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ABSTRACT 

Adhesively bonded composite joints (ABCJs) have been broadly used to connect multi-

materials and show their structural and economic advantages compared to traditional bonding 

methods. However, robust methods are still desired for efficient and accurate lay-wise stress 

analysis of ABCJs involving multiple boundaries and layers. 

The purpose of this work was to extend the stress-function variational method for free-edge 

stress analysis of composite laminates with a finite length. At each interface of the laminate, two 

unknown Lehknitskii’s stress potential functions were introduced to interpolate the stresses 

across the layer. A set of 4th-order governing ODEs of the functions was obtained via evoking the 

complementary virtual work, solved by eigenvalue-function method under proper traction 

conditions. Corresponding MATLAB™ program was developed and validated by the FEM 

(ANSYS®). This method can also examine the stress-suppression effect after composite 

laminates interleafing. Consequently, the above method was furthered for determining the lay-

wise stress distribution in ABCJs. 
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1. INTRODUCTION 

In the past five decades, advanced composite materials have been widely used in aircraft 

industry and aerospace applications due to their high specific modulus and strength, excellent 

corrosion resistance, and superior manufacturability, among others. Meanwhile, with the 

development of joints technology, bolted joints have been gradually replaced by adhesively-

bonded joints due to the unavoidable weight penalty and stress concentration of bolted joints. As 

a result, adhesively-bonded multilayer composite joints (ABCJs) have been developed and 

utilized in broad modern industrial structures. This demands the intensive research in the field of 

designing and analyzing adhesively-bonded multi-layered composite joints. 

Owing to the unique features of adhesively bonded and multi-layered composite joints, it is 

necessary to understand the mechanical properties of these composite joints, such as 

hygrothermal effects, mechanical strength, failure mechanisms (debonding, delamination, fiber 

pull-out, etc.), etc., when integrating these materials into structures. Since the mismatch of 

mechanical properties of adjacent layers, stress concentration is common at the regions close to 

the edges of overlap bonding lines and the free edges of adherends of multi-layered composite 

laminates. In the early design and stress analysis of composite laminates, it has been found that 

the stress concentration exists near the free edges of composite laminate, which is called free-

edge effects. In adhesively boned joints, shear stress also exhibits near the edges of the overlap 

boding lines; however, regardless of composite laminates or adhesively bonded joints, the 

regions far from the free edges only carry a small portion of the loads, similar to the in-plane and 

out-of-plane shear stresses and normal stresses. In reality, such high interfacial stress 

concentrations near the free edge may result in debonding or delamination failure. On the other 
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hand, the hash loading environment, in realistic cases, can raise much complicated stress state in 

ABCJs, such as those induced by combined mechanical and hygrothermal loads. Hence, it is 

crucial to conduct accurate stress analysis for optimizing structural design and prediction of the 

mechanical strength of ABCJs. And then, to engineers, a desire has been raised to develop robust 

models for predicting the interfacial stress variation of ABCJs. Such joint models are expected to 

be efficient, high accurate and also capable of taking into account the effects of different material 

properties, (such as Young’s modulus, coefficients of hygro or thermal expansion, Poisson’s 

ratio, etc), design parameters and external loadings (e.g., mechanical, hygrothermal, etc,), etc.  

In the past five decades, substantial investigation has been made on the stress analysis of 

adhesively-boned joints laminated composites. Yet several technical deficiencies exist in most of 

the pioneering studies on the stress analysis of ABCJs. Firstly, nearly all the analytic and semi-

analytic methods available in the literature are oversimplified and therefore led to noticeable 

errors in the stress analysis of these structures. Among those, the most significant issue is that the 

stresses predicted from these analytical methods do not satisfy the traction free boundary 

conditions at the free-edges. When a composite laminate is subjected to a tensile deformation, 

nontrivial shear stresses are predicted by almost all the literature models at the free edges of the 

laminate. Secondly, existing analytical models are unable to predict the stresses in the multi-

layered joint structures. Thirdly, though quite a few purely numerical approaches have been 

formulated in the literature for the stress analysis of these adhesively bonded joints and 

composite laminates, the computational efficiency rapidly decays with increading structural 

complexity such as the number of layers. Fourthly, current interfacial stress analysis only 

considers composite laminates with semi-infinite length. In reality, composite laminates are 

typically designed with finite length such that the ratio of length over thickness of the laminate 
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will influence the variations of the interfacial stresses in the composite laminates, especially 

when the width of the laminates is small. 

The purpose of this thesis work was to extend the stress-function variational method for free-

edge stress analysis of composite laminates developed by Yin (1994a, 1994b) and modified by 

Wu (2003). This method introduces two unknown Lehknitskii’s stress potential functions �(�, �) 

and �(�, �) at each laminate interface to interpolate the stresses in each layer of the laminate. 

Theorem of complementary virtual work was employed to gain a set of coupled 4th-order ODEs, 

which is used to determine two sets of unknown coefficients via solving the corresponding 

eigenvalue problem. Correspondingly, an efficient MATLAB™ code was developed for 

predicting the variations of interfacial stresses of the composite laminates under consideration. 

The semi-analytic method developed in this study can be applicable for the stress analysis of 

composite laminates with finite length and examination of the interleafing effect in interfacial 

stress suppression of the advanced composite laminates toughenend with plastic interlayers. 

Furthermore, similar to the recent theoretical work on the interfacial stress analysis of bonded 

and adhesively bonded joints by Wu & Jenson (2011) and Wu & Zhao (2012), the above stress-

function variational method was further extended for interfacial stress analysis of ABCJs, in 

which the traction boundary conditions were gained by using classical laminate plate theory. The 

numerical results of the interfacial stresses in ABCJs predicted by the present model have been 

compared with previous cases, and show the obvious advantages of efficient and accurate stress 

analysis and structural optimization of composite laminates and ABJCs.  
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2. LITERATURE REVIEW 

2.1. Development of Joints Technology 

Adhesively bonded joints (ABJs) are the types of most structurally efficient methods of 

connecting structure members through adhesive bonding. They have become an important 

alternative to mechanical joints in recent decades due to their quite a few advantages over 

conventional bolted/riveted or welded joints structured in numerous modern industrial 

applications. Adhesive bonding could be considered as a process by using an adhesive to bond 

surfaces together by solidifying, therefore it brings ABJs with the advantages such as the low 

weight, low cost, concise design and high tolerance to damage, among others. These significant 

factors have resulted in the rapid development of ABJs in recent decades. On the other hand, due 

to the booming of fiber-reinforced polymer matrix composites (PMCs) technology since 1970s, 

many industrial applications attempted to use PMC laminates as an alternative adherend 

materials of ABJs. These had attracted more researchers to study the mechanical performance of 

adhesively bonded composite joints (ABCJs). During 1970s to early 1980s, pioneering studies on 

ABCJs were initiated, in order to fit the rapidly growing applications of PMC laminates in 

aerospace industries. Over the past three decades, numerous approaches to approximate the 

stresses in composite laminates have been developed. These approaches are based mostly on 

analytical solutions, finite element methods (FEMs) and experimental studies. A comprehensive 

review given by Matthews et al. (1982) was focused on the strength of fiber-reinforced 

adhesively bonded joints. Later, there have been a large number of the numerical approaches 

developed based on FEM, whereas the ones based on the analytical solutions were relatively less 
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popular than the former. Some studies on the stress analysis of ABCJs have been performed, 

which were focused on the structural design of bonded joints. In principle, the discontinuities in 

both the geometry of composite laminates and the material properties across the ply interfaces 

will lead to high stress concentration near the free edges. In order to minimize the free edge 

effects, Adams and Wake (1984) had considered the stress and strength analysis of a variety of 

joint structures. In their studies, the classical joint structures can be classified into single-lap 

joints, double-lap joints, single-sided bonded joints, double-sided bonded joints, single-sided 

strapped joints and double-sided strapped bonded joint, as illustrated in Figure 1. Furthermore, 

there are also other types of joint configurations considered in their studies, such as strap joints, 

butt joints, butt strap joints, corner joints, stepped-scarf joints, T-shaped joints, L-shaped joints, 

double-double joints, tubular lap joints, etc. Another study by Chamis and Murthy (1991) listed 

several steps of designing procedure for ABCJs subjected to static and cyclic loadings as well as 

various environmental conditions such as high temperature and moisture. 
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Figure 2.1. Types of typical adhesive bonded joints. 

 

Among broad strength/failure studies, researchers had concluded that the strength of ABCJs 

depends largely on the stress variation across the interface between adherends and adhesive. On 

the other hand, the interfacial stress variation in joints was determined by the geometry of the 

joints and the mechanical properties of the adhesive and adherends. However, when using PMC 

laminates as adherends, due to the low through-thickness strength, the relatively high through-

thickness stresses in the overlap ends of ABCJs would cause the failure in the composite 

laminate other than the adhesive failure as shown in Figure 2. Thus, in the course of designing 

ABCJs, it is desired to suppress the stress concentrations near the free edges of the ABCJs. In 

typical ABCJ studies, it is more reasonable to analyze the strength and failure of PMC laminates 

and the adherend/adhesive together. 
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Figure 2.2. Failure in adhesively bonded double-lap joints due to the large transvers stresses 

of the adherend. 

 

2.2. Analytic approaches to free-edge stresses in composite laminates and adhesively bonded 

joints 

With the rapidly growing applications of PMCs in aerospace, aeronautical and ground 

vehicles, sports utilities, offshore structures, etc., it is critically important to understand the stress 

state in PMC structures, especially adhesively bonded joints with multiple materials joined to 

form complicated geometries, in order to avoid catastrophic failure. Among various failure 

modes in PMC laminates and joints, edge delamination has been received a significant attention 

since 1970s. Pipes and Pagano (1971) were the pioneers to first analyze the free-edge stresses in 

angle-ply laminates by using finite difference method, which was validated by FEM and 

experimental observations made by other researchers. Pipes and Pagano’s studies indicated that 

high interlaminar stresses exist and concentrate near the free edges of PMC laminates. 
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Essentially inspired by Pipes and Pagano’s pioneering studies, a number of similar investigations 

on the free-edge stress analysis of PMC laminates have been made in the past four decades, 

which were conducted mainly by means of FEM. Meanwhile, researchers also proposed various 

purely numerical and semi-analytic approaches to model the free-edge stresses in PMC 

laminates. So far, for the purpose of designing PMC laminates and evaluating the free-edge 

stresses in PMC laminates, quite a few efficient numerical methods have been formulated for 

efficient and accurate prediction of the interlaminar stresses at the free-edges of PMCs laminates. 

These theoretical contributions have been used for the stress and strength analysis of adhesively 

boned joints. Below gives a brief historical review on free-edge stress and strength analysis of 

PMC laminates. 

Wang and Choi (1984) introduced the boundary-layer stress function for free-edge stress 

analysis of composite laminates. Wang and Choi’s method combined Lekhniskii’s potential 

functions and eigenfunction method. Kaaapoglou and Lagace (2001) formulated an efficient 

semi-analytic method to determine the free-edge stresses of composite laminates based on 

minimization of the total potential energy, in which the force and moment equilibrium equations 

were satisfied at a few specified points. This method provided a simple approximation for free-

edge stress analysis of composite laminates. Yet, the methods aforementioned cannot well 

balance the computational accuracy and efficiency. In addition, Yin (1994) provided an important 

alternative in this field. Yin formulated an innovative semi-analytic method based on the 

classical laminate plate theory, which is capable of providing a semi-analytical solution. The 

numerical procedure of this semi-analytic method is straightforward, and no obvious numerical 

errors are induced during the numerical process. Besides these semi-analytical methods, most of 

numerical methods reported in the literature were based mainly on FEM. In addition, finite 
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difference methods (FDM) and boundary element methods (BEM) have been also considered for 

free-edge stress analysis of composite laminates. In addition, quite a few studies have also been 

conducted on the stress and strength analysis of bonded and adhesively bonded joints. The 

pioneering stress analysis of ABJs was conducted by Volkersen (1938). He formulated a simple 

ABJ model with the assumption that the axial tension in adherends and the shear stress in 

adhesive layer are constant across the layer thickness. However, since the shear and transverse 

moduli of composite materials are much lower than the axial ones, Volkersen’s solution was 

unable to explain the effert induced by the adherend bending or the shear deformation in the 

adherends. This study was further extended by Goland and Reissner (1944), who studied the 

shear and peel stress variations between the adhesive and aluminum alloy adherends. However, 

their stress solution does not satisfy the shear-free conditions at the ends of the adherends. 

Furthermore, Hart-Smith (1996) proposed an ABJ model with a simple analytical solution 

based on the assumption that the adhesive layer behaves as an ideal elastoplastic solid. This 

model improved the prediction of the mechanical behavior of the ductile adhesive layer, in which 

the failure of the adhesive layer was based on its strain energy. Furthermore, Hart-Smith’s ABJ 

model can also be utilized for examining the thermal effect on the mechanical behavior of ABJs. 

For instance, thermal mismatch would reduce joint strength. However, most of the earlier 

analytical theories of ABJs did not take into account the shear deformation in the transverse 

direction. In reality, shear deformation has been considered as an important influential factor of 

the structural strength of adherends made of composite laminates, because of their relatively low 

shear modulus in the transverse direction. Renton and Vinson (1975) considered the stress 

analysis of ABJs made of composite laminates in their study, which included first and higher-

order shear deformation theories. They formulated an analytical approach by taking into account 
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the deformations induced by the transverse shear and normal strains. Such method can be 

exploited for analyzing the shear deformation in the composite adherends consisting of high 

modulus fibers and low modulus resin. Based on their formulation, they predicted the linear 

elastic behavior of adherends and adhesive in a single-lap joint and discovered that Young’s 

modulus of adherends, length and material properties of adhesive layer are the most influential 

parameters in design of single lap joints.  

Srinivas (1975) used a similar approach to formulate the analytic solution for the analysis of 

the shear deformation in ABJs of composite laminates. In addition, the nonlinear geometric 

effects in single-lap and double-lap joint structures can be interpreted with this theory. 

Furthermore, to analyze the structural strength of ABCJs, Dattguru et al. (1984) and Rickett and 

Hollaway (1985) respectively developed two nonlinear joint models for determining the stress 

distribution in single-lap and double-lap joints in closed-form analytic expressions by assuming 

that the mechanical behavior of the adhesive follows that of elastic-perfectly plastic solids. In 

addition, Allman (1977) developed alternative approach, by using both the minimum 

complimentary strain energy method and Hart-Smith’s elastic-plastic approach.  In such 

approaches, the gained solutions were able to satisfy not only the free-edge traction conditions of 

the adhesive but also the equilibrium equations in the adherends. It was discovered from the 

results of nonlinear analysis that the adhesive properties played a dominant factor in the 

mechanical performance of the joints.  

Based on Allman’s works (1977), Adams and Mallick (1992) further investigated the 

nonlinear behavior of adhesive by means of a one-dimensional (1D) finite-element method 

(FEM). They modeled the stress variation across the layer thickness of the adhesive layer and the 

composite adherends made of different materials of varying thickness. Their predictions were 
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found to be very close to those predicted by FEM, though being a little bit underestimated. By 

using the first-order laminate plate theory, Yang and Pang (1993, 1996) formulated an analytical 

approach, which considered the adherends as orthotropic materials, such as unidirectional or 

cross-ply composite laminates. This analytic approach was utilized for determination of the stress 

distribution in single-lap joints, with symmetric or asymmetric structures, subjected to extension 

and bending loadings. This approach is capable of analyzing the effects of transverse shear 

deformation and asymmetry of the adherends layers on the stress variation. Their results were 

validated by means of FEM. In addition, Wu et al. (1997) studied the stress distribution in ABCJs 

consisting of dissimilar adherends of varying thickness and lengths. A set of governing ordinary 

differential equations (ODEs) was formulated for investigation of ABCJs made of fiber-

reinforced composite laminates. In his study of stress analysis of double-lap ABCJs, Tong (1997) 

discovered that nonlinear models were more accurate for predicting the loading capacity of these 

joints than linear models available in the literature. In this study, a simplified 1D joint model and 

a finite-element model were utilized for estimating the mechanical strength of the ABCJs. 

Correspondingly, well-controlled joint tests were formulated for the purpose of validating the 

numerical results predicted by the models utilized in the study. It was found that the theoretical 

results based on these nonlinear methods were in a good agreement with those measured in the 

experiments. In contrast, the results predicted by the linear models can only reach half of the 

values measured in the experiments. Frostig et al. (1999) further formulated a closed-form high-

order theory based on their former works on modeling the free-edge shear stress at the ends of 

the overlap in sandwich panels. However, if the adherends are made of composite materials, the 

shear deformation cannot be neglected because most of composite laminates carry relatively high 

axial modulus and low transverse shear modulus. By employing the classic laminate plate theory, 
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Zuo et al. (2004) analyzed the stress distribution in single-lap and single strapped joints subject to 

combination of tensile and bending loadings. The theoretical results based on this model were 

validated by means of FEM. In addition, Zhang et al. (2006) formulated a theoretical approach 

for analyzing the multi-axial stress state in composite joints by modeling the adherends of 

orthotropic laminates as wide plates subjected to cylindrical bending and the adhesive layer as a 

linearly elastic material. This approach is capable of determining the in-plane and interlaminar 

stresses in adherends, which accommodates the in-plane strain in the transverse direction and the 

hygrothermal effect in the joint. The advantage of this approach over other analytical ones is that 

it can be applied to more general joint conditions, such as joints of various geometries, both 

linearly and nonlinearly elastic adhesive, unbalanced laminates, and broader loading situations.  

Most analytical methods available in the literature assume that the adherends are in linearly 

elastic condition, and some others assume that only the adhesive layer behaves as that of 

elastoplastic solids. In addition, a few other joint models are capable of determining the stress 

variation across the adhesive layer. Nevertheless, when taking into account the nonlinear 

response of the joint due to the plastic behavior of the adhesive, it is challenging to formulate 

feasible analytical methods due to the complexity of mathematical formulation.  

 

2.3. Stress analysis of adhesively bonded joints based on finite elements approaches 

As aforementioned, a significant number of investigations have been performed to predict 

the joint strength using continuum mechanics approach, in which the adhesive and adherends 

were commonly treated as continuum solids In addition, the adhesive was considered to be 

perfectly bonded to the adherends. Based on such an assumption, finite-element approaches 
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without involving the interface properties of the adhesive layer have been extensively used. 

There is no general criterion for determining the failure of the joint since either the maximum 

stress and strain or strain energy density of plasticity has been considered. In addition, due to 

existence of stress singularities near the free-edge of two bonded dissimilar materials, failure 

criteria based on the maximum stress or strain lose their physical meaning. In this case, at the 

ends of bonded joints, stress and strain singularities always exist. Therefore, the maximum stress 

and strain obtained using FEM highly depend upon the magnitude of the singularity and the 

mesh size used in the FEA. Adams and Harris (1987) pointed out that the singularity can be 

removed by introducing rounding. However, the value of peak stress or plastic strain energy 

density would be affected by the rounding degree. Currently, researchers are investigating on use 

of rounding without loss of the strength of joint. Thus, in order to predict the strength accurately, 

the exact degree and shape of the rounding are the key influencing factors. Failure criterion plays 

as the key parameter in the fracture mechanics approach. Within the framework of fracture 

mechanics, it is possible to analyze the normal and shear deformations at the crack tip. The 

concepts of mixed-mode facture would enable researchers to calculate the joint strength, through 

predicting the crack path when different loading situations are applied.  

Groth (1988) proposed a failure criterion at the corners of bonded joints such that if the 

generalized stress-intensity factor is beyond a critical value, it would lead to the initiation of 

fracture. Using a similar approach, Gleich at al. (2001) studied the magnitude of stress singularity 

and strength of bonded joints of varying adhesive thickness. They concluded and verified by 

experiments that the increase of adhesive thickness would increase the stress-intensity factor, 

which, in contrast, would decrease the strength of joints. In the present study, a new numerical 

method was formulated for the stress analysis of adhesively bonded composite joints, in which 
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the joints (either single-sided bonded joints, single-side strap joints, or single-lap joints herein) 

are considered to be made of adherends as slender anisotropic fiber-reinforced composite 

laminates. Such joints are also subjected to torsion, bending, and extension which put forward 

new challenges of interfacial stress analysis. 

 

2.4. Interleafing  

Delamination is the common failure mode of laminated composites. Historically, a number 

of techniques have been developed to suppress delamination failure such as laminate stitching, 

matrix-toughening, edge cap, etc. Among these techniques, interleafing can be described as using 

plastic interleaved layers as the toughening materials inserted between layers of composite 

laminates. So far, researches have performed significant experimental research on interleafing 

technique, such as testing the performance of fiber-reinforced composite laminates interleaved 

by electrospun polymeric nanofiber layers (1991). In this Ph.D. research, Wu (2003) first 

performed the systematic experimental studies on the toughening effect of electrospun nanofiber-

based interlayers on the interlaminar fracture toughness of advanced polymer composites under 

varying loading cases of static and quasistatic to dynamic and impact loadings. In the 

investigation, continuous polymer fibers with the diameter around 300 nm were produced by the 

low-cost, top-down electrospinning technique and utilized to reinforce the interlaminar fracture 

toughness of reinforce graphite/epoxy composite. . Magniez et al. (2010) performed the 

experimental study on the toughening effect of polyvinylidene fluoride (PVDF) nanofibers on 

the modeⅠand mode Ⅱ fracture toughness of carbon/epoxy composite laminates, in which the 

PVDF nanofiber layers behaved as the interleafing materials. In this study, the original research 
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goal was to investigate the effect of PVDF’s molecular weight on the mechanical performance of 

the composite laminates. However, the experimental results showed only a little improvement on 

the fracture toughness of the composite laminates. Li et al. (2008) examined the toughening 

effect of two interleafing materials: the polysufone (PSF) film and electrospun PSF nanofiber 

films, which were embedded between the plies of carbon/epoxy laminates, respectively. By 

comparing the experimental results, it was concluded that nanofibrous films are capable of 

significantly enhancing the modeⅠinterlaminar fracture toughness, which was better than the 

PSF films. Zhang et al. (2012) also tested the interfacial toughening effect of three interleafing 

materials, i.e., polycaprolacton (PCL), PVDF and polyacrylonitrile (PAN) on the modeI 

interlaminar fracture toughness, respectively. Comparison of the experimental results 

demonstrated that only when the polymerization-induced phase separation occurred between 

interleaved and composite layers, the modeI interlaminar fracture toughness can be enhanced. 

In addition, Liu et al. (2006) investigated the mode Iinterlaminar fracture in a composite laminate 

by interleafing layers of epoxy 609. It is believed that within a certain thickness, the nanofibers 

had negligible effect on the performance of modeI delamination failure. Despite numerous 

experimental studies on the effect of interleaves on delamination resistance of composite 

laminates, no systematical studies have been conducted on the stress variation of the interleaved 

composite laminates due to introducing the plastic interleafing interlayers. 
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2.5. Outstanding problems in ABCJs 

Based on the recent theoretical studies on stress analysis of bonded and adhesively bonded 

joints in the current research group (Wu & Jenson, 2011; Wu & Zhao, 2012; Wu et al., 2003), 

this thesis work was targeted to study the free-edge stress variation, as well as the effect of 

interleafing on free-edge stresses, in composite laminates with finite width and general layup. 

Furthermore, a systematic stress-function variational method was formulated for the stress 

analysis of ABCJs.  

In Chapter 3, a revised stress-function variation method was made to determine the free-

edge stresses in composite laminates with arbitrary ply layup and finite width. This study was 

formulated on the basis of the robust, high-efficiency stress-function variational method (Yin 

1994a, 1994b; Wu 2003, 2009) for free-edge stress analysis of composite laminates with infinite 

width, in which two Lehknitskii’s stress functions were introduced at each ply surface and the 

free-edge stresses of composite laminates were determined via solving the resulting eigenvalue 

problem to satisfy the traction boundary conditions. A compact MatlabTM computational code 

was designed for demonstration of the efficiency and effectiveness of the present method for 

free-edge stress analysis of composite laminates with finite width. In addition, scaling analysis 

was performed to examine the dependency of free-edge stresses upon the ply layup and 

thickness. 

In Chapter 4, by varying the mechanical properties of the layers and the ply configuration, 

the present model was further utilized for free-edge stress analysis of composite laminates 

structured with interleafing layers. Critical interfacial stresses of the composite laminates were 

predicted, which were responsible to the mode I and II delamination of the composite laminates. 
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In Chapter 5, variation of interfacial stresses in ABCJs was studied. The method was 

formulated based on the concepts introduced in Chapter 3 with relocating the traction boundary 

conditions.   

In Chapter 6, summary on the present study and expectation on the future research of the 

topic were made.  
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3. STRESS-FUNCTION VARIATIONAL MEHTHOD FOR FREE-EDGE STRESS 

ANALYSIS OF COMPOSITE LAMINATE WITH FINITE LENGTH 

3.1. Free-edge stress analysis of composite laminates using stress-function varational 

method 

3.1.1. Introduction 

Chapter 2 provides a brief review of the analytic and numerical methods for free-edge stress 

analysis of composite laminates. Two aspects of the methods, i.e., the computational efficiency 

and accuracy, are considered to be crucial. A number of numerical methods, e.g., FEA methods, 

can achieve excellent numerical accuracy in the cost of decreasing computational efficiency. 

Since the semi-analytical solutions are approaches that could well-balance the efficiency and 

accuracy, Yin (1994a, 1994b) proposed a method by introducing two Lehknitskii’s stress 

potential functions and then determined the free-edge stresses in composite laminates via solving 

eigenvalue problems. By comparison with many other existing methods available in the 

literature, Yin’s method was considered as one of the most efficient and accurate for free-edge 

stress analysis of composite laminates. Yin’s method has two noticeable advantages superior to 

others, one is that all the traction boundary conditions (BCs) of the composite laminates are 

completely satisfied, and the other is that Yin’s method is capable of evaluating out-of-plane 

shear stresses in high accuracy. However, when calculating interfacial stresses in composite 

laminates with the ply number more than 5 , the accuracy of Yin’s method may drop and the 

related numerical process becomes unstable, due to the nearly ill-conditioned matrices used for 

evaluating the generalized eigenvalue problems.  
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In this chapter, a modified Yin’s method is introduced for free-edge stress analysis of 

multilayered angle-ply composite laminate. Wu (2003) has revised the stress potential functions 

originally introduced by Yin (2014a & 2014b), and therefore the computational stability and 

efficiency of the resulting generalized eigenvalue problems have been improved significantly. 

Wu’s computational studies on free-edge stress analysis were mainly focused on composite 

laminates with semi-infinite length (Wu, 2003 & 2009), which was based on the assumption that 

the laminate length was typically much larger than the laminate thickness. However, in many 

cases that the composite laminates carry the width is compatible with the laminate thickness, the 

effects of both free-edges of the composite laminates should be taken into account. Also, 

composite laminates were typically designed with finite width in industrial applications; 

however, many semi-analytic approaches available in the literature can only predict the 

interfacial and free-edge stresses in a composite laminate with semi-finite or infinite width. 

Therefore, substantial improvement of the currently available models for free-stress analysis of 

composite laminates is still desired in order to model the interlaminar stresses in composite 

laminates with arbitrary layup and width. In this chapter, firstly, Wu’s theoretical studies on free-

edge stress analysis (Wu, 2003 & 2009) was further extended to integrate all the traction 

boundary conditions for predicting free-edge stresses at any interfaces of composite laminates 

with arbitrary layup and finite width. Secondly, the improved Yin’s and Wu’s methods were 

further used for scaling analysis of stress variation along the free-edge and interface of composite 

laminates with varying laminate width. 
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3.1.2. Model formation 

Consider a composite laminate under axial tensile load and two laminate ends in traction-

free condition, as shown in Fig. 3.1. All plies of the laminate are treated as unidirectional lamina 

with a uniform thickness. Each lamina of the laminate is considered to be oriented in the (x,y)-

plane. In contracted notations, at an arbitrary orientation angle of the ply, the constitutive law of 

each lamina can be expressed as 

 

Figure 3.1. Geometry and coordinate system of free-edge laminate problem. 
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In the above, [�&'] is the transformed compliance matrix; [!&] is the transformed thermal 

expansion coefficients; ∆# is term of the value of temperature change; the subscript indices (1, 

2, 3) express (x, y, z), respectively.  

In Eq. (3.1), the adopted contracted notations are 

 �
 = �

, �� = ���, �� = ���, �� = ���, �� = �
�, �� = �
� 

 �
 = �

, �� = ���, �� = ���, �� = 2���, �� = 2�
�, �� = 2�
� (3.2) 

In the case of a plane-strain composite lamina under uniaxial tension �
 along x-direction, 

solving Eq. (3.1) leads to the axial stress �
 as 

  �
 = *+,-+∆.,/0121/++  , (j = 2, 3, 6) (3.3) 

Then, by applying the generalized Hooke’s law, the �& can be evaluated as  

 �& = �′&'�' + /0+/+1/++ �
 + !7&∆#, (8, 9 = 2,3 … ,6) (3.4) 

where �′&'  and  !7& are expressed as following 

 �7&' = �&' − /0+/+1/++ ,     !7& = !& − /+0/++ !
 (3.5) 

In Yin’s formulation (1994a & 1994b), two Leknitiskii’s stress potentials �(�, �) and 

<(�, �) (Lekhnitskii, 1968) are introduced for the problem due to the laminate is in a state of 

plane strain. Thus, stress components in the i-th ply can be expressed in terms of  �(�, �) and 

<(�, �) such that 
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     ��& = �,==& , ��& = �>>& , ��& = −�,>=&  (3.6a) 

     ��& = ψ,>& , ��@ = −ψ,=&  (3.6b) 

Besides, since the composite laminate is in the state of traction-free at two edges and the top 

and bottom surfaces, the corresponding boundary conditions of the problem, as shown in Fig. 

3.1, can be listed in Eq. (3.7a, b) as following 

     �� = �� = �� = 0, (� = −A, � = A)  (3.7a) 

     �� = �� = �� = 0.   B� = ± D�E  (3.7b) 

Within the framework of classical plate theory, each in-plane stress varies linearly across the 

plate thickness, and this feature is still valid approximately in each ply of a composite laminate. 

Hence, in the i-th ply, the stress function F can be approached by a polynomial function of 

degree three in F-direction, and < can be approached by another polynomial function of degree 

two in F-direction. By modifying Yin’s work (Yin, 1994a & 1994b; Wu, 2003 & 2009), Wu 

assumed that G��&(�) and G<&(�) are the stress functions at the interface � = �&, meanwhile 

G��&,
(�) and G<&,
(�) are the ones  at the interface � = �&,
, where t is the thickness of the 

ply. Hence, expressions of the compatible in-plane stress functions can be approached using a 

cubic-polynomial approximation in the i-th ply as 

  �(&)(�, F) = (1 − 3F� + 2F�)G��&,
(�) + (F − 2F� + F�)G�I&,
(�) + 

(3F� − 2F�)G��&(�) + (F� − F�)G�I&(�).    (8 = 1,2 … … . , K + 1)       (3.8) 

Where a nondimensional thickness coordinate F in each (i-th) laminae is to be introduced and 

defined by 
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   F = =,=0L+=0,=0L+  (3.9) 

In Eq. (3.8), the I&(�) and I&,
(�) are the first derivatives of �&(�) and �&,
(�) with 

respect to y. Furthermore, based on the traction-free boundary conditions at the top and bottom 

surfaces of the laminate, �M(�) = IM(�) = �NO
(�) = INO
(�) = 0. 

In addition, the out-of-plane stress function in the i-th ply can be expressed by a quadric 

polynomial approximation as 

<(&)(�, F) = (1 − F�)G<&,
(�) + F�G<&(�) + (F − F�)GP&,
(�)    (8 = 1,2, … , K + 1)  (3.10) 

In Eq. (3.10), across the interface, P&,
(�) is generally discontinuous, since it is the first 

derivative of I&(�) at the upper side of the same interface. In addition, <M(�) = <NO
(�) = 0 

based on the traction-free conditions at the top and bottome surfaces of the laminate.   

These stress potential functions �(�, �) and <(�, �) are obtained and modified from Yin’s 

approach (1994a, 1994b) by Wu (2003 & 2009). The modifications of both of the functions 

improved stability of evaluation and efficiency of solving the generalized eigenvalue problems 

even for a large matrix rank. 

By using theorem of maximum complementary strain energy, the governing equation of the 

composite laminate can be obtained as the mathematical variation of the elastic strain energy of 

the system as 

δU = ∬ �T�U�UV η = ∬ X�&�7&'T�' + B*+/1+/++ + !7&E T�'Y U�UV η = 0. (8, 9 = 2,3, … ,6) (3.11) 

By substituting (3.9) and (3.10) into (3.11) and then integrating by parts and by ply, a system 

of ordinary differential equations (ODEs) is obtained (Wu, 2003 & 2009): 
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 ZT[\] ^X_G� `a`>a + bG� `c`>c + dY Z[\ − ZA\e = Z0\ (3.12) 

where {Y} is consisted of 

  [& = �&(�), [NO& = I&(�)  (3.13a) 

  [&O�N = <&(�), (8 = 1,2, … , K)  (3.13b) 

  [&O�NO
 = P&(�), (8 = 0,1,2, … , K) (3.13c) 

where {b} is the column related to the external mechanical and thermal loads, which is 

assembled from {Af\ of each ply. W, V, and U as the global coefficient matrices are assembled 

from the element matrices _f df and bf in each ply, which are constant real symmetric 

square matrices as shown below. 

 Af = g0, 0, − /h+c*+/h++ , /h+c*+/h++ , − /h+c*+/h++ , /h+c*+/h++ , 0i]
  (3.14) 

 _f = �′��
��
��
��


���jkM       
���
��llmGn8o



�
M 
���M− 
���M − 

�
M


M�− 

�M 

M� ��

��
��
  (3.15) 

 df =

��
��
��
��
�� 12�7��                            −12�7�� 12�7�� ��llmGn8o6�7�� −6�7�� 4�7��                         6�7�� −6�7�� 2�7�� 4�7��                    −2�7�� 2�7�� 0 −2�7�� �/hqq�                

2�7�� −2�7�� 0 2�7�� − �/hqq� �/hqq�−2�7�� 2�7�� −�7�� −�7�� /hqq� − /hqq� /hqq� ��
��
��
��
��
  (3.16) 
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where each matrix is related to a variable column: 

_f is related to u�&(�), �&,
(�), I&(�), I&,
(�) v]
;  

df is related to u�&(M), �&,
(M) , I&(M), I&,
(M) , Ψ&(M), Ψ&,
(M) , P&(M)v]
;  

bf is related to u�&(�), �&,
(�) , I&(�), I&,
(�) , Ψ&(�), Ψ&,
(�) , P&(�)v]
;  

Af is related to [�&, �&,
, I& , I&,
, Ψ&, Ψ&,
, P&]]. 

The coefficient matrix W of the operator 
`a`xa has the nontrivial elements only in a 2K × 2K 

square submatrix in the upper left corner. If Z[\ is satisfied the Euler-Lagrange equation as 

shown below, Eq. (3.12) will be satisfied for arbitrary variations  δ�&, δI&, δ<& and δP&. 
 X_G� `a`>a + bG� `c`>c + dY Z[\ = ZA\  (3.18) 

Based on the traction free boundary conditions: 

 PM = 0, �& = �7& = I& = I7& = 0 (3.19a) 

 <& = P& = 0, (i = 1,2,3, … , n) at � = −A and � =  A  (3.19b) 

Eq. (3.18) is a set of nonhomogeneous ODEs which can be solved by using the method of 

eigenfunction method. Hence, firstly, assume Z[\ = Z�M\m���  be the solution to the set of 

homogenous ODEs corresponding to Eq. (3.18) (by setting {b}=0), which leads to a generalized 

eigenvalue problem:  

  [_�� + b�� + d]Z�M\ = ZA\ (3.20) 
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Secondly, the particular solution to Eq. (3.18) can be expressed as 

  Z[M\ = d,
ZA\  (3.21) 

The particular solution (3.21) can be understood as the stress potential functions of an finite 

laminate (without edges) subjected to exactly the same uniaxial tensile strain along x-direction. 

To further solve the eigenvalue problem, V and U are divided into 4 sub-matrices, respectively, 

as shown 

b = �b

(�N×�N) b
�[(�NO
)×�N]b
�] b��[(�NO
)×(�NO
)]�,  d = �d

(�N×�N) d
�[(�NO
)×�N]d
�] d��[(�NO
)×(�NO
)]�. 
Let Z�M\ = ��
M��M�, where Z�
M\ = Z�
, ��, … , �N, I
, I�, … , IN \]and  

Z��M\ = ZΨ
, Ψ�, … , ΨN, P
, P�, … , PN \]. 

In order to convert the resulting eigenvalue problem to a generalized eigenvalue problem, an 

auxiliary vector Z�
\ = ��Z�
M\] is introduced, and then the Eq. (3.21) can be expressed as 

shown below 

  � ��
M��M�
 � = ��� ��
M��M�
 � (3.22) 

where 

�(�N×�)×(�N×�) = � d

 d
� b

d
�] d�� b
�]0�N×�N 0�N×(�NO
) ��N×�N�, 

�(�N×�)×(�N×�) = � 0�N×�N −b
� _0(�NO
)×�N b�� 0(�NO
)×�N−��N×�N 0�N×(�NO
) 0�N×�N �. 
In the matrices, I and 0 are the diagonal unite matrix and zero matrix, respectively. Therefore, the 

general solution of Eq. (3.18) can be expressed as 
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 Z[\ = ∑ �!&(
)m�0�� + !&(�)mL�0�� ��NO
&�
 Φ& + [M, (−A ≤ � ≥ A) (3.23) 

where �&  (8 = 1, 2, … , 6K + 1) are the eigenvalues; Φ&(8 = 1, 2, … , 6K + 1) are the 

corresponding eigenvectors; !&(
)
 and !&(�)

 (8 = 1, 2, … , 6K + 1) are 12n+2 unknowns, which 

may be determined by the traction-free conditions aforementioned. At the end, the Z[\ will 

provide all of the stress components via combining with Eqs. (3.13) and (3.6). 

 

3.1.3. Validation of the polynomial stress functions 

Below gives the brief derivation of the polynomials specified above. First introduce the 

general cubic expression of the �(&) function as  

   �(&)(�, F) = (�M + �
F + ��F� + ��F�)G��&,
(�) + (�M + �
F + ��F� +
                                      ��F�)G�I&,
(�) + (�M + �
F + ��F� + ��F�)G��&(�) +
                                     (�M + �
F + ��F� +    ��F�)G�I&(�), (8 = 1,2, … . . K + 1)     (3.24) 

Due to the stress continuity across the interfaces as aforementioned, it reads�(&)(�, η) =
�&,
(�) at F = 0 and �(&)(y, η) = �&(�) at F = 1, which leads tothe following relations: 
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  �M = 1, �M = �M = �M = 0  (3.25a) 

  �M + �
 + �� + �� = 1 (3.25b) 

  �
 + �� + �� = 0 (3.25c) 

  �
 + �� + �� = 0 (3.25d) 

  �
 + �� + �� = 0 (3.25e) 

What we should be noticed that I(�) is the derivative of �(�, F) in F-direction. So in the i-

th layer, �(&)(�, F) can be expressed as  

  
`�`> `�(0)(>,�)`� =  I&(�, F) (3.26) 

Then  

  
`�(0)(�,�)`� =  I&(�, F) (3.27) 

On the other hand, ψ(&)(�, F) and P&(�, F) can be expressed as  

  
`�(0)(>,�)`� = P&(�, F) (3.28) 

By considering at � = �& and � = �&,
 interfaces, the shear stresses can be determined as 

�>=& = − I&(�)′ and �>=&,
 = − I&,
(�)′. And the stress field in the i-th layer satisfies the 

equilibrium equation such that �>=& = −�,>=.  

The equation can be formulated as 

�(&)(�, F),x> =  �
+2��F + 3��F�¡G�&,
(�)7 +  �
+2��F + 3��F�¡GI&,
(�)7 +
 �
+2��F + 3��F�¡G�&(�)′ +  �
+2��F + 3��F�¡GI&(�)′, (8 = 1,2 … . . K + 1) (3.29) 
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Based on the stress continuity conditions aforementioned, we can find that at F = 0, 

�(&)(�, 0),>= = I&,
(�)7; at F = 1, �(&)(�, 1),>= = I&(�)7. Some of the coefficients can be 

determined as 

  �
 = 1, �
 = �
 = �
 = 0 (3.30a) 

  2�� + 3�� = 0 (3.30b) 

  �
 + 2�� + 3�� = 0 (3.30c) 

  2�� + 3�� = 0 (3.30d) 

  2�� + 3�� = 1 (3.30e) 

Then, we can determine the rest of coefficients as 

                   A2=-3, A3=2, B2=-2, B3=1, C2=3, C3=-2, D2=-1, D3=1                      

Similarly, we can also prove the other polynomial functions by an additional condition 

mentioned above as 

  P&,
(¢) = ψ(&)(x, 0),> (3.31) 

The validation of the stress potential functions was straighforward, due to the stress 

continuity conditions and the relationships between stresses and the stress potential functions. 

 

3.1.4. Examples for free-edge stress analysis of composite laminates with finite length 

Due to the importance of estimating the free-edge stresses of composite laminates for layup 

design and strength/failure analysis, the numerical scheme introduced above can be applied for 

the free-edge stress evaluation and comparison for any multilayered anisotropic laminates. 

Hereafter, several examples are demonstrated to show the free-edge stress variations in 
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composite laminates by using the present method. The material properties of a graphite/epoxy 

composite lamina are given as  

E1=20MPa 

E2= E3=2.1MPa 

G1=G2= G3=0.85MPa 

ν1 =ν2= ν3=0.21 

!
 = 0.22 × 10,�  m/m /℃, 

!� = 15.2 × 10,� m/m /℃, 

where 1, 2 and 3 relate to the directions of the reinforcing fibers, the transverse and thickness 

directions in each ply, respectively. The thickness of each ply is assumed as 1 mm; the width of 

the laminate is assumed as16 mm; the value of the specified constant strain along x-direction is 

0.02. 
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1) [0/90]s 

 

Figure 3.2. Variation of σzz along the 0o/90o interface in [0o/90o]s laminate. 

 
Figure 3.3. Variation of τyz along the 0o/90o interface in [0o/90o]s laminate. 
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Figure 3.4. Variation of σzz at free edge along the thickness of [0o/90o]s laminate. 

 

2) [45o/-45o]s 

 
Figure 3.5. Variation of σzz along the 45o/-45o interface in [45o/-45o]s laminate. 
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Figure 3.6. Variation of �x= along 45o/-45o interface in [45o/-45o]s laminate. 

 

Figure 3.7. Variation of �x= at free edge along the thickness of [45o/-45o]s laminate. 
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3) [45o/-45o/0o/90o]s 

 

Figure 3.8. Variation of σzz along the 90o/90o interface of [45o/-45o/0o/90o]s laminate. 

 
Figure 3.9. Variation of τyz along the 90o/90o interface of [45o/-45o/0o/90o]s laminate. 
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Figure 3.10. Variation of τxz at free edge along the thickness of [45o/-45o/0o/90o]s laminate. 

 

4) [45o/-45o/0o/90o]2s 

 

Figure 3.11. Variation of τxz at free edge along thickness of [45o/-45o/0o/90o ]2s laminate. 
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5) [0o/45o/-45o/0o]2s 

Free-edge stress prediction as shown in Fig. 3.12 provides the approximate in-plane and out-

of-plane stress variations at the 45
o

/-45

o

 interface of the laminate, and the distributions of �== 

and �x= along one of the free edges across the thickness of the laminate. 

 

Figure 3.12. Stresses variation long 45
o

/-45

o

interface and at free edge of the laminate. 

 

Above results are very close to the previous researches given by Pipes and Pagano (1970), 

Yin (1994a& 1994b), and Wu (2003 & 2009). 

 

3.2. Validation by FEA 

In the literature, almost all the analytic and semi-analytical methods can only predict 
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of finite-wide composite laminates, it is feasible to validate the present model by means of FEM. 

In this section, (ANSYS™ version 14.5) was applied for the validation.  For the convenience of 

the numerical validation of the present stress-function variational method for free-edge stress 

analysis of finite-width laminates, a cross-ply composite laminate was considered. The material 

properties of the uniaxial composite ply are given below.layup: [90o/0o]s;  

Width = 16 mm, ply thickness = 1 mm 

        E1 = 32 GPa,  

E2 = E3= 10.4GPa,  

υ12 = υ13= 0.34, 

υ23 = 0.5,  

G12 = G13 =3.5, 

G23 = 4.7 GPa;   

By evoking the symmetric structure of the cross-ply laminate under consideration, quarter-

symmetric part of this laminate was modeled in the FEM simulation (ANAYS™). Eight-node 

element, PLANE183, and uniform quadrilateral meshes were adopted in the simulation. Besides, 

assume that the laminate was subjected to a uniaxial tensile strain, i.e., ε11= 0.02, along x-

direction. In order to simulate the loading condition of this cross-ply composite laminate, an 

equivalent thermal-loading was generated to substitute the uniaxial tensile strain (Wu, 2003). The 

coefficients of orthotropic thermal expansion of the laminate are set as (1, 0, 0) referred to in x, 

y, and z direction, respectively. The thermal loading, as temperature change, is +0.02℃. The 

FEM results were compared with the interfacial stresses at the first interface predicted by current 

stress-function variational model. Due to the unique nature of the cross-ply composite laminate, 
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only the nontrivial peeling stress �== and in-plane shear stress �>= were considered and plotted. 

The numerical results of the stress components, σzz and τyz of the cross-ply composite laminate 

predicted by FEM are as shown in Figs. 3.13-3.17. It can be clearly observed that variations of 

the interfacial stresses �>= and �== from the present semi-analytic stress-function variational 

model are very close to those predicted by means of  FEM. ANSYSTM-based FEM method 

shows that the maximum shear stress exists close to the free edges. However, the numerical 

results based on FEM do not satisfy the shear-free condition at the free edges due to mismatch of 

the material properties across the interface and existence of stress singularity at the free-edges. 

As a result, the stress-function variational method for laminate with finite width is capable of 

satisfying the multiple free-shear boundary conditions in composite laminates. Obvious shear 

stress concentration can be detected near both the free edges of the laminate as shown in Fig. 

3.14. Furthermore, the present numerical simulations indicate that the shear and peeling stresses 

carry the similar varying tendency at the interface far from the edges. However, the some 

deviation t of the peeling stress is noticed at the free edge. Such a high peeling stress 

concentration at the free edges dominate the debonding failure of the composite laminate.  
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Figure 3.13. Variation of �>= in the upper half cross-section of the [0o/90o]s laminate. 

 

Figure 3.14. Variation of the interfacial stress τyz at 0o/90o interface based on FEA (ANSYS®) 

and the present semi-analytic stress-function variational model. 
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Figure 3.15. Variation of �==in the upper half cross-section of the [0o/90o]s laminate.

 

Figure 3.16. Variation of the interfacial stress σzz at 0o/90o interface based on FEA (ANSYS®) 

and the present semi-analytic stress-function variational model. 
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3.3. Scaling analysis of free-edge stresses in multilayered anisotropic laminates 

Subjected to external loads, composite laminates exhibit much more complicated stress and 

strain fields due to their layered anisotropic structures. Given a composite laminate under in-

plane stressing, the ratio of the laminate width over thickness may also affect the mechanical 

performance of the laminate. In this section, the stress-function variational method formulated in 

this chapter is further used to investigate the variation of the free-edge stresses in composite 

laminates with the varying ratio of laminate width over thickness. Herein, the out-of-plane shear 

stress τxz and in-plane stress σzz  along the free-edge and their distribution along a given interface 

of the laminate are considered. For composite laminates, the interlaminar strength and fracture 

toughness are much lower than those of in-plane ones. Therefore, delamination and composite 

failure mostly first occur along laminate interfaces. Thus, the stress distribution of σzz and τxz is 

dominating factor for laminate design. The composite laminate considered in this study is 

assumed as glass-fiber/epoxy composite laminates made of unidirectional plies of the mechanical 

properties given as 

E1 = 40 GPa,  

E2 = E3 = 8 GPa,  

υ12 = υ13 = υ23 = 0.3, 

G12 =G13 = G23 = 4 GPa;  

where 1, 2, and 3 refer to the fiber, transverse and thickness directions, respectively. The layup of 

the laminate is [45/-45]s, and the geometry of plies is shown in Fig. 13: 
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Figure 3.17. The geometry of the ply of the glass-fiber/epoxy composite laminate. 

 

It can be found from Fig. 3.18 and 3.19 that as the ratio of W/t varying from 0.2 to 1, the 

peak value of stresses �== and τxz at the interface increases correspondingly. In addition, Figures 

20 and 21 shows the variation of free-edge stresses σzz and τxz across the laminate thickness, and it 

is noticed that the peak values of σzz and τxz appear at the 45o/-45o interfaces. 
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Figure 3.18. σzz variation long the 45o/-45o interface in the composite laminate with 

W/t=0.2,0.4,0.6,0.8,1.0, respectively. 

 
Figure 3.19. τxz variation long the 45o/45o interface in the composite laminate with 

W/t=0.2,0.4,0.6,0.8,1.0 respecively. 
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Figure 3.20. σzz variation at free edgeacross the thickness of the composite laminate with 

W/t=0.2,0.4,0.6,0.8,1.0, respectively. 

 

Figure 3.21. τxz variation at free edge across thickness of the composite laminate with 

W/t=0.2,0.4,0.6,0.8,1.0, respectively. 
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When the aspect ratio is greater than 1.0, the varying tendency of peeling stress �==  along 

the interface decreases with increasing length of the laminate, as shown in Fig. 3.18. However, 

along the free-edge, the peak value of stress �== in each aspect ratio of the composite laminate 

appears at the 45o/45o interfaces when the length-thickness ratio is greater than 1.0. Such peak 

value of stress �== at the 45o/-45o interface reaches the maxima at the width-thickness ratio 4.0. 

On the other hand, the varying tendencies of stress �x= at both free-edges across the laminate 

thickness and at the 45o/45o interface are much simpler.  

 
Figure 3.22. σzz variation long the 45o/-45o interface in the composite laminate W/t=1, 2, 3, 

4, 5, respectively. 
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Figure 3.23. τxz variation long the 45o/-45o interface in the composite laminate with W/t=1, 2, 

3, 4, 5, respectively. 

 
Figure 3.24. σzz variation at free edge across thickness of the composite laminate with 

W/t=1, 2, 3, 4, 5, respectively. 
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Figure 3.25. τxz variation at free edge across thickness of the composite laminate with W/t=1, 

2, 3, 4, 5, respectively. 

 

With the increase of laminate width, the peak value of each stresses tends to stable around a 

fixed value as shown in Figs. 22-25.  
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Figure 3.26. σzz variation long the 45o/-45o interface in the composite laminate with 

W/t=4,8,12,16,respectively. 

 
Figure 3.27. τxz variation long the 45o/-45o interface in the composite laminate with W/t=4, 8, 

12, 16, respectively. 
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Figure 3.28. σzz variation at free edge across thickness of the composite laminate with 

W/t=4, 8, 12, 16, respectively. 

 

Figure 3.29. τxz variation at free edge across thickness of the composite laminate with W/t=4, 

8, 12, 16, respectively. 
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In the above, scaling analysis of the interfacial stresses in an angle-ply composite laminate 

with varying laminate width has demonstrated the effect of the laminate width on the variation of 

the stresses �== and �x= along the interface and at free edge across the laminate thickness. This 

effect can be useful to the design and strength/ failure analysis of composite laminates.  

 

3.4. Conclusion  

In this chapter, the efficient robust semi-analytical efficient stress-function variational 

method has been revised and furthered for the free-edge stress analysis of multilayered 

anisotropic laminates with finite laminate width due to in-plane mechanical loading. During the 

model formulation, two Lehknitskii’s stress potential functions, approached by polynomial 

functions, were introduced to approximate the interfacial stress variation in an arbitrary 

composite laminate. By evoking the principle of minimum complementary strain energy, a set of 

governing ODEs was obtained.  The set of governing ODEs was solved by means of eigenvalue 

method, of which the particular solution was obtained by evoking the traction-free BCs. The 

general solution has been obtained and applied to free-edge stress analysis in all composite 

laminates (multilayered anisotropic laminates with the number of layer up to 70). The interfacial 

stresses predicted by the present model not only satisfy the traction-free BCs, but also are close 

to those predicted by other methods available in the literature and present FEA results.  
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4. LAYERS STRESS-FUNCTION VARIATIONAL METHOD FOR ANALYSIS OF 

INTERFCAIAL STRESS SUPRESSION IN COMPOISTE LAMINATE WITH 

INTERLEAFING 

4.1. Introduction 

Advanced polymer matrix composites (PMCs) made of compliant polymeric resins (e.g., 

epoxy, etc.) reinforced with high-performance microfibers (e.g., carbon fibers) have found 

extensive applications in aerospace, aeronautical, and ground vehicles, offshore structures and 

sports utilities due to their unique superior specific strength and toughness, excellent 

manufacturability, and superior corrosion resistance, among others. Yet, due to their typically 

layered structures, PMCs usually behave with low interlaminar strength and toughness, which 

are responsible for the common interlaminar failure in advanced PMCs such as delamination and 

related ultimate failure of composite laminates. Within the framework of fracture mechanics, the 

fracture modes can be classified as modes I, II and III, as shown in Fig. 4.1.  

 

Figure 4.1. The schematic of fracture modes (www.wikie.org). 
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For fiber-reinforced composite laminates, the mode I and mode III cracking are the 

dominated failure modes during the common delamination process, as shown in Fig. 4.2. 

 

Figure 4.2. Schematic of edge delamination of composite laminate (Wu, 2003). 

 

Figure 4.3 shows the microstructure of the cross-section of a cross-ply carbon-fiber 

reinforced composite laminate, from which it can be observed that a matrix (resin) layer exists 

between the neighboring 0o and 90o plies. In advanced PMCs, the thin interface matrix layer as a 

discrete phase exist between neighboring plies, of which the microstructure and properties can be 

designed to enhance the interlaminar fracture toughness and damage tolerance. As a matter of 

fact, delamination is considered as a life-limiting factor and one of the most prevalent failure 

modes in PMCs. Delamination may severely reduce the in-plane strength and stiffness, and then 

cause catastrophic failure of PMCs. Nowadays, materials engineers and scientists have 

developed several technologies to successfully increase the delamination resistance, such as 3D 
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fabric, transverse stitching, toughening matrix resin, etc. (Singh & Partridge, 1995). These 

techniques can improve the interlaminar strength and fracture toughness of PMCs.  

 

Figure 4.3. Microstructure of a cross-ply carbon-fiber/epoxy composite laminate (Reifsnider, 

1991). 

 

So far, a promising interface toughening technique termed as interleafing has been 

incorporated into the PMC manufacturing process to enhance the interlaminar toughness and 

impact resistance. In the early 1970s, American Cyanamid, Inc. achieved the improvement of the 

damage tolerance of PMC laminates via integrating toughening plastic layers, as illustrated in 

Figure 4.4. This approach can efficiently improve the interlaminar fracture toughness and 

damage tolerance of the composite laminates. Furthermore, with the high shear failure strain, the 

interleafing resin can also increase the interface toughness between neighboring plies to suppress 

delamination.  
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Figure 4.4. Schematic of interleafing (Wu, 2003). 

 

On the other hand, both impact tolerance and dynamic delamination toughness of composite 

laminates are improved, since the redundant shear strains can be introduced by interleafing. The 

key parameter of the impact damage tolerance is also be characterized with the high shear failure 

strain, which can be enhanced by introducing the interleaved discrete thermoplastic layers (Wu, 

2003). Most experiments have indicated that interleafing can greatly increase the mode II 

delamination toughness while slightly increasing in mode I delamination toughness. Hence, 

interleafing cannot be applied for suppressing opening fracture failure. In addition, one of the 

negative effect of interleafing is that interleafing noticeably increases the total thickness and 

weight of the composite laminate, which reduces the specific stiffness and strength of PMC 

laminates. Despite a number of other interface toughening approaches have been developed to 

toughen specific composite systems, to date interleafing is still used as the most popular method 
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to toughen the interfaces of composite laminates. In addition, researchers are working on use of 

nanotechnology to overcome the disadvantages of interleafing such as increase of the overall 

weight and decrease of the specific in-plane strength and stiffness (Wu, 2003). 

 

4.2. Scalar analysis of interleafing 

4.2.1. Material properties and geometries 

To date, research on interleafing has been based mainly on experiments, whereas modeling 

work on interleafing is really rare. In this chapter, the stress-function variational method for free-

edge stress analysis is further utilized for investigating the stress variation in composite 

laminates with interleafing. The mechanical properties of the interleaved layer: (Epoxy 977-3): 

Em=3.7 GPa; νm=0.35; Gm=1.37 GPa 

And the mechanical properties of the unidirectional composite plies of the composite laminate: 

(Carbon/Epoxy): 

E1=147 GPa; 

E2=E3=10.3 GPa; 

ν23=0.54; 

ν12= ν13=0.27;; 

G23=3.7 GPa 

G12= G13=7.0 GPa 

In this numerical investigating, the composite laminate is assumed to be subjected to a 

constant uniaxial tensile strain along x-direction, i.e., εxx = 0.02. The geometries and coordinate 
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system of the composite laminate are shown in Fig. 5. Furthermore, all the interleaved layers are 

assumed to carry 1/2 thickness of the plies of the composite laminate. In addition, three typical 

laminate layups are employed in this section to examine the suppression of the interfacial 

stresses by merging interleaved layers.

 

Figure 4.5. Geometry and coordinate system of the laminate. 

 

4.2.2. Scalar analysis of interleafing 

1. [45o/-45o]s 

As shown in Figs. 4. 6 (a) and 4. 7 (a), variation of the peeling stress �== and out-of-plane 

shear stress �x= at the free edge along the thickness. Due to the discontinuity of the material 

properties across the interface, the peak values of �== and �x= are both located at the 45o/-45o 

interface. By merging an epoxy layer at the 45o/-45o
 interface, though the values of the stresses 
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�== and �x= at the interfaces become larger, the peak values of both stresses decrease 

significantly, as shown in Figs. 4.6 (b) and 4.7 (b), which are proximately only 1/5 of the 

laminates without interleafing. 

Furthermore, Figs. 4.8 and 4.9 show the variation of the interfacial stresses at the 45o/-45o 

interface. As shown in Figs. 8 (a) and 8(b), the peeling stress σzz is suppressed substantially after 

inserting the interleaved layer, and the peak value of the peeling stress has been reduced to only 

one-tenth. The same situation also happens to the out-of-plane shear stress �x=. By comparing 

Figs. 4.6 (b) and 4.8 (b), it is found that the peak value of the peeling stress is no longer located 

at the interface after interleaving,  
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(a) 

 
(b) 

Figure 4.6. (a)Variation of the peeling stress σzz along the thickness at a free edge without 

interleaved layers; (b)Variation of peeling stress σzz along the thickness at a free edge 

without interleaved layers. 
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(a) 

 
(b) 

Figure 4.7. (a)Variation of the shear stress τxz along the thickness at a free edge without 

interleaved layers; (b)Variation of the shear stress τxz along the thickness at a free edge with 

interleaved layers. 
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(a) 

 
(b) 

Figure 4.8. (a)Variation of the interfacial stress σzz at the 45o/-45o interface without 

interleaved layers; (b)Variation of the interfacial stress σzz at ply and interleaved layers.  
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(a) 

 
(b) 

Figure 4.9. (a)Variation of the interfacial stress τxz at the 45o/-45o interface without 

interleaved layers; (b)Variation of interfacial stress τxz at the 45o/-45o interface with 

interleaved layers. 
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2.  [45o/-45o]s 

 
(a) 

   
(b) 

Figure 4.10. (a)Variation of peeling stress σzz along the thickness at a free edge without 

interleaved layer; (b)Variation of the peeling stress σzz along the thickness at a free edge 

without interleaved layer. 
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(a) 

 
(b) 

Figure 4.11. (a)Variation of the interfacial stress τyz at the 45o/-45o interface before interleafing; 

(b)Variation of the interfacial stress τyz at the 45o/-45o interface with interleaved layers. 
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As shown in Figs. 4.10- 4.11, [0o/90o]s layup has been commonly used in composite 

laminates. One of the advantages of such layup is that under a pure extension loading, no 

shear-tension coupling exists and the out-of-plane shear stress �x= is close to zero, i.e., no 

out-of-plane shear stresses are evoked. Also, as shown in Figs. 4.10(a) and 4.10(b), the peak 

value of the peeling stress at the free edge along the thickness does not appear at the 

interfaces but at the edge of the 90o plies. When interleaved, the level of the peeling stress at 

the free edge suppressed significantly, which is only half that of the virgin laminate. Also, as 

shown in Figs. 4.11(a) and 4.11(b), the in-plane interfacial shear stress �>= between the 

interleaved interlayer and the composite ply is also half the one of the virgin laminate. 

The coupling effect in the composite laminate with the [-45o/45o]s layup is much more 

significant than that in the composite laminate with the [0o/90o]s layup. From Figs. 4.11(a) 

and 4.11(b), it can be concluded that the interleaved layers can efficiently suppress the out-

of-plane shear stresses.  
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3 [-45o/45o/0o/90o]s 

 
(a) 

  
(b) 

Figure 4.12. (a)Variation of the peeling stress σzz across the laminate thickness at free edge 

without interleaved layers; (b)Variation of the peeling stress σzz across the laminate thickness 

at free edge with interleaved layers. Layup of the composite laminate: [-45o/45o/0o/90o]s. 
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(a) 

 
(b) 

Figure 4.13. (a) Variation of the shear stress τxz across the laminate thickness at free edge 

without interleaved layers; (b) Variation of the shear stress τxz across the laminate thickness 

at free edge with interleaved layers. Layup of the composite laminate: [-45o/45o/0o/90o]s. 
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(a) 

  
(b) 

Figure 4.14. (a) Variation of the interfacial stress τxz at the 45o/-45o interface without 

interleaved layers; (b) Variation of the interfacial stress τxz at the 45o/-45o interface with 

interleaved layers. Layup of the composite laminate: [-45o/45o/0o/90o]s. 
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(a) 

 
(b) 

Figure 4.15. (a) Variation of the interfacial stress σzz at the 45o/-45o interface without 

interleaved layers; (b) Variation of the interfacial stress σzz at the 45o/-45o interface with 

interleaved layers. Layup of the composite laminate: [-45o/45o/0o/90o]s.  
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In practice, the layup of a composite laminate is commonly designed with multiple oriental 

angles, so the stress suppression in a composite laminate with multi-angled plies should also be 

tackled. With the present semi-analytic stress-functional variational method, variations of the 

peeling and out-of-plane shear stresses of a composite laminate with a layup of [-45o/45o/0o/90o]s 

without interleafing are given in Figs. 4.12 (a), 4.13 (a), 4.14 (a)  and 4.15 (a). It can be 

observed from Figs. 4.12 (a) and 4.13 (a) that the peak value of the out-of-plane shear stress �x= 

occurs at the 45o/-45o interface, while the peak value of the interfacial peeling stress �== appears 

at the 45o/0o interface. Thus, the above stress analysis of the composite laminate with the layup [-

45o/45o/0o/90o]s shows that the interleafing layers should be placed at the 45o/-45o and 45o/0o 

interfaces. The results of stress variation of the interleaved laminate are shown in Figs. 4.12 (b), 

4.13 (b), 4.14 (b), and 4.15 (b). The plots show that the out-of-plane shear stress �x= of the 

laminate can be efficiently suppressed, of which the peak stress value could be reduced to only 

one-third that of the virgin laminate. Even though the peak value of the interfacial peeling stress 

can be significantly reduced, which is only half the one of the virgin laminate, the peak value of 

the peeling stress at the free edge is only slightly decreased by interleafing layers.  

 

4.2.3. Discussion 

As shown in the plots above, interleafing layers have the effect in significantly suppressing 

both the peeling and out-of-plane shear stresses. After interleafing, the overall fiber volume b̈  

of the composite laminate is dropped. Based on the Hapin-Tsai model in the mechanics of fiber 

reinforced composite (Daniel, 2006), the longitudinal and transverse moduli, i.e., EL and ET of a 
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composite laminate can be obtained in the following.In the case of short-fiber reinforced 

laminates (unidirectionaly distributed): 

  ©ª = ©« ¬
O�(ª­/`­)�®¯­
,�®¯­ ° (4.1) 

  ©] = ©« ¬
O��±¯­
,�±¯­ ° (4.2) 

where Fª = ²­²³,
²­²³O�ª­/`­, F] = ²­²³,
²­²³O�, and ´¨ and  U¨ are referred to the length and diameter of the 

reinforcing fibers, respectively. In the case of continuous fiber-reinforced composite laminates: 

  ©ª = b̈ ©
¨ + b«©« (4.3) 

  ©] = ©« ¬
Oµ�¯­
,�¯­ ° (4.4) 

  I
� = I« ¬
Oµ�¯­
,�¯­ ° (4.5) 

where 1 < · < 2 in the common case.  

As shown in the above equations, when the volume fraction of reinforcing fibers is dropped, 

the longitudinal, transverse and in-plane shear moduli would be also reduced. Thus, when 

applying the same uniaxial deformation, the resulting stresses in an interleaved composite 

laminate would be less than the ones in the virgin one. In addition, the coupling effect in the 

composite laminate with the layup [45o/-45o]s is significant, i.e., the out-of-plane shear stress can 

have an impact on the value of the peeling stress. Such mechanism can be employed to explain 

the interleafing effect in the composite laminate with the [45o/-45o]s layup. 
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4.3. Conclusion 

In this chapter, the semi-analytic stress-function variational method has been further utilized 

for exploring the stress mitigation effect in composite laminates with interleafing layers. 

Numerical experiments showed that interleafing can mitigate the interfacial stresses in composite 

laminates and therefore suppress the stress level in these laminates. In addition, since the 

interleaving layers are typically thermoplastic with the fracture toughness much higher than that 

of the thermosetting matrix resin (e.g., epoxy) of composite laminates, interleafing can also 

noticeably enhance the fracture toughness. In addition, interleaving does not change the varying 

tendency of the interfacial stresses, which means that though the peak value of the stresses has 

been decreased, the stress variation along interfaces still carries the similar tendency as the one 

of the virgin laminates. Such an observation is attributed to the fact that stress variation in 

composite laminates is largely influenced by the geometries of the laminate while the global in-

plane mechanical properties (e.g., tensile and shear moduli) of the laminates are not substantially 

altered after interleafing. 
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5. STRESS-FUNCTION VARIATION METHOD FOR FREE-EDGE STRESS OF 

ANALYSIS OF ABCJS 

5.1. Introduction 

This chapter was targeted to further the stress-function variational method for the interfacial 

stress analysis of adhesively boned composite joints (ABCJs) made of multi-layered composite 

laminates. As reviewed in chapter 2, it is common to simultaneously perform stress analysis of 

adhesively bonded joints and composite laminates. So far, with the expanding utilization of 

composite laminates in aerospace and ground vehicles, building and bridge repairing, etc., 

ABCJs have been broadly structured. It is essential to understand the stress state, strength, and 

failure mechanisms in these structures. In the general case, ABCJs are made of angle-ply 

composite laminates bonded together with adhesive layers to achieve the load transfer from one 

composite laminate to the other. Due to the anisotropic properties of angle-ply composite 

laminates as adherends and multiple boundaries of the ABCJs, ABCJs undergo complicated 

layer-wise stress states including high stress concentrations at all the free-edges. It is desired to 

formulate efficient semi-analytic method for determining the stress variation in layer-wise 

manner. In the recent studies on stress analysis of ABJs made of isotropic adherends, e.g., metals, 

Wu & Jenson (2011) and Wu & Zhao (2012) have formulated successful stress-function 

variational methods for accurate, efficient determination of the interfacial stresses in ABJs. Yet, 

Wu’s stress-function variational method could not directly employed for stress analysis of 

ABCJs. The idea of introducing stress potential functions at interfaces of ABJs as used by Wu 

and his collaborators (Wu & Jenson, 2011, Wu & Zhao, 2012) have shined the light for 
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formulating systematic stress-function variational method for stress analysis of ABCJs. In 

addition, Yin’s stress potential functions (Yin 1994a, 1994b) can be further used to approach the 

layer-wise stress variation in the composite-laminate adherends of the ABCJs. 

 

5.2. Model Formation 

Without loss of generality, let us consider an adhesively single-sided strap joint made of a 

slender cover layer and two identical slender substrate layers, which are bonded with thin 

adhesive layers. As sketched in Fig. 5.1, the cover and substrate layers are assumed to be made 

from composite laminates with different layups and material properties, respectively. The 

coordinate system used for the ABCJ system is shown in Fig.5.1 (a) where the y-coordinate is set 

on the symmetric mid-span of the joint directed along the laminate axis; z is the vertical 

coordinate attached to the entroids of cross-section of the joint. The geomeitries of the ABCJ 

under consideraiton are the follows. The length and thickness of the cover layer are denonted as 

2L and ℎ
, respectively. The thickness of the adhesive layer and substrated layer are denoted ℎM 

and ℎ�, respectively. In addition, the cover and substrate laminates and the adhesive layer of the 

joint have an uniform width b in x-direction. Both of the substrate laminates are assumd to be 

subjected to tensile tration ¹M along the y-direction, which is applied far away from the cover 

lamainte layer.  
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Due to the symmetries of ABCJ and the loading applied at both sides, the stress analysis can 

be conviently simplified by taking only the right-half portion of the joint. As sketched in Fig 5.1 

(b), consider the the cover and substrate laminates as well as the adhesive layer to carry the 

uniform length L. The thickness and the width areconstant, respectively. Based on the static 

equlibrium of the ABCJ, the cover laminate is subjected to the tensile loading ¹
 and a bending 

moment ºM. Since the mismtch of the materical properties across each interfaces of layers of the 

º = ¹Mℎ�(ℎ� + ℎ
 + 2ℎM)/2 

 

¹
 = ¹Mℎ�/ℎ
 ¹M 

´ 

ℎM 

ℎ
 

ℎ� 

2´ 

ℎM 
ℎ
 

ℎ� 
¹M ¹M » 

(a) 

(b) 

Figure 5.1. Skematical diagram of an adhesively bonded composite joint: (a) A slender 

cover layer bonded with two identical slender substrate layers via a thin adhesive; (b) 

Right-half of the joint based on structural symmetry. 
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ABCJ, the external loads will cause high interfacial shear stresses and normal stresses ( in other 

words, the debonding or peeling stresses ) near all the free-edges. No matter mechanical or 

thermomechanical loads, the interfacial stresses, i.e., �==, �x= and �>=, are responsible to the 

debonding failure the ABCJs. 

In this problem, the temperature change is treated as uniform throughout the whole joint. In 

addition, the composite cover and substrate layers are considered as anisotropic, linearly 

thermoelastic materials, and the thin adhesive layer is dealt with as isotropic, linearly 

thermoelastic material. Similarly, in order to apply the method introduced in Chapter 3, herein, 

new boundary conditions are to be formulated at each free edge of the laminate loading state. At 

the bottom and upper surfaces of the laminate, the coefficients �M, IM, �,>M, I,>M , ΨM. PM and 

�&O
, I&O
, �,>&O
, I,>&O
, Ψ&O
. P&O
 are considered to be zero due to the stress-free state, 

respectively. �M, �
, … , �&, �&O
 are the vertical coordinates of each interfaces from the bottom 

surface to the upper surface of the laminate, respectively. Yin’s formulation is based on the 

classical laminate plate theory (CLPT). Therein, the coefficients at each boundary can be 

determined by applying CLPT.  
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Figure 5.2. Schematic of the vertical coordinates and stree-functions at the interfaces. 

 

5.3. Boundary conditions 

Based on the classical laminate theory, assume the deformation at the center of a laminate is 

strain �M and curvature ¼, which can be obtained from the external loading. The load-

deformation relationship is determined as (Agarwal, 2006): 

 X½ºY = X� �� �Y X �M¼ Y  ¾n X �M¼ Y = X¿ Ao UY X½ºY (5.1) 

where ½> = ¹&  /G (i=1,2) and º> = ºM. The in-plane stresses of each ply can be obtained as  

 [�]x,>@ = [À]x,>@ [�M]x,> + �[À]x,>@ [¼]x,> (5.2) 

Then, to obtain the stress resultants in x, y, and z-direction as 

 � ½x½>½x>�
@

= Á Â �x�>�x>Ã
@

=Ä=ÄL+ U�  and � ºxº>ºx>�
@

= Á Â �x�>�x>Ã
@

=Ä=ÄL+ � U�  (5.3) 
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Substitution of Eq. (5.2) into Eq. (5.3) yields 

 ½x,>@ = [À]xx@ [�M]x(�@ − �@,
) + 0.5(�@� − �@,
� )[À]xx@ [¼]x (5.4) 

As discussed in Chapter. 3, the relationship between each stress component and the 

corresponding stress potential function is specified as 

The in-plane stresses: 

  �x = �,>> , �> = �,==, �x> =  �,= (5.5) 

Out-of- plane stresses:  

  �x= = −�,>, �>= =  �,>= (5.6) 

Since the ratio of width/thickness is larger than 10 in common composite laminates, the out-

of-plane shear stresses �x= and �>= can be ignored due to the transverse shear deformation is 

much smaller than others. Hence, �′,>(&) = I′,>(&) = 0 are over the entire two edges. In addition, 

the boundary conditions of the stress functions can be specified in below. 

 

5.3.1. G(y) 

As mentioned by the Yin (1994a), by integrating �>> at the boundary edges through the 

thickness of adherend layers, the stress resultant ½> equates to G at the upper interface between 

the laminate adherend and the adhesive layer,  i.e., 

 ½> = ∑ Á �>(&) U� = ∑ Á �,==(&) U� = ∑�,=(&)Å=�=0L+
=�=0 = I& (5.7) 

From Eq. (5.7), the stress resultant ½>(
)
 of the first ply can be obtained by  
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  ½>(
) = Á �>>=c=+ U� = I
 − IM (5.8) 

Since the bottom surface is stress-free condition, substitution of  IM = 0 into Eq. (5.8), it yields 

   ½>(
) = I
 (5.9) 

Similarly, the stress resultant ½>(�)
 through the 2nd ply can be obtained by 

  ½>(�) = Á �>>=Æ=c U� = I� − I
 (5.10) 

Substitution of Eq. (5.9) into Eq. (5.10) results in 

  ½>(�) + ½>(
) = I� (5.11) 

In addition, ½>(�)
 in the 3rd ply of the laminate adherend is 

  ½>(�) = Á �>>=a=Æ U� = I� − I� (5.12) 

Hence, I� can be obtained as 

  I� = ½>(
) + ½>(�) + ½>(�)
 (5.13) 

Based on Eq. (5.9), (5.11) and (5.13), it can be concluded that the relationship of I@ at k-th 

interface and ½>(@)
 through k-th ply can be expressed as 

   I@ = ∑ ½>(&)@&�
  (5.14) 

From Eq. (5.4), ½>(@)
 can be determined: 

 ½>(@) = [À]>@[�M]>(�@ − �@,
) + 
� (�@� − �@,
� )[À]>@[¼]> (5.15) 

Combining Eq. (5.14) and (5.15), coefficient I@ at the boundary can be determined by the 

centroid strain �M and curvature ¼ as 
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 I@ = ∑ X[À]>& [�M]>(�& − �&,
) +  =0c,=0L+c ¡� [À]>& [¼]>Y@&�
  (5.16) 

 

5.3.2. Ψ(y) and H(y) 

Similarly, the value of shear stress resultant ½x> equats to � of the interface between the 

adherend and adhesive layer.  

 ½x> = ∑ Á �x>(&) U� = ∑ Á Ψ,=(&) U� = ∑Ψ(&)Ç=�=0L+
=�=0 = Ψ& (5.17) 

The stress resultant ½x>(
)
 through the 1st ply can be obtained by 

   ½x>(
) = Á �x>=c=+ U� = Ψ
  − ΨM (5.18) 

Since the bottom surface of the laminate is stress-free, substitution of ΨM = 0 into Eq. (5.18) 

leads to 

   ½x>(
) = Ψ
 (5.19) 

Similarly, the stress resultant ½x>(�)
 through the 2nd ply can be found as 

  ½x>(�) = Á �x>=Æ=c U� = Ψ� − Ψ
 (5.20) 

Substitution of Eq. (5.19) into Eq. (5.20), it reads 

  ½x>(�) + ½x>(
) = Ψ� (5.21) 

Furthermore, the stress resultant ½x>(�)
 through the 3rd ply can be determined as 

  ½>(�) = Á �x>=a=Æ U� = Ψ� − Ψ� (5.22) 

Furthermore, substitution of Eq. (5.21) into Eq. (5.20) yields 
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  Ψ� = ½x>(�) + ½x>(�) + ½x>(
)
 (5.23) 

Hence, at the k-th interface, the value of the coefficient Ψ@ can be determined: 

  Ψ@ = ∑ ½x>(&)@&�
  (5.24) 

From Eq. (5.4), ½x>(@)
 can be derived from �M and ¼: 

 ½x>(@) = [À]x>@ [�M]x>(�@ − �@,
) +  =Äc,=ÄL+c ¡� [À]x>@ [¼]x>  (5.25) 

Substitution of Eq. (5.25) into Eq. (5.24), by applying �M and ¼, the value of Ψ@ can be 

determined: 

 Ψ@ = ∑ [À]x>& [�M]x>(�& − �&,
) +  =0c,=0L+c ¡� [À]x>& [¼]x>@&�
   (5.26) 

In Yin’s (1994a) method, P(�, F) is the first order derivative of �(�, F) in z-direction. 

Meanwhile, P(&) is the value of �,=(&) at the upper side of the interface, and PM(�) = 0 holds at 

the bottom surface of the laminate. Therefore, at the k-th interface,  the following relationship 

exists 

  P@ = �x>(�, 0)(@O
) (5.27) 

where �x>(�, 0)(@) is the in-plane shear stress at the upper side of the interface. Then, 

P(�, F)(@) can be determined as 

  P@ = [À]x,>@O
[�M]x,>++�@[À]x>@O
[¼]x>  (5.28) 
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5.3.3. F(y) 

Consider that the joint is in the state of static equilibrium, i.e.,  

   ∑ º> = 0  (5.29) 

Therefore,  

   ∑ º> = º> + Á �>>U� = º> + Á �>>GU� = 0  (5.30) 

where, t is selected as the unit width, i.e., G = 1. So the stress moment º> can be expressed as 

   º> = − Á �>>U� = − Á ÈÈ= BÈ�È=E U�  (5.31) 

By integrating by parts of Á �>>U�, it leads to 

 º> = − Á �>>U� = − XBÈ�È= ∗ �E − Á È�È= U�Y = � − �∗I (5.32) 

where �∗ is the vertical coordinate of the top surface of the adherend; � and I are the 

coefficients at the interface. Based on Eq. (5.32), moment º>(
) through the first ply can be 

determined as 

  º>(
) = − Á �>>U�=c=+ = (� − �I)|=+=c = �
 − ��I
 − �M − �
IM (5.33) 

By considering the stress-free condition at the bottom surface, i.e., �M = IM = 0, it leads to 

  º>(
) = �
 − ��I
 (5.34) 

Similarly, moment º>(�) through the 2nd ply can be determined as 

   º>(�) = − Á �>>U�=Æ=c = �� − ��I� − º>(
)  (5.35) 

Substitution of Eq. (5.34) into Eq. (5.35) leads to 

  º>(�) + º>(
) = �� − ��I�  (5.36) 

Moment º>(�) through the 2nd ply can be determined as 



 

83 

 

  º>(�) + º>(�) + º>(
) = �� − ��I�  (5.37) 

Thus, moment º>(@) through the k-th ply can be determined as 

  ∑ º>(&)@&�
 = �@ − �@O
I@ (5.38) 

Thus, �@ at the k-th interface can be obtained as 

  �@ = ∑ º>(&)@&�
 + �@O
I@ (5.39) 

Based on Eq. (5.4), it reads  

                 ºx,>@ = Á  [À]x,>@ [�M]x,> + �[À]x,>@ [¼]x,>¡=ÄË+=Ä �U = =c� [À]x,>@ [�M]x,> +
 =Æ� [À]x,>@ [¼]x,>Å=Ä

=ÄË+ = B=ÄË+c� − =Äc� E [À]x,>@ [�M]x,> + B=ÄË+Æ� − =ÄÆ� E [À]x,>@ [¼]x,> (5.40) 

Substitution of Eq. (5.40) into Eq. (5.39), �@ at the k-th interface can be determined as 

     �@ = ∑ XB=0Ë+c� − =0c� E [À]>>& [�M]>> + B=0Ë+Æ� − =0Æ� E [À]>>& [¼]>>Y@&�
 + �@O
I@  (5.41) 

 

5.4. Examples for stress analysis of single strapped adhesively bonded multi-layered 

composite joints 

The importance of estimation of the interfacial stresses of ABCJs for design, strength and 

failure analysis.. In the following, the above stress-function variational method is used for stress 

analysis, of an adhesively bonded single-strapped composite joint to demonstrate the numerical 

accuracy and efficiency of this method. As discussed in Chapter 3 and 4, the normal stress �== 

and shear stress �x=, �>= are responsible for the mode I, II and III  failure of composite 

laminates. Thus, the example is employed to determine each stress at the different interfaces of 
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the joint. The material properties of the unidirectional composite ply in its principal axes are 

given as: 

Adherends (graphite/epoxy composite) 

E1=20 GPa; 

E2= E3=2.1 GPa; 

G12= G23= G13=0.85GPa; 

Ì
� = Ì�� = Ì
� = 0.21. 

where 1,2 and 3 are related to the directions of the fiber, width and thickness of the composite 

ply, respectively.  

Adhesive layer (epoxy) 

E1= E2= E3= G12= G23= G13=10 GPa; 

Ì
� = Ì�� = Ì
� = 0.4 

The applied load P0 is taken as 1 MPa. The layups of both the upper and lower adherends are 

[45o/-45o]2s. The geometrical parameters for such an ABCJ are taken as: L=10 mm, h1= h2=8 mm 

and h0=1 mm.  
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Figure 5.3.τyz variation at the 45o/-45o interface in the upper adherend. 

 
Figure 5.4. τxz variation at the 45o/-45o interface in the upper adherend. 
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Figure 5.5. σzz variation at the 45o/-45o interface in the upper adherend. 

 
Figure 5.6. σzz variation along the bonding lines of the upper and bottom interfaces. 
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Figure 5.7. τyz variation along the bonding lines of the upper and bottom interfaces. 

 
Figure 5.8. τxz variation along the bonding lines of the upper and bottom interfaces. 
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Figure 5.9. σzz variation along the 45o/-45o interface in the bottom adherend. 

 
Figure 5.10. τyz variation along the 45o/-45o interface in the bottom adherend. 
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Figure 5.11. τxz variation along the 45o/-45o interface in the bottom adherend. 

 
Figure 5.12. σzz variation at edge through thickness of the joints. 
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Figure 5.13. τxz variation at edge through thickness of the joints. 

 

Figs. 5.4-5.6 show variations of the normal stress �== and shear stresses �x= and �>= at the 

45o/-45o interface of the upper adherend. Figs. 5.10-5.12 show variation of the normal stress �== 
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show the stress variation at the upper and lower bonding lines. The stresses �>= and �== at the 

bonding lines shows a similar varying trend but in the opposite direction, and the variation of �x= 
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laminate plates in the first place. Then, the deformation will further induce different stress 

distributions at the edges which may further influence the stress variations at the interfaces.  

 

5.5. Conclusion 

In this chapter, an accurate, efficient semi-analytic stress-function variational method has 

been formulated and utilized for exploring the stress variation in the ABCJs. An adhesively 

bonded single-strapped joint was taken as an example for demonstrating the capability of the 

method for stress analysis. The boundary conditions were redefined and accessed within the 

framework of classic laminate plate theory.   
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6. CONCLUSION 

In summary, adhesively bonded composite joints (ABCJs) and composite laminates have 

been broadly used in load-carrying aerospace and aircraft structures, ground vehicle, flexible 

electronic devices, etc. Optimum design and failure prediction of ABCJs and composite multi-

layer structures requires accurate and reliable interfacial stress analysis, which plays an essential 

role for such purpose. In this work, by extending the recent theoretical studies by Wu & Jenson 

(2011) and Wu & Zhao (2012) on stress-function variation methods for stress analysis of bonded 

joints and of three layered adhesively bonded joints, and by modifying the seminal method by 

Yin (1994a, 1994b) and Wu (2003) for stress analysis of composite laminate with semi-finite 

length, the present stress functional variational methods can be successfully utilized for stress 

analysis of ABCJs and other multi-layered composite laminate structures with finite length. 

Several theoretical outcomes had been accomplished in this work as following: 

1. By introducing two Lekhnitskii’s stress potential functions �&(�) and <&(�), approached 

by polynomial functions, the interfacial stress variation in an arbitrary composite laminate can be 

approximated. By evoking theorem of minimum complementary strain energy, the set of 

governing ODEs has been obtained for each comply and the adhesive layers. A system of the 

governing ODEs of the entire joint is assembled from the governing ODEs of each ply and 

adhesive layer. The resulting set of global governing ODEs of the system was solved by means 

of eigenfunction method, of which the particular solution is obtained by applying the the 

traction-free boundary conditions.  

2. The solutions given by the present method can be applied for free-edge stress analysis of 

all types of composite laminates subjected to tension in the present case and can also be 
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considered for bending twisting and thermomechanical loading with miner modifications. The 

stress field of the composite laminates and ABCJs predicted by the present semi-analytic stress-

function variational method not only satisfies the traction-free boundary conditions, but also is 

validated by the results available in the literature and by means of FEM. For example, the 

interfacial stresses in composite laminates with finite length predicated by the present semif-

analytic stress-function variational method have been validated FEM results (ANSYS®) gained 

in this study. 

3. By altering the loading conditions and combining the classic laminate plate theory, the 

stress-function variational method for stress analysis of composite laminates with finite width 

was successfully modified for the purpose of stress analysis of ABCJs. Thus, all the robust and 

high-efficiency numerical approaches developed for stress analysis of composite laminates can 

be utilized for stress analysis of ABCJs. The present method for stress analysis of ABCJs have 

been successfully validated in the limiting case of adhesively bonded joints of isotropic 

adherends by using the method developed by Wu & Zhao (2012). 

4. The stress-function variational method formulated in this work is capable of predicting the 

interfacial stress variation along the bonded line and interfaces of laminate adherends 

simultaneously. The implementation of the present semi-analytic stress-function variational 

method for stress analysis of ABCJs is straightforward and computationally high efficiency. In 

contrast, no methods available in the literature can simultaneously predict the ply-wise free-

edges stresses of ABCJs.  

5. The present semi-analytic stress-function variational method can be conveniently used for 

scale analysis of the interfacial stress variations of composite laminates with varying 

length/width ratio, lay-up, and loading conditions (Chapter 3), which is much more efficient and 
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labor-saving than many other analytic and numerical methods available in the literature including 

FEM. For example, by employing the present method, it is convenient to determine the variation 

of the interfacial stress with one parameter of the composite laminate or ABCJs (e.g., number of 

plies, ply layup, ply thickness, one of material properties, thickness of the adhesive layer, etc.) 

while the rest of ones are fixed. 6. The present semi-analytic stress-function variational 

method for ABCJs can be considered as the most general semi-analytic method for accurate, 

efficient, linear stress analysis of various types of joints, e.g., bonded joints, ABJs, ABCJs, etc. 

By slight modification of the boundary conditions for a particular joint, the method can be 

modified for stress analysis of such joint.  

In addition, with the success of the present stress-function variational method for stress analysis 

oflayered structures and ABCJs, the further applications can be initiated as following: 

1) Extending the present model on the failure and crack analysis in the layered structures and 

ABCJs, such as progressive cracking of layered structures, debonding and delamination of 

ABCJs. 

2) Potential applications of the present stress-function variational method for nondestructive 

evaluation of multilayered structures such as coatings, including static and dynamic methods.  
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