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The in-house CRoCCo code is used to generate a database of high-fidelity direct

numerical simulation (DNS) and large eddy simulation (LES) data of shock wave and

turbulent boundary layer interactions (STBLI) at supersonic to hypersonic conditions.

The DNS data is employed in the validation of the LES method and the assessment of the

sub-grid-scale (SGS) models in application to the STBLI flow problem. It is determined

that, under hypersonic conditions, a scale similar model term in both the shear stress and

heat transfers SGS terms is necessary to produce the correct STBLI separation flow. The

use of the dynamic eddy viscosity term alone produced as much as 30% error in separation

length. The high grid-resolving efficiency (equivalently the practicality over the DNS) of

the CRoCCo code LES method for the simulation of STBLI flows is also demonstrated

with a typical reduction of 95% grid size and 67% in number of time steps as compared

to the DNS, a feature that makes spectral convergence of the STBLI low-frequency cycle

feasible.

The thorough documentation of DNS-validated, high-fidelity LES solutions of hy-

personic STBLI flows is a unique contribution of this work. Thanks to the detail in the
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ration shear layer in the STBLI flows is possible and the results are related to compressible

mixing layer theory. In addition, visualizations of the numerical data show the form of the

inviscid instability in hypersonic shock-separated flows. These visualizations combined

with the extended CRoCCo Lab numerical database provide significant insight into the

nature of the separation length scaling in STBLI at hypersonic Mach numbers.
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Chapter 1: Introduction

1.1 Motivation

In the practical design of aerospace vehicles, the simultaneous occurrence of both

turbulent boundary layers and compression shock waves is an all but unavoidable phe-

nomenon. The shock and turbulent boundary layer interaction (STBLI) is a nontrivial

engineering challenge for several reasons. First, the shock produces large step changes

in both pressure and temperature on the vehicle surface. These step changes increase

significantly with Mach number. This problem is exaggerated in the case of separated

STBLI by the occurrence of a low-frequency unsteadiness in the separated region causing

the foot of the shock to oscillate in the streamwise direction with rather large excursions

from its time averaged location (among many references, see for example [1, 2, 3]). The

resulting fluctuations in both the pressure and heat loads on the vehicle surface can lead

to catastrophic structure failures [4, 5, 6].

This problem is further complicated by the fact that practical engineering simula-

tion methods such as Reynolds Averaged Navier Stokes (RANS) methods are notoriously

unreliable for simulating separated STBLI and can produce large errors in both the sep-

aration length [7] and wall heat transfer [8]. In addition, the accuracy of heat transfer

prediction relations that are largely applicable in the supersonic condition, such as the

Reynolds Analogy relating the heat transfer to the shear stress, is uncertain at higher
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Mach number conditions [8, 9, 10]. The primary reason for the failure of these simulation

and scaling techniques is the fact that there are many complex phenomena associated with

the STBLI that are not fully understood, and as a result, the assumptions made in the

development of the turbulence models and scaling methods do not correctly represent the

physics of the turbulence. Such phenomena include the mechanism involved in producing

the strong amplification of the turbulence across the shock, the turbulence behaviors that

determine the heat transfer rates at the wall, the dynamics and form of the unstable low-

frequency mode that occurs in the separated condition, and the effects of compressibility

on the development of the separation shear layer.

The past several decades has seen a large amount of research on the STBLI flow

at freestream Mach numbers in the range of 1.5-5, predominantly Mach 2 and 3. Out

of these efforts have come many significant contributions towards improving our under-

standing of this complex flow and in particular the nature of the low-frequency unsteadi-

ness. Our understanding of the low-frequency unsteadiness in separated STBLI has ad-

vanced considerably concerning the variation in frequency content through the interac-

tion (among many references see [11, 12] and review articles [1, 10, 13]), scaling of the

mean separation length [14, 15], influences by both the upstream [16, 17, 18] and down-

stream [12, 19, 20, 21, 22, 23, 24], and the identification of the inviscidly unstable nature

of the flow [12, 22, 25].

The extrapolation of our knowledge of the supersonic STBLI flow into the hyper-

sonic regime is largely uncertain as hypersonic conditions introduce additional complexity

to the STBLI flow. Figure 1.1 shows diagrams of a typical supersonic, ramp-generated

separated STBLI flow compared to its hypersonic counterpart. Because of the higher

Mach number, the shocks produced by the flow deflection are at a much shallower angle

2



Figure 1.1: Schematic of a compression ramp STBLI flow at (a) supersonic conditions
(reproduced from [26]) and (b) hypersonic conditions (reproduced from [27]).
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increasing the spatial extent of the interaction between the incoming turbulence and the

shock front. The diagram shows that the initial separation shock remains embedded in

the incoming turbulence and, unlike in the supersonic case, reflects off of the ramp sur-

face. Large fluctuations in pressure and temperature occur on the surface at this point of

shock reflection. In addition, the hypersonic STBLI experiences a much greater strength

of pressure jump across the shock. In supersonic STBLI, at say Mach 3, the pressure

jump across the shock is on the order of a few times the upstream static pressure, whereas

for hypersonic conditions at say Mach 10, the pressure jump can easily be an order of

magnitude greater. Compressibility effects such as the occurrence of shocklets in the tur-

bulence are also more prevalent at higher Mach number. At high enthalpy conditions,

physical-chemical processes can alter the turbulence.

In order to advance the state of the art in hypersonic vehicle design, new sophis-

ticated numerical methods and novel experimental techniques capable of accommodating

the increased complexity of the hypersonic regime must be developed. This necessarily

requires an improved understanding of the fundamental physics involved in hypersonic

STBLI. For this effort, there is an undeniable need for high fidelity turbulence data, both

experimental and numerical, of basic canonical STBLI configurations at hypersonic condi-

tions. Only high-fidelity turbulence data can reveal the details in the turbulence necessary

for the identification of the energetically important physics and provide a reliable refer-

ence point against which turbulence models and scaling derivations can be tested. It is

also essential that classic canonical configurations such as the two-dimensional compres-

sion wedge, reflected shock, or the axi-symmetric cylinder with flare be studied as these

configurations produce STBLI data at the most simplified level without three-dimensional

flow effects clouding the interpretation of the data [28]. The simultaneous availability of
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both experimental and numerical data at the same flow conditions and Reynolds number

is also essential for cross-validation of results [1, 10, 29, 30].

1.2 Background

Currently, there are a only a few experimental studies of turbulent shock and bound-

ary layer interactions in the hypersonic regime (M > 5) and even fewer reporting turbu-

lence data. Settles & Dodson [31, 32, 33] and later Roy & Blottner [8] have provided

reviews of the available hypersonic STBLI experimental datasets. Only a fraction of the

available datasets were identified as having error margins sufficient for use as reference for

turbulence model validation.

High fidelity simulation methods such as Large Eddy Simulation (LES) and Direct

Numerical Simulation (DNS) are ideal for the investigation of turbulence statistics because

they produce a three-dimensional flowfield that is resolved in both time and space. Very

few DNS of fully turbulent STBLI exist in the literature and two notable studies are

mentioned here. In a recent article, Priebe & Martin [34] used DNS to reproduce the

experimental conditions of Bookey et al. [35] of an attached Mach 7 freestream over an 8o

compression wedge. Details of the turbulence through the interaction and heat transfer

data were reported. The DNS showed good qualitative comparison with experimental

visualizations of Bookey et al. [35]. Volpiani et al. [36] used DNS to generate data of

reflected shock conditions at freestream of Mach 5. Comparison with experimental wall

pressure, skin friction, and wall heat transfer data from Schülein [9] showed that the DNS

produced a significantly smaller separation size. The authors explained the difference by

noting that there could be as much as 20% uncertainty in the experimental separation

length due to possible three-dimensional flow effects from the test article. So far, the DNS
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method has been much more widely used for studying laminar hypersonic shock boundary

layer interactions [25, 37, 38, 39, 40].

The LES technique has been well established for the simulation of supersonic STBLI [41,

42, 43, 44] and has a significant advantage over DNS in that it requires only a fraction of

the computational grid size yet still produces high resolution turbulence statistics. This

feature is even more attractive in the case of separated STBLI for which the ability to

resolve the low-frequency shock motion is a concern. Running a DNS of a separated

STBLI flow long enough to spectrally converge the lowest energized turbulence motions

is essentially impossible from a practical standpoint. The DNS is also severely limited

by Reynolds number due to the grid sizes required to resolve the entire range of turbu-

lence motions from the viscous length scales to the outer length scales. Because the LES

uses model equations to simulate the behavior of the smallest length scales, much larger

Reynolds numbers are possible compared to DNS for similar computational cost. With

LES, matching simulation to experimental Reynolds number is achievable.

LES of hypersonic STBLI seems at this point to still be in the developmental stage.

Some preliminary works include the following. Shreyer et al. [45] and also Kim et al. [46]

used Stanford University’s CharLES code with eddy viscosity model of Vreman et al. [47]

for the sub grid scale (SGS) model closure to reproduce the Mach 7 STBLI experiments

by Schreyer et al. [48] of a compression ramp/expansion corner test article. The com-

parison with the experimental PIV data showed a stronger reverse flow in the separation

bubble [45] and the turbulence intensity solution under-predicted the PIV data [46]. The

authors do note that the PIV data of Schreyer et al. [48] suffered from insufficient particle

density particularly at the wall surface and in the separated region making the comparison

a bit vague. Ritos et al. [49] later attempted to simulate the same flow with an implicit
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LES method by which the numerical properties of the inviscid flux scheme is used to es-

timate the dissipation by the unresolved SGS turbulence [49]. The LES of Ritos showed

somewhat improved comparison with the PIV data from Schreyer, however the accuracy

of the PIV profiles remains in question. Fang et al. [50] used an LES method with the

dynamic eddy viscosity SGS models of Moin et al. [51] to simulate a single fin STBLI in-

teraction at Mach 5 freestream and reported good comparison of mean flow structure and

wall pressure with the experimental data of the same conditions by Schülein [9]. The peak

skin friction near reattachment, however, was found to be significantly under-predicted.

1.3 Scope of the Present Work

In this work, an LES method employing a dynamic mixed SGS model [52] is used

to simulate hypersonic STBLI compression ramp flows. All simulated flows considered

throughout this thesis are low enthalpy and non-reacting as is typical of the flow conditions

of many ground-based test facilities. In addition, all simulated flows are two-dimensional

in the sense that they are of a flat plate boundary layer over a 2D wedge and are assumed

to be homogeneous in the spanwise direction.

This work begins in Chapter 2 with a thorough validation of the LES computational

method for the accurate simulation of STBLI flows including subsonic to hypersonic con-

ditions and attached to fully separated interactions. Comparison with available DNS

data demonstrates that the LES produces accurate low-frequency separation dynamics as

well as wall heat transfer rates at elevated Mach number. After establishing the relia-

bility of the LES method, in Chapter 3, two new LES datasets of separated hypersonic

STBLI at freestream Mach numbers of 7.2 and 9.1 and at experimentally achievable condi-

tions are presented. Mean flow statistics, turbulence intensities, wall quantities, turbulent
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kinetic energy budgets, and anisotropy tensor properties are documented with the in-

tention of making this information available to the scientific community for reference in

cross-validation with experimental data, validation of other simulation methods, and the

calibration of new turbulence models and experimental diagnostic techniques. Also in

Chapter 3, it is demonstrated that the modeling of the local conservative energy exchange

via a scale-similar SGS model is ncecessary in order to achieve correct shear layer spread-

ing rate at high Mach number interactions for which the convective Mach number of the

separation shear layer is found to be as high as 2.

In the remaining chapters of this thesis, the resulting database of hypersonic STBLI

flows afforded by the current LES method is used for the investigation of several specific

aspects of the STBLI flow. In Chapter 4, a low-pass filtering operation is performed

on the time-resolved, three-dimensional flow field in order to identify the form of the low-

frequency unstable mode in the hypersonic compression ramp interaction. The hypersonic

STBLI mode is found to be similar to that previously identified in the subsonic regime [12,

22] allowing for generalizations to be made on the nature of the low-frequency instability.

In Chapter 5, mean separation data from an LES database of varying shock strengths at

Mach 7 and 10 was combined with a compilation of available hypersonic experimental data

to investigate a generalized scaling method that relates separation length to interaction

strength. The results provide new physical insight into the nature of the separation scaling.

The topic of Chapter 6 is the characterization of the free shear layer that exists in the

STBLI separated flow and the presentation of the results in the context of canonical mixing

layer theory. The turbulence levels, spreading rate, and vortex structure in the shear layer

were found to scale with convective Mach number in a manner consistent with available

compressible mixing layer data. The benefits of the shear layer study are two-fold. The

8



results provide information on the generalization of separated STBLI flow behavior as well

as new turbulence data for the study of compressible canonical mixing layers. Concluding

remarks are given in Chapter 7
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Chapter 2: Large Eddy Simulation Method and Validation

§The majority of this chapter is reproduced from Helm & Martin [53].

2.1 Chapter Overview

In this chapter, the accuracy of the LES method is demonstrated by testing it against

a DNS database of compressible turbulent boundary layer and compression ramp solutions.

For this purpose, two DNS solutions by Priebe & Martin are referenced which include a

fully separated Mach 3 compression ramp STBLI flow [12] and an attached hypersonic

Mach 7 compression ramp STBLI flow [34]. Each flow solution under consideration is

reproduced with the LES code using the same computational domain size and boundary

conditions as the corresponding DNS solution.

In Section 2.2 is a presentation of the LES numerical method and model equations

for the SGS closure. The SGS models of the LES use a mixed model for both the unclosed

shear stress in the momentum equation and the unclosed heat flux in the total energy

equation. The mixed model uses a combination of an eddy viscosity term and a scale-

similar model. The dissipative drain of turbulence energy from the resolved turbulence

scales to the SGS scales are accounted for by the eddy viscosity while the conservative

(non-dissipative) energy exchange between resolved and SGS scales is accounted for by the

scale-similar model. Later in Chapter 3, which is concerned with the separated hypersonic

STBLI condition, the importance of including the scale-similar term at high Mach number

10



conditions is further discussed and emphasized.

In Section 2.3, we provide a list of the conditions of our DNS and LES database

followed by the description of the computational domains and setup. A statistical com-

parison is presented between the LES and Favre-filtered DNS solutions of the incoming

boundary layer solutions in Section 2.4, the separated supersonic STBLI in Section 2.5,

and the attached hypersonic STBLI in Section 2.6. The importance of the LES/DNS

comparison of the separated STBLI is the demonstration that the same low-frequency un-

steadiness is resolved by the LES in terms of frequency content, skin friction distribution,

shear layer profiles, and separation length. It is also shown in Section 2.4 that the tophat

filter of Eqn. 2.12 applied to the DNS data is an acceptable approximation of the LES fil-

tered flow solution thus demonstrating that this is an appropriate method of DNS-to-LES

comparison. A summary of the conclusions from this chapter are given in Section 2.7.

2.2 Numerical Method

The LES governing equations are derived by applying the filtering operation of

Leonard [54] to the Navier Stokes equations for the conservation mass, momentum, and

total energy. A filtered variable is defined as

f̄(ξ) =

∫

D

f(ξ′)G(ξ, ξ′; ∆̄)dξ′. (2.1)

In Eqn. 2.1, the variable f is filtered in space over the domain D(ξ) by the function

represented by G(ξ). The filter width ∆̄ is representative of the smallest length scale

retained by the filter G(ξ). The filtered set of equations in conservative form and in a
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generalized curvilinear coordinate system can be written as the following.

∂Ū

∂t
+

∂F̄

∂ξ
+

∂Ḡ

∂η
+

∂H̄

∂ζ
=

∂FSGS

∂ξ
+

∂GSGS

∂η
+

∂HSGS

∂ζ
. (2.2)

The coordinate system (ξ,η,ζ) represent the computational space coordinates in

which ξ is the streamwise body-tangential direction, η the spanwise direction, and ζ the

body-normal direction. These are transformed from the real space coordinates (x, y, z)

using the method outlined by Hirsch[55]. We use the convention that in real space, x is

in the streamwise direction, y the spanwise direction, and z the wall-normal direction. In

Eqn. 2.2, Ū is the vector of conserved quantities while F̄ , Ḡ, and H̄ are the flux vectors in

their respective computational coordinate direction ξ, η, or ζ. The vectors FSGS, GSGS ,

and HSGS are the unclosed sub-grid-scale (SGS) flux terms that result from the filtering

operation.

The governing equations are expressed in terms of Favre-filtered variables defined as

f̂ = ρf/ρ̄. Using Favre-filtered variables prevents additional SGS terms from appearing

in the filtered equation for the conservation of mass. Using the Favre-filtered notation,
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the vectors from Eqn. 2.2 are

Ū = J




ρ̄

ρ̄û

ρ̄v̂

ρ̄ŵ

Ē




, F̄c = Jrξ




ρ̄û′

ρ̄ûû′ + p̄sx

ρ̄ûv̂′ + p̄sy

ρ̄ûŵ′ + p̄sz

(Ē + p̄)û′




,

F̄v = −Jrξ




0

σ̂xxsx + σ̂xysy + σ̂xzsz

σ̂yxsx + σ̂yysy + σ̂yzsz

σ̂zxsx + σ̂zysy + σ̂zzsz

(σ̂xxû+ σ̂xy v̂ + σ̂xzŵ)sx+

(σ̂yxû+ σ̂yy v̂ + σ̂yzŵ)sy+

(σ̂zxû+ σ̂zyv̂ + σ̂zzŵ)sz−

(q̂xsx + q̂ysy + q̂zsz)




,

and FSGS = −Jrξ




0

τxx

τyx

τzx

γcvQx +
1
2Jx −Dj




(2.3)

where

sx = ξx/rξ , rξ =
√

ξ2x + ξ2y + ξ2z,

and û′ = ûsx + v̂sy + ŵsz.

(2.4)

In Eqn. 2.3, the flux vector F̄ has been split into a convective flux term (F̄c) and a viscous
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flux term (F̄v) so that F̄ = F̄c + F̄v. Both Ḡ and H̄ have equivalent expressions in their

respective coordinate directions. The other terms in the expression for the flux vector

F̄ are the grid transformation Jacobian matrix J , the total filtered energy Ē = cvρ̄T̂ +

ρ̄1
2 ûiûi +

1
2τkk (specific heat at constant volume cv), the filtered shear stress tensor σ̂ij =

2µ̂Ŝij− 2
3 µ̂δij Ŝkk (strain-rate tensor Ŝij =

1
2(∂ûi/∂xi+∂ûj/∂xi and temperature dependent

dynamic viscosity µ̂), and the heat flux q̂j = −k̂∂T̂ /∂xj (temperature-dependent thermal

conductivity k̂). The definitions of the additional grid transformation terms are given in

Eqn. 2.4. The kinematic viscosity is a function of the Favre-filtered temperature T̂ and

the exact relation is dependent on the conditions of the flow being simulated as will be

explained further in Section 2.3. The thermal conductivity is related to the kinematic

viscosity by k̂ = µ̂∗ (2.5∗ cv −1.5) The filtered pressure p̄ is determined from the ideal gas

law in terms of the filtered flow solution so that p̄ = ρ̄RT̂ . The SGS flux vector FSGS is

expressed in terms of the SGS shear stress tensor τij, the SGS heat flux ∂Qj/∂ξj , the SGS

turbulent diffusion ∂Jj/∂ξj , and the SGS viscous diffusion ∂Dj/∂ξj . From the derivation

of the filtered LES governing equations, these unclosed terms are by definition

τij ≡ ρ̄
(
ûiu′j − ûiû

′

j

)
, (2.5)

Qj ≡ ρ̄
(
û′jT − û′j T̂

)
, (2.6)

Jj ≡ ρ̄
(
û′jukuk − û′j ûkuk

)
. (2.7)

Dj ≡ σiju′i − σ̂ij û
′

i (2.8)

The selection of the LES SGS closure models is based on the work of Martin et

al. [52]. A one-coefficient dynamic mixed model containing both an eddy viscosity term
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and a scale-similar term is used for the estimation of τij. A similar formulation is used

for the estimation of Qj . The SGS turbulent diffusion is approximated from the model

proposed by Knight et al. [56]. The corresponding model equations for these three terms

are

τij = −C12∆̄
2ρ̄|Ŝ′|

(
Ŝ′

ij −
δij
3
Ŝ′

kk

)
+ ρ
(
̂̂uiû′j − ˆ̂ui ˆ̂u

′

j

)
, (2.9)

Qj = −C2
∆̄2ρ̄|Ŝ′|
PrT

∂T̂

∂ξ
+ ρ̄
(̂̂
u′j T̂ − ˆ̂u′j

ˆ̂
T
)
, (2.10)

and

Jj = û′kτjk. (2.11)

Here Ŝ′

ij is the coordinate-transformed strain rate tensor, the magnitude of which is defined

as |S′| = (2Ŝ′

ij Ŝ
′

ij)
1/2. The filter width is indicated by ∆̄ = (∆̄ξ∆̄η∆̄ζ)

1/3 for which ∆̄ξ,

∆̄η, and ∆̄ζ are the LES grid spacings in the three computational coordinate directions.

The SGS viscous diffusion term (Eqn. 2.8) is not modeled as it is typically an order of

magnitude smaller than the SGS heat flux [52]. Because of its relative insignificance and

because there are currently no reliable models available for this term (the uncertainty

of the models is on the order of the magnitude of the term itself [52]), the SGS viscous

diffusion is excluded from our LES governing equations. The LES solution is implicitly

filtered meaning that the coarse, under-resolved grid alone produces the filtered variables

of Eqn 2.3. An explicit filtering operation is needed, however, to determine the dynamic

coefficients (C1, C2) and the turbulent Prandtl number (PrT ). For this purpose, we use

a tophat filter defined as

f̄i =
1

2n

(
fi−n/2 + 2

i+n/2+1∑

i−n/2+1

fi + fi+n/2

)
. (2.12)
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In Eqn. 2.12, the subscript i is the central grid point, and n∆̄ξ determines the width of

the filter. The tophat filter is performed in computational coordinate space. For further

details on the calculation of the dynamic coefficients and turbulent Prandtl number, the

reader is referred to Mart̀ın et al. [52]. For more information on the transform of the

model coefficients into the generalized coordinate system, please see Armenio et al. [57].

Note that for the flows considered in this paper, namely the turbulent boundary layer and

two-dimensional compression ramp STBLI configuration, the averaging operation in the

definitions of C1, C2, and PrT is calculated locally as an ensemble average in the spanwise

(homogeneous) direction only.

In an a priori study of isentropic compressible turbulence, Martin et al. [52] showed

that both the correlation coefficient and the ‘rms’ amplitude of the solutions of τij and Qj

were improved by including the scale-similar model as compared to an eddy diffusion term

only. The first term in both Equations 2.9 and Eqn. 2.10 is the eddy viscosity contribution

to the estimates of τij and Qj, respectively, while the second term is the scale-similar

contribution. Further demonstration of the importance of including the scale-similar terms

for the accurate LES of STBLI flows will be given in in Chapter 3.

The following discretizations schemes are used to solve Eqn. 2.3 numerically. The

inviscid flux terms are discretized using a 4th-order linearly and non-linearly optimized

weighted essentially non-oscillatory (WENO) scheme [58, 59]. Both absolute and relative

limiters are used for efficient application of the WENO scheme, thus significantly reducing

the numerical dissipation caused by WENO throughout the flow [60]. Further reduction

of the numerical dissipation in the boundary layer is obtained by what is referred to as

filtering of the WENO candidate flux weights near the wall as was done by Martin [61].

The viscous fluxes and SGS terms are discretized using a 4th-order central differencing
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Figure 2.1: Schematic of LES computational domain and simulation strategy.

scheme. A low-storage, 3rd-order Runge Kutta method [62] is used for time advancement

of the solution.

2.3 Computational Database

Following the work of Priebe & Martin [12, 34], the LES compression ramp solutions

are run in two parts. These include an “auxiliary” boundary layer simulation which in turn

provides the inflow condition for the “principle” simulation of the ramp geometry. This

strategy is shown schematically in Fig. 2.1. The auxiliary boundary layer is run on a long

computational box, and the recycling/rescaling method of Xu & Martin [63] is used for the

assignment of the box inflow boundary condition. The solution at the rescaling plane near

the outlet of the auxiliary boundary layer domain is interpolated in time and space onto

the inlet of the grid of the compression ramp run as depicted in Fig. 2.1. The long rescaling

length of the auxiliary simulation allows the turbulence eddies to develop spatially and

to decorrelate as they convect the length of the box, thus minimizing any forcing that

might be caused by recycling the turbulence. The recycling/rescaling inflow technique

also ensures that the same boundary layer conditions are maintained at the exit over long
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simulation times. This feature is necessary in order to resolve the low-frequency cycle of

separated STBLI. By comparison, with purely streamwise periodic boundary conditions,

the boundary layer thickness steadily grows over time.

Four auxiliary boundary layers are considered in our LES/DNS comparison. Freestream

Mach numbers of 3, 7, and 10 are included. Each boundary layer condition is computed as

a DNS and again as an LES with the same freestream conditions, wall temperature, and

Reynolds numbers. The freestream conditions and boundary layer properties of each run

are listed in Table 2.1. Included in Table 2.1 are the boundary layer edge (subscript “e”)

Mach number Me, streamwise velocity Ue, temperature Te, and density ρe. Wall tempera-

ture is given as a fraction of the adiabatic recovery temperature Tr = (1+0.9(γ−1)M2
e /2).

Notice that the Mach 3 flows are approximately adiabatic while the Mach 7 and 10 flows

are cold walls. The inner friction velocity uτ = (τw/ρe)
1/2 is included together with

the boundary layer thickness δ, displacement thickness δ∗, momentum thickness θ, and

Reynolds numbers Reτ = δuτ/νw, Reθ = Ueθ/νe, and Re∗ = δ(τw/ρe)
1/2/νe. The bound-

ary layer length scales and Reynolds numbers are measured at the rescaling plane located

approximately one boundary layer thickness upstream of the box outlet. All cases are

fully turbulent.

The simulation case names in Table 2.1 indicate the freestream Mach number and

the simulation type: “D” for DNS and “L” for LES. Two Mach 3 boundary layer cases

are included in the database with the only significant difference between them being the

spanwise width of the computational domain. These two conditions are labeled as M3n

for “narrow” and M3w for “wide”. The purpose of running two different Mach 3 auxiliary

boundary layers is made clear in section 2.5 where the sensitivity of the Mach 3 STBLI

mean flow to the spanwise domain width is addressed. The boundary layer runs M3n-D
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and M7-D are borrowed from Priebe & Martin references [12, 34] as indicated by the

superscript next to their casenames in Table 2.1. For the purpose of evaluating the LES

solution of turbulent boundary layers at hypersonic conditions, a new DNS boundary layer

with a Mach 10 freestream is run together with an LES dataset of the same; however,

no DNS of a STBLI at the Mach 10 conditions are provided at this time due to the

computational resources that would be needed to run this case. Instead, this LES Mach

10 boundary layer is used later in Chapter 3 as the inflow condition to a new Mach 10

STBLI configuration. The DNS box M10-D is used solely for the evaluation of the LES

boundary layer solution M10-L.

The computational domain size and grid resolution of each boundary layer simu-

lation is provided in Table 2.2. The outer dimensions are listed in terms of a reference

boundary layer thickness δo. As shown in Fig. 2.1, the streamwise, spanwise, and wall-

normal dimensions are specified by Lx, Ly, and Lz respectively. The M3n runs are 2δo

wide and the M3w runs are 4δo wide. Both the Mach 7 and Mach 10 are run with extra

wide domains for which Ly = 10δo. All boundary layer computational grids have uniform

resolution in the streamwise and spanwise directions and geometric stretching in the wall-

normal direction. Streamwise and spanwise grid spacings are listed in terms of the inner

boundary layer length scale zτ = νw/uτ as indicated by the ‘+’ superscript. The distance

from the wall surface to the first wall-normal grid point is listed as z+2 . The total number

of grid points in each simulation is indicated by N .

Our compression ramp DNS and LES database is detailed in Table 2.3. The com-

pression ramp casenames begin with “R” followed by a number indicating the ramp de-

flection angle in degrees and ending with the case name of the boundary layer run that

was used as the inflow condition. In Table 2.3, φ is the ramp deflection angle in degrees.
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Case Me Ue Te ρe Tw/Tr uτ δ δ∗ θ Reτ Reθ Re∗

(m s−1) (K) (kg m−3) (m s−1) (mm) (mm) (mm)

M3n-D [12] 2.91 609.7 108.9 0.0757 1.1 33.0 7.16 2.56 0.460 336 2809 1406
M3w-D 2.92 609.9 108.9 0.0755 1.1 33.4 7.29 2.69 0.489 346 2971 1446
M7-D [34] 7.16 1146.2 63.8 0.0771 0.52 62.4 4.61 2.50 0.173 202 3342 2091
M10-D 9.04 1410.7 58.6 0.0403 0.33 62.9 17.9 10.5 0.543 495 7486 4870
M3n-L 2.92 610.3 108.8 0.0753 1.1 33.7 7.51 2.69 0.498 359 3030 1502
M3w-L 2.92 610.4 109.0 0.0754 1.1 33.0 8.47 2.93 0.566 400 3447 1666
M7-L 7.16 1145.9 63.7 0.0763 0.52 62.3 4.56 2.47 0.170 197 3254 2041
M10-L 9.05 1410.6 58.5 0.0401 0.33 60.4 19.1 11.2 0.585 503 8038 4958

Table 2.1: Boundary layer edge and wall conditions for the LES and DNS database.
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Case δo Lx/δo Ly/δo Lz/δo ∆x+ ∆y+ z+2 N × 10−6

(mm)

M3n-D [12] 7.1 8.3 2.0 8.2 6.8 4.2 0.21 7.3
M3w-D 7.1 8.3 4.0 8.2 6.9 4.3 0.21 13.4
M7-D [34] 5.0 27.0 10.0 14.2 7.1 2.9 0.24 96.7
M10-D 18.0 30.0 10.0 10.5 7.8 3.0 0.31 361.3

M3n-L 7.1 15.0 2.1 7.4 27.2 14.8 0.44 0.5
M3w-L 7.1 30.7 4.0 7.6 26.2 10.7 0.49 3.2
M7-L 5.0 26.6 9.5 13.6 27.8 10.7 0.48 3.0
M10-L 18.0 30.0 10.0 7.0 26.9 11.0 0.67 14.8

Table 2.2: Boundary layer grid size and resolution for the LES and DNS database.

As drawn in Fig. 2.1, Lx1 is the computational domain length from the inlet to the corner

and Lx2 is the length measured from the corner, along the ramp surface, to the outlet

plane. The width of each ramp computational domain is equal to that of its auxiliary

boundary layer. The computational grid is stretched in the streamwise and wall-normal

directions so that grid points are clustered near the corner and near the wall surface. The

grid spacing is uniform in y. The grid resolution properties are given in “+” units nondi-

mensionalized by the zτ of the incoming boundary layer provided in Table 2.1. The total

number of grid points for the compression ramp grids is indicated as N in Table 2.3. For

the Mach 3 runs, the mean separation length Lsep is provided in units of the inflow δ from

Table 2.1. The simulation duration over which mean statistics are computed is provided

in time units δ/Ue. For the separated Mach 3 runs, the simulation time is also given in

units of Lsep/Ue. All simulations, both auxiliary boundary layers and compression ramps,

were run with spanwise periodicity and supersonic exit conditions at the top and outlet

boundaries. No-slip velocity and constant temperature were assigned at the wall surfaces.

As noted in Section 2.2, the kinematic viscosity is specified as a function of the

LES filtered temperature. For the flows considered in this work, one of three different

viscosity laws is used depending on the range of temperatures occurring in the flow being
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Case φ Lx1/δo Lx2/δo ∆x+ ∆y+ z+2 N × 106 Lsep/δ tUe/δ tUe/Lsep

R24-M3n-D [12] 24o 7.9 6.4 7.3-3.39 4.2 0.19 21.0 2.93 1058 361
R24-M3w-D 24o 7.9 6.4 7.4-3.44 4.3 0.19 21.0 3.56 1000 281
R8-M7-D [34] 8o 12.0 10.6 7.2-3.6 2.9 0.19 138.4 attached 88 -
R24-M3n-L 24o 7.9 6.4 26.7-12.5 15.0 0.37 0.9 3.05 1070 350
R24-M3w-L 24o 7.9 6.4 27.1-12.6 10.7 0.37 2.3 3.71 871 223
R8-M7-L 8o 12.0 12.4 27.2-12.3 8.4 0.23 6.1 attached 146 -

Table 2.3: Compression ramp simulation details.
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simulated and on the working fluid. Sutherland’s law (Eqn. 2.13) is used for the Mach

3 simulations for which the temperatures does not drop below 100K and the working

fluid is air. For flows experiencing temperatures below this threshold, Keyes temperature-

viscosity relations [64] are more accurate than Sutherland’s law [8, 34]. Keyes relation for

air (Eqn. 2.14) is used for the Mach 7 simulations. The working fluid of the Mach 10 flows

is pure Nitrogen for which Keyes law for Nitrogen is used (Eqn. 2.15).

µ̂ = 1.458 × 10−6 T̂ 3

T̂ + 110.3
(2.13)

µ̂ = 1.488 × 10−6 T̂ 1/2

1 + (122.1/T̂ )10−5/T̂
(2.14)

µ̂ = 1.418 × 10−6 T̂ 1/2

1 + (116.4/T̂ )10−5/T̂
(2.15)

The reader is directed to the references indicated in Tables 2.1-2.3 for further details

on the compuational setup and initialization of the Mach 3 and Mach 7 DNS runs. We

now describe the initialization method of the datasets that are new to this article. The

M3w-D boundary layer run was initialized from an instantaneous volume solution of the

M3n-D run streteched in the streamwise and spanwise directions. The M10-D boundary

layer was initialized using the method of Martin et al. [65] in which a mean boundary

layer profile obtained from a RANS solution is added to the fluctuation flowfield of an

incompressible turbulent boundary layer DNS scaled by the mean density according to

Morkovin’s hypothesis. All LES auxiliary boundary layer runs (M3n-L, M3w-L, and M7-

L) were initialized by selecting a single instantaneous volume solution of the corresponding

DNS flow, applying a tophat filter in space, and then interpolating the filtered solution

onto the LES grid. In all cases, the initial boundary layer flow volume was allowed to
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Figure 2.2: Auxiliary boundary layer mean profiles of (a) streamwise velocity and (b)
temperature normalized by the freestream value. Profiles are taken from the rescaling
plane near the outlet of the box. The DNS profiles are not filtered.

run through a transient. Establishment of a statistically accurate boundary layer flow

was determined by the convergence of the spatial correlation lengths, the skin friction

level, and the displacement and momentum thicknesses. The new compression ramp runs

(R24-M3w-D, R24-M3n-L, R24-M3w-L, and R8-M7-L) were initialized by taking a volume

solution from their respective inflow boundary layer runs and interpolating it along the

entire length of the ramp surface. The ramp flow was then run through a transient phase

until the skin friction distribution showed that the interaction region had reached its

natural separated state.
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Figure 2.3: Van Driest transformed velocity profiles at the auxiliary boundary layer rescal-
ing plane. The DNS profiles are not filtered.

2.4 Turbulent Boundary Layer

In this section we present the statistical evaluation of the mean flow at the rescaling

plane of the auxiliary boundary layer simulations from Table 2.1. As can be determined

from the grid resolution information listed in Table 2.2, the resolution of the LES auxiliary

boundary layers is reduced from that of the DNS by a factor of (approximately) 4, 4, and

2 in the i, j, and k-directions respectively. In order to obtain a filtered DNS flowfield

to compare to the LES solution, the tophat filter of Eqn. 2.12 was applied to the DNS

solution in computational space with filter widths corresponding to the grid size of the

LES. We found that the first-order mean flow statistics of the DNS data were unaffected

by the filtering operation. Time- and spanwise-averaged profiles of streamwise velocity

and temperature nondimentionalized by the freestream are plotted versus z/δ in Fig. 2.2

together with the unfiltered DNS data. Because the M3w and M3n boundary layer con-

ditions are so similar, only the profiles from M3w are shown. An excellent comparison of

mean velocity and temperature is made. The discrepancy between the LES and DNS is

found to be within 3% error for both the Mach 3 and Mach 7 and within 5% for the Mach
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Figure 2.4: Turbulent kinetic energy profiles (TKE = 〈û′iû′i〉/U2
e ) at the auxiliary boundary

layer rescaling plane. The DNS data is Favre-filtered by the tophat filter of Eqn. 2.12.
The filter width in i, j and k is indicated by the number in parentheses.

10. The van Driest transformed velocity profiles are plotted in Fig. 2.3. These density-

weighted and integrated mean velocity profiles also show excellent comparison with the

unfiltered DNS data. All three flow conditions result in less than 3% error.

The profiles of time- and span-averaged turbulent kinetic energy, defined as TKE =

〈û′iû′i〉/Ue, are plotted in Fig. 2.4. The angled brackets indicate the time and spanwise

Reynolds average, and (’) now represents a fluctuation about the Reynolds average and

is not to be confused with the grid transform definition in Eqn. 2.4. The tophat-filtered

DNS solutions are now used for the comparison of the TKE. The numbers in parentheses

in the legend of Fig. 2.4 indicate the filter width of the tophat filter applied to each DNS

dataset. For example, (442) refers to a tophat filter with n = 4, 4, and 2 in the i, j, and

k grid directions respectively. The difference in the peak TKE level between the LES and

the filtered DNS is less than 2%.

The percentage of total turbulent kinetic energy contained in the SGS terms of the

LES can be estimated in one of two ways, either by computing the difference between the

TKE profiles of the LES and DNS, or by computing the difference between the filtered

DNS and the unfiltered DNS. Both of these estimates are plotted in Fig. 2.5 for the
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Figure 2.5: The fraction of TKE contained in the sub-grid scales for the M7-L boundary
layer run. The dashed line shows the TKE difference in the filtered DNS compared to
the unfiltered DNS. The symbols show the TKE difference in the LES as compared to the
unfiltered DNS.

Mach 7 boundary layer. Note that the difference in TKE is expressed as a fraction of

the local DNS value. The estimation from the filtered DNS shows that the percentage

of unresolved TKE is approximately 14% for the majority of the boundary layer. Below

z/δ = 0.2, the percentage drops to a minimum of 7% and then increases to a maximum

of 18% at the wall. The estimation from the LES solution matches the filtered DNS for

z/δ below approximately 0.6. There is a discrepancy between the two estimates, both at

the wall and at the boundary layer edge. This is at least partially due to the fact that the

total TKE goes to zero at these two locations, thus increasing the error sensitivity. Similar

results are obtained for the Mach 3 and Mach 10 boundary layers for which the percentage

of unresolved TKE are consistently between 10% and 15%, and the local minimum near

the wall does not drop below 5%.

Further information on the truncation of the turbulence fluctuations in the LES data

can be obtained through spectral analysis. The pre-multiplied power spectral density of

the time signal of mass fluctuations (defined as (ρ̄û)′ for the LES and (ρu)′ for the DNS)

in the Mach 7 boundary layer is plotted in Fig. 2.6. The time signal is taken from a

point in the center of the logarithmic layer at z+ = 50 (z/δ = 0.25) where the SGS TKE
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Figure 2.6: Pre-multiplied power spectral density of mass fluctuations ((ρ̄û)′ for the LES
and (ρu)′ for the DNS) at the rescaling plane of the Mach 7 auxiliary boundary layers.

percentage is about 12%. In Fig. 2.6, the frequency is non-dimensionalized by δ/Ue. The

spectra are calculated using Welch’s method with eight overlapping time segments and

bin sampled with a bin width of log10(fδ/Ue) = 0.1. Included in this comparison of the

spectra is the tophat-filtered DNS signal. The tophat-filtered DNS spectra was obtained

by taking the full resolution DNS time signal of (ρu)′ at z+ = 50 at the boundary layer

rescaling plane and filtering it with the tophat filter converted from space to time via

Taylor’s hypothesis of frozen turbulence [66]. The local mean velocity was used for the

time-to-space conversion. Because the magnitude of the spectral density is arbitrary, the

spectra are scaled so that the three curves coincide at the lowest frequencies. By plotting

the spectra in this way, one can see how the LES truncates the solution at the highest

frequencies of motion when compared to the DNS and filtered DNS. Figure 2.6 shows

that the spectral content of both the LES and the filtered DNS is essentially unaffected

for wavelengths below fδ/Ue . 0.4. The comparison between the LES and filtered DNS

spectra indicate that the tophat filter truncates the high frequency content in the DNS

data in a manner very similar to the truncation of the turbulence by the LES solver. The

results shown in Fig. 2.6, together with Figures 2.4 and 2.5, demonstrate that the tophat-
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Figure 2.7: Instantaneous visualization of density in a center-span xz-plane of R24-M3-L.

filter operation applied to the DNS data closely mimics the LES solution and therefore is

an acceptable method of validating the LES data.

2.5 Supersonic Separated STBLI

In this section we evaluate the LES soltuions of the Mach 3 compression ramp flows

listed in Table 2.3. The resolution of the LES compression ramp grids is reduced from the

DNS of Priebe & Martin [12] by a factor of approximately 4, 2, and 2 in the i, j, and k-

grid directions respectively. Applying a (422) filter results in approximately a 10% to 15%

reduction in the TKE throughout the interaction region and in the downstream recovering

boundary layer. As with the boundary layer from Section 2.4, the first-order mean flow

statistics of the DNS data were found to be unaffected by this filtering operation.

The corner flow of the R24-M3w-L run is visualized in Fig. 2.7 by a snapshot of

the instantaneous density field in an xz-plane located at the center of the span width.

Several of the key features of this flow are visible in Fig. 2.7. One can clearly make

out the large forward-leaning turbulence structures in the incoming boundary layer, the

initial compression waves upstream of the corner, the main shock front, and even several
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shocklets emitting from the turbulence structures in the downstream boundary layer. A

change in the length scale of the turbulence across the shock is also apparent. From this

figure, it is evident that, even with the factor of 16 decrease in grid resolution, the LES

solution maintains a high level of detail in the turbulence.

In Fig. 2.8 (a) is shown the time- and spanwise-averaged distribution of skin fric-

tion coefficient Cf ≡ 2τw/ρeUe
2 for both the wide and narrow domain solutions plotted

versus x′/δ. The LES averaged skin friction distributions are compared to the DNS in

Fig. 2.8. Here the x′-axis is defined as the distance measured along the wall surface with

x′ = 0 located at the ramp corner. The mean separation and reattachment points are

defined as the x′ locations where the Cf crosses zero. The separation length Lsep is the

distance between these two points measured along x′. The data shows that the separation

length differs significantly between the wide-domain and narrow-domain solutions. This

difference in Lsep with spanwidth is seen in both the LES and DNS solutions. Considering

this, the fact that the narrow spanwidth modifies the size of the separation is not surpris-

ing. Many studies have shown that the supersonic compression ramp STBLI flow is not

strictly two dimensional but has a spanwise periodicity on the order of the boundary layer

thickness (See [24] and the references therein). The sensitivity of the separation length

to the spanwidth, however, it is an important behavior to be aware of in interpreting the

separation data of STBLI simulations as many of the available DNS and LES simulations

are computed on narrow domains. To the authors’ knowledge, this spanwidth effect has

not been closely addressed. For the comparison of the current Mach 3 datasets, we note

that if the skin friction is plotted versus x′/Lsep instead of x′/δ, all four solutions collapse

extremely well as in Fig. 2.8 (b) indicating that the separation length is the appropriate

length scale for the comparison of the mean flow.
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Figure 2.8: Mean wall distributions of (a) skin friction versus x/δ, (b) skin friction versus
x/Lsep, and (c) wall pressure versus x/Lsep for the Mach 3 STBLI solutions. The DNS
data are not filtered.
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The skin friction distribution itself is characterized by a multi-inflection point curve

in the separated region in which a local maximum in Cf occurs in the center of the

separation bubble. Using a conditional averaging technique, Priebe & Martin [12] showed

that this feature in the skin friction signature is caused by specifically the bubble collapse

phase in the low-frequency oscillation cycle of the separation bubble unsteadiness. The

fact that the LES captures the same Cf distribution as the DNS is an indication that the

low-frequency dynamical mode is simulated correctly by the current LES method.

The time- and spanwise-averaged wall pressure distributions of the Mach 3 ramp so-

lutions are plotted in Fig. 2.8 (c). In the separated region, a slight leveling off or “plateau”

in the pressure is noticeable. Wu & Martin [60] demonstrated that excess numerical dis-

sipation can prevent the occurrence of this feature. The quality of the comparison in 2.8

(c) provides assurance that the LES does not suffer from this problem despite the coarser

grid resolution.

The separation shear layer is another feature of the supersonic STBLI separated flow

that is crucial to the overall accuracy of the solution. Figure 2.9 (a) shows the comparison

of the profiles of mean velocity through the separation shear layer of the LES and DNS

data. These profiles were taken from the time- and spanwise-averaged mean flow solutions

along a line perpendicular to the wall surface just ahead of the corner at x′/Lsep = −0.15.

The excellent comparison confirms that the LES is correctly reproducing the aspect ratio

of the separation bubble as well as the spreading rate of the shear layer. Streamwise and

spanwise turbulence intensities taken from the same location are plotted in Fig. 2.9 (b).

Here the LES is compared to the filtered DNS solutions. Again, an excellent comparison

is made. The peak turbulence levels of the LES are within 6% of the DNS.

The spectral content associated with the low-frequency unsteadiness in supersonic
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Figure 2.9: Profiles of (a) mean velocity, and (b) turbulence intensities in the shear layer
of the Mach 3 STBLI solutions. The DNS in (a) is not filtered. A (422) filter is applied
to the DNS data in (b).
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Figure 2.10: Pre-multiplied power spectral plots of the time history of (a) separation point,
and (b) reattachment point in the narrow Mach 3 STBLI DNS and LES solutions.
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separated STBLI is well documented both experimentally and computationally (For ex-

ample see [11, 12]). The pre-multiplied power spectral density of the R24-M3n-L run

separation time signal is plotted in Fig. 2.10 (a) with the DNS spectra from Preibe & Mar-

tin [12]. The nondimensionalized frequency Strouhal number is defined as St = fL/Ue.

Because the simulation duration only resolves approximately 10 low-frequency cycles, it is

not expected that the lowest frequencies are spectrally converged. However, the LES and

DNS both show the dominant energy content occurs in the range of St ≈ 0.01 to 0.03. A

similar comparison is made in Fig. 2.10 (b). with the reattachment signal spectra. The

compressed incoming turbulence and the spanwise-oriented mixing layer-like vortices that

form in the separation shear layer both contribute to the broadband energy in the reat-

tachment spectra. The LES matches the broadband energy content of the DNS centered

at St of O(0.1) Some low-frequency energy is also captured in the reattachment spectra

of the LES with good comparison to the DNS spectra.

2.6 Hypersonic Attached STBLI

In this section we present the LES-to-DNS comparison of the flow organization, mean

wall quantities, and Reynolds stress contours of the attached Mach 7, 8o compression ramp

configuration (datasets R8-M7-L and R8-M7-D in Table 2.3). A spatial tophat filter with

filter widths of 4, 4, and 1 in the i, j, and k grid directions respectively was applied to the

DNS data for postprocessing. As with the bounday layer solutions of Section 2.4 and the

supersonic STBLI solution of Section 2.5, the first-order mean flow statistics of the DNS

solution R8-M7-D were not affected by the filter.

An instantaneous snapshots of the density field in an xz-plane located at the center

span of the three-dimensional flow volume of the LES solution is plotted in Fig. 2.11.
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Figure 2.11: Instantaneous visualization of density in a center-span xz-plane of R8-M7-L.

As was shown in Section 2.4 with the Mach 3 STBLI, the instantaneous density field

provides a descriptive image of the turbulence structure and overall flow organization.

The structure of the incoming turbulence is seen as large, dark conglomerates of eddies

about the size of the incoming boundary layer thickness. The main shock front is visible

as a light area above the ramp surface. The main shock is seen to wrap around the large

turbulence structures of the boundary layer as they pass through the interaction. Priebe

& Martin [34] noted similar features in a comparison of instantaneous visualizations of

the DNS solution and the experimental Filtered Rayleigh Scattering images of Bookey et

al. [35].

Time- and spanwise-averaged wall distributions of skin friction, pressure, and heat

transfer are plotted for the LES and for the unfiltered DNS in Fig. 2.12. The heat transfer

coefficient, or Stanton number, is defined as Ch ≡ qw/ρeUecp(Tw − Tr) where qw is the

rate of heat transfer at the wall and cp is the specific heat at constant pressure. The wall

quantities are plotted versus the distance measured along the wall surface from the ramp

corner. The wall-distance is labeled in Fig. 2.12 as x′ to distinguish it from the simulation

(x, y, z) coordinates. The skin friction distribution shown in Fig. 2.12 (a) makes a sharp

dip at the corner but does not drop below Cf = 0. This STBLI flow is therefore said to
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Figure 2.12: Wall distributions of (a) skin friction coefficient Cf = 2τw/ρeUe, (b) pressure,
and (c) heat transfer coefficient Ch ≡ qw/ρeUecp(Tw − Tr) of the Mach 7, 8o compression
ramp LES and (unfiltered) DNS mean flow solutions.
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Figure 2.13: Time- and spanwise-averaged reverse probability at the wall surface of the
Mach 7, 8o compression ramp LES and (unfiltered) DNS flow solutions.

be attached in the mean sense. The LES solution closely follows the DNS skin friction

dip at the corner and also the gradual increase in the recovering boundary layer further

downstream. On the ramp surface, the difference in skin friction between the LES and

the DNS is approximately 3%. The LES solution of wall pressure in Fig. 2.12 (b) also

shows an excellent comparison with the DNS and there is no notable difference between

the two. The heat transfer coefficient in Fig. 2.12 (c) is also found to be within 4% of

the DNS solution on the ramp. The shallow dip at x′/δ = 0 and the subsequent step-like

incease to the downstream heat transfer level are well resolved in the LES data.

Although it is fully attached in the mean sense, Priebe & Martin [34] found that

this particular Mach 7 STBLI configuration has a certain probaility of instantaneous

separation at the corner. In Fig. 2.13, the spanwise averaged probability of flow reversal

at the wall γ̄u as reported by Priebe & Martin for R8-M7-D is compared to the same

quantity calculated for R8-M7-L. The quantity γ̄u is the fraction of flow instances over the

total number of flow realization in the ensemble average for which the streamwise velocity

u < 0. Figure 2.13 shows the distribution of γ̄u one grid point above the wall surface. The

width of the probability distribution as well as the maximum at the corner are in excellent
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Figure 2.14: Contours of averaged (a) streamwise, (b) wall-normal, and (c) cross turbu-
lence stresses in the Mach 7, 8o compression ramp flow solutions. The color contour is the
filtered DNS data and the solid line contour is the LES data.

agreement between the LES and DNS data. The peak probability at x′/δ = 0 is 31% for

both the DNS and the LES.

Next we compare the turbulence stresses
√

ũ′′u′′,

√
w̃′′w′′, and ũ′′w′′ to the filtered

DNS flow. Here the tilde represents a Favre averaged quantity such that ũ = 〈ρu〉/〈ρ〉

and a fluctuation about the Favre average is indicated by the double prime such that

u′′ = u − ũ. The color contours in Fig. 2.14 represent the Favre averaged turbulence

stresses of the filtered DNS solution and the overlying black contour lines are the same for

the LES solution. The stresses are nondimensionalized by the incoming boundary layer

friction velocity uτ . The two contours of the filtered DNS and the LES are very nearly

the same for all three quantities and the areas of turbulence amplification are very well
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reproduced by the LES both in the spatial extent and in magnitude. The peak turbulence

in the LES contours differs from the filtered DNS peak levels by 0.2uτ in the streamwise

and cross stresses, and by only 0.1uτ in the wall-normal stress. Although not included in

Fig. 2.14, the error in the maximum of the spanwise stress componenet
√

ṽ′′v′′ was found

to be less than 0.03uτ .

2.7 Summary

In this chapter it was demonstrated that the LES method of Section 2.2 solving the

Favre-filtered equations for conservation of mass, momentum, and total energy using a one-

coefficient mixed model for SGS shear stress and heat flux [52], a triple correlation relation

for SGS turbulence diffusion [56], and a bandwidth optimized WENO discretization scheme

produces accurate solutions of hypersonic STBLI.

The LES solutions of the incoming turbulent boundary layers at Mach 3, 7 and 10

showed an excellent statistical comparison with the filtered DNS solution in the profiles of

mean velocity, temperature, van Driest transformed velocity, and turbulent kinetic energy.

Spectral content in the LES and filtered DNS boundary layers indicated that the tophat

filter is a good approximation of the LES solution truncation of the smaller turbulence

scales. In conclusion, the tophat filtered DNS solution provides a good comparison for

the validation of the LES solution. A comparison among the LES, DNS, and filtered

DNS solutions of TKE revealed that the LES resolution used in this study resulted in

approximately 12%-25% of the total TKE being contained in the SGS terms.

The LES was shown to accurately reproduce the separated Mach 3 STBLI solution in

terms of skin friction distribution (separation length), wall pressure, shear layer profiles,

and frequency content at separation and reattachment. Neither the DNS solution of
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Priebe & Martin [12] nor the R23-M3n-L LES solution presented here can be considered

as spectrally resolved at the low frequencies associated with the shock unsteadiness as only

about 10 low-frequency cycles are contained in either dataset. However, the comparison of

the LES and DNS separation spectra showed that the dominant energy in both solutions

is contained at the lowest frequencies in the range fLsep/Ue ≈ 0.03 to 0.1. In addition,

the simulation of two different span widths for the Mach 3 separated STBLI condition

(Ly = 2δ and Ly = 4δ) presented in Section 2.5 of this paper indicates that the compression

ramp STBLI, although a two-dimensional geometry, is not a strictly two-dimensional flow.

Many studies on supersonic separated STBLI have identified a spanwise-periodic structure

in the separated flow and there is evidence that this spanwise periodicity is linked to the

form of the low-frequency unstable mode [1, 22, 24, 41, 67, 68]. If the domain width is

too narrow, these structures may be artificially confined in the spanwise direction thus

altering the separation length.

The hypersonic STBLI comparison revealed that the LES properly reproduced the

mean turbulence field including the strong amplification of the Reynolds stress components

as well as the wall shear stress and heat transfer. The incipient separation of this condition

documented by Priebe & Martin [34] was very well reproduced by the LES as indicated

by the probability of instantaneous reverse flow along the ramp surface.

Concerning the application of the LES method, we used a rather conservative filter

strength. The filter strength was achieved by downsampling the i-, j-, and k-grids by

approximately 4, 4, and 2 from the resolution needed to run the code in DNS mode, that

is, with the SGS model terms turned off. As a result, the LES operates on a factor of

32 fewer grid points than the DNS which is equivalent to 3% of the DNS computational

cost. This is a significant reduction even considering the computational overhead needed
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to solve the LES model equations. Because of the coarser grid, the CFL condition of the

numerical method necessarily produces a larger time step for the LES. In the case of the

separated Mach 3 flow (R24-M3-L), the average LES time step was 2.8 times larger than

that of the DNS. Further savings in the computational cost and runtime could be achieved

by studying the limit of SGS filtering that the LES method can handle and still produce

an accurate solution. The boundary layer profiles of percentage TKE in the SGS terms

shown in Fig. 2.5 show there is approximately 25% energy in the SGS at the wall and 12%

in the majority of the boundary layer above z/δ = 0.2. The a priori studies of Martin

et al. [52] indicate that maintaining 25%-30% TKE in the SGS throughout the boundary

layer may be possible.
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Chapter 3: LES of Two Separated Hypersonic STBLI

§The majority of this chapter is reproduced from Helm & Martin [53].

3.1 Chapter Overview

In light of the validation analysis presented in Chapter 2, we now proceed to use the

LES method of Chapter 2 to generate two new datasets of separated hypersonic STBLI

flows. The first of these is a Mach 7 flow with the same freestream and boundary layer

conditions as the attached R8-M7-L ramp but the ramp angle is increased from 8o to 33o

The M7-L turbulent boundary layer run is again used as the inflow condition. The second

is a Mach 10 flow over a 34o compression ramp for which the incoming boundary layer is

the M10-L dataset. Following the naming convention introduced in Chapter 2, these two

new datasets are referred to as R33-M7-L and R34-M10-L respectively.

This chapter is primarily concerned with the documentation of the time- and spanwise-

averaged flow field of these two separated hypersonic datasets. Details of the computa-

tional setup and the convergence of the mean flow are given in Section 3.2. A description

of the flow organization is given in Section 3.3 including a comparison of the downstream

flow with the oblique shock solution. The mean solution of velocity, temperature, and

density as well as averaged wall quantities are provided in Section 3.4. Wall quanti-

ties reported include the pressure, skin friction, heat transfer and the variation in the

fluctuation intensities of these properties along the ramp surface. The solutions of the
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averaged turbulence are the topic of Section 3.5. Turbulence data included in this chapter

are the averaged Reynolds stress flow fields, the turbulent kinetic energy budgets, and

the anisotropy tensors. Several turbulence modeling assumptions are evaluated for these

flows including the Reynolds Analogies relating velocity and temperature fluctuations, the

Reynolds Analogy Factor (RAF) relating skin friction to heat transfer, and the so-called

QP85 law [69] relating wall pressure to wall heat transfer.

An important result presented in this chapter is the comparison of the LES solu-

tions of the separated hypersonic STBLI using the current dynamic mixed model to that

generated using the dynamic eddy viscosity model only. As is discussed in Section 3.7, the

conservative energy exchange that is accounted for by the scale-similar term in the mixed

model is necessary for the accurate simulation of the separation shear layer. Excluding

the scale-similar term was found to result in as much as 30% error in the separation length

at high Mach number.

This chapter concludes with a summary of results in Section 3.8.

3.2 Computational Setup and Mean Flow Convergence

Details of the computational grid, simulation duration, and mean separation length

of the R33-M7-L and R34-M10-L runs are provided in Table 3.1. The computational

domain of R33-M7-L has the same outer dimensions and grid resolution as the R8-M7-

L simulation. The outer dimensions of the R34-M10-L grid are comparable to those of

the Mach 7 ramp when expressed in units of the incoming boundary layer thickness.

Both simulations are computed on wide domains where Ly/δo = 10 for the purpose of

minimizing any possible spanwise confinement effects on the separated flow region as was

discussed in Section 2.5.
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Case φ Lx1/δo Lx2/δo ∆x+ ∆y+ z+2 N × 106 Lsep/δ tUe/δ tUe/Lsep

R33-M7-L 33o 12.0 12.0 26.6-11.3 8.4 0.23 6.1 6.2 3153 511
R34-M10-L 34o 13.0 12.0 27.7-10.5 7.1 0.20 51.8 4.1 451 110

Table 3.1: Hypersonic compression ramp simulation details.
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The R33-M7-L flow was initialized from an instantaneous volume solution of the R8-

M7-L dataset. The compression ramp angle was gradually increased from 8o at startup to

the final angle of 33o, and the flow was allowed to develop through a transient until the

separation length was no longer increasing in time. Once the separation region became

established, the simulation was run for a duration of 3150δ/Ue over which mean flow

statistics were averaged. The mean separation length was measured to be 6.2δ. In terms

of the mean separation length, the duration of the run is equivalently 510Lsep/Ue. The

R34-M10-L compression ramp was initialized in a similar way in that an instantaneous

volume solution of the M10-L boundary layer was interpolated onto an 8o ramp and the

ramp angle was steadily increased until the final angle of 34o was reached. The flow was

then allowed to develop to its natural separation length. The R34-M10-L case was run at

over twice the Reynolds number of the R8-M7-L case and, as a result, requires an order

of magnitude increase in the number of grid points compared to R8-M7-L. Due to the

greater computational cost, the Mach 10 simulation was only run for 450δ/Ue over which

mean statistics could be taken. Over this duration, the separation length averaged to 4.1δ

resulting in a simulation duration of 110Lsep/Ue.

The convergence of the mean flow statistics in separated STBLI is limited by the

convergence of the low-frequency unsteadiness in the separation bubble which oscillates

at frequencies much lower than those of the incoming turbulence. As was discussed in

Section 2.5, the pre-multiplied power spectral density of the time signals of separation

and reattachment provide information on the dominant frequencies in the interaction

region turbulence. The pre-multiplied power spectra of the separation and reattachment

points in the Mach 7 and in the Mach 10 data are plotted in Fig. 3.1. The spectra are

normalized so that the area below a given curve sums to unity when integrated over the
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Figure 3.1: Premultiplied power spectral density of the time history of separation and
reattachment in (a) R33-M7-L and (b) R34-M10-L.
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logarithmic exponent of the frequency. The separation spectra are dominated by the

energy in the lowest frequencies with very little energy in the fine-scale turbulence. The

Mach 7 separation spectra in Fig. 3.1(a) shows a distinct low-frequency peak centered at

StL = 0.1 and significant energy at normalized frequencies as low as StL = 0.03. Because

of the shorter simulation duration, the lowest frequencies in the Mach 10 spectra shown

in Fig. 3.1(b) are not as well converged as in the Mach 7 data; however, the dominant

frequencies occur in the same range of StL. Concerning the reattachment spectra, both

cases show a broadband spread in energy centered at approximately StL = 1. This wide

energy band in the reattachment signal is seen to trail off on either side at the same

frequencies that the high and low frequency energy peaks in the separation spectra trail

off.

The lowest energized frequency of StL = 0.03 in the separation region corresponds

to a time scale of 33Ue/Lsep. The Mach 7 dataset, therefore, contains at least 15 of these

low-frequency cycles and the Mach 10 dataset at least 3. Samples of the separation and

reattachment signals normalized by Lsep are plotted in Fig. 3.2 for both the Mach 7 and

Mach 10 flows. Visual inspection suggests that the mean separation point is well defined

by the sample length of 100Lsep/Ue. If the full Mach 7 separation signal is split up into

10 overlapping segments of length 100Lsep/Ue and the average separation position xs is

calculated from each segment, we find that the largest error in xs is within 3% of the

full signal average with a standard deviation of 1.7%. We conclude that a duration of

100Ue/Lsep, or approximately three low-frequency cycles, is sufficient for the convergence

of the separated STBLI mean flow to within 3% error.
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Figure 3.2: Sample time signals of spanwise-averaged separation and reattachment posi-
tions from R33-M7-L ((a) and (b) respectively) and from R34-M10-L ((c) and (d) respec-
tively).

Figure 3.3: Instantaneous snapshot of the three-dimensional turbulence and shock front in
(a) the R33-M7-L and (b) the R24-M10-L simulations. An isosurface of density gradient
(|∆ρ| = 0.7) is colored by the magnitude of streamwise velocity. The flow direction is
from the bottom left to top right of the image.
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3.3 Flow Organization

The turbulence structure and flow organization of the R33-M7-L and R34-M10-L

datasets are visualized in Fig. 3.3 by three-dimensional isosurfaces of the instantaneous

density gradient. These isosurfaces are colored by the instantaneous streamwise velocity.

The large-scale turbulence eddies in the incoming boundary layer appear as bulges in the

isosurface. Reverse flow in the separation bubble can be seen as the area in blue at the

corner. The isosurface also shows that the shock begins to form at a shallow angle inside of

the turbulent boundary layer ahead of the separation bubble. This initial separation shock

intersects the ramp surface and reflects off the wall to form the main oblique shock. The

turbulence eddies in the incoming boundary layer appear to be heavily compressed below

this point of reflection. A clear shift can be seen in the spatial scales of the turbulence

from the incoming boundary layer eddies to the larger ripples in the shockwave above

the separation bubble and just downstream of reattachment. This shift in scales was also

noted by Wu & Martin [70] in the DNS of a Mach 3 compression ramp at similar conditions

to the R24-M3n-D case from Section 2.5. In both flows, the main shock front becomes

two-dimensional as it comes away from the ramp surface and exits the computational

domain.

Many of these same features in the turbulence can also be seen in Fig. 3.4 which

shows the instantaneous density field in an xz-plane cut through the center of the simu-

lation span. The large eddies in the incoming boundary layer are seen as dark structures

(lower density) and the shock front as the lighter features (higher density). The separation

shock in the Mach 7 flow appears to come slightly away from the edge of the boundary

layer before reflecting off the ramp surface. The separation shock of the Mach 10 flow,
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Figure 3.4: Instantaneous snapshot of density in an xz-plane through the center of the
spanwidth of (a) the R33-M7-L and (b) the R34-M10-L.

Figure 3.5: Time- and spanwise-averaged Numerical Schlieren of (a) R33-M7-L and (b)
R34-M10-L. NS = 0.76exp(−1.3|∇ρ|/|∇ρ|max).

on the other hand, remains embedded in the turbulent boundary layer due to its smaller

separation length. In Fig. 3.4, the shock front in both flows appears distorted by the

turbulence structures in the separated region and near the shock reflection point on the

ramp surface.

The time- and spanwise-averaged flowfields are visualized in Fig. 3.5 by what is

referred to as a Numerical Schlieren, or the exponent of the mean density gradient field

NS = 0.76exp(−1.3|∇ρ|/|∇ρ|max). In both mean flows, the angle that the main shock front

makes to the freestream approaches the inviscid oblique shock solution as it comes away

from the wall. The inviscid solution angle is 44o for the Mach 7 configuration and 44.5o for

the Mach 10. Mean flow profiles taken from the exit plane of the computational domain
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Figure 3.6: Post-shock profiles of (a) Mach number, (b) temperature, (c) total pressure,
and (d) static pressure at the outlet plane of the computational domain. Profiles are
normalized by the inviscid oblique shock solution. The dashed lines are the Mach 7
solution and the solid lines the Mach 10.

(Fig. 3.6) show that, outside of the boundary layer, the Mach number, temperature,

and total pressure closely match the inviscid post-shock conditions. The downstream

pressure comes just short of the oblique shock pressure jump. In Fig. 3.6, z′ indicates the

perpendicular distance from the ramp surface.

3.4 Mean Flow

Contour plots of the Favre-averaged velocities ũ and w̃, the Favre-averaged tem-

perature T̃ , and the Reynolds-averaged density ρ of the R33-M7-L and R34-M10-L mean

flowfields are shown in Fig. 3.7. The extent of the reverse flow region is visible as the red

area (negative velocity) in Figs. 3.7 (a) and (b) of the Mach 7 and Mach 10 flows respec-

tively. In both mean flow solutions, the maximum reverse flow is approximately 12% of Ue.

The position of the averaged separation shock above the reverse flow region is visible in the

contour plots of w̃ in Figs. 3.7 (c) and (d). A pocket of downward fluid motion on the aft

end of the separation bubble is also visible. The temperature contours in Figs. 3.7(e) and

52



Figure 3.7: Contours of (a)-(b) Favre-averaged streamwise velcity ũ, (c)-(d) wall-normal
velocity w̃, (e)-(f) temperature T̃ , and (g)-(h) Reynolds averaged density 〈ρ〉 normalized
by the freestream values. R33-M7-L are plotted on the left and R34-M10-L on the right.
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(f) show that the maximum heating in the flow occurs inside the separation bubble in the

dead air region. Here the Mach 7 mean flow experiences a maximum mean temperature

of 8.7Te and the Mach 10 a maximum of 12.5Te. Note that the heating inside the separa-

tion bubble exceeds the inviscid post-oblique shock temperature prediction of 5.7Te (50%

increase) for the Mach 7 condition and 8.7Te (40% increase) for the Mach 10 condition.

The contours of density in Figs. 3.7 (g) and (h) are found to change only slightly in the

recirculation area. The peak value in mean density occurs in the downstream boundary

layer near the wall surface reaching a peak of 6.5ρe on the Mach 7 ramp and 10.0ρe on the

Mach 10 ramp. This increase in density at the wall exceeds the inviscid shock solution of

5.0ρe (30% increase) for the Mach 7 and 5.3ρe (90% increase) for the Mach 10.

The details of the mean flow fields are further highlighted by individual profiles of the

velocity, temperature, and density. These profiles are plotted for R33-M7-L and R34-M10-

L in Fig. 3.8. Profiles at four streamwise locations are shown and include the upstream

undisturbed boundary layer (x′/Lsep = −1.3), mean separation (x′/Lsep = −0.65), the

corner (x′/Lsep = 0), and the downstream recovering boundary layer (x′/Lsep = 1.9). The

streamwise coordinate x′ indicates the distance from the corner measured along the wall

surface. The wall-normal coordinate z′ is measured perpendicularly from the wall surface.

This notation is maintained throughout the remainder of this article. Note that for the

downstream boundary layer profiles, we rotate the velocity field coordinates so that ũ

represents the velocity component in the direction parallel to the ramp surface and w̃ the

velocity component perpendicular to the ramp surface.

The profiles of ũ (Fig. 3.8 (a) for the Mach 7 and Fig. 3.8 (e) for the Mach 10) show

that the boundary layer thickness is significantly reduced in the downstream recovering

boundary layer. The boundary layer begins to lift away from the wall at separation, as
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Figure 3.8: Individual profiles of (a),(e) Favre-averaged streamwise velocity ũ, (b),(f)
wall-normal velocity w̃, (c),(g) temperature T̃ , and (d),(h) Reynolds averaged density 〈ρ〉
normalized by the freestream values. The top row is R33-M7-L and the bottom row is R35-
M10-L. Profile locations are upstream x′/Lsep = −1.3 (solid), separation x′/Lsep = −0.65
(dash-dot), corner x′/Lsep = 0 (dash-dot-dot), and downstream x′/Lsep = −1.9 (dashed).
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indicated by the ũ and w̃ profiles, and forms a mixing layer-type profile with a single

inflection point in the center of the detached shear layer. The downstream w̃ profile

returns to zero velocity as the flow adjusts to a direction parallel to the ramp surface. The

temperature profile at the corner in panels (c) and (g) of Fig. 3.8 also develops a single

inflection point profile that appears to be coincident with the streamwise velocity profile

at the corner. The temperature in the downstream boundary layer experiences a very

sharp positive gradient at the wall, which comes to a peak very close to the wall surface,

followed by a decreases to nearly the post-shock freestream temperature. The density

profiles in panels (d) and (h) of Fig. 3.8 show that the variation in density downstream is

essentially a mirror image of the temperature profile. As was noted in Figs. 3.7 (g) and

(h), the change in density is very small ahead of reattachment.

The mean wall pressure, skin friction, and heat transfer distributions are next plot-

ted in Fig. 3.9. When plotted versus x′/Lsep, the two simulations have nearly identical

distributions. In both flows, the pressure is seen to increase slightly at separation and

then steeply at reattachment where it reaches a maximum before relaxing to the inviscid

oblique shock solution. Downstream of the ramp, the wall pressure actually drops slightly

below the inviscid level by 3%. This was also noted in the outlet profiles in Fig. 3.6

(d). In the Mach 7 mean flow, the pressure begins to increase ever so slightly just before

reaching the domain outlet indicating that the boundary layer is not fully recovered yet.

The ‘rms’ distributions of wall pressure are also included in Fig. 3.9 (a). The pressure

fluctuations are essentially zero in the upstream boundary layer. Through the separation

region, the variation in the P ′

rms distribution follows the form of the mean pressure but

decreases again as the boundary layer relaxes downstream. The maximum in P ′

rms is

slightly upstream of the maximum in Pw.
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Figure 3.9: Time- and spanwise-averaged distributions of (a) wall pressure, (b) skin fric-
tion, and (c) heat transfer for R33-M7-L and R24-M10-L. The horizontal dashed lines in
(a) indicate the inviscid shock pressure.
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The distribution of mean skin friction coefficient Cf is plotted in Fig. 3.9 (b). The

skin friction first decreases gradually just ahead of the separation point and drops below

zero inside the separation bubble where it remains fairly constant up to the corner. Two

sharp dips appear on either side of the corner as a result of the grid discontinuity. The

Cf then increases rapidly, reaching a peak just downstream of reattachment and at the

same location as the peak in Pw. It then steadily decreases as the reattached boundary

layer begins to recover. In the Mach 7 distribution, Cf reaches a maximum of 9.3 times

the level of the incoming boundary layer while the Mach 10 Cf distribution peaks at

11.3 times the incoming boundary level. The fluctuations in the skin friction C ′

f,rms are

included in Fig. 3.9 (b). The fluctuating Cf increases gradually from separation to the

corner and then increases rapidly to a peak downstream of reattachment followed by a

steady decrease along the ramp. In both flows, the maximum in C ′

f,rms is found to be

approximately 20 times the upstream level. In addition, the peak Cf occurs at the same

streamwise location as the maximum in Pw while the peak in C ′

f,rms at the same location

as the maximum in P ′

rms for both the Mach 7 and Mach 10 interactions.

The wall heat transfer coefficient Ch distribution shown in Fig. 3.9 (c) experiences a

slight dip at separation after which it increases first gradually and then more rapidly past

the corner until it reaches a maximum on the ramp. It then steadily decreases downstream.

The fluctuation magnitude C ′

h,rms is included in Fig. 3.9 (c) and is found to follow the

same progression as Ch but at a somewhat lower magnitude. The coinciding maxima in

Ch and C ′

h,rms occur just upstream of the peak in Pw but in-line with the peak in P ′

rms. In

the Mach 7 mean flow, the maximum heat transfer coefficient is 15.2 times the value of the

incoming boundary layer and 2.2 times the value at the outlet plane. The amplification of

heat transfer in the Mach 10 flow is 16.8 times the value in the incoming boundary layer
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and 2.0 times the value measured at the outlet plane.

3.5 Turbulence Properties

In this section, the properties of the time- and spanwise-averaged turbulence stresses

and turbulent kinetic energy budgets are discussed. Contours of the Favre-averaged

Reynolds stress components
√

ũ′′u′′,
√

ṽ′′v′′,

√
w̃′′w′′, and ũ′′w′′ normalized by the freestream

velocity are plotted in Fig. 3.10. The streamwise turbulence intensity reaches its maxi-

mum amplification in the separation shear layer where it is found to be twice the upstream

maximum in both flows. This strong amplification occurs almost immediately at separa-

tion and remains fairly constant throughout the detached shear layer. The contours show

that v′′rms and w′′

rms also increase in the separation shear layer. The maximum in v′′rms

occurs at the wall surface in the vicinity of reattachment. Two local peaks occur in the

contours of w′′

rms, one just above the wall at reattachment and the second at the base of

the main shock. The latter is a result of the fore and aft motions of the shock which cause

w to oscillate between freestream (w = 0) and post-shock deflection velocity. The base

of the main shock also appears in the contour of turbulence shear stress ũ′′w′′ as a region

of negative correlation due to a similar effect where the oscillations of u and w are out of

phase across the shock. In the upstream boundary layer and in the separated shear layer,

ũ′′w′′ is negative as is expected for these types of shear flows. In both the Mach 7 and

Mach 10 data, a strong positive amplification of ũ′′w′′ occurs on the ramp surface near

reattachment.

Profiles of each of the four stress components in Fig. 3.10 are plotted in Fig. 3.11.

The individual profiles are taken from the same streamwise locations as in Fig. 3.8 from

Section 3.4. The velocity axes are again rotated on the ramp surface so that u is in
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Figure 3.10: Contours of mean turbulence stress components (a)-(b)
√

ũ′′u′′, (c)-(d)
√

ṽ′′v′′, (e)-(f)

√
w̃′′w′′, and (g)-(h) ũ′′w′′ normalized by the freestream values. R33-M7-L

are plotted on the left and R34-M10-L on the right.

60



Figure 3.11: Individual profiles of turbulence stress components (a),(e)
√

ũ′′u′′, (b),(f)
√

ṽ′′v′′, (c),(g)

√
w̃′′w′′, and (d),(h) ũ′′w′′ normalized by the freestream values. The top

row is R33-M7-L and the top row is R34-M10-L. Profile locations are upstream x′/Lsep =
−1.3 (solid), separation x′/Lsep = −0.65 (dash-dot), corner x′/Lsep = 0 (dash-dot-dot),
and downstream x′/Lsep = −1.9 (dashed).
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the plane parallel to the ramp and w is perpendicular to the ramp. In the profiles of

streamwise turbulence, the upstream turbulence peak increases in magnitude and shifts

away from the wall at separation. At the corner, the streamwise turbulence peak is greatly

thickened but the maximum value does not change significantly from that at separation.

The location in z′ of the
√

ũ′′u′′ peak in the corner profile coincides with the z′ location of

the inflection point in the corner mean velocity profile shown in Fig. 3.8 (a) for the Mach

7 and Fig. 3.8 (e) for the Mach 10 flow. The magnitude of the streamwise turbulence

is significantly reduced in the downstream boundary layer and the peak is compressed

very close to the wall surface. The v′′rms, w
′′

rms, and ũ′′w′′ turbulent stresses also show an

increase through the shear layer. The magnitude of v′′rms and w′′

rms decrease again in the

most downstream profiles. The ũ′′w′′ component is seen to reverse sign in the recovering

boundary layer. The downstream profiles show that all four turbulence stresses maintain

an elevated turbulence level outside the region of high shear at the wall, that is, above the

compressed local boundary layer thickness. This feature can also be seen in the contour

plots of Fig. 3.10 as a band of elevated turbulence parallel to the ramp surface beneath the

main shock. This band of elevated turbulence appears to decay gradually downstream.

The state of the turbulence stresses is further investigated by analyzing the principle

invariants of the anisotropy tensor. The anisotropy tensor is defined as bij = ũ′′i u
′′

j/2k −

δij/3 where k = ũ′′i u
′′

i /2 and δij is the Kroneker function. Because bij is deviatoric, only

the second and third invariants are non-zero. These are by definition II = −bijbji/2 and

III = bijbjkbkl/3. The mapping of these two non-zero invariants are generally plotted

together with the so-called Lumley triangle which represents the range of values of II and

III that are physically possible for a given flow [71, 72]. The invariant mappings of both

the Mach 7 and Mach 10 at the same wall-normal profiles of Fig. 3.8 are shown together
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Figure 3.12: Lumley triangles for wall-normal profiles (a) in the incoming boundary layer
x′/Lsep = −1.3, (b) at mean separation x′/Lsep = −0.65, (c) at the corner x′/Lsep = 0,
and (b) in the downstream boundary layer x′/Lsep = 1.9.

in 3.12. The upstream trajectories of the upstream boundary layers shown in Fig. 3.12 (a)

are typical of turbulent boundary layer data [71]. The top branch of the Lumley triangle

represents two-component turbulence which is realized in the boundary layer at the wall

due to the constraint the wall imposes on the w fluctuations. The top right corner of

the Lumley triangle represents one-component turbulence which occurs in the boundary

layer at z+ ≈ 10 where u′′rms is at its maximum value. The bottom right side of the

triangle is the boundary of axisymmetric turbulence expansion which is characteristic of

the logarithmic layer. Near the boundary layer edge, the turbulence approaches isotropic

conditions where II = III = 0. At the corner between z/δ = 0 and 1, the invariant pair

moves towards the bottom left branch of the Lumley triangle and towards isotropy. The

left side of the triangle represents axisymmetric turbulence compression and is typical

of mixing layer data [71]. In the downstream profile, the invariant pair remains on the
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top and left boundaries in the region of high shear at the wall and moves to isotropic

conditions outside of the local boundary layer thickness.

Next the turbulent kinetic energy budgets through the interactions are analyzed. For

this purpose we use the TKE of the Favre fluctuation velocity such that k = 〈ρu′′i u′′i 〉/2.

The transport equation for k is included in Appendix A Eqn. A.1. The TKE budgets are

plotted for R33-M7-L and R34-M10-L in Fig. 3.13. The streamwise stations at which each

set of budget profiles were taken are the same four locations as were used in Figs. 3.10, 3.11,

and 3.12. The wall-normal coordinate is nondimentionalized by zτ and the budget terms

by ρwu
3
τ/zτ where zτ , uτ and ρw are the values from the upstream undisturbed boundary

layer. The SGS terms in Fig. 3.13 are calculated as the remainder of the sum of all other

budget terms and represent the combined contribution of the SGS diffusion and SGS

dissipation terms.

The upstream boundary layer TKE budgets shown in Fig. 3.13 (a) and (b) are

typical of compressible turbulent boundary layers with zero pressure gradient [73, 74]. The

production is balanced by the turbulent transport, diffusion, and dissipation with all other

terms being relatively insignificant. The peak in production occurs at z+ = 14 for the Mach

7 boundary layer and at z+ = 17 for the Mach 10 as the greater wall cooling tends to push

the turbulence production peak away from the wall [73]. At separation (Fig. 3.13 (c) and

(d)), the magnitude of both the production and transport terms are greatly increased from

the incoming flow. The peaks in these two quantities come away from the wall in a manner

consistent with similar observations in the velocity profiles of Fig. 3.8 and in the turbulence

stress profiles of Fig. 3.11. The turning of the fluid at separation results in a non-zero

convection term that is balanced by an increase in the turbulence transport. Production

is further increased in the corner profiles of Fig. 3.13 (e) and (f). The production peak
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Figure 3.13: Profiles of TKE budgets in (a)-(b) the upstream boundary layer x′/Lsep =
−1.3, (c)-(d) at mean separation x′/Lsep = −0.65, (e)-(f) at the corner x′/Lsep = 0,
and (g)-(h), in the downstream boundary layer x′/Lsep = 1.9. The budget profiles for
R33-M7-L are on the left and R34-M10-L on the right.
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is greatly widened at the corner and occurs in the wall-normal vicinity of the shear layer

center. (Note that z/δ = 1 is equivalent to z+ = 200 in the Mach 7 flow and z+ = 500 in

the Mach 10 flow.) The increase in production in the separation shear layer is balanced

by increases in turbulence transport, convection, pressure diffusion, and dissipation. Here

the increase in dissipation is found to be predominantly in the SGS. In the downstream

boundary layer (Fig. 3.13 (g) and (h)), the production, transport, and convection terms

are increased significantly at the wall due to the strength of the mean shear in this region.

This is consistent with the high shear at the wall shown in the velocity profiles of Fig. 3.8

(a) and (e) and the near-wall turbulence peak in Fig. 3.11 (a) and (e). Overall, the pressure

work term is seen to increase to a non-zero value at separation and in the recirculation

region but its contribution is not significant. Likewise the pressure dilatation remains

small throughout both the Mach 7 and Mach 10 mean flows. The budget magnitudes in

the boundary layer, at separation, and the corner are comparable between the Mach 7

and Mach 10 solutions. In the downstream flow, however, the turbulence production of

the Mach 10 is twice that of the Mach 7.

3.6 Assessment of Turbulence Modeling Assumptions

We use the R33-M7-L and R34-M10-L data to evaluate several practical turbulence

modeling assumptions and their applicability to these separated hypersonic STBLI flows.

Two scaling laws for the prediction of the mean heat transfer at the wall are tested. The

first of these is the assumption that the Reynolds Analogy Factor, defined as the ratio

RAF = 2Ch/Cf , is approximately unity. This ratio in the LES data is plotted as RAF−1

in Fig. 3.14 to avoid the division by zero Cf . The results are nearly identical between the

Mach 7 and Mach 10 interactions. The RAF−1 is 0.85 in the boundary layer upstream
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Figure 3.14: Streamwise distributions of (a) the (inverse) Reynolds Analogy Factor and
(b) the QP85 law of Back & Cuffel [69] for R33-M7-L and R24-M10-L.
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of separation and approximately 0.7 in the downstream reattached boundary layer. The

assumption of RAF ≈ 1 does not hold in the separated region.

The Reynolds Analogy Factor can equivalently be written as RAF = qwCp(Tw −

Tr)/τwUe. The line distributions in 3.14 (a) were calculated using Ue and Tr of the

upstream boundary layer throughout. If instead the RAF in the downstream flow is

calculated using values of Ue and Tr estimated from the inviscid oblique shock solution,

the result is the distribution indicated by the symbols in 3.14 (a). The RAF−1 distributions

calculated using the post-shock conditions show a slight over-shoot of 1 followed by what

appears to be a gradual decrease to 1.

The second heat transfer model considered is the so-called QP85 law of Back &

Cuffel [69] relating the mean distribution of wall heat transfer to the distribution of mean

wall pressure by q(x)/qu = (P (x)/Pu)
0.85. The subscript u refers to a quantity in the

upstream undisturbed boundary layer. In Fig. 3.14 (b) is plotted the QP85 prediction as

a fraction of the measured q(x) of the LES solutions. The two STBLI flows show nearly

identical results with the Mach 10 having greater relative heat transfer downstream of the

separation region. It was noted in 3.12 (c) that the Ch dips slightly at separation but

the same feature does not occur in the wall pressure shown in Fig. 3.12 (a). Consistent

with this observation, the QP85 relation over-predicts the heat transfer at separation.

The steep increase in heat transfer that occurs just downstream of the corner is also not

well predicted by the QP85 relation. In the downstream recovering boundary layer, the

heat transfer is significantly over-predicted and this error increases steadily up to the

simulation exit plane. These results are not surprising as this relation was derived for

attached shock/turbulent boundary layer interactions. Coleman & Stollery [75] derived

a similar relation between q(x) and P (x) and these authors also noted that the relation
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was only accurate for predicting their experimental heat transfer data for attached and

incipiently separated compression ramp experiments with a freestream Mach number of

9.

Next we test the validity of the set of modeling assumptions collectively known

as the Strong Reynolds Analogies relating the temperature fluctuations to the velocity

fluctuations in compressible turbulent boundary layers. The Strong Reynolds Analogies

were originally proposed by Morkovin [76] and include the turbulent Prandtl number

relation (Eqn. 3.1), the phase relation (Eqn. 3.2), and the magnitude relation (Eqn. 3.3).

Prt =
ρ̃u′′w′′

ρ̃T ′′w′′

∂T̃ /∂z′

∂ũ/∂z′
≈ 1, (3.1)

−Ru′′T ′′ = − 〈u′′T ′′〉
u′′rmsT

′′
rms

≈ 1, (3.2)

SRA =
T ′′

urms/T̃

(γ − 1)M2(u′′rms/ũ)
≈ 1. (3.3)

We evaluate Eqns. 3.1, 3.2, and 3.3 in both the upstream undisturbed boundary layers

and in the downstream recovering boundary layers of the R33-M7-L and R34-M10-L data.

Upstream profiles were taken at x′/Lsep = −1.3 and downstream profiles at x′/Lsep = 1.9,

the same upstream and downstream locations that were used for the TKE and anisotropy

analyses in Section 3.5. For the evaluation of the Strong Reynolds Analogies in the down-

stream recovering boundary layer, the velocity field is again rotated so that u is in the

direction parallel to the ramp surface and w is perpendicular.

The turbulent Prandtl number Prt is defined in Eqn. 3.1 as the ratio of turbulent

transport of momentum to turbulent transport of heat flux and is typically assumed con-

stant and equal to 1 throughout the boundary layer. Profiles of the Prandtl number in
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the mean flow of the R33-M7-L and R34-M10-L LES solutions are plotted in Fig. 3.15.

These profiles are plotted versus wall-normal distance z′ non-dimensionalized by the local

boundary layer thickness δx. In the upstream boundary layers, Prt is within 13% of 1 be-

tween z′/δx = 0.05 and 0.75. At the boundary layer edge, Prt = 0.75. Below z′/δx = 0.05

the assumption of constant Prt does not hold. In the M7 recovering boundary layer, it is

found that Prt ≈ 1.0 for z′/δx > 0.1. In the M10 downstream profile, near z′/δx = 0.1

the Prt is nearly 1. Between z′/δx = 0.3 to 0.5, Prt is approximately 1.4.

For undisturbed adiabatic turbulent boundary layers, the DNS data analysis of

Duan et al. [74] has shown that the phase relation correlation −Ru′′T ′′ is approximately

0.6 through the majority of the compressible boundary layer and that this level does

not change with freestream Mach number, at least up to Me = 12. The value of 0.6

is consistent with other DNS studies [77, 78]. In addition, Duan et al. [73] showed the

correlation reduces only slightly with decreasing Tw/Tr. The profiles of −Ru′′T for the

current LES data are plotted in Fig. 3.15 (b). In the upstream profiles of both the

Mach 7 and Mach 10 boundary layers, −Ru′′T ′′ drops from 0.85 at z′/δx = 0.05 to 0.6

at the boundary layer edge. A shift to negative correlation at the wall indicates that the

temperature-velocity phase relation is reversed here. The profile of −Ru′′T ′′ in the Mach

7 downstream profile, when z′ is normalized by the local boundary layer thickness, is very

similar to the upstream profile for z′/δx > 0.2. In the Mach 10 solution, however, the

magnitude of −Ru′′T ′′ reduces to approximately 0.5 in the downstream profile. Although

not shown here, the zero crossing of −Ru′′T ′′ in each of the four profiles was found to

closely correspond to the location of the peak in the mean temperature profile.

The magnitude relation of Eqn. 3.3 is plotted for the two LES solutions in Fig. 3.15

(c). In the Mach 7 flow, the SRA = 0.65 in the upstream boundary layer and decreases to
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0.4 in the downstream boundary layer. In the Mach 10 flow, the SRA = 0.6 upstream and

decreases to 0.35 downstream. In all four profiles, the SRA drops to a minimum of about

0.3 near the wall and then increases asymptotically to infinity at the wall surface. The

fact that the assumption of SRA ≈ 1 does not hold for these two flows is not surprising

as the relation of Eqn. 3.3 was originally derived for an adiabatic boundary layer. Huang

et al. [79] derived the following modified Strong Reynolds Analogy that accounts for heat

transfer at the wall.

SRAmod =
(T ′′

urms/T̃ )Prt(1− ∂T̃t/∂T̃ )

(γ − 1)M2(u′′rms/ũ)
≈ 1. (3.4)

The variable T̃t is the total temperature, which for the LES solution is calculated from

the Favre filtered ũ and T̃ . Similar expressions were also proposed by Gaviglio [80] and

by Rubesin [81]. The profiles of the SRAmod are plotted in Fig. 3.15 (d). The upstream

profiles of the Mach 7 and Mach 10 flows both take on a value of 1.2 between z′/δx = 0.1

and 1.0. In the downstream flow, the Mach 7 profile drops to 1.2 only between z′/δx = 0.2

and 0.5. The SRAmod relation does not hold for the Mach 10 recovering boundary layer.

3.7 On the scale-similar SGS model

This section discusses the importance of including a scale-similar term in the SGS

turbulence stress (Eqn. 2.9) and the SGS heat transfer (Eqn. 2.10). Eddy viscosity models

only account for the dissipative drain of energy from the resolved scales to the unresolved

scales. Scale-similar models were originally derived under the assumption that the most

active SGS are those just below the cutoff frequency of the LES [82] and so are designed

to approximate the local exchange of energy between the smallest resolved scales and the
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SGS. The scale-similar models, however, tend to underestimate the SGS dissipation [52].

In combination, the scale-similar term accounts for the conservative energy exchange at the

smallest resolved scales and the eddy viscosity term accounts for the dissipative energy

drain of the SGS. In a study of decaying isotropic compressible turbulence, Martin et

al. [52] reported better correlations of SGS shear stress and heat flux using the mixed

model in comparison to the eddy viscosity only model.

To demonstrate the importance of using the dynamic mixed model (DMM) rather

than the dynamic eddy viscosity model (DEV) for the solution of the STBLI flows, we

repeat several of the simulations in this paper with the scale-similar terms in Eqns. 2.9

and 2.10 turned off and using only the dynamic coefficient eddy viscosity models. We

first repeated simulations R24-M3w-L from Section 2.5 and R8-M7-L from Section 2.6

and in both cases the result was to slightly increase the length of the interaction region.

The difference was found to be minor, however, with less than 5% increase in the Mach 3

separation length and an increase from 31% to 35% in the maximum reverse probability at

the corner of the Mach 7. In contrast, we repeated the R33-M7-L solution with the SGS

scale similar contributions removed and found that the separation length increased by 30%.
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M7-L (a) van Driest transformed velocity, and (b) turbulence intensities. Legend as in
Fig. 3.13.

This dramatic difference is shown in the comparison of mean skin friction distributions

between the original Mach 7 DMM solution and the DEV solution (Fig. 3.16).

Profiles of the upstream boundary layer indicate that the source of the error in the

Mach 7 separation length is not from a change in the state of the incoming boundary

layer. The comparison of van Driest transformed velocity profiles taken in the upstream

boundary layers at x/Lsep = −1.7 are shown in Fig. 3.17 (a). The comparison of turbulence

Reynolds stress profiles at the same location are shown in Fig. 3.17 (b).

Instead, the results indicate that the difference between the two solutions resides

in the STBLI separation shear layer. We estimate the spreading rate of the separation

shear layers in each of the separated hypersonic flow solutions using a method that is

given in detail in Chapter 6 and also in Helm & Martin [83]. In short, a shear layer

coordinate system (xml, zml) is considered for which the linearly varying similarity variable

ζ = zml/xml can be defined. Plotting mean flow profiles in the shear layer versus ζ results

in what resemble collapsed mixing layer similarity profiles.

The difference in the shear layers of the DMM and DEV solutions is highlighted by

plotting the resulting collapsed shear layer profiles scaled by ζ. In Fig. 3.18 are shown
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the collapse of (a) the mean streamwise velocity profiles, (b) the streamwise turbulence

intensity, and (c) the turbulence shear stress. The streamwise direction now refers to

the velocity component in the direction of xml. The profiles of the DEV solution are

visually narrower than the DMM solution indicating that the DEV models produce a

lower spreading rate. The DMM solution spreading rate is determined to be δ′w = 0.194

whereas the DEV solution results in a spreading rate of δ′w = 0.173; nearly a 10% decrease.

A decrease in the spreading rate of the separation shear layer indicates that the

entrainment rate of fluid across the shear layer is reduced in the DEV solution. To balance

this slower rate of fluid depletion from the separation bubble, the flow must necessarily
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converge to a larger mean separation bubble size compared to the DMM solution. Cross-

stream profiles of TKE budget terms (Eqn. A.1) plotted versus ζ and normalized by the

local shear layer thickness δml = δwxml are seen to scale by δml (Fig. 3.19 (a)). The

reduction in spreading rate is therefore a result of a proportional reduction in turbulence

activity produced by the DEV model in comparison to the DMM solution. Note that in

the upstream boundary layer, the TKE budget profiles scale by zτ and ρw and the two

SGS models produce identical solutions (Fig. 3.19 (b)).

3.8 Summary

Two LES datasets of separated hypersonic STBLI flows at experimentally achiev-

able conditions were presented and a thorough documentation of the mean flow statistics

was provided. Time- and spanwise-averaged flow fields of Favre-averaged velocity, temper-

ature, and density were given in contour plots and also as individual profiles highlighting

the changes in these quantities through the interaction. Averaged streamwise distribu-

tions of skin friction, wall pressure, and heat transfer as well as the rms magnitude of each

was included. Separation lengths were obtained from the skin friction distribution. We

found that for both the Mach 7 and Mach 10 separated interactions, the root-mean-squared

pressure fluctuations reached a maximum near reattachment and peaked at approximately

half the post-shock mean level. Maximum skin friction and heat transfer fluctuations were

also found to occur on the ramp just downstream of separation where the turbulence from

the incoming boundary layer are heavily compressed at the impingement location of the

separation shock on the ramp surface.

Profiles of mean velocity, turbulence stresses, TKE budgets, as well as the Reynolds

stress anisotropy tensor all indicate a mixing layer-like behavior in the shear layer of
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the hypersonic separated flows. At the corner, a wide single-inflection-point mean ve-

locity profile was shown to coincide with a broad peak in turbulence activity, turbulence

production, and viscous dissipation. Similar observations have been made in separated su-

personic STBLI [12, 84] and appears to be a persistent feature in the case of the hypersonic

interaction.

Two classic heat transfer scaling relations, the Reynolds Analogy Factor and the

QP85 relation of Back & Cuffel [69], were tested on the separated hypersonic LES data.

The QP85, which was shown by Priebe & Martin [34] to be reasonably accurate for

the attached Mach 7 interaction, breaks down both in the separated region and in the

downstream recovering boundary layer. The RAF also fails in the separated region and

the downstream boundary layer. If, however, the downstream post-shock conditions were

used instead of the upstream condition in the definitions Cf and Ch, the results were much

more satisfactory in the downstream boundary layer.

Common assumptions on velocity-temperature fluctuation relations such as constant

Prandtl number and the Strong Reynolds Analogies modified for non-adiabatic wall condi-

tions were found to be accurate to a large extent in the upstream boundary layers of both

flows and in the downstream boundary layer of the Mach 7. Neither the constant Prandtl

number nor the SRAs were found to be accurate for the downstream Mach 10 flow. It is

much more difficult to evaluate the turbulent Prandtl number and SRAs relations in the

separation region. Both the recirculating motion of the flow and the fact that the flow is

deflected away from the wall surface make the definition of u′′ in Eqns. 3.1 through 3.4

ambiguous. A more sophisticated analysis would be required to extract useful information

on the temperature-velocity fluctuation properties in the separated region.

A comparison was made of the LES DMM and DEV solutions of the separated
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Mach 3 STBLI and attached Mach 7 interactions from Chapter 2 and the fully separated

Mach 7 STBLI from the present chapter. It was found that the effect of excluding the

scale-similar term was minor in the supersonic interaction solution and in the attached

hypersonic solution. The DEV solution of the separated Mach 7 interaction resulted in

a significant increase of 30% in the separation length. It was concluded that the reason

for this difference is not a result of any change in the incoming boundary layer solution

but in the solution of the separation shear layer. It will be shown in Chapter 6 that

the shear layer in this case is highly compressible with a convective Mach number of 2.

The convective Mach number of the Mach 3 flow in comparison is 1. Spreading rate and

TKE budgets revealed that the DEV model underestimates the turbulence activity in this

highly compressible shear layer.

This chapter focused on the mean flow properties, however, the initial evaluation

of the spectral content of the separation and reattachment history indicates that the

characteristic low-frequency shock unsteadiness is present in both of these hypersonic

flows. The documentation of the dynamic properties of the low-frequency cycle in the

current data is the topic of a the next chapter.
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Chapter 4: Low-Frequency Mode Form in Hypersonic STBLI

4.1 Background

The origin of the low-frequency unsteadiness in separated STBLI flows has been

the topic of much research for the past several decades. For many years the research was

concerned with identifying an upstream influence. In many cases the unstable motions of

the shock were found to correlate with the long momentum fluctuations in the incoming

boundary layer [16, 17, 18, 85]. However, several articles have also shown the separation

motions correlate with the unsteadiness of the separation bubble and the downstream

flow [3, 11, 19, 20, 21]. Priebe & Martin [12] showed that the low-frequency cycle of

the Mach 3 compression ramp STBLI flow shows very specific structure changes in the

separation bubble depending on the phase of the low-frequency cycle. These changes

involved a bifurcation of the shear layer producing a multi-inflection point velocity profile

and local increase in turbulence activity indicating an inviscid mechanism. The structural

change could also be identified by a change in the skin friction distribution that was found

to be similar in form to the unstable global mode identified in the reflected shock simulation

of Touber & Sandham [42]. Recent arguments put forward by Martin et al. [23] and

Martin & Helm [24] point out striking similarities among the inviscid instability identified

by Priebe & Martin [12], the surface flow visualizations of the STBLI experiment of Settles

et al. [67], and the global unstable modes identified in several different cases of laminar
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separation [86, 87, 88]. The indication then is that the low-frequency unsteadiness is

driven by a self-excited, downstream inviscid instability.

This hypothesis was further corroborated by the recent work of Priebe et al. [22].

Priebe et al. performed a Dynamic Mode Decomposition (DMD) analysis on the DNS data

of a Mach 3 compression ramp flow (the same DNS dataset as R24-M3n-D in Chapter 2.5)

and found that the flowfield generated from a reconstruction of the five low-frequency DMD

modes took the form of streamwise-oriented, counter-rotating vortices that extend from the

point of separation and down the length of the ramp. In addition, the formation of these

vortices coincided with an increase in strength of a centrifugal instability vortex metric

(Görtler number) in the vicinity of separation and reattachment. As noted by Martin et

al. [23, 24], revealing the form of the unstable mode as counter rotating vortices could

also explain the similarity between the STBLI flow structure and the spanwise repeating

cell-like structure of the laminar separation modes. Furthermore, Priebe et al. [22] and

also Martin et al. [23, 24] provided a discussion on the passive sensitivity of this inviscid

centrifugal instability to input from the upstream turbulence fluctuations, thus reconciling

the correlations of the separation motion with the upstream boundary layer.

It was also demonstrated by Priebe et al. [22] that a simple low-pass filtering opera-

tion in time applied to the DNS data produces the same flow structure as the reconstructed

DMD modes. In Fig. 4.1 are reproduced from Priebe et al. [22] and show a snapshot of the

reconstructed low-frequency DMD modes from the DNS data compared to the low-pass

filtered (wide span) DNS data. In this chapter, we investigate the dynamics and structure

of the low-frequency unsteadiness in the LES dataset R33-M7-L from Chapter 3 of the

Mach 7 STBLI flow over a 33o compression ramp. A simple low-pass filtering operation

in time applied to the full three-dimensional flow volume is performed. In Section 4.2
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Figure 4.1: Low-frequency mode shape in the Mach 3 STBLI DNS data reproduced from
Priebe et al. [22]. Streamwis momentum fluctuations in (a) the reconstructed DMD modes
and (b) the wide-span low-pass filtered DNS.

we show that the low-frequency mode in the Mach 7 case is also in the form of counter-

rotating, streamwise-oriented vortices as identified in the Mach 3 DNS, indicating that the

same inviscid centrifugal instability persists in the hypersonic regime. The DMD analysis

of Priebe et al. [22] was performed on a narrow 2δ-wide computational domain. The in-

creased domain size of the Mach 7 simulation also provides information on the spanwise

variation of the low-frequency mode. In addition, time resolved videos of the low-pass

filtered flow were generated and provide additional insight into the interpretation of the

mechanism by which the inviscid vortical structures drive the separation bubble unsteadi-

ness. A proposed model for the origin of the low-frequency unsteadiness in separated

STBLI is discussed in Section 4.3.

4.2 Low-Pass Filtered Data

As was demonstrated in Chapter 2.5 and 3.2, the time signal of separation is a good

indicator of the low-frequency unsteadiness in separated STBLI. The pre-multiplied PSD

of separation history of the R33-M7-L solution was shown in Chapter 3.2 and broadband
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Figure 4.2: Time signal of separation position in the R33-M7-L data. The unfiltered signal
is plotted in gray and the low-pass filtered signal in red.

low-frequency energy between nondimensional frequencies of StL = fLsep/Ue = 0.2 and

0.02 were observed. For the purpose of isolating the frequencies associated with the low-

frequency shock motions, a cutoff frequency of StL = 0.3 is selected for the low-pass filter.

The resulting filter is demonstrated in Fig. 4.2 by a comparison of the unfiltered separation

signal plotted in gray and overlaid by the low-pass filtered signal in red.

The time filtering operation requires a high sample rate output of the full 3D volume

data at a frequency of StL = 0.15. The width of the filter is 400 samples or 60Lsep/Ue

in time. The flow field is filtered at each sample volume of the data in order to produce

time resolved videos from which the dynamics of the low-frequency mode could be studied.

Four uncorrelated snapshots in time selected from one of the videos are plotted in Fig. 4.3

showing instances of the filtered flow visualized by contours of streamwise momentum

fluctuations. In each figure appear spanwise-alternating positive and negative ‘spots’ in

the downstream flow on the ramp. A comparison of the four snapshots in time shows that

these filtered structures are not fixed in space but are unsteady and move about in the

spanwise direction. They also vary in strength both along the span and in time. These

figures are comparable to the Mach 3 mode shown in Fig. 4.1.

The same structures are visualized again in Fig. 4.4 where the streamwise momentum

fluctuations are shown as volume plots that highlight the locations of the cores of the red

82



Figure 4.3: Uncorrelated instantaneous snapshots of the low-pass filtered momentum fluc-
tuation field in the Mach 7 STBLI visualized by contour plots.
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Figure 4.4: Uncorrelated instantaneous snapshots of the low-pass filtered momentum fluc-
tuation field in the Mach 7 STBLI visualized by volume plots. Images are taken from the
same time instances as in Fig. 4.3
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Figure 4.5: Spanwise periodicity in the low-pass filtered momentum fluctuation field is
seen in the streamwise-spanwise plane located 0.15δ above the wall surface (a). The
ensemble averaged cross-correlation of spanwise momentum fluctuations on this plane and
at streamwise location x/δo = 3 is shown in (b).

and blue spots in Fig. 4.3. Here the streamwise elongated form in the flow is recognizable

as the same structure that was identified by Priebe et al. [22]. The shaded portion on the

wall surface indicates the area of reverse flow on the wall for which Cf < 0. From these

figures it is also apparent that the streamwise structures originate near the separation

line as was also the case in the Mach 3 DNS data [22]. The images in Fig. 4.4 were also

selected from a time resolved video of the filtered flow.

The average spanwise periodicity in the downstream flow is shown in the time aver-

aged contour plot of momentum fluctuation on a plane parallel to the wall surface but offset
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Figure 4.6: Schematic of Görtler vortices reproduced from Floryan. [89]

by a distance of 0.15δo (Fig. 4.5). The ensemble averaged auto-correlation of the spanwise

momentum fluctuations was calculated on this plane along the position of x/δo = 3. The

result is the correlation signature plotted in Fig. 4.5 (b) showing a periodic length scale

of approximately two boundary layer thicknesses which is consistent with the spanwise

length scale reported by Priebe et al. [22].

The structures seen in Figs. 4.3-4.5 can be explained in the context of the classic

Görtler instability that occurs in laminar boundary layers over walls with concave curva-

ture. The change in streamwise fluid direction introduces centrifugal forces that produce

streamwise-oriented, counter-rotating vortices as depicted in the sketch of Fig. 4.6 (a).

Because of the proximity to the wall surface, the vortices induce sinusoidal fluctuations in

momentum along the cross-stream direction as is shown in the schematic in Fig. 4.6 (b).

(Figure 4.6 is reproduced from [89]) If we plot the instantaneous low-pass filtered velocity

vector field on a spanwise-wall normal plane positioned on the surface of the Mach 7 com-

pression ramp as indicated in Fig. 4.7, a clear counter-rotating fluid motion is observed

as shown in the inset of Fig. 4.7. In this particular snapshot, two pairs of vortices can be

seen. Plotting the distribution of streamwise momentum along the bottom edge of these

86



Figure 4.7: Vector field showing vortex rotation in the low-pass filtered Mach 7 STBLI.
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Figure 4.8: Time averaged dividing streamline (a) and the corresponding Görtler number
(b) in the Mach 7 STBLI mean flow.

vortices shows that the spanwise variation is consistent with the rotation of the fluid. It

is clear then, that the long streaking structures of high and low momentum fluctuations

observed in Figs. 4.3-4.5 are a result of streamwise oriented vortices in the low-pass filtered

flow.

Further evidence that these structures result from a centrifugal instability is provided

by the calculation of the Görtler number. The Görtler number GT defined in Eqn. 4.1 as

GT =
(θ/δ)

3

2

0.018(δ∗/δ)

√
δ

R
(4.1)

and is a function of the incoming boundary layer thickness δ, momentum thickness θ,

displacement thickness δ∗, and the local radius of streamline curvature R [1, 41]. The

dividing streamline in the unfiltered time and spanwise-averaged velocity field of the Mach

7 flow is shown in Fig. 4.8 (a). The GT calculated along this streamline is plotted in
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Fig. 4.8 (b). In laminar boundary layers, the critical value of GT is 0.6 [41]. Although the

threshold for turbulent boundary layers is not known, the value of the Görtler number at

separation in Fig. 4.8 (b) is nearly twice the laminar threshold. The large value of GT is

also consistent with the formation of the vorticese at separation as was noted in Fig. 4.4.

4.3 Discussion

The physical mechanism involved in fully separated STBLI data and the associ-

ated low-frequency unsteadiness has been a point for debate for several decades. Recent

work by Priebe & Martin [12] and Priebe et al. [22] has shown compelling evidence that

the low-frequency unsteadiness of separated STBLI’s is in fact driven by the dynamics

of inviscid vortical structures (IVS) that are aligned with the streamwise direction and

mix the inviscid high momentum fluid with the near wall separated flow. Conceptually

similar to the inviscid Görtler vortices occurring in laminar boundary layers over concave

surfaces, the IVS might originate from the elevated streamline curvature at the separation

point and extend downstream with the vortex cores oriented in the streamwise direction.

Alternatively, a second theory regarding the origin of the IVS has been formulated that

these large vortical structures are a product of the 3D structure of the separated flow [25].

In whichever case that might explain the origin of the vortical structures, the effect the

IVS have on the separated flow is the same.

As is discussed by Martin et al. [23] and Martin & Helm [24], it is the mixing

produced by these vortices between the freestream and the separated fluid that produces

the low-frequency unsteadiness in the separated STBLI. Based on the observations in the

literature described above, as well as the new visualizations presented for the Mach 7

hypersonic wide-span data, a physical model for the low frequency is proposed (see also
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Figure 4.9: Schematic of the low-frequency instability dynamics.

the discussion in Martin et al. [24]). Figure 4.9 shows a schematic of the time progression

of the state of the separation region in the compression ramp interaction. At the top of

Fig. 4.9 are sample time segments of separation and reattachment history. Below this are

three rows of images depicting different details in the separated flow. Images in the same

column represent the flow structure at the same instant in time. The top row shows the

streamwise counter-rotation vortices drawn as the gray structures, and the momentum

fluctuations induced by the direction of rotation of the vortices are colored in as red and

blue streaks for positive and negative momentum fluctuations respectively. In the second

row of images, the momentum fluctuation colors are removed and the area of recirculating

flow is indicated by the shaded bubble drawn beneath the vortices. In the last row, the

vortices are removed to show the time progression of the separation bubble only.
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The mechanism of the unsteadiness is proposed to be the following. From left to

right beginning with station 1, the separation bubble is at medium size and the separation

signal indicates the bubble is growing at this instant. The presence of the separation

bubble produces curvature in the streamline at separation which causes the formation

of the IVS. At station 2, the bubble continues to grow and as a result, the curvature

at separation increases causing the IVS in turn to become stronger. At Station 3, the

bubble has reached its maximum size and the vortices their maximum strength leading

to the condition at station 4. The strength of the vortices has grown to the point where

the mixing of the flow from the freestream to the wall and the wall to the freestream is

such that the fluid in the separation bubble is depleted and ejected into the downstream

flow and the separation bubble collapses. Because the bubble has been depleted of fluid,

the streamline curvature at separation is flattened and the vortex strength is significantly

reduced. At station 5, after the fluid in the bubble is ejected, the natural state of the

flow is to again separate, producing a new region of reverse flow and new vortices to form,

starting the same cycle over again.
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Chapter 5: The Scaling of Hypersonic STBLI

§The majority of this chapter is reproduced from Helm & Martin [90].

5.1 Chapter Overview

Souverein, Bakker, and Dupont [14] (SBD hereafter) introduced a scaling for the

separation length in two-dimensional, supersonic shock-separated flows. The scaling is

based on mass conservation arguments and depends only on the freestream Mach number,

upstream boundary layer displacement thickness, and flow deflection angle. The interac-

tion strength metric is an expression that approximates the ratio of pressure jump across

the shock structure to the pressure jump required for the onset of separation and is a func-

tion of inviscid pressure ratio and freestream Mach number. To test their scaling method,

SBD compiled from the literature a large database of STBLI that included experimental

and computational data of both reflected shock and compression ramp interactions at var-

ious states of separation and Reynolds numbers. The database consisted of interactions

with freestream Mach numbers ranging from 1.7 to 5. One of the key features of the SBD

scaling is the collapse of both compression ramp and reflected shock data to the same

curve.

The data compilation of SBD included predominantly adiabatic shock interactions.

Jaunet, Debieve, and Dupont [15] (JDD hereafter) showed that the SBD scaling method

does not account for variations in separation length caused by wall heat transfer. The
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authors derived an alternate nondimensionalized shock strength metric based on the free

interaction theory of Chapman et al. [91]. Using their data of a Mach 2.3 reflected shock

configuration with both adiabatic and heated walls, and also the adiabatic and cold wall

Mach 3 compression ramp data of Spaid and Frishett [92], JDD demonstrated the effec-

tiveness of their new scaling for collapsing the separation data of STBLI with different

heat transfer conditions. Their results were further corroborated by the reflected shock

DNS at Mach 2.3, of Volpiani et al. [93]. JDD, however, were unable to demonstrate

their scaling for any STBLI with Mach number above 3 or for any appreciable range of

Reynolds number.

In this chapter, we relate the results of JDD to the original scaling of SBD and de-

rive a more general separation-length-to-shock-strength scaling that includes heat transfer

effects across all Reynolds numbers and freestream Mach numbers. It is then our task to

evaluate the viability and quality of the proposed scaling law. In doing so, we extend any

such STBLI separation scaling law into the hypersonic regime for the first time by includ-

ing our new database of Mach 7 and Mach 10 compression ramp data. This chapter is

organized as follows. In Section 5.2.1, we use a control volume analysis of an axisymmetric

cylinder-flare configuration to demonstrate that this geometry scales by the same relation

as the two-dimensional interactions. In Section 5.2.2, we present a modification of the

interaction strength metric that accounts for wall heat transfer effects. In Section 5.3, we

introduce our database of hypersonic compression ramp STBLI. The scaling modification

of Section 5.2.2 and the 3D scaling of Section 5.2.1 are then evaluated for hypersonic

conditions. The Mach 10 experimental compression ramp data of Elfstrom [27], the Mach

10 cylinder-flare experimental data of Coleman [94], the recent Mach 10 cylinder-flare

data of Brooks et al. [95], and the recent DNS database of Mach 5 reflected shock STBLI
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Figure 5.1: Control volume for the cylinder-flare configuration. The notation of Souverein
et al. is adopted here. (See Figure 5 in [14]).

of Volpiani et al. [36] are also included in the evaluation. A discussion of the results is

provided in Section 5.4.

5.2 Scaling Method Generalization

5.2.1 Axisymmetric Geometry

The expression for the nondimensionalized separation length L∗ as derived by SBD

is

L∗ ≡
(
ṁ∗

post

ṁ∗
pre

− 1

)
=

L

δ∗
G3(Me, φ). (5.1)

Here L∗ is by definition the “mass deficit ratio,” the term inside the brackets of Eqn. 5.1,

which includes the ratio of the outgoing boundary layer deficit of mass flux ṁ∗

post = ρUδ∗post

to the incoming boundary layer deficit of mass flux ṁ∗

pre = ρUδ∗pre as determined by a

control volume analysis of the interaction region. For the compression ramp configuration,

SBD define the dimensional separation length L as the distance between the mean sepa-

ration shock foot and the corner. For the reflected shock configuration, L is the distance
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between the points of intersection at the wall of the mean impinging shock and the mean

reflected shock. The function G3 is a scaling factor based on the flow deflection angle φ

and the inviscid shock angle β. Although G3 is theoretically dependent on the interaction

geometry, SBD arrived at the same expression for both the compression ramp and the

reflected shock two-dimensional flow configurations:

G3(Me, φ) =
sin(β)sin(φ)

sin(β − φ)
. (5.2)

We now derive the separation length scaling for an axisymmetric cylinder-flare

STBLI geometry. The control volume for the cylinder-flare in Fig. 5.1 is similar to that

used by SBD for the two-dimensional compression ramp case, however for this case we

introduce the cylinder radii at the control volume inlet and outlet. We have adopted the

same notation for the control volume as SBD to facilitate the comparison of the current

analysis with their original formulation. The control volume is also assumed to sweep

the full 360o around the centerline axis. For this derivation we assume that any three-

dimensional relief effects along the flare are such that the variation in the wall-normal

flow profiles (e.g. U2, ρ2, etc.) are minimal and can be approximated by a uniform flow.

For example, in the computational solutions by Sims [96] of an inviscid conical shock with

cone angle of 30o and freestream Mach number of 10, the variation in the post-shock sim-

ilarity profiles was less than 0.5% for wall-parallel velocity and less than 5% for density.

In Fig. 5.1, the cylinder-flare shock angle is indicated by βc to distinguish it from the

two-dimensional oblique shock solution angle β occurring at the same freestream Mach

number and flow deflection angle.

If the inviscid flow around the flare is considered, conservation of mass over the
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control volume in Fig. 5.1 results in the relation

ρ1U1

[(
Hcv1 +R1

)2 −R2
1

]
− ρ2U2

cos(φ)

[(
Hcv2 +R2

)2 −R2
2

]
= 0. (5.3)

For the viscous flow with the turbulent boundary layer displacement thickness δ∗ and the

shock offset distance ℓ, conservation of mass for the same control volume gives

ρ1U1

[(
Hcv1 +R1

)2 −
(
R1 + δ∗1

)2]− ρ2U2

cos(φ)

[(
Hcv2 +R2

)2 −
(
R2 +

δ∗2
cos(φ)

)2]

− 2ℓρ2U2sin(φ)
(
R2 +Hcv2

)
= 0. (5.4)

Subtracting Eqn. 5.3 from 5.4 gives

ρ1U1

[(
R1+δ∗1)

2−R2
1

]
− ρ2U2

cos(φ)

[(
R2+

δ∗2
cos(φ)

)2
−R2

2

]
−2ℓρ2U2sin(φ)

(
R2+Hcv2) = 0 (5.5)

which can be rearranged to solve for ℓ as

ℓ =

ρ2U2

cos2(φ)

[
2R2δ

∗

2 +
δ∗2
2

cos(φ)

]
− ρ1U1

[
2R1δ

∗

1 + δ∗21

]

2ρ2U2sin(φ)
(
R2 +Hcv2

) . (5.6)

To simplify Eqn. 5.6 it is assumed that the control volume is such that δ∗1 ≪ R1 and

δ∗2 ≪ R2 resulting in the expression

ℓ

δ∗1
=

[
δ∗2
δ∗1

(
R2

cos2(φ)

)
− ρ1U1

ρ2U2

(
R1

)] 1

sin(φ)
(
R2 +Hcv2

) . (5.7)

Finally, by using the continuity relation across the shock such that U1ρ1sin(βc) = U2ρ2sin(βc−
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Figure 5.2: Diagram of the cylinder-flare shock position showing the difference between ℓ
defined for the control volume and the actual flow separation length L.

φ) Eqn. 5.7 can be rewritten as

ℓ

δ∗1
=

[ρ2 U2

cos(φ)
δ∗
2

cos(φ)

ρ1U1δ
∗

1

(
2πR2

2πR1

)
− 1

]
sin(βc − φ)

sin(βc)sin(φ)

R1

R2 +Hcv2
. (5.8)

By comparing Eqn. 5.8 with Eqn. 5.1, the term in the square brackets is easily recognized

as the mass deficit ratio (ṁ∗

post/ṁ
∗

pre−1) for the cylinder cross-section. The inverse of the

two-dimensional flow deflection function G3 also appears in Eqn. 5.8 and is multiplied by

the ratio R1/(R2+Hcv2). SinceHcv2 and R2 do not cancel out in the derivation of Eqn. 5.8,

it appears that the separation length is dependent on the choice of control volume. This

does not make sense physically seeing as a given STBLI flow will have a specific mean

separation length L regardless of the choice of control volume. This apparent problem in

the derivation can be remedied with the following reasoning. In Fig. 5.1, l is defined as the

distance between the crossing point of the shock at the top boundary and the top right

corner of the control volume. It is assumed that the shock remains parallel to the inviscid

shock inside the control volume thus making ℓ equivalent to the actual separation length
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L. This is approximately true for the two-dimensional ramp but not for the cylinder-flare.

For instance, if the distance R2 +Hcv2 is rewritten in terms of R1, βc, and a coordinate

variable x defined as the distance along the cylinder centerline from the flare corner (see

Fig. 5.2), Eqn. 5.8 becomes

ℓ

δ∗1
=

(
ṁ∗

post

ṁ∗
pre

− 1

)
G3

−1 R1

R1 + xtan(βc)
. (5.9)

In this form one can clearly see that the length ℓ goes to 0 as x increases indefinitely.

It would appear then that the actual separation length L is determined from the limit of

Eqn. 5.9 as x goes to 0 which ultimately results in Eqn. 5.1. By this analysis, the cylinder-

flare configuration scales by the same relation as the two-dimensional compression ramp.

Any three-dimensional effects are therefore entirely contained in the difference in shock

angle βc and downstream-to-upstream pressure ratio generated by the flared geometry as

compared to the two-dimensional ramp. Note also from Eqn. 5.8 that, for a given angle φ

and control volume dimensions, R2 is equal to R1 plus a constant. If R1 goes to infinity,

which is the equivalent of a flat plate, the ratio R2/R1 goes to 1 which results in the

original two-dimensional ramp expression of Eqns. 5.1 and 5.2. This further implies that

the shock angle βc is a function of the cylinder radius R1 and will in fact vary between

the oblique shock angle (R1 = ∞) and the conical shock angle (R1 = 0).

5.2.2 Varying wall heat transfer

It was proposed by SBD that the correct interaction strength metric for the scaling

of the nondimensionalized separation length data is the ratio of pressure jump across the

interaction ∆P to the pressure jump required for the onset of separation ∆Psep. Since the

criteria for the onset of separation is not typically known for a given STBLI flow, SBD
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derived the interaction strength parameter Se∗SBD as an approximation of ∆P/∆Psep. The

assumption was made that ∆Psep scales as the dynamic pressure qe so that

Se∗SBD = k
∆P

qe
. (5.10)

The normalization constant k is introduced to ensure Se∗SBD ≈ 1 at the onset of separation

and is assumed to be independent of the freestream Mach number. From a compilation

of experimental data for which ∆Psep was known, SBD showed that k = 2.5 and is also

independent of Reynolds number1 at least up to Reθ = 3 × 105. Together with L∗ from

Equation 5.1, Se∗SBD was shown to collapse adiabatic data for Me from 1.7 to 5 and for

Reθ between 2.3 × 103 and 3 × 105. Reflected shock and compression ramp data, both

experimental and computational, were included in the database.

More recently, Jaunet et al. [15] used reflected shock experiments at Me = 2.3 with

varying deflection angle for both an adiabatic and a heated wall (Tw/Tr = 1.9 where Tr

is the adiabatic recovery temperature) to show that the SBD separation strength metric

does not collapse data of STBLI’s with varying wall temperature conditions. Based on the

separation plateau pressure scaling in the free-interaction theory of Chapman et al. [91],

JDD proposed a new shock strength metric defined as

Se∗JDD =
∆P

k2qe

√
2Cfo

(M2
e −1)1/2

. (5.11)

The denominator of Equation 5.11 is the approximation of ∆Psep which is now assumed

to scale with the incoming boundary layer skin friction coefficient Cfo, Me, and qe. The

1SBD originally reported a mild dependence on Reynolds number so that k = 3 for Reθ ≤ 1 × 104. It

was later determined that this shift in k was a result of three-dimensional effects in the experimental data.

After correction, k was found to be 2.5 also for the lower Reynolds number data. Communication with P.

Dupont.
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Figure 5.3: Compilation of Mach 2-3 STBLI data with various heat transfer conditions
scaled by Se∗JDD (a) and again by the Se∗mod (b). Symbol color indicates the wall temper-
ature condition. Black data points are adiabatic walls, red are heated walls, and blue are
cold walls.

constant k2 is again a normalization constant that is introduced so that Se∗JDD ≈ 1 at the

onset of separation. JDD determined from the incident shock angle required to separate

their adiabatic boundary layer that k2 = 7.14 for their data. The dependence of k2 with

Reθ or Me is otherwise unknown.

When Se∗JDD is applied to their reflected shock data together with the adiabatic

and cold wall compression ramp data of Spaid & Frishett [92], a much better collapse of

L∗ is achieved as compared to Se∗SBD. Because the data of Spaid & Friscett is of similar

Mach number and Reynolds number, the same k2 was used throughout. In addition,

Volpiani et al. [93] also tested the JDD scaling with their DNS database of reflected

shock interactions, also at similar freestream conditions, with satisfactory results. Their

DNS database included wall temperature ratios Tw/Tr = 1.0, 0.5, and 1.9. The greatest

drawback to the scaling of JDD, however, is the lack of knowledge of the dependence of

k2 on the conditions of any given STBLI flow.

We now propose a new scaling of the interaction strength that is based on the
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combined results of JDD and SBD. For the derivation, two observations are made. First,

we note that the SBD scaling was shown to work well for a large range of adiabatic STBLI.

Second, the parameters Se∗SBD and Se∗JDD have nearly the same form in that Se∗JDD is

essentially a correction of the SBD normalization constant k. We make the assumption

that both scaling methods are equivalent for adiabatic interactions and that k and k2 can

therefore be related to each other by the following expression.

1

k
= k2

√
2Cfo,a

(M2
e − 1)1/2

. (5.12)

Here Cfo,a is the skin friction coefficient for an adiabatic boundary layer with the same

freestream conditions and Reynolds number. If we assume that k2 can be determined from

the ∆Psep of the adiabatic boundary layer, then we arrive at an expression for a modified

proportionality constant kmod that is generalized for any wall temperature condition

kmod = k

√
Cfo,a

Cfo
. (5.13)

The k of SBD is therefore simply scaled by the square root of the ratio of the adiabatic

Cfo,a to Cfo with heat transfer. The modified separation strength metric then becomes

Se∗mod = kmod
∆P

qe
= k

√
Cfo,a

Cfo

∆P

qe
. (5.14)

Even if unknown, Cfo,a can be estimated using an appropriate skin friction prediction

method such as those reviewed by Hopkins & Inouye [97]. It is interesting to mention that

if the relation between k and k2 of Equation 5.12 is used to back out k2 for the experiments

of JDD, a value of 7.41 is obtained compared to their experimentally determined value of
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7.14.

We first test the scaling of L∗ with Se∗mod on the data of JDD, Spaid & Frishett,

and Volpiani et al. We also include the DNS compression ramp of Priebe & Martin [12]

with Me = 2.9, ramp angle = 24o, Tw/Tr = 1.0, and Reθ = 2400, and the experimental

compression ramp of Ganapathisubramani et al. [85] with Me = 2, ramp angle φ = 20o,

Tw/Tr = 1.0, a nd Reθ = 35, 000. Figure 5.3(a) shows all L∗ data scaled by Se∗JDD as

reproduced from figure 10 of Jaunet et al. [15] and figure 13b of Volpiani et al. [93] Again,

the same k = 7.14 is used for the Priebe & Martin and Ganapathisubramani data points.

The data are then re-scaled using Se∗mod of Equation 5.14 and plotted in Fig. 5.3(b). Two

observations are immediately apparent from this comparison. First, a much closer data

collapse occurs for Se∗mod . 1 and the points in this range clearly fall on a linear trend.

Second, there is essentially no collapse of the fully separated STBLI data points when

scaled by Se∗mod. It will be shown in the next section that similar results occur with the

hypersonic data. Further discussion of these observations is provided in Section 5.4.

5.3 Scaling of a Hypersonic Database

For this study, we add to our LES database of hypersonic interactions that was

presented in Chapters 2 and 3 by running additional ramp angles for both the Mach 7

and Mach 10 freestream conditions. In addition to runs R8-M7-L and R33-M7-L, five

new ramp angles of 17o, 20o, 24o, 28o, and 31o are run at Mach 7 using the same M7-L

inflow. The same grid domain and resolution as R33-M7-L are used throughout with the

only change in the computational grid being the angle of the ramp. For the Mach 10

condition, a new auxilary boundary layer and ramp grid are run with a reduced span

width of Ly = 3δo compared to Ly = 10 of the R34-M10-L run. Ramp angles of 15o,
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Case Type Me Tw/Tr Reθ Reτ φ Geometry Reference

M7-L LES 7.2 0.5 3720 210 8o − 33o Ramp –
M10n-L LES 9.6 0.3 7940 460 15o − 34o Ramp –
M10-L LES 9.1 0.3 8280 520 34o Ramp –
M10-Elf1 Exp. 9.22 0.3 9010 680 15o − 38o Ramp [27]
M10-Elf2 Exp. 8.95 0.3 2900 220 15o − 38o Ramp [27]
M10-Col1 Exp. 9.22 0.3 4800 390 15o − 40o Flare [94]
M10-Col2 Exp. 8.95 0.3 2900 240 15o − 40o Flare [94]
M10-CF Exp. 9.87 0.3 8346 706 34o Flare [95]
M5-Vol1 DNS 5.0 0.8 3760 390 6o − 14o Ref. Shock. [36]
M5-Vol2 DNS 5.0 1.9 3890 175 6o − 14o Ref. Shock. [36]

Table 5.1: Database of hypersonic compression ramp STBLI: flow conditions.

22o, 24o, 27o, 31o, 33o, and 34o are run with the narrow domain. We continue to use

the same run casename notation as was introduced in Chapter 2 and here the narrow

Mach 10 datasets are reffered to by “M10n”. We chose to use the narrow grid to run the

vaying ramp angles at the Mach 10 condition simply because of the lower compuational

cost. This is especially true for the higher Reynolds number of the Mach 10 boundary

layer compared to the Mach 7. As will be discussed in Section 5.4, the narrow grid does

tend to restrict the spanwise periodicity in the downstream flow of the separated case,

however, the effect that this has on the averaged separation length is small and the same

conclusions on the scaling analysis can be made.

A summary of the freestream Mach number and incoming boundary layer Reynolds

numbers of the LES database are provided in Table 5.1 together with those from exper-

imental data at similar conditions to the Mach10 LES. The DNS database of Mach 5

reflected shocks at varying angle from Volpiani et al. [36] are also included in the compila-

tion. The data of Volpiani et al. are unique in this compilation in that they are the only

reflected shock data included and also M5-Vol1 is the only heated wall case considered.

A summary of the LES compression ramp compuational grid size and resoltuion are
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Case δo Lcorner/δo Lramp/δo Ly/δo Lz/δo ∆x+ ∆y+ z2
+

(mm)

M7 5.0 12 12 10 8 26.6-11.3 8.4 0.23
M10n 18.0 13 8 3 7 30.7-10.0 6.7 0.19
M10 18.0 13 12 10 7 27.7-10.5 7.1 0.20

Table 5.2: STBLI compression ramp LES computational grid.

listed in Table 5.2. Details of the Mach 7 and Mach 10 ramp grids from Chapter 3 are

repeated here for quick reference. Computational domain sizes are given in terms of the

reference boundary layer thickness δo. For the compression ramp, the dimension Lx1 is

the distance from the inlet to the corner of the ramp and Lx2 is the length along the ramp

surface measured from the corner to the outlet plane. Grid resolutions are given in units

of the inner length scale zτ as indicated by the ‘+’ superscript.

The mean separation length L in units of δo is listed in Table 5.3 for each of the LES

runs. Note that for this study, L is defined as the distance from the mean separation point

to the corner as is consistent with the definition of separation length used by SBD. The

duration over which the mean field was averaged is also listed in Table 5.3 in time units

nondimensionalized by both δo and L with freestream velocity ue. The mean skin friction

distributions and the mean wall pressure distributions for the Mach 7 interactions are

shown in Fig. 5.4. The Mach 10 interactions are shown in Fig. 5.5. Dashed lines indicate

attached and incipiently separated ramp angles and solid lines indicate fully separated

angles.

We now apply the scaling using Eqns. 5.1 and 5.14 to the data of Table 5.3. The

experimental data included in the scaling analysis are the Mach 10 compression ramp data

of Elfstrom [27], the Mach 10 cylinder with flare data of Coleman [94] at similar conditions

to the compression ramps of Elfstrom, and the AEDC cylinder-flare experiment of Brooks
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Case φ L/δo ∆tUe/δo ∆tUe/L

R8-M7-L 8o 0 150 –
R17-M7-L 17o 0.27 500 1850
R20-M7-L 20o 0.49 610 1240
R24-M7-L 24o 0.87 460 530
R32-M7-L 28o 1.51 540 360
R31-M7-L 31o 2.94 770 260
R33-M7-L 33o 4.42 1970 450
R15-M10n-L 15o 0.06 140 2330
R22-M10n-L 22o 0.27 150 560
R24-M10n-L 24o 0.40 200 500
R27-M10n-L 27o 0.59 190 320
R31-M10n-L 31o 1.10 180 160
R33-M10n-L 33o 2.28 210 90
R34-M10n-L 34o 3.10 220 70
R34-M10-L 34o 3.32 310 90

Table 5.3: Mean flow separation of LES ramp data.

et al. [95]. Not all of the information needed to scale the experimental data was available

from the respective references. The displacement thickness for the data of Elfstrom was

not reported explicitly. We used the boundary layer velocity profile data available from

the Ph.D. thesis of Elfstrom [98] together with the Crocco relation for mean velocity and

mean temperature to reproduce the experimental profiles of (ρeUe) from which δ∗ could

be integrated. Neither the displacement thickness nor the velocity profiles were available

for the data of Coleman. Since the data of Coleman and Elfstrom were run in the same

experimental facility at the same nominal freestream and wall temperature conditions, we

assume here that the ratio δ∗/δ is the same between M10-Col1 and M10-Elf1 and between

M10-Col2 and M10-Elf2. The separation lengths L were obtained from the available static

pressure distributions (figures 16, 17, and 20 of Elfstrom [98]; and figures 50a and 51a of

Coleman [94]). The separation length of the M10-CF was estimated as L = 0.3δ from the

PIV mean streamwise velocity field at the flare corner (figure 12 in Brooks et al. [95]).

The surface pressure measurements of Coleman showed that the pressure on the flare
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Figure 5.4: Skin friction (a) and wall pressure (b) distributions for M7 LES data. Dashed
lines indicate attached and incipient separated ramp angles. Solid lines are fully separated
ramp angles.

downstream of reattachment approached the conical shock inviscid pressure for all flare

angles. Surface pressure data was not available for the AEDC experiment. Inviscid conical

shock theory was used to estimate βc and P2/P1 for all flare data in Table 5.1. The van

Driest II theory [99] was used to determine the adiabatic skin friction coefficient Cfo,a

for the calculation of kmod for all data. Volpiani et al. [36] reported L∗ versus Se∗SBD.

The Se∗mod data were scaled by
√

Cfo,a/Cfo where the Cf conditions were determined

also from van Driest II theory. The van Driest II theory was shown by Duan, Beekman,

and Martin [73, 74] to be accurate within 5% error for Mach numbers up to 12 and wall

temperatures Tw/Tr from 1.0 to 0.2. They did not test the skin friction prediction on

heated walls.

The scaling results are plotted in Fig. 5.6. The incipiently separated interactions,

including the cylinder-flare data, appear to be well described by the same linear trend

observed in the supersonic data. As with the supersonic data, significant spreading oc-

curs in the fully separated regime and the scaling law does not hold. The M10n, M10,
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Figure 5.5: Skin friction (a) and wall pressure (b) distributions for M10 LES data. Dashed
lines indicate attached and incipient separated ramp angles. Solid lines are fully separated
ramp angles.

and M10-Elf1 data are of similar conditions (Reθ, Me, Tw/Tr) and these nearly coincide

across all ramp angles. The fully separated R31-M10n-L, R33-M10n-L, and R34-M10n-L

are a bit below the M10-Elf1 and R34-M10-L data points, however, this is interpreted as

a consequence of the narrow computational domain of M10n as will be discussed in the

following section. The fully separated cylinder with flare M10-Col1, also at similar condi-

tions as M10-Elf1 but with half the Reθ, has dramatically larger L∗ than the compression

ramp.

5.4 Discussion and Summary

All Se∗mod and L∗ data from Sections III and IV are plotted together in Fig. 5.7(a).

Both the supersonic and hypersonic data show that there are two distinct linear regions

in the curve of L∗ versus Se∗ when multiple deflection angles are plotted for the same

incoming boundary layer. The point at which the two linear regions intersect has been

determined to coincide with the onset of separation for a given boundary layer [14, 15]. In
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Figure 5.6: Separation scaling data of the hypersonic STBLI database of Table 5.1. The
dashed line is the linear trend reproduced from Fig. 5.3 (b).

corroboration with this assumption, careful observation of the current LES data reveals

that the first point on the fully separated branch of each of the M7 and M10n curves

(R28-M7-L and M10-31 respectively) is also the smallest ramp angle simulated for which

the spanwise averaged flow field does not instantaneously reattach. A characteristic of

these two slopes, which is most apparent in the hypersonic data but is also true for the

supersonic data, is that they are not proportional to each other in the same ratio across all

data. It is therefore not possible to collapse both the incipiently separated data and the

fully separated data simultaneously by using a single proportionality constant such as k

in the definition of the shock strength metric. We also point out that this problem of the

disproportionality of the slopes remains even if L∗ is plotted versus ∆P/∆Psep as is done in

Fig. 5.7(b) for all data for which ∆Psep is known. Recall that Se∗mod is an approximation

of the ratio ∆P/∆Psep such that qe/kmod ≈ ∆Psep. In conclusion, it seems that the
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Figure 5.7: Supersonic and hypersonic scaled STBLI data plotted together with L∗ versus
Se∗mod (a) compared to L∗ versus ∆P/∆Psep (b). Symbols are as in Fig. 5.3 for supersonic
data and Fig. 5.6 for hypersonic data. Filled symbols are incipiently separated and open
symbols are fully separated.

two branches of incipiently separated and fully separated STBLI are each governed by

different physical mechanisms and therefore different scaling laws, each potentially with

its own dependence on Reynolds number, Mach number, wall temperature, and geometry.

In comparing Figs. 5.3(a) and 5.3(b) and also Figures 5.7(a) and 5.7(b) we propose

that the modified separation scaling derived in Section III is the appropriate separation-

length-to-shock-strength scaling for the incipient separation regime. For the incipient

interactions, the boundary layer separates when the pressure jump across the shock struc-

ture is sufficient to halt the momentum of the incoming boundary layer and so ∆P scales

by qe. Increasing the wall temperature will increasingly skew the distribution of momen-

tum towards the edge of the boundary layer and so we see that heated interactions produce

larger separation than an adiabatic case at the same deflection angle. The opposite effect
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occurs when the wall is cooled. The skin friction ratio correction on kmod was shown

in Section III to account for the variation in separation length caused by the wall tem-

perature condition. Also by the current data compilation, the incipient separation data

collapse appears to be independent of the geometry and agrees for all compression ramp,

reflected shock, and axi-symmetric flare data. In contrast, the separated interactions

follow a different trend and a different Reynolds number dependence.

With the current limited data compilation and the limited knowledge of the factors

affecting the dynamics of the IVS, it is not possible to propose a scaling for the fully

separated STBLI regime. We observe, however, that the data trends can be reconciled

with the existence of the IVS discussed in Chapter 4. Shown by the data in Fig. 5.6, there

is an obvious dependence of L∗ on Reynolds number when comparing between M10-Elf1

and M10-Elf2 and also between M10-Col1 and M10-Col2. The L∗ is significantly reduced

in the lower Reynolds number data. Notice that an increase in the Reynolds number of

the incoming boundary layer results in an increase in the turbulent mixing and energy

in the incoming boundary layer flow, which in turn hinder the development of the IVS

resulting in weaker circulation of the vortices rendering them less effective in depleting

the separation bubble. This is consistent with the fact that the mean separation length

increases with increasing Reynolds number for a given Me and φ as the data of Elfstrom

and Coleman show. In the case of M10-34, the IVS are confined by the narrow grid

resulting in a stronger instability with stronger circulation. The result is again a smaller

separation length in M10-34 compared to M10-34w for which there is no such constriction.

For the cylinder-flare data compared to the compression ramp data (M10-Elf to M10-

Col data points) the spanwise relief effects from the increasing flare radius downstream

of attachment significantly weakens the strength of the IVS and the separation length
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increases dramatically.
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Chapter 6: Characterization of the Shear Layer in Separated STBLI

§The majority of this chapter is reproduced from Helm et al. [83].

6.1 Background

The free shear layer is one of the most fundamental shear flows for the study of

turbulence. Unlike wall-bounded shear layers, the mixing layer develops with only one

length scale. The canonical mixing layer therefore affords a simple yet essential configu-

ration for the study of compressible turbulence. A firm grasp of the fundamental physics

of compressible turbulence in shear flow is of paramount importance for the advancement

of hypersonic flight technology, supersonic combustion, and the development of robust

practical simulation tools for such engineering design efforts.

Despite its conceptual simplicity, the compressible mixing layer exhibits certain

properties that are difficult to explain physically. One of its most documented features is

a significant decrease in spreading rate with increasing compressibility. This property is

noted in research articles as early as the 1950’s from experimental observation [100, 101]

and from linear stability prediction of the stabilizing effects of increasing Mach number

on a vortex sheet [102, 103, 104]. By the 1970’s, consensus among scientist resulted in the

well-known “Langley curve” [105, 106]. The Langley curve is generally plotted as normal-

ized spreading rate versus the convective Mach number Mc, a metric for compressibility

proposed by several authors [107, 108, 109]. Early research also revealed that the reduction
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in spreading rate is accompanied by a reduction in fluid entrainment, turbulence mixing,

and turbulence stresses [110, 111, 112]. Many significant research contributions advancing

our physical understanding of these phenomena have since been put forth as outlined in

several review articles [1, 113, 114, 115]. In spite of the large volume of research, precise

scaling laws and robust models for simulation are still lacking.

Several factors make identification of exact scaling dependencies difficult. Signifi-

cant spread exists in the data partly due to limitations of measurement techniques, but

also due to an acute sensitivity of the mixing layer to initial and boundary conditions.

This sensitivity is problematic in both experiment and computation and can produce large

variations in the spreading rate and turbulence stresses. Disturbances in the freestream,

conditions of the boundary layer, experimental facility acoustics, splitter plate vibration,

and test section confinement can all contribute to scatter in the data [1, 115]. In the clas-

sic relation of Papamoschou & Roshko [109] δ′ = δ′incφ(Mc), determination of the scaling

function φ(Mc) is compromised by significant scatter in both the compressible spreading

rate δ′ and the incompressible spreading rate δ′inc. Dimotakis [113] reported as much as

30% variation in incompressible spreading rate data due to experimental inconsistencies.

Smits & Dussauge [1] estimated as much as 50% variation in the compressible data mea-

surements. A number of attempts have been made to correct for the discrepancies in the

data [116, 117, 118, 119] with some success, however, large spread in the data still remains.

Similarly for turbulence quantities, scatter has prevented a consensus on the trends caused

by increasing compressibility. For example, many studies indicate that the peak normal

stress in both the streamwise 〈u′2〉 and cross-stream 〈w′2〉 directions steadily decrease

with increasing Mc. This resulted in the turbulence shear stress 〈u′w′〉 and anisotropy

〈u′2〉/〈w′2〉 remaining relatively constant [120, 121, 122, 123]. Still, several other studies
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[112, 124, 125] found that for increasing Mc, 〈u′2〉 is constant and only 〈w′2〉 decreases

causing the shear stress to decrease and anisotropy to increase. The overall scatter is on

the order of the reported trends as can be seen in the data compilations in [1] and also in

the more recent data compilations of Barre & Bonnet [126].

The sensitivity of the mixing layer stems from the complex dynamics of the large-

scale vortices produced by the Kelvin-Helmholtz instability. These large-scale mixing layer

eddies undergo significant changes with increasing Mach number and have been found

to play a dominant role in establishing both the spreading rate and turbulence levels.

It has been observed in many studies that the structure of the mixing layer becomes

increasingly three-dimensional and less coherent with increasing compressibility. This

has been shown, for example, with two-point correlations in experimental data [127],

in experimental flow visualizations [128, 129, 130], and flow visualizations in numerical

simulations [125, 131, 132, 133]. Increasing strength of an oblique unstable wave with

convective Mach number was also predicted by inviscid stability theory [131, 134]. Further

complexity arises when the motion of the large vortices becomes supersonic relative to one

or both of the external flows causing shocklets to appear. Shocklets have been observed

both experimentally [130, 135] and in simulations [125, 133, 136] and typically occur

at high convective Mach numbers. These shocklets can affect the turbulence dilatation,

dissipation, and pressure fields [1].

A key parameter for the characterization of the compressible mixing layer is the

convection velocity of the Kelvin-Helmholtz vortices in relation to one or both of the

freestream velocities. Under the assumption that the mixing layer eddies convect at a

constant velocity, are non-dispersive, and the streamlines are isentropic, Papamoschou

& Roshko [109] conducted a theoretical analysis to derive the convective Mach number
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Mc = ∆U/(a1 + a2) which is the velocity difference across the layer ∆U divided by the

average of the sound speed a in the two streams. Despite the limitations imposed by the

derivation assumptions,Mc is still the most used Mach number in the study of compressible

mixing layers. Freund et al. [125] showed in their direct numerical simulations (DNS)

of an annular mixing layer that, with increasing Mc, the cross-stream correlation length

decreases in relation to the layer thickness. This indicates that the large scale eddies do not

span the width of the layer at elevated Mach number. The same authors also showed that

the peak turbulence stress in their simulation data scaled with the cross-stream correlation

length and not the layer thickness. These results were confirmed by Pantano & Sarkar [123]

who demonstrated that the pressure-strain rate correlation in their DNS scaled best with

the so-called gradient Mach number. The gradient Mach number Mg is by definition the

acoustic time scale divided by the flow distortion time scale and is related to the velocity

difference across a large scale structure. This is in contrast to Mc which is based on the

velocity difference across the entire layer. The results of Freund et al.[125] and Pantano &

Sarkar [123] are both consistent with the previous work by Vreman et al.[137] who used a

theoretical model of sonic eddy, a concept first introduced by Breidenthal[138], to explain

an observed decrease in pressure fluctuations with increasing Mach number. Detailed

turbulence statistics afforded by high fidelity numerical simulations enabled these authors

[123, 125, 137] to reveal that a decrease in the pressure-strain rate correlation is directly

responsible for the decrease in spreading rate with increasing Mach number. These results

point to the importance of the structural changes of the large-scale mixing layer eddies in

dictating both the spreading rate and the turbulence stresses.

One factor limiting our ability to translate these observations into precise scaling

laws is that the parameter space has by no means been exhausted. Particularly lacking in
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the research are mixing layers of high convective Mach number (Mc > 1), especially in the

way of turbulence statistics. Aside from the notable work by Pantano & Sarkar [123], the

effects of density gradient on the compressible mixing layer dynamics and their distinction

from purely compressibility effects has not yet been thoroughly explored. The effect of

velocity ratio also has not been fully investigated. The majority of mixing layer data

are either of a single stream or two co-flowing streams. There is evidence, however, that

the vortex dynamics are fundamentally different for the counter-current configuration

compared to the much more widely studied co-flowing configuration. Flow visualizations of

the axi-symmetric jet of Strykowski et al. [139] demonstrate that counter-flow shear layers

can produce larger and more coherent structures than are discernible in single-stream jets

at similar conditions. Linear stability analysis of both compressible and incompressible

mixing layers shows the unstable mode can transition from a convectively unstable to an

absolutely unstable mode under certain conditions of reverse flow strength [140, 141, 142].

Considering these changes in the nature of the instability, a question that may be asked

is whether the relations between spreading rate and turbulence statistics observed in co-

flowing compressible mixing layers still hold true. Another configuration of practical

interest of which there is very little data available is the mixing layer subjected to a

streamwise pressure gradient.

A compressible separation shear layer forms in strong shock/turbulent boundary

layer interactions (STBLI). A well-known characteristic of separated STBLI is the oc-

currence of a low-frequency unsteadiness in the shock foot and separation bubble (among

many references see for example Dussauge et al. [2] and Wu & Martin [3]). Many attempts

have been made to discover the origins of this unsteadiness, but of particular interest to

the current discussion is the work of Pipponiau et al.[21] who used scaling arguments
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to explain the order of magnitude difference between low-frequency motions observed in

STBLI and those observed in incompressible separation bubbles. In the derivation of

their model, they equated the separation shear layer in their Mach 2.3 reflected shock

STBLI to a canonical mixing layer and sited the Mach number dependent reduction in

the spreading rate of the compressible mixing layer as the primary cause of the frequency

difference. Recently, Dupont et al. [143] published a follow-up article to that of Piponniau

et al. with the intention of verifying the assumptions that were made of the STBLI shear

layer properties. Although decidedly not a canonical mixing layer, interestingly, Dupont

et al. showed that the STBLI shear layer does in fact share many of the same proper-

ties. For example, they were able to collapse profiles of the mean velocity and turbulence

stresses onto an approximate similarity profile by defining an appropriate, linearly vary-

ing, shear layer coordinate system. They also demonstrated that the spreading rate of the

separation shear layer was consistent with the level of compressibility as determined by

the convective Mach number and the measured rate of entrainment. Turbulence scaling

properties of shear stress-to-spreading rate and also turbulence anisotropy-to-convective

Mach number were also found to be in good agreement with mixing layer dimensional

analysis. In light of these results, it would seem that the separation shear layer in STBLI

flows could potentially provide significant insight into the mixing layer problem, or, at the

very least, help expand the currently available parameter space.

6.2 Chapter Overview

In this chapter, we employ our LES database of separated STBLI including the

Mach 3 interaction (R24-M3w-L) of Chapter 2 and the hypersonic interactions (R33-M7-

L and R34-M10-L) of Chapter 3 to analyze the properties of mixing layers in hypersonic
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separated flow with the intention of contributing to the research of mixing layer theory.

These three separated STBLI were found to produce shear layers with convective Mach

number ranging from 1 to 2. This highlights an attractive feature of STBLI separation

shear layers in that they naturally occur at high convective Mach number. They also

present the rare combination of high convective Mach number with reverse flow on the

low-speed side. A further detail of the STBLI shear layers is that they exists in an

adverse pressure gradient. We find that the pressure increases approximately linearly

in the direction of shear layer development and that similarity in the mean velocity and

turbulent stress profiles is still achieved under these conditions. Because we are using high

fidelity, high detail LES data, we are able to obtain accurate turbulence statistics in the

shear layer. The spatial/temporal resolution of the LES data also allows us to produce

statistics on the shear layer turbulence structures, to visualize instantaneous realizations

of the turbulence structures, and to directly calculate their convection velocity. The vortex

convection velocity is an important parameter in characterizing the mixing layer yet it is

notoriously difficult to measure accurately in experiments [121, 144, 145].

This chapter is organized as follows. In Section 6.4, the mean flow properties of the

shear layer are tabulated. The form of the shear layer vortices is the topic of Section 6.5.

The shear layer turbulence properties including turbulent kinetic energy and Reynolds

stress budgets are compared with available mixing layer data and theory in Section 6.6

followed by a summary of conclusions in Section 6.7.

6.3 Nomenclature and data sampling

Throughout this chapter we use the following notation. The datasets R24-M3-L,

R33-M7-L, and R34-M10-L from Capters 2 and 3 will referred to by the shorthand M3,
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M7, and M10. The LES coordinate axes are indicated by capital letters (X,Y,Z) and refer

to the streamwise, spanwise, and wall-normal directions respectively. The shear layer coor-

dinate axes, to be explained in Section 6.4.1, are specified by the lowercase letters (x, y, z)

where x is in the direction of the shear layer development, y is the spanwise direction, and

z the cross-stream direction. Unless stated otherwise, the velocity components (u, v, w)

are in the direction of the mixing layer coordinate system. In this Chapter, the symbol δ

with no subscript is reserved for the mixing layer thickness whereas the boundary layer

thickness is denoted by δbl.

During the runtime of the R24-M3-L, R33-M7-L, and R34-M10-L datasets, primitive

flow variables were output at a high sampling rate of f = 20Ue/δbl from several stations

positioned along X in the computational domain. At each station, that is at a given i-grid

point, data was recorded from each j- and k-grid points. The grid indices i, j, and k

refer to the streamwise, spanwise, and wall-normal grid directions respectively. For each

Mach number case, there are a total of seven of these stations evenly spaced in X between

(X − Xsep)/L = 0.3 and 0.9 in the region of the mean separation bubble. Here Xsep

refers to the location of the separation point in the time- and spanwise-averaged ramp

flow. These high resolution time signals are used for the enhanced correlations described

in Section 6.5.1 and also the flow visualizations in Section 6.5.3.

6.4 Region of Similarity in the Mean Separated Flow

6.4.1 Similarity Profiles

The STBLI separation shear layers are visualized in Fig. 6.1 by the region of elevated

turbulence in the contours of mean turbulent kinetic energy TKE = 〈u′iu′i〉/2Ue
2. In each

case, the shear layer forms at the foot of the shock and makes an angle to the wall surface.
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Figure 6.1: Mixing layer coordinate system definition for the (a) Mach 3, (b) Mach 7,
and (c) Mach 10 compression ramp datasets. Contours are of the turbulent kinetic energy
TKE = 〈ui′ui′〉/2Ue

2. The black line is the location of the mean shock front and the
magenta line is the mean dividing streamline. Dashed lines indicate the range of similarity.
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Figure 6.2: Similarity profiles in the Mach 3 STBLI separated shear layer: (a) the mean
axial and cross-stream velocity, (b) axial turbulence intensity, (c) cross-stream turbulence
intensity, and (d) turbulence shear stress. The bold line is the profile at the ramp corner.

The positions of the shock and the separation dividing streamline are also indicated in

Fig. 6.1. A shear layer coordinate system (x, z) is defined for each case such that the

longitudinal x-axis extends along the center of the layer in the direction of its development

and the z-axis is perpendicular to x in the cross-stream direction. Canonical mixing layers

are characterized by a linear growth rate of the layer thickness [146, 147]. If linear growth

does in fact occur in the present shear flows, it should be possible to collapse profiles of

the mean flow onto a single similarity profile by plotting against the similarity variable

ζ = z/x. In doing so, a region of approximate linear growth is found in each of the three

STBLI flows.

The mean velocity and mean turbulence stresses are plotted versus ζ for M3, M7,
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Figure 6.3: Similarity profiles in the Mach 7 STBLI separated shear layer: (a) the mean
axial and cross-stream velocity, (b) axial turbulence intensity, (c) cross-stream turbulence
intensity, and (d) turbulence shear stress. The bold line is the profile at the ramp corner.

and M10 in Figs. 6.2-6.4 respectively. Obtaining these profiles required the positioning of

the shear layer coordinate system xz-axes, the rotation of which was determined by the

orientation of the mean velocity field, and the origin by the angle of spread observed in the

contour of mean TKE. This manual placement of the mixing layer coordinates is similar

to the method used by Dupont et al.[143]. The position of the xz-axes for each case are

shown in Fig. 6.1. The angles of inclination for the Mach 3, 7, and 10 flows are 12.0o,

8.5o, and 10.0o respectively. The bold dashed lines in Fig. 6.1 indicate the range in x for

which a good collapse of the similarity profiles was found. The profiles of Figs. 6.2-6.4

were taken from this range.

The collapsed profiles themselves resemble quite well those of the classic mixing
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Figure 6.4: Similarity profiles in the Mach 10 STBLI separated shear layer: (a) the mean
axial and cross-stream velocity, (b) axial turbulence intensity, (c) cross-stream turbulence
intensity, and (d) turbulence shear stress. The bold line is the profile at the ramp corner.

layer. The mean longitudinal velocity profiles show high and low velocities connected by

a single inflection point, and the profiles of turbulence stress are approximately Gaussian

with the peak coinciding with the location of the inflection point in the mean velocity U .

Both of these features are typical of the canonical mixing layer and together they produce

the Kelvin-Helmholtz inviscid instability [148]. Unlike the classic mixing layer similarity

solution, the collapsed profiles for all three shear layers appear to be non-symmetric with

the turbulence peak (equivalently the inflection point in the mean velocity) biased towards

the high speed side of the layer. It is shown in Section 6.6 that this bias is a result of the

proximity of the wall on the low-speed side. The profiles of mean cross-stream velocity

show that W is essentially zero across the layer for all three cases indicating that the
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mean velocity is nearly parallel to the x-axis. The minimal variation in W across the layer

is also consistent with a reduced entrainment rate, and therefore reduced spreading rate

as is expected for highly compressible mixing layers. This point is discussed further in

Section 6.4.4.

6.4.2 Two-Stream Properties

Encouraged by the quality of collapse of the profiles as well as their resemblance

to the canonical free mixing layer flow, we make an attempt to categorize these STBLI

shear layers in the manner of conventional compressible mixing layers. To do so we must

describe each shear layer as two streams, a high- and a low-speed stream, each with

constant velocity and constant thermodynamic properties. As can be seen in Figs. 6.2-

6.4 this will only be an approximation as all profiles deviate from the typical mixing

layer solution near the edges of the layer. Spreading occurs at the low-speed end of the

profiles due to the presence of the wall and at the high speed end due to the presence of

the separation shock (the location of the shock in ζ is easily seen in the profiles of W ).

It will be shown, however, that even a rough estimation of the mean properties of the

two streams is sufficient for a general comparison to canonical mixing layer data. The

estimations of the two stream properties for each shear layer are listed in Table 6.1. The

methods for determining the entries of Table 6.1 are discussed below. By convention,

properties associated with the high-speed side are indicated with the subscript “1” and

the low-speed side with subscript “2”.

The velocity U1 and temperature T1 for each case are estimated as the inviscid post-

shock solution for the STBLI freestream undergoing a flow deflection equal to the angle of

inclination of the x-axis. This selection of U1 and T1 stems from the observation that the
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Case U1 T1 M1 U2 T2 M2 dp/dx s r Mc Uc,i

(m s−1) (K) (m s−1) (K) (p1 L−1) (m s−1)

M3 551 140 2.3 -36 279 0.1 0.52 0.541 -0.065 1.03 308
M7 1115 99 5.6 -137 537 0.3 1.20 0.299 -0.123 1.89 739
M10 1368 115 6.3 -142 707 0.2 0.86 0.333 -0.104 1.99 934

Table 6.1: Averaged mixing layer flow properties.

rotated mean W profiles are essentially zero for all three shear layers. It is worth noting

that we found the initial deflection angle of the separation shock, as shown for each case

in Fig. 6.1, corresponds closely to the resulting wave angle of the oblique shock solution.

The high speed stream Mach number M1 is determined from U1 and T1. The M7 and

M10 flows maintain Mach number above 5 downstream of the separation shock and can

be considered hypersonic shear layers.

The velocity U2 of the low-speed side is estimated as the minimum in the similarity

profiles of U in Figs. 6.2-6.4 (a). The low-speed side T2 is likewise determined from the

similarity profiles of temperature which are plotted in Fig. 6.5. All three cases show a

satisfactory collapse of temperature within the previously defined range of approximate

similarity. In each shear layer, however, there occurs a “hook-off” of the temperature

profiles on the low-speed side. This is due to the constant temperature boundary condition

at the wall. The wall temperature of the Mach 3 case is nearly adiabatic and so the

divergence of the profiles in Fig. 6.6 (a) is minimal. Because the Mach 7 and Mach 10

are both cold-wall simulations, the temperature drops significantly inside the separation

bubble as seen in Fig. 6.5 (b-c). The low speed T2 is therefore estimated as the maximum

value in temperature just before the profiles diverge to meet the wall boundary condition.

The two hypersonic shear layers have large temperature ratios such that T2 experiences

an increase of over 5 times T1 for the M7 case and nearly 7 times for the M10 case. In
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10 STBLI separated shear layers.
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Figure 6.6: Pressure gradient along the shear layer centerline.

comparison, the M3 case T2 is only double the value of T1. Also listed in table 6.1 is the

low-speed stream Mach number M2 calculsed from U2 and T2.

Because the separated flow is shock-induced, an adverse pressure gradient occurs

along the length of the shear layer. Figure 6.6 shows that the pressure increases nearly

linearly along the x-axis for all three cases. The reference pressure p1 is the post-shock

pressure from the oblique shock solution from which U1 and T1 are obtained. The average

rate of pressure increase dp/dx in units of p1/L was determined from a linear fit to the

data of Fig. 6.6. For the Mach 3 flow the pressure increases by nearly 50% across the

region of similarity, while for the Mach 7 and Mach 10 flows the pressure approximately

doubles. As a result of the adverse pressure gradient, the mean density plotted versus ζ

does not collapse when normalized by the freestream density as is apparent in Figss 6.7

(a), (c), and (d). The density is seen to increase significantly from the most upstream

profile to the most downstream profile. However, a much better collapse is achieved if

each individual profile of ρ is non-dimensionalized by the local ρ2(x). The inverse of ρ

non-dimensionalized by ρ2(x) is plotted in Fig. 6.7 (b), (d), and (f). That is, although
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there is a monotonic increase in density along x, the ratio between the two streams is

approximately constant. Therefore, only the density ratio s = ρ2/ρ1 is reported in table

2. The value of local ρ2(x) was determined from the individual profiles in Figs. 6.7 (a-c)

in a manner similar to the selection of T2 from the profiles of temperature. Note that the

density could have equivalently been non-dimensionalized by the local ρ1(x) to obtain the

collapse. We chose to use ρ2(x) because this quantity was easier to select from Figs. 6.7

(a-c). The Mach 3 STBLI flow produces a density ratio of approximately 1/2 across the

shear layer while both the Mach 7 and Mach 10 interactions produce a density ratio of

1/3. Also included in Table 6.1 is the velocity ratio r = U2/U1 for each case.

6.4.3 Convection Mach Number

Now that the properties of the shear layer high- and low-speed streams are known,

the theoretical convective Mach number defined as

Mc =
U1 − U2

a1 + a2
(6.1)

and also the theoretical mixing layer vortex convection velocity Uc,i defined as

Uc,i =
a1U2 + a2U1

a1 + a2
(6.2)

can be calculated for these flows. These expressions for the convective Mach number and

convective velocity are derived for an isentropic mixing layer where a1 and a2 are the

spead of sound in the two streams [107, 109]. The Mc and Uc,i are computed for each case

and listed in Table 6.1. An interesting feature of the separated STBLI flows is that they

produce shear layers with rather high Mc even for the Mach 3 compression ramp flow.
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All three shear layers are above Mc = 1. This is an attractive feature considering that

the majority of mixing layer data available today, particularly for turbulence statistics, is

below Mc = 1.

For mixing layers with Mc above 1 it is likely that shock waves exist in one or both

sides of the mixing layer, thus negating the isentropic assumption in the derivation of

Eqns. 6.1 and 6.2. We will show later in Section 6.5.2 that the theoretical Uc,i in Table

6.1 is quite different from the convection velocity determined from enhanced two-point

correlations.

6.4.4 Spreading Rate

Despite its known limitations as a scaling parameter, the convective Mach number

defined by equation 6.1 is currently the most widely accepted metric in the literature

for classifying the compressibility effects of mixing layers [1]. One such classification is

the observed significant decrease in layer spreading rate with increasing Mc. Smits &

Dussauge [1] presented a compilation of compressible mixing layer spreading rate data,

expressed as a fraction of the spreading rate of an equivalent incompressible mixing layer

with the same values of r and s, and plotted these versus Mc (see figure 6.6 in refer-

ence). Included in the data compilation are the classic Langley curve [105, 106], the

semi-empirical curve by Dimotakis [113], and the linear stability analysis prediction of

spreading rate decrease with Mc by Day et al. [132]. The data show that the spreading

rate can decrease by as much as 50% to 80% from the incompressible case for Mc above

0.5. For the current data, normalized spreading rate predictions from the classic Langley

curve are approximately 0.55 for the Mach 3 flow and 0.40 for both the Mach 7 and Mach

10 cases as determined by the values of Mc in table 6.1.
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Case δ′u′ δ′u′w′ δ′inc δ′u′/δ′inc δ′u′w′/δ′inc

M3 0.265 0.238 0.311 0.853 0.766
M7 0.195 0.194 0.297 0.656 0.653
M10 0.205 0.202 0.296 0.692 0.682

Table 6.2: Spreading rate estimates and comparison to incompressible theory.

For the STBLI shear layers, the spreading rate of vorticity thickness δ′ = dδω/dx

where δω = ∆U/max(dU/dz) can be estimated using the two different methods outlined by

Dupont et al.[143]. The first of these uses a comparison of the normalized 〈u′2〉 similarity

profile with the same from an incompressible mixing layer. Here the two-stream mixing

layer data of Mehta & Westphal [149] (figure 5(b) in reference) is used. This first method

assumes that the shape of the 〈u′2〉 profile as well as the ratio of (dδω/dx)/dζ do not differ

between the compressible and the incompressible cases. The second method involves

fitting a Gaussian curve to the profiles of turbulent shear stress. Both methods provide

consistent results. These are listed in table 6.2.

A theoretical estimate of the spreading rate for an incompressible mixing layer with

non-zero density ratio s can be determined from the relation derived by Papamoschou &

Roshko [109]

δ′inc = δ′ref
(1− r)(1 +

√
s)

(1 + r
√
s)

. (6.3)

In equation 6.3, δ′ref is a reference spreading rate from an incompressible mixing layer

with s = 1 and U2 = 0 and is typically taken to be equal to 0.16 [1]. The STBLI

shear layer spreading rates are also listed in table 6.2 as a fraction of the corresponding

incompressible estimate. The spreading rate ratios are less than unity however they are

approximately 50% to 70% higher than the Langley curve predictions. The Langley curve,

however, is based primarily on data for single or two stream co-flowing mixing layers. It
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has been shown that the spreading rate can be significantly greater for counter-current

mixing layers [139, 150] and also for mixing layers subjected to adverse pressure gradients

[151]. Although there is significantly less data on the counter-current mixing layer than

the co-flowing configuration, one notable work is that of Strykowski et al. [139]. The

authors performed a series of counter-flowing axi-symmetric jet experiments at Mc ≈ 1

with varying reverse flow strength. They showed that the spreading rates were consistently

60% greater than the case of a single stream jet. Another consideration is that equation 6.3

might not be an accurate approximation for the spreading rate of incompressible counter-

current mixing layers. Strykowski et al. [139], however, also showed that equation 6.3 was

valid for their experimental data if the reverse flow strength did not exceed r < −0.1.

Even still, the disagreement for r < −0.1 was sited by the authors as possibly due to an

artifact of their jet nozzle. At any rate, the shear layer data in table 6.2 clearly shows

a decrease in spreading rate from the M3 case at Mc ≈ 1 to the M7 and M10 cases at

Mc ≈ 2.

6.5 Vortex Signature and Convection Velocity

The similarity profiles of the mean velocity and turbulence stresses presented in

section 6.4.1 indicate that the criteria for the inviscid Kelvin-Helmholtz instability exist

in the STBLI shear layers, and so it is expected that there will be large spanwise-oriented

vortices present in the flow. Changes in the global characteristics of the compressible mix-

ing layer as compared to the incompressible condition may be better understood through

observation of the dynamics of the large vortical structures. The detection and description

of the average signature of these vortices is the subject of this section.
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6.5.1 Enhanced Correlations

A schematic of the shear layer in the compression ramp STBLI flow is given in

Fig. 6.8. On the left is shown a model of the spatial development of the mixing layer

structur es as they convect along the x-axis. It is assumed that the vortices convect at

a constant velocity Uc and that they follow one after the other at fairly regular intervals.

It is also assumed that they do not stray too far from the shear layer centerline. At

reattachment the vortices are shed into the downstream flow. These assumptions are

based on observations of the temporally- and spatially-resolved LES data and are verified

in Section 6.5.3 by the instantaneous vortex visualizations. If the flow is probed at a

stationary point in the shear layer, the resulting time signals can be converted to spatially

“frozen” turbulence via Taylor’s hypothesis. This is drawn schematically on the right

side of Fig. 6.8. The average signature of the frozen turbulence can be determined from

the cross-correlations of the time signals of mass flux and pressure fluctuations in the

following way. Consider for example the time signal of pressure taken from a point along

the centerline of the shear layer. As a vortex core convects past the probe location there

will be a negative fluctuation in the pressure. Likewise, in-between successive vortices

there will be a positive pressure fluctuation from the stagnation point in the convective

reference frame. In a similar way, the time signal of longitudinal mass fluctuations (ρu)′

taken near the bottom edge of the shear layer will give information on the aperiodic

signature of the passing vortices due to the orientation of the vortex rotation. Taking the

cross-correlation between the centerline p′ and the bottom edge (ρu)′ time signals produces

a sinusoidal signature, the period of which is equal to the average time between successive

vortices as they convect past the probe points. Although not shown in the schematic of
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Figure 6.8: Schematic of the vortex structures (a) in the spatially developing shear layer
in the separated compression ramp STBLI flow and (b) time signals taken from within
the shear layer converted to “frozen” vortices by using Taylor’s hypothesis.

Fig. 6.8, similar arguments can be made for cross-correlations between centerline p′ and

centerline cross-stream momentum (ρw)′. Here we consider both R(ρu)′p′ and R(ρw)′p′ .

A similar cross-correlation method was demonstrated by Kiya & Sasaki[152] and also

Cherry et al. [153] for an incompressible separation shear layer, and Samimy et al.[127]

for compressible mixing layers. There are a couple of points to be made on the cross-

correlation method used here. First, the signal of longitudinal momentum fluctuations

could be taken from either the top or bottom edge of the shear layer. Kiya & Sasaki [152]

for example used the high speed edge. In this analysis, the bottom edge was chosen so as to

avoid the separation shock. Second, auto-correlations of pressure with itself will also give a

periodic correlation curve as demonstrated by Kiya & Sasaki [152], Cherry et al. [153], and

Samimy et al.[127]. Here cross-correlations of p′ and (ρu)′ and also p′ and (ρw)′ were used

in order to couple the mass flux and pressure field events, that is, to ensure that a pressure

fluctuation is accompanied by a corresponding mass fluctuation. We found this strategy

also ensures a more robust selection method for the enhanced correlation technique to

be described shortly. Last, it was found that nearly identical correlation signatures were
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Figure 6.9: Pre-multiplied power spectral density of wall pressure signals from the (a)
Mach 3, (b) Mach 7, and (c) the Mach 10 data. Spectra are shown for the upstream
boundary layer (solid bold), separation point (dotted), corner (dashed bold), and reat-
tachment (solid).

achieved when correlating velocity with pressure compared to correlating mass flux with

pressure. In general the mass flux correlations provided a stronger signature and so only

the mass flux and pressure correlations are included in this paper.

The details of the correlation method are as follows. Before calculating the cross-

correlations, the signals of pressure and velocity are first bandpass filtered in time. Fully

separated STBLI flows are characterized by frequency spectra consisting of three distinct

broadband ranges of energized turbulence motions. These are associated with (1) the in-

herent low-frequency unsteadiness of the separated flow, (2) the mixing layer vortices, and

(3) the fine scale boundary layer turbulence. To demonstrate these frequency bands, pre-

multiplied power spectral density (PSD) of wall pressure taken in the upstream boundary

layer, the mean separation point, the ramp corner, and the mean reattachment point are

plotted in Fig. 6.9 for each of the three STBLI flows. These spectra were calculated using

Welch’s method with eight time segments with 50% overlap and then bin sampled with a

bin width of 0.1 in the log scale. From these spectra it is possible to make out the shifts in

the distribution of turbulence energy as the flow progresses through the separated region.

In the boundary layer, only the high frequency turbulence exists with little to no
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Figure 6.10: Cross-correlations between bandpass filtered mixing layer centerline pressure
and massflux signals at the corner profile of each dataset. Averaged over full time signal
(a-c) and enhanced average (d-f).

energy present at the lowest frequencies. The undisturbed boundary layer turbulence is

generally centered at Stδ = fδbl/Ue = 1 and experiences a shift to StL = 1 downstream

of the shock. This shift in the boundary layer turbulence can be seen when comparing

the broadband energy peaks between the most upstream and most downstream spectra.

The low-frequency oscillations of the shock appear in the separation spectra. It is well

documented in the literature that the low-frequency oscillations in quasi-two dimensional

separated STBLI flows occurs at StL = fL/Ue on the order of 0.01 (Among many ref-

erences, see for example Dupont et al. [11] for reflected shock interactions and Priebe &

Martin [12] for compression ramp interactions). The relative strength of the low-frequency

oscillations diminishes downstream, however, there still remains elevated energy at these

frequencies in the corner and reattachment spectra. Although not appearing as a distinct

peak in the pre-multiplied PSD, a substantial increase in energy at frequencies of approx-
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imately StL = 0.5 occurs in the corner and reattachment spectra when compared to the

first two spectra profiles. The increase in energy content at these intermediate frequencies

is attributed to the development of the mixing layer turbulence [11]. Because the three

energized frequency ranges are separate from each other, even more so as the ratio L/δbl

increases, it is possible to filter out both the low-frequency oscillations and the fine scale

boundary layer turbulence from the mixing layer time signals. Therefore, a bandpass filter

is designed for each case to retain frequencies between StL = 0.3 and Stδ = 0.2. Note

that the low-frequency cutoff scales on L and the high frequency cutoff on δbl.

Correlation curves of R(ρu)′p′ and R(ρw)′p′ from bandpass filtered time signals taken

from the corner profile in each of the Mach 3, 7, and 10 flows are plotted in Figs. 6.10

(a-c). The corner profile refers to the slice through the mixing layer that intersects the

ramp corner as drawn in Fig. 6.8 (a). The signals of p′ and (ρw)′ are taken at ζ = 0 on

the x-axis and (ρu)′ along the bottom edge of the shear layer at ζ = −0.06. The time axis

is oriented so that a positive time shift indicates a motion of the fluid, (ρu)′ or (ρw)′, that

occurs before the correlated fluctuation in pressure. Time is non-dimensionalized by the

pre-shock freestream velocity Ue and separation length L. Both the R(ρu)′p′ and R(ρw)′p′

curves are sinusoidal and are almost perfectly out of phase with each other. Only R(ρu)′p′

for the Mach 10 case fails to have a noticeable signature. A decrease in the mixing layer

structure correlation level with increasing Mc was also observed by Samimy et al. [127].

The Mach 7 and Mach 10 flows, both Mc ≈ 2.0, have a noticeably smaller amplitude than

the Mach 3 with Mc ≈ 1.0. The approximate period of the correlations is 2L/Ue which is

consistent with the expected StL = 0.5 for the mixing layer frequencies.

Although a distinct sinusoidal signature is visible in the full time signal correlations,

the overall magnitude of the correlation is rather low particularly for M7 and M10. In
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order to obtain a stronger signature of the vortex events, an enhanced correlation method

is used. The conditional averaging technique used here is similar to the method of Brown

& Thomas [154] for the detection of hairpin packets in a turbulent boundary layer. The

strategy of Brown & Thomas assumes that the hairpin packet, or in this case the mixing

layer vortex, is a specific isolated event occurring in the flow and that the corresponding

fluid motion, or pressure fluctuation, associated with that event produces a specific sig-

nature in the time signal. Time signals of relevant fluid properties can be broken up into

shorter segments and the cross-correlation computed for each of the shortened segments.

If a vortex occurs in a given segment, the cross-correlation curve of that segment will

produce the “signature” of the vortex event. The enhanced correlation, therefore, is the

average over all of the short-signal correlations that show the vortex signature.

For the detection of the mixing layer vortices, the time signals of p′, (ρu)′, and (ρw)′

are broken up into N segments of length 6.5Ue/L, or twice the wavelength of the bandpass

filter low-frequency cutoff. Successive time segments are taken with 50% overlap. We

assume that the signature of the mixing layer vortices has the same form as the full time

signal correlations. The criteria for the selection of the enhanced correlations are such that

the segment correlations Rn
(ρu)′p′ and Rn

(ρw)′p′ simultaneously have maxima and minima

in the same location as, but at least twice the magnitude of, the full time average signature.

More specifically, a correlation is retained if (1) max(Rn
(ρu)′p′) ≥ 2max(R(ρu)′p′) and (2)

min(Rn
(ρw)′p′) ≤ 2min(R(ρw)′p′) both in the range −2 ≤ ∆t(Ue/L) ≤ 0 for n ∈ N . The

enhanced results for the corner profile are shown in Figs. 6.10 (d-f). For the Mach 3,

approximately 30% of the time segments met the criteria, and approximately 20% for the

Mach 7 and Mach 10 flows. A distinct wavelength appears in the enhanced correlation for

all three cases including the Mach 10 R(ρu)′p′ .
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6.5.2 Convection Velocity

The enhanced correlation technique was repeated for several stations along the x-

axis. The frequency in StL determined from the R(ρu)′p′ enhanced correlation curve time

period are plotted in Fig. 6.11 (a) versus X/L. Although not shown, the time period

selected from the enhanced correlations of R(ρw)′p′ produces similar frequencies to those

from R(ρu)′p′ . The frequency is approximately constant through the region of similarity

for each case. Dupont et al. [11] also showed that the shear layer frequency plateaus at a

constant StL = 0.5 in the separated flow of their reflected shock STBLI with freestream

Mach number of 2.3. They also showed that this frequency was independent of the incident

shock angle.

The enhanced correlations can be used to determine the actual mixing layer vortex

co nvection velocity Uc. At a given position on the x-axis, if a time segment is selected

by the enhanced correlation criteria, the centerline pressure signal from that time seg-

ment can be correlated with the same from an adjacent position along x. The convection

velocity of that vortex event is then obtained by dividing the distance between the two

points in x by the offset in time of the peak in Rp′p′ . The Uc can then be averaged over all

enhanced correlation selections. Here the cross-correlation of adjacent pressure signals is

used because the theoretical Uc,i discussed in section 6.4.3 is by definition the convection

velocity of the stagnation point between successive vortices [1, 109]. The averaged convec-

tion velocity versus X/L is plotted in Fig. 6.11 (b). For the cross-correlations of pressure,

adjacent points are spaced approximately 0.1L apart. An average of both the forward

adjacent point and the backward adjacent point correlation is used to calculate Uc at each

data point plotted in Fig. 6.11 (b). The convection velocity seems to undergo a gradual
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Figure 6.11: Non-dimensional vortex frequency (a), convection velocity (b), and length
scale (c) determined from the enhanced correlations.

transition in the first half of the similarity region, but, for all three flows, Uc levels off at

0.4Ue in the second half of the region of similarity. For comparison, Uc,i calculated from

equation 6.2 is 0.5Ue for the M3 flow and 0.6Ue for M7 and M10. A similar comparison

was made by Dupont et al. [11] for their Mach 2.3 reflected shock experiments. They

found the phase velocity of wall pressure signals in the frequency range of 0.2 ≤ StL ≤ 0.5

gave a shear layer convection velocity of approximately 0.3Ue compared to the isentropic

prediction of 0.5Ue. In either case of the compression ramp or the reflected shock flow, the

theoretical convection velocity significantly over predicts the measured vortex convection

velocity.

The timescale of Fig. 6.11 (a) and the convection velocities of Fig. 6.11 (b) can be

combined to estimate the spatial wavelength of the frozen vortices. The spatial quantity

St−1
L Uc is plotted in Fig. 6.11 (c) and represents the average distance between successive
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vortex cores. As with the convection velocity, the wavelength seems to reach a constant

value in the second half of the region of similarity, leveling off at approximately 0.8L

spacing for all three flows.

6.5.3 Three-Dimensional Vortex Signature

In order to investigate the spatial organization of the large vortex structure in our

STBLI mixing layers, the following correlation coefficient is defined

Rf ′p′ =
〈f ′(x+∆x, y +∆y, z +∆z)p′(x, y, zcl)〉

f ′
rmsp

′
rms

(6.4)

where f ′ can refer to either (ρu)′ or (ρw)′, and p′(x, y, zcl) is the pressure along the

mixing layer center line. Again Taylor’s hypothesis of frozen vortices is used to convert

time signals into spatial information and so, in Eqn. 6.4, we set x = tUc where Uc is

the convection velocity determined from the enhanced correlations described above. The

enhanced spatial correlation can be generated in the same manner as the one-dimensional

(1D) correlations by averaging Rf ′p′ over all time segments selected by the previously

defined criteria. The enhanced spatial correlations of bandpass filtered time signals from

the corner profiles of the Mach 3, 7, and 10 flows are plotted in Figs. 6.12, 6.13, and 6.14

respectively. These plots represent the averaged “frozen” spatial waveform of the mixing

layer vortices as they convect past the corner profile as drawn schematically in Fig. 6.8.

In Figs. 6.12-6.14, figure (a) is the enhanced average in the xz-plane for ∆y = 0, and

figure (b) is the enhanced average in the xy-plane for R(ρu)′p′ . Figures (c) and (d) are the

same for R(ρw)′p′ . The z-location of the xy-plane is indicated by the solid black line in the

corresponding figure (a) and also in (c). For R(ρu)′p′ the xy-plane is along the mixing layer

bottom edge as was defined for the 1D enhanced correlations. For R(ρw)′p′ the xy-plane
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Figure 6.12: Enhanced correlation contours of the Mach 3 convective mixing layer struc-
ture. Correlations are of centerline pressure with longitudinal massflux in (a) xz- and (b)
xy-planes and centerline pressure with cross-stream massflux in (c) xz- and (d) xy-planes.
The horizontal dotted line in the xz-planes indicates the location of the corresponding
xy-plane. Time correlations are converted to spatial information using the mixing layer
convection velocity (i.e x/L = tUc/L).
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Figure 6.13: Enhanced correlation contours of the Mach 7 convective mixing layer struc-
ture. Correlations are of centerline pressure with longitudinal massflux in (a) xz- and (b)
xy-planes and centerline pressure with cross-stream massflux in (c) xz- and (d) xy-planes.
The horizontal dotted line in the xz-planes indicates the location of the corresponding
xy-plane. Time correlations are converted to spatial information using the mixing layer
convection velocity (i.e x/L = tUc/L).
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Figure 6.14: Enhanced correlation contours of the Mach 10 convective mixing layer struc-
ture. Correlations are of centerline pressure with longitudinal massflux in (a) xz- and (b)
xy-planes and centerline pressure with cross-stream massflux in (c) xz- and (d) xy-planes.
The horizontal dotted line in the xz-planes indicates the location of the corresponding
xy-plane. Time correlations are converted to spatial information using the mixing layer
convection velocity (i.e x/L = tUc/L).
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is along the mixing layer center line. Note that plotting the values of Rf ′p′ along the

line drawn in the xz-plane would result in the same 1D correlation curves as in Fig. 6.10

(d)-(f).

The form of the mixing layer vortices as determined from the two-dimensional (2D)

correlation plots is a streamwise periodic structure that exists all through the cross-stream

width of the mixing layer. In R(ρu)′p′ , the sign of the periodic correlation is reversed in

bands both above and below the mixing layer edges. These bands coincide with the

position of the separation shock and the reverse flow respectively. In the xz-plane, the

coherent structures are tilted “forward” in the correlations of streamwise mass flux and

tilted “backwards” in the correlation of the cross-stream mass flux. The horizontal axis

in Figs. 6.12, 6.13, and 6.14 is oriented so that positive ∆x is “downstream” and negative

∆x is “upstream”. In the xy-plane, an obvious oblique pattern occurs and the mixing

layer structures do not appear as 2D bands in the spanwise direction. This obliqueness

in the average signature is consistent with compressible mixing layer research showing

increased spanwise variation of the large mixing layer vortices with elevated convective

Mach number [128, 129, 130, 131].

The interpretation of the correlation contour plots can be aided by considering the

vector field defined by the magnitude of R(ρu)′p′ and R(ρw)′p′ . Assuming that a negative

fluctuation in pressure coincides with a vortex core, a plot of the vector field defined

by −(R(ρu)′p′ , R(ρw)′p′) will provide information on the average motion about a mixing

layer vortex center. These are plotted in Fig. 6.15. Also plotted in Fig. 6.15 are the

location of the mixing layer center line and the inclination angles of the iso-lines of zero

correlation from Figs. 6.12-6.14. The point of crossing of the zero-correlation iso-lines

can be interpreted as the center of the vortex. A similar correlation vector plot was
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Figure 6.15: Vector fields of −(R(ρu)′p′ , R(ρw)′p′) from Figs. 6.12-6.14 for (a) M3, (b) M7,
and (c) M10. The vector field gives information on the averaged massflux motion about a
negative fluctuation in pressure. The horizontal line indicates the location of the mixing
layer center line. The inclination from vertical of the coherent structures as determined
from the iso-line of zero correlation in R(ρu)′p′ and R(ρw)′p′ are also indicated.
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Figure 6.16: Contour of the vortex detector variable Γ1 for the convective frozen flow from
the corner grid plane of the Mach 3 flow. (a) The xy-plane sliced through the mixing layer
center and (b) the xz-plane sliced through the section indicated by the dashed lines and
arrows in (a). Dotted diagonal lines indicate the vortex angle predicted by equation 6.7.

used by Kiya & Sasaki [152] for an incompressible separation shear layer. Unlike in Kiya

& Sasaki, no clear rotational motion is observed around the vortex center in Fig. 6.15.

Instead, a saddle point occurs. The vector plot shows that the cross-stream momentum

flux is positive to the left of the vortex core and negative to the right, as one would

expect based on the (clockwise) orientation of the vortex roll-up. The vectors on the top

and bottom of the vortex center, however, are in the opposite orientation from expected.

The interpretation of this stems from the fact that the density in the low-speed side of

the layer is a factor of two less than on the high speed side for the Mach 3 flow and a

factor of four for the Mach 7 and 10 flows. The rotation of the vortex brings the low-

momentum, low-density fluid into the high-speed, high-density side causing a negative

streamwise correlation component to the left of the vortex center. The opposite occurs

for fluid being pulled from the high-speed side into the low-speed side to the right of the

vortex center.

Visualizations of the actual mixing layer vortices helps in asserting the interpretation

of the enhanced correlation plots. Flow visualizations of individual mixing layer vortices in

the raw data of the separated STBLI flows is made particularly difficult by the environment
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Figure 6.17: Contour of the vortex detector variable Γ1 for the convective frozen flow from
the corner grid plane of the Mach 7 flow. (a) The xy-plane sliced through the mixing layer
center and (b) the xz-plane sliced through the section indicated by the dashed lines and
arrows in (a). Dotted diagonal lines indicate the vortex angle predicted by equation 6.7.

Figure 6.18: Contour of the vortex detector variable Γ1 for the convective frozen flow from
the corner grid plane of the Mach 10 flow. (a) The xy-plane sliced through the mixing
layer center and (b) the xz-plane sliced through the section indicated by the dashed lines
and arrows in (a). Dotted diagonal lines indicate the vortex angle predicted by equation
6.7.
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in which they reside. One must be able to separate specifically the mixing layer rollers from

(1) the smaller scale vortical hairpin vortices in the incoming boundary layer turbulence

and (2) the separation shock which sits very close to the high speed side of the mixing layer

as was shown in Fig. 6.1. We found that vortex detection methods based on the eigenvalues

of the velocity divergence, such as swirl strength, were more problematic concerning the

first issue. Vorticity methods, on the other hand, are dominated by the strong shear in the

separation shock. Ultimately we found the method developed by Graftieaux et al. [155] to

be the most robust for isolating the mixing layer vortices in the raw data. The Graftieaux

method is based on the topology of the velocity field rather than on derivative quantities.

It effectively searches the flow for points about which there is a net circulating motion

and, because it uses a summation over a search window, it also acts as a spatial filter.

This method was successively used by Dupont et al. [84] to identify mixing layer vortices

in PIV data from their separated reflected shock STBLI experiments.

The Graftieaux method is a vortex search method in a 2D velocity vector field. If

P is a point in the flow, S is a specified area surrounding P , and M is a point inside S,

the vector detector Γ1 is defined by

Γ1(P ) =
1

S

∫

M∈S

(PM ×UM ) · z
|PM | · |UM | dS =

1

S

∫

S
sin θMdS (6.5)

where PM is the vector connecting points P and M . The velocity vector at point M is

UM and θ is the angle between the vectors PM and UM . The parameter Γ1 will take

on values between -1 and 1 where the sign depends on the direction of rotation. It can

be shown that a vortex exists at P if |Γ1| > 2/π. For a square interrogation area with N
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equally spaced discreet points inside the area S, equation 6.5 can be re-expressed as

Γ1(P ) =
1

S

∫

S
sin θMdS =

1

N

∑

N

sin θM . (6.6)

The band-pass filtered time signals of velocity from the corner profile of the ramp

grids were again converted to space via the convection velocity of Section 6.5.2. Thus

the 3D velocity field on which Γ1 operates was generated. The 2D velocity vector UM

is defined as (u − Uc, w) and the Graftieaux vortex detector was applied throughout the

volume but always in the xz-plane. A square interrogation window of size 0.5δbl was

used throughout. The results are plotted in Figs. 6.16-6.18. The contour of Γ1 in the

streamwise-spanwise plane sliced along the mixing layer center (ζ = 0) is plotted for a

time segment equivalent to 8L in length that was randomly selected from the full time

signal. This provides a top view of the instantaneous frozen mixing layer structures. In

the inset of Figs. 6.16-6.18 (b) is shown a side view of the structures. The location in

the span of the 3D volume of Γ1 is indicated by the dashed line in the xy-plane contour.

Similar plots are provided for arbitrarily selected time segments from the M3, M7, and

M10 data.

From the top view, one can immediately observe the spanwise angular pattern in

the vortices as is consistent with the 2D correlation plots of Figs. 6.12-6.14. From the

top plan view, the M3 vortices are visually more coherent than the M7 and M10 flows.

Also, in the side view, the M3 vortices appear more regular and resemble a sinusoidal

wavy interface between the high and low-speed sides of the mixing layer. The vortex cores

appear to occur predominantly at the up-slope of the wave. A similar pattern is seen in

the xz-plane slice of the M7 and M10 flows although, in general, the M3 flow is apparently
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more regular.

With regard to the spanwise oblique angle observed in both the enhanced correlation

contours and the instantaneous vortex visualizations, it is interesting to consider the com-

pressible mixing layer inviscid linear stability analysis by Sandham & Reynolds [131, 134].

These authors showed that an oblique unstable mode becomes dominant over the 2D

mode for Mc > 0.6. Furthermore, they found that the angle α measured from the 2D

mode increased with increasing Mc by

Mc cosα ≈ 0.6. (6.7)

For the current STBLI shear layers, α = 540 for the M3 flow and 72o for M7 and M10.

These angles are indicated by the diagonal dotted lines drawn in the top-view contours

of Γ1 in Figs. 6.16-6.18 (a) and prove to be a close representation of the actual structure

occurring in these flows.

6.6 Turbulence Scaling

Barre et al. [121] used dimensional analysis of the free shear layer to show that the

maximum turbulence shear stress −〈u′w′〉max non-dimensionalized by Uc(U1 − U2) varies

linearly with the vorticity spreading rate. Specifically

δ′ = − 1

K

−〈u′w′〉max

Uc(U1 − U2)
(6.8)

where K is a proportionality constant to be determined empirically. The derivation of this

relation is independent of Mc and therefore includes both compressible and incompressible

layers. Oftentimes equation 6.8 is tested using Uc,i for lack of a better estimate, but, as
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Figure 6.19: Non-dimensional turbulence stress versus the spreading rate. The arrows
indicate how the data of Dupont et al. [143] changes if ∆U is calculated in the same
manner as the current data.

was shown in Section 6.5.2, the actual convection velocity can vary significantly from the

theoretical value.

In Fig. 6.19 is plotted the maximum turbulent stress from the profiles in Figs 6.2-

6.4 (d) versus the average of the two estimates of spreading rate from table 6.2. The

maximum turbulence shear stress and maximum normal stresses are listed in table 6.3.

Included in Fig. 6.19 are also the data of the separated STBLI shear layer from the

experiments of Dupont et al. [143], together with the subsonic counter-current mixing

layer data of Forliti et al. [150]. It has been shown by Dupont et al. [143] using a large

compilation of incompressible and compressible shear layer data available from literature

that the majority of the co-flowing and single-stream data fall within reasonable error of

K = 0.12. The line drawn in figure 19 correspond to this value of K. The dashed lines

indicate the region of 10% error. The incompressible, counter-current data of Forliti et

al. show that the turbulence shear stress follows the K = 0.12 line for spreading rates

below approximately 0.2. Above 0.2, a steeper linear trend occurs. This bifurcation in the
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Forliti data occurs between points of r = −0.13 and −0.19. Although the spreading rate is

above 0.2, the Mach 3 data point with r = −0.065 follows the trend of the co-flowing data.

The Mach 7 and Mach 10 data points, which have stronger reverse flow (r = −0.123 and

−0.104) than the Mach 3, lie within the trend of the Forliti data at the same spreading

rate. The two data points of Dupont et al. have similar velocity ratios (r = −0.057

and −0.146) as the present STBLI shear layers and show the same trend of the stronger

reversed flow case having a higher non-dimensionalized turbulent shear stress.

The difference between the data of Dupont et al. and the current data may be

related to the method of determining U1 and U2. Dupont et al. selected these values from

a ζ closer to the mixing layer center thus possibly under-predicting ∆U . If the method of

Section 6.4.2 is used to recalculate ∆U of Dupont et al., the two data points move much

closer to the current data as indicated by the arrows in Fig. 6.19. This is an intriguing

result and suggests that the change in the nature of the shear layer instability for counter-

current mixing layers as described by Forliti et al. et al. [150] is independent of the level

of compressibility.

The Reynolds stress stress anisotropy 〈w′2〉/〈u′2〉 is known to be typically around 0.5

for incompressible shear layers and can decrease significantly for Mc above approximately

0.5 [1, 143]. Brown & Roshko [156] used dimensional analysis to propose that the Reynolds

stress anisotropy decreases in proportion to 1/M2
c . The anisotropy determined from the

profiles of Figs. 6.2-6.4 are listed in table 6.3 and are found to lie below the subsonic level

of 0.5. The anisotropy of the M7 and M10 data are almost half that of the M3, confirming

that the anisotropy decreases significantly with Mc for the STBLI shear layer although

not the the extent predicted by the 1/M2
c scaling. The anisotropy at Mc = 2 would be

approximately 0.083 if calculated by the 1/M2
c law in relation to the anisotropy level of
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Case −〈u′w′〉/Uc∆U 〈u′2〉/∆U 〈w′2〉/∆U 〈w′2〉/〈u′2〉
M3 0.0268 0.0432 0.0108 0.250
M7 0.0330 0.0754 0.0117 0.155
M10 0.0323 0.0786 0.0131 0.167

Table 6.3: Reynolds stresses and anisotropy.

the M3 flow. We note that Forliti et al. [150] found that increasing the strength of the

counter-current reverse flow increased 〈w′2〉/〈u′2〉 only for r ≤ −0.2.

The reduction in STBLI shear layer anisotropy is primarily due to an increase in

the streamwise turbulence component while the cross-stream component increases only

slightly. Values for the cross-stream stress of the M3 shear layer are comparable to the

levels experienced in canonical mixing layers near Mc = 1. The increase in streamwise

turbulence stress from Mc = 1 to Mc = 2 is opposite to the apparent trends in canonical

mixing layer data for which 〈u′2〉/∆U is found to decrease or remain constant with in-

creasing Mc. For example, see the data compilations of Barre & Bonnet [126] or Pantano

& Sarkar [123] although the data do not extend past Mc = 1.2. To make sense of these

differences, we turn to the analysis of the turbulent kinetic energy and Reynolds stress

budget equations (Appendix A).

Pantano & Sarkar [123] showed in the DNS of temporal mixing layers from Mc =

0.3 to 1.1 that the normalized TKE production and transport decreased with increasing

Mc while dissipation remained constant. Similar results were obtained by Vreman et

al. [137] and by Freund et al. [125]. Decreased production resulted in decreased TKE thus

reducing turbulence mixing and ultimately the spreading rate. Increasing Mc also has

the effect of significantly decreasing the pressure-strain rate components in relation to the

incompressible values [123]. The pressure-strain terms are primarily responsible for the

transfer of turbulence energy from the streamwise direction to the cross-stream direction

154



z/δω

b
u

d
g

e
t 
(δ

ω/
ρ∆

U
3
)

0.5 0 0.5 1

.01

0

.01

.02

(a)
P
T
ε

M3
M7
M10
P&S

z/δω

b
u

d
g

e
t 
(δ

ω/
ρ∆

U
3
)

0.5 0 0.5 1

.01

0

.01

.02

(b)
C
Π

Figure 6.20: Turbulent kinetic energy budgets: Production, transport, and dissipation are
plotted in (a), and convection and pressure strain in (b).

as it provides the greatest negative (loss) term in R11 and the dominant positive (gain)

term in the budgets of R33 and −R13.

The TKE budgets of the three STBLI shear layers are shown in Fig. 6.20. The

Reynolds stress budgets are shown in Fig. 6.21. The budget profiles are plotted as func-

tions of z/δω = ζ/(dδω/dx) and were averaged in the x-direction over the region of ap-

proximate similarity defined in Section 6.4.1. All budget terms are nearly symmetric with

the exception of the convection profiles which are found to be affected by the proximity

of the wall on the low-speed side. The asymmetry of the convection term is responsible

for the shift in the turbulence peak noted in Section 6.4.1. The level of convection does

not change between the three cases and so its influence in shifting the turbulence peak

is greatest for the M3 case with the lowest TKE production. The TKE production and

transport increase substantially with increasing Mach number. The same is true for the

R11 budgets. Production and transport are approximately constant across the three cases

for R33 and increase in magnitude only slightly for R13. The observed increase across

cases in T13 and T33 is due to an increase in the pressure diffusion. The increase in T11,
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Figure 6.21: Reynolds stress budgets of R11 (a)-(b), R13 (c)-(d), and R33.
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however, is due entirely to increased turbulence transport as the pressure diffusion remains

negligible in all three cases for this budget. Not included in these plots is the pressure

work terms Σ and Σij , which are negligible for all cases.

The data of Pantano & Sarkar [123] for Mc = 1.1 and s = 1 are included in Figs. 6.20

and 6.21 for comparison. For this purpose, the data of Pantano & Sarkar was rescaled from

the normalization by the mixing layer momentum thickness δθ to the vorticity thickness

δω. The ratio δθ/δω for this data was obtained by noting that, for a planar mixing

layer, Pδω/〈ρ〉∆U3 = 1
2(P11δω/〈ρ〉∆U3) = −ũ′′w′′/∆U2. It is obvious that the STBLI

shear layers have much higher production and transport rates of TKE and R11 than the

canonical case. Otherwise, all other budget terms of the M3 shear layer at Mc = 1 compare

exceptionally well with the data of Pantano & Sarkar, most notably in the pressure-strain

terms.

Freund et al. [125] studied the TKE and Reynolds stress budgets for self-similar an-

nular jets at Mc from 0.1 to 1.8 and found that the ratios between the integrated pressure-

strain terms (Π11/Π33) and also the ratio of integrated pressure-strain components to tur-

bulent shear stress production (Πij/P13) were nearly constant with Mc. The STBLI Πij

and P13 budget profiles were integrated over z/δω and the various ratios were calculated.

These are listed in Table 6.4 and the results are compared to the Mc-independent ratios

reported by Freund et al. [125]. The closeness between the STBLI shear layer ratios and

those of Freund et al. indicates that the interchange of turbulence energy is very similar

between the two configurations.

From the comparison with the budgets of Pantano & Sarkar and with the ratios

of integrated budgets of Freund et al., it is apparent that the most significant difference

between the separation shear layer and the canonical case is the greatly increased turbu-
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Case Π33/Π11 Π11/P13 Π33/P13 Π13/P13

M3 0.38 1.17 0.45 0.70
M7 0.41 1.12 0.46 0.69
M10 0.40 1.01 0.40 0.74
Freund et al. (2000) 0.4 1.0 0.4 0.8

Table 6.4: Comparison of integrated Reynolds stress pressure-strain budgets.

lence production of the separation shear layer. There is more energy in the higher Mach

number STBLI flows and therefore more energy is transferred from the mean flow to the

turbulence, predominantly through the R11 production, but the rate at which the energy

is transferred from streamwise to the spanwise component is limited by the pressure-strain

rate terms. Both the viscous drain of turbulence energy as well as the transport between

the components of turbulence by the pressure strain terms have been shown to be sim-

ilar to the canonical data suggesting that these properties in the STBLI shear layer are

affected by compressibility in the same manner as for the canonical free mixing layer.

6.7 Summary and Conclusions

The results presented in this chapter effectively demonstrate that, even in this as-

sertively non-canonical configuration that is the shear layer in a separated STBLI flow,

it is still possible to define a region of approximate mixing layer-like similarity. Perhaps

more surprising is the fact that the STBLI shear layer also shows striking consistency with

canonical mixing layer theories as they are currently understood. This fact remains even

in the case of the hypersonic separation for which the shear layer high speed Mach number

is above 5 and the temperature ratio across the layer is also above 5.

Concerning the environment in which the shear layers exist, certain factors that

prevent this flow from being canonical in nature are the fact that the shear layer is (1)
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embedded in a turbulent boundary layer, (2) is subjected to the low-frequency oscillations

of the separation shock unsteadiness, (3) is not aligned with the freestream, and (4) the

low-speed side of the layer is produced by the reverse flow of a shallow separation bubble.

In spite of these, we have demonstrated the possibility to obtain a reasonable collapse

of the mean flow profiles and turbulence stress profiles when plotting against a linearly

varying similarity variable. This is consistent with a constant spreading rate. The form

of the similarity profiles of U and the Reynolds stresses are also reminiscent of canonical

mixing layer topology and exhibit the necessary conditions for the Kelvin-Helmholtz in-

stability. Properties of the shear layers were reported, including the estimated conditions

of the two streams, the convective Mach number, the estimated linear spreading rates,

and maximum turbulence stress levels. The peak turbulence shear stress was found to be

proportional to the spreading rate by the same relation as for canonical mixing layer data

with no dependence on the level of compressibility. Variation of the STBLI shear layer

properties with convective Mach number were shown to be consistent with known trends

observed in the literature. With respect to the variation of mixing layer properties with

increased compressibility as classified by Mc, the data is in the direction of the expected

trends. The difference in properties of the M7 and M10 data cases at Mc = 2 is consistent

with an increase in Mc when compared to M3 at Mc = 1. Namely, a decrease in spreading

rate with Mc was observed and the extent of this decrease, although not to the level of

the classic Langley curve, is consistent with other noted properties of the STBLI shear

layers that could also affect the spreading rate, specifically, the elevated reverse flow and

the adverse pressure gradient. A decrease in turbulence anisotropy was also observed with

increasing Mc. The well-documented increase in three-dimensionality of the vortex rollers

with increasing Mc was also shown in the current data. A sophisticated conditional av-

159



eraging method of the two-point correlations was developed for the purpose of extracting

specifically the mixing layer vortex signatures from the turbulent environment. This cor-

relation method also allowed for the direct measurement of the mixing layer convection

velocity. Instantaneous visualizations of the vortices showed that the oblique angle of the

vortices in the spanwise direction is consistent with predictions by inviscid linear stability

theory based on Mc.

It was found through turbulent kinetic energy and Reynolds stress budget analysis

that the STBLI shear layers have a much greater streamwise turbulence production rate

than what is observed in compressible mixing layer data. In spite of this difference,

the interchange of turbulence energy among the different turbulence stress components

determined from the pressure-strain rate terms was shown to be consistent with mixing

layer data at the same Mc. The drain of energy caused by the viscous terms were also

consistent. These results inidicate that the STBLI shear layer spreading rate, turbulence

shear stress, and anisotropy are dictated by the same compressible flow phenomena as in

the canonical configuration.

Mixing layer conditions that are particularly difficult to set up experimentally oc-

cur naturally in the STBLI shear layer: high Mc, high reverse flow, and also an adverse

pressure gradient. Although it has its limitations as pointed out above, the STBLI shear

layer configuration, as demonstrated by this study, can provide useful data capable of ex-

panding the currently available mixing layer condition parameter space, as well as identify

accurate generalizations of compressible shear layers for the development of turbulence

models and scaling laws. In particular, the conservative energy exchange from the stream-

wise component is less efficient with increasing Mc thus causing both the spreading rate

and the anisotropy to decrease with increasing Mc.
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Chapter 7: Summary and Conclusions

Given the current status of hypersonic STBLI research and the complex nature

of these flows, there is an undeniable need for high-fidelity numerical simulations of the

canonical configurations. Such data can provide a great amount of detail in the flow

turbulence, both in three-dimensional space and in time, allowing for sophisticated analysis

of the flow physics.

High-fidelity simulations can be achieved either with DNS or LES techniques. The

LES technique solves the filtered equations for the conservation of mass, momentum, and

energy for which the smallest turbulence scales, which are assumed to be nearly isotropic,

are modeled. Because only the smallest scales are modeled, the LES still produces highly

detailed flow fields, but the reduction in the computational cost is significant. As shown

by the results presented in this thesis, the savings in the LES grid size is approximately

95%-97% of the DNS grid and the LES timestep is typically 3 times that of the DNS. With

regard to the STBLI flow, this difference makes both the ability to spectrally converge

the low-frequency unsteadiness and the ability to match experimental Reynolds numbers

feasible. The necessity of having both experimental data and numerical data at the same

conditions has been emphasized in the literature [1, 10, 29, 30].

The application of LES at hypersonic conditions is currently an emerging technology.

Only a few attempts have been made so far to simulate STBLI above Mach number of 5.

Three attempts are known to the authors and all three are of a Mach 7, 33o compression
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ramp/expansion corner flow. Two were by Schreyer et al. [45] and Kim et al. [46] and

both used an eddy viscosity model for the SGS closure. The third was by Ritos et al. [49]

who used an implicit LES method where the SGS contribution results from the numerical

dissipation properties of the implicit scheme. Significant errors were found in comparison

to the available data although the accuracy of the experimental data is not certain.

In the current work, we have demonstrated that our LES technique which uses the

dynamic mixed model of Martin et al. [52], produces accurate results for STBLI flow

including hypersonic conditions. An important conclusion from this work is that, for

separated hypersonic STBLI, using an eddy viscosity model for the closure of the shear

stress and heat flux terms results in large errors in the separation length and in the

spreading rate of the separation shear layer. The error in separation length was also

observed in the Mach 3 separated interaction but to a lesser extent.

New LES data of two compression-ramp generated, fully-separated hypersonic STBLI

at Mach 7 and Mach 10 were presented and the mean flow statistics were documented.

These provide a unique contribution to the available database of hypersonic STBLI, and

of particular importance is the reporting of the turbulence data and the wall heat transfer.

Besides the very useful but straight forward documentation of averaged flow proper-

ties, these datasets were used in the present work for three specific data analysis projects

that have provided insight into several key features of the hypersonic STBLI flow field.

These include the analysis of Chapter 4 in which the low-pass filtering operation on the

full volume data and in time revealed the form of the low-frequency unstable mode in

the hypersonic interaction. The resulting flow visualizations and videos provided essential

information in developing the physical model for the separation unsteadiness presented in

Chapter 4. The origins of the low-frequency mode in separated STBLI flows has been a
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topic of much debate for over five decades [1, 10].

In Chapter 5 was presented for the first time a compilation of hypersonic STBLI

separation length and shock strength data from the literature. This compilation also

included the new LES data produced from this work at Mach 7 and Mach 10 over a

range of compression angles producing a substantial range of both separation length and

shock strength data. This enabled the derivation and evaluation of a modified separation

length scaling based on that of Souverein et al. [14]. The results gave strong evidence that

incipiently separated STBLI scale on the incoming boundary layer dynamic pressure and

skin friction. The scaling was found to be generic to STBLI of compression ramps, reflected

shocks, and axi-symmetric cylinder-with-flare from supersonic to hypersonic conditions

with adiabatic, heated, and cold walls. The fully separated regime did not show such a

collapse, however, the insights provided by the low-frequency mode study of Chapter 4

could be used for further investigation of this topic in the future.

And lastly, the analysis of the separation shear layer presented in Chapter 6 provided

unique insight into the nature of the separation in STBLI as well as the behavior of

compressible turbulence in free shear layers. It was shown that the separation shear layer

naturally occurs at high convective Mach numbers at and above 1. The Mach 7 and Mach

10 separated flows resulted in convective Mach number of approximately 2. A sophisticated

enhanced correlation method was developed to identify the mixing layer-like, spanwise-

oriented vortices. By this method it was possible to determine the time scale, averaged

three-dimensional form, convection velocity, and instantaneous structure of the vortices.

The convection velocity is a particularly useful quantity for the study of mixing layer

data but is difficult to determine experimentally [1]. Many scaling relations, such as the

spreading rate to turbulence stress, rely on an accurate measurement of convection velocity
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and the theoretical value derived from isentropic processes is typically not accurate at high

convective Mach number [1]. In particular, it was discovered that the change in turbulence

dissipation and pressure-strain rate with convective Mach number was consistent with

compressible free mixing layer data. The greater turbulence production in the STBLI

shear layers was found to be consistent with greater spreading rate and turbulence stress

by compressible mixing layer relations.

Looking forward from the work included in this thesis, topics of interest include

the investigation of a separation length scaling for the fully separated case. Most likely

this would require the development of a method of quantitative characterization of the

low-frequency mode in order to study the dependence of the mode on Reynolds number,

Mach number, wall temperature and so on. It would be interesting to explicitly show the

flow dynamics in the STBLI data consistent with the low-frequency unsteadiness model

discussed in Chapter 4. In addition, all simulations presented here are low enthalpy and

non-reacting. For the design of hypersonic vehicles, real gas effects at flight conditions are

of interest.
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Appendix A: Turbulent Kinetic Energy and Reynolds Stress Budget Equations

The transport equation for the turbulent kinetic energy defined as k = 〈ρu′′i u′′i 〉/2

can be written as the following.

∂k

∂t
= 0 = C + P + T +Π+ ǫ+Σ,

C = −∂kũj
∂xi

,

P = −〈ρu′′i u′′j 〉
∂ũi
∂xj

,

T = −1

2

∂〈ρu′′2i u′′j 〉
∂xj

− ∂〈p′u′′i 〉
∂xi

+

(
∂〈u′′i σij〉

∂xj
+

∂〈u′′i τij〉
∂xj

)
,

Π =

〈
p′
∂u′′i
∂xi

〉
,

ǫ = −
〈
σij

∂u′′i
∂xj

〉
−
〈
τij

∂u′′i
∂xj

〉
,

Σ = −〈u′′i 〉
∂〈p〉
∂xi

.

(A.1)

The Reynolds average is indicated by the angled brackets, a fluctuation about the

Reynolds average is indicated by the single prime (e.g. u = 〈u〉+u′). The Favre average is

denoted by the tilde such that ũ = 〈ρu〉/〈ρ〉 and a fluctuation about the Favre average is

indicated by the double prime (e.g. u = ũ+u′′). The individual budget terms in Eqn. A.1

are the convection C, production P, transport T , pressure strain Π, dissipation ǫ, and

pressure work Σ. The three contributions to the transport term are, in order from left to

right, the turbulence transport, pressure diffusion, and viscous diffusion. Both the viscous
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diffusion and the viscous dissipation are functions of the shear stress tensor, which for an

LES solution, includes both the resolved stress σij and the unresolved SGS stress τij.

Similarly, the Favre fluctuation Reynolds stress budget equation can be written as

the following where Rij = 〈ρu′′i u′′j 〉.

∂Rij

∂t
= 0 = Cij + Pij + Tij +Πij + ǫij +Σij,

Cij = −∂Rij ũk
∂xk

,

Tij = −
∂〈ρu′′i u′′ju′′k〉

∂xk
+

∂〈p′u′′i 〉
∂xk

+

(
∂〈σjku′′j 〉

∂xk
+

∂〈σiku′′j 〉
∂xk

+
∂〈τjku′′j 〉

∂xk
+

∂〈τiku′′j 〉
∂xk

)
,

Πij =

〈
p′
∂u′′i
∂xj

〉
+

〈
p′
∂u′′j
∂xi

〉
,

ǫij = −
〈
σjk

∂u′′i
∂xk

〉
−
〈
σik

∂u′′j
∂xk

〉
−
〈
τjk

∂u′′i
∂xk

〉
−
〈
τik

∂u′′j
∂xk

〉
,

Σij = −〈u′′j 〉
∂〈p〉
∂xi

− 〈u′′i 〉
∂〈p〉
∂xj

.

(A.2)
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