c) geometrical model and loads for FEM simulation.
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4.2. Model Formulation
Following the same process of the ASSJ in Chapter 3, the ABSLJ is assumed to be subjected to a
shear traction to, the physical conditions of the axial force, shear traction, and bending moment of ABSLJ

can be conveniently altered from [Figs. 3.2(a)-(c)] such that

$,(0)=0, (4.1a)
Si(L) =0, (4.1b)
Q,(0) =t,bh,, (4.1¢)
Q(L)=0, (4.1d)
M, (0) =bm,, (4.1e)
M, (L) =0, (4.1f)
S,(0)=0, (4.19)
S,(L)=0, (4.1h)
Q,(0)=0, (4.1i)
Q, (L) =t4bh,, (4.1j)
M,(0) =0, (4.1K)
M,(L) =0, (4.11)
S,(0) =0, (4.1m)
Sp(L) =0, (4.1n)
Q,(0) =0, (4.10)
Qy(L) =0, (4.1p)
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M,(0) =0, (4.10)

M,(L)=0. (4.1r)

where to and m; are the average shear force and bending moment resultant per unit width of the joint. Given
the unknown interfacial shear and normal stress functions at the upper and lower interfaces (z1 = f1, 72 = f,
o1 = 01, 62 = ¢2), the axial normal force, shear traction, and bending moment at the ends of the cover layer

of the joint are expressed with BCs [Eq. (4.1a), Eq. (4.1c), and Eq. (4.1e)] and integration of Egs. (3.4-6):

8,00 =-b[ f,(&)d¢, (4.2)
Qu() =tbh, ~b["g, (£)d¢, (4.3)
M,(0) = bm, +t,bhyx—bf) [ g,()dgde — 22 [ f,()ae, @.4)

Similar to those in Chapter 3, with BCs [Eq. (4.1m), Eq. (4.10), and Eqg. (4.19)] and integration of

Egs. (3.7-9), the axial normal force, shear traction, and bending moment at the ends of adhesive layer in

ABSLJ are written as:

So(0) =b[ [f,(&) - f,(&)]dg, (4.5)
Qo(x) =] [0,(6)- 9, (£, “s)
M, () =b[" ["19,(¢) - 9,(£)1dgde — % [NEAGERAG) 2 (@.7)

Furthermore, with BCs [Eq. (4.19), Eq. (4.1i), and Eq. (4.1k)] and integration of Egs. (3.10-12), the
axial normal force, shear traction, and bending moment in the bottom adherend of the ABSLJ can be

expressed as

5,00 =b[" f,(£)dg, 48)
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Q,(9 =bJ 9,(£)ds, )

M, =b[ [ g, e [ 1, &), @.10)

Since the bending moment superimposed with a uniform shear traction to on the cover layer which
is caused by the pure shear traction acting on the substrate layer, the axial normal stress can be determined
according to the elementary Euler-Bernoulli beam theory and 2D static equilibrium equation [Eq. (3.33) &

Eq. (3.35)] as

o_S My _ 1
Gxx - bhl Il hl IO fl(g)dé (4 11)
12y, x ¢ h, '
# o Tt o], e:()dgd+ = [ 1(6)de]
[ 1. h 3 h? ~ hf_ 6 h
L e Ot AR O A GRS 3 (Y by, (412)
o __L1ehoh _li_z hﬂh LR
o= G G WG - m[4 >~ W) =5 Co =YD () "
LBl m iy |
3[4(2 Y1) ( ¥1)19,(X).
0) _ S0 M___ _
e e A UGG L
12y ) (4.14)
- h§°{jo N [gl(g)—gz(4)1d4d§—3 INAGERAGILES
© (x)——(yo+h°)[f (-1 (x)]—%(yé—%)[fl(xw £, (0]
(4.15)

h_g(yo —7) [NCAGEIAG)
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0, = 0,00+ 0+ )1, 00+ L0 -+ B (g, + s, 00 1, 0o

h,
3.1, ., h _hg Myvars - .
* g O8 g = Oo+ 00+ 7, 0] (4.16)
he hg hy ~
—E%wo—am—woznmu>mun
2 S, My, 1 12y2
GQZEZ"IT:EL“@mf UngoMM——jf@Mﬂ (4.17)
e 1 h,y, 3. 5 h; hy\
e (N A DO R wz A 9:(8)de, (4.18)
@—%{WZQ Byt DL ) - “m P, 00
e ) ? (4.19)
rﬁ;n-———wzznmm

With the aid of complimentary strain energy functional (3.43) and the theorem of minimum
complimentary strain energy, the interfacial stress equations fi, f2, g1, and g2 should satisfy a set of ODEs

as

[A{®"}+[BH®"} + [CH®}+{D}={0}- (4.20)

where {®} is a column of dimensionless interfacial stress functions and [A], [B] and [C] are system matrices
defined in (3.52), (3.53), and (3.54), respectively. In addition, the dimensionless generalized force column
{D}sa is a function with respect to the shear traction, bending moment resultant, displacement on the

bonding patch, and thermomechanical loads, etc., as below
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D :6ml+—6t0hZX+£(_ao +al)’

' hZE, 2
_12m, +12th,x
? hE, (4.21)
AT
D, = 7(_052 +a,),
D, =0.

Furthermore, subjected to the shear traction, differentiation of the particular solution with respect

to the spatial dimension is:

d 2 d o) 1
Slog)=el* & ob--enZier| 422

It can be noticed from the above that relation (4.22) is a linear function of x. Then, the solution to

the interfacial stress functions can be further expressed as

o)=Yt o} Jow (2, + o, (o Jom(-4,0)]+ () @23)

In the present case, the reduced BCs for ABSLJ are:

F.(0)=0, (4.24)
F(L/h,) =0, (4.24D)
F'(0)=0, (4.24¢)

F'(L/hy)=0, (4.24d)

G,(0) =0, (4.24¢)

G(L/h)="ay b (4.249)
o Pohy

G,'(0) =0, (4.249)
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G, (L/h,) =2 (4.24)

0

F,(0) =0, (4.24i)
F(L/h,)=0, (4.24j)
F,'(0) =0, (4.24K)
F,'(L/h,) =0, (4.241)
G,(0) =0, (4.24m)
G,(L/h,) =0, (4.24n)
G,'(0) =0, (4.240)
G,'(L/h) =2 (4.24p)

0

The differentiations of the particular solutions are utilized to form the resulting set of simultaneous

linear algebraic equations with the above BCs [Egs. (4.24a-p)]:

8 8
e Wyt d Pyt = -, (4.25a)
k=1 k=1
8 8
> c ¥t en(ALI)+ Y d Wt ep(-4 LI h,) =-0f, (4.25b)
k=1 k=1
S k,1 2 k,1 ch(()l)
chﬂ,k\yoy —delk\{’()’ Z—d—, (425C)
k=1 k=1 é:
S k,1 S k,1 chE)l)
DoAY op(4LIh) =D d A ep(-AL/h,) =~ a (4.25d)
k=1 k=1
8 8
> Wyt + Y d Pyt =0, (4.25¢)
k=1 k=1
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8 8
ch\}fok'Zexp(,sz/h2)+de\Pg'2e><p(—/1k|_/h2)=ﬂ+%—q>§f>, (4.25f)
k=1 k=1 0 00
S k,2 S k,2 chE)Z)
2.0AN " -2 At == (4.250)
k=1 k=1 é:
S k,2 S k,2 t0 d(D((JZ)
chﬂklyo' eXp(AkL/hz)_deﬂk\Po' exp(—AL/h,)=—- , (4.25h)
k=1 k=1 pO df
8 8
Do Wt + ) d Wyt =-0f, (4.25i)
k=1 k=1
8 8
2.6 ep(ALIh) + Y d ¥y ep(-AL/h,) =hy,/2-®F, (4.25))
k=1 k=1
S k,3 S k,3 chEf)
DoAY =D A AT = (4.25K)
k=1 k=1 é
S k,3 S k,3 ch(()3)
D G ep(ALIN,) - d A ep(-A LI h,) =~ i’ (4.251)
k=1 k=1
8 8
de Yo+ ) d Wyt = -0, (4.25m)
k=1 k=1
8 8
Y eVt exp(A,Lih)+ Y d Pyt exp(-A,L1N,) =Ny, / 4+ ], (4.25n)
k=1 k=1
S k,4 S k,4 dq)g)4)
chﬂklPO' —deﬂk\ljoy :—d—, (4.250)
k=1 k=1 é:
S k,4 S k,4 t dq)(()A)
chﬂklyo' eXp(AkL/hz)_deﬂk\Po' eXp(_ﬂuL/hz):?_ dz (4.25p)
k=1 k=1 0

where Wi, W% PR and Wit (k = 1, 2, ..., 8) are respectively the 1% to 4" elements of the k-th
eigenvector, and (D(()l) , (Dgz) , (Dés) ,and (Dg4) are the 1% to 4" elements of the particular solution vector {®o}.
Eventually, the interfacial shear stresses [Egs. (3.48) & (3.50)] have the additional terms of

derivation of the corresponding particular solution:
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8 8 @
f,(x)/ Py ==D A (A X/ N,) + D d, 4, V5 exp(-Ax/h,) + di‘; : (4.26)
=) a

8 8
9,0/ Py = D 0 AWy ? (A, X/ h,)+ > d, AWy exp(=A,x/hy), (4.27)
k=1 k=1
2 k,3 $ k,3 dCD(()S)
f,(07 Py == c A ep(Ax/h,) + > d A exp(-Ax/h,) + 0 (4.28)
k1 pa}
8 8
9,()/ P = D C AW (A x/hy) + D d, W exp (-4 x/hy,). (4.29)
k=1 k=1

4.3. Model Validation

Subjected to shear traction to (LMPa), the stress field of ABSLJ is determined by the proposed semi-
analytic stress-function variational method and further compared to numerical solutions based on
ANSYS™ (with the 2D plane-stress element type: PLANE182) using two different mesh sizes (0.1 x 0.1
mm and 0.05 x 0.05 mm). The geometrical parameters of the ABSLJ model are taken as: L =20 mm, h; =
2.0 mm (steel/cover), h, = 2.0 mm (aluminum/bottom), and ho = 0.2 mm (epoxy/adhesive). Parameters of
material properties are given as: E; = 210 GPa, vi = 0.293 (steel/cover), E; = 70 GPa, v» = 0.345
(aluminum/bottom), and Eo = 10 GPa, vo = 0.40 (epoxy/adhesive). During the FEA simulation using
ANSYS™  to constrain the rigid motion of the joint in the horizontal direction under shear traction, a single
corner node is constrained as shown in Fig. 4.1(a).

During the FEA process of the ABSLJ, the shear traction is selected to distribute evenly to all the
nodes on the right edge of the substrate adherend. For instance, the average shear force acting on a node is
calculated based on the force resultant of the uniform shear traction 1 MPa acting on an area of the width

1m and thickness 2 mm:
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Figure 4.2. Validation of the stress-function variational method for interfacial shear and normal stresses in

ABSLJ subjected to shear traction: (a) Interfacial shear stress, (b) interfacial normal stress.
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Shear force with the average force magnitude is applied to the inner nodes of the elements of the
joint, while shear force with the half average force magnitude is applied to the first and last edge nodes.
Figs. 4.2 (a) and (b) are the interfacial shear and normal stresses predicted by the present stress-function
variational method and related validation by ANSYS™, from which it can be observed that the model
predicted shear stresses satisfy the shear-free BCs. Also, the present semi-analytic method and FEM
simulation both predict the interfacial normal and shear stresses carrying the same trends along the bonding
lines. The shear stresses predicted by the present joint model are slightly higher than those by ANSYS™.
Due to the sharp edges responsible for the singular stresses at the joint free-edges, the values of free-edge
stresses of the joint predicted by FEA are expected to increase with decreasing mesh size. From the
predicted interfacial stresses, it can be found that the normal stress at the upper interface is higher than that
at the lower interface, which indicates that debonding failure would most likely initiate at the left edge of
this particular ABSLJ.

In addition, Erdogan and his co-workers published an analytic joint model for predicting the
interfacial stresses of ABSLJ subjected to tension, shear, or bending moment, or their combinations (Delale
et al., 1981). The deficiencies of Erdogan’s joint model are ignorance of the thickness effect of adhesive
layer and non-satisfaction of the shear-free BCs. As a result, the stress field predicted by Erdogan’s joint
model has a large deviation from those predicted by FEA and also the present stress-function variational
method. Erdogan’s joint model is one of the important semi-analytic joint models available in the literature.
In Erdogan’s ABSLJ model, the interfacial shear and normal (peeling) stresses are given by the following

two expressions:
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7(x) = K, + K, sinh(¢,x) + K, cosh(¢,x) + K, sinh(¢,x)

+ K, cosh(g,x) + K, sinh(¢,x) + K, cosh(g,x). (4.31)
o(x) = —i[(alcﬁl + ¢ )(K, cosh(¢,x) + K, sinh(g, x)
a,
+ (¢, + ¢; )(K; cosh(g,x) + K, sinh(g, x) (4.32)

+ (a5 + ¢33)(K5 cosh(g;x) + K sinh(g;X)].
where Ko, K1, Ko, K3, K4, Ks, and Kg are the integration constants, a1 and ay are related to the geometrical

parameters, ,,q,, and ¢,are complex numbers, which are determined to satisfy the multiple traction BCs

of the joint.
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Figure 4.3. Comparison of interfacial stresses predicted by the present stress-function variational method
with those by Erdogan’s model subjected to shear traction: (a) Interfacial shear stress, (b) interfacial normal

stress.
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In Fig. 4.3(a), the maximum and minimum values of the interfacial shear stresses according to Eq.
(4.31) are overestimated though Erdogan’s joint model predicts the similar values of the shear stress as
predicted by the current method. On the left side of Fig. 4.3(b), the peak values of the interfacial normal
stresses at the upper and lower interfaces according to Eq. (4.32) are only close to the medium ones
predicted by the present method. However, at the right end, the peak values of the interfacial normal stresses

are far higher than those predicted by the present method.

4.4. Conclusions

In this chapter, the stress-function variational method has been furthered to determine the stress
field of ABSLJ. Similar to those developed in Chapter 3, a semi-analytic solution has been derived by
introducing two unknown interfacial shear and normal stress functions at each interface of the ABSLJ. The
proposed joint model predicted severe concentration of interfacial stresses at the left end of the joint, which
has been validated by commercial FEA package (ANSYS™). The interfacial normal stresses are supposed
responsible for debonding failure of the ABJs because their peak values are much larger than those of the
shear stresses. The predicted interfacial shear stresses satisfy the shear-free condition at the free edges of
adherends, which is normally ignored in the majority of joint models well documented in the literature. In
addition, the present semi-analytic stress-function variational method only used two fundamental
assumptions of Euler-Bernoulli beam theory and 2D linear elasticity, and the accuracy of the stress field of
ABJs predicted by the present method only relies on the numerical process in solving the resulting set of

16 simultaneous algebraic Eqgs. [4.25(a-p)].
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With the robust numerical stress field predicted by the present ASSJ and ABSLJ models, the stress

field of general ABJs or other bonded joints subjected to arbitrary combination of tension, shear traction,

bending moment or temperature change can be accurately predicted as the superimposition of the interfacial

stresses caused by each load separately.
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5. APPLICATIONS OF STRESS-FUNCTION VARIATIONAL METHOD FOR INTERFACIAL

STRESS ANALYSIS OF OTHER JOINTS

5.1. Adhesively Single-sided Bonded Joints

5.1.1. Introduction

In this section, the robust, high-efficiency stress-function variational method formulated in Chapter
3 is further used for stress analysis of adhesively single-sided bonded joints (ASSBJs). In this case, the
configuration of an ASSBJ is shown in Fig. 5.1(a), which consists of a cover layer, an adhesive layer, and
a substrate layer from the top to bottom with the uniform width b and overlap bonding length L. The
coordination system is created from the symmetric mid-span of the joint; the y-axis is selected perpendicular
to x-axis. The cover layer carries the thickness hi, Young’s modulus E1, and Poisson’s ratio v1; the adhesive
layer bears the thickness hg, Young’s modulus Eo, and Poisson’s ratio vo; the bottom layer has the thickness
h2, Young’s modulus E,, and Poisson’s ratio v.. In particular, a uniform tension is applied at the two ends
of the substrate layer. Besides, illustration of the interfacial stresses is shown in Fig. 5.1(b). Since the joint
is structurally symmetric with respect to the y-axis, only the right half portion of the joint is needed for
stress analysis by means of the innovative stress-function variational method formulated in this study and
FEM based on the commercial FEA software package (ANSYS™) [Fig. 5.1(c)]. As aforementioned, when
the joint is loaded in plane-strain state, it only needs to replace the Young’s moduli E; (i = 1,0,2) by (1-
vi?)/Ei, Poisson’s ratios vi (i = 1,0,2) by vi /(1- vi ), and coefficients of thermal expansion a; (i = 1,0,2) by

(1+ vi)ai.
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Figure 5.1. Schematic of an adhesively single-sided bonded joint: (a) Geometrical configuration consists
of an identical substrate layer, an adhesive layer, and a slender cover layer, (b) interfacial stress distribution,
and (c) geometrical model and loads for FEM simulation.

5.1.2. Model Formulation

Theoretically, static equilibrium equations of the representative segmental element of the upper
adherend, adhesive layer, and lower adherend are the same as those used in the previous two chapters.
External mechanical loadings in terms of axial force, shear traction, and bending moment at the ends of the
three layers [Figs. 3.2(a)-(c)] are taken into account. The traction BCs in terms of force and moment

resultants are given as
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$,(0)=0, (5.1a)

Si(L) =0, (5.1b)
Q,(0) =0, (5.1c)
Q,(L) =0, (5.1d)

M,(0) =0, (5.1¢)
M, (L) =0, (5.1f)
S,(0) = pybh,, (5.1g)
S, (L) = pybh,, (5.1h)
Q,(0) =0, (5.1i)
Q,(L)=0, (5.1))
M,(0) =0, (5.1K)
M,(L) =0, (5.11)
$:(0) =0, (5.1m)
Sp(L) =0, (5.1n)
Q,(0) =0, (5.10)
Q(L) =0, (5.1p)
M,(0) =0, (5.1q)
M, (L) =0. (5.1r)

In this case, it is convenient to conduct accurate stress analysis of the ASSBJ model due to its

simple geometrical configuration. Similar to the derivations developed in the proceeding Chapters 3 and 4,

the static equilibrium equation of the representative segmental elements can be introduced. In the present
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model with no external loadings at the cover layer, the normal force, shear traction, and bending moment

of the joint can be expressed as

5,(x) =-b[ f,(£)de, (5.2)
Q09 =-b[",(&)d¢, 59
M09 =-b[ [ g (£)dede — 2 [ ,()de -
Similarly, for the adhesive layer, it reads

$5() =b[ [f,(&) - ,(&)]d¢, (55)
Qo9 =b 10,(6) - 9 (e, 56
Mo () =b[" [ 10,(¢) - 9,()]dde —% [ 11,0+ f.(&)lde. (5.7)

The external loading po is implemented at the edges of the substrate layer, thus
$,(¥) = pobh, +b[ 1, (&)d¢, (5.8)
Q,(9 =b[ 9,(£)d, 59
M, (0 =B [} 9,()deds — 202 [ 1, ()de (5.10)

Compared to the previous two joint models (i.e., ASSJ and ASLBJ), the ASSBJ has the uniform
axial traction po at both the ends of the substrate layer. Similarly, the stress components can be expressed

on the basis of the Euler-Bernoulli beam theory and 2D elasticity [Egs. (3.33) & (3.35)].

12y,
hy

O i‘m*%f: fL(£)de+

X h ex
Y ([ s.©dte+2 [ 1.zl s

o _ Loy 30 LU
i (e N S UG Rl v9)|, 9.(£)de,

(5.12)
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e e I L NU SRR ILER) SN E

Tw T TR h- 4 2 (5.13)
by 1R s
G G w3 e,
0 S0 I\/IO 0 12 0
o = ,y = I [1.(£) - £,(£)]d¢ y{j [ 100 - 0, (dcde
f;] ° (5.14)
S AGEAGILE)
A == 00—+ IR0~ 001~ 0 0+ 1,00
. h§ M, (5.15)
Hp =) [ 19:(8) - 9,(91d,
o, = 0,00+ (¥, + °)f (OF [ (yo——) —°(yo h°)1[f 0= £, '(x)]
0 __o ho
h§[3(yo PR RE) AACRRA) (5.16)
hé hy _
hf[3(y° _)_Z(yo—i_?)][gl(X) gl(x)]'
S M,y 1 x 12y
cri?:@—f:powjo f,(£)dé - 2[] [ gz<4>d§d§——j f,(£)de], (5.17)
1 h,, 3 h? hZ | px
§f§——h—2[(y2+?)+h—2(y§ —If, (X)+ (Y2 )IO 9,(£)d¢é, (5.18)
R STV DL TR T TR L SO XY
h, . i 2 (5.19)
—E[s(yz 2)—72(y2+52>]gz(x).

In the next step, according to the theorem of minimum complementary strain energy, the strain
energy functional (3.43) is further adopted to form a set of governing ODEs in terms of the interfacial stress
functions f1, f2, g1, g2 [EQs. (3.1-2)] over the bonding line. In the form of dimensionless interfacial stress

functions, the set of 4"-order governing ODEs is
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[A{®™ }+ [BH®" }+ [CH®}+{D}={0}. (5.20)

In the above, {®}={F,(£),G,(£),F,(£),G,(E)} is the stress function column as defined in
Chapter 3, matrixes [A], [B], and [C] are relevant to the structural and material properties as defined in
relations (3.52-54), i.e., [A], [B] and [C] are independent of the specific joint type. Generalized
dimensionless force column {D}sx1 defined in (5.21) is relevant to temperature change, coefficients of
thermal expansion, tension, Young’s modulus of the substrate layer. In particular, effect of axial tension is

investigated in this section and temperature change is set as zero.

AT

D, = 7(—050 +a,),
D, =0,
(5.21)
AT
D, =-p,/E, +7(—a2 +a,),
D, =0.
Thus, traction BCs of the DLBJ can be extracted as
F (0) =0, (5.22a)
F(L/h)=0, (5.22b)
F'(0)=0, (5.22¢)
F'(L/h,)) =0, (5.22d)
G,(0) =0, (5.22¢)
G,(L/h,) =0, (5.22f)
G,'(0) =0, (5.229)
G,'(L/h,)=0, (5.22h)
F,(0) =0, (5.22i)
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F,(L/h,) =0,

F,'(0) =0,
F,'(L/h,) =0,
G,(0) =0,
G,(L/h,)=0,
G,'(0) =0,
G,'(L/h,)=0.

(5.22j)
(5.22k)

(5.221)

(5.22m)

(5.22n)

(5.220)

(5.22p)

Owing to the structural and loading symmetries, all the right sides of BCs [Eqs. (5.22a-p)] are set

to zero. Then, the set of simultaneous linear algebraic equations can be conveniently expressed as

8 8
eyt + ) d Yt =—0y,
k=1 k=1

8 8
Y e ¥t ep(4L/h)+> d ¥y ep(-4 L) =-0f,
k=1 k=1

8 8
chﬂkq]gi _de/iklpg’l =0,
k= k=

8 8
Y oA ep(A4 L) =Y d AW exp(-AL/h,) =0,
k=1 k=1

8 8
Wi+ d Wyt =—0f,
k=1 k=1

8 8
Y e en(4L/h)+ Y d Wy ep(-4L/h) = -0,
k=1 k=1

8 8
chﬁkqjé('z _deﬂ'k\P(;(’z =0,
k=1 k=1
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(5.23b)

(5.23¢)

(5.23d)

(5.23¢)

(5.23f)

(5.23)



8 8
DAY ep(A L) - d A Y2 exp(-4,L/h,) =0, (5.23h)
k=1 k=1

8 8
D e W+ d Wy =0, (5.23i)
k=1 k=1
8 8
> cHfo(A,L/h)+ > d ¥t ep(-AL/h) = -0, (5.23))
k=1 k=1
8 8
> e A= d AP =0, (5.23k)
k=1 k=1
8 8
DAY ep(A4Llh,)-> d A ¥ ep(-4L/h,) =0, (5.231)
k=1 k=1
8 8
W+ d Wyt =—af, (5.23m)
k=1 k=1
8 8
> c ¥t ep(AL/h)+ Y d ¥ ep(-A L/ h) =—0f, (5.23n)
k=1 k=1
8 8
DAYyt =Y d A =0, (5.230)
k=1 k=1
8 8
DAY ep(4Lih)-> d A ¥ ep(-AL/h,) =0, (5.23p)
k=1 k=1

where \Pg'l, ‘Pok'z, \PE’S, and ngA (k=1, 2, ..., 8) are respectively the 1% to 4™ elements of the k-th
eigenvector, and (D(()l) : (Dgz) , q)és) ,and (Dg4) are the 1 to 4" elements of the particular solution vector {®o}.
The final interfacial shear and normal stresses carry the same formal expressions as those in for

ASSJ:

8 8
fl(x)/ Po = _Z:Ck/ﬁtklljg’1 EXp(ikX/hz) "’de;tklpg'l EXp(_/ikX/hz)’
k=1 k=1 (5.24)

8 8
0:(x)/ Py = DAYy ep(A X/ h,) + D d ¥y ? exp (=4 x/ h,),
K=1 k=1 (525)
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8 8
f,()/ Py ==Y C A Yo exp(Ax/h,) + D d AWy exp(-A,x/h,), (5.26)

k=1 k=1
8 8

9,(X)/ Py =D _c ¥yt exp(Ax/hy) + D d AW, exp(=A,x/h,). (5.27)
k=1 k=1

5.1.3. Model Validation

To validate the stress functional variational method for interfacial stress analysis of the proposed
joint model, the ASSBJ is assumed under action of uniform axial tension on the substrate layers. In this
case, the right half-symmetric portion of the joint is used in the simulation. In the present case, the bonded
length used in the joint model is L/2 = 10 mm. The rest geometrical and material parameters are selected
as: hy= 2.0 mm, E1 = 210 GPa, v1 = 0.293 (steel cover), h,= 2.0 mm, E>;= 70 GPa, v, = 0.345 (aluminum
bottom), ho=0.2 mm, Eo = 10 GPa, and v = 0.40 (epoxy adhesive). The given tension po is assumed to be
1 MPa. The stress analysis of the tested joint model is based on the commercial FEA software package
(ANSYS™),in which the PLANE182 element type is used as considered in the precious chapters. Two
different mesh sizes (0.1 x 0.1 mm and 0.05 x 0.05 mm) are utilized consecutively for the purpose of
comparison since at the free edges, the stresses tend to increase rapidly with refining mesh size due to the
nature of stress singularity existing at the free-edges of bimaterials. As shown in Fig. 5.1(c), to eliminate
the vertical rigid motion of the computational joint model for FEA, a single corner node is used to constrain

the vertical displacement at the node.
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Figure 5.2. Validation of the stress-function variational method for interfacial shear and normal stresses in
ASSBJ subjected to uniform axial tension: (a) Interfacial shear stress, (b) interfacial normal stress.

In Fig. 5.2(a), as expected, the interfacial shear stresses determined by the present stress-function

variational method exactly satisfy the shear-free BC at the end of x = 10 mm. Obviously, the maximum

7



peak values of the interfacial shear stress at the lower interface are a little higher than those at the upper
interface. In Fig. 5.2(b), it can be observed that the high normal stresses are responsible for the debonding
failure of ABJs. In contrast, the peak values of the normal stress at the lower interface are much lower than
those at the upper interface. Yet, the lower interface stress bounces back near the free edges, nor does the

upper interface stress.

5.1.4. Conclusions

As the third case study of the present work, the ASSBJ model again demonstrated the robust, high-
efficiency stress-function variational method for stress analysis of ABJs. Subjected to uniform axial tension
on two sides of the substrate layer, a semi-analytic solution has been derived via introduction of two
unknown interfacial shear and normal stress functions at each interface of the ASSBJ and triggering of the
theorem of minimum complementary strain energy. In addition, though not performed vyet, the
thermomechanical effect on the stress analysis of ASSBJ could also be investigated similar to that of ASSJ
as demonstrated in Chapter 3. From Fig. 5.2, it can be observed that the concentration of interfacial stresses
gained by the present stress-function variational method occurs close to the ends of the joint. Furthermore,
the stress field of ASSBJ obtained by the present semi-analytic method has been validated successfully by
using two different meshing schemes in computational stress analysis by using FEM (ANSYS™). Within
the theoretical framework of Euler-Bernoulli beam theory for axial stresses and linear elasticity, the
accuracy of stress function variational method for stress analysis of the present ASSBJ model only relies

on the numerical process in solving the resulting set of 16 simultaneous algebraic Egs. 5.23(a-p).
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5.2. Double-Lap Bonded Joints

5.2.1. Introduction

Bonded joints, combined with three adherends of the same or dissimilar materials, have also found
broad applications in practice. For instance, recently developed flexible electronics are one of the typical
examples of such bonded joints, where the rigid silicon islands are bonded onto the compliant polymeric
substrates. In such bonded joints, substantial interfacial stress concentrations may cause debonding failure
at free ends of the adherends under mechanical or thermomechanical loads. As natural extension of the
above studies, the robust, efficient stress-function variational method can be further extended for the stress
analysis of such type of bonded joints. In addition, accurate stress analysis of bonded joints can be beneficial
to optimal joint design and monitoring structural failure in bonded joints such as progressive cracking.

Without loss of generality, the goal of the upcoming work is to formulate a systematic analytic
method in solving the stress distribution in bonded joints based on the well-validated stress-function
variational method in the proceeding chapters. Similar to the above theoretical formulation, two interfacial
shear and normal stress functions are introduced on each interface of the joint. Then, stress equilibrium
equations for each layer are established; expressions of the planar stress components can be constructed
based on the elementary Euler-Bernoulli beam theory and 2D elasticity. Furthermore, a set of 4"-order
differential equations, resulted from minimization of the complementary strain energy of the bonded joints,
can be gained and further solved by using eigenfunctions. Finally, a computational code based on
MATLAB™ is designed to implement the semi-analytic method for stress analysis.

Hereafter, the stress-function varational method is utilized for interfacial stress analysis of double-

lap bonded joint (DLBJ) as shown in Fig. 5.3(a), in which three adherend layers are involved, similar to the
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above ABJs. Unlike the other models, DLBJ has a middle layer under uniform tension po on the right side,

and its top and bottom layers are subjected to a traction p: = peho/(2h1) on the left side. The coordinate

system is introduced as shown in Fig. 5.3(a), in which the x-axis is set along the axis of the middle adherend

layer while the y-axis is established vertically. Schematic distribution of the interfacial stresses is shown in

Fig. 5.3(b). Fig. 5.3(c) shows the geometrical model, loads, and BCs of the half-symmetrical joint to be

used for FEA-based computational validation of the stress field predicted by the present stress-function

variational method, where structural and loading symmetries have been used.
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-

P1=po (2 ) :: E1,m

Eo.w —
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AN AN AN
(©
Figure 5.3. Schematic of a double-lap bonded joint: (a) Geometrical configuration consisting of an identical
substrate layer, an adhesive layer, and a slender cover layer, (b) interfacial stress distribution, and (c) half

symmetrical model for FEA.
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5.2.2. Model Formulation

Based on the free body diagrams as shown in Figs. 3.2(a-c), the given BCs in terms of the axial
forces, shear tractions, and bending moments at the ends of the upper, middle, and lower adherends are

expressed as

S,(0) = %m’, (5.28a)
Si(L) =0, (5.28b)
Q,(0) =0, (5.28¢)
Q(L)=0, (5.28d)
M, (0) =0, (5.28¢)
M, (L) =0, (5.28f)
S,(0) = %, (5.280)
S,(L)=0, (5.28h)
Q,(0)=0, (5.28i)
Q,(L)=0, (5.28j)
M, (0) =0, (5.28K)
M,(L) =0, (5.281)
S¢(0) =0, (5.28m)
S (L) = pybhy, (5.28n)
Q,(0) =0, (5.280)
Qy (L) =0, (5.28p)
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M, (0) =0, (5.280)
M, (L) =0. (5.28r)

By introducing four independent unknown interfacial shear and normal stress functions (f1, g1, 2,

g2) at the upper and lower interfaces, integration of the internal force equilibrium equations (3.4-6) leads to

the stress resultants in the upper layer:

Pobhy X
S1(x) = —b [ f.(£)d¢, (5.29)
Q(x) =-b] 9,()dé, 5.30)
X h X
M40 = -b[) [ g (©)dede — 2 [ f,()de
(5.31)

Similarly, integration of internal force equilibrium equations (3.10-12) yields the stress resultants

in the bottom layer:

S, (x) = pOTbhO +b[ (&), (5.32)
Q, () =b] 9,(£)d¢, 539)
M. (0 =b] [} 9,()deds — 202 [ 1, ()de 5:34)

Consequently, integration of internal force equilibrium equations (3.7-9) results in the stress

resultants in the middle layer:

S0 =D [,(6) - T,(£)1dé, (5.35)
Q (%) =b[[9:(&) - g, (&)]d¢, 5.36)
Mo () =b[ [ [0,(£) - 9,({dcle —% [NAGERAG) (5.37)
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Similarly, by assuming that the axial stresses in the adherends follow Euler-Bernoulli beam theory
and 2D elasticity as used in Chapters 3 and 4, all the planar stress components can be determined in terms
of the four unknown interfacial stress functions f; (i = 1,2) and gi (i = 1,2) defined at the two interfaces of

the DLBJ.

ai?:%—@:p()———j f(E)de+ 12y1[j [oae+ [ 1@de, 639

o) = [(—1—y1)——(——y1)]f()— (%—yf)jjgl(é)df,

TR 2 (5.39)
P U W N ¥ K?
e R U By B L B R (R A
h% th zhl L b o >
el G w3 e
©_ S0 _Mo¥o _ 1 s sy
T N AO RO
12y (5.41)
°{j [[lo.0)- gz(;)]df;df——j [,(&) + ,(£)1d},
A == 00—+ IR0~ 001~ 0 0+ 1,00
2 L (5.42)
Rt —%) (0.9 - 9.(&N0e.
00, = G0+ (o + ) 09 + [%(yé By M0 00 1, 000
oy R Moy -
08+~ 0+ I 00+ 1, ) (5.43)
6.1 o _ 2 hy _
G0 )~ O .00 - 6,001

Y N 0.(O)dede -2 [ 1,()de],
(5.44)

S, M,y p
@ _ 22 _MaYs _ Po de —
O hh, N, T 2h, hzj (6)ds
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R U DIV RS ] ENOLER

o, By =)+ 2+ R0+ - By, + D 0
2 (5.46)

HEUE 1B+ Mg, 00,

By triggering the theorem of minimum complementary strain energy of the DBLJ similar to those
formulated in Chapters 3 and 4, a similar set of four 4th-order ODEs (Eg. 5.20) in terms of the four
dimensionless stress functions can be determined. In this case, system matrices [A], [B], and [C] are the

same as (3.52-54), and the generalized dimensionless force column {D}.x1 can be determined in terms of

the joint geometries, material properties, mechanical loads and temperature change as

PN,
1= ZholE 2 —(~a, +ay),
2, =0, (5.47)
3= pOh ( —a, +a,),
2h2E 2
D, =0.

As a result, the above traction BCs of the joint (5.28a-r) can be reduced in terms of the

dimensionless interfacial stress functions as

F.(0) =0, (5.48a)
F(L/h)=—h,/2, (5.48b)
F'(0) =0, (5.48¢)
F'(L/h,)=0, (5.48d)
G,(0) =0, (5.48¢)
Gy(L/hy) = =T (5.480

84



G,'(0) =0, (5.489)

G,'(L/h,) =0, (5.48h)
F,(0) =0, (5.48i)
F,(L/h)=h,/2, (5.48])

F,'(0) =0, (5.48K)
F'(L/h,)=0, (5.481)
G,(0) =0, (5.48m)

G,(L/h,)=—h,,/4, (5.48n)
G,'(0) =0, (5.480)
G,'(L/h,)=0. (5.48p)

By using the similar procedure as described in Chapter 3, a set of simultaneous linear algebraic

equations can be expressed with the above BCs [Eqgs. (5.48a-p)]:

8 8
eyt + ) d Yt =—0f, (5.49a)
k=1 k=1
8 8
eVt ep(4 L)+ d Y exp(-A L1h,) =-[h, 2+ DP], (5.49b)
k=1 k=1
8 8
e AW =Y d A =0, (5.49¢)
k=1 k=1
8 8
Y A ep(4LIh) =Y d A Y ep(-4L/h,) =0, (5.490)
k=1 k=1
8 8
¥+ d Wyt =-0f, (5.49)
k=1 k=1
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8 8
Y e ?em(AL/h,)+ ) d ¥y f exp(-AL/h) =—[h,h,/ 4+ D], (5.49f)
k=1 k=1

8 8
Yo AW =D d A =0, (5.490)
k=1 k=1
3 k,2 h _ S k,2 _
Y A ep(A4LIh) - d A ¥ ep(-AL/h,) =0, (5.49h)
k=1 k=1
8 8
D e W+ d Wy =0, (5.49i)
k=1 k=1
8 8
Y.c ¥y ep(ALIn)+ Y d ¥y ep(-AL/h,) =h,/2-0F, (5.49))
k=1 k=1
8 8
D e A= d AW =0, (5.49k)
k=1 k=1
2 k,3 2 k,3 _
> e AP ep(A L) - d A exp(-4.L/h,) =0, (5.491)
k=1 k=1
8 8
D Wt + ) d Wyt =—af?, (5.49m)
k=1 k=1
8 8
eyt ep(AL/h)+> d W exp(-A,L1h) =—hy,/4+D], (5.49n)
k=1 k=1
8 8
DAYyt =Y d A =0, (5.490)
k=1 k=1
8 8
DoAYy ep(4LIh) - d, AWy exp(-4L/h,) =0, (5.49p)
k=1 k=1

k k k k :

where, ¥, W%, WEand Wit (k= 1,2, ..., 8) are respectively the 1% to 4™ elements of the k-th
eigenvector, and (I)gl) , CDEf’ , (Dés) , and <D§4) are the 1% to 4" elements of the particular solution vector {®o}.
Ultimately, the final solutions of interfacial shear and normal stresses can be expressed in the forms similar

to solutions (5.24-27).
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5.2.3. Model Validation

For model validation, the DLBJ is assumed to be subjected to uniform axial tension on one side of
each adherend as shown in Fig. 5.3(c). Herein FEM based on commercial FEA software package
(ANSYS™) is used to simulate the stress field in the top half-symmetrical portion of the DLBJ model.
Plane-stress PLANE182 element is used for the FEM simulation. The FEA results are compared with those
gained from the present semi-analytic DLBJ model. Geometrical and material parameters used in the FEM
simulation are kept as the same as those used in the proceeding simulations: L = 10 mm, h; = h, = 1.0 mm,
E: = E, =210 GPa, v1 = v, = 0.293, ho=2 mm, Eo = 70 GPa, and v, = 0.345. The active tension po is fixed
as 1 MPa, and the reaction tension p1 = 1 MPa based on p: = poho/(2h,) [Fig. 5.3(b)]. In FEM simulation of
the stress field of the DLBJ based on ANSYS™, two different mesh sizes (0.1 x 0.1 mm and 0.05 x 0.05
mm) are utilized at the two free ends of each adherend layer. A single corner node is used to constrain the

horizontal displacement in avoiding the rigid motion of the joint as required in FEA based on ANSYS™,
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Figure 5.4. Validation of the stress-function variational method for the interfacial shear and normal stresses
in double-lap bonded joint subjected to uniaxial tension: (a) Interfacial shear stress, (b) interfacial normal
stress.
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Due to adoption of symmetrical conditions of the joint in FEA, the shear and normal stresses at the

lower interface have the same values as those at the upper interface. It can be observed from Fig. 5.4(a) that

two peak values of the interfacial shear stresses appear close to the edges on each side, the first reaches at

0.15 MPa while the second reaches at ~0.42 MPa. In Fig. 5.4(b), it can be found that the peak value (0.29

MPa) of the normal stress happens at the right end. Compared to the interfacial shear stresses, the value of

interfacial normal stresses is not as high as that of the interfacial shear stresses, to some extent, it is even

lower.

5.2.4. Conclusions

The stress analysis of the DLBJ further endorses the applicability of the novel stress-function
variational method for interfacial stress analysis of bonded joints. It can be concluded that once the middle
adherend is regarded as the adhesive layer, in the view of mechanics, the DLBJ can be treated as the same
as ASSJ studied in Chapter 3. Technically, the interfacial shear and normal stresses can be expressed in
explicit forms. The gained stress field determined by the present stress-function variational method satisfies
all the traction BCs, including the shear-free condition at all free-edges of the adherends, which was
normally neglected in most ABJ models in the literature. In addition, the model predicted stress field in the
DLBJ has been well validated by FEM with the aid of commercial FEA software package (ANSYS™). The
close agreement between the results of the proposed stress-function variational method and those obtained
by FEM simulations reveal the validity of the proposed method. The highly robust, efficient stress-function
variational method can be conveniently implemented for stress analysis of ABJs and bonded joints by

designing a concise MATLAB™ code to take into account all the geometries, material properties and
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external loads. Thus, the stress function varational method can be conveniently used for optimal design and

scaling analysis of ABJs.

5.3. Double-sided Bonded Joints

5.3.1. Introduction

In this section, double-sided bonded joint (DSBJ) under uniaxial tension as shown in Fig. 5.5(a) is
considered. The x-coordinate is picked from the symmetric mid-span of the joint and extended along the
centroidal axis, while the y-coordinate is pointed upward from the centroids. The overlap bonding length is
defined as 2L = 20 mm. In the following, subscripts (i = 1, 2, 0) are adopted to indicate the geometries,
material properties, and stresses of the upper, lower, and middle layers, respectively. It is assumed that the
joint is doubly symmetric, i.e., the geometries and material properties of the upper and lower strengthening
layers are identical. Fig. 5.5(b) illustrates the distribution of interfacial stresses. The analytical treatment of
DSBJ under uniaxial tension loads can be simplified due to the symmetrical structure. In virtue of the double
symmetry, there is no lateral deflection, and symmetric BCs are mandated in Fig. 5.5(c) in FEM, simulation

for numerical validation of the semi-analytic method for stress analysis of DSBJ.
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Figure 5.5. Schematic of a double-sided bonded joint: (a) Geometrical configuration consists of an identical
substrate layer, an adhesive layer, and a slender cover layer, (b) interfacial stress distribution, and (c)
geometrical model, loads and constraints used for FEA.

5.3.2. Model Formulation

Uniaxial tension is exerted along the middle layer of the DSBJ. The corresponding traction BCs in
terms of axial force, shear traction, and bending moment [Fig. 3.2(a-c)] are
S,(0)=0, (5.50a)

s, (L) =0, (5.50b)
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Q,(0) =0, (5.50¢)

Q,(L) =0, (5.50d)
M, (0) =0, (5.50€)
M, (L) =0, (5.50f)
S,(0) =0, (5.500)
S,(L) =0, (5.50h)
Q,(0) =0, (5.50i)
Q,(L)=0, (5.50))
M, (0) =0, (5.50k)
M, (L) =0, (5.501)
S,(0) = p,bh,, (5.50m)
S, (L) = p,bh,, (5.50n)
Q,(0) =0, (5.500)
Q,(L) =0, (5.50p)
M, (0) =0, (5.500)
M, (L) =0, (5.50r)

In DLBJ, only the middle layer is granted with uniaxial tension. Similar to the proceeding procedure,
by introducing four independent unknown functions for the interfacial shear and normal stresses (f1, ga, f2,
g2), the stress resultants of the upper layer can be derived with BCs [Eq. (5.50a), Eq. (5.50c), and Eg.

(5.508)]:
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8,(0) =-b[ f,(&)dg, (551)
Q.9 =-b[ 9.(£)d¢,

(5.52)

X h, ex
M1 00 =-b[ [ g (§)dede — 2k [ 1, ()de
(5.53)

Similarly, with BCs [Eq. (5.500), Eq. (5.50i), and Eq. (5.50k)], the stress resultants in the bottom

layer can be expressed as:

8,(x) =b[ f,(&)d¢, (5.54)
Q,(9) =b[ g,(£)d¢, 555
M. () =b[ [} 9(O)deds 22 [ 1, (2)ae (5:56)

Consequently, with BCs [Eq. (5.50m), Eg. (5.500), and Eq. (5.50q)], the stress resultants in the

middle layer can be expressed:

So(X) = pobly +b[ [1,(&) - ,(&)Id¢, (557)
Qo) =] 19:(£) - 9.()1d. 558)
Mo () =b[" [ [9,(¢) - 0, ()]d¢dé —% [ 1.8 + f.(&de. (5.59)

Again, the axial normal stress of the layers is assumed to vary linearly as that of Euler-Bernoulli
beam theory. In addition, static equilibrium equations in 2D elasticity are used to determine the shear and
lateral normal stress components in the three layers of the joint. As a result, the stress components can be

expressed as:

12y,

S My, 1
) :_l_#:_h_ljo f,(5)dS+ x

X S h1 X
T [ 9.©dede+2 [ 1i()del. G60)

93



1.h 3 K 6 h x
R e R IO R e e I B
o __ Lo 1k L 3R h IR L
= G5O D P G w5 DD
PLELWLSRVANE PNy
ARG
R R NG AGILE
12y0
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6 z_ﬁ T0.(5) -
a6 = [0 - 0,410,

ol = 9,00+ (Y, + h°)f (X)+— [%(yé—hff)+h—§(yo+“—2°)][fl'(x)—fz'(x)]

—2[—(yo )=y, + 00 + )
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12y2

S, My, 1
G(Z) :—2 272 = — f d —

o =y, + ) (y?_——)]f(x)+ (yz )jjgz(@da:,

o), —{—[ (v2 - 2) (yz )+h—‘°;[§(y1 h) h1(y2 = RS

_E[B(yz 2)— (yz 2)]gz(x)-

[j [ gz(C)dCdf——I f,(£)dé],

(5.61)

(5.62)

(5.63)

(5.64)

(5.65)

(5.66)

(5.67)

(5.68)

Moreover, by defining the complimentary strain energy (3.43) of the joint in terms of the stress

components of the three layers and triggering the theorem of minimum complimentary strain energy, similar
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to Eqg. (5.20), a set of four governing ODEs in terms of the four interfacial stress functions is reached.

Herein, the generalized dimensionless force column {D}ax1 in this particular joint case can be obtained as:

AT
Dl = _pO / EO +7(—0{0 +a1),

D, =0,
2 (5.69)
AT
D3 = pO/EO +7(—062 +0{0),
D, =0.

In the present case, the joint carries the symmetric structure under uniaxial tension. Hence, the
traction BCs are equivalent to Eqgs. (5.22a-p). As a result, a set of simultaneous linear algebraic equations
similar to Egs. (5.23a-p) can be obtained with the proper traction BCs. The final stress expressions can be

expressed as the same as Egs. (5.24-27).

5.3.3. Model Validation

For the reason that DSBJ is doubly symmetric with respect to both x and y axes, a FEM model [Fig.
5.5(c)] is built up with two symmetric boundaries to validate the stress field of the joint predicted by the
present stress-function variational method. Due to the nature of double symmetry of the joint, only the
guarter-joint needs to be considered. The geometrical parameters for the quarter-DSBJ are taken as: L = 10
mm, h, = h, = 1.0 mm, and ho/2 = 2 mm. Material parameters of the joint are specified as: E; = E; = 400
GPa, vi = v» = 0.25, Eq = 210 GPa, and vo = 0.293. The uniform tensile traction po is fixed as 1 MPa.
Quadrilateral elements of the size of 0.1 x 0.1 mm are first generated at the two ends of the middle layer,

and refined quadrilateral elements of the size 0.05 x 0.05 mm are further introduced near the free edges.
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Figure 5.6. Validation of the stress-function variational method for interfacial shear and normal stresses in
double-sided bonded joint subjected to axial tension: (a) Interfacial shear stress, (b) interfacial normal stress.
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Due to the double geometrical symmetry, the upper right quarter-portion of the joint is employed
for FEA. The interfacial stresses of the upper layer at the right half-length can also represent those at the
lower layer or the left half joint. In Fig. 5.6 (a), it can be detected that the interfacial shear stress is highly
localized within an interval from x = 12 mm to the left free-edge with the peak value around 0.31 MPa. The
locus of the peak value of interfacial shear stress predicted by the current method is at x = 19 mm; however,
FEM simulation predicts the locus of the peak shear stress at x = 20 mm, almost at the free-end of the joint.
In Fig. 5.6 (b), it is noticed that the interfacial normal stress also behaves highly localized near the free-
edge of the joint. In this case, the peak value of normal stress predicted by the proposed semi-analytic
method is 25% lower than that predicted by FEM simulation (ANSYS™). The peak value of the latter is

0.21 MPa as shown in Fig. 5.6(b).

5.3.4. Conclusions

DSBJ is another type of commonly used joint models in practice. With the powerful stress-
function variational method in this study, two unknown interfacial shear and normal stress functions are
introduced at the upper interface of the quarter-joint model. The interfacial shear stresses from the current
method exactly satisfy the shear-free condition at the free-end of the joint. By comparison of the model-
predicted stress field with those predicted by FEA, the semi-anlytic DSBJ model has been validated. Due
to both the shear and normal stresses appear singular near the free-edge of the joint with the close magnitude,
the interfacial shear and normal stresses are both responsible for debonding failure of the joint in this case.
The deviations of stress results between the ANSYS™ and the present semi-analytic method can be noticed,

which implies that some further theoretical refinements could be made in this case.
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6. CONCLUSIONS

In summary, adhesively bonded joints (ABJs) have been evidenced for use in broad load-carrying
aerospace and aeronautical structures, ground vehicles, offshore derricks, etc. Accurate and reliable stress
analysis plays a crucial role in optimal design and failure prediction of these ABJs. In this thesis work, by
extending Wu and Jenson’s seminal work (Wu & Jensen, 2011) on stress-function variational method for
stress analysis of bonded joints, this accurate and high-efficiency method has been successfully
implemented for stress analysis of ABJs and other three-layered bonded joints. Several theoretical results
have been accomplished as follows.

1. By introducing two interfacial shear and normal stress functions on each interface and assuming
the linear-varying axial stress across the adherends (Euler-Bernoulli beam theory), the entire stress
field of three-layered ABJs and bonded joints can be expressed explicitly in terms of the unknown
interfacial stress functions. Such formal stress field satisfies all the multiple traction BCs. In
particular, the shear-free conditions at the edges of these three-layered ABJs and bonded joints,
which have been commonly neglected in most literature ABJ models.

2. The set of governing ODEs (Eq. 3.47) of three-layered ABJs and bonded joints is determined via
triggering the theorem of minimum complimentary strain energy, which has been uniformly solved
by eigenfunction method. Also, the system matrices [A], [B], and [C] of the ODEs are universal to
all the three-layered ABJs and bonded joints, while different type of joints only corresponds to the

its specific generalized force column {D}.
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3. The stress fields of all the three-layered ABJs and bonded joints predicted by the present stress-
function variational method in this thesis study have been validated successfully by detailed FEA
based on ANSYS™. Comparative studies (Chapters 3, 4 and 5) indicate that the present stress-
function variational method is a highly reliable, accurate and efficient semi-analytic method for
stress analysis of all three-layered ABJs and bonded joints.

4. The present stress-function varational method also indicates that due to the very high shear and
normal stresses near the edges of ABJs (Chapter 3), the stress variation across the thin adhesive
layer is noticeable. However, in the majority of the ABJ models in the literature, the stress variation
across the adhesive layer is ignored.

5. The theoretical formalism of stress function variational method can be conveniently extended for
stress analysis of multi-layered joints and adhesively bonded composite joints, which lays the
theoretical basis for universal stress analysis of adhesively multi-material bonded joints.
Furthermore, with the success of the present theoretical study on stress-function varational method

for stress analysis of three-layered ABJs and bonded joints, further advanced applications of the present
method could be initiated as follows.

1. Formulation of a universal, reliable, high-efficiency stress-function variational method for stress
analysis of multi-layered composite joints and related computational code development.

2. Extension of the present stress-function variational method for failure and fracture analysis of joints
and composites such as progressive cracking in multilayered coatings and laminated composites,

debonding and delamination of ABJs and composite joints, etc.
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3. Potential applications of the present stress-function variational method for nondestructive
evaluation (NDE) of multilayered structures such as coatings and laminated composites, including
static and dynamic methods.

4. Development of reliable finite-strip method for static and dynamic analysis of layered structures,
in which all the physical quantities could be potentially expressed as functions of the physical

quantities at the surfaces or interfaces by extending the present stress-function variational method.
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