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Excessive vibrations continue to be a problem that rotorcraft designers are

unable to address until flight testing. Accurate prediction of vibrations throughout

the aircraft is hindered by the complexity of the models required. This dissertation

focuses on utilizing frequency based modeling and substructuring methods to enable

full coupling between the comprehensive analysis modeling of the rotor aeromechan-

ics and finite element models of the drivetrain, airframe, and engines.

A substructuring methodology is developed to analyze the coupled structural

dynamic response of an elastic airframe and engines of a helicopter in response

to main rotor and tail rotor hub loads. Transfer functions of individual compo-

nents (airframe, engine, mount struts and torque tube) are coupled together using

a sub-structuring approach to obtain consistent coupled solutions of the entire sys-

tem. Using this approach, a twin-engine, four-bladed helicopter is analyzed using

NASTRAN-based models of the airframe and engines. This ultra-efficient substruc-

turing approach is validated against the fully coupled NASTRAN model using forced



response studies. Characteristics of the mount properties, i.e., the torque tube stiff-

ness, and aft mount stiffness and damping are systematically varied to study their

effect on the engine vibration response. The fore and aft mount element properties

for minimizing the 8P engine response are identified without increasing 4P response.

A compromise between 4P and 8P response is also identified from parametric stud-

ies of rear mount properties, using just 3 parameters to represent the design space.

Using the sub-structuring approach presented here, future studies can be performed

to rapidly match airframe characteristics with available engines at approximately

1000 times the speed of running a detailed finite element model (millions of degrees

of freedom), without any reduction in accuracy.

Comprehensive vibration analysis of a rotor-airframe-engine-drivetrain system

using a time-domain modal coupling approach was conducted. Pair-wise couplings

of components were performed to isolate the contribution of each component to the

complete coupled system, and the effect of each component (airframe and drive-

train/engine) on rotor loads and hub loads was studied. The drivetrain model was

a 6-dof model consisting of inertia and torsional spring elements, while the airframe

model used was a NASTRAN superelement of a detailed finite element airframe

model. Although drivetrain coupling resulted in elastic twist of the shaft by less

than 0.02 degrees, there were noticeable reductions in the 4/rev chordwise blade

bending moments as well the 4/rev vertical hub force. The airframe coupling pro-

duced very small hub motions, less than 1×10−4 inches, and showed almost identical

trends in both the blade loads and hub loads. 8/rev hub forces and moments were

significantly affected by both the airframe and drivetrain coupling.
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1 Introduction

Vibrations have been acknowledged as a problem in helicopters even preceding

their inception, in the early days of the autogiro. Though the mechanisms responsi-

ble for helicopter vibrations are complex and have not been completely understood

by designers, the existence of helicopter vibration is likely unmistakable to anyone

who has ever heard a helicopter fly overhead. One must surely assume that the char-

acteristic “whop-whop-whop” sound is accompanied by some significant vibrations.

Vibrations are understood to arise from periodic motion, so the cyclic nature of the

helicopter rotor motion, unsurprisingly, gives rise to vibrations. Furthermore, the

need to reduce helicopter vibrations is not difficult to understand for anyone who

has driven a car down a bumpy road. Indeed, continued exposure to high levels of

vibrations is, at the very least, uncomfortable, if not dangerous to helicopter pas-

sengers and crew. Not only that, but the vibrations felt by the human occupants

of the helicopter are transmitted throughout the entire aircraft, leading to fatigue

and eventual failure of structural components. Finally, it appears that vibrations

can affect the performance of the engines once installed in the vehicle.

Despite the large negative effects of vibrations in helicopters, actual vibra-

tion levels inside the airframe are difficult to predict precisely, and are usually not
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known until flight testing of prototype designs. At this post-production stage, a

full redesign is unlikely, so the problems are addressed with add-on fixes such as

absorbers or isolators. Because these additional components were not necessarily

included in the vehicle design, they carry penalties in terms of cost, weight, and

performance. Although these penalties will always exist for vibration reduction so-

lutions, if vibration prediction capabilities are improved, appropriate trade studies

could be conducted during design to mitigate them.

All of these factors highlight the importance of modeling how the rotor, air-

frame, drivetrain, and engines interact to develop the most complete understanding

of the total vibration story. This understanding will enable designers of future heli-

copter concepts to better anticipate possible vibration issues and include solutions in

the design process. The present research addresses the helicopter vibration problem

by using a few different analysis techniques to examine the ways in which com-

ponents of the coupled rotor-airframe-drivetrain-engine system interact with each

other. This chapter serves to introduce the thesis by way of explaining the back-

ground and motivation for the analysis, examining the relevant existing work in the

field and outlining the contributions of the dissertation.

1.1 Background

Vibrations in helicopters stem from a variety of sources, including the main

and tail rotors, engine, and transmission as well the interaction between the complex

rotor wake and the airframe. Figure 1.1 illustrates which characteristic frequencies

2



dominate the vibrations at various points in the aircraft. As seen in the figure, the

main source of vibrations in helicopters is the main rotor, that is, the frequencies

present in the vibrations are integer multiples of the blade passage frequency, Nb/rev,

where Nb is the number of blades on the main rotor. Frequencies associated with the

tail rotor and drivetrain are also present, though in smaller, more isolated regions

of the airframe.

To understand the mechanisms that contribute to the vibrations from the main

rotor, it is helpful to consider the trend of vibration level in helicopters as a function

of airspeed, shown in Fig. 1.2. The two regions of relatively higher vibrations point

to the leading cause of main rotor vibrations. First, at the low-speed transition

region between hover and forward flight, µ = 0.1, the rotor is operating largely in its

own wake and experiences blade-vortex interactions, where the trailed vortices from

each preceding blade are impinging on the subsequent passing blades. At moderate

increased speeds, a reduction in vibration is seen as the rotor wake is swept behind

the rotor. Finally, at higher speeds, µ > 0.3, compressibility effects are introduced

due to the transonic speeds at the blade tips, leading to further increases in the

vibration levels. As such, even if a helicopter might be capable of achieving higher

speeds, vibrations could limit the forward flight speeds a helicopter could achieve.

1.2 Motivation

As previously noted, helicopter vibrations have a number of negative impacts

for human occupants, structural components, and engine performance. As a result,
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a variety of approaches have been developed over the years to alleviate the problem

of vibration in helicopters. The methods used to address vibration differ in their

categorization as either active or passive methods, as well as where in the sequence

of transmission from the rotor to the fuselage the method is addressing the problem,

which Loewy categorizes as “source alleviators”, “force attenuators”, or “amplitude

reducers” [1]. The source alleviators are methods that address the problem of vi-

brations at the source by attempting the reduce the level of vibration produced by

the rotor. Methods that fall into this category are passive devices such as pen-

dulum [2] or bifilar absorbers [3], or active methods like higher harmonic control

(HHC) [4], individual blade control (IBC) [5], or active trailing edge flaps [6]. Force

attenuators operate between the source of the vibration, namely the main rotor,

and the airframe. They do nothing to reduce the vibrations produced by the rotor,

but instead reduce the level of vibration that is transmitted to the airframe. These

methods typically utilize flexible mount structures connecting the rotor or gear box

to the airframe [7]. Amplitude reducers are used in specific points in the airframe to

counterbalance the vibrations. This typically takes the form of vibration isolators

for specific components in the vehicle, such as seats, fuel tanks, or other equip-

ment where a low vibration environment is highly desirable. Additionally, dynamic

absorbers can be placed at different points in the airframe to effectively mitigate

vibrations. These might utilize components such as batteries as the mass in the

absorber. A number of papers exist that review the details and relative merits and

drawbacks of the various methods, the most widely cited being by Reichert [8] and

Loewy [1]. Although both papers are more than 30 years old, they represent a com-

4



prehensive view of the primary methods of vibration reduction still being used and

investigated today. Friedmann and Millott and Kesslier also provide more recent

reviews of active control strategies [9, 10].

Despite the demonstrated effectiveness of these vibration reduction strategies,

they have generally been utilized to address vibration issues in existing helicopters

when flight tests made the existence of such issues apparent. Even for helicopters

that are not yet in production, at the point of flight testing, only small changes to

the overall design are economically feasible. In 1988, Kvaternik estimated that the

weight penalty associated with with vibration reduction devices could be as much

2.5% of the gross weight, resulting in a 10-15% reduction in mission payload [11].

Further, Kvaternik illustrated the additional cost associated with vibration, repro-

duced in Fig. 1.3. From these observations, it is clear that adequately accounting

for vibrations at an early stage of the design process will be essential for efficiently

achieving close to “jet-smooth” flight in the next generation of rotorcraft.

Accurate prediction of vibrations requires careful consideration of the three

main components involved in computing vibration levels throughout the aircraft:

(1) the vibratory forcing exerted on the aircraft, primarily by the main rotor, (2)

the vibratory response of the elastic airframe, and (3) the coupling between the main

rotor and airframe. Further, if vibration effects on the engine are to be examined,

as in this work, detailed modeling of the engines as well as the coupling between the

engines and airframe are required.

One of the difficulties associated with predicting the vibrations of the engine

due to main rotor forcing lies in the fact that the finite element models associated
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with the engine and airframe are produced by separate entities. Due to various re-

strictions, detailed finite element models of either sub-system, or models refined by

system identification techniques based on shake test data are not readily available.

Consistent coupling of the two models requires significant disclosure of proprietary

information and often necessitates modifications to one or both mathematical mod-

els. Additionally, due to the degree of complexity of the airframe finite element

(FE) models required for accurate prediction of loads, parametric studies or opti-

mization sweeps are computationally intensive. To resolve these practical difficulties

and circumvent logistical and legal restrictions, dynamic substructuring can be used

to easily couple models together without sharing the proprietary FE models of the

constituent components.

The present research is focused on fully integrating a comprehensive rotor

analysis with a flexible drivetrain as well as coupling finite element models of the

airframe and engine. Due to the difficulty in acquiring access to full proprietary mod-

els of the airframe or engine from the respective manufacturers, a frequency-based

substructuring method was used to facilitate the coupling between the airframe and

engine models.

1.3 Literature Review

Accurate vibration prediction in helicopters is a multi-faceted and not com-

pletely resolved problem. It requires accurate vibratory loads from the rotor, de-

tailed structural dynamics models of the airframe and other sub-components, and
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full accounting of the coupling between the rotor, airframe, and all connected com-

ponents. Prior research associated with these various facets are discussed in this

section. While not all of these aspects are directly addressed in this research, the

existing research provides necessary context. The research discussed includes the

state-of-the-art in rotor vibratory loads prediction and airframe structural model-

ing, rotor-airframe and rotor-drivetrain coupling, and the substructuring methods

that are the basis for the engine-airframe coupling examined in this work.

1.3.1 Rotor Vibratory Loads

Because the primary source of vibrations in helicopters is the main rotor,

the ability to accurately predict airframe and engine vibratory loads requires a

reliable aeromechanics model of the rotor. Great strides have been made in the past

decade at significantly improving the prediction of rotor loads. A summary of these

improvements and the current state-of-the-art in rotor loads predictions is given by

Datta, Nixon, and Chopra [12].

Periodic examination of the state-of-the-art in rotor loads prediction has been

done over the past 45 years through workshop-type settings, in which specialists

from government, industry, and academia have compared independent results for a

common problem, in an effort to share experience. Ormiston provided one of the

first attempts at assessing the state-of-the-art in rotor loads prediction [13]. For

this study, airloads, bending moments, vibratory hub shears and other results for a

hypothetical, idealized rotor model were compared among ten different participants.
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Disagreements among the results were attributed to differences in numerical solution

methods as well as structural dynamics and aerodynamics modeling.

In the 1990s, another multi-agency study was conducted, this time comparing

vibratory hub load predictions among eight advanced aeroelastic codes with test data

for the Westland Lynx helicopter [14]. High speed flight was found to represent a

particular deficiency in vibratory loads calculations. Free wake modeling was found

to be particularly important in improving predictions at both low and high speed,

however further enhancements to the aerodynamic modeling such as fuselage upwash

and unsteady aerodynamics provided only moderate enhancements, and most codes

differed from flight test results by around 50% at the high speed flight condition.

More recent studies have focused on the inclusion of computational fluid dy-

namics (CFD) methods in rotorcraft analysis. The use of CFD drastically improves

the prediction of aerodynamic loads on the rotor, leading to significant improve-

ments in rotor loads prediction capabilities. A review article by Datta, Nixon, and

Chopra [12] provides a summary of the more recent improvements made in rotor

loads predictions, specifically due to the increased use of CFD.

1.3.2 Airframe Structural Dynamics Modeling

One way the industry sought to decrease the reliance on add-on vibration re-

duction devices was through improved modeling of the airframe structural dynamics.

In the 1980s, NASA, together with the four major helicopter manufacturers carried

out the DAMVIBS program (Design Analysis Methods for Vibrations) with a goal
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to improve the capabilities of airframe finite element models for predicting vibratory

loads throughout the airframe [15]. Bell, Boeing, Sikorsky, and McDonnell-Douglas

all participated in the program, and their individual efforts are summarized in Ref-

erences [16], [17], [18], and [19].

The efforts of the program focused on four major technology areas: (1) finite

element modeling, (2) difficult components studies, (3) coupled rotor-airframe vi-

brations, and (4) airframe structural optimization. The bulk of work by the industry

partners was focused on the first two of these, while the final two were meant to

include contributions from government and academia subsequent to completion of

the efforts in the first two.

The goals of the finite element modeling portion of the program were not only

to develop detailed finite element models, but also to gain a better understanding

of the importance of including various components in the models. As part of this

effort, finite element models were developed for the metal airframes of the AH-

64A [20], UH-60A [21], and Model 360 [22], as well as two composite airframes (part

of the Advanced Composite Airframe Program (ACAP) of the Army) D292 [23]

and S-75 [24]. The models were correlated against vibration test data, and in all

instances, satisfactory agreement between test and analysis was found only up to

about 10 Hz, with generally poor agreement above 20 Hz. It was also found that

the effects of testing boundary conditions were important and that better modeling

of damping was needed in the finite element analyses.

The DAMVIBS difficult components studies [25,26] aimed to determine which

of the secondary structures of the aircraft have the most significant effects on the
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prediction of the airframe natural frequencies. These structures include compo-

nents such as landing gear, canopy glass, tail rotor drive shaft, main rotor py-

lon/transmission, and engine and fuel, are difficult to model and as such, were

typically represented as lumped masses in the finite element model. Components

were systematically removed from the airframe, and ground vibration tests were

performed after each removal. Test results were compared with analysis for the

corresponding model. Overall, it was found that detailed modeling of secondary

structure panels and canopy glass as well as the tail boom was required for satisfac-

tory agreement between test and analysis, while simplified lumped mass or elastic

line representations were adequate for components such as the tail rotor drive shaft,

engines, fuel, main rotor pylon, transmission, and soft mounted black boxes. For this

work, it is worth noting that although the lumped mass engine model was deemed

adequate for predicting the overall airframe natural frequencies, a detailed engine

model would clearly be required for vibration studies on the engine itself.

Finally, each of the participating companies used their own in-house prediction

codes to conduct coupled rotor-airframe analysis of the same AH-1G airframe and

rotor models and compared results with existing vibration test data. The predicted

2/rev vibrations for this 2-bladed helicopter did not agree well with the test data for

any of the participants. Although some secondary studies suggested that aerody-

namic interactions between the rotor wake and airframe, particularly the tail boom,

could be as important as the mechanical coupling between the rotor and airframe,

this portion of the program largely ended with the conclusion that existing com-

prehensive analysis codes were not good enough for reliable vibrations prediction
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during design. Though specific improvements to coupled rotor-airframe vibrations

prediction were not made under the DAMVIBS program, the results of those initial

studies led the way for industry and academia to perform focused research in this

area in the ensuing years. This work will be discussed in the next section.

1.3.3 Rotor-Airframe Coupling

As indicated previously, vibration analysis in helicopters has historically been

carried out by applying hub loads from a separate rotor analysis as a forcing func-

tion on the airframe model in order to determine vibration levels at various points

throughout the airframe. In this situation, the hub loads are computed with the

assumption that the hub is fixed. Any interaction between the rotor and airframe

is accounted for only by the addition of an “equivalent” rotor mass in the airframe

model. However, this level of analysis does not adequately account for the coupling

between the rotor and the airframe, that is the effect that the flexibility of the air-

frame might have on the rotor hub loads that are being applied. This section will

provide an overview of the ways in which this coupling has been modeled.

Rotor-body coupling, a general term used to describe the act of coupling the

motion of the rotor hub to some other body, whether flexible or not, has been accom-

plished in a variety of ways. The earliest methods of coupling rotor and fuselage dy-

namics employed impedance matching techniques. The rotor or airframe impedance

is the mathematical relationship between the vibratory forces and displacements at

the hub. An impedance matching technique seeks a solution to the individual rotor
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and airframe problems in which the impedance is the same between the two parts

– that is, the solution for the coupled rotor-airframe should converge to the same

forces and displacements at the hub. Gerstenberger and Wood [27] were the first

to describe a general analytical method for helicopter analysis in which the flexible

blade dynamics were coupled to the dynamics of the fuselage through impedance

matching. Staley and Sciarra [28] utilized an explicit impedance matching technique

in which the rotor hub loads were assumed to be composed of those calculated with

a fixed hub condition in conjunction with a correction due to small vibratory hub

motions. The airframe dynamics was represented by a mobility matrix relating

the vibratory hub motion to applied unit vibratory hub forces. Similar impedance

matching techniques have also been used in studies by Hohenemser and Yin [29],

Hsu and Peters [30], and Gabel and Sankewitsch [31]. These studies utilized very

simplified rotor models and aerodynamics, but were useful in understanding some

basic phenomena and providing support for the notion that rotor-body coupling

has a significant impact on vibratory loads and should be accounted for if accurate

vibration predictions are desired.

Other researchers have developed fully coupled analyses in which the fuselage

equations of motion are coupled to the rotor equations of motion. Many of these

analyses utilize only linear terms in the rotor analysis and again use highly simplified

aerodynamic and/or fuselage modeling. Analysis by Kunz [32] included only flapping

motion in the rotor, rigid pylon and rigid fuselage with hub-fixed as well as flexibility

in pitch allowed. Rutkowski [33] only considered vertical bending of rotor. Again,

although the numerical results of these simplified studies are of limited use, the
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demonstration of the effects of coupling are very valuable in understanding the

fundamentals of those interactions and spurring further research.

Stephens and Peters [34] did not present any numerical results, but performed

a comparison of an iterative method to fully coupled rotor-body equations. Although

the iterative method has some disadvantages with respect to implementation and

convergence, it was demonstrated that both methods were equally rigorous, despite

implications that the iterative method was more approximate.

Given the importance of nonlinear forces in calculating rotor vibratory loads, a

coupled analysis in which the flap, lag, and torsion dynamics of the rotor blades are

fully accounted for is necessary. Warmbrodt and Friedmann [35] derived equations

representing consistent structural coupling between an elastic rotor and six rigid

body modes of the fuselage. Bir and Chopra [36] similarly developed analysis in

which an elastic rotor was coupled to a fuselage with rigid body degrees of freedom

at the hub. The analysis was developed specifically for investigating the response

of a rotor due to a three-dimensional gust, though some vibration results were also

noted.

Fledel [37] developed a coupled rotor-body formulation that accounted for dy-

namic coupling between rotor and body as well as the interactional effect of body up-

wash on the rotor. The body could undergo vertical bending and pitching/plunging

rigid body motions. Several parameters were investigated for effects on vibratory

hub loads and body vibrations. These included blade stiffness, hub location, fuse-

lage stiffness and rotor/body clearance. The rotor and fuselage stiffness as well as

rotor/body clearance were found to have a large effect on vibratory hub loads.
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Works by Juggins [38] and Hansford [39] detail the development of Coupled

Rotor Fuselage Model (CRFM) at Westland Helicopter. This is a comprehensive

rotor analysis code using fully coupled non-linear aeroelastic equations with hub

motion. Early results showed that hub load predictions were significantly improved

with the addition of hub motion. Hansford also noted that a high fidelity NASTRAN

fuselage model would be required for accurate prediction of hub motion and airframe

vibration response.

Vellaichamy and Chopra [40, 41] performed a coupled rotor-body vibration

analysis in which a flexible stick model of an airframe was coupled to a rotor with

flexible blades undergoing elastic flap, lag, torsion, and axial deflection. The cou-

pling was accomplished through an iterative procedure. These studies emphasized

the role of blade structural nonlinearities and rotor-body coupling in the prediction

of vibration magnitudes.

Chiu and Friedmann [42] developed a coupled rotor-fuselage aeroelastic model

that incorporated active control of structural response (ACSR) in the fuselage. Their

results showed again that nonlinear couplings and fuselage motion is important for

vibration prediction, however the trim and blade elastic response were shown to be

insensitive to fuselage motion.

A study conducted by Yeo and Chopra investigated the effects of rotor-fuselage

coupling on vibration analysis [43–47]. For this analysis, a coupled rotor/fuselage vi-

bration model was developed that incorporated consistent structural, aerodynamic,

and inertial coupling effects. Initial studies utilized an elastic line model repre-

senting an AH-1G helicopter coupled with both a 4-bladed hingeless rotor [43] and
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the 2-bladed teetering rotor associated with the AH-1G model [46]. These stud-

ies demonstrated that the flexible fuselage could have a pronounced effect on the

predicted fuselage vibrations.

A subsequent study examined the effects of refined models of the fuselage [47]

with results compared to available flight test data. Three fuselage models were

compared: an elastic line model, a 3D NASTRAN model, and a refined 3D model

that included difficult components. It was determined that the refined fuselage

model was essential in predicting high frequency modes. Their results showed good

agreement in the prediction of 2/rev magnitude and phase of pilot seat vibration,

while the 4/rev predictions were fair only in magnitude. The main rotor pylon

flexibility was shown to have significant impact on the 2/rev vibration prediction

and refined aerodynamics, especially a free wake model, were also necessary for

improved vibration prediction.

Yang and Chopra also performed a coupled rotor-fuselage vibration study for

an articulated rotor helicopter - the SH-60B, including the bifilar [48, 49]. The

analysis incorporated consistent structural, aerodynamic and inertial couplings and

was based on finite element methods in space and time. The coupled rotor, absorbers

and fuselage equations were transformed into the modal space and solved in the

fixed coordinate system. The work showed acceptable trends for magnitude and

phase with flight-test data and demonstrated the importance of modeling the bifilar

for correctly predicting fuselage vibrations. They also investigated the sensitivity

of vibration prediction to various system faults such as blade dissimilarity due to

asymmetric track/balance masses.
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1.3.4 Drivetrain and Engine Studies

As highlighted in the previous section, inclusion of an airframe model has been

recognized as an important factor in understanding helicopter vibrations, however,

the same is not true of the drivetrain or engines. While there have been some studies

that include helicopter engines and other elements of the drive system such as gear

boxes, those studies have largely been focused on issues of stability and handling

qualities in flight dynamics. Recently, some vibration studies have begun to include

drivetrain models in the analysis. Additionally, helicopter manufacturers have long

recognized that certain vibration issues arise as a result of coupling between the

engines and airframes. This section will highlight the key findings in the area of

rotor-drivetrain coupling as well the known issues associated with engine-airframe

coupling.

1.3.4.1 Rotor-Drivetrain Coupling

As mentioned previously, the fixed hub condition often used in rotor analysis

does not adequately account for the motion of the hub due to coupling with the

rest of the aircraft. The previous section examined the coupling of the rotor with a

flexible airframe model, however, that is not the only source of motion transmitted

to the rotor. Power from the helicopter engine is transmitted to the rotor via the

drivetrain, which consists of a series of flexible rotating shafts connected through

gears. In the prediction of rotor vibratory loads, discrepancies have continued to

exist between analysis and flight test for the chordwise bending loads. It has been
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suggested that coupling between the rotor and drivetrain could influence the lag

bending modes of the rotor, and so exclusion of a flexible drivetrain could be con-

tributing to these deficiencies. Despite this, few studies exist that investigate the

coupled rotor-drivetrain system with regard to vibratory loads.

Yeo and Potsdam recently examined coupled CFD-CSD analysis of rotor loads

in which both a simple 1-dof drivetrain model as well as a more complicated model

were included in the analysis [50, 51]. When a 1-dof drivetrain model was used,

its stiffness and inertia properties were tuned to match either the drivetrain first

or second torsion frequency typically found in rotorcraft. It was found that the

first torsion frequency affected the phase of the structural loads, while the second

torsion frequency increased both the peak-to-peak and 4/rev components of the

chord bending moment, improving the overall correlation with test data. Inclusion

of a more detailed drivetrain model resulted in very small improvements in the

correlation of the 4/rev and 5/rev harmonics of the chord bending moment.

Similar work done by Min, et. al. [52] incorporated a simplified drivetrain

model into the analysis of structural loads. It was found that the drivetrain model

did not appreciably alter the natural frequencies of the rotor, though the chordwise

and flatwise components of the mode shape for the collective lag bending mode and

first torsion mode were significantly altered. Further, the 4-6th harmonics of the

blade edgewise bending moments were significantly increased from the fixed hub

condition, resulting in improved correlation with flight test data for 4P and 6P,

although the 5P correlation was noticeably worse.

The lack of available studies into the effects of drivetrain modeling on rotor
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vibrations points to a need for further study into this area.

1.3.4.2 Engine-Airframe Coupling

Understanding the engine response to vibratory hub loads is of particular

importance given the tight tolerances in the turbomachinery. Additionally, excessive

vibrations in the engine could have an adverse impact on engine performance during

flight. To date, there have been very few studies in the literature looking at how

main rotor hub vibrations are transmitted to the engines. The DAMVIBS program

concluded that lumped mass models of the engines were adequate for predicting

natural frequencies of the fuselage up to 20 Hz. However, a more detailed structural

model of the engine and its coupling to the airframe is clearly required for evaluating

the transmission of vibratory loads into the engine itself.

In 1970, Balke [53] reviewed the existing vibration criteria that had been es-

tablished by the various engine manufacturers. He highlighted the lack of standard-

ization of vibration criteria, not only in terms of the vibration limits themselves, but

also in how those vibration levels are even defined. He stressed the need for research

into determining typical vibration environments present in VTOL aircraft, as well

as improved communication among the various engine manufacturers and between

engine and airframe manufacturers to establish improved and standardized design

and test procedures throughout the industry.

Reports from 1978 by Sikorsky, Bell and Hughes, Kaman, and Boeing [54–

56] outlined each company’s experiences with problems related to the structural

dynamic interactions between the rotor, airframe, engine, and drivetrain. Sikorsky
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documented a total of 18 problems encountered over 25 years of development of

their various platforms [54]. Of these 18 issues, 6 were related to forced vibrations

of the installed engine due to main rotor aerodynamic excitations at nP for the

specific helicopter. Among the problems identified by Bell [55] was vibrations on the

installed engine in excess of the engine vibration limits. In addition to deficiencies

in ground test methodology, they specifically pointed to the inability to predict

dynamic loads from the main rotor to the engine mounts as a key shortcoming

contributing to this issue. The Kaman report [57] concluded that the types of

compatibility issues documented in their report would not be eliminated through

improved analytical methods and instead recommended that future research focus

on improved dynamic testing methods for more efficient identification of the nature

of such problems once encountered.

Though each of the manufacturers stressed the need for further research into

these areas, limited information has been put forth in the literature since. Some

work has been done to include engine dynamics in academic modeling efforts; how-

ever, these efforts typically utilize highly simplified engine models and focus on

issues related to flight dynamics, such as handling qualities and stability, without

addressing vibrations [58].

1.3.5 Substructuring Methods

As computing resources have become increasingly powerful and efficient over

time, the finite element structural models developed by civil, mechanical, and aerospace
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engineers have become more detailed and complex; helicopter airframe models are

no exception. Despite their improved availability, powerful computing resources are

still at a premium, so techniques that can effectively reduce the size of these large

models while still providing accurate results are necessary. Dynamic substructuring

is a means of modeling and analyzing a complicated mechanical system by way of

its individual subcomponents and has been a powerful tool for analysis, especially

of large structures.

Substructuring is easily understood conceptually as a strategy of “divide and

conquer”, that is breaking a large, complicated problem into smaller sub-problems.

The solution of each of the sub-problems can then be utilized to achieve a solution

to the larger original problem. de Klerk, Rixen, and Voormeeren [59] provide an

overview of the historical development of formal substructuring methods from initial

work in the field of domain decomposition in 1890 and the component mode synthesis

methods of the 1960s that are most associated with the concept of substructuring.

A variety of techniques have been developed since that time, but they all involve

the same basic steps:

1. Division of the structure into subcomponents

2. Definition of connections between subcomponents

3. Analysis of individual subcomponents

4. Assembly of subcomponent analyses into the complete structure

Although the various methods that have been developed over the years differ in the

20



details of the individual steps, primarily steps 3 and 4, they all offer some shared

advantages. First, they allow more efficient use of computing resources. Analysis

of the subcomponents typically involves a reduction in the number of degrees of

freedom, hence a reduction in total computational time. Further, unless changes are

made in the modeling of a particular subcomponent, the individual analyses need

only be done once. Substructuring also facilitates easier ability to share models

between separate entities. Often the modeling of large structures is divided among

different individuals or groups within an organization or even between different

organizations entirely. Due to the proprietary nature of these models, sharing of

modeling details can be difficult. In the substructuring process, engineers can focus

the analysis on the details necessary to other partners and avoid sharing details that

could be deemed proprietary.

As described by de Klerk, Rixen and Voormeeren, substructuring techniques

can be classified by whether the subcomponent analysis is done in the physical,

modal, or frequency domain, as well as whether the interface displacements or forces

are treated as unknowns (primal or dual assembly). This is illustrated in Fig. 1.4.

Substructuring techniques that analyze the subcomponents in the modal domain,

that is, through a transformation from physical degrees of freedom to modal degrees

of freedom, are classified as component mode synthesis (CMS) methods. Techniques

that analyze subcomponents in the frequency domain through Fourier transforms or

frequency response functions (FRFs), are classified as frequency based substructur-

ing (FBS) methods. These two methods will be described in the following sections.

At this point, it is helpful to briefly define some mathematical relationships.
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Typically, subcomponent models exist in the physical domain and are characterized

by the mass, stiffness, damping matrices, M, K, and C associated with a set of

physical degrees of freedom, u, related the equation

Mü(t) + Cu̇(t) + Ku(t) = f(t) (1.1)

In the frequency domain, the equation of motion can be expressed as

[−ω2M + iωC + K]U(iω) = F(iω) (1.2)

or, more compactly,

ZU = F (1.3)

This equation can be solved for the nodal displacements and rewritten as

U = YF (1.4)

In equation (1.3), Z is commonly referred to as the structure’s impedance ma-

trix, while Y in equation (1.4) is called the admittance matrix. It is straightforward

to observe that the impedance and admittance matrices are inverses of each other.

1.3.5.1 Component mode synthesis

For the most part, the term dynamic substructuring has referred to the class of

techniques called component mode synthesis (CMS). In CMS methods, the physical

displacement coordinates are represented by a set of generalized coordinates related

to a set of normalized displacement modes, or component modes. A coordinate

transformation utilizing a matrix of mode shapes, or basis vectors, converts between

the physical and generalized coordinates. A variety of methods that fall into the

22



CMS category have been developed and refined over the years, and they differ, in

part, in the variety of definitions for sets of component modes. A general overview

of the methods is given here, however, a more thorough overview including some

mathematical details and examples is presented in Reference [60].

In general, the mode sets utilized in CMS methods fall into one of four cate-

gories: normal modes, constraint modes, rigid body modes, and attachment modes.

These sets are defined as:

(i) Normal modes are the eigenvectors of the system and are classified according to

the boundary condition imposed on the component. The boundary conditions

can be free, fixed, or loaded interface, or a combination among the boundary

nodes.

(ii) Constraint modes represent the deformation of the structure that occurs when

one of the specified number of constraint coordinates is given a unit displace-

ment, while holding the remaining constraint coordinates fixed.

(iii) Rigid-body modes represent the undeformed motion of the component.

(iv) Attachment modes represent the deformation of the structure due to a unit

force applied to a single node.

The earliest version of a CMS method was developed in the 1960s by Hurty

[61, 62]. Hurty’s method utilized fixed-interface normal modes, constraint modes,

and rigid-body modes. In Hurty’s method, a subset of boundary nodes was selected

to yield a set of statically determinate constraints, from which the rigid-body modes
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were computed. The remaining boundary nodes were designated at redundant con-

straints, from which the constraint modes were computed. Craig and Bampton

built on and generalized Hurty’s work [63]. The Craig-Bampton method represents

the motion of a subcomponent with fixed-interface normal modes and constraint

modes, demonstrating that the use of rigid body modes is unnecessary if all bound-

ary nodes are treated in the same manner as Hurty’s redundant constraints. This

modification simplified the overall formulation and programming, likely leading the

Craig-Bampton method to become essentially synonymous with component mode

synthesis.

Following the development of the Craig-Bampton method, CMS methods re-

ceived continued attention as more researchers contributed their own modifications

to the existing formulations. Methods developed by Goldman [64] and Hou [65]

were formulated using only free-interface normal modes without any static modes.

Benfield and Hruda [66] introduced the concept of branch modes, in which free-free

boundary conditions were used on the identified primary structure and the branch

modes were calculated for the remaining structures with a fixed boundary condition

at the structure interface. Guyan reduction [67] was also used to determine interface

loading from the attached substructures.

MacNeal [68] developed a hybrid method which utilized both fixed and free

interface modes. He also suggested the inclusion of statically determined deflection

influence coefficients. The addition of the these coefficients, termed “residual flexi-

bility”, offers improved accuracy by accounting for the static effects of the neglected

modes. Rubin [69] extended this idea adding residual inertial and dissipative effects
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to further improve accuracy. Craig and Chang [70, 71] generalized the methods of

MacNeal and Rubin as well as developed a new method employing residual attach-

ment modes, which produced results comparable to or better than those obtained

by other methods.

1.3.5.2 Frequency-based substructuring

The component mode synthesis techniques for substructure analysis of the

prior section are formulated for use in the time domain; however, as stated pre-

viously, vibrations in helicopters exist primarily at only a few frequencies, namely

integer multiples of the blade passage frequency, pNb per rev, where Nb is the number

of blades. Therefore, studies of helicopter vibrations are ideally suited to methods

formulated in the frequency domain, so-called frequency-based substructuring (FBS)

methods.

As illustrated in Fig. 1.4, the frequency domain representation of a subcompo-

nent can by generated through a Fourier transform of the physical model or through

frequency response functions (FRFs) obtained either analytically from the full model

or the modal reduction or experimentally. Unless a modal representation is all that

is available, FBS methods offer the distinct advantage that all elements of the system

dynamics are embedded in the FRFs.

The classical method of frequency-based substructuring (FBS) was developed

in 1988 by Jetmundsen, Bielawa, and Flannelly [72] which utilized partitioned

impedance matrices for the substructure components that were then connected us-

ing graph theory. The method was originally conceived to analyze the effects of
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structural changes in helicopter airframes, specifically utilizing experimentally de-

rived mobilities [73]. Gordis, Bielawa, and Flannelly [74] generalized the Jetmundsen

formulation and Ren and Beards [75] proposed a similar formulation. Another mod-

ification to the method includes reformulation such that the coupling of structures

is done in a “dual” manner, in contrast to the “primal” assembly that is typically

utilized. The essential difference between these two assembly methods is that the

primal assembly is a coupling through interface displacements, while the dual as-

sembly is a coupling through interface forces. What arises from the dual assembly is

a method known as Lagrange multiplier frequency-based substructuring (LM FBS),

formalized by de Klerk, Rixen, and de Jong [76]. This method has the advantage

of utilizing the admittance matrices of the system directly. The admittance ma-

trices consist of the frequency response relationships of the structure, and so are

more easily acquired through experimental testing. For the purposes of the present

work, even though the structural models used are based on the full finite element

models of the structures, the proprietary nature of the data made transfer of fre-

quency response information the most viable option for acquiring model information.

Therefore, the LM FBS method of Ref. [76] forms the basis of the substructuring

methodology used in this work, the mathematical details of which will be explained

in Chapter 2.

Though not explored in this work, it is worth noting that a key advantage

of FBS methods lies in the ease with which the methods can be applied using

experimental data. More recent work in the field of dynamic substructuring has

focused on improving the accuracy of the methods, both CMS and FBS, when
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applied to experimental data. Some of the difficulties associated with applying

substructuring analysis to experimental data include difficulty in modeling rotational

degrees of freedom, truncation and experimental errors, the continuity of interfaces

in contrast to the discrete nature of measurements, measurement of rigid body

modes, and nonlinear effects arising from friction in joints. These issues are discussed

further in Reference [59].

1.4 Scope of Current Work

The prediction of vibrations in helicopters is a multi-faceted problem. The

goals of the present research are to examine the various dynamic interactions that

exist within the helicopter in order to better understand the nature of those inter-

actions and their impact on vibrations throughout the helicopter. To that end, the

technical approach of the research is separated into two primary tasks:

1. Engine-airframe coupling using dynamic substructuring. Analysis was

developed to allow coupling of airframe and engine finite element models devel-

oped by different entities. The analysis utilizes frequency-based dynamic sub-

structuring techniques to produce an accurate coupled model while requiring

only limited levels of information exchange for each of the models. This analy-

sis produces results commensurate with those generated using NASTRAN on

the full models in a fraction of the computing time, allowing for parametric

studies of engine mount properties to be carried out.
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2. Rotor coupling to fixed-frame components within comprehensive

analysis. Existing comprehensive analysis capabilities were expanded to ac-

count for a flexible hub condition, allowing the rotor to be coupled to a flexible

drivetrain and/or airframe model. The effects of these couplings on the rotor

blade structural loads, fixed frame hub loads, pilot seat and engine vibrations

were examined across a range of forward flight speeds.

1.4.1 Overview of Dissertation

The remainder of the dissertation consists of five chapters. Chapter 2 describes

the methodology that was used for this work. This includes the existing comprehen-

sive analysis and modifications made for rotor-airframe and rotor-drivetrain coupling

as well as the substructuring framework utilized for the coupled airframe-engine

analysis. Chapter 3 describes the modeling details of the rotor, airframe, engine,

and engine mount structures. Chapter 4 presents the results of a parametric study

performed on the properties of the engine mount structures for reduced vibrations.

Chapter 5 examines the coupled rotor-airframe-drivetrain system. Finally, Chapter

6 serves to summarize the major conclusions of the current work as well as suggest

directions for future study.
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Figure 1.1: Frequencies of vibration throughout aircraft [77]
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Figure 1.2: Vibration levels as a function of forward flight speed [78]
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Figure 1.3: Impact of vibrations on helicopter development [11]
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Figure 1.4: Representation of system dynamics in three domains [59]
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2 Methodology

This chapter presents the details of various aspects of the mathematical mod-

eling utilized in this work. An overview of the baseline comprehensive analysis is

given first, including the blade structural and aerodynamic modeling and vehicle

trim procedures. The detailed mathematical framework for coupling the rotor is to

the fixed frame drivetrain and airframe components is described next. Finally, de-

tails of the frequency-based substructuring framework used for the engine-airframe

coupling are given.

2.1 Comprehensive Analysis: PRASADUM

The baseline rotordynamic analysis for this work was performed using PRASADUM

(Parallelized Rotorcraft Analysis for Simulation and Design, University of Mary-

land), developed by Ananth Sridharan at the University of Maryland and based on

the work in Reference [79]. PRASADUM is used to model the rotor aeromechanics

and vehicle flight dynamics. The analysis in this work required several modifications

to the baseline code to allow for efficient coupling of the rotor with a flexible airframe

and/or drivetrain. For completeness and clarity as it pertains to these modifications,

a summary of the major components of the methodology is presented here, with de-
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tailed descriptions available in Ref. [79]. For the sake of brevity, some of the detailed

mathematical equations have not been reproduced, particularly for aspects of the

analysis not directly affected by the rotor-structure coupling. However, complete

descriptions, including mathematical formulations, of all modifications made to the

analysis for this coupling are included within this section.

2.1.1 Overview of Solution Method

The equations of motion governing the system dynamics are formulated in a

state-space form as a system of first-order non-linear coupled ODEs of the form

f(y, ẏ,u, t) = ε = 0 (2.1)

Here t is the current time, u is a vector of control inputs consisting of the main rotor

collective and cyclic controls and tail rotor collective, and y is a vector of system

states. The state vector is subdivided into yF, yλ, and yrotor, defined as

• yF represents the 12 airframe rigid body states

• yλ represents the induced inflow coefficients for the main rotor and tail rotor

• yrotor represents the vector of deflection states for all blades. In the presence

of a flexible hub, this vector will also consist of states representing the hub

motion.

Similarly, the residual vector, ε, is assembled from εF, ελ, and εrotor defined as

• εF are the residuals corresponding to the non-linear equations enforcing force

and moment equilibrium for the fuselage rigid body motions and kinematic
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compatibility between time derivatives of Euler angles and body-axes angular

rates.

• ελ are the residuals corresponding to the dynamic inflow equations for the

main and tail rotors

• εrotor are the residuals corresponding to the mode-weighted Euler-Bernoulli

beam equations for the rotor blades. In the case of a flexible hub, εrotor will

also contain the residuals for the hub motion equations.

For the rotorcraft trim problem related to in this work, the governing differ-

ential equations are numerically reduced to a set of non-linear algebraic equations,

represented as

F(X) = εtrim = 0 (2.2)

In this case X is a vector of unknown trim variables, including the pilot controls,

vehicle attitudes, rotor induced inflow ratios, and rotor response. The algebraic

equation residuals, εtrim, are calculated through numerical manipulation of the ODE

residuals from Eqn. 2.1. HYBRD, a non-linear system solver available through the

open-source library, NETLIB, is used to solve the system algebraic equations to

within a user-specified threshold, δtrim for an error metric e(|εtrim|).

2.1.2 Coordinate Systems

PRASADUM makes use of a variety of reference frames depending on what is

most relevant at a given stage in the analysis. Forces and moments are resolved into

the body axes to ensure equilibrium for trimmed flight. Rotating axes for the blade
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deformations are also utilized. Coordinate transformations are used to transfer loads

and displacements from one system to another. The coordinate transformations take

the form of a rotation matrix representing a three Euler angle rotations, occurring

in the following order:

• Yaw rotation about the z-axis through an angle ψ

• Pitch rotation about the intermediate y-axis through an angle θ

• Roll rotation about the intermediate z-axis through an angle φ

The rotation matrices for each individual rotation are given by

Tψ =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 (2.3)

Tθ =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 (2.4)

Tφ =


1 0 0

0 cosφ sinφ

0 − sinφ cosφ

 (2.5)

The full rotation matrix from coordinate system A to coordinate system B, denoted

TBA, consists of the three individual rotation matrices multiplied as

TBA = Tφ Tθ Tψ (2.6)
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The reverse transformation, from coordinate system B to coordinate system A,

denoted TBA, is achieved through the reverse sequence of opposite rotations. It

can be easily demonstrated with trigonometric identities and matrix properties that

these two transformations are the transpose of each other. That is,

TAB = T−φ T−θ T−ψ = T>BA (2.7)

2.1.2.1 Time derivatives of rotation matrices

Because the various rotation angles can be time-dependent and the coordinate

transformations are used to transform time-dependent quantities and their deriva-

tives, it is also necessary to know the time-derivatives of these rotation matrices.

The first and second time derivatives each of the sequential rotations are given by

Ṫψ =


− sinψ cosψ 0

− cosψ − sinψ 0

0 0 0

 ψ̇ (2.8)

Ṫθ =


− sin θ 0 − cos θ

0 0 0

cos θ 0 − sin θ

 θ̇ (2.9)

Ṫφ =


0 0 0

0 − sinφ cosφ

0 − cosφ − sinφ

 φ̇ (2.10)
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T̈ψ =


− sinψ cosψ 0

− cosψ − sinψ 0

0 0 0

 ψ̈ +


− cosψ − sinψ 0

sinψ − cosψ 0

0 0 0

 ψ̇
2 (2.11)

T̈θ =


− sin θ 0 − cos θ

0 0 0

cos θ 0 − sin θ

 θ̈ +


− cos θ 0 sin θ

0 0 0

− sin θ 0 − cos θ

 θ̇
2 (2.12)

T̈φ =


0 0 0

0 − sinφ cosφ

0 − cosφ − sinφ

 φ̈ +


0 0 0

0 − cosφ − sinφ

0 sinφ − cosφ

 φ̇
2 (2.13)

The individual time derivatives can then be used to construct the time deriva-

tives of the full transformation matrix by considering the expanded derivatives of

the sequential multiplication of the individual rotation matrices. These are given by

ṪAB =
d

dt
(TAB) =

d

dt
(Tφ Tθ Tψ)

= Ṫφ Tθ Tψ + Tφ Ṫθ Tψ + Tφ Tθ Ṫψ (2.14)

T̈AB =
d2

dt2
(TAB) =

d

dt

(
ṪAB

)
= T̈φ Tθ Tψ + Tφ T̈θ Tψ + Tφ Tθ T̈ψ +

2
(
Ṫφ Ṫθ Tψ + Ṫφ Tθ Ṫψ + Tφ Ṫθ Ṫψ

)
(2.15)

2.1.2.2 Coordinate system definitions

Figure 2.1 (a) shows the general set of non-rotating coordinate systems used

when a fixed hub condition is assumed. These are:
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• Earth-fixed axes, or gravity axes, (̂iG, ĵG, k̂G) represent an inertial reference

frame used to track the motion of the helicopter in space.

• Helicopter body-fixed axes (̂iB, ĵB, k̂B) are obtained from the earth-fixed axes

through a translation of the helicopter CG and three Euler rotations ψF , θF ,

φF , representing nose-right yaw, pitch up, and roll right motions, respectively.

Rotation from earth-fixed to body-fixed axes is done with TBG

• Helicopter hub non-rotating axes (̂iH , ĵH , k̂H) are obtained from the helicopter

body axes through a translation of the origin to the location of the hub relative

to the CG, followed by two Euler rotations, αS, βS, representing the tilt of

the shaft. There is also a 180◦ rotation about the intermediate y-axis. This

transformation is represented by the matrix THB.

Figure 2.1 (b) shows the additional non-rotating coordinate systems used when

the rotor is coupled to a flexible airframe model. These are:

• NASTRAN axes (̂iN , ĵN , k̂N) are similar to the body-fixed axes but are ro-

tated by 180◦ about the y-axis to align with the NASTRAN convention that

the z-axis points up. Since the airframe model used in the analysis was gener-

ated in NASTRAN, the eigenvectors or hub frequency response functions used

to compute the response of the hub are given in the NASTRAN coordinate

system. Since the transformation from the body-fixed axes to the hub-fixed

axes is already defined by THB, it is simplest to flip the signs of the x- and

z-translations and rotations of the hub in the NASTRAN axes, bringing them
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into the body-fixed axes and then apply THB for transformation to hub-fixed

coordinates.

• Deformed hub axes (̂iH2 , ĵH2 , k̂H2) arise as a result of the motion of the

hub relative to the airframe. Specifically, the application of hub forces and

moments on the airframe will produce displacements, xhub, yhub, zhub, and pitch

and roll rotations, θyhub and θxhub , respectively. Similarly, the hub torque is

applied to the drivetrain and produces the θzhub rotation. TH2H is the rotation

matrix for the transformation from the hub-fixed axes to the deformed hub

axes.

For completeness, it is worth listing the remaining coordinate transformations

from rotor hub frame to the deformed blade axes. The coordinate systems are

illustrated in Fig. 2.2.

• TRH is the rotation matrix from the non-rotating hub axes to the rotating

un-preconed blade axes. This is a rotation about the non-rotating hub z-axis

through angle ψj for blade j, where ψj is the azimuth angle of blade j.

• TUR is the rotation matrix from the rotating unpreconed blade axes to the

undeformed blade preconed axes. This transformation consists of a rotation

through angle −βp about the unpreconed y-axis. Because of the definition of

the unpreconed axes, βp is negative for vertically upward motion of the blade

tip.

• TDU is the rotation matrix from the undeformed preconed blade axes to the
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(a) Fixed hub coordinate systems

(b) Flexible hub coordinate systems

Figure 2.1: PRASADUM non-rotating coordinate systems (adapted from [79])
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deformed blade axes. This transformation is unique to every point on the blade

elastic axis. The transformation consists of three translations along the the

undeformed axes, representing hinge offset, axial fore-shortening due to bend-

ing, spanwise position of the beam cross-section, lead-lag displacement and

flap-bending displacement. The translations are followed by three rotations

arising from the flap and lag bending and elastic twist of the beam.

2.1.3 Rigid Body Dynamics

For the purposes of calculating the vehicle flight dynamics, the helicopter

fuselage is assumed to be rigid. The airframe linear and angular velocities are

obtained from the partition of the system state vector containing the fuselage states,

given by

yF =
{
uF vF wF pF qF rF φF θF ψF xCG yCG zCG

}>
(2.16)

where the terms (uF, vF, wF, pF, qF, rF) are the linear and angular velocity compo-

nents of the helicopter CG in the body-fixed axes, (φF, θF, ψF) are the Euler angles

defining the fuselage orientation with respect to earth-fixed axes, and (xCG, yCG, zCG)

represents the position of the helicopter CG in earth-fixed axes.

In the fuselage body-fixed axes, the force and moment equilibrium equations
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(a) Rotating blade unpreconed axes

(b) Blade preconed axes

(c) Undeformed and deformed blade axes

Figure 2.2: PRASADUM blade coordinate systems [79]
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are

X = mF(u̇F + qFwF − rFvF + g sin θF) (2.17)

Y = mF(v̇F + rFuF − pFwF − g sinφF cos θF) (2.18)

Z = mF(ẇF + pFvF − qFuF − g cosφF cos θF) (2.19)

L = IxxṗF − Ixy(q̇F − pFrF)− Ixz(ṙF + pFqF)− Iyz(q2
F − r2

F)− (Iyy − Izz)qFrF

(2.20)

M = Iyy q̇F − Iyz(ṙF − qFpF)− Iyx(ṗF + qFrF)− Izx(r2
F − p2

F)− (Izz − Ixx)rFpF

(2.21)

N = Izz ṙF − Izx(ṗF − rFqF)− Izy(q̇F + rFpF)− Ixy(p2
F − q2

F)− (Ixx − Iyy)pFqF

(2.22)

These equations represent half of the equations used to compute the residuals for

the fuselage rigid body motions, εF. The remaining six arise from the equivalence

of the linear velocity of the fuselage and the time derivative of the CG position and

the kinematic compatibility between time derivatives of Euler angles and body-axes

angular rates. These are represented by the following equations:

uF = ẋCG (2.23)

vF = ẏCG (2.24)

wF = żCG (2.25)
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pF = φ̇F − ψ̇F sin θF (2.26)

qF = θ̇F cosφF + ψ̇F cos θF sinφF (2.27)

rF = −θ̇F sinφF + ψ̇F cos θF cosφF (2.28)

The terms on the left-hand side of Eqns. 2.17-2.22 represent the total applied

forces and moments about the center of gravity from the main rotor (MR), tail rotor

(TR), horizontal and vertical tails (HT, VT), and fuselage aerodynamics, given by

X = XMR +XTR +XHT +XVT +XF (2.29)

Y = YMR + YTR + YHT + YVT + YF (2.30)

Z = ZMR + ZTR + ZHT + ZVT + ZF (2.31)

L = LMR + LTR + LHT + LVT + LF (2.32)

M = MMR +MTR +MHT +MVT +MF (2.33)

N = NMR +NTR +NHT +NVT +NF (2.34)

The following sections contain further details on the calculations of each of these

forces.

2.1.4 Aerodynamics Model

The aerodynamic loads are primarily the result of aerodynamic forces on indi-

vidual blade sections. These forces are calculated from look-up tables based on the

sectional airfoil and local velocity and Mach number at that section. The velocity

at a blade section is a combination of the motion of the blade through the air and

the inflow through the rotor. The rotor inflow can be calculated using a dynamic
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inflow model or free wake model, both of which are briefly described in this section.

In addition, the contributions of the helicopter fuselage, empennage, and tail rotor

to the aerodynamic forces and moments on the vehicle are discussed.

2.1.4.1 Rotor Inflow Models

The inflow at the main rotor is calculated in two ways, depending on the

level of fidelity desired in the solution, either with a dynamic inflow model or free-

vortex wake model. This section provides general descriptions of both inflow models.

The descriptions given in this section are meant only to summarize the main rotor

aerodynamic models used in PRASADUM and are largely qualitative. For further

mathematical details, refer to Ref. [79].

Dynamic inflow model

A dynamic inflow model is designed to approximately capture the time-variation

of the inflow over the rotor disk. In general, the inflow for specific time at a point

on the rotor disk (r, ψ) is given by

λ(r, ψ) = λ0 + r (λ1c cosψ + λ1s sinψ) (2.35)

where λ0 represents the uniform inflow, λ1c is the longitudinal inflow, and λ1s is

the lateral inflow. PRASADUM utilizes the Peters-He model [80] for the inflow,

which consists of a set of coupled first order differential equations for the inflow

parameters, λ0, λ1c, and λ1s.
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Free-vortex wake model

For vibrations analysis, particularly at flight conditions between hover (µ = 0)

and transition speeds (µ ≈ 0.1), where blade-vortex interactions are significant, a

dynamic inflow model in inadequate. Instead, an in-house free-vortex wake model,

known as Maryland Free Wake is used to more accurately capture the effects of the

rotor wake on the rotor aerodynamics.

The wake calculations are carried out in two parts, near wake and far wake

models. In the near wake, a Weissinger-L lifting surface model is used, illustrated

in Fig. 2.3. Each blade is represented using a distribution of horseshoe vortices

with a bound vortex at the 1/4-chord. The strength of the vortex trailers is found

using Helmholtz’s laws for vorticity conservation. These trailers make up the near

wake of the blade, which is truncated for ∆ψ = 30◦ behind the blade. After that

point, this vortex sheet is assumed to have completely rolled up and its circulation

is concentrated in the free trailers from the blade tips. This is the far wake.

The tip vortices trail from the blade tips in a curved path that is discretized

into straight line segments, as illustrated in Fig. 2.4. The vortices are free to convect

due to the influence of the local velocity and instantaneous vorticity. The motion of

the vortices is tracked using a time-accurate two-step backward predictor-corrector

scheme developed by Bhagwat and Leishman [81]. The velocity field induced by the

wake at any location is computed by application of the Biot-Savart law, followed by

numerical integration of the induced velocity contributed by each vortex element in

the flow field.

47



2.1.4.2 Fuselage and empennage aerodynamics

The aerodynamic forces and moments on the body of the fuselage are com-

puted based on the flow velocity at a reference point on the fuselage, defined relative

to the vehicle center of gravity. The flow velocity components comprise the compo-

nents of the vehicle translational velocity and rigid body angular velocity as well as

components of an interference velocity. The interference velocity is calculated from

the main rotor downwash, longitudinal tilt of the rotor tip path plane and wake

skew angle. From the components of the flow velocity at the reference point, the

flow incidence angles are calculated, and with the dynamic pressure at the reference

point, the lift, drag and moment coefficients are obtained from look-up tables based

on wind-tunnel measurements [82].

Similarly, the aerodynamic loads on the vehicle empennage (horizontal and

vertical tail surfaces) are computed based on the flow velocity at a reference point on

these surfaces. The flow velocity again comprises an interference velocity, rigid body

angular velocity, and vehicle translational velocity, this time with an empirically

determined factor to model the loss of dynamic pressure at the tail surfaces due

to the wake of the fuselage. The lift and drag coefficients are then obtained using

look-up tables (based on wind tunnel measurements) and the incidence angles and

dynamic pressure at each surface. Full mathematical details of the fuselage and

empennage aerodynamics can be found in Ref. [79].
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Figure 2.3: Weissinger-L lifting surface model for rotor blade

Figure 2.4: Free-vortex wake model of rotor
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2.1.4.3 Tail rotor aerodynamics

The induced inflow of the tail rotor is modeled with a 1-state Pitt-Peters

dynamic inflow model [83] and is assumed to be uniform over the rotor disk. The

governing ODE for the tail rotor is given in Ref. [79].

The tail rotor thrust and torque are calculated in the shaft axes of the tail

rotor based on the free-stream velocity and induced inflow. The relationship between

these quantities is based on the closed-form solution for a lifting rotor in forward

flight given in [84]. The free stream velocity at the tail rotor comprises the vehicle

translational velocity, the rigid body angular velocity, and the induced velocity due

to the wake of the main rotor and fuselage, obtained from look-up tables based on

the wake skew angle and tilt of the tip-path plane. The tail rotor thrust equation

also includes a factor to account for the blockage effects of the vertical fin.

2.1.5 Flexible Beam Dynamics

The rotor blades are modeled as flexible isotropic nonlinear Euler-Bernoulli

beams with flap and lag bending and elastic torsion using a geometrically exact

formulations. The rotor motions are represented by the partition of the state vector

given by

yrotor =
{
η̇>1 η>1 η̇>2 η>2 · · · η̇>Nm η>Nm

}>
(2.36)

where ηj is a vector of generalized displacements for the j-th mode.

These beam models are discretized into spatial finite elements, and the un-

derlying partial differential equations (PDEs) are reduced to ordinary differential
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equations (ODEs) using a numerical implementation of the Galerkin method. Modal

reduction is also applied to reduce the number of degrees of freedom while preserving

the dominant blade motions of interest.

Contributions to the beam equation residuals include the internal structural

loads as well as the aerodynamic, gravitational, and inertial loads. The components

of the strain tensor are derived from the displacement field. The strain and material

properties are used to calculate the beam stresses, which are integrated over the

cross-section to give the sectional elastic forces and moments.

The external loads on the rotor blades consist of the inertial and gravitational

loads, and the aerodynamic loads, or fluid forces, due to the relative motion between

the blade and the air. To calculate these fluid forces, the absolute velocity of a point

in the cross section of the blade is found by adding contributions of the vehicle

motion, hub motion, undeformed rotating blade motion and flexible blade motion.

Velocity is transformed into deformed beam axes and broken down into com-

ponents tangential and perpendicular to the airfoil as well as along the span of the

blade. The velocity components lead to the sectional angle of attack used to calcu-

late the lift and drag forces and pitching moment on the airfoil. The aerodynamic

forces comprise both contributions from circulatory forces as well as non-circulatory

components arising from the pitch rate and plunge acceleration of the airfoil.
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2.1.6 Hub Loads

The contributions of all of the rotor forces and moments to the hub is necessary

both for achieving a trimmed flight condition (in which rotor and body forces are all

balanced) as well as calculating the vibratory response of the airframe or drivetrain

needed for this work. The force and moment components per unit span, represent-

ing the sum of the inertial and aerodynamic loads, are calculated in the rotating

undeformed blade axes. The blade loads for each individual blade are then resolved

along the hub non-rotating axes and added together for the total hub loads. The

hub loads are converted to the helicopter body axes to give the main rotor contri-

bution to vehicle force and moment equilibrium equations. They are also converted

to the NASTRAN axes for calculating the response of the flexible airframe at the

main rotor hub.

2.1.6.1 Vibratory hub loads

For computation of the airframe vibratory response from the hub loads, it is

necessary to compute the steady vibratory components of the hub loads, generally

the pNb/rev components. To do this, the time history of the hub loads over one

rotor revolution is assumed to be represented by a Fourier series as

sN(ψ) = a0 +
N∑
n=1

ans sin(nψ) +
N∑
n=1

anc cos(nψ) (2.37)

where a0, ans, and anc are the Fourier coefficients. For a rotor with Nb identical

blades, the hub loads consists only of a steady component, represented by a0 and
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harmonics for which n = pNb. In general, N is theoretically infinite, though for the

purposes of this analysis, only Nb/rev and 2Nb/rev harmonics are considered, i.e.

4/rev and 8/rev for a 4-bladed rotor.

The Fourier coefficients are calculated from the time histories of the individual

hub load components by numerically calculating the following integrals

a0 =
1

2π

∫ 2π

0

f(ψ) dψ (2.38)

ans =
1

π

∫ 2π

0

f(ψ) sin(nψ) dψ (2.39)

anc =
1

π

∫ 2π

0

f(ψ) cos(nψ) dψ (2.40)

From the sine and cosine coefficients, the magnitude and phase the vibratory hub

loads are computed as

fmag =
√
a2
ns + a2

nc (2.41)

fphs = tan−1(anc/ans) (2.42)

2.1.7 Rotor-Airframe Coupling

Most often, the helicopter airframe is included in rotor analysis as a rigid body,

in which the rotor hub is rigidly attached to the fuselage at a fixed position relative

to the CG. However, as previously discussed, the inclusion of flexible hub motion

has been shown to have an impact on the rotor loads, so it is necessary to couple

the analysis of the rotor with the flexible airframe. This section will detail how the

motion of the hub is incorporated into the rotor analysis as well as how the response

of the hub on the airframe is calculated from the rotor hub loads.
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2.1.7.1 Rotor Blade Boundary Condition

To calculate the aerodynamic and inertial loads on the rotor blades, it is

necessary to know the velocity and acceleration of the blade sections. Consider a

point within the cross-section of a blade. The position of the point relative to the

ground, rp is given by

rp = rhub + rea + rcs (2.43)

where rhub is the position of the hub with respect to earth, rea is the position of

the elastic axis in the undeformed blade frame, and rcs is the position of the point

within the cross-section with respect to the deformed elastic axis.

Helicopter rotor blades are mounted to a hub that is positioned above the

vehicle center of gravity. In previous iterations of PRASADUM, the connections

from body to shaft, shaft to hub, and hub to blade were assumed to be rigid. In the

present analysis, the connection from the shaft to the hub and hub to blade are still

considered rigid, but the flexible airframe means that the body to shaft connection

is not rigid, and will therefore affect the boundary condition of the blade.

With regard to Eqns. 2.43, the addition of the flexible hub condition does not

directly affect the position of either the elastic axis in the undeformed blade frame

or the position of the point in the cross-section with respect to the deformed elastic

axis. As such, the details of those terms will not be reproduced here, but can be

found in Ref. [79]. On the other hand, rhub is affected by the flexible hub boundary

condition.
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At the most basic level, the position of the hub is given by

rhub = {xhub yhub zhub θxhub θyhub θzhub}> (2.44)

where xhub, yhub, zhub, θxhub , θyhub , θzhub are the translations and rotations of the

hub in the NASTRAN frame, defined in Section 2.1.2.2. The angular motion of the

hub, represented by θxhub , θyhub , θzhub and their time derivatives are used to compute

the transformation matrices from the fixed hub frame to the deformed hub frame,

TH2H . The full transformation from the deformed hub frame to earth-fixed axes are

then given by

TGH2 = TGHTH2H (2.45)

ṪGH2 = ṪGHTH2H + TGHṪH2H (2.46)

T̈GH2 = T̈GHTH2H + 2ṪGHṪH2H + TGHT̈H2H (2.47)

where TGH is the transformation from the hub-fixed axes to the earth-fixed axes

and is based only on the rigid body motions of the airframe.

The components of the hub velocity and acceleration that are used in the

calculation of the aerodynamic and inertial loads of the blade sections are also

modified by the addition of elastic displacements of the hub relative to the vehicle

CG. Consider that the fixed position of the hub relative to the vehicle CG is given

by R = rCG and that the angular rotation of the fixed hub about the CG is given

by Ω. The flexible hub contributes to the offset from the CG as

R = rCG + rhub (2.48)
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The velocity of the hub relative to the CG is then given by

ṙhub = vhub + Ω×R (2.49)

which is added to the existing rigid body translational velocity of the hub to give

the total velocity of the hub in the earth-fixed axes. Similarly, the components of

the hub acceleration are given by

r̈hub = ahub + Ω̇×R + Ω× ṙhub (2.50)

Again, this contribution of the acceleration due to the motion of the hub about the

CG is added to the rigid body acceleration to give the total acceleration of the hub

in the earth-fixed frame. These adjusted velocity and acceleration terms for the hub

are then used in the calculation of the aerodynamic and inertial loads of the blade

sections.

2.1.7.2 Hub Response

Consider that the rotor is attached to a flexible structure, such as a test stand,

airframe, or drivetrain. The dynamics of this structure may be expressed as a linear

system of the form

Mẍs + Cẋs + Kxs = Fs (2.51)

where xs represents the set of structural degrees of freedom, and M, K, and C

represent the mass, stiffness, and damping matrices of the structure, respectively.

Fs represents the forcing vector on each of the hub nodal degrees of freedom.

These matrices can be condensed to a modal representation in the usual way.

In modal space, each mode is uncoupled from the other modes, and the scalar
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governing equation for each mode is given by

η̈i + 2ζiωni
η̇i + ω2

ni
ηi = fi (2.52)

The modal forcing at the hub on the airframe or drivetrain is computed from the

dot product of the hub forcing with the shape of the eigenvector at the hub node as

fi =
6∑
j=1

VijFj (2.53)

where the subscript i represents a specific mode and the subscript j represents the

hub degree of freedom. In general, there are six hub degrees of freedom. However,

the hub torque is transmitted through the drivetrain only. Therefore, the indicated

sum includes only the hub torque (j = 6) for drivetrain coupling, and includes

the three hub forces and hub pitch and roll moments (j = 1, 2, 3, 4, 5) for airframe

coupling.

For a given modal forcing and set of modal coefficients satisfying Eqn. 2.52,

the response at the hub can be reconstructed as

qj =

Nm∑
i=1

Vi,jηi (2.54)

where Nm is the number of airframe or drivetrain modes included in the analysis.

This hub motion is then used as the hub boundary condition as described in the

previous section.

2.1.8 Trim

The rotorcraft trim problem, known as coupled or propulsive trim, combines

the concept of general aircraft trim (as applied to fixed wing aircraft) with the con-
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cept of rotor trim. For a rotor to be trimmed, the blade response in level flight

should be periodic over one rotor revolution. In other words, when the forces and

moments are averaged over one rotor revolution, steady-state values are achieved

between cycles. For the aircraft to be trimmed, the combined forces and moments

on the aircraft must be in equilibrium. In general, the forces and moments on a

rotorcraft are oscillatory in nature. However, it has been shown that the overall

vehicle trim state is insensitive to the vibratory loads on the aircraft, so the time-

averaged forces and moments generated by the trimmed rotor with periodic response

are sufficient for establishing the overall aircraft trim condition. In general, a ro-

torcraft trim problem is formulated for a steady coordinated helical climbing turn

of constant radius. This condition is satisfied for constant flight speed, V , constant

flight path angle, γ, and constant turn rate, ψ̇. For this work, only steady level

flight is considered, which is the special case of a coordinated turn in which γ = 0

and ψ̇ = 0.

2.1.8.1 Basic Trim Equations

This section lists the trim variables and associated trim equations that must

be satisfied for rotorcraft trim:

• The first six trim variables are the four pilot controls of main rotor collective

and lateral/longitudinal cyclic and tail rotor pedal and the fuselage pitch and

roll attitudes. The associated trim equations ensure that the body forces and

moments are in equilibrium. That is, the sum of all the rotor and body forces

and moments about the vehicle CG is zero.

58



• Dynamic inflow: The trim variables associated with the main rotor and tail

rotor inflow are

Xλ = {λ0,MR λ1c,MR λ1s,MR λTR} (2.55)

The corresponding trim equations ensure that the inflow ratios are time-

invariant when averaged over one revolution of the main rotor, as in

ελ0,MR
=

∫ T

0

λ̇0MR
dt (2.56)

ελ1c,MR
=

∫ T

0

λ̇1cMR
dt (2.57)

ελ1s,MR
=

∫ T

0

λ̇1sMR
dt (2.58)

ελTR
=

∫ T

0

λ̇TR dt (2.59)

• Rotor response: The trim variables for the rotor response represent the

steady and harmonic components of the rotor response when a Galerkin method

with harmonic balance is used to obtain the time resolution of the rotating

blade modes.

Xrotor = { . . . η
(R)
j,0 η

(R)
j,kc η

(R)
j,ks . . . } (2.60)

where j goes from 1 to the number of blade modes, Nm, and k goes from 1 to

the number of harmonics to be included in the solution, Nh. The residuals for
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the steady, sine, and cosine components of the blade motions are given by

εsteady =

∫ T

0

εblade 1(t) dt (2.61)

εcos,k =

∫ T

0

εblade 1(t) cos kΩt dt (2.62)

εsin,k =

∫ T

0

εblade 1(t) sin kΩt dt (2.63)

(2.64)

2.1.8.2 Trim with Free Wake

When a free wake model is used in trim, a loose-coupling procedure is used to

separately converge the aerodynamics and rotor/flight dynamics. As a first step, the

vehicle is trimmed as described above using dynamic inflow, generating a starting

guess for the controls, fuselage orientation, and rotor response. With this initial

trim solution, the free wake solution is computed until a converged wake solution

is achieved. The converged wake geometry is then used to compute the inflow

over the rotor disk, and the trim solver is called again with this inflow to solve

for an updated set of trim variables, excluding the dynamic inflow variables. This

procedure is iterated until a converged solution is achieved for both the wake and

trim variables to within a given threshold.

2.1.8.3 Trim with Flexible Hub

When the rotor is coupled to a flexible airframe or drivetrain, the trim pro-

cedure is modified to account for this coupling with the addition of trim variables

associated with the flexible hub motion and the associated residuals.
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The vector of trim variables for the hub motion is given by

Xhub = {..., η(h)
i,4c, η

(h)
i,4s, η

(h)
i,8c, η

(h)
i,8s, ...} (2.65)

representing the 4/rev and 8/rev sine and cosine components of the airframe or

drivetrain response for each mode included in the analysis. In general, this set of

trim variables would include all harmonics up to the total number of harmonics

included in the analysis, however, since only 4/rev and 8/rev components of the

vibratory hub loads are transmitted to airframe, the other coefficients are assumed

to be zero are omitted from the set of trim variables.

The modal response of the hub node for the airframe or drivetrain can be

calculated by

η
(h)
i (ψ) =

∑
k=4,8

(
η

(h)
i,kc cos kψ + η

(h)
i,ks sin kψ

)
(2.66)

Recall that the modal equations of the airframe/drivetrain are given by

miη̈i + ciη̇i + kiηi = fi (2.67)

where fi is the modal forcing given by

fi =
6∑
j=1

VijFj (2.68)

The residual for each airframe/drivetrain mode at a given time is then given by

εi = miη̈i + ciη̇i + kiηi − fi (2.69)

The weighted residuals for the hub motion are then calculated for each mode and
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each harmonic as

εi,kc =

∫ T

0

εi cos kΩt dt (2.70)

ε
(h)
i,ks =

∫ T

0

εi sin kΩt dt (2.71)

(2.72)
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2.2 Engine-Airframe Coupling

The engine and airframe coupling can be taken care of in several ways. First,

the engine model can be included directly into the airframe analysis. That is, the

engine is included in the FE model used to generate either the airframe modes or

the frequency response used in either of the rotor-airframe coupling procedures de-

scribed in the previous sections. In the second approach, the engine and airframe are

modeled separately, for the purposes of studying the effects of different engine mount

structure parameters on the engine response. A coupling framework for coupling the

airframe and engine FE models was developed and implemented utilizing frequency

response functions of separate components. The general terminology for the method

is frequency-based substructuring (FBS). Two versions of this methodology will be

described in this section. The first is an iterative harmonic balance method. The

second is a more mathematically formal method built from a framework introduced

by deKlerk, Rixen, and Voormeeren [59].

2.2.1 Mathematics of Dynamical Systems

The dynamics of each component structure can be described by the structure’s

mass, stiffness, and damping matrices. The equations of motion of a substructure

can then be written as

M(s)ü(s)(t) + C(s)u̇(s)(t) + K(s)u(s)(t) = f (s)(t) (2.73)
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where M(s), C(s), and K(s) are the generalized mass, damping, and stiffness matrices

of the substructure, u(s) is the vector of the substructure degrees of freedom, and f (s)

is the vector of applied forces. In general, these forces may be externally applied,

as in the case of main rotor hub loads, or may be interaction forces between two

subcomponents.

In the frequency domain, the equation of motion can be expressed as

[−ω2M(s) + iωC(s) + K(s)]U(s)(iω) = F(s)(iω) (2.74)

or, more compactly,

Z(s)(iω)U(s)(iω) = F(s)(iω) (2.75)

where Z(s)(iω) is the dynamic stiffness matrix or, as it’s commonly referred to in

literature, the displacement impedance matrix, and is defined as

Z(s)(iω) = [−ω2M(s) + iωC(s) + K(s)] (2.76)

This equation can be solved for the nodal displacements and rewritten as

U(s) = Y(s)F(s) (2.77)

where Y is the mobility matrix or the frequency response transfer function and is

given by

Y(s) = [Z(s)]−1 (2.78)

The transfer function relates the output displacement response to an input excitation

force, and in this form is complex-valued and frequency-dependent. Individual terms

in the Y matrix, Yij, represent the response of point i (or more generally, DOF i),

64



Ui, due to a unit oscillatory force (or moment) at DOF j, Fj. In other words,

Yij = ∂Ui/∂Fj (2.79)

2.2.2 Iterative Harmonic Balance Solution

Using substructuring to couple individual components together begins with

identifying all of the separate structures that will be coupled, or subcomponents,

and the interactions between the subcomponents. Figure 2.5 shows these elements

schematically, as well as an example assembly of two subcomponents.

2.2.2.1 Subcomponents

Each subcomponent in the analysis is a dynamical system modeled with free-

free boundary conditions, as shown in Fig. 2.5(a). Each subcomponent might have

hundreds or even thousands of nodes included in the full finite element model,

however, for the purposes of this analysis, only a small subset of “interface” nodes

are important to the overall substructure assembly. Those nodes are:

1. Nodes where external forces are applied

2. Nodes connected to nodes of other subcomponents

3. Nodes where specific output is desired

There may be some overlap among these categories, but identification of the full set

of N
(s)
n interface nodes for each subcomponent is the first step in the substructur-

ing procedure. In general, every node is assumed to have 6 degrees of freedom, 3
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translational and 3 rotational. The frequency response transfer functions, Y(s), are

computed with unit magnitude sinusoidal forcing individually applied for each of

the 6 Nn degrees of freedom with responses recorded at all 6 Nn degrees of freedom,

for a total of 36 N2
n frequency response transfer functions for a single subcomponent.

These 36 N2
n FRFs are computed for every frequency of interest in the analysis and

generally consist of a magnitude and phase or are complex-valued. For the analy-

sis in this work, the frequency response transfer functions are computed using the

NASTRAN SOL 108 solution sequence, which computes direct frequency response

of the full model, without any modal reduction. With this solution method, the

contributions of every model degree of freedom is included in the response, even

though only a subset of responses is recorded.

The forces acting on a given subcomponent may be a combination of both

externally applied forces, Fe, and interaction forces, Fm, due to connection with

other subcomponents (explained the the following section). The response of the a

given node is then calculated by

Un(s) = ΣmYnm(s)Fm(s) + ΣeYneFe (2.80)

Thus, interface forces and externally applied loads are treated in an identical manner

in the analysis to compute the response at the key nodes using linear superposition.

2.2.2.2 Interaction elements

Interaction elements, shown in Fig. 2.5(b) refer to massless springs and/or

dampers that connect two or more subcomponents together. These elements are
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the counterparts of subcomponents: while the dynamical systems have input forcing

and output displacement, interface elements are used to compute output forcing for

input displacements.

To simplify the analysis, each interface element is assumed to connect two

distinct interface nodes, each located on a different subcomponent. Km and Cm

are matrices that contain the spring and damper coefficients (including any cross-

coupling between degrees of freedom) at an interface and are used to compute the

interface loads using the resultant spring compression and/or damper velocity. These

quantities are obtained from the relative response of the nodes at either end of the

interface, U(A)
n and U(B)

n . The total interface force due to both springs and dampers

is given by

Fm = (Km + iωCm)
(
U(B)
n −U(A)

m

)
(2.81)

2.2.2.3 Solution procedure

A schematic representation of simple system is shown in Fig. 2.5(c). In this

system, two subcomponents are connected between a pair of nodes with an inter-

action element. A force is applied on subcomponent A and the response is desired

from subcomponent B. The known quantities for the system consist of the frequency

response transfer functions of each of the subcomponents, the stiffness and damping

matrices for the interaction element, and the magnitude and phase of the external

forcing. The response displacements for the nodes of the subcomponents are the

unknowns. In the following procedure, an implicit harmonic balance formulation is

used in which the generally complex-valued forces and responses are recast using
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sine and cosine components. This somewhat complicates the equations used to cal-

culate the responses, and for the sake of brevity, the details of those calculations are

omitted here.

1. Let the response of a given nodal degree of freedom be given by

Ui(t) = Xi,c cosωt+ Xi,s sinωt (2.82)

Xi,c and Xi,s are the unknown harmonic coefficients for each nodal degree of

freedom. The vector of unknowns for the full system is then given by

X = {X1,c,X1,s...XN,c,XN,s} (2.83)

where N is the total of all interface nodes for all subcomponents. Assign an

initial guess of X0 = 0.

2. Compute the interface forces Fm using Eqn. 2.81 for the given set X.

3. Compute the output nodal response Xn using Eqn. 2.80, and extract the har-

monic coefficients Xnc and Xns

4. Calculate the difference between the guess value and output value of the nodal

responses as

ε = |X0 −Xn| (2.84)

If the guess values X0 are exactly equal to the calculated response coefficients

Xn, then the initial guess is a consistent solution. Otherwise, the initial guess

is updated using Newton-Raphson iterations until the error, ε, reduces below

a pre-determined threshold.
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This process is repeated for each of the external forcing frequencies.
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(a) Substructuring subcomponents

(b) Substructuring interaction elements

(c) Interaction of sub-

components and interac-

tion elements

Figure 2.5: Overview of substructuring components
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2.2.3 General Formulation of Frequency Based Substruc-

turing

Although the procedure outlined in the previous section produces accurate re-

sults, the implementation of the procedure is somewhat confusing and the solution

procedure can be lengthy and somewhat slow. As such, the analysis was reformu-

lated to take advantage of a more compact mathematical structure introduced by

deKlerk, Rixen, and Voormeeren [59]. The reformulation has the advantages of

being much simpler to code and faster to run. In addition, it allows specifically

for rigid connections between subcomponents. In the previous formulation, a rigid

connection can only be approximated with a very stiff spring.

It is instructive at this point to consider a very simple system to understand

the mathematical formulation. A more complicated system will be used later in

this section to validate the methodology before finally applying the methodology to

the airframe-engine system in the next chapter. Figure 2.6 shows a simple system

consisting of two sets of three masses connected with springs, each set representing

one substructure component. The two components are connected by either a rigid

or flexible connection to form one coupled system. Clearly, this system could be

easily modeled without the use of substructuring, but the details of the modeling

are more easily understood for a simple system first.

As before, the equations of motion for each subcomponent can be written as

U(s) = Y(s)[F(s) + G(s)] (2.85)
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where now the applied forces have been specifically separated into externally applied

forces, F(s), and interface forces, G(s). The procedure for the coupling of n individ-

ual substructures begins with assembling the individual substructure equations of

motion in a block-diagonal format as
U(1)

...

U(n)


=


Y(1)

. . .

Y(n)






F(1)

...

F(n)


+


G(1)

...

G(n)



 (2.86)

U = Y[F + G] (2.87)

This system of equations represents all of the substructures of the assembled system.

In this system, generally the system mobility matrix Y and external forces F are

known, while the nodal displacements U and the interface forces G are unknowns.

The interface forces can be separated into rigid and flexible interface forces, Gr and

Gf , respectively. The constraint equations defining the rigid and flexible interfaces

between the substructures will be derived in the following sections.

2.2.3.1 Rigid Interface

At a rigid interface between substructures, two conditions must be met: in-

terface compatibility and force equilibrium. Interface compatibility requires that

displacements on either side of the connection be equal, while force equilibrium

requires that the sum of the interface forces be zero. Consider a coupled system

with N total degrees of freedom and Nr rigid interface degrees of freedom. The
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(a) Rigid interface

(b) Flexible interface

Figure 2.6: Simple spring-mass system with two substructure components

compatibility condition for a rigid interface can be expressed by

BrU = 0 (2.88)

where Br matrix is a signed Boolean matrix (entries are either 0, 1, or -1) having

dimensions Nr × N which expresses the condition that pairs of matching interface

degrees of freedom have the same displacement. For example, in the simple mass-

spring system is shown in Fig. 2.6, the vector of displacements for the system would

be

U = {UA
1 , U

A
2 , U

A
3 , U

B
1 , U

B
2 , U

B
3 }T (2.89)

The condition of the rigid interface between mass 3 from subsystem A and mass 1

from subcomponent B is UA
3 = UB

1 or UA
4 − UB

1 = 0, which can be expressed as

BrU = 0, where

Br =

[
0 0 0 1 −1 0 0 0

]
(2.90)
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The quantity BrU can be viewed as a vector of relative displacements for all interface

degrees of freedom, which will be useful in the consideration of flexible interfaces.

The force at the rigid interface between the two substructures can be written as

Gr = −Br
Tλ (2.91)

where λ is a vector of length Nr where each element represents the unknown mag-

nitude of the force at each rigid interface. Returning to the sample problem, we see

that

Gr = −BT
r λ =



0

0

0

−λ

λ

0

0

0



(2.92)

where the equal magnitude and opposite sign elements ensure force equilibrium at

the interface.

2.2.3.2 Flexible Interface

For a coupled system with a flexible interface, as shown in Fig. 2.6(b), the

condition of interface compatibility required for a rigid interface is no longer neces-

sary, though force equilibrium must still be ensured. As before, the interface force
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vector is given by

Gf = BT
fλf (2.93)

where Bf matrix is a signed Boolean matrix (entries are either 0, 1, or -1) having

dimensions Nf×N defined identically to the Br matrix for the rigid interface. Nf in

this instance is the number of flexible interface connections that exist in the system.

The previous equation 2.92 shows that force equilibrium is achieved.

Because interface compatibility is not necessary for a flexible connection, BfU 6=

0. Instead, BfU represents the relative displacement between the interface nodes,

and thus can be used with the interface stiffness to calculate the interface force

magnitude of the interface forces, λf , as follows

λf = KBfU (2.94)

Here, K is the stiffness matrix representing the stiffness between subcomponents.

2.2.3.3 Rigid and flexible interfaces

For a coupled system with both rigid and flexible interfaces, the results of the

previous two sections are combined. Combining equations 2.87, 2.88, 2.91, 2.93, and

2.94 the fully coupled system with a rigid and flexible connections is represented by

the equations

U = Y[F−BT
r λr −BT

fλf ] (2.95)

λf = KBfU (2.96)

BrU = 0 (2.97)
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Equation 2.95 is a system of equations representing the N total degrees of freedom

in the uncoupled system. Equations 2.96 and 2.97 are the constraint equations for

the Nf flexible connections and Nr rigid connections, respectively, resulting in a

total of N −Nr −Nf degrees of freedom for the coupled system.

2.2.3.4 Damping

In general, damping can be included in a model in a number of ways. There

may be individual viscous dampers in the structure. If modal reduction is used, a

modal damping factor can be specified for each of the normal modes. It is also pos-

sible that a structural damping factor is applied to the entire structure. Structural

damping is given as an imaginary component to the FE model’s stiffness matrix.

Any or all of these damping methods may be applied in a given structure. If

damping is included in a component model when the frequency response is calcu-

lated, it will be embedded in the resulting FRF and does not need to be considered

separately. The addition of damping at the interface is the only damping that needs

to be accounted for. Whether a viscous damper or structural damping factor is

applied at the interface, the damping force is added to the magnitude of the flexible

interface force defined in Eqn. 2.96.

For a viscous damper, the damping coefficients are defined in a matrix C,

and the force is proportional to velocity, U̇. In the frequency domain, velocity is

related to displacement by U̇ = iωU so that the addition of damping to the flexible

interface force is given by

λf = [K + iωC]BfU (2.98)
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When structural damping is applied at the interface, a structural damping

coefficient, γ, is applied as an imaginary component to modify structure’s stiffness

matrix such that the stiffness matrix is (1 + iγ)K. This leads to the interface force

being given as

λf = (1 + iγ)KBfU (2.99)

Comparing Eqns. 2.98 and 2.99, it is straightforward to see that structural damping

can replaced with an equivalent viscous damper with damping matrix given by

[C] =
γ

ω
[K] (2.100)

This is especially useful when utilizing the iterative harmonic balance solution pro-

cedure described in the previous section.

2.2.4 Validation: Simple Test Case

A simple 8-dof spring-mass-damper system is used to validate the analysis. A

schematic of this system is shown in Fig. 2.7. The full system is partitioned into

two substructures, as indicated by the dotted lines. Free-free frequency response

transfer functions are generated for nodes 1 and 4 in substructure A and nodes 5

and 8 in substructure B. The two substructures are then connected via an interface

stiffness/damping element between nodes 4 and 5. Finally, a unit harmonic force is

applied at node 1 and the resulting response of node 8 is examined.

Systematic validation of the modeling was done to ensure that all interface

and damping options were accounted for. Figures 2.8 and 2.9 show the comparison

of the magnitude and phase of the response between the NASTRAN calculation
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and the developed substructuring analysis. The following cases are present in the

results:

• No damping, rigid interface

• No damping, flexible interface

• Flexible interface, viscous dampers

• Flexible interface, structural damping, γ = 0.04

• Flexible interface, viscous and structural damping, γ = 0.04

The results show complete agreement between the substructuring analysis and NAS-

TRAN analysis for this example system. This agreement provides confidence in ap-

plication of the substructuring methodology to a complex coupled airframe-engine

model. Validation of that modeling is presented in the following chapter.
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Figure 2.7: Schematic of 8-DOF mass-spring-damper system

m1 = m3 = m7 = m8 = 1, m2 = m6 = 2, m4 = m5 = 4

ki = 1, ci = 0.01, i = 1, 2, ...9
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(a) Rigid interface

(b) Flexible interface

Figure 2.8: Comparison of NASTRAN and susbtructuring results for validation test

case without any damping
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(a) Viscous damping

(b) Structural damping

(c) Viscous and structural damping

Figure 2.9: Comparison of NASTRAN and susbtructuring results for validation test

case with different damping types
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3 Modeling Details

Several aspects of the modeling details are described in this chapter. First, the

baseline models used in the comprehensive analysis are given, including the details

of the rotor model, blade structural and aerodynamic properties, and fuselage aero-

dynamic and inertial properties. Next, the drivetrain model is described. Finally,

the detailed finite element models of the engine and airframe models are described,

along with details of the connections between the engine and airframe and validation

of the coupled engine/airframe analysis.

3.1 Baseline Helicopter Rotor Model

The helicopter modeled in this analysis is based on the UH-60A Blackhawk.

Significant parameters related to the main rotor geometry are given in Table 3.1.

The blade structural properties are based on values given in Ref. 85. Spanwise dis-

tribution of the blade mass, m, flap bending stiffness, EIy, lag bending stiffness,

EIz, and torsion stiffness, GJ , are given in Figs. 3.1-3.4. A fan plot representing

the the rotating natural frequencies as a function of RPM for this rotor is shown

in Fig. 3.5 and agrees well with fan plots for this rotor generated by other compre-

hensive analysis codes. The frequencies for the first ten blade modes are given in
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Table 3.2.

The primary airfoil for the main rotor is the SC1095. Details of the airfoil

aerodynamic properties are given in Ref. [82]. Similarly, the aerodynamic properties

of the fuselage and empennage are taken from Ref. [82]. Parameters used for the

tail rotor modeling are given in Table 3.4.

Finally, a summary of the parameters used for the rotor and wake discretization

are given in Tables 3.5 and 3.6.

3.2 Drivetrain Model

The drivetrain model used in this study is the Rotor Systems Research Aircraft

(RSRA) drivetrain model [82]. The schematic of this model has been reproduced in

Fig. 3.6. This model represents an equivalent single speed representation of the ac-

tual geared drivetrain. The model consists of torsional inertia and stiffness elements

representing the rotating masses and flexible shafts of the complete drivetrain. The

gears in the drivetrain impose constraints on the shaft speeds of each station, which

modify the effective stiffness and inertia values of the model. The effective stiffness

and inertia properties, K∗ and J∗, are defined based on the ratio of the rotational

speed of the component to that of the main rotor, r = Ω/ΩMR, and are related the

actual stiffness and inertia properties, K and J , as J∗ = r2J and K∗ = r2K [86].

The values of these parameters are shown in Tables 3.7 and 3.8.

For coupling with the rotor as described in the previous chapter, a modal

representation of the drivetrain is obtained. If the rotation of the individual inertia

83



elements, θ∗, are the degrees of freedom of the drivetrain, the equations of motion

for the model are

[M ]{θ̈∗} + [K]{θ∗} = {τ ∗} (3.1)

where [M] is the diagonal mass matrix consisting of the inertia elements J∗1 , J∗2 , J∗3 ,

J∗4 , and J∗5 . The stiffness matrix, [K], is given by

[K] =



K∗12 −K∗12 0 0 0 0

−K∗12 K∗12 +K∗23 −K∗23 0 0 0

0 −K∗23 K∗23 +K∗34 +K∗35 +K∗36 −K∗34 −K∗35 −K∗36

0 0 −K∗34 K∗34 0 0

0 0 −K∗35 0 K∗35 0

0 0 −K∗36 0 0 K∗36



(3.2)

The resulting natural frequencies for a free-free boundary condition are shown in

Table 3.9 and the mode shapes are shown in Fig. 3.7. The first elastic mode

consists entirely of anti-symmetric engine motion, and so does not contribute to the

rotor shaft rotation. Similarly, mode 5 shows negligible hub participation and was

excluded from the solution. Therefore, only modes 2-4 were included in the analysis.

3.3 Airframe Model

The airframe used in this study is a representative medium lift helicopter.

The full finite element model, shown in Fig. 3.9 was developed by the airframe

manufacturer, and consists of a total of 15732 nodal grid points with connections

between them modeling the complete airframe structure. A superelement model [87]
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for the airframe was generated by the OEM from the full finite element model and

provided for this work. The superelement reduces the full airframe model down to

388 nodes. Comparisons between the full model and the superelement model show

excellent agreement between the first 100 natural frequencies for the two models (up

to 69.1 Hz or 16/rev).

Frequency response functions (FRFs) for the airframe finite element model

were generated using NASTRAN’s SOL 108 with a structural damping factor of

γ = 0.04 (2%). SOL 108 computes the direct frequency response of the structure,

meaning no modal reduction is used to compute the FRFs. As described in the

preceding chapter, the FRFs give the response of individual nodal degrees of freedom

due to individual unit sinusoidal forcing components at those same nodes. The FRFs

were generated for a wide range of frequencies, including the specific 4/rev and 8/rev

frequencies for the UH-60A rotor, 17.34 Hz and 34.68 Hz, respectively. The grid

points used are listed in Table 3.11.

In addition to the FRFs, natural frequencies and mode shapes were calculated

from the provided superelement model. The first ten natural frequency values and

modes shape descriptions for the airframe are given in Table 3.12 to give some basic

information about the system.

3.4 Engine Model

A NASTRAN finite element model of the turboshaft engine used in the pro-

vided airframe was provided by the engine manufacturer and is shown in Fig. 3.10.
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The model consists of a total of 478 grid points. Since the model is one-dimensional

(all nodes on the engine axis), off-axis points were added to the physical connection

points on the engine at the rear mount plane to facilitate connection to the top of

the struts connecting to the engine (fully detailed in the following section). Addi-

tionally, the model was replicated with non-repeated grid points so two identical

engines could be included with the airframe model.

The translations and rotations of the rearmost node on the engine axis were

used to obtain the motions of the mounting nodes on the engines. The vertical

plane containing the mounting nodes was assumed to only undergo rigid-body rota-

tions. This configuration allows for accurate modeling of the load transfer from the

rear mount struts to the engine. As with the airframe, FRFs for the engine were

generated using NASTRAN’s direct frequency response solution (SOL 108). Unit

forces and moments were applied at the fore mount point and the two off-axis rear

mount points. The resulting displacements were obtained at the fore and aft mount

locations on the engine axis. The engine grid points are listed in Table 3.13.

The first few natural frequencies of the engine mode are given in Table 3.14.

It should be noted that the engine model is axially symmetric, so the natural fre-

quencies occur in pairs for the two directions transverse to the engine axis.

3.5 Airframe-Engine Interface

With respect to the substructuring analysis used to couple the engine and air-

frame, there are five separate substructure components: the airframe, two engines,
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and two engine mount torque tubes. These components are connected using a com-

bination of rigid connections and interface stiffness and damping elements. Care was

taken to ensure that the substructuring methodology matched the relevant features

of the fully coupled NASTRAN model. The connections between the airframe, en-

gine, and torque tube are shown schematically in Fig. 3.11 and the details of these

connections are discussed in the following sections.

3.5.1 Fore mount

The fore end of the engine is connected to the transmission input by a torque

tube. The torque tube consists of 9 beam elements with axial, bending, and tor-

sion degrees of freedom. The mass and stiffness matrices for the torque tube were

provided by the manufacturer and frequency response functions were generated for

the responses to unit load excitation at each of the end nodes. The aft end of the

torque tube is connected rigidly to the fore engine mount point in all 6 degrees of

freedom. The fore end of the torque tube is rigidly connected to the airframe in the

three translation degrees of freedom (i.e., gimbal).

3.5.2 Aft mount

The aft mount of each engine consists of three struts. As illustrated in Fig.

3.12 (a), the aft end of the engine (A1, A2) is connected by a rigid bar to the top of

the struts (S1a-b, S2a-b), and the bottom of the struts are connected directly to the

airframe (S1c-e, S2c-e). One outboard strut and two inboard, shown schematically
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in Fig. 3.12(b) comprise the aft mount structure. The struts all lie in the same

vertical plane and are symmetric between the left and right engines. The struts are

represented by axially extensible linear bar elements. Based on the geometry and

material properties of these elements, stiffness matrices are computed to use as the

interface between the engine and airframe transfer function models.

3.5.2.1 Strut geometry and stiffness matrices

In order to properly resolve the transmission of forces between the engine and

airframe, the geometry of the struts must be accounted for. The coordinates of the

end points for each strut are given in Table 3.15. Note that, since the six struts

are symmetric, only the right side set of struts is listed. The left side struts have

identical x- and z-coordinates and opposite signed y-coordinates.

The struts lie in the vertical y − z plane, so the geometry of the problem

is simplified to two dimensions. The struts are modeled as axially extensible rod

elements. The force transmitted along the length of a rod is given by

F = EA
∆L

L
= keff ∆L (3.3)

where E is the Young’s modulus, A is the cross-sectional area, L is the length of

the rod, and ∆L is the change in length of the rod due to compression or extension.

The physical characteristics of the rod can be combined to give an effective axial

stiffness, keff = EA/L.

Consider an axial stiffness element oriented arbitrarily in a two-dimensional

plane as illustrated in Fig. 3.13. Implementation of the strut stiffness into the
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substructuring methodology requires properly resolving the force along the rod into

into y-and z-components, Fy and Fz, resulting from the y-and z-components of the

rod’s change in length, ∆y and ∆z. The rod’s change in length is

∆L = (∆y cos θ + ∆z sin θ) (3.4)

The force in rod can be decomposed into the horizontal and vertical Fy and

Fz as

Fy =F cos θ = keff ∆L cos θ (3.5)

Fz =F sin θ = keff ∆L sin θ (3.6)

Combining Eqns. 3.4-3.6 gives

Fy = keff (∆y cos2 θ + ∆z sin θ cos θ) (3.7)

Fz = keff (∆y sin θ cos θ + ∆z sin2 θ) (3.8)

Using the relations sin θ = Lz

L
and cos θ = Ly

L
gives

Fy =
keff
L2

(L2
y∆y + LyLz∆z) (3.9)

Fz =
keff
L3

(LyLz∆y + L2
z∆z) (3.10)

These equations can be combined and rewritten in matrix formFy
Fz

 =
keff
L2

 L2
y LyLz

LyLz L2
z


∆y

∆z

 = [K]

∆y

∆z

 (3.11)

with the stiffness matrix for the strut represented by

[K] =
keff
L2

 L2
y LyLz

LyLz L2
z

 (3.12)
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Since the struts only allow axial extension in the y − z plane, the remaining

elements of a full 6× 6 stiffness matrix [K] are all zero.

3.6 Airframe-Engine Coupling Validation

To validate the substructuring analysis of the baseline coupled airframe-engine

model, FRFs of the engine response at the mount points due to forcing at the main

rotor hub were calculated and compared to the results based on the full coupled

NASTRAN model. The comparisons for the transfer function magnitudes of the

response of one engine mount are shown in Fig. 3.14. The substructuring approach

completely captures the behavior of the NASTRAN model for various frequencies

from 0 to 40 Hz, including the magnitude and phase over a range of frequencies.
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Table 3.1: Main rotor properties

Property Value

Rotor type articulated

Number of blades 4

Radius, R 26.83 ft

Rotor speed, Ω 258 RPM

Chord, c 1.73 ft

Blade weight 256.9 lb

Shaft tilt (positive aft) -3◦

Primary airfoil SC1095

Hinge offset 0.0466R

Root cutout 0.2R

Location of swept tip 0.929R

Tip sweep angle 20◦

Pitch link stiffness 67900 ft-lb/rad

Solidity, σ 0.0832

Lock number, γ 6.33
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Figure 3.1: Blade mass distribution
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Figure 3.2: Blade flap bending distribution
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Figure 3.3: Blade lag bending distribution
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Figure 3.4: Blade torsional stiffness distribution
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Figure 3.5: Rotor blade natural frequencies
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Table 3.2: Main Rotor Blade Frequencies

Mode Freq (/rev)

1 0.267

2 1.035

3 2.837

4 4.600

5 4.710

6 5.222

7 7.923

8 11.567

9 12.426

10 14.214
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Table 3.3: Airframe properties

Property Value

Roll inertia, Ixx 4658 slug-ft2

Pitch inertia, Iyy 38512 slug-ft2

Yaw inertia, Izz 36796 slug-ft2

Roll-yaw coupling inertia, Ixz 1882 slug-ft2

Fuselage CG location (360, 0, 243)

Main rotor shaft location (341.215, 0, 300)
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Table 3.4: Tail rotor geometry

Property Value

Number of blades 4

Radius 5.5 ft

Rotation speed 124.62 rad/s

Section lift-curve slope 5.73 /rad

Chord 0.81 ft

Cant angle (from vertical) 20◦
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Table 3.5: Rotor blade discretization parameters

Parameter Value

Azimuthal samples for trim 40

Flexible finite elements 20

Quadrature points per element 8

Number of blade modes 6

Blade harmonics per mode 9

Table 3.6: Wake discretization parameters

Parameter Value

Wake discretization 10 degrees

Near wake 30 degrees

Blade bound vortex segments 40

Number of wake turns 6
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Figure 3.6: RSRA drivetrain model (Ref. [85])
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Table 3.7: Inertia and stiffness properties of RSRA drivetrain model (Ref. [85])

Description Symbol Value

Inertia values (in-lb-sec2)

Main rotor hub (MR) J∗1 75

Transmission (TRAN) J∗2 909

Coupling gear box (GB) J∗3 1044

Power turbine (EN1) J∗4 6494

Power turbine (EN2) J∗5 6494

Tail rotor (TR) J∗6 4724

Stiffness values (in-lb/rad)

Main rotor shaft K∗12 42.95E+06

Transmission, coupling shaft K∗23 1679E+06

Engine shaft K∗34 1184E+06

Engine shaft K∗35 1184E+06

Tail rotor shaft K∗36 4797E+06

Table 3.8: Speed ratios of drivetrain components

Component RPM Scale, r

Main rotor 258 1

Engine 20900 81

Tail rotor 1214 4.1
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Table 3.9: Natural frequencies of drivetrain model with free-free boundary condition

Mode Frequency

rad/s Hz /rev

1 427.0 68.0 15.8

2 637.7 101.5 23.6

3 751.6 119.6 27.8

4 1305.1 207.2 48.3

5 3075.9 489.5 113.5

Figure 3.7: Mode shapes of drivetrain model with free-free boundary condition
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Table 3.10: Natural frequencies of drivetrain model with fixed engines

Mode Frequency

rad/s Hz /rev

1 520.2 82.8 19.3

2 749.8 119.3 27.8

3 1303.7 207.5 48.3

4 3069.4 488.5 113.7

Figure 3.8: Mode shapes of drivetrain model with fixed engines
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Figure 3.9: NASTRAN FE model of airframe
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Table 3.11: Grid point ID numbers for NASTRAN airframe model

Grid ID Description

690 Pilot floor (left)

698 Co-pilot floor (right)

1805 Inner strut connection (left)

1806 Middle strut connection (left)

1809 Outer strut connection (left)

1847 Outer strut connection (right)

1850 Middle strut connection (right)

1851 Inner strut connection (right)

16401 Torque tube connection (right)

17401 Torque tube connection (left)

115910 Main rotor hub

160004 Tail rotor hub
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Table 3.12: Natural frequencies for baseline airframe model

Mode Freq (/rev) Description of mode

1-6 0.0 Rigid body modes

7 1.29 Vertical bending

8 1.50 Lateral bending

9 2.13 Tail boom torsion

10 2.28 Horizontal tail vertical bending

11 2.42 Transmission pitch

12 2.92 Fuselage torsion

13 3.07 Landing gear (symmetric)

14 3.13 Landing gear (asymmetric)

15 3.34 Horizontal tail/landing gear

16 3.41 Fuselage torsion

107



Figure 3.10: NASTRAN FE model of GE CT7-8 engine
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Table 3.13: Grid point ID numbers for NASTRAN engine model

Grid ID Description

16403 Aft off-axis inboard (right)

16405 Aft off-axis outboard (right)

17403 Aft off-axis inboard (left)

17405 Aft off-axis outboard (left)

9500044 Aft on-axis point (left)

9500048 Fore on-axis point (left)

9600044 Aft on-axis point (right)

9600048 Fore on-axis point (right)
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Table 3.14: Natural frequencies for engine model

Mode Freq (/rev)

1-6 0.0

7 15.52

8 15.52

9 18.29

10 18.29

11 22.33

12 22.33

13 27.00

14 27.00

15 33.39

16 33.39
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(a) Location of the four engine mount points and main rotor

hub

(b) Interfaces between airframe, engine, and torque tube models

Figure 3.11: Overview of Helicopter/Engine/Airframe interfaces, mounts and forcing

node
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(a) Engine-airframe connections (right engine)

(b) Rear engine mount struts

Figure 3.12: Schematic of engine mount structures
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Figure 3.13: Geometry of axial stiffness element

Table 3.15: Coordinates for aft engine struts

Strut position Coordinate 1 Coordinate 2

Inner (380.7, 16.5, 268.5) (380.691, 20.3, 279.3)

Middle (380.7, 21.6, 267.7) (380.691, 20.3, 279.3)

Outer (380.7, 37.6, 258.5) (380.691, 39.7, 279.3)
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(a) Fx in, y out (b) Fx in, z out

(c) Fy in, y out (d) Fy in, z out

(e) Fz in, y out (f) Fz in, z out

Figure 3.14: Comparison of substructuring and NASTRAN results for coupled

airframe-engine model: lateral and vertical translation response magnitude and

phase of left engine aft mount point to unit amplitude forcing at main rotor hub
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4 Engine Mount Parametric Study

Having developed and validated the frequency-based substructuring method-

ology for coupling a helicopter airframe model with the associated engine model,

parametric studies were conducted to determine the effects of changing stiffness and

damping properties of the engine mount structures on the vibration levels experi-

enced at different points on the engines. This chapter begins with a description of

the baseline analysis results, followed by discussion of the effects of changing the

stiffness and damping of the torque tube and engine struts on the baseline.

4.1 Baseline Results

Following the validation of the coupled model, 4P and 8P hub loads were ap-

plied to the coupled model frequency response functions (FRFs) and the resulting

(steady-state) response magnitudes and phases at the four engine mounts were cal-

culated to yield FRFs for the entire structure for a particular set of engine mount

properties. These global FRFs represent the response (magnitude and phase) of the

engine mount point along a particular direction due to unit amplitude vibratory hub

loads. Tables 4.1 and 4.2 show the 4P and 8P response displacement magnitudes

for each of the engine mounts due to individual hub load components.
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For the results presented here, PRASADUM was used to calculate hub loads

for the UH-60A rotor described previously using 6 coupled blade modes in con-

junction with harmonic balance method up to 9P. Hub forces and moments were

calculated at a density altitude of 5,000 ft, and steady level flight at speeds of 55,

80, 100, 125 and 150 knots, representing advance ratios of 0.128, 0.187, 0.233, 0.291

and 0.349, respectively. Figure 4.1 shows the magnitudes of the 4P and 8P hubload

components for these flight conditions.

Scaling the FRF magnitudes by a single hub load amplitude (and with appro-

priate phase shift) for a specific flight condition provides the contribution of that

hub forcing component to the total response. Vector addition of the contributions

from all six hub loads yields the total engine response. Using this technique, multi-

ple flight conditions can be analyzed using the same set of FRFs for a particular set

of mount properties, further reducing the number of calculations required for the

analysis. Since vibrations normal to the engine axis are thought to be more detri-

mental to the engine than those along the engine shaft, for this analysis, particular

attention was paid to the y and z degrees of freedom, i.e., the transverse response.

Figure 4.2 shows the lateral and vertical 4P response acceleration of each

engine mount point, ay and az, due to each of the hub load components at 100 knots,

as well as the total response from 0 to 90 degrees of rotor azimuth. Examining the

breakdown of the engine response in this way allows for the identification of the

hub load components that contribute dominantly to the total engine vibration. For

instance, at the fore mount point of the right engine, the 4P component of the

pitching moment (My forcing) contributes most to the lateral response (y), while
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the hub roll moment (Mx forcing) is the biggest contributor to the vertical response

(z). The hub forces and moments have similar magnitudes at 4P and comparable

sensitivities, so the contribution of each is directly reflected in the response levels.

It should be noted that although the rotor torque, Mz, is included in the hub loads

and transfer functions presented here, the analysis does not include contributions

from Mz, since the torque load is transmitted through the drivetrain, not directly

to the airframe as the other forces and moments.

The contributions of each hub load component to the 8P response of each

engine mount point are shown in Fig. 4.3, also for 100 knots flight condition. For

8P, the hub roll moment, Mx, is the primary contributor to the lateral response of

each mount point and the vertical response of the aft mount points. Both hub roll

and pitch moments, Mx and My contribute significantly to the vertical 8P response

of the fore mount points.

To capture the inherent axisymmetry in the engine and quantify vibrations

with a common metric, the ay and az components of the acceleration were condensed

into the total transverse response, ayz =
√
a2
y + a2

z using vector addition of the

accelerations along the y and z coordinate directions. Figure 4.4 shows the total

4P and 8P transverse acceleration for each of the engine mounts for each of the

speed cases considered. The responses were calculated using the procedure described

above, and represent baseline values for possible minimization. The following trends

were noted:

1. There is an overall minimum in engine vibratory response at 80 knots (µ =
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0.187), though this effect is driven by reduced vibratory loading from the main

rotor as the wake is swept away and tip compressibility drag is minimal.

2. There is a high degree of asymmetry between the left and right engines in

this helicopter. The 4P transverse response of the left engine has similar

magnitudes for the fore and aft mounts, but for the right engine, the fore

and aft mounts vibrate at distinctly different amplitudes (up to 100% more

vibration at the intake compared to exhaust end).

3. The transverse response of all four mounts is driven primarily by the 8P rolling

moment. The peaks in response occur at 55 and 100 knots, following the trend

in Mx moments shown in Fig. 4.1(a).

4. The left and right engines show comparable 8P response levels with the fore

mount of each showing transverse response magnitudes close to double those

of the aft mounts.

5. Overall, the peak accelerations due to 8P excitation are about one order of

magnitude greater than the corresponding response levels due to 4P excitation.

This information reveals the possibility of targeting specific loads as a means of

reducing the engine response. It also highlights the need for accurate vibratory loads

prediction in terms of both magnitude and phase in addition to accurate structural

modeling. While structural models can provide a measure of the sensitivity of certain

response degrees of freedom to each hub load component, the inclusion of the phase

of the response and loads can lead to either an increase or decrease in the overall
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engine mount vibration.

After establishing these baseline levels of vibration, the substructuring analysis

was used to perform parametric studies that would be untenable with traditional

NASTRAN analysis of the fully coupled assembly. Since the 100 knots airspeed case

represents a relatively high engine vibration case for both 4P and 8P, the remaining

results were generated using 100 knots hub vibratory loads. Table 4.3 lists the

baseline 4P and 8P transverse accelerations for the four engine mount points. The

stiffness and damping values for the torque tube and struts were varied from the

baseline values to identify the sensitivity of these vibration levels to each design

parameter. The results of these parametric studies are discussed in the remaining

sections.

4.2 Torque Tube Stiffness Sweep

A parametric sweep was conducted to determine the effect of changing the

stiffness properties of the torque tube on vibratory response of the engine at the

mount points. The stiffness matrix for the torque tube was scaled by a factor ranging

from 0.25 to 4, corresponding to possible changes in the torque tube material and/or

cross-sectional dimensions. The 2% structural damping of the baseline model was

preserved for all components, and the rear mount strut properties were preserved

at their baseline values. The 4P and 8P responses at both mounts of the left and

right engines for various torque tube stiffnesses are shown in Fig. 4.5.

The right and left engine response sensitivity to varying torque tube stiffness
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show similar trends for both 4P and 8P response. Changing the torque tube stiffness

has very little effect on the 4P response of either engine at the aft mount point.

Similarly, the aft mount response at 8P is relatively less sensitive to the torque tube

stiffness. However, the 8P fore mount response reduces by about half for 200%

torque tube stiffness. Decreasing the torque tube stiffness shows a marked increase

in both 4P and 8P response at the fore mount locations. Reducing the torque tube

stiffness to 50% results in a 65% increase in the 8P response and marginal increase

in the 4P response.

4.3 Symmetric Strut Stiffness Sweep

A parametric sweep was performed by scaling the axial stiffness of the aft

mount struts with a factor ranging from 0.25 to 4. A schematic of the six mount

struts is shown in Fig. 3.12. The mount configurations for the left and right engines

are symmetric, with each engine supported by two inboard struts (labeled inner

and middle) and one outboard strut (labeled outer). For this study, the stiffness

values of the pairs of inner, middle, and outer struts were varied independently,

maintaining the symmetry between the left and right engine mounts. The effects

of strut stiffness on the 4P and 8P transverse response levels are examined in the

remainder of this section.
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4.3.1 Uniform strut stiffness effects

For this study, the effects of collectively varying the stiffness of the struts were

analyzed. Figure 4.7 shows the 4P and 8P transverse response of all four engine

mount points due to changing the stiffness of all six struts.

Decreasing all strut stiffnesses uniformly results in increased 4P response at all

but one mount point. At 50% strut stiffness, both mount points of the right engine

and the aft mount of the left engine show significant increases in response from the

baseline. In particular, the aft right mount increases from the 0.4g baseline to 1.2g.

However, the fore mount of the left engine shows a decrease from the 0.25g baseline

to a minimum of 0.16g. On the other hand, increasing the stiffness of all the struts

beyond the baseline decreases the 4P response of the aft right mount significantly

from 0.4g to 0.25g at 400% strut stiffness. The effects on the 4P response of the

other mounts are less noticeable, though all but the aft left mount show a decrease

with increasing stiffness.

The trends in the 8P response are the same for all four engine mount points,

with differences only in magnitude. Increasing strut stiffness beyond the baseline

results in decreased response, with each engine mount point achieving a reduction

of about 0.3g when the strut stiffness is increased to 400% of the baseline. Alter-

natively, decreasing the strut stiffness results in increased transverse response, with

the peak response level occurring around 35% baseline stiffness.
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4.3.2 Damping effects

The effects structural damping were also examined. Structural damping fac-

tors of γ = 0.04, 0.1 and 0.2 corresponding to 2%, 5%, and 10% proportional damp-

ing, respectively, were applied for each case of the uniform stiffness sweep. Figures

4.8 and 4.9 shows the results of this study. Structural damping in the struts has a

significant effect on the 4P response, particularly in the right engine aft mount, with

reduction of up to 40% at 50% strut stiffness. The impact on the 8P response is less

pronounced, though increased damping does result in up to 20% reduction of 8P

response for 20-50% strut stiffness. However, for the increased stiffness values that

achieve reduced response levels, damping has almost no effect. Therefore, damping

was maintained at the baseline 2% for the remainder of the study.

4.3.3 Individual strut stiffness effects

Figures 4.10 and 4.11 show the variations in transverse 4P and 8P response,

respectively, at all engine mount points due to independent variations of the inner,

middle, or outboard strut stiffness. The stiffness effects of the two inboard struts

(inner and middle) on the 4P response show the same trends of the uniform stiffness

sweep, while the outboard strut stiffness has no effect on the 4P response. The

results of varying the stiffness of both pairs of inboard struts simultaneously are not

shown here, but reveal that either of the two inboard struts could be changed to

achieve nearly identical results as changing both.

In contrast with the 4P results, a uniform change in the 8P response magni-
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tudes at all 4 mount points appears to be driven by the stiffness of the outboard

struts. Changes in the outboard strut stiffness produce the same results as changing

the stiffness of all three pairs of struts. If the inner strut is stiffened or softened, the

acceleration increases on the fore mounts and decreases on the aft mounts, while the

middle strut mainly affects acceleration of the fore mounts of both engines, though

both effects are small.

4.4 Asymmetric Strut Stiffness Sweep

The parametric studies of the previous sections were conducted while main-

taining symmetry between the left and right struts. This is largely due to consid-

erations of ease of manufacturing and installation. However, asymmetry has been

noted in the response between the left and right engines, indicating that an asym-

metric solution study might provide improved results. Another parametric sweep

was conducted, independently scaling each of the six mounts struts with a factor

ranging from 0.25 to 4.

Figures 4.12 and 4.13 show the effects on the 4P and 8P transverse response due

to simultaneously varying only the left or right set of struts while keeping the other

set at the baseline. Reduction of the left strut stiffness to 50% baseline results in an

increased response at all four mount points though only the aft left mount increase

is significant. Increasing only the left mount stiffness has negligible effects on the

4P response. Increasing the stiffness of just the right struts results in decreases in

the right mount response with no effect on the left mounts. Decreasing the right
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strut stiffness also leads to a significant increase in the response of the right engine,

especially at the aft mount, but results in a slight decrease in the response of the

left engine.

Changing the strut stiffness on one side has negligible effects on the 8P response

of the engine mounts on the other side. On the other hand, the 8P response of one

engine is affected by the stiffness of the struts on that side. Increases in stiffness

lead to decreased response and decreases in stiffness lead to increased response, with

the right strut stiffness having the greatest effect.

4.5 Minimizing Engine Response

In the previous sections, the sensitivity of the 4P and 8P engine response to

changes in stiffness of one or more struts was examined, holding the other stiff-

ness values constant at the baseline. For the large parameter space that is created

by changing each of six stiffness value independently, the“best” solution might be

missed by analyzing the results in this way. That is, a minimum vibration level may

be achieved by a combination of stiffness values not included in the analysis. To this

end, the full set of parametric sweeps for the strut stiffness scaling was examined to

determine the effect of targeting different metrics for minimization. This section will

examine several metrics as targets for minimization and discuss the overall changes

in vibrations for each of those targets. For most of the results presented, symmetric

struts were assumed, with the impact of utilizing an asymmetric design given at the

end of the section. The minimization metrics that will be discussed are:
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1. 4P/8P response of each of the four individual mount points

2. Average 4P/8P response of only the fore or aft mount points

3. Average 4P/8P response of only the left or right mount points

4. Maximum 4P/8P response

5. Average 4P/8P response of all mount points

6. Average combined 4P and 8P response of all mount points

4.5.1 Minimizing indvidual mount response

For this study, the strut stiffness factors that result in minimum transverse

response for each of the individual 4 mount points were identified and are listed in

Table 4.4. These results are given for both symmetric and asymmetric struts. The

corresponding reductions in 4P and 8P response levels at the mount points are shown

in Table 4.5. These values represent the best possible reduction in vibration for a

single mount point at a single frequency for a single flight condition, i.e. these struts

are point designs, with no consideration for the response at the other 3 mounts or at

other excitation frequencies. These point designs may not be practical to construct.

However, the maximum reduction in vibration establishes a baseline to gauge the

level of compromise when the response of all 4 mounts at both 4P and 8P excitation

are considered.

Fig. 4.14 shows how the responses of each mount point is affected by the choice

of mount stiffness corresponding to a minimum for an individual mount stiffness. For

instance, targeting a minimum 4P response at the fore left mount yields a reduction
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in that response of almost 0.16g or 60%. However, the 4P response of the two

aft mounts are increased by 100% or more. Similarly, targeting the minimum 8P

response of the aft left mount gives at 0.27g reduction (19%) in that response while

increasing the 4P response of that mount by 0.29g (120%). These results indicate

that the choice of a point design may adversely affect engine vibration at other mount

points, or even the same mount point but at a different excitation frequency. For a

practical design, it is necessary to consider the engine mount vibration at multiple

points, and multiple frequencies. The following sections systematically expand the

scope of the metric involved in identifying a good strut design.

4.5.2 Minimizing maximum mount response

For this study, the strut stiffness factors that produced the minimum largest 4P

or 8P response among the four mount points (maximum response) were determined.

In other words, for each combination of mount stiffness values, the largest response

among the 4 engine mounts was determined. From this set of response values, the

smallest response was identified, and that combination of stiffness factors was used

to calculate the other response levels.

Figure 4.15 shows the effects of minimizing the maximum overall 4P or 8P

response on the response of all the mount points. This is similar metric to mini-

mizing an individual mount response, although it mitigates instances where a large

reduction in one mount response might be accompanied by a significant increase in

the response of another mount at that frequency. When minimizing the largest 4P
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response, the 4P response of all but one mount is reduced by 9-31%, while the 8P

response is increased by 17-28%.

Minimizing the largest 8P response results in 5-15% reductions in 8P response.

The design results in 40% reduction in the 4P response of the fore left mount, and

19-125% increase in the 4P response of the other three mounts. Therefore, the

response at all points and one frequency may still result in increased response at

select points at other excitation frequencies.

4.5.3 Minimizing mount response at pairs of points

This section considers the minimum average response at pairs of engine points,

one frequency at a time. The four pairs considered are fore mounts for the two

engines, aft mounts for the two engines, left engine mounts, and right engine mounts.

As an example, minimizing the average 8P response of the fore mounts results in

decreased 8P response at all mounts at 8P. However, this design also results in

almost 100% increase in 4P response at the aft mount.

Minimizing the average response for the left engine mounts (and separately

for the right engine) was also studied, at a single frequency. For 4P excitation, 56%

reduction of the one of the targeted mounts corresponds to 67% and 245% increase

on the two points not considered. For 8P excitation, the vibration at the target

points can be decreased through strut design at that frequency, at the cost of more

vibration at 4P at the same points. Further, targeting the 8P response of either the

left or right engine mounts results in reductions in the target responses as well as
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the 4P response on the opposite side, but leads to large increases in the 8P response

on the opposite side and the 4P response on the same side.

These cases again illustrate the nature of the design compromise. Favorable

results can indeed be achieved for the targeted locations in the elastic structure at a

single frequency. However, the response for the alternate excitation frequency may

increase. Further, the set of mounts not targeted for response reduction may exhibit

more vibration at either 4P or 8P.

4.5.4 Minimizing total response

The results in the preceding section have shown that targeting the individual

mounts, or pairs of mounts for vibration reduction can lead to adverse effects on

the remaining mounts, and so the average of the response magnitudes from all

four engine mounts were considered. Table 4.8 shows the stiffness values which

produce the minimum transverse response averaged over the four mount points,

for 4P excitation and 8P excitation. The last row shows the strut stiffness ratios

(relative to the baseline) obtained when the amplitude of average 4P and average

8P vibration is used as the metric for reduction. Both symmetric and asymmetric

strut designs (with respect to left vs. right engine) are considered in this study.

The results for symmetric strut design are considered first, and then the results for

asymmetric strut design are discussed.
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4.5.5 Symmetric strut design

Figure 4.18 shows the resulting change from the baseline response for each

mount when the symmetric stiffness values are used. When targeting the average

4P response, the fore left mount response is increased by 30%, and all other mounts

exhibit vibration reduction of 24-43%. For this design (first row of Table 4.8), the 8P

response decreases marginally (2-3.5%) at the fore mounts and increases marginally

(2-5%) at the aft mounts.

When targeting the average 8P response (second row of Table 4.8), all four

mounts show a decrease of 9-16% at 8P. For 4P excitation, the response increases

by as much as 125% for three of the mounts. The 4P response of the fore left mount

exhibits qualitatively opposite behavior to the other three mount response levels,

i.e., while the other three mounts exhibit more 4P vibration, the fore left mount

exhibits reduction of amplitude (in this case, by 40%).

Targeting only the 4P or 8P response (averaged over all 4 mount points) could

lead to adverse effects on the response for the frequency not targeted. Therefore,

it may be necessary to target the average response at all mounts and at both fre-

quencies. The vibration reductions obtained by tuning the strut stiffnesses for this

criterion are shown in Fig. 4.18(c).

Vibration reductions at all mount points and both frequencies are obtained,

except the fore mount of the left engine. In particular, the 4P response of the fore

left mount increases by 7%, while the other three decrease by 11-39%. The 8P

response is reduced by 7-18% at all mounts. This behavior may result from the
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asymmetry of the airframe structure; a few airframe mode shapes (in the vicinity

of 4P) exhibiting opposite signs for the eigenvector displacement components at

the fore mount of the left engine could drive the opposite qualitative behavior for

that one mount. This result indicates that the airframe structure may require local

redesign to extract additional vibration reduction at the engine mounts. However,

such an endeavor must be weighed against other constraints for airframe design such

as weight and vibration reduction at other stations.

4.5.6 Asymmetric strut design

When the strut stiffness is allowed to vary between the left an right engine

mounts, slightly different vibration trends are noted. The outbooard strut design is

unchanged when asymmetry is allowed. Further, only the left engine struts change

for minimum 4P, and only the right struts change for targeting 8P response. When

minimizing the average combined 4P and 8P response (Table 4.8), all 6 struts should

be stiffened to 400% baseline for a symmetric design. With symmetric struts, a

reduction of 1.18g in combined 4P and 8P response magnitude is achieved. If asym-

metry is allowed, softening the left inner strut to 50% provides a marginal benefit:

the total reduction increases to 1.22g.

4.6 Summary

The results of the stiffness sweep study show that overall reduction in both 4P

and 8P response is possible if the stiffness of all struts is increased above the baseline.
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Both the symmetric and asymmetric stiffness sweep results indicate that the largest

cumulative percent reduction in the 4P and 8P response of all four mounts can be

achieved if all six struts have their stiffness increased to 400% of the baseline.

Further, results of the study of torque tube stiffness indicate that reductions in

both 4P and 8P response at the fore mounts is possible if the torque tube stiffness

is increased to 200% of its baseline. A final symmetric strut stiffness sweep was

conducted with 200% torque tube stiffness. The goal of this sweep was to determine

whether changing the torque tube design results in a different strut design, providing

a qualitative measure of the cross-coupling between fore mount and aft mount design.

It was found that increasing the stiffness of all six struts to 400% of the baseline

gives the best improvement in 4P and 8P vibration reduction. In both cases it was

found that the large reductions were retained when increasing the strut stiffness

to only 200% and only the aft right mount response was further improved by the

400% stiffness, achieving an additional 10% reduction. Trade studies of vibration

reduction and the possible weight/cost penalties of increasing the strut stiffness are

necessary to determine whether additional stiffening is advantageous on the whole.

Based on these findings, the transverse response at the four engine mount

points were calculated for two improved designs. The first improved design is when

only the rear mount struts are stiffened to 200%. The second improved design is

when both the struts and torque tube are stiffened to 200%. 4P and 8P hub loads

were applied at the main rotor hub based on the four level cruise flight speeds

previously considered: 55, 80, 100, 125 and 150 knots. Figures 4.19(a) and 4.19(b)

show the 4P and 8P response levels for the baseline and the two improved designs.
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This speed sweep demonstrates the cumulative effects of increasing the stiffness

of both the fore mount torque tube and aft mount struts. Overall, reductions in the

4P and 8P transverse response are achieved at all four mounts and flight conditions

with one exception. The 4P response of the fore left mount shows increases of 5-

13% when only the strut stiffness is increased. This detrimental effect is mitigated

to 0.3-8% increase for the second improved design. At all other mounts, enormous

reductions of 11-58% are achieved at both 4P and 8P.

Specifically, the stiffer aft mounts reduce the 4P response by 30% for the aft

right mount and 10-20% for the fore right and aft left mounts. The effect of stiffer

struts on reduction of 8P response at all mounts is less significant, but still noticeable

(5-8%). A stiffer torque tube results in significant reduction in the 8P response (up

to 50%), while having a small benefit on the 4P response at the fore mount points

for both engines.

132



(a) 4P hub load components

(b) 8P hub load components

Figure 4.1: Hub load amplitudes (CW/σ=0.082)
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(a) Fore left lateral response (b) Fore left vertical response

(c) Fore right lateral response (d) Fore right vertical response

(e) Aft left lateral response (f) Aft left vertical response

(g) Aft right lateral response (h) Aft right vertical response

Figure 4.2: Breakdown of 4P engine mount response from individual hub load com-

ponent contributions (CW/σ=0.082, µ=0.233)
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(a) Fore left lateral response (b) Fore left vertical response

(c) Fore right lateral response (d) Fore right vertical response

(e) Aft left lateral response (f) Aft left vertical response

(g) Aft right lateral response (h) Aft right vertical response

Figure 4.3: Breakdown of 8P engine mount response from individual hub load com-

ponent contributions (CW/σ=0.082, µ=0.233)
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(a) Total 4P transverse response at various flight speeds

(b) Total 8P transverse response at various flight speeds

Figure 4.4: Total transverse response with forward speed (CW/σ=0.082)
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(a) 4P response

(b) 8P response

Figure 4.5: 4P transverse response of engine mount points for various torque tube

stiffnesses
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Figure 4.6: Schematic of engine mount structure
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(a) 4P response

(b) 8P response

Figure 4.7: Transverse response of engine mount points for variations in all 6 strut

stiffness matrices.
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(a) Fore left

(b) Fore right

(c) Aft left

(d) Aft right

Figure 4.8: Transverse 4P response at engine mounts for variations in stiffness and

damping of all 6 struts.
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(a) Fore left

(b) Fore right

(c) Aft left

(d) Aft right

Figure 4.9: Transverse 8P response at engine mounts for variations in stiffness and

damping of all 6 struts.
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(a) Inner strut effects

(b) Middle strut effects

(c) Outer strut effects

Figure 4.10: Transverse 4P response of engine mount points for left/right symmetric

variations in each individual strut holding all others at baseline values.
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(a) Inner strut effects

(b) Middle strut effects

(c) Outer strut effects

Figure 4.11: Transverse 8P response of engine mount points for left/right symmetric

variations in each individual strut holding all others at baseline values.
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(a) Left strut stiffness effects

(b) Right strut stiffness effects

Figure 4.12: Effects of changes in left or right strut stiffness on 4P engine response
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(a) Left strut stiffness effects

(b) Right strut stiffness effects

Figure 4.13: Effects of changes in left or right strut stiffness on 8P engine response
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(a) Minimizing individual 4P response

(b) Minimizing individual 8P response

Figure 4.14: Effect of minimizing response at individual engine mount point on

response at other points: change in amplitude with respect to vibration for baseline

strut design
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(a) Minimizing maximum 4P response

(b) Minimizing maximum 8P response

Figure 4.15: Effect of minimizing response at individual engine mount point on

response at other points: change in amplitude with respect to vibration for baseline

strut design
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(a) Minimizing fore or aft 4P response

(b) Minimizing fore or aft 8P response

Figure 4.16: Effect of minimizing response of both fore or aft mount points: change

in amplitude with respect to vibration for baseline strut design
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(a) Minimizing left or right 4P response

(b) Minimizing left or right 8P response

Figure 4.17: Effect of minimizing response of left or right engine mount points on

response at other points: change in amplitude with respect to vibration for baseline

strut design
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(a) Minimizing average 4P response

(b) Minimizing average 8P response

(c) Minimizing average combined 4P and 8P response

Figure 4.18: Effect of minimizing engine total engine response: change in amplitude

with respect to vibration for baseline strut design
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(a) 4P engine mount response: various airspeeds

(b) 8P engine mount response: various airspeeds

Figure 4.19: Effect of stiffer struts and stiffer torque tube on 4P and 8P engine

mount response
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Table 4.1: Amplitude of 4P engine mount point displacement response (in) to unit

hub force (lb) or moment (ft-lb)

Hub force component

Fx Fy Fz Mx My Mz

fore left

x 1.37E-05 5.73E-06 4.52E-06 8.32E-08 3.63E-07 1.92E-07

y 4.32E-06 3.92E-06 3.72E-06 8.17E-08 1.37E-07 3.72E-08

z 3.95E-06 1.38E-05 8.68E-06 5.88E-07 7.34E-08 1.66E-07

fore right

x 1.38E-05 2.61E-06 8.92E-06 7.60E-08 5.45E-07 2.98E-07

y 5.17E-06 4.41E-06 7.55E-06 5.08E-08 1.99E-07 8.33E-08

z 3.36E-06 1.20E-05 6.43E-06 4.57E-07 8.60E-08 6.50E-08

aft left

x 1.35E-05 6.16E-06 4.36E-06 1.00E-07 3.55E-07 1.89E-07

y 6.50E-06 1.41E-06 7.74E-06 3.70E-07 1.63E-07 9.44E-08

z 4.03E-06 2.78E-06 4.25E-06 5.40E-08 2.11E-07 5.12E-08

aft right

x 1.36E-05 2.22E-06 9.09E-06 6.19E-08 5.39E-07 2.99E-07

y 8.30E-06 2.41E-06 1.75E-05 3.10E-07 3.82E-07 2.11E-07

z 3.89E-06 1.74E-06 2.57E-06 3.43E-08 1.24E-07 1.39E-08
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Table 4.2: Amplitude of 8P engine mount point displacement response (in) to unit

hub force (lb) or moment (ft-lb)

Hub Force Component

Fx Fy Fz Mx My Mz

fore left

x 3.43E-08 3.75E-07 8.15E-08 4.88E-08 9.08E-09 1.72E-08

y 5.79E-07 2.67E-06 1.73E-06 3.62E-07 6.72E-08 3.15E-08

z 3.74E-06 1.36E-06 6.81E-07 1.00E-07 3.73E-07 4.24E-08

fore right

x 6.43E-08 3.91E-07 6.42E-08 5.19E-08 1.08E-08 1.55E-08

y 9.42E-07 2.90E-06 1.74E-06 3.96E-07 1.30E-07 2.76E-08

z 3.66E-06 1.25E-06 4.66E-07 8.45E-08 3.63E-07 4.47E-08

aft left

x 1.51E-07 2.90E-07 1.76E-07 4.06E-08 2.01E-08 1.72E-08

y 3.75E-07 3.67E-07 4.51E-07 5.82E-08 3.64E-08 7.73E-09

z 1.96E-07 1.68E-06 3.71E-06 2.19E-07 2.36E-08 4.50E-08

aft right

x 1.57E-07 3.09E-07 2.05E-07 4.36E-08 1.78E-08 1.63E-08

y 4.42E-07 3.88E-07 5.46E-07 6.43E-08 4.41E-08 4.22E-09

z 2.22E-07 1.74E-06 4.80E-06 2.34E-07 2.56E-08 3.27E-08
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Table 4.3: Baseline vibration levels at engine mount points at 100 knots

4P 8P

Fore left 0.26g 2.31g

Fore right 0.29g 2.57g

Aft left 0.23g 1.59g

Aft right 0.40g 1.31g
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Table 4.4: Strut stiffness factors required to achieve minimum 4P or 8P response at

each engine mount

Inner Middle Outer

Left Right Left Right Left Right

4P

Aft left
Asymmetric 25% 200%

25% 400%
Symmetric 25%

Fore left
Asymmetric 200% 50% 25% 50% 25% 25%

Symmetric 400% 25% 200%

Aft right
Asymmetric 100% 25% 50% 25% 25% 400%

Symmetric 25% 25% 400%

Fore right
Asymmetric 200% 50%

25% 25%
Symmetric 42%

8P

Aft left
Asymmetric 400% 25%

25%
400% 25%

Symmetric 400% 400%

Fore left
Asymmetric

25%
400% 25% 400% 25%

Symmetric 400% 400%

Aft right
Asymmetric 25% 400%

25%
25% 400%

Symmetric 400% 400%

Fore right
Asymmetric

25%
25% 400% 25% 400%

Symmetric 400% 400%
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Table 4.5: Largest possible reduction from baseline in 4P and 8P transverse for each

mount point for symmetric and asymmetric strut stiffness values

Asymmetric Symmetric

4P

Aft left -0.10g -44.90% -0.06g -24.34%

Fore left -0.23g -85.66% -0.16g -60.26%

Aft right -0.20g -50.24% -0.17g -42.93%

Fore right -0.11g -36.55% -0.09g -29.31%

8P

Aft left -0.50g -36.70% -0.27g -19.44%

Fore left -0.46g -19.24% -0.36g -14.89%

Aft right -0.64g -38.75% -0.32g -19.50%

Fore right -0.48g -17.75% -0.44g -16.44%
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Table 4.6: Strut stiffness factors that produce minimum response for different targets

Inner Middle Outer

Left Right Left Right Left Right

4P total
Symmetric 25% 25%

400%
Asymmetric 400% 25% 400% 25%

8P total
Symmetric 25% 400%

400%
Asymmetric 25% 400% 400% 25%

4P + 8P
Symmetric 400%

400% 400%
Asymmetric 50% 400%
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Table 4.7: Summary of parametric studies performed

Parameter Range Summary

strut stiffness 25-400% baseline 4P response unaffected by stiffness of

outboard struts; 8P response

unaffected stiffness of inboard struts

strut damping 2%, 5%, 10% Response unaffected by damping at

high stiffness

torque tube stiffness 25-400% baseline 8P response of fore mount most

affected; increasing stiffness decreases

response
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Table 4.8: Strut stiffness factors that produce minimum response for different targets

Inner Middle Outer

Left Right Left Right Left Right

4P total
Symmetric 25% 25%

400%
Asymmetric 400% 25% 400% 25%

8P total
Symmetric 25% 400%

400%
Asymmetric 25% 400% 400% 25%

4P + 8P
Symmetric 400%

400% 400%
Asymmetric 50% 400%
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5 Coupled Rotor-Airframe-Drivetrain

Analysis

A coupled analysis was undertaken to examine the effects of the various fixed

frame components on the rotor loads and hub loads. The effects of coupling on

the vibratory loads experienced by the engines were also investigated. Prescribed

airloads were used to compare results with existing test data as well as work per-

formed by other researchers. Free-flight analysis was performed on an expanded

flight envelope to examine the importance of these effects at different flight condi-

tions. Results were obtained for CW/σ = 0.084 and steady level flight conditions

with forward speeds of 50-175 knots (advance ratios µ = 0.12− 0.41).

5.1 Baseline Coupling Results (Prescribed Air-

loads)

The results in this section utilize measured airload and lag damper data from

the NASA/Army UH-60A Airloads Flight Test Program [88] for a high speed flight

condition (C8534). A baseline, uncoupled analysis (fixed hub condition) is performed
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and compared with results of coupling with the RSRA drivetrain model and the

airframe model described in Chapter 3. The coupled and uncoupled results are

compared to existing flight test data.

Figure 5.1 shows the waveform for the blade flap bending moments at 30%,

50%, and 70% radial stations. These plots show little discernible effect of drivetrain

coupling on the flap bending moments, while the airframe coupling has a more

noticeable, though still small effect. These effects can be better demonstrated when

the waveform is broken down by harmonic content, as shown in Figs. 5.2 and

5.3. In particular, the drivetrain coupling has only a small effect on the 4/rev

flap bending moment. On the other hand, the airframe coupling has the most

noticeable effect on the 4/rev and 5/rev flap bending moments. Further, although

the effects of airframe coupling are noticeable, there is not a marked improvement

in the correlation between the prediction and test data.

The chordwise bending moments are shown in Fig. 5.4, with the harmonic

content shown in Figs. 5.5 and 5.6. The drivetrain coupling has a more noticeable

effect on the chordwise bending than observed for the flap bending moments. In

particular, there is a slight increase in the 1/2 peak-to-peak amplitude and 4/rev

component, resulting in an overall improvement of the correlation with flight test

data. The airframe coupling also had a larger effect on the chordwise bending,

particularly decreasing the 5/rev and increasing the 6/rev content, again leading to

slightly improved correlation.

Overall, these results show that the flap bending moments are not much af-

fected by either the drivetrain or airframe coupling, though the airframe coupling
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has a noticeable small effect on the 4/rev and 5/rev components. On the other

hand, the chordwise bending moments do show effects from both the drivetrain and

airframe coupling. These results agree qualitatively with similar studies [51,52].

5.2 Rotor-Airframe-Drivetrain Coupling

The results in this section are obtained for free flight from 50–175 knots using

Maryland Free Wake. A baseline case was computed with a hub fixed rigidly to

the aircraft, and coupled results were obtained for the rotor coupled separately with

the drivetrain and airframe described in Sections 3.2 and 3.3, as well as for the

rotor coupled with both the drivetrain and airframe. The flexible engine model was

included in the airframe model for these results.

5.2.1 Hub motion

The 1/2 peak-to-peak amplitude of the hub motion relative to the airframe

resulting from coupling with either the flexible airframe, drivetrain, or both is ex-

amined in this section. Figure 5.13 shows the three degrees of freedom of hub trans-

lation due to coupling with the airframe only as well as the airframe and drivetrain

together. These results show that the coupling produces very small hub motions,

generally less that 0.05 in. The in-plane hub motions remain relatively consistent

for flight speeds from 50 to 125 knots. At 175 knots, the longitudinal hub motion

increases by approximately three times compared to the lower speeds, while the lat-

eral hub motion increases by four times the lower speeds. The vertical hub motion is
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highest at 50 and 175 knots, with a minimum around 100 knots, while being overall

lower than the in-plane motion by almost an order of magnitude. The pitch and

roll rotation of the hub, shown in Fig. 5.14, average around 0.03 degrees and show

similar trends to the in-plane hub translations, with substantial increases at 175

knots.

Figures 5.13 and 5.14 also reveal that the addition of the drivetrain coupling

does not significantly change the hub translation or pitch/roll rotations beyond the

effects of the airframe coupling. This is not surprising, given that the drivetrain

is only coupled to the torsional degree of freedom of the rotor, and so should not

significantly affect the other degrees of freedom. On the other hand, the airframe

does have a significant effect on the torsional motion of the rotor hub beyond that of

the drivetrain only, as shown in Fig. 5.15. Generally, the addition of the airframe to

the rotor-drivetrain coupling serves to decrease the peak-to-peak torsional motion

of the rotor by 25-35%.

5.2.2 Blade loads

Figure 5.16 shows the uncoupled and coupled mid-span flap and lag bending

and torsion moment for the 75 knots flight condition. From the waveforms, it is

evident that the effects of coupling are smallest for the flap bending moment, with

the drivetrain coupling having the greatest effect. The torsion moment is largely

unaffected by the drivetrain coupling alone, while noticeably affected by the presence

of the airframe model. The lag bending moment appears significantly affected by
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the presence of the airframe, while also affected to a lesser degree by the drivetrain

coupling.

To better quantify the effects of the various couplings on the bladeloads, it is

instructive to examine the peak-to-peak and vibratory components of the waveforms

over the entire span of the blade. Figures 5.17 and 5.18 show the half peak-to-peak

and vibratory flap bending components. These results show that the drivetrain has

very little effect on the flap bending moment overall. There is a minor reduction in

the peak-to-peak flap bending at the root and mid-span. There are also noticeable

reductions in higher harmonics (7, 8, 9/rev), with the 8/rev reduction being partic-

ularly significant, though these components fairly small. The airframe coupling had

a more noticeable, though still small, effect on the flap bending, with a significant

impact on the 5/rev flap bending load, reducing the 5/rev component by 50% or

more across the entire blade span.

Figures 5.19 and 5.20 show the half peak-to-peak and vibratory flap bending

components, and confirm that the coupled analysis has a greater impact on these

loads than the flap bending loads. The drivetrain has a large effect on the higher

harmonics, particularly the 8/rev component, which is increased by as much as

200% at about 0.7R. On the other hand, the airframe coupling has very little effect

on most on the lag bending components, except for the 5/rev component, which is

reduced by about 50% at the mid-span.

Figures 5.21 and 5.22 show the half peak-to-peak and vibratory torsion mo-

ment components. The drivetrain significantly reduces the 8/rev torsion moment,

while having very little effect on the other vibratory components. The airframe

164



coupling has the biggest impact on the 5/rev and 6/rev components, though all are

somewhat affected.

5.2.3 Hubloads

Although the magnitude of the hub motion that results when the rotor is

coupled to a flexible component is very small and the overall effect on the blade loads

is generally small, as shown in the previous sections, the change in the vibratory

hubloads that results from this motion can be significant. Figures 5.23 and 5.24

show the 4P and 8P hub forces and moments for the uncoupled rotor as well as

the rotor coupled with either the drivetrain, airframe or both. The drivetrain alone

has very little effect on the 4P in-plane force, and a more noticeable, though small

effect on the 4P vertical force and in-plane moments, primarily at 150 knots. On the

other hand, the 8P hubloads are more impacted by the presence of the drivetrain,

particularly the vertical force at 50-125 knots and and in-plane moment at 50 and

125 knots.

Coupling with the airframe alone decreases the 4P vertical force from the

uncoupled baseline. This effect is small and increases with increasing flight speed,

resulting in about a 10% reduction in 4P vertical force at 175 knots. On the other

hand, the airframe coupling increases the 4P in-plane forces and moments, as well

as all 8P hub loads across all flight speeds. The effect is most pronounced for the

in-plane force. The 4P and 8P in-plane forces are increased by 60-100%

Finally, the addition of the drivetrain to the rotor-airframe coupling follows
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similar trends as the addition of the drivetrain compared to the uncoupled case.

For instance, the drivetrain increases the 4P vertical force by about 5% from the

uncoupled case. Similarly, the airframe/drivetrain coupling increases the 4P vertical

force by about 5% from the airframe coupling alone.

5.2.4 Airframe Vibrations

Although identifying the effects of various couplings on the structural loads

in the blades and fixed frame hubloads is important to deepening our overall un-

derstanding of the physics at work, from a practical standpoint, it is the resulting

vibrations experienced throughout the airframe, particularly at the pilot and copilot

seat, that are of greatest interest to helicopter users. Figures 5.25 and 5.26 show the

transverse and vertical 4P and 8P acceleration at grid points corresponding to the

pilot and co-pilot seats of the airframe. Vibration levels for the uncoupled case were

calculated by applying the calculated hub loads from the uncoupled analysis to the

airframe finite element model. These results show that the coupled model generally

predicts lower 4P vibration and higher 8P vibration at the pilot/co-pilot seats than

the uncoupled analysis, though the difference between the uncoupled and coupled

analysis is much more significant for the 4P vibrations. The addition of the drive-

train model to the airframe coupling has little impact on the 4P vertical vibration

and no discernible impact on the 4P transverse acceleration. The 8P vibrations are

much more impacted by the presence of the drivetrain in addition to the airframe.
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5.3 Engine modeling

The fully coupled results shown in the previous section include a detailed flexi-

ble engine model coupled to the airframe. The turboshaft engines used in helicopters

have heavy rotors spinning at very high speeds ( 20,000 RPM) which produce gyro-

scopic forces that are transmitted through the airframe. The detailed NASTRAN

engine model provided for this work included gyroscopic elements that can be turned

on and off within NASTRAN. For the analysis presented thus far, these gyroscopic

effects were neglected. The following results will examine the impact of the complex-

ity of the engine model on the analysis, including the effects of including gyroscopic

forces. Four cases are considered:

1. flexible airframe without any engine model

2. flexible airframe with rigid engine mass

3. flexible airframe with flexible engine

4. flexible airframe with flexible engine with gyroscopic forces.

Figures 5.27 and 5.28 show the 4P and 8P vertical hub forces and in-plane

hub forces and moments for the uncoupled baseline and the four coupled cases.

These results show that the presence of an engine model of any complexity has the

greatest impact on the in-plane hub forces. There is very little difference between

the rigid, flexible, and gyroscopic engine in the prediction of 4P hub loads. The

8P hub loads are more sensitive to engine modeling, particularly at high speeds,
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though the gyroscopic forces do not a discernible impact when compared to the

flexible engine without gyroscopic forces.

Figures 5.29 and 5.30 compare the effects of the engine modeling on the 4P

and 8P accelerations calculated at the pilot and co-pilot seats. Since the vibratory

hub loads driving the vibrations throughout the airframe are not much influenced by

the differences in engine modeling, the differences in vibrations at the pilot/co-pilot

seats are due to differences in the models.

Figures 5.31 and 5.32 compare the effects of the engine modeling on the 4P

and 8P accelerations calculated at the four engine mount points identified in Chap-

ter 3. At 4P, the flexibility of the engine model increases the vibration predicted

on the left engine and decreases the predicted vibration on the right engine when

compared to the rigid engine model. Further, the gyroscopic forces have no notice-

able effect on the 4P vibrations. On the other hand, the 8P engine vibrations are

highly susceptible to differences in engine models. The gyroscopic engine modeling

drastically increases the 8P vibrations on the left engine compared to to the flexible

engine, while decreasing the 8P vibrations on the right engine.
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(a) 30%R

(b) 50%R

(c) 70%R

Figure 5.1: Effects of coupling on flap bending moments for UH-60A using measured

airloads (C8534)
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(a) 1/2 peak-to-peak (b) 3/rev

(c) 4/rev (d) 5/rev

Figure 5.2: Effects of coupling on flap bending moment peak-to-peak amplitude and

harmonics for UH-60A using measured airloads (C8534)
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(a) 6/rev (b) 7/rev

(c) 8/rev (d) 9/rev

Figure 5.3: Effects of coupling on flap bending moment higher harmonics for UH-

60A using measured airloads (C8534)
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(a) 30%R

(b) 50%R

(c) 70%R

Figure 5.4: Effects of coupling on chordwise bending moments for UH-60A using

measured airloads (C8534)
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(a) 1/2 peak-to-peak (b) 3/rev

(c) 4/rev (d) 5/rev

Figure 5.5: Effects of coupling on chordwise bending moment peak-to-peak ampli-

tude and harmonics for UH-60A using measured airloads (C8534)
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(a) 6/rev (b) 7/rev

(c) 8/rev (d) 9/rev

Figure 5.6: Effects of coupling on chordwise bending moment higher harmonics for

UH-60A using measured airloads (C8534)
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(a) x motion (b) θx motion

(c) y motion (d) θy motion

(e) z motion (f) θz motion

Figure 5.7: Effects of single degree of freedom 4P hub motion on mid-span flap

bending moment
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(a) x motion (b) θx motion

(c) y motion (d) θy motion

(e) z motion (f) θz motion

Figure 5.8: Effects of single degree of freedom 4P hub motion on mid-span chordwise

bending moment
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(a) x motion (b) θx motion

(c) y motion (d) θy motion

(e) z motion (f) θz motion

Figure 5.9: Effects of single degree of freedom 4P hub motion on mid-span torsion

moment
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(a) x motion (b) θx motion

(c) y motion (d) θy motion

(e) z motion (f) θz motion

Figure 5.10: Effects of single degree of freedom 8P hub motion on mid-span flap

bending moment
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(a) x motion (b) θx motion

(c) y motion (d) θy motion

(e) z motion (f) θz motion

Figure 5.11: Effects of single degree of freedom 8P hub motion on mid-span chord-

wise bending moment
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(a) x motion (b) θx motion

(c) y motion (d) θy motion

(e) z motion (f) θz motion

Figure 5.12: Effects of single degree of freedom 4P hub motion on mid-span torsion

moment
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(a) Longitudinal hub motion

(b) Lateral hub motion

(c) Vertical hub motion

Figure 5.13: 1/2 Peak-to-peak hub translation resulting from coupling with airframe

and drivetrain 181



(a) Roll hub motion

(b) Pitch hub motion

Figure 5.14: 1/2 Peak-to-peak hub roll and pitch rotation resulting from coupling

with airframe and drivetrain
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(a) Roll hub motion

Figure 5.15: 1/2 Peak-to-peak hub yaw rotation resulting from coupling with air-

frame and drivetrain
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(a) Flap bending moment

(b) Lag bending moment

(c) Torsion moment

Figure 5.16: Effects of coupling on mid-span blade loads
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(a) 1/2 peak-to-peak (b) 3/rev

(c) 4/rev (d) 5/rev

Figure 5.17: Effects of coupling on vibratory flap bending
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(a) 6/rev (b) 7/rev

(c) 8/rev (d) 9/rev

Figure 5.18: Effects of coupling on vibratory flap bending higher harmonics
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(a) 1/2 peak-to-peak (b) 3/rev

(c) 4/rev (d) 5/rev

Figure 5.19: Effects of coupling on vibratory lag bending
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(a) 6/rev (b) 7/rev

(c) 8/rev (d) 9/rev

Figure 5.20: Effects of coupling on vibratory lag bending higher harmonics
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(a) 1/2 peak-to-peak (b) 3/rev

(c) 4/rev (d) 5/rev

Figure 5.21: Effects of coupling on vibratory torsion moment
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(a) 6/rev (b) 7/rev

(c) 8/rev (d) 9/rev

Figure 5.22: Effects of coupling on vibratory torsion momment higher harmonics
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(a) Vertical hub force

(b) In-plane hub force

(c) In-plane hub moment

Figure 5.23: Effects of coupling on 4P hub loads
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(a) Vertical hub force

(b) In-plane hub force

(c) In-plane hub moment

Figure 5.24: Effects of coupling on 8P hub loads
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(a) Pilot transverse acceleration (b) Pilot vertical acceleration

(c) Co-pilot transverse acceleration (d) Co-pilot vertical acceleration

Figure 5.25: Effects of coupling on 4P pilot/co-pilot seat vibrations
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(a) Pilot transverse acceleration (b) Pilot vertical acceleration

(c) Co-pilot transverse acceleration (d) Co-pilot vertical acceleration

Figure 5.26: Effects of coupling on 8P pilot/co-pilot seat vibrations
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(a) Vertical hub force

(b) In-plane hub force

(c) In-plane hub moment

Figure 5.27: Effects of engine modeling on 4P hub loads
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(a) Vertical hub force

(b) In-plane hub force

(c) In-plane hub moment

Figure 5.28: Effects of engine modeling on 8P hub loads
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(a) Pilot transverse acceleration (b) Pilot vertical acceleration

(c) Co-pilot transverse acceleration (d) Co-pilot vertical acceleration

Figure 5.29: Effects of engine modeling on 4P pilot/co-pilot seat vibrations
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(a) Pilot transverse acceleration (b) Pilot vertical acceleration

(c) Co-pilot transverse acceleration (d) Co-pilot vertical acceleration

Figure 5.30: Effects of engine modeling on 8P pilot/co-pilot seat vibrations
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(a) Left fore engine mount (b) Right fore engine mount

(c) Left aft engine mount (d) Right aft engine mount

Figure 5.31: Effects of engine modeling on 4P engine vibrations
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(a) Left fore engine mount (b) Right fore engine mount

(c) Left aft engine mount (d) Right aft engine mount

Figure 5.32: Effects of engine modeling on 8P engine vibrations
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6 Summary and Conclusions

This chapter summarizes the primary results of this dissertation, identifies the

key conclusions of the work and provides suggestions for future work in this area.

6.1 Summary

The work presented in this thesis consists of two main parts: the coupling

between the finite element models of an engine and a helicopter airframe and the

coupling of the aeromechanical model of a helicopter rotor to models representing a

flexible drivetrain and airframe.

A fixed-frame frequency domain sub-structuring approach was developed to

couple engine and airframe models in order to analyze vibration levels at engine

supports of a helicopter. This methodology has several key advantages over conven-

tional full finite element models:

1. Transfer functions can be generated from full finite element models without the

necessity of modal approximation or truncation. The various types of damping

(combination of complex stiffness, viscous damping and modal damping) can

also be included in the analysis without any loss of accuracy.
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2. Millions of finite element DOF can be reduced to only the set of interface nodes,

external forcing nodes, and any additional nodes where one is interested in the

response. Because only the small subset of nodes are involved in the solution,

the solution process is computationally efficient and up to 1000 times faster

than full finite element models.

3. The method may be extended to nonlinear interface stiffness and/or damping

as well as experimentally acquired transfer functions for individual compo-

nents.

The computational efficiency of the developed substructuring methodology

allowed for parametric studies on the engine mount structures for a S-92 helicopter

airframe coupled with the associated GE turboshaft engines. The conclusions from

those studies are summarized in the following section.

Existing comprehensive analysis methodology was expanded to account for

a flexible hub condition, allowing the rotor to be coupled to components in the

fixed frame, namely a flexible airframe and drivetrain. This coupling leverages the

previous frequency domain substructuring methodology, using frequency domain

models of the fixed frame components and coupling them with the rotor analysis,

and the impact of these couplings on the blade structural loads, fixed frame hubloads,

and vibrations at the pilot seat and engines were examined. Further, the effects of

the complexity of the engine modeling within the airframe were also examined. The

primary conclusions of this work are detailed in the next section.

202



6.2 Key Conclusions

6.2.1 Engine-Airframe Coupling

1. The transverse 4P engine response is sensitive to changes in either or both

inboard strut stiffness, but is unaffected by changes in the outboard struts.

Conversely, the transverse 8P engine response is sensitive to changes in the

outboard strut stiffness while being generally unaffected by changes in either

or both pairs of inboard struts.

2. Doubling the stiffness of the torque tube reduced the 8P transverse response

of the fore mount points of the engine by 50%, while having little effect on the

aft mount point response or the 4P response at any mount point.

3. The 4P response at the aft mount of the right engine may be high if not

specifically targeted for vibration reduction. If ignored, the vibration may

increase by 100% or more of the baseline value.

4. In most cases, strut structural damping does not offer significant reduction in

vibratory response at the engine mounts.

5. Changing the stiffness of the torque tube does not affect the 4P response and

reduces the fore mount response for both engines by 20%.

6. The 8P response is most affected by asymmetry in the mount struts stiffness.

7. When the stiffness of the aft mount struts is varied, the 4P response of the left

203



engine fore mount increases when the response of the other three mounts de-

crease. This represents a fundamental compromise in overall engine vibration

minimization.

8. Stiffening the torque tube and each of the aft mount struts to 200% of their

baseline values results in significant reductions of 4P and 8P response at all

engine mounts for most flight conditions considered. On average, the 4P re-

sponse was reduced by 14% and the 8P response was reduced by 37%.

9. The high level of asymmetry present in the system as well as the lack of a

consistent solution to minimize vibrations at each mount point simultaneously

indicate that the problem of engine vibrations is likely best addressed through

an active vibration control strategy.

6.2.2 Rotor-Drivetrain-Airframe-Engine Coupling

A baseline UH-60 rotor model was individually coupled with representative

drivetrain and airframe models. The following trends were observed:

1. The addition of a flexible drivetrain has very little impact on the blade struc-

tural loads. When examining the vibratory components, the higher harmonics,

particularly 8P, are the most affected, with the lag bending increased, while

the flap bending and torsion are decreased. On the other hand, the airframe

coupling are seen most noticeably in the 5P blade loads.

2. Despite small impacts on the blade loads, the fixed frame hub loads can be
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significantly changed by the airframe and drivetrain coupling, which has im-

plications for the prediction of vibrations throughout the airframe. The 4P in-

plane forces and moments are significantly increased by the airframe coupling,

but not by the drivetrain coupling. The 4P vertical force is decreased with

airframe coupling, and increased with drivetrain coupling, while the opposite

is true for all the 8P hub forces and moments. As a result, when compared

to the uncoupled case, 4P vibrations computed at the pilot/co-pilot seats are

lower for the coupled cases, while 8P vibrations are higher.

3. The presence of an engine mass within the airframe model is important in

predicting the hub loads, particularly the in-plane forces. However, the com-

plexity of the engine model does not have much influence. In particular, the

4P hub loads are largely unchanged by a rigid engine mass versus a flexible

engine with or without gyroscopic effects. The 8P are generally decreased by a

flexible versus rigid engine, and although this effect is small, it is significant for

the 8P in-plane forces at higher vibration conditions. The engine gyroscopic

forces have negligible influence on the hub loads.

4. The vertical 4P vibration at the pilot/co-pilot seat is significantly impacted

by the engine flexibility, though asymmetrically. That is, the flexible engine

results in a decrease of the predicted vibration at the pilot seat and an increase

at the co-pilot seat. The 8P vibration prediction is generally decreased by the

flexible engine and increased with the addition of gyroscopic effects.

5. The predicted 4P engine vibration is asymmetrically affected by the flexible
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engine model in that vibrations on the left engine are increased while vibra-

tions on the right are decreased by the flexible model when compared with the

rigid model. The gyroscopic forces have negligible impact on the 4P engine vi-

brations. The 8P engine vibration predictions are significantly by both engine

flexibility and gyroscopic forces. The flexible engine generally results in an

increase in the predicted 8P vibration over the rigid engine Gyroscopic forces

increase the predicted vibration on the left engine while decreasing them on

the right.

6.3 Recommendations for Future Work

The research presented in this dissertation have illustrated the impact that

coupling of rotor analysis with airframe and drivetrain models can have on the pre-

diction of vibrations at the main rotor hub and throughout the airframe. However,

much work is still required before analysis tools can be used reliably for vibration

prediction during design. To that end, the overall effectiveness of the analysis in this

work needs to be benchmarked against flight test data. This level of validation re-

quires compatibility between the rotor, airframe, engine, and drivetrain models with

respect to the actual components used in testing. It is also important to have access

to a wide range of test data, including accurate measurements of blade loads, hub

loads, and vibrations throughout the airframe, specifically at the pilot seat and on

the engines. The ability of this type of validation to be conducted at the university

level will require a very high level of cooperation with the industry and government
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entities who produce the components and models and perform the flight tests.

In addition to further validating the analysis against available data, there are

additions the the analysis that are likely to have great impact on the vibration

predictions presented here. The first of these is the incorporation of CFD aerody-

namics into the comprehensive analysis. The accuracy of aerodynamic loads and

blade structural loads have been shown to be significantly improved by the use of

CFD over free wake modeling. Previously, coupled CFD/CSD analysis has been

done with the PRASADUM code used in this analysis, and access to high perfor-

mance computing resources should make this type of analysis relatively simple to

incorporate.

In addition, sources of vibratory loading on the airframe beyond the main

rotor need to be accounted for. The first and simplest of these to account for is the

tail rotor. As described in section 2.1, a dynamic inflow model was used to calculate

the thrust and torque at the tail rotor, however, a structural model of the tail rotor

blades should be incorporated to gain understanding of the vibratory loads that are

produced at the tail rotor and their impact on vibrations throughout the airframe.

The interactional aerodynamics between the rotor and airframe can also be ex-

amined. Though the primary source of the 4P and 8P loading on the airframe come

through the main rotor hub, the rotor wake impinges on the airframe, particularly

at low speeds, thus provides another source of vibratory loading that has not been

accounted for. Addressing the interactional aerodynamics can include incorporation

of panel methods as well as full CFD modeling including the airframe.

Finally, a major component of this work was focused on reduction of engine
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vibrations by tuning engine mount structural properties. For the purposes of this

work, those properties were assumed to be linearly elastic. The analysis can easily be

adapted to allow for non-linear properties, as those found in elastomerics, allowing

for the possibility of further reduction of engine vibrations.
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