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ABSTRACT 

Compared to the conventional solar-assisted heat pump (SAHP) water heating 

system, a relatively more compact direct-expansion solar assisted heat pump (DX-SAHP) 

has been introduced, in which the solar collector acts as an evaporator. Details of the 

analytical studies of a CO2 transcritical cycle on SAHP water heating system are presented 

in this study. A numerical model has been developed to optimize the system design and 

operating parameters. The simulation model can predict the performance of the system 

COP, collector efficiency and heat capacity. An experimental prototype using the 

evacuated tube U-pipe solar collector utilized to verify the simulation results. The results 

show that both the solar radiation and ambient temperature have a significant impact on the 

DX-SAHP system’s thermal performance. Year round performance showed that, 

theoretically, the system could achieve on an average, COP of 2 – 3.2, collector efficiency 

of 40 – 62% and water temperature to be about 43° – 56°C. 
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1. INTRODUCTION 

1.1. General Introduction 

Rapid economic growth around the world is largely dependent on the excessive 

utilization of the fossil fuels (e.g. crude oil, coal etc.). In this process, large quantities of 

pollutants are being pumped into the atmosphere causing serious damage to the natural 

balance of the eco-systems. In addition, continual decrease of fuel deposition compels 

intensive research in further developing the alternative energy resources. In particular, 

renewable energy sources have the capacity to play a significant role in replacing 

conventional fuels in four distinct zones, such as electric power production, hot water 

production, transportation of fuels, and countryside (off-grid) power services. Figure 1 

represents the average annual growth in various renewable energy sectors, and by 2010 

over 100 countries had initiated policy targets or promotion incentives related to renewable 

energy. Since 1980 the use of solar technology has increased at a rate of about 30% yearly 

[1]. In 2010, Renewable Energy Policy Network has reported that about 70 million houses 

are now using solar water heating (SWH) systems worldwide [2]. The total installed 

capacity of SWH systems and space heating systems increased by an estimated 16%, 

reaching only about 185 GW of thermal energy globally (Table 1).  

Table 1: Existing capacity of SWH from the year 2007 to 2010 [2, 3] 

Selected indicators 2007 2008 2009 2010 

Renewable power capacity (including hydro) (GW) 1,085 1,150 1,230 1,320 

Solar hot water capacity (existing) (GWth) 125 130 160 185 
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Figure 1: Average annual growth rates of renewable 
energy capacity, 2005 to 2010 [3] 

Considering environmental pollution and energy issues as a background, there 

exists a need to further research in exploiting renewable energy sources for various 

applications. Since the signing of Kyoto protocol in 1997 [4], to reduce greenhouse gas 

emissions by about 5%, the technologically developed countries have had a motivation to 

switch-over to the ecologically safe chlorine-free refrigerants. The use of hydro-

fluorocarbon (HFC) fluids was once thought to be the most acceptable replacement of 

hydro-chlorofluorocarbon (HCFC) fluids. However, both the categories are in the list of 

scheduled phase-out because of their influence on the global warming potential (GWP) 

being far more high, typically above 150 GWP compared to the natural refrigerants. This 

fact has renewed the interest in utilizing environmentally benign natural fluids, such as: 

water, air, ammonia, silicon oil, propane and CO2.  

The present study is focused in utilizing solar energy as the heating source; to meet 

the hot water demand in solar-adverse regions. Very low ambient temperature and wind 

chill temperatures that prevail in these regions have posed a hurdle (freezing issues) in 
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utilizing conventional solar collectors. To overcome this issue, the CO2 is used as an 

alternative refrigerant in this study. As such, it is non-toxic, non-flammable, has low 

freezing point, low GWP and has shown to have neutral effect on depleting ozone layer. 

Moreover, its’ inert gaseous behavior, ready availability overcomes the issues pertaining to 

the corrosion problems and production ability/distribution logistics.  

Research on CO2 based system started since 1990 when Lorentzen [5] utilized a 

transcritical refrigeration cycle.  A wide variety of heat pump and air conditioning systems 

have used CO2 as refrigerant. Recently, CO2 heat pump investigated water heaters are 

commercially available in the market [6]. One of the systems that could utilize the benefit 

of using CO2 is the direct expansion solar-assisted heat pump (DX-SAHP) water heating 

system. In a DX-SAHP system, refrigerant passes directly through the solar collector where 

evaporation process takes place. This system is different from the conventional SAHP 

system, in which, generally a secondary circulation loop is used to transfer thermal energy. 

By the removal of any secondary circuit in the system (DX-SAHP) requires less refrigerant 

fluid compared to the conventional one (SAHP). Also, the use of CO2 is benign, since it is 

naturally safe and poses no threat on environment in case of leakage.  

In the present study, a detailed numerical model has been developed for a SWH 

system using transcritical direct-expansion heat pump cycle and CO2 as refrigerant. Model 

accuracy has been verified for the evaporator section (solar collector) using the 

experimental data obtained at Fargo, ND, USA, weather conditions. The developed model 

has been further verified by comparing with the experimental results reported by other 

researchers. The current study aims at using evacuated tube U-pipe solar collector as an 

evaporator and examines the influence of various parameters on the system performance. 
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Operating parameters, such as: solar radiation, collector area, compressor speed and storage 

volume are varied to obtain the optimal performances of the system in terms of COP, 

collector efficiency and heating capacity. These simulated results will be useful for to 

optimally design heat pump integrated SWH system, using CO2 as the working fluid. 

1.2. System Description 

Figure 2 shows the schematic of a direct-expansion solar assisted heat pump (DX-

SAHP) water heating system consists of an evacuated tube U-pipe solar collector as an 

evaporator, a compressor, an immersed heat exchanger in a hot water storage tank which 

acts as a condenser and an expansion device. Initially, liquid CO2 is allowed to flow 

directly through the heat removal U-pipe that is inserted into the evacuated tube solar 

collector. With gain in solar radiation, liquid CO2 gets heated and eventually gets 

vaporized. The evaporated refrigerant is then compressed in the subsequent compression 

process [1 – 2] to a supercritical vapor pressure state. Energy released by the supercritical 

CO2 vapor through the coil condenser immersed in the storage tank, used to heat water. 

Finally, the high pressure but low temperature CO2 is throttled [3 – 4] to the evaporator 

pressure. All the events described above are shown in the idealized pressure-enthalpy 

diagram (Fig. 3).   
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Figure 2: Schematic diagram of a direct-expansion 
solar assisted heat pump water heating system 

 
Figure 3: P-h diagram of transcritical CO2 heat pump 
cycle  

1.3. Outline of Thesis 

The present study is detailed in seven chapters. Literature review pertaining to 

SWH systems including the performance, recent trends, and various economic aspects of 

SWH systems are presented in chapter 2. An overview of the scope and objectives of the 
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present study is given in chapter 3. Chapter 4 provides an in-depth thermodynamic analysis 

of different components considered into the system. Chapter 5 describes the model 

development and the simulation procedure. Chapter 6 includes the model validation and 

design optimization of such system. Based on the optimum results, the seasonal 

performance variation is also shown. Final chapter summarizes the important merits of the 

system and also suggests future research direction in the said field of work.  
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2. LITERATURE REVIEW 

The present study’s focus is about the SWH system being operated in a direct 

expansion heat pump mode, using carbon dioxide as a refrigerant in a transcritical cycle. 

This review attempts an in-depth analysis of different technologies used in SWH systems 

for the purpose to determine important features that influence the SWH performance.   

2.1. Available Solar Radiation in North Dakota 

North Dakota receives higher percentage of available sunshine hours yearly. On an 

average, this state receives 58 – 62% of total possible sunshine hours annually [7]. The 

percentage of sunshine hours is the measure of time between sunrise and sunset. About 

three-fourths of the possible yearly sunshine is registered for the month of July and hence 

the most sunny and November receives minimum sunshine hours compared to other 

months. Annually, an average of 2,600 to 2,800 sunshine hours are recorded in North 

Dakota with an average of daily 14,644 – 15,480.8 MJ/m2 of solar insolation. Even though 

the sunshine hours between January to June varies considerably in North Dakota, the 

percentage of available sunshine hours remains uniform, +/- 55% for any given month   

(Fig 4). 
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Figure 4: (a) Average temperature range [8] and (b) 
average percentage of possible sunshine by months 
[7] in Fargo, North 

2.2. A Brief History of SWH Systems 

SWH advanced from hypothesis to a prototype in the year 1767 by Swiss naturalist 

De Saussure, who built an insulated box painted black at its bottom with two panes of glass 

covering at the top [9]. It was called as “Hot Box”, hence the invention was capable of 

aiding in cooking, heating, and producing hot water. But the first commercial SWH, named 

Climax, was patented in the US by Clarence M. Kemp in 1891 [10]. His idea was further 

implemented as an integral collector storage solar water heater. Kemp placed a metal tank 

within a wooden box covered by a glass cover at the top part. His system produced hot 

water (38.8⁰C) on sunny days. As an alternate to burning wood or expensive fuel for 

heating water, the SWH became popular in California and many other states very quickly. 

A third of all of the homes in Pasadena, California had SWH systems by 1897 [11]. In early 

1900s, several researchers focused their attention in improving the design of the SWH 

system to make it durable and efficient. In 1909, William Bailey tailored the Kemp’s SWH 

(b) (a) 
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system, by segregating it into two major parts; the solar thermal collector for collecting 

solar radiation along with storage tank for storing the produced hot water. Further, to 

prevent heat losses the storage tank was insulated. For the first time in the SWH field, 

William Bailey introduced the thermosyphon principle to aid the circulation of water in the 

collector and storage tank [12]. In 1950, Japan’s first commercial SWH was designed by 

Yamamoto by getting an inspiration from a view of a large bath tub, filled with water that 

was kept outside in the sunshine for a longer period of time. Later, SWH units based on the 

closed-pipe system were introduced. 

Solar heated water was utilized for several applications. Until 1930, hot water for 

domestic purposes and for space heating were mainly engaged by the coal fired boilers 

[13]. SWH become a commercial product in the early 1960s. Typical thermosyphon-based 

SWH uses an absorber area of 3–4 m2 flat-plate type solar collectors to energize a capacity 

of 150–180 liters storage tank. Yet another popular types of SWH, is the forced circulation 

water heating system. Except for solar collectors, other accessory items such as the storage 

tank incorporated with piping, pump, and differential thermostat are usually kept indoors. 

Solar assisted systems not only rely on the conventional mode of utilizing energy 

but also other systems, such as heat pump (HP) and photovoltaic thermal (PV/T). In 1927, 

HP technology was first patented by an English inventor Haldane [14]. However, before 

the 1960s, due to a record poor reliability of the HP units, the commercial distribution was 

very limited. Since then, research focus was directed on, and by the year 1970, the HP 

technology has been improved in quality and reliability. Moreover, the researchers had 

been motivated to find new alternative energy sources for energy production since the big 

oil crisis in 1973. This further aided the application of HP technology and it became 
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widespread for both heating and cooling purposes. Although solar HP technology has 

shown higher efficiencies (400–600%) in respective functions, its capital cost is high, and 

hence it may not be suitable in places where cost of the system becomes a              

constraint [15, 16].  

Production of the SWH is now in packaged form and developed into a considerable 

business in the 21st Century. In countries such as China, Australia, Germany, Greece, 

Israel, and USA, the manufacturing of SWHs has become a part of the industrial sector. 

Self-motivation is a factor that worked behind the rapid expansion of SWH manufacturing 

industries in most parts of Europe. Currently, commercially available SWHs employ the 

following types as the packaged form: a system being operated by passive mode with an 

anti-freeze working fluid, solar-assisted heat pump system, a variety of evacuated solar 

collectors of both flat-plate and tubular in shape and an active circulation system driven by 

pumps facilitating a wide range of flow rates.  

2.3. Categorized Studies Conducted on SWH Systems 

Depending on the nature of heat transfer through the working fluid, SWH systems 

can be broadly classified into: direct systems and indirect systems. In the direct system, 

water is heated directly in the collector. In the indirect system, a heat transfer fluid is 

heated in the collector which is then passed through a condenser or a heat exchanging 

device to heat water. Similarly, depending on the circulation of working fluids, SWH 

systems can also be grouped into either: passive circulation system or active circulation 

system. Passive circulation systems refer to thermosyphonic method in which the density 

difference induces the circulation of the fluid, naturally. On the other hand, active 

circulation employs a pump to effect forced circulation of the working fluid.         
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Kalogirou [17] classified solar energy systems used for water heating application into five 

different categories: (a) thermosyphon systems, (b) integrated collector storage (ICS) 

systems, (c) direct circulation systems, (d) indirect water heating systems, and (e) air 

systems. The first two category falls under passive circulation mode while the rest three 

into active circulation mode. To overcome the freezing of the working fluid, during adverse 

weather conditions, different techniques have been employed such as recirculation or drain-

down technique and drain-back technique for direct and indirect SWH systems, 

respectively. Usually differential thermostats are used to control the system in accordance 

to the hot water demand with an exception to thermosyphon and integrated collector 

storage systems. In the following sections, a variety of SWH systems are reviewed and 

classified in terms of circulation methods and applications.  

2.3.1. Passive SWH Systems 

The passive system (Figure 5) works on the principle of density difference to 

transport heat energy. Potable heat transfer fluid (i.e. water) is heated by a solar collector 

and the natural convection drives the water from the solar collector unit to the hot water 

storage tank. Water becomes less dense due to solar heating and expands according to the 

temperature rise. Hot water is circulated to the storage tank, and the relatively cooler water 

from the bottom of the tank is circulated to the solar collector device. This flow is 

dependent on the duration of sunshine, since it aids density variation which in turn affects 

the flow of water. To reduce pipe friction, a larger pipe diameter is recommended rather 

than the normal size (2–3 inch diameter). Usually, connecting lines are kept at an angle to 

prevent the development of larger air bubbles that would resist the flow of water. Also, the 

solar collector-inlet is connected to the bottom of the storage tank to avoid reverse flow. In 
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situations, where the collector working pressure is less than the direct supply of city water, 

suitable pressure reduction valves are used. Usually an auxiliary heater is included to 

augment the heating process of a SWH, in particularly when used in solar adverse     

regions [18].  

 

Figure 5: Schematic diagram of thermosyphon SWH 
system [19] 

Unlike the conventional SWH system in which a collector acts as an absorber of 

sunlight, the ICS system utilizes both the collector as well as the storage tank as an 

absorber to collect solar radiation (Fig. 6). In most cases, the entire exterior part of the 

reservoir acts as an absorber. However, these systems are subjected to heavy heat losses, 

especially during non-sunshine hours. Several measures, such as selective absorber surface 

coatings, insulating materials, and a single or double glazing glass covers have been used to 

reduce the heat losses. A few other techniques were also attempted to culminate the heat 

loses: movable protection cover, insulated baffle plate, and utilizing phase change material 

(PCM) inside the storage tank. Researchers have also attempted to use transparent 

insulating materials for the appropriate exposed parts. Further, to reduce the heat losses, the 
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storage tank was operated on thermal stratification modes, by drawing the hot water from 

the top of the storage tank and cold water inlet to the bottom of the tank.  

 

Figure 6: Schematic diagram of ICS solar water 
heating system [20] 

2.3.2. Active SWH Systems 

Unlike passive systems, active circulation systems require a pump to circulate water 

from storage tank to the collector to get heated. The hot water flows back to the storage 

system and is ready for the end-user (Fig. 7). The pump is usually controlled by a 

differential thermostat that regulates water at the top header by a sufficient margin to the 

bottom of the tank. A check valve prevents the reverse circulation to avoid nighttime 

thermal losses from the collector. The collectors can be positioned either above or below 

the storage tank as pump is used to activate circulation. Direct circulation system is 

generally used only under situations when freezing is not a concern. Sometimes, water 
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from the cold storage tank or city water supply can be used directly into the system. Care 

should be taken when quality of water is hard or acidic, in a direct circulation system since 

it would result in scale deposition which in turn may cause clogging or corrosion of the 

collector tubes. Direct circulation systems more commonly employ a single storage tank 

which is with an auxiliary heater. However, in few case-studies, two-tank storage systems 

have been used as well. 

 

Figure 7: Schematic diagram a direct circulation 
SWH system [21] 

Indirect systems of SWH utilize two circulation loops to effect heating: (a) the 

closed-collector loop and (b) the open storage tank loop. Usually, the heat transfer fluid is 

circulated within the closed-collector loop, to gain the heat and is then passed through a 

heat exchanger where heat is transported to the potable water that flows in an open loop to 
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the storage tank. There are several different types of working fluids used in the closed loop, 

such as water, refrigerants, and anti-freeze mixtures. The heat exchanger can either be an 

internal system (Fig. 8) (placed inside the water storage tank or outside of the storage tank) 

or as an external system. An expansion tank integrated with a pressure relief valve is used 

in the closed circulation loop system. In the pressurized system, the tank is provided (an 

additional expansion tank) to have a control on temperature and pressure of the working 

fluid. However, for the unpressurized system, the tank is provided to release the pressure 

when required to vent.  

 

Figure 8: Schematic diagram of indirect water heating 
presented by Kuang et al. [22] 

Unlike water or other refrigerants, air has also been used as working fluid, for its 

unique advantages. Compared to the conventional SWH system, air can be used as a 

working fluid even during freezing weather conditions, is non-corrosive, and requires only 
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low maintenance requirements. However, the system is generally large and requires 

considerably large space for air handling unit. A typical arrangement of a solar air heating 

system incorporated with a pebble bed storage unit is illustrated in Fig. 9. Fans and 

dampers are incorporated to aid the system operation. The heat gained by the air in the 

collector duct is released through a heat exchanger to aid domestic hot water supply of up 

to 80⁰C. 

 

Figure 9: Schematic diagram of standard air system 
configuration [23] 

A major drawback of the air systems is that air has low heating capacity and its 

performance deteriorates further when the ambient temperature is very low. During the 

inevitable situations, when the SWH system has to be employed, to operate in adverse 

weather conditions (where ambient temperature can go below 0°C) certain modifications 

are introduced in the design of SWH system to overcome the freezing issues. One such 

modification is to operate the direct circulation system in drain-back mode. Generally, a 

differential controller integrated pump is used to circulate water from the storage tank to 
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the solar collectors. A drain-down valve provides the freeze protection function. While 

turned on by the controller, the valve isolates the solar collector inlet from the storage tank 

outlet. At the same time, the differential controller opens a valve that permits water to drain 

away from the collector. In order to drain water out from the bottom of collectors, a 

vacuum breaker is installed at the top of each collector to allow the air circulation. For 

well-known reasons, such as, low cost and superior anti-freeze performance, all-glass 

vacuum tube collectors are commonly used in domestic SWH system. In the past few 

decades, majority of vacuum tube collectors were used for domestic water heating 

purposes. As expected, the performance of vacuum collectors is higher than flat-plate 

collector due to low convection heat loss from the absorber. The heat transfer model 

evaluates the performance of all-glass vacuum tube collectors incorporated in a direct 

circulation system was developed by Li et al. [24]. This simplified model takes into 

account of natural circulation in single glass tube as well as forced flow circulation in the 

manifold header. The flow equations were obtained by analyzing the friction losses and 

buoyancy forces inside the tube. A positive agreement was observed between the predicted 

and computed collector outlet temperatures, and the deviation was within 5%. The system 

schematic is shown in Fig. 10. Walker et al. [25] designed and installed a direct circulation 

SWH system at the Social Security Administration’s Mid-Atlantic Center in Philadelphia. 

Evacuated-tube heat-pipe solar collector of 36 m2 net absorber area was employed to 

energize the storage tank. The simplicity in design and low erection cost made the system 

attractive to be implemented in commercial buildings. Unlike conventional systems, in this 

system the incoming water was preheated in the recirculation loop. 
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Figure 10: Conventional domestic SWH system in 
adverse weather regions [24] 

Due to the fact that evacuated tube collector generate high temperatures beyond 

100°C, it might be a point of concern when operating in regions where the ambient 

temperature and solar radiation availability is high during summer. To prevent thermal 

losses from the evacuated tube, a high temperature switch can be employed. This control 

switch can overcome the abovementioned issue. To overcome the two temperature 

extremes, such as overheating in summer and freezing in winter, air can be used as the 

working fluid in the circulation tubes rather than using water directly. A fan is used to 

mobilize the air through the flow distribution tubes and the concentric air-to-water heat 

exchanger delivers the heated water to the horizontal storage tank. 

2.4. Comparison Between SAHP System and DX-SAHP System 

Heat pump systems transfer heat energy from low temperature heat source to a high 

temperature heat sink against a temperature gradient. The delivered heat is generally used 

Solar Collector Unit:  
�=47⁰ 
�=55⁰ 
n=32 

Unit-1 

Unit-6 

Unit-2 Unit-3 

Unit-5 
 

Unit-4 

Plate Heat Exchanger 

Air Flow 

Fan-coil Unit 

Flow meter 



 

19 
 

to heat air or water. The heat usually absorbed from ambient air, solar, geothermal, or any 

reusable waste energy source. The energy transport in the heat pump system is carried out 

by a refrigerant fluid which follows four thermodynamic stages in a complete cycle.   

Figure 11 shows the basic processes of the heat pump cycle. During evaporation, the 

abounded heat energy is being absorbed by the working fluid and goes through the phase-

change phenomena from liquid to vapor. The saturated vapor is then pumped by a 

compressor to rise up to the condensation pressure. The raised pressure eventually 

increases the temperature of the working fluid. At this condensation pressure and 

temperature, the heated fluid rejects heat energy and throttles to a lower evaporator 

pressure to complete a full thermodynamic cycle. The basic thermodynamic processes are 

also shown in the pressure-enthalpy diagram of Fig. 12. 

 

Figure 11: Schematic of Heat Pump system 
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Figure 12: Pressure-enthalpy (P-h) diagram of HP 
cycle 

The thermodynamic cycle explained above shears the subcritical zone since its 

pressure and temperature remains below the critical point for its complete cycle. Critical 

point is the peak point on the saturated dome at which both saturated liquid and vapor 

states are similar and beyond this point the fluid phase is called as supercritical state [26]. 

Most of the heat pump systems are designed to use the working fluid having higher critical 

point and hence always work in the subcritical mode. The performance of the HP systems 

is measure by the coefficient of performance as COP. It is the ratio of heat delivery to the 

work energy input into the system. The COP of the HP system can be more than unity 

because of the delivered heat energy very often reaches multiple times higher than the 

compressor work input. 
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Conventional solar-assisted heat pump (SAHP) systems utilize the solar collector 

and heat pump as separate units and used an intermediate heat exchanger to complete the 
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into the market. Several researchers have developed and tested various SAHP            

models [27 – 30]. However, recently developed direct-expansion solar assisted heat pump 

(DX-SAHP) systems integrate the solar collector and heat pump evaporator unit into a 

single unit [31-36]. The above mentioned types have used flat-plate solar collector as 

evaporator and halocarbons as refrigerant. A DX-SAHP system employs solar collector as 

an evaporator. The refrigerant that passes through the solar collector expands directly by 

the useful heat gain from the solar radiation and undergoes a phase transition phenomena 

from liquid to the vapor state. The differences between the SAHP and DX-SAHP system 

configurations can be understood by observing Fig. 13 and Fig. 14. 

 

Figure 13: Conventional solar-assisted heat pump system 

The performance of a DX-SAHP system directly influenced by the incident solar 

radiation due to the elimination of an extra heat transfer loop as it is needed in the 

conventional SAHP system. This useful heat gain by the refrigerant can be improved by 
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the temperature difference between the evaporator and the surroundings result in higher 
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heat losses reflecting in lower efficiency of the system. Hence, it is preferable to maintain 

the evaporator (collector) temperature at low or closer to ambient temperature in order to 

minimize heat losses from the collector. However, it is preferred to operate the evaporator 

in the temperature range of 0° – 10°C higher than the surroundings, because of the fact that, 

higher temperature effects higher useful heat gain [37]. One of the critical designs 

pertaining to the solar-assisted heat pump system is the proper sizing of solar collector. 

Sizing of the solar collector is necessary because of the heat absorbing capacity which 

needs to be matched with the evaporative capacity of the compressor. A proper matching 

between solar collector and compressor minimizes heat losses and impacts the system 

performance as a whole. By adding a compressor capacity modulator, an off-design 

condition such as, seasonal variation can be optimized. 

 

Figure 14: Direct Expansion Solar-assisted Heat 
Pump (DX-SAHP) system 
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into the DX-SAHP system. Therefore, long term uses can be assured of the solar collector 

used in DX-SAHP system in comparison with a water-based solar collector where 

corrosion is a big problem. In a water-based system, freezing is an issue for solar-adverse 

region. However, a DX-SAHP system easily overcomes this problem since most of the 

refrigerants have a very low freezing point. Since DX-SAHP system does not require an 

extra intermediate heat exchanger, it improves thermal performances of the system and 

reduces the initial system cost. 

There exists numerous works [38 – 45] related to the heat pump mode of SWH 

systems and some significant investigations are discussed in this section. A variable 

capacity direct expansion solar-assisted HP system for the DWH purpose was tested by 

Chaturvedi et al. [38]. The system used a bare solar collector acting as an evaporator for the 

heat pump system. The system was tested for the widely varying ambient conditions, and 

accordingly the compressor speed was varied through a variable frequency drive. The 

observational results showed that the coefficient of performance (COP) of the system can 

be enhanced extensively by reducing the speed of the compressor when the ambient 

temperatures are higher. Hence, such systems perform better in summer compared to 

winter. 

Hawlader et al. [39] designed, fabricated, and tested a combined solar-assisted HP 

dryer and water heater that had been examined under the ambient conditions of Singapore. 

The system consisted of a variable-speed reciprocating compressor, solar collector as 

evaporator, water storage tank and, an air-cooled condenser. To assess the influence of 

different variables and the performance of the system, a Formula Translation (FORTRAN)-

aided simulation program was developed. The system performance with and without an 
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auxiliary water heater, was compared in terms of the performance parameters, such as SF 

and COP. The COP values of the predicted and experimental studies were reported to be 

7.0 and 5.0, respectively. Similarly, the SF was 0.65 and 0.61, respectively. 

The performance of an integral-type solar assisted heat pump (ISAHP) water heater 

was carried out by Chyng et al. [40]. Simulations were performed based on the assumption 

that, except the storage tank, all other components are at steady-state. The model agreed 

well with the experimental data and the predicted results were within 10% of the measured 

data. Analytical and experimental studies on a direct-expansion solar-assisted heat pump 

(DX-SAHP) water heating system were conducted by Kuang et al. [41]. The system 

comprised of a 2 m2 bare flat-plate collector was used as an evaporator as a part of the 

refrigerant cycle. The long-term thermal performance of the system was predicted by a 

simulation model. The results have shown that monthly average COP ranged from 4 to 6, 

while the solar collector efficiency varied from 40–60%. A similar work was carried out by 

Li et al. [42]. The DX-SAHP system comprised of 4.2 m2 area of solar collector as 

evaporator, a 0.75 kW hermetic compressor of rotary type, 150 liters water storage tank 

with a copper coil of 60 m length submerged into the tank, a thermostatic expansion valve, 

and R-22 refrigerant was used as the working fluid. The system was shown to heat 150 

liters of water a day to a temperature of 51°C, when the maximum solar radiation received 

at noon was about 955 W/m2. The exergy analysis on each of the element of the DX-SAHP 

water heating system, identified that most heat losses occurred in the compressor, followed 

by the collector, and the condenser. To further enhance the thermal performance (for the 

SWH system as well as all the other components), additional methods were also suggested. 

Hepbasli [43] also carried out exergy analysis to evaluate the performance of a            
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solar-assisted domestic hot water tank coupled with ground-source heat pump (GSHP). 

Along with the GSHP system components, a solar collector of 12 m2 surface area and a 

water storage tank was integrated to it. Results proved that, it is possible to attain 14.5% 

efficiency for residential SWH system and 44.06% when the entire system is taken into 

account. 

Heat pipes were also introduced in heat pump application for water heating 

purposes. Huang et al. [44] worked on heat pipe solar-assisted conventional heat pump 

(HPSAHP) water heating system. The performance of the combined solar heat pipe 

collector and conventional HP were examined to calculate the overall COP of the system. 

When solar radiation was low, the system operated in HP mode. However, during the clear 

sunny days, the heat-pipe mode operated independent of electrical energy input, to higher 

thermal efficiency. The results showed that the COP of the hybrid-mode of operation could 

attain as high as 3.32, and as such its performance was higher by about 29% compared to 

the HP mode of operation. Guoying et al. [45] carried out a numerical study to evaluate the 

operational performance of a solar air-source heat pump (SASHP) water heater. This 

system was specially designed which utilizes a flat-plate solar collector being provided 

with spiral-finned tubes to collect energy both from solar radiation, as well as from the 

surrounding air. For the given meteorological conditions of Nanjing, China, the theoretical 

results showed that the designed SASHP water heater of 150 liters capacity could 

efficiently heat water up to 55°C. 

2.5. Transcritical Heat Pump Cycle 

Unlike conventional HP cycle, the transcritical HP rejects thermal energy at above 

critical point. The evaporated refrigerant is being compressed by a compressor and raised 
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to a pressure and temperature higher than Pcrit and Tcrit. As there is no condensation process 

beyond critical point, the cooling of the heated fluid is called gas cooling process. In the 

supercritical phase, there exists only single phase and hence the heat rejection takes place 

as sensible cooling. The rest of the thermodynamic stages in transcritical HP cycle remain 

the same as the conventional one and the difference can be seen by comparing the P-h 

diagram of Fig. 12 with that of the Fig. 15. 

 

Figure 15: Pressure-enthalpy (P-h) diagram of a 
transcritical HP cycle 

As it can be observed from the saturation dome on P-h diagram of CO2, the 

advantage of using transcritical cycle can be realized in terms of heat of vaporization. The 

heat of vaporization of CO2 decreases significantly as the condensing temperature 

approaches near to critical point (31.1°C, 7.38 MPa). Similarly, heat absorption by the 

liquid-vapor phase change minimizes if the evaporating temperature nears the critical 

temperature. Therefore, the CO2 system which operates in subcritical manner rejects small 

amount of heat and correspondingly the outlet temperature of the condenser remains low. 

For air-cooled CO2 refrigeration system which operates in subcritical mode, offers lower 
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performance when surrounding air temperature reaches the critical temperature. Hence, for 

better system performance, condensing temperature should remain higher than ambient. 

Therefore, in a CO2 transcritical cycle, higher heat rejection temperature can be achieved 

which improve the heat pump system applications. 

2.5.1. Thermophysical Properties of CO2 

Refrigerants are primarily developed for vapor compression refrigeration systems 

for cooling rather than heating. The utilization of CO2 as refrigerant for the vapor 

compression cycle was introduced in 1866 by Thaddeus Lowe. Pearson [46] studied a 

detail historical development of CO2 in the refrigeration systems. However, CO2 has a 

limitation since it needs robust components for its high pressure system. At the early 1900, 

the invention of HFC and HCFC fluids took the interest from CO2 for its expensive and 

robust design. Although HFC and HCFC fluids have higher thermodynamic efficiency, 

they also have many detrimental effects on the environment. Therefore, interest on using 

natural refrigerants into the refrigeration, air conditioning and heat pump systems renewed 

for environmental safety issues and its protection. 

There are many natural substances, such as, water, air, ammonia, sulfur dioxide, 

silicon oil, propane and CO2 which have the potentiality for using as refrigerant. Among 

these fluids, water has freezing issues, when exposed to the weather conditions below 0°C. 

Similarly, the thermodynamic cycle dealing with air as working fluid has relatively low 

cycle efficiency. Ammonia and sulfur dioxide also have their own drawback of being 

slightly toxic. The use of silicon oil is restricted to its use due to the high viscosity. 

Although purified propane as refrigerant is gaining favor, but when mixed with air it is 

highly flammable. CO2 is the natural refrigerant which imposes negligible impact on the 
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environment. In 1990, Gustav Lorentzen first patented CO2 transcritical cycle for the 

automotive air conditioning system application [5]. The patented automotive air 

conditioning system using CO2 transcritical cycle was further tested by Lorentzen and 

Pettersen [47] and compared the performances with a similar R12 system. The test results 

showed a positive encouragement for further development of such system [48].  

Design of heat pump system and its performance is dependent on the selection of 

refrigerant, since the thermophysical properties of a refrigerant are important for heat 

transfer process. Table 2 is showing some of the physical natures of CO2 which are 

different from many other conventional refrigerants. In this section, a detail of CO2 

properties will be discussed in order to get a better idea about the use of CO2 in transcritical 

heat pump systems. 

Table 2: A brief comparison of CO2 with other conventional refrigerants [49] 

Refrigerants R-12 R-22 R-134a R-410A Ammonia CO2 

ODP/GWP 1/8500 0.05/1700 0/1300 0/1900 0/0 0/1 

Flammability/toxicity N/N N/N N/N N/N Y/Y N/N 

Normal boiling point (°C) -29.8 -40.8 -26.2 -52.6 -33.3 -78.4 

Critical pressure (MPa) 4.11 4.97 4.07 4.79 11.42 7.38 

Critical temperature (°C) 112 96 101.1 70.2 133.0 31.1 

Refrigeration capacity (kJ/m3) 2734 4356 2868 6763 4382 22545 

 

As it can be seen from the table 2, the critical temperature of CO2 is very low 

compare to other working fluids. Due to the high critical point of any HFC and HCFC 

fluids, the conventional vapor compression cycle rejects heat in the condensing temperature 

below the critical point. But in the system pertaining with CO2 as refrigerant, this heat 

rejection temperature very often exceeds the critical point and hence does not share the 

liquid-vapor mixture phase region. The heat rejection in this process is called the gas 
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cooling process and rejects heat only in the sensible cooling. Therefore, heat rejection 

process of the gas cooler undergoes in the transcritical cycle. However, the critical pressure 

of CO2 is relatively very high (7.38 MPa). This makes the CO2 heat pump cycle 

experiences with high working pressure. Although in the CO2 HP cycle, evaporator 

pressure ranges between 2 – 5 MPa, the gas cooler pressure can reach up to 15 MPa [50]. 

This pressure range is quite low in the case of R134a where at 50°C the condenser pressure 

is only 0.13 MPa [51]. Due to high working pressure, the CO2 systems face many design 

challenges. One of such is the design of compressor capacity. However, current 

technological development on the manufacturing of high pressure compressors make the 

transcritical CO2 heat pump cycle feasible for the commercial uses [49]. In fact, it could be 

beneficial in terms of heat transfer properties of using such high pressure CO2 system. This 

leads to higher vapor density (shown in Fig. 16(a)) resulting higher volumetric refrigeration 

or heating capacity of the HP system. The profit can be drawn compared to other 

refrigerants in terms of smaller volumetric mass flow rate for the same magnitude of 

energy gain. Thus the system design is compact in nature [49 – 50].  

The heat transport properties of CO2 are favorable especially near to its critical 

point compared to other conventionally used working fluids. Supercritical properties of 

CO2 need to be understood in order to realize the refrigerant behavior in transcritical HP 

cycle. There occurs a sudden supercritical property variation near the pseudo-critical 

temperature point (Tpc) of CO2. It is the temperature at which specific heat (Cp) reaches to 

its maximum value for a given pressure, as it is seen from Fig. 16 (b). Besides, Cp value 

decreases with the increase of working pressure and pseudo-critical temperature. Cp value 

attains much higher only near the critical pressure. CO2 transport properties (thermal 
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conductivity and viscosity) also vary abruptly near the Tpc. These heat transport properties 

affect the performance of the transcritical HP cycle on the gas cooler heat rejection process. 

Oh and Son [53] predicted the heat transport properties of the supercritical CO2 in order to 

evaluate heat transfer coefficient in horizontal tubes for the gas cooling process and found a 

significant variation near the pseudo-critical region.  

 

Figure 16: (a) a comparison of vapor pressure of CO2 
with other refrigerants; (b) specific heat variation of 
CO2 for different pressures [49, 52] 

Figure 17 illustrates these variations of CO2 transport properties as thermal 

conductivity and viscosity. Thermal conductivity of CO2 is 20% higher for saturated liquid 

and 60% higher for saturated vapor conditions comparing to R134a at 0°C temperature. In 

contrast, liquid viscosity of CO2 is 40% lower than R134a [54]. A unique property of CO2 

over other refrigerants is that it experiences only a very small change in saturation 

temperature with a given change in saturation pressure (Table 3). Decrease in evaporator 

pressure creates a saturation temperature drop which impacts the cycle efficiency by 

(a) Vapor pressure (b) Specific heat  
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lowering down the evaporator outlet temperature. Therefore, saturation temperature drop 

for a given pressure drop is an important parameter for the evaporation process. Thus the 

efficiency of CO2 direct expansion heat pump system does not affect much with the large 

change in pressure. 

 

Figure 17: Variation of transport properties of CO2: 
(a) thermal conductivity; (b) viscosity [53] 

Table 3: A comparison of saturation temperature drop of CO2 with other 
conventional refrigerants [49, 55] 

 

 R-134a R-410A CO2 

������ �����
⁄ �, (°C/1 kPa) 0.1 0.04 0.01 

 

2.5.2. Fundamentals of CO2 Transcritical Cycle and Performance 

Since CO2 has a low critical point compared to other refrigerants, CO2 systems 

undergo the transcritical cycle operation when the ambient temperature is relatively higher. 

As the heat rejection process occurs in the supercritical stage at higher pressure, the low 

(a) Thermal Conductivity (b) Viscosity 
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pressure heat addition remains subcritical. The heat rejection pressure is an important 

operating parameter for the transcritical heat pump cycle operation. For a given condenser 

outlet temperature, there exists an optimum condenser pressure. Kim et al. [49] explained 

this optimum pressure which depends on the particular S-shaped isotherms near the 

pseudo-critical or in the supercritical zone. For a constant condenser temperature, the 

rejected heat amount changes by the change of condenser outlet pressure (shown in Fig. 

18). Consequently, the compressor work also changes linearly. The effect can be realized in 

COP value. Since the heat rejection increases at lower pressure and slows down at higher 

pressure, it increases the COP value up to a certain pressure limit and decreases beyond 

that. 

 

 

Figure 18: CO2 transcritical P-h diagram describing 
the effect of condenser pressure on heating capacity 
and COP [49] 
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Air and water heating are two major applications employing heat pumps. However, 

the gas cooling process of the CO2 transcritical heat pump is particularly suitable for water 

heating purpose. Gas cooling occurs at the supercritical stage and there exists no saturation 

condition at supercritical pressure. Therefore, heat transfer process in the gas cooler takes 

place in the sensible cooling process. A continuous temperature gliding profile occurs 

across the CO2 transcritical gas cooling process which is different from other condensation 

process following by the latent heat rejection. Most of the commonly used refrigerants have 

higher critical point compared to CO2. Therefore, these refrigerants share the two-phase 

mixtures at the condenser during the latent heat rejection process. Figure 19 is illustrating 

this distinction between continuous glide profile and the latent heat rejection. It is 

beneficial for water heating since both the water and CO2 temperature profile matches 

closely and hence recovers heat exchanger effectiveness and decreases entropy generation.  

 

Figure 19: Temperature profile for (a) latent 
condensation process; (b) CO2 supercritical gas 
cooling process [56] 

In this study, the use of CO2 in a transcritical cycle has primarily been focused in 

which heat rejection occurs in the supercritical stage where only sensible cooling or heating 

takes place. Several researchers have conducted studies on transcritical CO2 heat pump 
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cycle for automotive cooling and heating applications [57 – 58]. Transcritical CO2 cycle 

can also be applicable for water heating purposes where large temperature increments are 

generally required. Literature shows that there exist several studies on transcritical CO2 

heat pump water heaters [49, 59 – 63]. A detailed comparative study [62] between heat 

pump water heater using CO2 and R134a has been presented by Cecchinato et al. and 

concluded that CO2 could be a potential alternative for synthetic refrigerants. Richter et al. 

[64] reported that when a heat output is subjected to low outdoor temperatures CO2-based 

heat pump water heating system showed higher heating capacity than a similar system 

using R410a. 

2.6. Influence of Key Variables on SWH System Design 

The potential of any renewable technology is dependent on the proper assessment 

of planning and promoting the system among the end-users. A method to evaluate the 

market potential for DWH has been presented by Voinvontas et al. [65]. The method has 

been based on a Geographical Information System (GIS). The model took into 

consideration the parameters associated with geographical variability that influenced solar 

radiation and power requirements for the specified area. The size of the population and the 

number of families greatly influenced the energy demand in residential energy uses. The 

above discussed model provides some special insight into the energy savings and profits 

that could be obtained from a large-scale deployment of DWH systems. This model is 

helpful to analyze the variation in energy demand with the time discrepancies of solar 

radiation. However, it was restricted only to the domestic sector and did not account for the 

variation in load. A typical domestic hot water load pattern has been analyzed by Mutch 

[66]. Minor variations of time discrepancies on load patterns do not have any major impact 
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on the performance of DWH systems. The techno-economic evaluations play an important 

role in establishing a strong market strategy for SWH systems and also persuade necessary 

information for energy policy decisions. Chandrasekar and Kandpal [67] have developed a 

comprehensive nomograph to determine the potential factors influence for the performance 

of SWH systems. Using some of these potential inputs, Pillai and Banerjee [68] developed 

a methodology to estimate the potential for SWH systems, by taking into account of both 

micro and macro level inputs as shown in Fig. 20.  

 

Figure 20: Input and output parameters for modeling 
the potential approximation of solar water heating 
system [68] 
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Another simple method to evaluate the effectiveness of SWH systems is to assess 

the energy savings by the product of the solar fraction (SF) and the numbers of SWH 

integrated buildings. To implement the cost-benefit analysis more effectively, Pan et al. 

[69] proposed the concept of number of effective solar days and effective solar radiation 

(ESR) instead of using the total annual solar radiation parameter which may overestimate 

the amount of energy benefits. ESR calculation was based on the tap water temperature and 

the solar insolation for each region to figure out the applicability of SWH system. Their 

model was based on Taiwan and estimated the ratios of ESR to total annual solar radiation 

in the range of 82 – 89%. The popular f-chart method [70] and the demographic data for a 

target region can also be used to assess the estimated power savings due to the installation 

of domestic SWH systems. 

Optimization of solar collector area to the storage tank capacity for a hybrid SWH 

was studied by Misra [71]. It was reported that the use of auxiliary heater inside the storage 

tank causes large amount of heat loss due to the fact that the hot water storage tank needs to 

maintain a large volume of water at constant delivery temperature. Reducing the auxiliary 

energy consumption could improve the economics of the system. Therefore, it was 

recommended to provide auxiliary heater at the load point. 
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3. SCOPE AND OBJECTIVES OF THIS STUDY 

Based on the overall understanding of the literature, the performance of solar heat 

pump systems, particularly the direct expansion type solar-assisted heat pumps has a scope 

to utilize for a broad range of end-users. Most of the experimental works summarized in the 

literature were carried out widely varying conditions, using HFC and HCFC refrigerants. 

However, due to the environmental concerns, many of the conventionally used HFC and 

HCFC working fluids have lead to scheduled phase-out. Hence, researchers have renewed 

their research focus on natural working fluid like CO2, which has proven to have less 

detrimental impact on environment. Yet another aspect at SWH is uses of water solar 

thermal collectors are limited in the solar-adverse regions due to freezing issues. However, 

the state of art in turns of technological development has shown that direct expansion solar-

assisted CO2 transcritical HP systems can also show competitive performance like 

conventional SAHP systems using traditional refrigerants. 

An attempt has been made in this study to investigate theoretically a SWH 

integrated system direct expansion solar-assisted heat pump, using CO2 as refrigerant. For 

the evaporator component of the heat pump, an evacuated tube collector with a heat 

removal U-pipe is considered as the heat source. It is expected that the combination of heat 

pump technique with evacuated tube U-pipe solar collector, using CO2 as working fluid 

would meet the heating load requirement, even when exposed to solar adverse conditions 

(low ambient temperatures and wind chill temperatures).  

This thesis intends to accomplish the following tasks: (i) to perform a thorough 

thermodynamic analysis of the said system, (ii) to develop a numerical model of a direct 

expansion solar-assisted heat pump (DX-SAHP) water heating system using CO2 in a 
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transcritical cycle under a quasi-steady state operation, (iii) to simulate the numerical 

model of DX-SAHP system in order to identify the dominant operating parameters of the 

system under study, (iv) to investigate the design and operating parameters on the system 

performance and to understand the relative significance of these operating parameters, (v) 

to optimize the system component based on the numerical results, especially to bind an 

optimal match between  compressor capacity and area of solar collector, to ensure 

successful system operation. 
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4. THERMODYNAMIC ANALYSIS 

The schematic of the direct expansion solar-assisted heat pump (DX-SAHP) system 

using CO2 transcritical cycle is shown in Fig. 2 of Chapter 1. A quasi-steady state process 

has been considered to determine the performance of each component as well as the overall 

system. Model development of the system entails a detail thermodynamic analysis for each 

of the component pertaining to the system. The four main stages of the cycle such as – 

evaporation, compression, heat rejection and expansion are shown in Fig. 3 in p-h diagram. 

Based on the 1st law of thermodynamics, the generalized energy equation for the chosen 

control volume (component of the system) is given below: 

 %� & '� � ()� & 12 $�
� & �,�- � �� & '� � ()� & 12 $�

� & �,�- (2) 

Considering the following assumptions, the above energy equation can be expressed as 

(i) A quasi-steady state system operation 

(ii)  Kinetic and potential energy differences are insignificant 

 %� � �� & '� .)� / )�0 (3) 

Depending on the operating conditions in the evaporator, the atmospheric air acts 

like an additional heat source or sink beside solar energy. The thermodynamic process 4–1 

represents the evaporation process in which CO2 undergoes phase change from liquid to 

vapor (Fig. 2 in Chapter 1). The evaporated refrigerant is then compressed in the 

subsequent compression process 1–2 to a supercritical vapor pressure stage. The 

supercritical CO2 at a high pressure and temperature goes through the process 2–3 in the 

condenser, where the working fluid gets condensed. The energy released by the 
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supercritical CO2 vapor (in coil condenser) is then utilized to heat the water by sensible 

cooling process through a heat exchanger, which has been immersed into the hot water 

storage tank. Finally, the high pressure but low temperature CO2 is throttled to the 

evaporator pressure by the throttling process shown as process 3–4, where pressurized CO2 

flashes through the thermostatic expansion valve to attain its initial pressure conditions 

(evaporator pressure). This completes one full cycle. Subsequent cycles follow the same 

sets of events, by which water in the storage tank eventually gets heated up. The process 

continues as long as solar radiation is available on the solar collector. The events described 

above are shown in the idealized pressure-enthalpy diagram (Fig. 3 in Chapter 1). As 

shown, the transcritical cycle shares a low-pressure sub-critical zone and a supercritical 

high pressure side in any given cycle of operation. In the studied transcritical cycle, it is 

ensured that CO2 is compressed close to its critical point. This is because, one of the 

distinct characteristics of supercritical CO2 is that, near the critical point it shows a rapid 

change in thermodynamic and transport properties even with a small change in 

temperature. This particular region is called the ‘pseudo-critical’ zone where the specific 

heat coefficient reaches its maximum for a given pressure and temperature [49]. 

4.1. Evaporator/Solar Collector Model 

A number of studies have been performed to improve the existing solar collectors 

design as well as its efficiency [17, 72 – 75]. The improvement methods used include 

structural changes, introduction of new materials and coatings, and various working fluids. 

Recently, one of the new collectors, namely, evacuated tube U-pipe solar collector has been 

studied for electric power and heat generation using CO2 as the working fluid [76 – 79]. 

Zhang and Yamaguchi [80] have studied the convective heat transfer characteristics of 
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supercritical CO2 in a horizontal circular tube in forced convection mode and identified 

several heat enhancement mechanisms which are superior to a water-based collector 

system. In order to investigate the influence of CO2 as a working fluid in a U-tube inserted 

glass evacuated solar collector, Zhang et al. [81] made a detailed study on the collector 

characteristics with CO2 as the working fluid and found that the annually-averaged 

efficiency could attain above 60% which is much higher than the water-based collectors 

where annual maximum efficiency could reach only up to 50%. 

Moreover, proper selection of the solar collector can minimize the heat losses. 

Selective surface coatings along with the vacuum insulation between the two concentric 

tubes are two main distinct design aspects of the evacuated tube solar collector, compared 

to the flat plate solar collector. Thus, evacuated tube collector enhances higher useful heat 

gain along with minimal heat losses [74]. Due to absence of air or any other heat transfer 

medium between the two concentric tubes, the heat losses pertaining to convection is very 

much minimized. Figure 21 illustrates a comparative design benefit of using evacuated tube 

solar collector over flat-plate solar collector. 

Therefore, evacuated tube collectors are currently widely used in the solar adverse 

regions, especially for residential solar thermal applications. However, glass evacuated 

tubes cannot sustain high pressure condition. As an alternative, U-pipe inserted evacuated 

tubes are commonly used solar collector to deal with a high pressure thermodynamic cycle 

in the solar heat pump systems. 
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Figure 21: A comparison between flat-plate and 
evacuated tube solar collector with respect to their 
design benefit  

The evaporator component (U-pipe inserted glass evacuated tube solar collector) of 

the heat pump system used in this study is shown in Fig. 22. Important features of this 

system are: (a) the outer and inner glass tubes placed concentrically to provide the vacuum 

space in between them, (b) selective absorber coating painted inside the inner tube and (c) 

copper U-pipe placed inside the inner glass tube with a fin connected together. The 

characteristic features of glass evacuated tube solar collectors are its collective effect of 

vacuum insulation between the concentric tubes and the selective surface coatings that 

results in enhanced heat extraction efficiency [74]. As the solar radiation passes through the 

glass tubes, it is absorbed by the surface coating placed inside the inner tube. The absorbed 

heat is then transferred to the U-tube by conduction and in turn to the working fluid inside 

the U-tube by convection heat transfer method affecting an increase in the temperature and 

pressure of the working fluid.  
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Figure 22: Schematic of the evacuated tube U-pipe 
solar collector and its components: (a) CO2 flow 
direction; (b) construction of the unit glass tube; (c) 
cross-sectional view of the collector tube; and (d) 
differential control volume used in the present 
analysis 
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4.1.1. Two-phase Flow in the Solar Collector 

The two-phase flow condition in the solar collector tubes is assumed to be at 

thermodynamic equilibrium. It is also assumed that the change in enthalpy solely effect the 

change in the vapor quality (dryness fraction), by the solar radiation input. In addition, the 

pressure drop across the solar collector tube is insignificant since it is assumed to have a 

negligible effect on the vapor quality change due to the second-order effect. Depending on 

the mass flow rate of the fluid, different flow regions develop in the liquid and vapor 

phases ranging from mist flow (small droplets in vapor) to bubbly flow (small-sized 

bubbles in liquid). Hence, determining the exact flow region is essential, for the analysis of 

the two-phase flow since it varies depending on the type of flow region. Baker [82] has 

illustrated a map-based two-phase flow region for different vapor and liquid mass flow 

rates. In the context of the present study, though the said two-phase flow regions develop, 

but it is extremely quick and reaches saturated vapor/superheated conditions. Hence, 

incorporating the flow field in the analysis is difficult, since there involves uncertainties 

regarding the determination of proper boundary conditions for each flow field. In the 

available literature, pressure drop across the evaporation process is predicted either by 

Martinelli Nelson’s method or Owen’s homogeneous method [83]. The Martinelli Model 

calculates the pressure drop for two-phase separated flow region and the Owen’s Model 

deals with that of misty or bubbly flow regions. However, none of these models properly 

match the predicted pressure drop to that of the experimentally obtained data, especially 

during the evaporation process in the solar collector. Therefore, a simple Homogeneous 

Equilibrium model could effectively predict the pressure drop characteristics to the 

acceptable accuracy levels in the two-phase flow regions. The model assumes that both the 
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vapor and liquid phases undergo the same velocity and can be replaced as a single phase 

pseudo-fluid. Though the property of this single phase fluid is different compared to vapor 

or liquid phases, its value represents an average value of the two distinct phases. Thus 

Homogeneous Equilibrium model employs a simple form of using single phase flow and 

includes the vapor and liquid mixture flow effects. Chaturvedi et al. [84] investigated the 

flow effects on two-phase flow regions and noticed that dispersed flow region could be 

achieved in solar collector evaporation process. Homogeneous Equilibrium model 

incorporates the dispersed flow region in the analysis to predict the pressure drop in the 

solar collector and hence this model has employed in the present study.  

4.1.2. Governing Equations for Evacuated Tube U-pipe Solar Collector 

Following assumptions are made to simplify the one-dimensional heat transfer 

analysis of the evacuated tube U-pipe solar collector used in the present study: 

i. Heat absorption by the outer glass tube of the solar collector is considered 

insignificant. 

ii.  Thermal resistances of the outer glass tube, surface coating, metal tube and fin are 

neglected. 

iii.  Radial temperature gradients among surface coating, metal U-tube and fin are 

assumed to be negligible. 

iv. Averaged heat flux in the circumferential direction is used as the boundary 

condition [75]. 
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For one-dimensional, steady, two-phase flow, the useful heat gain (Qu) of the solar 

collector is defined from Wallis [85] equation as  

 %� � 1����2′3#	4�
�
5 / 6�4�� / �57 (4) 

In Eq.(4), overall heat loss coefficient (UL) is defined as the sum of top loss coefficient (Ut) 

and edge loss coefficient (Ue). 

 6� � 6� & 6� (5) 

Edge loss coefficient is neglected due to the assumption of proper heat insulation at the 

edges of the solar collector. Top loss coefficient (Ut) can be defined as: 

 6� � 8 1)
,���� & 1)
,� & 1)
,����9��

 (6) 

where hg,conv is the heat transfer coefficient between the outer glass tube and the ambient 

due to convection (W/m2 K), hg,r is the radiation heat transfer coefficient from the inner 

glass tube to the outer glass tube (W/m2 K) and hg,cond represents conduction heat transfer 

coefficient between the inner glass tube and the fin (W/m2 K). The heat transfer coefficient 

hg,conv and hg,r can be written as: 

 )
,���� � 5.7 & 3.8? (7) 

 )
,� � �
�1 & 
�@�
�@�
.1 / 
�0 4��� & �
�54�� & �
5 (8) 

The conduction heat transfer coefficient expressed in Eq.(6) and the edge loss coefficient 

can be obtained from the theoretical [75] and experimental results [86] which were 



 

47 
 

calculated as 0.2796 (W/m2 K) and 0.1687 (W/m2 K) respectively. From the Fig. 22(c), the 

heat loss of the evacuated tube can be written as: 

 6�.�� / �0 � )
,�4�� / �
5 & )
,����4�� / �
5 (9) 

In the above Eqs.(6)-(9), the unknown parameters  are Ut, hg,r, V, Tat, Tg and Ta. Using the 

known parameters V, Tat and Ta rest of the unknown parameters have been calculated by 

iterative numerical procedure (secant method). The calculated values are then used to 

compute the overall heat loss coefficient of the solar collector which is one of the important 

parameters to estimate the performance of the solar collector. 

The collector efficiency factor (F΄) is determined by the following formula as given 

by Hottel-Whilliar Bliss model [23] 

 
2′ � 1 6�⁄

� B 1 & 6� ��⁄6�CD & .� / D02E & 1�� & 1)�′ FDG (10) 

The standard fin efficiency (F) is given as: 

 2 � tanhC'.� / D0 2⁄ E'.� / D0 2⁄  (11) 

and the constant value, m is defined as: 

 ' � L 6�	�.1 & 6� ��⁄ 0M� �⁄

 (12) 

For the evaluation of inner tube temperature (Tat), copper tube connected between the inlet 

and outlet of metal U-tubes is treated as fin and a second-order temperature equation is 

derived by considering a small element on the fin [75]. 

 
D���D��

� /N & 6�.�� / �0	�.1 & 6� ��⁄ 0  (13) 
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Temperature of the working fluid inside the U-tube is determined by dividing the 

evaporation process into differential control volumes of length dz shown in Fig. 22(d). 

Such discretization is employed to improve the accuracy of the calculation and the thermo-

physical property variations near the critical region of the CO2. Thermodynamic properties 

are assumed to be constant in each of the differential control volume segments. The 

calculated outlet properties of each element then become the inlet state of the successive 

element. Applying the first law of thermodynamics to each segment of the differential 

elements, the following thermal expressions are obtained. 

Outer glass tube: 

�
!
#	 & !�)�4�� / �
5 & !��4��� / �
�51 

⁄ & 4!� !
⁄ 541 

⁄ / 15
� !
)4�
 / �5 & !
�

4�
� / ��5 

(14) 

Inner glass tube: 

�
�
!�#	 & O
.�� / ��0ln L1 & ( ��2!�-M � !�)�4�� / �
5 & !��4��� / �
�51 

⁄ & 4!� !
⁄ 541 

⁄ / 15 (15) 

Surface coating and U- tube: 

 �
���!�#	 � O
.�� / ��0ln L1 & ( ��2!�-M & 2!�)�4�� / ��5 (16) 

Working fluid (CO2): 

 '� ��� D��D, � !�)�4�� / ��5 (17) 

The Eq.14 through Eq.17 are simplified to formulate a single expression in first order 

differential equation for calculating the temperature of the working fluid as 
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D��D, � �
���!�#	 & �
�
!�#	 & �
!
#	 / !
�

4�
� / ��5 / !
)4�
 / �52'� ���  (18) 

The heat transfer coefficient (
fh ′ ) of the working fluid for the two-phase flow region in the 

horizontal tubes is defined by the following relationship [84].  

 )�′ � 0.0082O�D�

4R���� S∆U)�
 V⁄ 5�.� (19) 

where J is the dimensional constant with a fixed value of 778 and ∆x is the change in 

quality of the CO2 between inlet and exit state [84]. Quality change in the above equation is 

assumed due to the enthalpy change only, neglecting the pressure effects on the quality. 

Reynolds number is based on internal diameter (di) and liquid viscosity of the two-phase 

CO2. In the superheated region, the 
fh ′  is obtained using the following Dittus-Boelter 

relationship. 

 )�′ � 0.023R����.��!���.� O�D�

 (20) 

Pressure drop of CO2 inside the U-tube is obtained by considering the homogeneous     

two-phase mixture flow and by using mass, momentum, and energy balance relationship 

explained by Chaturvedi et al. [84]. The simplified correlations are listed below. 

 
D�DW � /

2��X�D�
4Y� & UY�
5 & X�Y�
 DUDW

81 & X� (U DY
D� & .1 / U0 DY�D� -9 (21) 

 '� � DUDW � �2′)�
 3#	.��0 / 6�4�� / �57 (22) 
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The frictional pressure drop coefficient (Cf) depends on the laminar and turbulent nature of 

the fluid flow inside the U-tube which is the function of Reynolds number and it is defined 

using the following: 

 �� � 16R��� ,      R� \ 2300 (23) 

 �� � 0.079R����.�� ,      R� ^ 2300 
(24) 

In Eq. (21), the saturated fluid properties are calculated by choosing a polynomial fit curve 

for vf, vg and vfg as a function of pressure. A fourth-degree polynomial fit is chosen to find 

the above properties of CO2 which is valid in the pressure range of 2 – 7.3 MPa. The error 

involved by this polynomial fit remains within 1% range and is mainly useful for numerical 

solution method. The degree of superheating in each iterative process is evaluated using the 

following expression. 

 ∆� � �� / ��′  (25) 

The superheated single-phase region starts at the length of U-tube denoted as z0 and can be 

written as 

 W� � / ��� log� L�� / � / N 6�⁄��′ / � / N 6�⁄ M '� �2′6��  
(26) 

The instantaneous efficiency of the solar collector is calculated by the following 

expression: 

 ����� � %�1����#	 (27) 
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The useful energy received by the solar collector can also be obtained as a function of the 

change in enthalpy of the inlet and outlet (exit) state of the collector. 

 %� � '� �∆) (28) 

4.2. Compressor Model 

In a positive-displacement reciprocating compressor, piston-cylinder arrangement is 

used to deliver working fluid at a higher pressure and hence, compressor runs the heat 

pump cycle. The performance of the heat pump cycle can be controlled by regulating the 

mass flow rate of the working fluid delivered by a compressor. The mass flow rate of the 

carbon dioxide through the compression process is obtained by the following expression as: 

 '� � � ������?� a60 
(29) 

where N is denoted as compressor speed in rpm. The swept volume (Vs) using the 

following formula. 

 ?� � � F@�
�N4  

(30) 

The volumetric (��), mechanical (��) and isentropic (�����) efficiency formulas of the 

compressor is used from the correlations developed by Oritz et al. [57]. All the efficiency 

expressions are obtained as the function of suction to discharge pressure ratios. 

�� � '� �����?� a 60⁄ � 0.9207 / 0.0756 (��������- & 0.0018 (��������-� 
(31) 

�� � ������� � 0.9083 / 0.0884 (��������- & 0.0051 (��������-� 
(32) 
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����� � )�,���� / )�)� / )�
� /0.26 & 0.8952 (��������- / 0.2803 (��������-�
& 0.0414 (��������- / 0.0022 (��������-� 

 

 

 

(33) 

 

The internal compression work (Wcom) is the function of power consumption which 

depends on the mass flow rate, isentropic efficiency and the isentropic enthalpy change of 

the refrigerant. 

 ���� � '� � 4)�,���� / )�5�����  
(34) 

Compressor work can also be expressed in terms of enthalpy change of refrigerant between 

the inlet and outlet state. 

 ���� � '� �∆) (35) 

4.3. Condenser/Hot Water Storage Tank Model 

For the water storage tank model, water temperature within the tank is assumed to 

be uniform at any instance of time. The schematic and the modes of heat transfer between 

CO2 and water in the storage tank is shown in detail in Fig. 23. The hot water demand is 

supplied to the load directly from this tank. Therefore, for non-stratified or a mix tank 

model with the immersed condenser, the following expression could be used to evaluate the 

increment rise in water temperature. 

 c!��! D�!D� � %��� / .610�.�! / �0 / %��� 
(36) 
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Heat rejected in the condenser to the water in the storage tank takes into account of the heat 

absorbed by the evaporator model and the work done by the compressor. 

 %��� � %��� & ���� (37) 

 

Figure 23: Hot water storage tank with immersed 
single coil condenser: (a) schematic of the storage 
tank; (b) heat transfer between CO2 flow to the 
surrounding water; (c) top view of storage tank; and 
(d) thermal network between the CO2 flow to the 
ambient 

Similarly, the total heat dissipation from the condenser is also obtained by the following 

expression. 

 %��� � .610����.���� / �!0 (38) 

In the above expression (Eq. 38), (UA)coil is the overall heat transfer coefficient of the 

condenser coil. It is the sum of the thermal resistive values, including the convective 
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resistance offered by CO2, conductive resistance of the cooling coil and convective 

resistance of the water.  

 .610���� � 8 1)�′ 1�,�

& �����O����1�,�

& 1)!′ 1����

9��

 
(39) 

The condensation process will be in the supercritical region for any steady-state 

cycle and hence it follows the single-phase sensible cooling process. The heat transfer 

coefficient of CO2 within cooling coil to the inner tube wall of the cooling coil is evaluated 

using the following Nusselt correlation. 

 )�′ � O�a$�D�

 
(40) 

The overall Nusselt number (Nui) within the cooling coil includes the temperature drop 

across and is evaluated based on the Petukhov-Popov correlation [87]. 

 a$� � .d 8⁄ 0O� & O�.d 8⁄ 0� �⁄ .�!�  ⁄ / 10 
(41) 

where the friction factor f and the constants K1 and K2 are defined as: 

 d � .1.82 ln.R�0 / 1.640��;      3000 f R� f 5 g 10" (42) 

 O� � 1 & 3.4d (43) 

 O� � 11.7 & 1.8 .�!0�  ⁄⁄  (44) 

Similarly, the outside film coefficient between the outer tube walls to the water in the 

storage tank is evaluated using immersed heat exchanger tested by Farrington and  

Bingham [88].  
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 )� � O!��a$D�

 
(45) 

 a$ � �R����  (46) 

The convection coefficient C and the constant m of the above equation are taken from a 

similar immersed heat exchanger tested by Farrington and Bingham [88] of 0.9 and 0.25, 

respectively. The Rayleigh number in Eq. (43) can be written as 

 R��� � X!���! � ��D�
 .�!�� / �!0�� ��O!

 
(47) 

Pressure drop of CO2 through the immersed condenser is calculated using the Darcy 

friction factor, using the Blasius correlation for the flow in a smooth tube.  

 ∆� � d ∆V2�� 8X�
�D�

9 (48) 

4.4. Expansion Device 

The CO2 pressure drop from condenser pressure to the evaporator pressure is 

affected through a thermostatic expansion valve. Ideally, the throttling process is assumed 

to be isenthalpic, and considered to be a steady state device. Therefore, enthalpy across the 

expansion valve can be written as:  

 ) � )� (49) 

4.5. Available Solar Energy from the Solar Collector 

The total radiation intensity received on a horizontal plane at any given instance is 

assumed to vary sinusoidally from sunrise to sunshine according to 
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 #	 � #�# sin (F�j - (50) 

where Imax is the maximum intensity of solar radiation occurring at solar noon (12:00 

hours), l is the length of the day in hours and θ is the difference between time of the day (at 

any given instance) and the sunrise time in hours. The diffuse solar intensity (Id) on a 

horizontal plane is assumed to be 15% of Imax. 

The daily total solar radiation intensity (Iβ) on an inclined surface includes: beam, 

diffuse and ground reflected radiation. This formula is obtained as 

 #$ � #�R� & #� (1 & cos �2 - & .#� & #�0�
 (1 / cos �2 - (51) 

where beam radiation factor (Rb) is defined as 

 R� � cos �cos �% � cos.l / �0 cos � cos m & sin.l / �0 sin �cos l cos � cos m & sin l sin �  (52) 

Beam and diffuse radiation are usually measured by some of meteorological 

stations; but, North Dakota Climate Office [89] only measures global solar intensity. It 

needs to consider both beam and diffuse radiation to calculate the total solar incident on a 

tilted surface. An hourly average diffuse radiation is usually measured by correlating the 

ratio of diffuse to global radiation considering hourly clearness index, kT. 

 
#�#	 � n1.0 / 0.249"	;                        d ! "	 \ 0.351.557 / 1.84"	;       d ! 0.35 \ "	 \ 0.750.177;                                        d ! 0.75 \ "	

o (53) 

where kT is the ratio of total solar radiation intensity (IT) to that of extraterrestrial radiation 

(Io) on a horizontal surface.  

Using the meteorological parameters of Fargo, North Dakota as tabulated in Table 4 

can be used to estimate Io on a given day of the year by the following formula: 
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 #� � X�� L1 & 0.033 cos (360�365 -M .sin l sin � & cos l cos � cos m0 (54) 

in which angle of deflection denoted as δ is defined as 

 � � 23.45 sin L360365 .284 & �0M (55) 

Table 4: Geographical data of Fargo, North Dakota [89] 

Parameters Values 

Latitude (Ф) +46.90° 

Longitude -96.82° 

Tilt angle (β) 46.90° 
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5. SYSTEM MODELING AND SIMULATION PROCEDURE 

The mathematical modeling of the proposed DX-SAHP system to predict the 

thermodynamic performance is simplified based on the following general assumptions: 

(i) Quasi-steady state conditions are approximated within the chosen time interval. 

(ii)  The refrigerant is uniformly distributed among all the heat removal pipes in the 

evacuated tube solar collector and is considered to be saturated at the exit of the 

collector. 

(iii)  Pressure drop and heat loss in the connecting pipes are neglected. 

(iv) Frictional losses in the evaporator and the condenser are negligible. 

(v) A good thermal insulation over the CO2 loop is assumed, i.e. thermal loss to the 

surroundings is neglected. 

(vi) A non-stratified hot water storage tank is considered for the simulation. 

(vii)  Kinetic and potential energy changes are assumed to be insignificant. 

5.1. Solution Procedure 

A numerical computational model in MATLAB has been developed to analyze the 

characteristics of the components mentioned in Chapter 4, which holistically dictates the 

thermal performance of the DX-SAHP system. Input parameters (Table 5) for the 

simulation cycle include: collector properties (Table 5), meteorological data [89], initial 

storage water temperature and the compressor speed. The thermodynamic properties of the 

CO2 used in analyzing each component of the system were generated using REFPROP 8.0 

software.  
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Table 5: Main parameters used in the performance evaluation of DX-SAHP 
water heating system 

Components Parameters Value 

Evacuated tube U-pipe solar collector   
   Properties of absorber coating 

Absorbtance 0.927 

Transmittance 0.08 

Reflectance  0.033 
    

 
 
 
   Properties of glass tubes 

Thermal conductivity 1.25 (W/m K) 

Transmittance 0.90 

Absorbtance 0.05 

Reflectance  0.05 

Emittance 0.83 

Outer tube outer diameter 47 mm 

Thickness  1.2 mm 

Inner tube outer diameter 37 mm 

Length of the tube 1.7 m 
  

    Properties of U-tube 
Outer diameter 8 mm 

Conductivity  400 (W/m K) 

Bond conductance 30 (W/m K) 

Compressor (Reciprocating-type, 
hermetic) 

Swept volume per stroke 0.00001972 m3 

 

Condenser/Storage tank 

Thermal conductivity of insulation 0.0346 (W/m K) 

Thickness of insulation 5 mm 

Outer diameter of the condenser coil 8 mm 

Thickness  1 mm 

 

Simulation parameters (standard) 

Initial water temperature 7°C (winter) 

15°C (fall and spring) 

Wind speed 3.0 (m/s) (all seasons) 
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Figure 24: Flow chart of the simulation model 

Start 

Input parameters: Ac, N, Twi, 
solar collector properties, t 

Solar collector model: using assumed or calculated value of ∆x 
and the refrigerant temperature at which the superheating starts to 
determine the inlet temperature; Assume ∆T 

Calculate meteorological data  

Assume: condenser temperature, Tcon  

Assume: collector inner tube temperature, Tat 

Calculate refrigerant properties 

Compressor model: calculate mf, Wcom, and new value of ∆T 

| ∆T – new ∆T| < ε 

Update 

No 

Yes 

Calculate Tat 

|Tat – new Tat| < ε 

Update 

No 

Yes 

Condenser model: calculate Qcond, and new value of Tcon 

|Tcon – new Tcon| < ε 

Update 

No 

Yes 

Output: Two, COP, ηcoll, Qcon 

End 
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Figure 24 describes the flow chart of the simulation procedure. To start a simulation 

cycle, the operating parameters are set as input, along with the assumed solar collector and 

condenser temperature at the outlet state. The collector temperature (Tat) is determined by 

adjusting the initial guessed degree of superheat value. The compressor and solar collector 

model are called upon to determine the inlet and outlet state of each process. Once the solar 

collector temperature has come under the specified tolerance limit, the program proceeds to 

evaluate the outlet state of the condenser. Finally, the condenser temperature is adjusted 

with the value less than the tolerance limit and the current operating condition is considered 

as steady-state. The program evaluates all the inlet and outlet states of each components of 

the system, heat gain of the collector, heating capacity, compressor power, and COP. 

In real situation, when the working fluid exits from the solar collector with a 

specific degree of superheat, there remains a mixture of both superheated and two-phase 

flow in the collector tubes. Except for the energy equation, all the other equations 

explained in Chapter 4 are suitable for two-phase analysis. Therefore, it is necessary to 

determine the length of the collector tube over which superheating state takes place. For 

developing the solution procedure, it requires to determine the case when the refrigerant 

exits the solar collector in the saturated vapor state.  
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Figure 25: Boundary conditions at solar collector inlet 
and outlet points 

Forth-order Runge-Kutta method [90] is used for solving the differential equations 

described in Section 4.1.2 (Eq. 21 and 22). Boundary condition of vapor quality (x) is 

specified at the beginning of the U-pipe (z=0) which has a value of 0.0 (Fig. 25). Boundary 

conditions determining the pressure is unknown at both the ends of the U-pipe (z=0 and 

z=L). However, at z=0, the enthalpy at the exit of expansion valve is equal to the enthalpy 

at the inlet of solar collector. Therefore, the boundary condition can be expressed as: 

 )� � ) � )�.��0 & U�)�
.��0 (56) 

As h3 is known, Eq. (56) offers a compatibility condition for pressure in terms of vapor 

quality. Therefore, determination of P4 and x4 should satisfy the above condition. For the 

starting point of any numerical simulation, it is needed in Runge-Kutta method to specify 

the value of pressure and vapor quality at z=0. To start a cycle analysis, pressure at the exit 

of solar collector (P1) is assumed. A good starting guess is to assume the exit saturation 

temperature of solar collector is to equal the ambient temperature. For saturation condition, 
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there exists a saturation pressure for each saturation temperature. This saturation condition 

is the second boundary condition which is assumed at z=L. Now, as the specific volume at 

the solar collector exit can be obtained, the compressor mass flow rate (described in 

Section 4.2) is determined. With all these values, differential equations described in Eq. 21 

and 22 can be solved by Runge-Kutta method in terms of pressure and vapor quality. This 

in turn useful to predict solar collector inlet (z=0) state. Therefore, enthalpy at the inlet of 

collector (h4) can be determined from P4 and x4. The computed enthalpy is then compared 

with h3 and if it satisfies Eq. (56), the initial guess value is correct. It is unlikely to 

converge the solution only in one iteration and therefore a new assumption of P1 is needed. 

This solution procedure repeats unless boundary condition described in Eq. (56) is 

achieved. Once the solution process determines P1 within tolerable limit, the 

thermodynamic cycle analysis is carried out to calculate the performance parameter          

as COP.  

5.2. Cycle Performance Measurement 

The performance of the entire DX-SAHP system is predicted by evaluating the 

heating capacity and the coefficient of performance (COP). Heating capacity is the amount 

of heat rejected by the condenser (Eq.38) and the COP reflects the ratio of the heat 

rejection by the condenser (Qcon) to the electrical power required to operate the   

compressor (Wcom). 

 ��� � %�������

 (57) 
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5.3. Error Analysis 

To compare the simulation results of the present DX-SAHP water heating system to 

the experimental work, a method of error calculation need to be defined such as root mean 

square percent deviation. The root mean square deviation is expressed as the following 

formula: 

 � � p∑.��0��  (58) 

where, �� � r� / ,�r�

s 10 (59) 

In the above expression, Xi is the ith data point of the theoretical value, Zi is the 

experimental value and n is the total data points. The root mean square deviation is used to 

predict as to how well the simulation results of the proposed DX-SAHP design correlates to 

the experimental studies.  
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6. MODEL VALIDATION AND PARAMETRIC STUDIES 

6.1. Model Validation 

A model validation is essential to ensure that the simulation results are reliable; 

additionally, the model can be used to identify the optimal design and operating values 

which are essential in erecting experimental prototypes and in turn pave a way for 

commercialization.  

However, to the best of the authors’ knowledge, no experimental or theoretical 

results have been published on this particular type DX-SAHP solar water heater, using 

evacuated fin-integrated U-tube collector with CO2 as the working fluid operating in a 

transcritical cycle. Hence, model validation had been conducted by separately investigating 

the evaporation model in isolation from the system, which is the most critical to overall 

simulation accuracy. To examine the accuracy of the evaporation model adopted in this 

study, a simple thermosyphon based experimental set-up was designed and fabricated. The 

predicted results were then compared with the solar collector under stagnation conditions. 

The experimental design and operating parameters of the collector were then used in the 

theoretical model to generate the simulation results. The design details of the experimental 

set-up (Figure 26) are listed in Table 6.  



 

66 
 

 

Figure 26: Evacuated tube U-pipe solar collector used 
for experimental set-up 

Table 6: Design parameters used for the experimental set-up  

Components Material Parameters Value 

 

 

 

 

 

 

 

Solar Collector Properties 

Absorbing coating 

  

Absorptivity 0.92 

Emissivity 0.193 

Outer glass tube 

 

Outer diameter 0.047625 m 

Inner diameter 0.0381 m 

Thickness 0.0015875 m 

Air layer 

  

Conductivity 1.2  W/m K 

Thickness 0.001 m 

Conductivity 0.03  W/m K 

Copper fin 

 

Thickness 0.0006 m 

Conductivity 307  W/m K 

U-tube 

   

Outer diameter 0.00635 m 

inner diameter 0.003175 m 

Thickness 0.015875 m 

Length of tubular collector 3.6576 m 

Bond conductance 30  W/m K 

Collector area 1.15 m2 
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The validity of the analytical approach adopted in this study was verified with the 

experimental results, in terms of collector efficiency and the temperature of the working 

fluid. Experimental results pertaining to 23rd May, 2013 were used for comparison. Figure 

27 shows the efficiency profile of the evacuated tube U-pipe solar collector. The maximum 

global solar radiation intensity recorded by the pyranometer on the day of experiment was 

600 W/m2. As seen in the Figure 27, experimental data points are clearly scattered about 

the straight line which confirms that the collector efficiency agrees well with the predicted 

results. Figure 27 also shows that efficiency reduces linearly with an increase in the 

parameter (Tf – Ta)/IT. The slope of the profile is negative and is a function of UL. This is 

due to the fact that, as the difference between the working fluid and ambient temperature 

rises, the radiation and convection losses from the collector also increase. In general, as per 

the law of conservation of energy, the collector performance can be further improved by 

increasing energy transmission through the collector to the working fluid (useful energy) 

and minimizing the collector heat losses, with improved insulation techniques.  

The theoretical model was further verified by comparing the predicted CO2 

temperature with the measured data of the collector outlet. As shown in Fig. 28, the 

simulated results are in well accordance with the experimental results until noon. However, 

beyond noon, there exists an inconsistency between the measured and predicted values, 

which is caused by the sudden overcast of clouds, during the test day. The experimental 

collector efficiency during the test day was also compared with the simulation results, as 

shown in Fig. 29. Simulation results follow a similar trend to that of experimental values 

and found a mean absolute deviation of 15%.  
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Figure 27: Comparison of solar collector efficiency 
variation profile between simulation and   
experimental results 

 

Figure 28: A comparison between theoretical and 
experimental results of CO2 outlet temperature     over 
the test time of the day 
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Figure 29: Comparison between theoretical and 
experimental results of solar collector efficiency over 
the test time of the day 

Based on the validation results shown in Fig. 27 – 29, it can be said that the 

accuracy of the theoretical model is adequate to investigate the year-round performance of 

the proposed DX-SAHP water heating system. 

6.2. Baseline Simulation and Parametric Studies 

Theoretical analysis performed in Chapter 4 is used here to show the thermal 

performance of the proposed DX-SAHP water heating system in terms of COP, solar 

collector efficiency and heating capacity. A number of operating parameters such as: solar 

radiation, collector area, compressor speed, ambient temperature and storage volume, 

strongly influence the overall performance of the system, and are used to investigate the 

system under study. The simulation model identifies the important variables and therefore 

enables to perform the parametric study. A standard case is defined to evaluate the effects 
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of various parameters and is listed in the Table 5 of Section 5.1. To evaluate the effect of 

each parameter, all other variables remain constant at their standard values. The inlet water 

temperature to the storage tank is taken as an average of circulating tap water temperature. 

6.2.1. Effect of Compressor Speed and Collector Area 

To avoid the two-phase properties at the inlet of the compressor, it is assumed to 

deal with only the vapor phase discharged from the solar collector as either saturated vapor 

or at supercritical state. Therefore, though a part of the solar collector will go through the 

two-phase region, it is ensured that it is in the vapor region before entering into the 

compressor inlet. Throughout the steady state cycle shown in Fig. 30, it is observed from 

the simulated results that a transcritical operating condition is achieved. A heat sink of 

relatively low temperature (-5° – 10°C) plays a key role to ensure efficient transcritical 

operation. 

The compressor effect on the overall performance of the system has been assessed 

by varying the speed of the compressor. Figure 30 shows the effect of compressor speed 

within a range of 900 to 1500 rpm on COP and heat output at the condenser, for different 

solar intensity levels. The collector area and the ambient temperature were set to the base 

values of 1.91 m2 and 10°C, respectively. At any given speed of the compressor, COP 

increases with an increase in the solar intensity. It is due to the fact that solar intensity has a 

positive influence on the evaporation temperature, in turn requiring only low compressor 

speeds to accomplish the task of raising the fluid’s temperature to the desired value. It 

could also be noted from the Fig. 30 that, as the compressor’s speed increases, the COP 

value reduces. It is due to the fact that the discharge temperature increases along with an 

increase in speed of the compressor. At lower compressor speeds (around 1000 to 1100 
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rpm), the DX-SAHP system could reach a COP value of 2 – 2.5 with a heat capacity rate of 

about 2.4 – 3.0 kW. However, as the speed of the compressor further increases, the COP 

value decreases, although the heat extraction rate is much higher. This is due to the fact 

that, increase in the compressor speed is aided only with the work input which reflects in 

lower COP values. 

 

Figure 30: Effect of compressor speed on system 
COP and heat rejection at the condenser 

Figure 31 illustrates the variation of COP as a function of compressor speed 

considering solar collector area as a parameter. For a fixed compressor speed, the COP 

rises with the increase in collector area. If the solar collector area is more, the working fluid 

evaporates in the evaporator comparatively at a higher temperature which results in 

decrease in the compressor work and thus leading to a higher COP.  
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Figure 31: Effect of compressor speed for different 
collector area 

Effects of the compressor speed on solar collector efficiency and evaporation 

temperature are shown in Figure 32. The results have been predicted for the solar radiation 

of 600 W/m2 and collector area of 1.91 m2. An increase in the compressor speed facilitates 

higher refrigerant mass flow rate through the solar collector which lowers working fluid 

temperature. This phenomena leads to a lower heat loss from the solar collector and 

increase the solar collector efficiency. However, for any given compressor speed, as the 

collector area increases, it effects higher working fluid temperature, eventually leading to a 

decrease in the collector efficiency. This performance disparity between the system COP 

and the solar collector efficiency, for the given collector size and ambient conditions, 

shows that, there is room to identify an optimum compressor speed, which will help in 
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attaining a reasonable value in the COP and solar collector efficiency. Based on the results 

it could be discerned that, the predicted optimal compressor speed matches the existing 

collector design. In the situation of mismatches, it can be easily overcome by integrating a 

variable speed compressor to the DX-SAHP system, which would ensure an increase in the 

seasonal thermal performance. 

 

Figure 32: Variation of collector tube temperature and 
solar collector efficiency with compressor speed 

6.2.2. Effect of Solar Radiation Intensity 

The results discussed in Figures 27 and 28, pertain to a given intensity of solar 

radiation. As the radiation can vary over a wide range in a year, it would be interesting and 

informative to study its effect on the performance of DX-SAHP water heating system. 

Accordingly, the analysis was carried out for various intensities, the noon values of which 
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are varied in steps of 100 W/m2, from 200 – 700 W/m2. The results obtained for three 

different commercially available [91] evacuated tube collector areas, are shown in Figure 

33. This figure shows that, the system COP increases with increase in the intensity of solar 

radiation, for any given collector area. This is because of two reasons: (i) the higher solar 

radiation intensity heats the CO2 to a higher temperature; consequently, the heat recovery 

in the storage tank is higher, (ii) rise in collector temperature also aids natural convection 

currents and the cumulative effect of the natural and forced convection, results in higher 

mass flow rate, which in turn lowers the evaporator (collector) temperature. Lower the 

evaporator temperature, lower would be the heat losses and higher the collector efficiency 

as well as the system COP. 

The combined effect of Ta and intensity of solar radiation on the collector (absorber 

tube) to ambient temperature difference is shown in Figure 34. It puts in the perspective 

year-round performance of the system. It is well known that the collector efficiency is 

dictated by the collector tube loss, which scales with (Tat – Ta). In general, low ambient 

temperature (Ta) and low solar insolation (IT) correspond to winter operation, and similarly 

high values of Ta and IT correspond to summer operation. As seen in the Figure 34, for a 

given solar insolation, as the variation of   (Tat – Ta) increases, the collector performance 

deteriorates since the heat loss from the collector significantly increases, in turn impacts the 

overall performance of the DX-SAHP system. Similarly, for any given ambient 

temperature, as solar insolation increases, the variation in (Tat – Ta) increases. Though it 

results in a marginal increase in heat losses, given in the evaporator/collector temperature 

(Tat) reflects an increase in the average fluid (CO2) temperature. This raise in fluid 

temperature would translate into a higher coefficient of performance of the heat pump. This 
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is because, for a given condensing temperature, a heat pump be more efficient when the 

evaporator temperature is raised. 

 

Figure 33: Effect of solar radiation for different 
collector area on COP values 

 

Figure 34: Variation of differences of mean fluid 
temperature over ambient temperature as a      
function of IT and Ta 
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Figure 35: Variation of CO2 mass flow rate as a 
function of Ta 

The variation of the mass flow rate in the collector and the rise in collector 

temperature over the Ta, are shown in Figure 35. As shown with an increase in the value of 

Ta from -10° – 25°C, the fluid flow rate in the collector increases approximately by a factor 

of 2. For a given solar intensity, and mass flow rate in the collector, results in drop in 

collector temperature below ambient temperature. Hence, an apparently matched 

collector/compressor operation at low ambient temperature becomes a mismatched 

operation at higher ambient temperature.  

6.2.3. Effect of Ambient Temperature and Wind Speed 

To determine the effect of ambient temperature and wind speed on the collector 

efficiency and system COP, the ambient temperature was varied in steps of   5 degrees 

from -10°C to 20°C, and in steps of 1 m/s from 1 – 5 m/s, respectively. Figure 36 shows 

that higher ambient temperatures have positive influences on the thermal performance of 
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the system. This is because, higher ambient temperature reflects less heat losses from the 

collector, for the given operating range, affecting higher collector efficiency. Also, the 

required compressor work is reduced, thereby aiding higher COP. 

Wind speed also plays a pertinent role in the system performance. As one would 

expect, an increase in the wind speed would enhance the heat transfer between the solar 

collector and the surroundings. Under the conditions when the absorber tube temperature 

(Tat) is lower than the ambient temperature (Ta), an increase in the wind speed increases 

forced convection currents between the surrounding and absorber tube, resulting in higher 

rates of heat transfer. However, based on this study with the given operating conditions, the 

effect of wind speed is not predominant compared to other operating parameters. Figure 37 

shows the effect of wind speed on the system’s COP. 

 

Figure 36: Effect of ambient temperature (Ta) on the 
system performance in terms of COP and solar 
collector efficiency 
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Figure 37: Effect of wind speed (V) on the system 
performance in terms of COP and solar collector 
efficiency 

 

Figure 38: Effect of condensing temperature on 
system COP and collector efficiency 
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Figure 39: Effect of evaporating temperature on 
system COP at different condensing temperatures 

6.2.4. Effect of Condensing and Evaporating Temperature 

Condensing temperature (Tcon) is also an important operating parameter that 

influences the system performance. For the given base-case Figure 38 illustrates the effect 

of Tcon on COP and collector efficiency and it could be seen that with an increase in Tcon, 

though there is a sharp reduction in COP value, the collector efficiency reduces only 

marginally. Higher condenser temperature interprets that the collector absorber tube 

temperature is higher which aids higher heat losses from the collector system. Hence, the 

COP of the heat pump cycle is dictated both by the Tcon and Tat.  A substantial rise in the 

condensing temperature along with a marginal increase in collector temperature leads to a 

considerable drop in the COP. Also, it could be apparent from Figure 38 that, at low 

condensing temperature, both COP and collector efficiencies are relatively higher. This 
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observation suggests that the proposed heat pump cycle is more suitable for low 

temperature applications like domestic water heating. Similar to the condensing 

temperature, the evaporating temperature also plays a role on the overall system 

performance. Figure 39 shows that an increase in evaporating temperature improves the 

COP of the system positively. It should also be noted from Figure 38 and 39 that both 

condensing temperature and evaporating temperature have an inverse relationship on the 

COP of the system. Hence, for a given collector area of 1.91 m2, it is better to operate the 

system with a storage water temperature (condensing temperature) within the range of    

40° – 45°C. Higher condensing temperature results in lower COP values, because of the 

fact that higher compression ratio (indicates the need for work input) is required to aid 

higher condensing temperature. 

6.2.5. Combined Effect of Solar Collector Area and Storage Volume 

Other than the condensing temperature, also a proper combination of solar collector 

area as well as storage tank sizing is necessary to determine the reliability of the proposed 

system design. Figure 40 and 41 illustrate the combined effects of solar collector area and 

storage tank volume on its performance. It is evident from the trend that, initially an 

increase in storage volume effects a rapid rise in both COP and collector efficiency. 

However, for the storage tank volume beyond 150 liters, the performance parameters (COP 

and ηcoll) do not improve much. On the other hand, an increase in solar collector area for 

chosen tank volume effects the system COP positively, though having a negative impact on 

the collector efficiency. This phenomenon could be attributed to two main reasons: (i) for a 

given solar collector area, increasing tank volume lowers the condensing temperature 

which eventually results only a marginal decrease in the solar collector/evaporator 
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temperature. This paves a way for a relatively lesser amount of compressor work, in turn 

boosting the COP; (ii) For a given storage tank volume, an increase in solar collector area 

aids a rise in the fluid temperature of the evaporator, which results in an increase in COP, 

affecting a lower collector efficiency due to heat losses. Based on the numerical results, for 

the proposed DX-SAHP system, 100 – 150 L/m2 turns out to be the optimum storage tank 

size. 

 

Figure 40: Combined effect of solar collector area and 
storage volume on COP  
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Figure 41: Combined effect of solar collector area and 
storage tank volume on collector efficiency 

6.2.6. Effect of Solar Collector Area and Condenser Coil Length 

This section of the study analyzes the influence of solar collector area on COP by 

varying condenser coil length. For solar collector area of 1.43, 1.91 and 3.15 m2, the 

simulation was performed to optimize an appropriate range of condenser coil length 

(Figure 42).  Simulation results show that system COP is significantly impacted by 

condenser coil length. For each solar collector area, there is an optimum condenser coil 

length for obtaining the best COP. As the solar collector area increases, the optimal 

condenser coil length also increases. However, as the condenser length increases for a 

given solar collector area, COP value increases sharply before reaching the optimum value 

and decreases marginally after the optimum point. It implies that an undersized coil length 

have more negative impact to the performance than the oversized length.  
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Figure 42: Effect of condenser coil length on the 
system performance 

6.2.7. Seasonal Performance Variation 

Apart from the above parametric study in specific to seasonal variables, computer 

simulation was also carried out to learn about the year-round performance in terms of COP 

as well as the storage tank water temperature of the system. Accordingly, the monthly 

averaged global solar radiation and Ta pertaining to the North Dakota region were used as 

the input, obtained from a local weather network data [89]. It should be pointed out that, 

the simulation was performed only for radiation values above 250 W/m2. This is to ensure 

that the collector temperature (Tat) does not fall below the ambient temperature (Ta), which 

might drastically affect the system COP. Monthly averaged COP and solar collector 

efficiency of the proposed system is shown in Figure 43.  It is evident from the calculated 

results that COP of the system during winter months (about 3.0 – 3.2) is generally higher 

than the COP during fall and spring period (about 2.0 – 2.5).  This is because, the 
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difference between the condensation and evaporation temperature during winter months is 

particularly lower (Figure 44). Lower temperature difference reflects less work requirement 

in the compressor which impacts an enhancement in the COP.  The system COP can be 

improved by lowering the compressor speed in relatively warmer seasons. The monthly 

averaged collector efficiency variation (45 – 62%) as shown in Figure 43 also confirms that 

the proposed system’s collector efficiency is relatively higher compared to the conventional 

water driven solar flat-plate collector (about 40%). Monthly averaged year-round 

temperature variation of solar collector, condenser and storage tank water are shown in 

Figure 44. It is evident from the results that the difference between collector and condenser 

temperature stays higher during summer period (Jun – Aug) than that of winter months. 

Higher compressor work is needed when the difference between condenser and evaporator 

temperature remain higher and thus negatively impacts on COP value. 

 

Figure 43: Variation of monthly averaged COP and 
solar collector efficiency 
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Figure 44: Variation of monthly averaged temperature 
profile for Two, Tcon, and Tat 

  



 

86 
 

7. CONCLUSIONS AND FUTURE RESEARCH 

The focus of the present study was to investigate the performance of the direct-

expansion solar assisted heat pump (DX-SAHP) system using a CO2 transcritical cycle for 

the water heating application. The theoretical analysis was used to develop a numerical 

simulation model assuming a quasi-steady state operation of the system. Experiments were 

also conducted to verify the simulation results under the meteorological conditions of 

North Dakota. The simulation and experimental results showed a reasonable agreement 

between them and hence, the model can be a good demonstration of the actual system. 

Using the developed numerical model, the study examined the influences of several 

design and operating parameters on the overall performance of the DX-SAHP water 

heating system. The summarized design and operating characteristics identified by the 

simulation model can be described as follows: 

• The simulation model has shown that the thermal performance of the discussed 

system is greatly influenced by solar collector area, global solar radiation, ambient 

temperature, compressor speed, storage volume, and evaporating and condensing 

temperatures. Results revealed that solar radiation and ambient temperature have a 

significant impact on the DX-SAHP system’s thermal performance, although wind 

speed has shown to have negligible effect.  

• To ensure improved system performance, it is pertinent to choose an appropriate 

compressor speed which highly depends on the collector evaporative load. It was 

observed that average COP value increases by 57% when compressor speed 
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decreases from 1500 to 900 rpm, given that all other operating parameters remain at 

their standard values. 

• With a given compressor power, the higher collector area leads to an improved 

COP value and hence lowers the system operating cost by decreasing electrical 

power input. However, the higher collector area leads to a higher evaporating 

temperature and lower solar collector efficiency. 

• Simulated results showed that it is possible to achieve about 62% solar collector 

efficiency for an evacuated tube U-pipe solar collector, which is much higher than 

the conventional glass evacuated tube solar collector efficiency, using water as the 

working fluid (40 – 45%) [81]. 

• For a constant water volume in the tank, an increase in evaporator or solar collector 

area increases the overall COP, although it has a negative influence on the collector 

efficiency. An optimum relation between the storage volume and solar collector 

area is found to be 100 – 150 liters/m2. 

• With an increase in condense temperature, the system performance (both COP and 

collector efficiency) decreases, which indicate that the said system is suitable for 

low load heat applications. However, evaporating temperature has a positive 

influence on the system COP. Therefore, condensing and evaporating temperature 

have an inverse relationship on the overall system performance. 

• As the length of the condenser coil increases, the heat rejection capacity of the 

condenser also increases and eventually COP value increases up to a certain length 

of condenser coil. Therefore, an optimum length of condenser coil exists for 

different solar collector areas. 
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• A year-round thermal performance study on the proposed heat pump system 

revealed that the overall system performance was much more pronounced in winter 

months in terms of COP value when compared to rest of the months. 

In terms of installation expenditures and energy cost over the total life of the 

system, solar water heating technology has proven to be cost efficient for several domestic 

and industrial applications. Residential solar water heating is a promising age old 

technology, which has been evolved and developed both in range and quality as a 

successful packaged market-product. Although the high initial cost of the evacuated tube 

U-pipe solar collector makes the proposed DXSAHP water heating system expensive, the 

low cost and environmentally benign CO2, has great potential to be used in other integrated 

solar thermal applications as well.  

7.1. FUTURE RESEARCH 

The study comprises alternative natural refrigerant carbon dioxide as a working 

fluid in a DX-SAHP water heating system in which evacuated tube U-pipe solar collector is 

utilized as an evaporator. More in-depth analysis needs to be carried out in order to 

improve the feasibility of such a system. Therefore, future potential studies include: 

� Theoretical analysis indicates that certain design modifications can be beneficial for 

obtaining higher heat energy output. In particular, the stratified storage tank 

maintains the thermal stratification to deliver more heat, which is superior in design 

over conventional non-stratified or mixed storage water tanks. Therefore, 

incorporating the stratified tank analysis model into the DX-SAHP system may 

enhance the heating effect significantly and thus improve the overall system COP. 



 

89 
 

� Technical feasibility of such a DX-SAHP water heating system should be verified 

by carrying out extensive experimentation. In this way simulation results can be 

validated using experimental results. Experimentation is also useful to identify the 

real time design issues of such a system, which is difficult to encompass in 

simulation. 

� One of the widely acknowledged benefits of the SWH systems is in the potential of 

energy savings. Therefore, the economic evaluation and the life cycle analysis are 

necessary assessments to determine the feasibility of such systems. Economic 

evaluation factors that affect the SWH systems, used to find the specific energy 

efficient approaches depending on the size and particular energy demands, are also 

discussed in the review section.  

� This study investigated only on heating application. A combined electrical power 

and heat generation approach using supercritical carbon dioxide can be more 

innovative and efficient means of solar energy utilization. Several studies reveal 

that this combined cycle can achieve higher electrical and solar thermal conversion 

efficiency. Therefore, more thorough theoretical analysis of such combined systems 

should be carried out to realize the potentiality. 

� Design modifications for the studied DX-SAHP system can incorporate multi-mode 

operations, which may offer winter space heating, summer air conditioning, and 

year-round hot water supply. Although the DX-SAHP system complicates this 

multi-mode operation, but more study needs to be conducted to understand its 

potential. 
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APPENDIX: PROGRAM CODE 

A.1. MATLAB Functions 

A.1.1. Heat Pump Model 

Function:  Main_heat_pump.m 

% global model for thermodynamic analysis.  
 
clc 
P2=zeros(3,1); 
T2=zeros(3,1); 
%err_h=zeros(3,1); 
T3=zeros(3,1); 
h3=zeros(3,1); 
 
%Input parameters 
%-------Condenser parameters 
        T_water_i=280.15; 
        m_water=.035; 
            viscosity=refpropm('V','T',T_water_i,'P',101.325,'WATER'); 
            Water_min_Re=m_water/(pi()*(.03^2-.008^2)/4)*(.03-.008)/viscosity; 
%-------Solar Collector parameters------------------ 
    I=500; 
    S=0.8*I; 
    T_air=283.2; 
 
    V=3.5; 
    ha=5.7+3.8*V; 
    minallow=5; 
    Tsup=5; 
     
    T1=T_air-minallow;     
    T_p=T_air+10; 
P1=refpropm('P','T',(T1-Tsup),'Q',1,'CO2'); 
 
P2(1)=12000; 
P2(2)=11000; 
 
%iteration 1 
[T2 m Wc]=compressor(T1,P1,P2(1)); 
[P4 T4 h4 x4]=solar_collector(T_air,T1,T_p,P1,m,S,I,ha); 
[T3 P3 h3 Twout]=Condenser_1(T2,P2(1),m,T_water_i,m_water); 
err_h(1)=h3-h4 
 
%iteration 2 
[T2 m Wc]=compressor(T1,P1,P2(2)); 
[P4 T4 h4 x4]=solar_collector(T_air,T1,T_p,P1,m,S,I,ha); 
[T3 P3 h3 Twout]=Condenser_1(T2,P2(1),m,T_water_i,m_water); 
err_h(2)=h3-h4 
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i=2; 
while abs(err_h(i))>.1 
    i=i+1; 
 
    P2(i)=P2(i-1)-(err_h(i-1)*((P2(i-1)-P2(i-2))/(err_h(i-1)-err_h(i-2)))) 
     
    [T2 m Wc]=compressor(T1,P1,P2(i)); 
    [P4 T4 h4 x4]=solar_collector(T_air,T1,T_p,P1,m,S,I,ha); 
    [T3 P3 h3 Twout]=Condenser_1(T2,P2(i),m,T_water_i,m_water); 
    err_h(i)=h3-h4; 
    if i>100  
        break;  
    end 
end 
 
P_2=P2(i); 
P2_1=P2(i); 
 
%output 
h1=refpropm('H','T',T1,'P',P1,'CO2'); 
h2=refpropm('H','T',T2,'P',P_2,'CO2'); 
h3=refpropm('H','T',T3,'P',P3,'CO2'); 
h4=h3; 
CO2_mass_flow_rate=m; 
Water_out_temperature=Twout; 
Compressor_work=Wc; 
COP=m*(h2-h3)/Wc; 
Heat_output=m*(h2-h3); 
Heat_absorbed=m*(h1-h4); 
C_pf=refpropm('C','T',(T1-Tsup),'P',P1,'CO2'); 
 
Sol_eff=Heatabsorbed/(12*I*2*pi()*0.0229*3.6) 
 
format short e 
Output=[P1;P2_1;P3;P4;x4;T1;T2;T3;T4; CO2_mass_flow_rate; Water_out_temperature; 
Compressor_work;COP;Heat_output;Heat_absorbed] 
format short 
 
  
% Nomenclature 
% err          J/kg  ∆h across thermostatic expansion valve 
% P1           kPa      comp inlet pr 
% P2           kPa      comp outlet Pr 
% P3           kPa      Condenser outlet pr 
% P4           kPa      Solar Collector inlet pr 
% T_water_i    K        Water inlet temp 
% T1           K comp inlet temp 
% T2           K comp outlet temp 
% T3           K Cond outlet temp 
% T4           K Solar collector inlet temp 
% Tsup         K degree of superheat at evap outlet 
% Twout        K Water outlet temp 
% h3           J/kg condenser outlet enthalpy 
% h4           J/kg solar collector inlet enthalpy 
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% i                   iteration number 
% m    kg/s        CO2 mass flow rate 
% m_water      kg/s     water mass flow rate 
% minallow     K       min temp difference 
% viscosity    Pa*s     water viscosity 
% Water_min_Re       minimum water Reynolds # 
% Wc           W        Comp power 
% x4                  Solar collector inlet quality 
% Sol_eff   % Solar collector efficiency  
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A.1.2. Solar Collector Model 

Function:  solar_collector.m 

function [P4 T4 h4 x4]=solar_collector(T_air,T1,T_p,P1,m_tot,S,I,ha) 
n1=12; %number of tubes 
m=m_tot/n1; 
sigma = 5.6704*10^-8;  %Stefen-Boltzmann Const 
 
%Evaporator dimensions 
gl_abs=0.018; 
gl_tr=0.907; 
coat_abs=0.927; 
Emsvty_g=0.083; 
E_p=0.08; 
E_0=0.06; 
r0=0.0229; 
rp=0.0179; 
di=0.006; 
L=3.4;  % U-tube length 
dx=0.1; 
N=L/dx; 
A_r=2*pi()*r0*dx; 
qi=I*A_r; 
 
h_g_a=12.7; 
h_p_g_c=0.2796; 
U_e=0.1687; 
 
G=m/((pi()/4)*di^2); 
k_tube=400; 
delta=0.0006; 
 
w=0.0326*pi(); 
C_b=30; 
B=35;    %contact angle 
%-------------Finding U_L----------------------------- 
T0=zeros(3,1); 
T0_1=zeros(3,1); 
err_T0=zeros(3,1); 
 
%1st Iteration 
T0(1)=T_air+1; 
h_p_g_r=(sigma*E_p)*(T_p^2+T0(1)^2)*(T_p+T0(1))/(1+(E_p*2*rp)*(1-E_p)/(E_0*2*r0)); 
U_t=1/((1/h_g_a)+(1/(h_p_g_r+h_p_g_c))); 
T0_1(1)=T_p-(U_t*(T_p-T_air))/(h_p_g_r+h_p_g_c); 
err_T0(1)=T0(1)-T0_1(1); 
 
%2nd Iteration 
T0(2)= T_air+10; 
h_p_g_r=(sigma*E_p)*(T_p^2+T0(2)^2)*(T_p+T0(2))/(1+(E_p*2*rp)*(1-E_p)/(E_0*2*r0)); 
U_t=1/((1/h_g_a)+(1/(h_p_g_r+h_p_g_c))); 
T0_1(2)=T_p-(U_t*(T_p-T_air))/(h_p_g_r+h_p_g_c); 
err_T0(2)=T0(2)-T0_1(2); 
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i=2; 
while abs (err_T0(i))>0.01 
    i=i+1; 
    T0(i)=T0(i-1)-err_T0(i-1)*(T0(i-1)-T0(i-2))/(err_T0(i-1)-err_T0(i-2)); 
    h_p_g_r=(sigma*E_p)*(T_p^2+T0(i)^2)*(T_p+T0(i))/(1+(E_p*2*rp)*(1-E_p)/(E_0*2*r0)); 
    U_t=1/((1/h_g_a)+(1/(h_p_g_r+h_p_g_c))); 
    T0_1(i)=T_p-(U_t*(T_p-T_air))/(h_p_g_r+h_p_g_c); 
    err_T0(i)=T0(i)-T0_1(i); 
    T0=T0_1(i); 
     
end 
T0=T0_1(i); 
U_L=U_t+U_e; 
% T_p=T_p_1(i) 
    m_sc=(U_L/(delta*k_tube*(1+U_L/C_b)))^0.5; 
    F=(tanh(m_sc*(w-di)/2))/(m_sc*(w-di)/2); 
 
T=zeros(N+1,1);     %nodal temp array 
P=zeros(N+1,1);     %nodal pr array 
Q_u=zeros(N,1);     %segment heat transfer  
x=zeros(N+1,1);     %nodal quality 
h=zeros(N+1,1);     %nodal enthalpy 
alpha=zeros(N+1,1); 
%HTC_tot=zeros(N,1); 
 
P(1)=P1; 
T(1)=T1; 
n=1; 
h(1)=refpropm('H','T',T(1),'P',P(1),'CO2'); 
hv=refpropm('H','T',T(1),'Q',1,'CO2'); 
Reynolds_min=10000000; 
 
%_____________________single-phase (vapor) flow in the sol coll______ 
while h(n)>=hv && n<=N   
    [u den k cp]=refpropm('VDLC','T',T(n),'P',P(n),'CO2');     
    Re=G*di/u;                            %Re relation  
        if  Reynolds_min>Re 
            Reynolds_min=Re; 
        end 
    Pr=u*cp/k;                          %Pr relation 
%Pr drop  
    fp=.0791*Re^-.25;                 %pr friction factor (Blasius)  
    del_P=2*fp*dx*G^2*.001/(den*di);    %pr change (Darcy Weisbach) 
    P(n+1)=P(n)+del_P;                  %segment inlet pr 
 
%heat transfer  
    f=(.79*log(Re)-1.64)^-2;        %friction factor (Petukhov's formula) 
    Nu=(f/8)*(Re-1000)*Pr/(1.07+12.7*(f/8)^.5*(Pr^(2/3)-1));    %Nu correlation of Gnielinski 
    alpha(n)=Nu*k/di;                        % 1-phase CO2 heat transfer coefficient   
     
    F_prime=abs((1/U_L)/(w*((1+U_L/C_b)/(U_L*(di+(w-di)*F))+(1/C_b)+(1/(pi()*di*alpha(n)))))); 
    T(n+1)=(dx/(2*m*cp))*((gl_abs*r0*qi)+(gl_tr*gl_abs*qi*rp)+(gl_tr^2*coat_abs*rp*qi)-(r0*ha*(T0-
T_air))-(r0*sigma*Emsvty_g*(T0^4-T_air^4))+((2*m*cp*T(n))/dx)); 
%     TT=T(n+1) 
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    Q_u(n)=dx*w*F_prime*(S-U_L*(T(n+1)-T_air)); 
     
    h(n+1)=h(n)-Q_u(n)/m; 
    n=n+1; 
    hv=refpropm('H','T',T(n),'Q',1,'CO2'); 
 
end   
             
hl=refpropm('H','T',T(n),'Q',0,'CO2'); 
x(n)=(h(n)-hl)/(hv-hl); 
 
 
%__two-phase flow-boiling at solar collector__________________________     
 while h(n)<hv && n<=N && h(n)>hl  
    [uv pv]=refpropm('VD','P',P(n),'Q',1,'CO2');              %CO2 vapor properties at inlet pr 
    [ul pl kl cpl sften]=refpropm('VDLCI','P',P(n),'Q',0,'CO2');   %CO2 liq properties at inlet pr 
    Re_lo=G*di/ul;     
            if Reynolds_min>Re_lo 
                Reynolds_min=Re_lo; 
            end 
    Prl=ul*cpl/kl;                      %Pr # at sat liq condition 
    Xtt=((1-x(n))/x(n))^.9*(pv/pl)^.5*(ul/uv)^.1; %Lockhart-Martinelli factor;  
   
             
%_______2-phase pressure drop____  
    f_lo=.0791*Re_lo^-.25;     % Fanning friction factor 
    phi_squared=(1+(pl/pv-1)*x(n))/(1+(ul/uv-1)*x(n))^.25;  %two-phase multiplier  
    del_P=2*dx*f_lo*G^2*phi_squared*.001/(di*pl); 
    P(n+1)=P(n)+del_P; 
     
    [T(n+1)]=refpropm('T','P',P(n+1),'Q',1,'CO2');  %Temp at next node     
 
%____________2phase heat transfer coefficient____ 
    bd=.0146*B*(2*sften/(9.81*(pl-pv)))^.5; 
    Fp=2.37*(.29+1/Xtt)^.85; 
    htfus=hv-hl; 
    coef_l=.023*kl/di*(Re_lo*(1-x(n)))^.8*Prl^.4; 
     
    %first iteration 
    qguess(1)=100000 ;  
    Boil=qguess(1)/(G*htfus); 
    if  Xtt<1 
        NN=4048*Xtt^1.22*Boil^1.13; 
    else 
        NN=2-.1*(Xtt)^.28*Boil-.33; 
    end 
    coef_sa=207*kl/bd*(qguess(1)*bd/(kl*T(n)))^.745*(pv/pl)^.581*Prl^.533; 
    alpha_1(1)=NN*coef_sa+Fp*coef_l; 
    F_prime=abs((1/U_L)/(w*((1+U_L/C_b)/(U_L*(di+(w-di)*F))+(1/C_b)+(1/(pi()*di*alpha_1(1)))))); 
    Q_u(1)=dx*w*F_prime*(S-U_L*(T(n+1)-T_air)); 
 
    err(1)=qguess(1)-Q_u(1); 
     
    %second iteration 
    qguess(2)=qguess(1)-100;   
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    Boil=qguess(2)/(G*htfus); 
    if  Xtt<1 
        NN=4048*Xtt^1.22*Boil^1.13; 
    else 
        NN=2-.1*(Xtt)^.28*Boil-.33; 
    end 
    coef_sa=207*kl/bd*(qguess(2)*bd/(kl*T(n)))^.745*(pv/pl)^.581*Prl^.533; 
    alpha_1(2)=NN*coef_sa+Fp*coef_l; 
    F_prime=abs((1/U_L)/(w*((1+U_L/C_b)/(U_L*(di+(w-di)*F))+(1/C_b)+(1/(pi()*di*alpha_1(2)))))); 
    Q_u(2)=dx*w*F_prime*(S-U_L*(T(n+1)-T_air)); 
 
    err(2)=qguess(2)-Q_u(2); 
     
    j=2; 
 
while abs(err(j))>.001 
        j=j+1; 
        qguess(j)=qguess(j-1)-err(j-1)*(qguess(j-1)-qguess(j-2))/(err(j-1)-err(j-2)); 
        Boil=qguess(j)/(G*htfus); 
        if Xtt<1 
            NN=4048*Xtt^1.22*Boil^1.13; 
        else 
            NN=2-.1*(Xtt)^.28*Boil-.33; 
        end 
        coef_sa=207*kl/bd*(qguess(j)*bd/(kl*T(n)))^.745*(pv/pl)^.581*Prl^.533; 
        alpha_1(j)=NN*coef_sa+Fp*coef_l; 
        F_prime=abs((1/U_L)/(w*((1+U_L/C_b)/(U_L*(di+(w-di)*F))+(1/C_b)+(1/(pi()*di*alpha_1(j)))))); 
        Q_u(j)=dx*w*F_prime*(S-U_L*(T(n+1)-T_air)); 
 
        err(j)=qguess(j)-Q_u(j);      
    end 
     
    alpha(n)=alpha_1(j); 
     
    F_prime=abs((1/U_L)/(w*((1+U_L/C_b)/(U_L*(di+(w-di)*F))+(1/C_b)+(1/(pi()*di*alpha(n)))))); 
    T(n+1)=(dx/(2*m*cp))*((gl_abs*r0*qi)+(gl_tr*gl_abs*qi*rp)+(gl_tr^2*coat_abs*rp*qi)-(r0*ha*(T0-
T_air))-(r0*sigma*Emsvty_g*(T0^4-T_air^4))+((2*m*cp*T(n))/dx)); 
%     TT=T(n+1) 
    Q_u(n)=dx*w*F_prime*(S-U_L*(T(n+1)-T_air)); 
     
    h(n+1)=h(n)-Q_u(n)/m; 
      
    hv=refpropm('H','P',P(n+1),'Q',1,'CO2'); 
    hl=refpropm('H','P',P(n+1),'Q',0,'CO2'); 
    n=n+1; 
    x(n)=(h(n)-hl)/(hv-hl); 
 
 end 
                        
x4=x(n); 
 
%-----------------------subcooled CO2------------------------------- 
while n<=N && h(n)<=hl 
    [u den k cp]=refpropm('VDLC','T',T(n),'P',P(n),'CO2'); 
    %heat transfer  
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    Re=G*di/u;                            %Re equation  
        if  Reynolds_min>Re 
            Reynolds_min=Re; 
        end 
    Pr=u*cp/k;                          %Pr     
    Nu=.023*Re^.8*Pr^.4;   %Dittus-Boelter correlation  
    alpha(n)=Nu*k/di;  
     
    F_prime=abs((1/U_L)/(w*((1+U_L/C_b)/(U_L*(di+(w-di)*F))+(1/C_b)+(1/(pi()*di*alpha(n)))))); 
    T(n+1)=(dx/(2*m*cp))*((gl_abs*r0*qi)+(gl_tr*gl_abs*qi*rp)+(gl_tr^2*coat_abs*rp*qi)-(r0*ha*(T0-
T_air))-(r0*sigma*Emsvty_g*(T0^4-T_air^4))+((2*m*cp*T(n))/dx)); 
%     TT=T(n+1) 
    Q_u(n)=dx*w*F_prime*(S-U_L*(T(n+1)-T_air)); 
     
    h(n+1)=h(n)-Q_u(n)/m; 
    P(n+1)=P(n); 
    n=n+1; 
     
end 
 
T4=T(n); 
P4=P(n); 
h4=h(n); 
end 
 
 
%Nomenclature 
% A_r          m^2  carbon dioxide-side area 
% alpha        W/m^2*K      carbon dioxide conv heat transfer coef 
% coef_sa      W/m^2*K      Nucleate pool boiling ht coef of Stephan & Abdelsalam 
% cp           J/kg*K       sp heat of carbon dioxide 
% cpl          J/kg*K       sp heat of carbon dioxide (liq) 
% del_P        kPa          pr drop 
% den          kg/m^3       density 
% di           m            inner dia of tube 
% do           m            outer dia of tube 
% f_lo                    liq only friction factor 
% fp                       friction factor 
% Fp                       heat transfer enhancement factor 
% G            kg/m^2*s     mass flux 
% h4           J/kg         Evap inlet enthalpy 
% hl           J/kg         sat liq enthalpy 
% ha    J/kg  air conv ht transfer coef 
% HTC_tot     W/m^2*K    total ht trans coef 
% hv           J/kg         sat vapor enthalpy 
% k            W/m*K        therm cond carbon dioxide 
% kl           W/m*K        therm cond carbon dioxide (liquid) 
% ktube        W/mK         thermal cond of tube 
% L            m            circuit length 
% dx           m           fragment length 
% m            kg/s         carbon dioxide mass flow rate in each tube 
% m_tot        kg/s         total carbon dioxide mass flow rate  
% n                        iteration number 
% NN                      Nucleate boiling factor 
% Nu                      Nusselt number 
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% phi_squared             two phase multiplier 
% pl           kg/m^3       density (liquid) 
% Pr                       Prandtl number 
% pv           kg/m^3       density (vapor) 
% Q     W            local heat transfer rate 
% Q_u    W  useful heat energy 
% Re                      Reynolds number 
% S    W/m^2  global solar radiation intensity 
% T1           K            compressor inlet temp 
% T_air    K  ambient temp 
% T_p    K  solar collector plate temp 
% T4           K            Solar Collector inlet temp 
% u            Pa*s         viscosity 
% ul           Pa*s         viscosity (liquid) 
% uv           Pa*s         viscosity (vapor) 
% x                        quality 
% x4                       Solar Collector inlet quality 
% Xtt                      Lockhart-Martinelli factor 
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A.1.3. Compressor Model 

Function:  compressor.m 

function [T2 m Wc]=compressor(T1,P1,P2) 
  
%Input Parameters    
N=50; 
Vs=.00001972;    
 
%___ Oritz, Li and Groll efficiency relations 
n_v=0.9207-0.0756*(P2/P1)+0.0018*(P2/P1)^2; %volm eff 
n_tot=-0.26+0.7952*(P2/P1)-0.2803*(P2/P1)^2+0.0414*(P2/P1)^3-0.0022*(P2/P1)^4;    %total eff: 
isentropic*mech 
n_m=0.9083-0.0884*(P2/P1)+0.0051*(P2/P1)^2;%mech eff of compr 
  
[h1 s1 rho1]=refpropm('HSD','T',T1,'P',P1,'CO2'); %properties at comp inlet  
s2s=s1;                                %ideal discharge entropy  
h2s=refpropm('H','P',P2,'S',s2s,'CO2');  %ideal discharge enthalpy 
m=n_v*rho1*Vs*N;                        %mass flow rate  
Wc=m*(h2s-h1)/n_tot;              %power input required by comp  
Loss=(1-n_m)*Wc; 
h2=h1+(Wc-Loss)/m;               %real discharge enthalpy[J/kg] 
T2=refpropm('T','P',P2,'H',h2,'CO2');    %discharge temp [K] 
end 
  
% Nomenclature  
% T1         K  inlet temp  
% P1         kPa      inlet pr  
% n_v                 volumetric eff 
% n_tot               total eff 
% n_m                 mechanical eff 
% h1         J/kg     inlet enthalpy 
% s1         J/kgK    inlet entropy 
% rho1       kg/m^3   inlet carbon dioxide density 
% s2s        J/kgK    discharge isentropic compression entropy 
% h2s        J/kg     discharge isentropic compression enthalpy 
% Loss       w        Losses of comp 
% N          rpm      compressor speed  
% Vs         m^3      swept volume  
% P2         kPa      discharge pr  
% T2         K        discharge temp  
% m          kg/s     mass flow rate of carbon dioxide  
% Wc         W        comp power 
% h2         J/kg     actual outlet enthalpy 
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A.1.4. Condenser Model:  Part 1 

Function:  Condenser_1.m 

function [T3 P3 h3 T_water minRe]=Condenser_1(T2,P2,m,T_water_i,m_water)  
  
% arrays 
T_wi=zeros(3,1); 
T_wo=zeros(3,1); 
err=zeros(3,1); 
 
%water outlet temp 
T_wo(1)=T2-2;  
T_wo(2)=T2-4;  
  
SOLVE=Condenser_2(T2,P2,m,m_water); 
  
[T_wi(1) T3 P3 h3 minRe]=SOLVE(T_wo(1)); 
    err(1)=T_water_i-T_wi(1);  %1st iteration water inlet  
[T_wi(2) T3 P3 h3 minRe]=SOLVE(T_wo(2)); 
    err(2)=T_water_i-T_wi(2);   %2nd iteration water inlet  
    j=2; 
    while abs(err(j))>.001 
        j=j+1; 
    T_wo(j)=T_wo(j-1)-err(j-1)*(T_wo(j-1)-T_wo(j-2))/(err(j-1)-err(j-2)); 
        [T_wi(j) T3 P3 h3 minRe]=SOLVE(T_wo(j)); 
            err(j)=T_water_i-T_wi(j);  %j-th iteration water inlet 
    end 
T_water=T_wo(j); 
end 
 
%Nomenclature 
% T_water     K        water outlet temp 
% minRe                min carbon dioxide Re number 
% T_wi       K         water inlet temp 
% T_wo       K         water outlet temp 
% err                 error 
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A.1.5. Condenser Model: Part 2 

Function:  Condenser_2.m 

function SOLVE=Condenser_2(T2,P2,m,m_w) 
SOLVE=@shooting; 
    function [T_w_calc T3 P3 h3 min_reynolds]=shooting(Two) 
  
%Condenser dimensions 
L=15; 
l=.1;       % segment length [m]                        
N=L/l;  
di=.005; 
do=.007;  
D=.016;  
ktube=400; 
  
%parameters 
A_r=pi()*di*l;                %refrigerant segment area  
A_w=pi()*do*l;                %H20 segment area 
Dh_w=D-do;                    %hydraulic diam  
G_w=m_w/(pi()*(D^2-do^2)/4);  %mass vel of H20 
G=m/(pi()/4*di^2);            %mass vel of refrigerant 
  
%define initial values 
T=zeros(N+1,1);   %temp gradient values 
T_w=zeros(N+1,1); 
P=zeros(N+1,1);   %pr gradient values 
Q=zeros(N,1);     %HT for each condenser element  
h=zeros(N+1,1); 
HTC_r=zeros(N+1,1); 
  
T(1)=T2;            %refrigerant inlet temp         
T_w(1)=Two;         %assume H2O outlet temp  
Outletguess=Two; 
min_reynolds=10000000;   %a starting assumption 
P(1)=P2; 
DIF_cal=20;  
 
for n=1:N 
  
  if  T_w(n)<274, break, end  
   
%----H2O-Side---- 
    [Cp_w visc_w cond_w]=refpropm('CVL','T',T_w(n),'P',101.325,'WATER');        
    Re_w=G_w*Dh_w/visc_w;           %Re_water 
    Pr_w=visc_w*Cp_w/cond_w ;        %Pr_water 
    
    % H2O-side HT coeff 
    ffw=(0.79*log(Re_w)-1.64)^-2;     
    Nu_w=((ffw/8)*(Re_w-1000)*Pr_w)/(1.07+12.7*(ffw/8)^.5*(Pr_w^(2/3)-1));  
    CF=.86*(do/D)^(-.16);  
    HTC_w=CF*Nu_w*cond_w/Dh_w;      
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    [HTC_r(n) Twall]=cond_coil(T(n),T_w(n),P(n),di,do,l,ktube,G,HTC_w,DIF_cal);    
                                         
    DIF_cal=T(n)-Twall;                         
    UA=(1/(A_r*HTC_r(n))+1/(A_w*HTC_w)+log(do/di)/(2*pi()*l*ktube))^-1; 
    [Cp_rb]=refpropm('C','T',T(n),'P',P(n),'CO2');      
    Cr=m*Cp_rb; 
    Cw=m_w*Cp_w; 
    Cmin=min(Cr,Cw); 
    Cmax=max(Cr,Cw); 
    C=Cmin/Cmax; 
    NTU=UA/Cmin; 
    eff=(1-exp(-NTU*(1-C)))/(1-C*exp(-NTU*(1-C))); 
    T_w(n+1)=(eff*Cmin*T(n)/Cw-T_w(n))/(eff*Cmin/Cw-1); 
    Q(n)=eff*Cmin*(T(n)-T_w(n+1)); 
    T(n+1)=T(n)-Q(n)/Cr; 
  
%refrigerant Pr drop    
    [dens visc]=refpropm('DV','T',T(n),'P',P(n),'CO2');  
    Re=G*di/visc;                  %Re number refrigerant at bulk temp 
                   if  min_reynolds>Re 
                       min_reynolds=Re; 
                   end 
        if  Re>=20000 
            ee=.184*Re^-.2;  %Darcy friction factor using Blasius 
        elseif Re<=20000 && Re>=2300 
            ee=.316*Re^-.25;   %Darcy friction factor using Blasius 
        else 
            disp 'Laminar CO2 flow.' 
            ee=64/Re; 
        end 
    del_P=.001*ee*G^2*l/(2*dens*di);     %Pr drop:  Darcy-Wesibach 
    P(n+1)=P(n)-del_P; 
     
end 
  
if  T_w(n)<274       
        T_w_calc=(N+1-n)*((T_w(1)-T_w(n))/n); %H2O inlet calculation 
        %output assignments 
        P3=P(n);     
        T3=T(n);     
        h3=h(n);     
 else 
         
%Results 
    T_w_calc=T_w(N+1); 
    P3=P(N+1); 
    T3=T(N+1); 
    h3=refpropm('H','T',T3,'P',P3,'CO2');     
    end 
end 
end 
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%Nomenclature 
% cond_w     kg/m^3       H2O thermal conductivity 
% del_P          kPa   CO2 pr drop 
% dens           kg/m^3       refrigerant density at bulk temp 
% Cmax           kJ/s*K       max rate of heat capacity 
% Cmin           kJ/s*K       min rate of heat capacity 
% Dh_w           m             H2O side hydraulic dia 
% ee                          refrigerant friction factor 
% eff                         HE effectiveness 
% ffw                         H2O side friction factor 
% G_w            kg/s*m^2     H2O mass flux 
% G_w            kg/s*m^2     refrigerant mass flux 
% HTC_r        W/m^2*K      local refrigerant HT coeff 
% HTC_w        W/m^2*K      local H2O HT coeff 
% h              kJ/kg        refrigerant local enthalpy 
% h3             kJ/kg        refrigerant outlet enthalpy 
% ktube          W/m*K        thermal conductivity of tube 
% L              m             condenser length 
% l              m             segment length 
% min_reynolds                min refrigerant Re number 
% N                           No of elements of segment 
% Nu_w                        H2O Nu 
% P              kPa          local refrigerant pr 
% Q              W            local rate of HT 
% Re_w                        H2O side Re 
% Cp_rb          kJ/kg*K      refrigerant sp heat at bulk temp 
% Cp_w           kJ/kg*K      H2O specific heat 
% T              K             local refrigerant temp 
% T_w            K             local H2O temp 
% T_w_calc       K             H2O inlet temp 
% Twall          K             refrigerant tube coil temp 
% T_water         K            H2O outlet temp 
% Two            K             H2O outlet temp 
% UA             W/K          overall heat conductance 
% visc           Pa*s         refrigerant viscosity at bulk temp 
% visc_w         Pa*s         H2O viscosity 
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A.1.6. Condenser Model:  Part 3 

Function:  cond_coil.m 

function [HTC wall_temp]=cond_coil(T_rb,T_water,P,di,do,l,k,G,HTC_w,DIF_cal) 
 
  
    %Bulk properties------- 
    [rho_rb Cp_rb visc_rb K_rb]= refpropm('DCVL','T',T_rb,'P',P,'CO2');      
    Re_rb=G*di/visc_rb;               %Re number CO2 at bulk temp 
    Pr_rb=visc_rb*Cp_rb/K_rb;      %Pr number CO2 at bulk temp 
    f_b=(0.79*log(Re_rb)-1.64)^-2; 
    Nu_b=((f_b/8)*(Re_rb-1000)*Pr_rb)/(1.07+12.7*(f_b/8)^.5*(Pr_rb^(2/3)-1)); 
    
    %coil temp initial estimations 
    T_rw(1)=T_rb-.5;               %1st estimation 
    T_rw(2)=(T_rb+T_water)/2;       %2nd estimation 
     
    %Calculate heat transfer coef using 1st estimation 
    [rho_rw Cp_rw visc_rw K_rw]=refpropm('DCVL','T',T_rw(1),'P',P,'CO2');      
    Re_rw=G*di/visc_rw;               %Re number CO2 at coil temp 
    Pr_rw=visc_rw*Cp_rw/K_rw;      %Pr number CO2 at coil temp 
    f_w=(0.79*log(Re_rw)-1.64)^-2;     
    Nu_w=((f_w/8)*(Re_rw-1000)*Pr_rw)/(1.07+12.7*(f_w/8)^.5*(Pr_rw^(2/3)-1));  
     
    Nu=((Nu_b+Nu_w)/2)*K_rw/K_rb; %overall CO2 Nu(correlation of Pitla et al) 
    HTC_r=Nu*K_rb/di;             %CO2 ht trans coeff 
    UA=(1/(pi()*l*di*HTC_r)+1/(pi()*l*do*HTC_w)+log (do/di)/(2*pi()*l*k))^-1;  
    Qc=UA*(T_rb-T_water); 
    Twall=T_rb-Qc/(pi()*di*l*HTC_r);   
    err(1)=Twall-T_rw(1); %err between actual and calculated coil temp 
     
    %Calculate heat transfer coef using 2nd estimation 
    [rho_rw Cp_rw visc_rw K_rw]=refpropm('DCVL','T',T_rw(2),'P',P,'CO2');      
    Re_rw=G*di/visc_rw;                
    Pr_rw=visc_rw*Cp_rw/K_rw;       
    f_w=(0.79*log(Re_rw)-1.64)^-2;     
    Nu_w=((f_w/8)*(Re_rw-1000)*Pr_rw)/(1.07+12.7*(f_w/8)^.5*(Pr_rw^(2/3)-1)); 
     
    Nu=((Nu_b+Nu_w)/2)*K_rw/K_rb;  
    HTC_r=Nu*K_rb/di;                      %CO2 ht trans coeff 
    UA=(1/(pi()*l*di*HTC_r)+1/(pi()*l*do*HTC_w)+log (do/di)/(2*pi()*l*k))^-1;  
    Qc=UA*(T_rb-T_water); 
    Twall=T_rb-Qc/(pi()*di*l*HTC_r);   
    err(2)=Twall-T_rw(2);  %error between actual and calculated coil temp 
      
    n=2; 
    while abs(err(n))>.001 && n<=25 
        n=n+1; 
        %next estimation of coil temp 
        T_rw(n)=T_rw(n-1)-(err(n-1)*(T_rw(n-1)-T_rw(n-2)))/(err(n-1)-err(n-2)); 
  
        if  T_rw(n)<T_water    % correction if updated coil temp is too low 
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            TooLow=T_rw(n) 
            T_rw(n)=T_rw(1) 
        end 
         
        if  n>25             % final value selected if too many iterations 
            T_rw(n)=T_rb-DIF_cal; 
            Bulk=T_rb 
            estimate=T_rw(n)           
        end 
        %Calculate heat transfer coef using current coil temp     
        [rho_rw Cp_rw visc_rw K_rw]=refpropm('DCVL','T',T_rw(n),'P',P,'CO2');      
        Re_rw=G*di/visc_rw;             %Re number CO2 at coil temp 
        Pr_rw=visc_rw*Cp_rw/K_rw;      %Pr number CO2 at coil temp 
        f_w=(0.79*log(Re_rw)-1.64)^-2;     
        Nu_w=((f_w/8)*(Re_rw-1000)*Pr_rw)/(1.07+12.7*(f_w/8)^.5*(Pr_rw^(2/3)-1)); 
  
        Nu=((Nu_b+Nu_w)/2)*K_rw/K_rb;   
        HTC_r=Nu*K_rb/di;                      %CO2 ht trans coeff 
        UA=(1/(pi()*l*di*HTC_r)+1/(pi()*l*do*HTC_w)+log(do/di)/(2*pi()*l*k))^-1; 
        Qc=UA*(T_rb-T_water); 
        Twall=T_rb-Qc/(pi()*di*l*HTC_r);   
        err(n)=Twall-T_rw(n); 
    end 
HTC=HTC_r; 
wall_temp=T_rw(n); 
end 
  
  
%Nomenclature 
% Cp_rb          kJ/kg*K      carbon dioxide spec. heat @ bulk temp 
% Cp_rw          kJ/kg*K      carbon dioxide spec. heat @ coil temp 
% rho_rb        kg/m^3       carbon dioxide density @ bulk temp 
% rho_rw        kg/m^3       carbon dioxide density @ coil temp 
% K_rb        W/m*K        carbon dioxide K @ bulk temp 
% K_rw        W/m*K        carbon dioxide K @ coil temp 
% di             m             inner-tube inner-dia 
% DIF_cal       K             temp diff between coil and bulk 
% do             m             inner-tube outer-dia 
% Nu                          carbon dioxide Avg Nu 
% Nu_b                        carbon dioxide Nu @ bulk temp 
% Nu_w                        carbon dioxide Nu @ coil temp 
% Pr_rb                       carbon dioxide Pr number @ bulk temp 
% Pr_rw                       carbon dioxide Pr number @ coil temp 
% Re_rb                       carbon dioxide Re number @ bulk temp 
% Re_rw                       carbon dioxide Re number @ coil temp 
% HTC_r        W/m^2*K      carbon dioxide heat transfer coeff 
% HTC_w        W/m^2*K      water heat transfer coefficient 
% f_b                         carbon dioxide friction factor @ bulk 
% f_w                         carbon dioxide friction factor @coil temp 
% G              kg/s*m^2     carbon dioxide mass flux 
% HTC         W/m^2*K      final carbon dioxide ht trans coeff 
% k              W/m*K        tube coil thermal conductivity  
% l              m             length of segment 
% P              kPa          carbon dioxide Pr 
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% Qc             W            overall heat transfer rate 
% T_rb           K             carbon dioxide bulk temp 
% T_rw           K             calculated carbon dioxide coil temperature 
% Twall          K             calculated carbon dioxide -side coil temp 
% T_water         K            water temperature 
% UA             W/K          overall heat conductance 
% visc_rb        Pa*s         carbon dioxide visc @ bulk temp 
% visc_rw        Pa*s         carbon dioxide visc @ coil temp 
% wall_temp     K             final carbon dioxide coil temp 
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